WO2021200741A1 - 導電性フィルム、生体電極及び生体センサ - Google Patents

導電性フィルム、生体電極及び生体センサ Download PDF

Info

Publication number
WO2021200741A1
WO2021200741A1 PCT/JP2021/013087 JP2021013087W WO2021200741A1 WO 2021200741 A1 WO2021200741 A1 WO 2021200741A1 JP 2021013087 W JP2021013087 W JP 2021013087W WO 2021200741 A1 WO2021200741 A1 WO 2021200741A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
conductive
mass
cured product
poly
Prior art date
Application number
PCT/JP2021/013087
Other languages
English (en)
French (fr)
Inventor
拓郎 相賀
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180025305.6A priority Critical patent/CN115380337A/zh
Priority to US17/915,386 priority patent/US20230128873A1/en
Priority to EP21779527.7A priority patent/EP4130162A4/en
Priority to JP2021535957A priority patent/JP6989733B1/ja
Publication of WO2021200741A1 publication Critical patent/WO2021200741A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J165/00Adhesives based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Adhesives based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/019Specific properties of additives the composition being defined by the absence of a certain additive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to conductive films, bioelectrodes and biosensors.
  • biosensors that measure biometric information such as electrocardiogram, pulse wave, electroencephalogram, and myoelectricity are used.
  • the biosensor includes a bioelectrode that comes into contact with the living body and acquires biometric information of the subject.
  • a biosensor is attached to the subject's skin and the bioelectrode is brought into contact with the subject's skin. Biometric information is measured by acquiring electrical signals related to biometric information with bioelectrodes.
  • a bioelectrode for such a biosensor it is formed by using, for example, a conductive film composed of a specific polymer crosslinked by a covalent bond, a conductive material, and a conductive hydrogel containing a hydrophilic polymer.
  • a bio-attached electrode is disclosed (see, for example, Patent Document 1).
  • the bio-attached electrode containing a conductive polymer is brought into direct contact with the skin like the bio-attached electrode of Patent Document 1, water vapor and sweat (moisture) emitted from the skin are absorbed by the bio-attached electrode.
  • the resistance of the bio-attached electrode may increase. Since the amount of perspiration of the skin differs depending on the subject and the space between the bio-attached electrode and the skin is excessively stuffy, the position where the bio-attached electrode is attached is in an environment where the humidity is likely to change. Therefore, there is a possibility that the change in the resistance of the bio-attached electrode will be large.
  • One aspect of the present invention is to provide a conductive film capable of suppressing a change in resistance even in an environment where humidity is likely to change.
  • One aspect of the conductive film according to the present invention comprises a cured product of a composition containing a conductive polymer and a binder resin, and the water content of the cured product after water absorption is 70% or less.
  • One aspect of the conductive film according to the present invention can suppress a change in resistance even in an environment where humidity is likely to change.
  • the tilde "-" indicating a numerical range means that the numerical values described before and after the tilde are included as the lower limit value and the upper limit value unless otherwise specified.
  • the conductive film according to the embodiment of the present invention will be described.
  • the conductive film according to the present embodiment is made of a cured product of a conductive composition containing a conductive polymer and a binder resin.
  • the conductive film may include another layer in addition to the cured product.
  • the conductive film according to the present embodiment has a water content of 70% or less, preferably 65% or less, and more preferably 60% or less after water absorption of the cured product.
  • the water content is calculated by dividing the difference between the mass of the conductive film before drying and the mass after drying by the mass of the conductive film before drying, as shown in the following formula (1). (Mass before drying-Mass after drying) / Mass before drying ... (1)
  • the mass before drying means the mass before drying the conductive film, and is the mass measured before drying.
  • After drying means a state after the conductive film is dried at, for example, 150 ° C. for 3 minutes.
  • the mass after drying is the mass measured immediately after drying.
  • the water content can be similarly determined when the conductive film absorbs water before and after it absorbs water.
  • After water absorption of the conductive film means a state in which the conductive film is immersed in pure water for 1 hour or more in a room adjusted to room temperature (23 ° C. ⁇ 2 ° C.).
  • the mass after water absorption is the mass measured immediately after the conductive film is taken out from pure water and the surface moisture of the conductive film is wiped off.
  • a cross-linking agent is generally added to the conductive composition to promote cross-linking of the binder resin.
  • the inventor of the present application has, even if water comes into contact with the conductive film and is absorbed, after the cured product absorbs water. It was noted that if the water content in the above is kept small, the increase in the resistance of the conductive film can be suppressed.
  • the binder resin does not contain a cross-linking agent
  • hydroxyl groups OH groups
  • the inventor of the present application has found that by reducing the water content of the conductive film after water content to 70% or less, it is possible to suppress an increase in the resistance of the conductive film or reduce the resistance of the conductive film.
  • the conductive film according to the present embodiment preferably has a cured product resistance value of 120 ⁇ or less, more preferably 112 ⁇ or less, and further preferably 100 ⁇ or less.
  • the resistance value of the cured product is 120 ⁇ or less, the conductive film can increase the sensitivity of the electric signal obtained from the living body.
  • the cured product preferably has a resistance value of 120 ⁇ or less before and after water absorption.
  • the conductive film according to the present embodiment preferably has an upper limit of the water content of the cured product before water absorption of 30%.
  • the water content of the cured product before water absorption is more preferably 10.5% to 25%, and even more preferably 11% to 20%.
  • the conductive film can maintain a soft state, so that it can be easily attached to the surface of the living body.
  • the ratio (W2 / W1) of the water content W2 of the conductive film after water absorption to the water content W1 of the conductive film before water absorption is preferably 9.0% or less. , 6.5% or less, more preferably 6.0% or less.
  • W2 / W1 of the conductive film is 9.0% or less, it is possible to suppress the fluctuation amount of the conductive film before and after water absorption from becoming too large, and it is possible to suppress the fluctuation amount of the resistance.
  • the upper limit is not particularly limited and may be 1.0 or more.
  • W2 / W1 represents the water absorption rate of the conductive film, and is calculated by dividing the water content W2 after water absorption of the conductive film by the water content W1 before water absorption of the conductive film as shown in the following formula (2).
  • NS. Water absorption of the conductive film (W2 / W1) Moisture content of the conductive film after water absorption W2 / Water content of the conductive film before water absorption W1
  • the conductive film according to this embodiment can be formed by using a conductive composition containing a conductive polymer and a binder resin.
  • a conductive composition containing a conductive polymer and a binder resin containing a conductive polymer and a binder resin.
  • each component constituting the conductive composition will be described.
  • the conductive polymer and the binder resin, which are essential components of the conductive composition, will be described.
  • Examples of the conductive polymer include polythiophene-based conductive polymer, polyaniline-based conductive polymer, polypyrrole-based conductive polymer, polyacetylene-based conductive polymer, polyphenylene-based conductive polymer and derivatives thereof, and these. Complex and the like can be used. These may be used alone or in combination of two or more.
  • polystyrene-based conductive polymer examples include poly (thiophene), poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3-butylthiophene), and poly (3-butylthiophene). Hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene).
  • Polyaniline-based conductive polymers include polyaniline; polystyrene sulfonic acid (also called PSS), polyvinyl sulfonic acid, polyallyl sulfonic acid, polyacrylic sulfonic acid, polymethacrylsulfonic acid, and poly (2-acrylamide-2-methylpropanesulfon).
  • PSS polystyrene sulfonic acid
  • polyvinyl sulfonic acid also called PSS
  • polyallyl sulfonic acid polyacrylic sulfonic acid
  • polymethacrylsulfonic acid polymethacrylsulfonic acid
  • poly (2-acrylamide-2-methylpropanesulfon poly (2-acrylamide-2-methylpropanesulfon
  • Polymers with sulfonic acid groups such as acid), polyisoprene sulfonic acid, polysulfoethyl methacrylate, poly (4-sulfobutyl methacrylate), polymethacryloxybenzene sulfonic acid, polyvinylcarboxylic acid, polystyrene carboxylic acid, polyallylcarboxylic Examples thereof include polymers having a carboxylic acid group such as acid, polyacrylic carboxylic acid, polymethacrylcarboxylic acid, poly (2-acrylamide-2-methylpropanecarboxylic acid), polyisoprenecarboxylic acid, and polyacrylic acid.
  • carboxylic acid group such as acid, polyacrylic carboxylic acid, polymethacrylcarboxylic acid, poly (2-acrylamide-2-methylpropanecarboxylic acid), polyisoprenecarboxylic acid, and polyacrylic acid.
  • These may be used as a homopolymer obtained by polymerizing one kind alone, or may be used as a copolymer of two or more kinds.
  • a polymer having a sulfonic acid group is preferable, and polystyrene sulfonic acid is more preferable, because the conductivity can be made higher.
  • Polypyrrole-based conductive polymers include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), and poly (3-butyl).
  • Pyrrole poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), poly (3) -Carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3-hydroxypyrrole) , Poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole) and the like. ..
  • Polyacetylene can be appropriately synthesized, and examples of polyacetylene include polyphenylacetylene monoester having an ester at the para position of phenylacetylene and polyacetylene having a polar group such as polyphenylacetylene monoamide having an amide at the para position of phenylacetylene. Can be mentioned.
  • polyphenylene conductive polymer examples include polyphenylene vinylene and the like.
  • complexes examples include polythiophene doped with polyaniline as a dopant.
  • polythiophene and polyaniline PEDOT / PSS or the like in which PEDOT is doped with PSS can be used.
  • the conductive polymer a composite obtained by doping polythiophene with polyaniline as a dopant is preferable.
  • PEDOT / PSS obtained by doping PEDOT with PSS is more preferable because the contact impedance with the living body is lower and the conductivity is high.
  • the content of the conductive polymer is preferably 0.20 parts by mass to 20 parts by mass, and more preferably 2.5 parts by mass to 15 parts by mass with respect to 100 parts by mass of the conductive composition. , 3.0 parts by mass to 12 parts by mass is more preferable.
  • excellent conductivity, toughness and flexibility can be imparted to the conductive composition.
  • the conductive polymer may be used as an aqueous solution dissolved in a solvent.
  • a solvent an organic solvent or an aqueous solvent can be used.
  • the organic solvent include ketones such as acetone and methyl ethyl ketone (MEK); esters such as ethyl acetate; ethers such as propylene glycol monomethyl ether; and amides such as N, N-dimethylformamide.
  • the aqueous solvent include water; alcohols such as methanol, ethanol, propanol and isopropanol. Among these, it is preferable to use an aqueous solvent.
  • a water-soluble polymer As the binder resin, a water-soluble polymer, a water-insoluble polymer, or the like can be used.
  • the binder resin it is preferable to use a water-soluble polymer from the viewpoint of compatibility with other components contained in the conductive composition.
  • the water-soluble polymer includes a polymer (hydrophilic polymer) that is completely insoluble in water and has hydrophilicity.
  • a hydroxyl group-containing polymer or the like can be used as the water-soluble polymer.
  • a hydroxyl group-containing polymer saccharides such as agarose, polyvinyl alcohol (PVA), modified polyvinyl alcohol, a copolymer of acrylic acid and sodium acrylate, and the like can be used. These may be used alone or in combination of two or more. Among these, polyvinyl alcohol or modified polyvinyl alcohol is preferable, and modified polyvinyl alcohol is more preferable.
  • modified polyvinyl alcohol examples include acetacetyl group-containing polyvinyl alcohol and diacetone acrylamide modified polyvinyl alcohol.
  • diacetone acrylamide-modified polyvinyl alcohol for example, a diacetone acrylamide-modified polyvinyl alcohol-based resin (DA-modified PVA-based resin) described in JP-A-2016-166436 can be used.
  • the content of the binder resin is preferably 5 parts by mass to 140 parts by mass, more preferably 10 parts by mass to 100 parts by mass, and 20 parts by mass to 70 parts by mass with respect to 100 parts by mass of the conductive composition. It is more preferably parts by mass. If the content is within the above-mentioned preferable range with respect to the conductive composition, the cured product obtained by using the conductive composition can have excellent conductivity, toughness and flexibility. ..
  • the binder resin may be used as an aqueous solution dissolved in a solvent.
  • a solvent the same solvent as in the case of the above-mentioned conductive polymer can be used.
  • the conductive composition may further contain at least one of a cross-linking agent and a plasticizer, but preferably does not contain a cross-linking agent.
  • the cross-linking agent and the plasticizer have a function of imparting toughness and flexibility to the cured product obtained by using the conductive composition.
  • toughness is a property that achieves both excellent strength and elongation.
  • the toughness does not include the property that one of the strength and the elongation is remarkably excellent, but the other is remarkably low, and includes the property that the balance of both strength and the elongation is excellent.
  • Flexibility is a property that can suppress the occurrence of damage such as breakage at the bent portion after bending the cured product of the conductive composition.
  • the cross-linking agent has a function of cross-linking the binder resin.
  • the cross-linking agent preferably has reactivity with a hydroxyl group. If the cross-linking agent has reactivity with a hydroxyl group, the cross-linking agent can react with the hydroxyl group of the hydroxyl group-containing polymer when the binder resin is a hydroxyl group-containing polymer.
  • cross-linking agent examples include zirconium compounds such as zirconium salts; titanium compounds such as titanium salts; boron compounds such as boric acid; isocyanate compounds such as blocked isocyanate; aldehyde compounds such as sodium glyoxylate, formaldehyde, acetaldehyde, glyoxal and glutaraldehyde; Examples thereof include an alkoxyl group-containing compound and a methylol group-containing compound. These may be used alone or in combination of two or more.
  • the binder resin is porvinyl alcohol
  • glyoxylic acid is easy to maintain the performance of the cured product obtained by using the conductive composition.
  • Sodium acid is preferred.
  • the content of the cross-linking agent is preferably 0.01 part by mass to 5.6 parts by mass, and preferably 1.0 part by mass to 5.0 parts by mass with respect to 100 parts by mass of the conductive composition. It is more preferably 1.4 parts by mass to 3.0 parts by mass. If the content is within the above-mentioned preferable range, the cured product obtained by using the conductive composition can have excellent toughness and flexibility.
  • the cross-linking agent may be used as an aqueous solution dissolved in a solvent.
  • a solvent the same solvent as in the case of the above-mentioned conductive polymer can be used.
  • the plasticizer has a function of improving the conductivity of the cured product obtained by using the conductive composition and improving the tensile elongation and flexibility.
  • the plasticizer include glycerin, ethylene glycol, propylene glycol, sorbitol, and polyol compounds such as N-methylpyrrolidone (NMP), dimethylformaldehyde (DMF), NN'-dimethylacetamide (DMAc), and dimethyl sulfoxide.
  • NMP N-methylpyrrolidone
  • DMF dimethylformaldehyde
  • DMAc NN'-dimethylacetamide
  • dimethyl sulfoxide examples thereof include aprotonic compounds such as (DMSO). These may be used alone or in combination of two or more. Among these, glycerin is preferable from the viewpoint of compatibility with other components.
  • the content of the plasticizer is preferably 0.2 part by mass to 150 parts by mass, more preferably 1.0 part by mass to 90 parts by mass, with respect to 100 parts by mass of the conductive composition. It is more preferably parts by mass to 70 parts by mass. If the content is within the above-mentioned preferable range, the cured product obtained by using the conductive composition can have excellent toughness and flexibility.
  • the cured product obtained by using the conductive composition can improve toughness and flexibility.
  • the cured product obtained by using the conductive composition can further improve toughness, that is, both tensile strength and tensile elongation. At the same time, flexibility can be improved.
  • the conductive composition contains a plasticizer but does not contain a cross-linking agent
  • the tensile elongation of the cured product obtained by using the conductive composition can be improved. Therefore, the conductive composition is used as a whole.
  • the obtained cured product can improve toughness. In addition, the flexibility of the cured product obtained by using the conductive composition can be improved.
  • both the cross-linking agent and the plasticizer are contained in the conductive composition.
  • the cured product obtained by using the conductive composition can have even more excellent toughness.
  • the conductive composition may contain a surfactant, a softener, a stabilizer, a leveling agent, an antioxidant, an antioxidant, a leavening agent, a thickener, a colorant, or a colorant, if necessary.
  • a surfactant include silicone-based surfactants.
  • the conductive composition is prepared by mixing each of the above components in the above ratio.
  • the conductive composition can appropriately contain a solvent in an arbitrary ratio, if necessary. As a result, an aqueous solution of the conductive composition (an aqueous solution of the conductive composition) is prepared.
  • the same solvent as in the case of the above conductive polymer can be used.
  • the conductive polymer and the binder resin are mixed in the above ratio to prepare a conductive composition containing the conductive polymer and the binder resin.
  • the conductive composition may further contain at least one of a cross-linking agent and a plasticizer in the above proportions.
  • the conductive polymer, the binder resin and the cross-linking agent may be used as an aqueous solution dissolved in a solvent.
  • the conductive composition may further contain a solvent in an arbitrary ratio in addition to the solvent containing the conductive polymer, the binder resin and the cross-linking agent, and the aqueous solution of the conductive composition may be used.
  • a solvent the same solvent as the above-mentioned solvent can be used.
  • the conductive composition After applying the conductive composition to the surface of the release base material, the conductive composition is heated to promote the cross-linking reaction of the binder resin contained in the conductive composition, and the binder resin is cured to make the conductive composition conductive.
  • a cured product of the sex composition is obtained.
  • the obtained cured product is hardened while forming one or more through holes on the surface of the cured product by punching (pressing) the surface of the cured product using a press or the like, if necessary.
  • the outer shape of the object is molded into a predetermined shape. As a result, a conductive film having one or more through holes on the surface and having an outer shape having a predetermined shape, which is a molded body formed into a film, can be obtained.
  • the molding may be performed by a laser processing machine instead of the press machine.
  • the obtained cured product may have only one or more through holes formed on its surface, or may have only its outer shape formed into a predetermined shape.
  • the cured product when the cured product can be used as it is as a conductive film, the cured product may be used as a conductive film without molding or the like.
  • Each component of the conductive polymer, the binder resin, the cross-linking agent, and the plasticizer contained in the conductive film has a content equivalent to the amount added at the time of producing the conductive composition.
  • a separator As the peeling base material, a separator, a core material, or the like can be used.
  • a resin film such as polyethylene terephthalate (PET) film, polyethylene (PE) film, polypropylene (PP) film, polyamide (PA) film, polyimide (PI) film, or fluororesin film can be used.
  • the core material use a resin film such as PET film or PI film; a ceramic sheet; a metal film such as aluminum foil; a resin substrate reinforced with glass fiber or plastic non-woven fiber; a silicone substrate or a glass substrate or the like. Can be done.
  • a method of applying the conductive composition on the peeling substrate a method by roll coating, screen coating, gravure coating, spin coating, reverse coating, bar coating, blade coating, air knife coating, dipping, dispensing, etc., a small amount
  • a method of hanging the conductive composition of the above on a base material and stretching it with a doctor blade or the like can be used.
  • the conductive composition is uniformly coated on the release base material.
  • dryers such as a drying oven, a vacuum oven, an air circulation type oven, a hot air dryer, a far infrared dryer, a microwave vacuum dryer, and a high frequency dryer can be used. ..
  • the heating conditions may be any conditions as long as the cross-linking agent contained in the conductive composition can react.
  • the heating temperature of the conductive composition is a temperature at which curing of the binder resin contained in the conductive composition can proceed.
  • the heating temperature is preferably 100 ° C. to 200 ° C.
  • the conductive composition contains a cross-linking agent, if the heating temperature is in the range of 100 ° C. to 200 ° C., the reaction of the cross-linking agent is likely to proceed, and the curing of the binder resin can be promoted.
  • the heating time of the conductive composition is preferably 0.5 minutes to 300 minutes, more preferably 5 minutes to 120 minutes. If the heating time is within the range of 0.5 minutes to 300 minutes, the binder resin can be sufficiently cured.
  • the conductive film according to the present embodiment includes a cured product of the conductive composition, and the water content of the cured product after water absorption is 70% or less.
  • the factors of water absorption include the invasion of water into the gaps inside the cured product and the invasion of water into the crosslinked structure of the cured product.
  • the cross-linking reaction proceeds by the aldehyde reaction of the acetoacetyl group, which is the cross-linking point with the binder resin contained in the conductive composition, and the bond to the hydroxyl group (OH group) generated. I think there is.
  • the OH group generated by the aldehyde reaction with the acetoacetyl group which is the cross-linking point of the cross-linking agent with polyvinyl alcohol, becomes the water bonding portion as shown in the following reaction formula.
  • the cured product Due to the intrusion of water into the gaps inside the cured product and the intrusion of water into the crosslinked structure of the cured product, the cured product absorbs water up to a certain amount, but the amount of water supplied due to these is almost the same, so it is conductive.
  • the water content of the sex film after water absorption increases to some extent. If the water content of the conductive film after absorbing water is 70% or less, the amount of water absorbed by the cured product depends on the intrusion of water into the gaps inside the cured product and the intrusion of water into the crosslinked structure of the cured product.
  • the amount is the majority, and the binding of water to the OH group generated by the cross-linking reaction between the binder resin and the cross-linking agent on the cured product is suppressed, and the further increase in water absorption can be suppressed.
  • the increase in resistance can be suppressed or the resistance of the conductive film can be reduced. Therefore, the conductive film according to the present embodiment can suppress the change in resistance even in an environment where the humidity is likely to change.
  • the contact impedance When the contact impedance is lower, the biological information can be measured stably and accurately, and when the contact impedance is, for example, 500 ⁇ or less, the electrocardiogram can be stably measured as the biological information.
  • the resistance value of the cured product of the conductive composition can be 120 ⁇ or less.
  • the conductive film can detect the electric signal obtained from the living body with higher sensitivity. Therefore, the conductive film can further stably improve the measurement accuracy of biological information even when it is installed in an environment where humidity is likely to change, such as the surface of a living body.
  • the conductive film according to the present embodiment can have a water content of 30% or less before water absorption of the cured product of the conductive composition.
  • the conductive film can stably maintain its flexibility even when it is installed in an environment where the humidity is liable to change, so that the conductive film can be maintained in a state of being attached to the surface of the living body.
  • the conductive film according to the present embodiment can have a water absorption rate (W2 / W1) of a cured product of the conductive composition of 9.0% or less.
  • a cured product containing 0.01 part by mass to 5.6 parts by mass of a cross-linking agent in the conductive composition can be used. If the content of the cross-linking agent in the conductive composition is suppressed, the amount of OH groups generated by the cross-linking reaction between the binder resin and the cross-linking agent in the cured product of the conductive composition decreases, and the amount of water absorption increases. Can be suppressed.
  • the binder layer is polyvinyl alcohol
  • the acetoacetyl group of polyvinyl alcohol forms a crosslinked structure by an aldehyde reaction by a crosslinking agent, and a hydrophilic OH group is generated in the crosslinked structure of polyvinyl alcohol.
  • the cross-linking reaction proceeds, the proportion of OH groups increases, and the amount of water absorbed increases.
  • the conductive film according to the present embodiment can suppress the amount of OH groups generated in the cured product and suppress the increase in the amount of water absorbed when the cured product is made to absorb water, it is possible to suppress fluctuations before and after water absorption. can. Therefore, the conductive film according to the present embodiment can suppress the change in resistance more stably even when it is installed in an environment where the humidity is likely to change.
  • a cured product obtained by curing the conductive composition without containing a cross-linking agent can be used. If the conductive composition does not contain a cross-linking agent, OH groups are not generated in the cured product of the conductive composition. Therefore, due to the binding of water to the OH groups generated in the cured product, which is one of the factors of water absorption. It is possible to prevent an increase in water absorption. Therefore, since the conductive film according to the present embodiment does not contain a cross-linking agent, fluctuations before and after water absorption can be further suppressed, so that changes in resistance can be caused even when installed in an environment where humidity is likely to change. It can be suppressed even more stably.
  • the conductivity can be enhanced by using a cured product obtained by curing the conductive composition without containing a cross-linking agent.
  • a cross-linking agent Na ions (Na + ) contained in the cross-linking agent constitute PDS of PEDOT / PSS as shown in the following reaction formula. It is conceivable to replace SO 3 H with hydrogen ions (H + ) and PEDOT to inhibit the movement of electrons in PEDOT / PSS.
  • bipolaron (dication) generated by PSS extracting electrons from PEDOT inhibits hopping conduction in which hopping is performed between molecules.
  • the conductive film according to the present embodiment by using a cured product obtained by curing the conductive composition without containing a cross-linking agent, it is possible to prevent the movement of electrons from being hindered, so that the conductivity can be further enhanced. can.
  • the conductive composition according to the present embodiment has the above-mentioned characteristics, it is effectively used as a bioelectrode by containing a cured product of the conductive composition as a material for a biosensor electrode (bioelectrode). be able to.
  • the bioelectrode can have any shape such as a sheet shape.
  • the bioelectrode formed by using the conductive composition according to the present embodiment has high conductivity and can reduce irritation to the skin, it is attached to a biosensor, particularly the skin of a living body, and has high conductivity. It can be suitably used as a bioelectrode of a stick-type biosensor that requires sex and skin safety.
  • Example 1> (Preparation of conductive composition) An aqueous solution containing 0.38 parts by mass of PEDOT / PSS pellets ("Orgacon DRY", manufactured by Nippon Aghua Materials Co., Ltd.) as a conductive polymer and modified polyvinyl alcohol as a binder resin (modified polyvinyl alcohol concentration: 10%, "Gosenex” Z-410 ”, manufactured by Nippon Synthetic Chemical Co., Ltd.) 10.0 parts by mass and glycerin (manufactured by Wako Junyaku Co., Ltd.) 2.0 parts by mass as a plasticizer were added to the ultrasonic bath. Then, the aqueous solution containing these components was mixed in an ultrasonic bath for 30 minutes to prepare a uniform aqueous solution of the conductive composition.
  • PEDOT / PSS pellets ("Orgacon DRY", manufactured by Nippon Aghua Materials Co., Ltd.)
  • modified polyvinyl alcohol as a binder resin
  • the content of PEDOT / PSS in the aqueous solution of the conductive composition is 0.308 parts by mass. Since the concentration of the modified polyvinyl alcohol in the aqueous solution containing the modified polyvinyl alcohol is about 10%, the content of the modified polyvinyl alcohol in the aqueous solution of the conductive composition is 1.00 parts by mass. The balance is the solvent in the aqueous solution of the conductive composition.
  • the contents of the conductive polymer, the binder resin and the plasticizer with respect to 100 parts by mass of the conductive composition were 9.3 parts by mass, 30.2 parts by mass and 60.5 parts by mass, respectively.
  • the prepared aqueous solution of the conductive composition was applied onto a polyethylene terephthalate (PET) film using an applicator. Then, the PET film coated with the aqueous solution of the conductive composition is conveyed to a drying oven (SPHH-201, manufactured by ESPEC), and the aqueous solution of the conductive composition is heated and dried at 120 ° C. for 10 minutes to obtain a conductive composition. A cured product of the product was prepared. The cured product was pressed into a sheet to form a conductive film having a thickness of 25 ⁇ m. The conductive film was divided to prepare three conductive films.
  • SPHH-201 drying oven
  • Moisture content W2 after water absorption of the conductive film (mass of the water-absorbed conductive film after drying-mass of the water-absorbed conductive film before drying) / mass of the water-absorbed conductive film before drying ⁇ 100 (%) ⁇ ⁇ ⁇ (12)
  • the water absorption rate of the conductive film was calculated based on the following formula (2).
  • Water absorption of the conductive film Water content of the conductive film after water absorption / Water absorption of the conductive film before water absorption ... (2)
  • Example 2 ⁇ Example 2>
  • an aqueous solution containing sodium glyoxylate as a cross-linking agent (“Safelink (registered trademark) SPM-01 (10%)”, manufactured by Mitsubishi Chemical Corporation) was added to the aqueous solution of the conductive composition. Except for what was done, the same procedure as in Example 1 was carried out. Since the concentration of sodium glyoxylate in the aqueous solution containing sodium glyoxylate is about 10%, the content of sodium glyoxylate in the aqueous solution of the conductive composition is 0.05 parts by mass.
  • each component contained in the conductive composition produced in this example is 9. It was 2 parts by mass, 29.8 parts by mass, 1.5 parts by mass and 59.6 parts by mass.
  • Example 3 ⁇ Example 3>
  • aqueous solution containing sodium glyoxylate as a cross-linking agent (“Safelink (registered trademark) SPM-01 (10%)”, manufactured by Mitsubishi Chemical Co., Ltd.) was added to the aqueous solution of the conductive composition. Then, the same procedure as in Example 1 was carried out except that the content of sodium glyoxylate in the aqueous solution of the conductive composition was adjusted to be 0.10 parts by mass.
  • each component conductive polymer, binder resin, cross-linking agent and plasticizer contained in the conductive composition produced in this example is 9. It was 0 parts by mass, 29.3 parts by mass, 2.9 parts by mass and 58.7 parts by mass.
  • Example 1 ⁇ Comparative example 1>
  • an aqueous solution containing sodium glyoxylate as a cross-linking agent (“Safelink (registered trademark) SPM-01 (10%)”, manufactured by Mitsubishi Chemical Co., Ltd.) was added to the aqueous solution of the conductive composition. Then, the same procedure as in Example 1 was carried out except that the content of sodium glyoxylate in the aqueous solution of the conductive composition was adjusted to 0.20 parts by mass.
  • each component contained in the conductive composition produced in this example is 8. It was 8 parts by mass, 28.5 parts by mass, 5.7 parts by mass and 57.0 parts by mass.
  • Example 2 ⁇ Comparative example 2>
  • an aqueous solution containing sodium glyoxylate as a cross-linking agent (“Safelink (registered trademark) SPM-01 (10%)”, manufactured by Mitsubishi Chemical Co., Ltd.) was added to the aqueous solution of the conductive composition. Then, the same procedure as in Example 1 was carried out except that the content of sodium glyoxylate in the aqueous solution of the conductive composition was adjusted to 0.50 parts by mass.
  • each component contained in the conductive composition produced in this example is 8. It was 1 part by mass, 26.3 parts by mass, 13.1 parts by mass and 52.5 parts by mass.
  • Example 3 In Example 1, 10.0 parts by mass of an aqueous solution containing sodium glyoxylate as a cross-linking agent (“Safelink (registered trademark) SPM-01 (10%)”, manufactured by Mitsubishi Chemical Co., Ltd.) was added to the aqueous solution of the conductive composition. Then, the same procedure as in Example 1 was carried out except that the content of sodium glyoxylate in the aqueous solution of the conductive composition was adjusted to 1.0 part by mass.
  • Safelink (registered trademark) SPM-01 (10%) manufactured by Mitsubishi Chemical Co., Ltd.
  • each component contained in the conductive composition produced in this example was 7. It was 1 part by mass, 23.2 parts by mass, 23.2 parts by mass and 46.4 parts by mass.
  • Table 1 shows the measurement results of the water content W1 before water absorption and its resistance value, the water content W2 after water absorption and its resistance value, and the water absorption rate of the obtained conductive film in each Example and Comparative Example. show.
  • the parentheses of each component in Table 1 are the mass when the total mass of the components excluding the solvent from the aqueous solution of the conductive composition is 100 parts by mass.
  • the conductive films of Examples 1 to 3 have a water content W2 of 69% or less after water absorption of the conductive films, so that an increase in resistance can be suppressed. It can be said that. Therefore, when the conductive film according to the present embodiment is used as the bioelectrode of the biosensor, the decrease in conductivity can be suppressed, so that the contact impedance of the conductive film with the living body can be maintained low, and the conductive film can be obtained from the living body. It can be said that the electric signal can be detected stably with high sensitivity. Therefore, it can be said that the biosensor can be effectively used to bring the biosensor into close contact with the skin of the subject and continuously measure the electrocardiogram for a long time (for example, 24 hours).

Abstract

本発明に係る導電性フィルムは、導電高分子及びバインダー樹脂を含有する組成物の硬化物を備え、前記硬化物の吸水後における含水率が、70%以下である。

Description

導電性フィルム、生体電極及び生体センサ
 本発明は、導電性フィルム、生体電極及び生体センサに関する。
 病院や診療所等の医療機関、介護施設又は自宅等において、例えば、心電、脈波、脳波又は筋電等の生体情報を測定する生体センサが用いられる。生体センサは、生体と接触して被験者の生体情報を取得する生体電極を備えている。生体情報を測定する際には、生体センサを被験者の皮膚に貼り付けて、生体電極を被験者の皮膚に接触させる。生体情報に関する電気信号を生体電極で取得することで、生体情報が測定される。
 このような生体センサ用の生体電極として、例えば、共有結合によって架橋された特定のポリマーと、導電材料と、親水性ポリマーとを含む導電性ハイドロゲルから構成される導電性フィルムを用いて形成した生体貼付電極が開示されている(例えば、特許文献1参照)。
日本国特開2015-147857号公報
 しかしながら、特許文献1の生体貼付電極のように、導電性高分子を含む生体貼付電極を皮膚に直接接触させる場合、皮膚から発散された水蒸気及び汗(水分)が生体貼付電極に吸収されるため、生体貼付電極の抵抗が上昇する可能性がある。被験者によって皮膚の発汗量が異なるうえ、生体貼付電極と皮膚との間は過度に蒸れ易い状態にあるため、生体貼付電極が貼付される位置は湿度が変化し易い環境下にある。そのため、生体貼付電極の抵抗の変化が大きくなる可能性がある。
 本発明の一態様は、湿度が変化し易い環境下においても、抵抗の変化を抑制することができる導電性フィルムを提供することを目的とする。
 本発明に係る導電性フィルムの一態様は、導電高分子及びバインダー樹脂を含有する組成物の硬化物を備え、前記硬化物の吸水後における含水率が、70%以下である。
 本発明に係る導電性フィルムの一態様は、湿度が変化し易い環境下においても、抵抗の変化を抑制することができる。
 以下、本発明の実施の形態について、詳細に説明する。なお、本明細書において数値範囲を示すチルダ「~」は、別段の断わりがない限り、その前後に記載された数値を下限値及び上限値として含むことを意味する。
<導電性フィルム>
 本発明の実施形態に係る導電性フィルムについて説明する。本実施形態に係る導電性フィルムは、導電高分子及びバインダー樹脂を含有する導電性組成物の硬化物からなる。なお、導電性フィルムは、硬化物の他に、他の層を備えてもよい。
 本実施形態に係る導電性フィルムは、硬化物の吸水後における含水率が70%以下であり、好ましくは65%以下であり、より好ましくは60%以下である。
 ここで、含水率は、下記式(1)の通り、導電性フィルムの、乾燥前の質量と乾燥後の質量との差を導電性フィルムの乾燥前の質量で除することにより算出される。
(乾燥前の質量-乾燥後の質量)/乾燥前の質量 ・・・(1)
 乾燥前の質量とは、導電性フィルムを乾燥させる前の質量を意味し、乾燥前に測定した質量である。乾燥後とは、導電性フィルムを、例えば、150℃、3分間乾燥した後の状態を意味する。乾燥後の質量は、乾燥後、速やかに測定した質量である。
 含水率は、導電性フィルムが吸水前及び吸水後のいずれの場合も同様に求めることができる。導電性フィルムの吸水後とは、導電性フィルムを室温(23℃±2℃)に調整された室内で、純水に1時間以上浸漬した状態を意味する。吸水後の質量は、導電性フィルムを純水中から取り出し、導電性フィルムの表面水分を拭き取った後、速やかに測定した質量である。
 導電性高分子とバインダー樹脂と含む導電性組成物を硬化させて硬化物を生成する際、一般に、導電性組成物には架橋剤を添加してバインダー樹脂の架橋を促進させている。本願発明者は、導電性高分子とバインダー樹脂と含む導電性組成物の硬化物を備える導電性フィルムを開発するに当たり、導電性フィルムに水分が接触して吸収されても、硬化物の吸水後における含水率を小さく抑えれば、導電性フィルムの抵抗の上昇を抑えることができることに着目した。特に、バインダー樹脂中に架橋剤を含まない場合には、硬化物には、水酸基(OH基)が生成されず、導電性フィルムの吸水量の上昇を抑える傾向にあった。本願発明者は、導電性フィルムの含水後における含水率を70%以下にすることで、導電性フィルムの抵抗の上昇を抑えるか導電性フィルムの抵抗を下げることができることを見出した。
 本実施形態に係る導電性フィルムは、硬化物の抵抗値を120Ω以下とすることが好ましく、より好ましくは112Ω以下、さらに好ましくは100Ω以下である。硬化物の抵抗値が120Ω以下であれば、導電性フィルムは、生体から得られる電気信号の感度をより高くすることができる。また、硬化物は、吸水前及び吸水後のいずれの場合でも、抵抗値を120Ω以下とすることが好ましい。
 本実施形態に係る導電性フィルムは、硬化物の吸水前の含水率の上限値を30%とすることが好ましい。硬化物の吸水前の含水率は、10.5%~25%であることがより好ましく、11%~20%であることがさらに好ましい。硬化物の吸水前の含水率が30%以下であれば、導電性フィルムは柔らかい状態を維持することができるので、生体表面に貼付させ易くなる。
 本実施形態に係る導電性フィルムは、導電性フィルムの吸水前における含水率W1に対する導電性フィルムの吸水後における含水率W2の比(W2/W1)が、9.0%以下であることが好ましく、6.5%以下であることがより好ましく、6.0%以下であることがさらに好ましい。導電性フィルムのW2/W1が9.0%以下であれば、導電性フィルムの吸水前後の変動量が大きくなり過ぎるのが抑えられ、抵抗の変動量を抑えることができる。なお、上限値は、特に限定されず1.0以上であればよい。
 W2/W1は、導電性フィルムの吸水率を表し、下記式(2)の通り、導電性フィルムの吸水後における含水率W2を導電性フィルムの吸水前における含水率W1で除することにより算出される。
導電性フィルムの吸水率(W2/W1)=導電性フィルムの吸水後における含水率W2/導電性フィルムの吸水前における含水率W1
 本実施形態に係る導電性フィルムは、導電高分子及びバインダー樹脂を含む導電性組成物を用いて形成することができる。以下、導電性組成物を構成する各成分について説明する。導電性組成物の必須成分である、導電高分子及びバインダー樹脂について説明する。
 導電性高分子としては、例えば、ポリチオフェン系導電性高分子、ポリアニリン系導電性高分子、ポリピロール系導電性高分子、ポリアセチレン系導電性高分子、ポリフェニレン系導電性高分子及びこれらの誘導体、並びにこれらの複合体等を用いることができる。これらは、一種単独で用いてもよいし、二種以上併用してもよい。
 ポリチオフェン系導電性高分子としては、ポリ(チオフェン)、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOTともいう)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)等が挙げられる。
 ポリアニオン系導電性高分子としては、ポリアニリン;ポリスチレンスルホン酸(PSSともいう)、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリスルホエチルメタクリレート、ポリ(4-スルホブチルメタクリレート)、ポリメタクリルオキシベンゼンスルホン酸等のスルホン酸基を有する高分子や、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2-アクリルアミド-2-メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等のカルボン酸基を有する高分子が挙げられる。これらは、1種を単独で重合した単独重合体で用いてもよいし、2種以上の共重合体で用いてもよい。これらポリアニオンの中でも、導電性をより高くできることから、スルホン酸基を有する高分子が好ましく、ポリスチレンスルホン酸がより好ましい。
 ポリピロール系導電性高分子としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられる。
 ポリアセチレンは、適宜合成可能であり、ポリアセチレンとしては、フェニルアセチレンのパラ位にエステルを有するポリフェニルアセチレンモノエステルやフェニルアセチレンのパラ位にアミドを有するポリフェニルアセチレンモノアミド等の極性基を有するポリアセチレン等が挙げられる。
 ポリフェニレン系導電性高分子としては、ポリフェニレンビニレン等が挙げられる。
 これらの複合体として、ポリチオフェンにドーパントとしてポリアニリンをドープした複合体が挙げられる。ポリチオフェンとポリアニリンとの複合体として、PEDOTにPSSをドープしたPEDOT/PSS等を用いることができる。
 導電性高分子として、上記の中でも、ポリチオフェンにドーパントとしてポリアニリンをドープした複合体が好ましい。ポリチオフェンとポリアニリンとの複合体の中でも、生体との接触インピーダンスがより低く、高い導電性を有する点から、PEDOTにPSSをドープしたPEDOT/PSSがより好ましい。
 導電性高分子の含有量は、導電性組成物100質量部に対して、0.20質量部~20質量部であることが好ましく、2.5質量部~15質量部であることがより好ましく、3.0質量部~12質量部であることがさらに好ましい。前記含有量が、導電性組成物に対して、0.20質量部~20質量部の範囲内であれば、導電性組成物に優れた導電性、強靱性及び柔軟性を付与できる。
 導電性高分子は、溶媒に溶解した水溶液として用いてもよい。この場合、溶媒としては、有機溶媒、又は水系溶媒を用いることができる。有機溶媒としては、例えば、アセトン、メチルエチルケトン(MEK)等のケトン類;酢酸エチル等のエステル類;プロピレングリコールモノメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド等のアミド類が挙げられる。水系溶媒としては、例えば、水;メタノール、エタノール、プロパノール、イソプロパノール等のアルコールが挙げられる。これらの中でも、水系溶媒を用いることが好ましい。
 バインダー樹脂は、水溶性高分子又は水不溶性高分子等を用いることができる。バインダー樹脂は、導電性組成物に含まれる他の成分との相溶性の観点から、水溶性高分子を用いることが好ましい。なお、水溶性高分子は、水には完全に溶けず、親水性を有する高分子(親水性高分子)を含む。
 水溶性高分子としては、ヒドロキシル基含有高分子等を用いることができる。ヒドロキシル基含有高分子としては、アガロース等の糖類、ポリビニルアルコール(PVA)、変性ポリビニルアルコール、アクリル酸とアクリル酸ナトリウムとの共重合体等を用いることができる。これらは、一種単独で用いてもよいし、二種以上併用してもよい。これらの中でも、ポリビニルアルコール又は変性ポリビニルアルコールが好ましく、変性ポリビニルアルコールがより好ましい。
 変性ポリビニルアルコールとしては、アセトアセチル基含有ポリビニルアルコール、ジアセトンアクリルアミド変性ポリビニルアルコール等が挙げられる。なお、ジアセトンアクリルアミド変性ポリビニルアルコールとしては、例えば、特開2016-166436号公報に記載されているジアセトンアクリルアミド変性ポリビニルアルコール系樹脂(DA化PVA系樹脂)を用いることができる。
 バインダー樹脂の含有量は、導電性組成物100質量部に対して、5質量部~140質量部であることが好ましく、10質量部~100質量部であることがより好ましく、20質量部~70質量部であることがさらに好ましい。前記含有量が、導電性組成物に対して、上記の好ましい範囲内であれば、導電性組成物を用いて得られる硬化物は、優れた導電性、強靱性及び柔軟性を有することができる。
 バインダー樹脂は、溶媒に溶解した水溶液として用いてもよい。溶媒は、上記の導電性高分子の場合と同様の溶媒を用いることができる。
 導電性組成物は、さらに架橋剤及び可塑剤の少なくとも一方を含んでもよいが、架橋剤を含まないことが好ましい。架橋剤及び可塑剤は、導電性組成物を用いて得られる硬化物に強靱性及び柔軟性を付与する機能を有する。
 なお、強靱性は、優れた強度及び伸度を両立する性質である。強靱性は、強度及び伸度のうち、一方が顕著に優れるが、他方が顕著に低い性質を含まず、強度及び伸度の両方のバランスに優れた性質を含む。
 柔軟性は、導電性組成物の硬化物を屈曲した後、屈曲部分に破断等の損傷の発生を抑制できる性質である。
 架橋剤は、バインダー樹脂を架橋させる機能を有する。架橋剤がバインダー樹脂に含まれることで、導電性組成物を用いて得られる硬化物の強靱性を向上させることができる。架橋剤は、ヒドロキシル基との反応性を有することが好ましい。架橋剤がヒドロキシル基との反応性を有すれば、バインダー樹脂がヒドロキシル基含有ポリマーである場合、架橋剤はヒドロキシル基含有ポリマーのヒドロキシル基と反応できる。
 架橋剤としては、ジルコニウム塩等のジルコニウム化合物;チタン塩等のチタン化合物;ホウ酸等のホウ素化合物;ブロックイソシアネート等のイソシアネート化合物;グリオキシル酸ナトリウム、ホルムアルデヒド、アセトアルデヒド、グリオキサール、グルタルアルデヒド等のアルデヒド化合物;アルコキシル基含有化合物、メチロール基含有化合物等が挙げられる。これらは、一種単独で用いてもよいし、二種以上併用してもよい。中でも、バインダー樹脂がポルビニルアルコールであるとき、ポルビニルアルコールと反応して架橋構造を形成し易く、導電性組成物を用いて得られる硬化物の性能の保持のし易さの点から、グリオキシル酸ナトリウムが好ましい。
 架橋剤の含有量は、導電性組成物100質量部に対して、0.01質量部~5.6質量部であることが好ましく、1.0質量部~5.0質量部であることがより好ましく、1.4質量部~3.0質量部であることがさらに好ましい。含有量が、上記の好ましい範囲内であれば、導電性組成物を用いて得られる硬化物は、優れた強靱性及び柔軟性を有することができる。
 架橋剤は、溶媒に溶解した水溶液として用いてもよい。溶媒は、上記の導電性高分子の場合と同様の溶媒を用いることができる。
 可塑剤は、導電性組成物を用いて得られる硬化物の導電性を向上させると共に、引張伸度及び柔軟性を向上させる機能を有する。可塑剤としては、グリセリン、エチレングリコール、プロピレングリコール、ソルビトール、これらの重合体等のポリオール化合物N-メチルピロリドン(NMP)、ジメチルホルムアルデヒド(DMF)、N-N'-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)等の非プロトン性化合物等が挙げられる。これらは、一種単独で用いてもよいし、二種以上併用してもよい。これらの中でも、他の成分との相溶性の観点から、グリセリンが好ましい。
 可塑剤の含有量は、導電性組成物100質量部に対して、0.2質量部~150質量部であることが好ましく、1.0質量部~90質量部であることがより好ましく、10質量部~70質量部であることがさらに好ましい。含有量が、上記の好ましい範囲内であれば、導電性組成物を用いて得られる硬化物は、優れた強靱性及び柔軟性を有することができる。
 導電性組成物は、架橋剤及び可塑剤の少なくとも一方を含むことで、導電性組成物を用いて得られる硬化物は、強靱性及び柔軟性を向上させることができる。
 導電性組成物は、架橋剤を含むが可塑剤を含めない場合、導電性組成物を用いて得られる硬化物は、強靱性、すなわち引張強度及び引張伸度の両方をより向上させることができると共に、柔軟性を向上させることができる。
 導電性組成物は、可塑剤を含むが架橋剤を含まない場合、導電性組成物を用いて得られる硬化物の引張伸度を向上させることができるため、全体として導電性組成物を用いて得られる硬化物は強靱性を向上させることができる。また、導電性組成物を用いて得られる硬化物の柔軟性を向上させることができる。
 架橋剤及び可塑剤の両方が導電性組成物に含まれていることが好ましい。架橋剤及び可塑剤の両方が導電性組成物に含まれることで、導電性組成物を用いて得られる硬化物はより一層優れた強靱性を有することができる。
 導電性組成物は、上記成分の他に、必要に応じて、界面活性剤、軟化剤、安定剤、レベリング剤、酸化防止剤、加水分解防止剤、膨張剤、増粘剤、着色剤、又は充填剤等の公知の各種添加剤を適宜任意の割合で含んでもよい。界面活性剤としては、シリコーン系界面活性剤等が挙げられる。
 導電性組成物は、上記した各成分を上記割合で混合することにより調製される。
 導電性組成物は、必要に応じて、溶媒を適宜任意の割合で含むことができる。これにより、導電性組成物の水溶液(導電性組成物水溶液)が調製される。
 溶媒は、上記の導電性高分子の場合と同様の溶媒を用いることができる。
 導電性フィルムの製造方法の一例について説明する。
 導電性高分子及びバインダー樹脂を上記割合で混合して、導電性高分子及びバインダー樹脂を含む導電性組成物を作製する。導電性組成物は、さらに架橋剤及び可塑剤の少なくとも一方を、それぞれ上記割合で含んでもよい。導電性組成物を作製する際、導電性高分子、バインダー樹脂及び架橋剤は、溶媒に溶解した水溶液として用いてもよい。
 導電性組成物は、必要に応じて、導電性高分子、バインダー樹脂及び架橋剤を含む溶媒の他に、さらに溶媒を適宜任意の割合で含み、導電性組成物水溶液を用いてもよい。溶媒としては、上記の溶媒と同様の溶媒を用いることができる。
 導電性組成物を剥離基材の表面に塗布した後、導電性組成物を加熱することによって、導電性組成物に含まれるバインダー樹脂の架橋反応を進行させ、バインダー樹脂を硬化させることにより、導電性組成物の硬化物が得られる。得られた硬化物は、必要に応じて、硬化物の表面をプレス機等を用いて打ち抜き(プレス)等を行うことで、硬化物の表面に1つ以上の貫通孔を形成すると共に、硬化物の外形を所定の形状に成形する。これにより、表面に1つ以上の貫通孔を有すると共に所定形状の外形を有し、フィルム状に成形された成形体である導電性フィルムが得られる。なお、プレス機に代えてレーザー加工機により成形してもよい。また、得られた硬化物は、その表面に1つ以上の貫通孔のみを形成してもよいし、外形のみを所定の形状に成形してもよい。さらに、硬化物をそのまま導電性フィルムとして用いることができる場合には、硬化物は、成形等を行わずに導電性フィルムとして用いてもよい。
 なお、導電性フィルムに含まれる、導電性高分子、バインダー樹脂、架橋剤及び可塑剤の各成分は、導電性組成物の作製時の添加量と同等の含有量を有している。
 剥離基材としては、セパレータ、又はコア材等を用いることができる。セパレータとしては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルム、ポリアミド(PA)フィルム、ポリイミド(PI)フィルム、又はフッ素樹脂フィルム等の樹脂フィルムを用いることができる。コア材としては、PETフィルムやPIフィルム等の樹脂フィルム;セラミックスシート;アルミウム箔等の金属フィルム;ガラス繊維やプラスチック製不織繊維等で強化された樹脂基板;シリコーン基板又はガラス基板等を用いることができる。
 導電性組成物の剥離基材上への塗布方法としては、ロールコート、スクリーンコート、グラビアコート、スピンコート、リバースコート、バーコート、ブレードコート、エアーナイフコート、ディッピング、ディスペンシング等による方法、少量の導電性組成物を基材上に垂らしてドクターブレードで伸ばす方法等を用いることができる。これらの塗布方法により、導電性組成物は剥離基材上に均一に塗布される。
 導電性組成物の加熱方法としては、乾燥オーブン、真空オーブン、空気循環型オーブン、熱風乾燥機、遠赤外線乾燥機、マイクロ波減圧乾燥機、高周波乾燥機等の公知の乾燥機を用いることができる。
 加熱条件としては、導電性組成物に含まれる架橋剤が反応できる条件であればよい。
 導電性組成物の加熱温度は、導電性組成物に含まれるバインダー樹脂の硬化を進行させることができる温度とする。加熱温度としては、100℃~200℃が好ましい。導電性組成物に架橋剤が含まれる場合、加熱温度が100℃~200℃の範囲内であれば、架橋剤の反応が進行し易くなり、バインダー樹脂の硬化を促進できる。
 導電性組成物の加熱時間は、0.5分~300分であることが好ましく、5分~120分であることがより好ましい。加熱時間が0.5分~300分の範囲内であれば、バインダー樹脂の硬化を十分行うことができる。
 このように、本実施形態に係る導電性フィルムは、導電性組成物の硬化物を備え、硬化物の吸水後における含水率を70%以下としている。導電性フィルムを水中に浸漬して硬化物に吸水させる際、吸水の要因として、硬化物の内部の隙間ヘの水分の侵入と、硬化物の架橋構造中への水分の侵入との他に、導電性組成物に架橋剤を添加した時に導電性組成物に含まれるバインダー樹脂との架橋点となるアセトアセチル基のアルデヒド反応により架橋反応が進行すると共に生成される水酸基(OH基)への結合があると考える。例えば、バインダー樹脂としてポリビニルアルコールを用いる場合、以下の反応式の通り、架橋剤のポリビニルアルコールとの架橋点となるアセトアセチル基とのアルデヒド反応により生成されるOH基が水分の結合部分となる。
Figure JPOXMLDOC01-appb-C000001
 硬化物の内部の隙間ヘの水分の侵入と、硬化物の架橋構造中への水分の侵入とにより、硬化物は一定量まで吸水するが、これらに起因した給水量は殆ど変わらないため、導電性フィルムの吸水後における含水率はある程度まで上昇する。導電性フィルムの吸水後における含水率が70%以下であれば、硬化物の吸水量は、硬化物の内部の隙間ヘの水分の侵入と、硬化物の架橋構造中への水分の侵入とによる量が大半であり、硬化物にバインダー樹脂と架橋剤との架橋反応により生成したOH基への水分の結合が抑えられ、吸水量の更なる上昇を抑制することができるので、導電性フィルムの抵抗の上昇を抑えるか導電性フィルムの抵抗を低下させることができる。よって、本実施形態に係る導電性フィルムは、湿度が変化し易い環境下においても、抵抗の変化を抑えることができる。
 導電性組成物を用いて生成した硬化物の抵抗を低くして導電性が高くなるほど、導電性フィルムの生体との接触インピーダンスが低くなり、生体から得られる電気信号を高感度で検出することができるので、導電性フィルムを生体電極に用いた時の生体電極の測定精度を高めることができる。接触インピーダンスがより低いと、生体情報を安定して精度良く測定することができ、接触インピーダンスが例えば500Ω以下になれば、生体情報として心電図の測定を安定して行うことができる。
 また、本実施形態に係る導電性フィルムは、導電性組成物の硬化物の抵抗値を120Ω以下とすることができる。これにより、導電性フィルムを生体電極に用いた際、導電性フィルムは生体から得られる電気信号をより高感度で検出することができる。そのため、導電性フィルムは、生体表面のように湿度が変化し易い環境下に設置された場合でも、生体情報の測定精度をさらに安定して高めることができる。
 さらに、本実施形態に係る導電性フィルムは、導電性組成物の硬化物の吸水前における含水率を30%以下とすることができる。これにより、導電性フィルムは、湿度が変化し易い環境下に設置された場合でも、安定して柔軟性を維持することができるので、生体表面に取り付けた状態を維持することができる。
 また、本実施形態に係る導電性フィルムは、導電性組成物の硬化物の吸水率(W2/W1)を9.0%以下とすることができる。導電性組成物の硬化物の吸水前後における水分の増加量を抑えることで、本実施形態に係る導電性フィルムは、湿度が変化し易い環境下に設置された場合でも、抵抗の変化をより安定して抑えることができる。
 また、本実施形態に係る導電性フィルムは、導電性組成物に架橋剤を0.01質量部~5.6質量部含んだ硬化物を用いることができる。導電性組成物中の架橋剤の含有量を抑えれば、導電性組成物の硬化物にバインダー樹脂と架橋剤との架橋反応により生成されるOH基の生成量が減少し、吸水量の上昇を抑制することができる。例えば、バインダー層がポリビニルアルコールである場合、上記の通り、架橋剤によってポリビニルアルコールのアセトアセチル基がアルデヒド反応によって架橋構造を形成し、ポリビニルアルコールの架橋構造中に親水性のOH基を生成する。この架橋反応の進行により、OH基の割合が増加し、吸水量を増加させることになる。本実施形態に係る導電性フィルムは、硬化物中のOH基の生成量を抑え、硬化物に吸水させた時の吸水量の上昇を抑制することができるので、吸水前後の変動を抑えることができる。よって、本実施形態に係る導電性フィルムは、湿度が変化し易い環境下に設置された場合でも、抵抗の変化をさらに安定して抑えることができる。
 また、本実施形態に係る導電性フィルムは、導電性組成物に架橋剤を含まないで硬化した硬化物を用いることができる。導電性組成物中に架橋剤を含まなければ、導電性組成物の硬化物にOH基が生成されないため、吸水の要因の一つである、硬化物に生成したOH基への水分の結合による吸水量の上昇を防止することができる。そのため、本実施形態に係る導電性フィルムは、架橋剤を含まないことで、吸水前後の変動をより抑えることができるので、湿度が変化し易い環境下に設置された場合でも、抵抗の変化をより一層安定して抑えることができる。
 また、本実施形態に係る導電性フィルムは、導電性組成物に架橋剤を含まないで硬化した硬化物を用いることで、導電性を高めることができる。例えば、導電性高分子としてPEDOT/PSSを用い、架橋剤としてグリオキシル酸ナトリウムを用いる場合、以下の反応式の通り、架橋剤に含まれるNaイオン(Na+)がPEDOT/PSSのPSSを構成するSO3Hの水素イオン(H+)やPEDOTと置換して、PEDOT/PSS内の電子の移動を阻害することが考えられる。すなわち、PEDOTからPSSが電子を引き抜くことで生成したバイポーラロン(ジカチオン)が分子間をホッピングするホッピング伝導を阻害することが考えられる。本実施形態に係る導電性フィルムは、導電性組成物に架橋剤を含まないで硬化した硬化物を用いることにより、電子の移動が阻害されることを防止できるので、導電性をさらに高めることができる。
Figure JPOXMLDOC01-appb-C000002
 本実施形態に係る導電性組成物は、上記のような特性を有することから、導電性組成物の硬化物を生体センサ用電極(生体電極)の材料として含むことにより、生体電極として有効に用いることができる。生体電極は、シート状等、任意の形状とすることができる。
 本実施形態に係る導電性組成物を用いて形成した生体電極は、高い導電性を有すると共に肌への刺激を低減することができるため、生体センサ、特に生体の皮膚等に貼付され、高い導電性及び皮膚に対する安全性が要求される貼付型の生体センサの生体電極として好適に用いることができる。
 以下、実施例及び比較例を示して実施形態を更に具体的に説明するが、実施形態はこれらの実施例及び比較例により限定されるものではない。
<実施例1>
(導電性組成物の作製)
 導電性高分子としてPEDOT/PSSのペレット(「Orgacon DRY」、日本アグフアマテリアルズ社製)0.38質量部と、バインダー樹脂として変性ポリビニルアルコールを含む水溶液(変性ポリビニルアルコール濃度:10%、「ゴーセネックスZ-410」、日本合成化学社製)10.0質量部と、可塑剤としてグリセリン(和光純薬社製)2.0質量部とを、超音波浴に添加した。そして、これらの成分を含む水溶液を超音波浴で30分間混合し、均一な導電性組成物水溶液を調整した。
 PEDOT/PSSのペレットのうちの約20%は水に溶解するため、導電性組成物水溶液中のPEDOT/PSSの含有量は0.308質量部となる。変性ポリビニルアルコールを含む水溶液中の変性ポリビニルアルコールの濃度は約10%であるため、導電性組成物水溶液中の変性ポリビニルアルコールの含有量は1.00質量部となる。なお、残部は、導電性組成物水溶液中の溶媒である。
 導電性組成物100質量部に対する、導電性高分子、バインダー樹脂及び可塑剤の含有量は、それぞれ、9.3質量部、30.2質量部及び60.5質量部であった。
(導電性フィルムの作製)
 調整した導電性組成物水溶液をポリエチレンテレフタレート(PET)フィルム上にアプリケータを用いて塗工した。その後、導電性組成物水溶液が塗布されたPETフィルムを乾燥オーブン(SPHH-201、ESPEC社製)に搬送して、導電性組成物水溶液を120℃、10分間加熱乾燥することで、導電性組成物の硬化物を作製した。硬化物をプレスしてシート状に成形し、厚さが25μmの成形体である導電性フィルムを作製した。導電性フィルムは分断して、3枚の導電性フィルムを作製した。
[導電性フィルムの評価]
 得られた導電性フィルムの、吸水前の含水率及び抵抗値と、吸水後の含水率及び抵抗値と、吸水前後の含水率の変化量である吸水率を測定し、評価した。なお、いずれも、3枚の導電性フィルムを同様の条件で行い、その平均値を算出して評価した。
(導電性フィルムの吸水前の含水率の評価)
 得られた導電性フィルムの乾燥前の質量を測定した後、導電性フィルムを乾燥オーブン(SPHH-201、ESPEC社製)内で、150℃、3分間加熱乾燥して、乾燥後の質量を測定した。導電性フィルムの吸水前の含水率を下記式(11)に基づいて算出した。
導電性フィルムの吸水前の含水率W1=(乾燥後の導電性フィルムの質量-乾燥前の導電性フィルムの質量)/乾燥前の導電性フィルムの質量×100(%) ・・・(11)
(導電性フィルムの吸水前の抵抗値の評価)
 抵抗測定装置(「3803 DIGITAL HiTESTER」、日置電機社製)のリード線を金属板と接続し、その金属板の表面に導電性フィルムを押し当てることで、導電性フィルムの吸水前の抵抗を測定した。
(導電性フィルムの吸水後の含水率の評価)
 得られた導電性フィルムを水槽内に溜めた純水中に60分間浸漬した後、導電性フィルムを水槽内から取り出して、導電性フィルムの表面水分を拭き取り、速やかに質量を測定した。その後、導電性フィルムを乾燥オーブン(SPHH-201、ESPEC社製)内で、150℃、3分間加熱乾燥して、乾燥後の質量を測定した。導電性フィルムの吸水後における含水率を下記式(12)に基づいて算出した。
導電性フィルムの吸水後の含水率W2=(乾燥後の吸水させた導電性フィルムの質量-乾燥前の吸水させた導電性フィルムの質量)/乾燥前の吸水させた導電性フィルムの質量×100(%) ・・・(12)
(導電性フィルムの吸水後の抵抗値の評価)
 上記の(導電性フィルムの吸水前の抵抗値の評価)と同様に、導電性フィルムの吸水後の抵抗を測定した。
(導電性フィルムの吸水率の評価)
 導電性フィルムの吸水率は、下記式(2)に基づいて算出した。
導電性フィルムの吸水率=導電性フィルムの吸水後における含水率/導電性フィルムの吸水前における吸水率 ・・・(2)
<実施例2>
 実施例1において、導電性組成物水溶液に、架橋剤としてグリオキシル酸ナトリウムを含む水溶液(「セーフリンク(登録商標)SPM-01(10%)」、三菱ケミカル社製)を0.5質量部添加したこと以外は、実施例1と同様にして行った。グリオキシル酸ナトリウムを含む水溶液中のグリオキシル酸ナトリウムの濃度は約10%であるため、導電性組成物水溶液中へのグリオキシル酸ナトリウムの含有量は0.05質量部となる。
 本実施例において作製した導電性組成物に含まれる各成分(導電性高分子、バインダー樹脂、架橋剤及び可塑剤)の含有量は、導電性組成物100質量部に対して、それぞれ、9.2質量部、29.8質量部、1.5質量部及び59.6質量部であった。
<実施例3>
 実施例1において、導電性組成物水溶液に、架橋剤としてグリオキシル酸ナトリウムを含む水溶液(「セーフリンク(登録商標)SPM-01(10%)」、三菱ケミカル社製)を1.0質量部添加して、導電性組成物水溶液中へのグリオキシル酸ナトリウムの含有量が0.10質量部となるように調整したこと以外は、実施例1と同様にして行った。
 本実施例において作製した導電性組成物に含まれる各成分(導電性高分子、バインダー樹脂、架橋剤及び可塑剤)の含有量は、導電性組成物100質量部に対して、それぞれ、9.0質量部、29.3質量部、2.9質量部及び58.7質量部であった。
<比較例1>
 実施例1において、導電性組成物水溶液に、架橋剤としてグリオキシル酸ナトリウムを含む水溶液(「セーフリンク(登録商標)SPM-01(10%)」、三菱ケミカル社製)を2.0質量部添加して、導電性組成物水溶液中へのグリオキシル酸ナトリウムの含有量が0.20質量部となるように調整したこと以外は、実施例1と同様にして行った。
 本実施例において作製した導電性組成物に含まれる各成分(導電性高分子、バインダー樹脂、架橋剤及び可塑剤)の含有量は、導電性組成物100質量部に対して、それぞれ、8.8質量部、28.5質量部、5.7質量部及び57.0質量部であった。
<比較例2>
 実施例1において、導電性組成物水溶液に、架橋剤としてグリオキシル酸ナトリウムを含む水溶液(「セーフリンク(登録商標)SPM-01(10%)」、三菱ケミカル社製)を5.0質量部添加して、導電性組成物水溶液中へのグリオキシル酸ナトリウムの含有量が0.50質量部となるように調整したこと以外は、実施例1と同様にして行った。
 本実施例において作製した導電性組成物に含まれる各成分(導電性高分子、バインダー樹脂、架橋剤及び可塑剤)の含有量は、導電性組成物100質量部に対して、それぞれ、8.1質量部、26.3質量部、13.1質量部及び52.5質量部であった。
<比較例3>
 実施例1において、導電性組成物水溶液に、架橋剤としてグリオキシル酸ナトリウムを含む水溶液(「セーフリンク(登録商標)SPM-01(10%)」、三菱ケミカル社製)を10.0質量部添加して、導電性組成物水溶液中へのグリオキシル酸ナトリウムの含有量が1.0質量部となるように調整したこと以外は、実施例1と同様にして行った。
 本実施例において作製した導電性組成物に含まれる各成分(導電性高分子、バインダー樹脂、架橋剤及び可塑剤)の含有量は、導電性組成物100質量部に対して、それぞれ、7.1質量部、23.2質量部、23.2質量部及び46.4質量部であった。
 各実施例及び比較例における、得られた導電性フィルムの、吸水前の含水率W1及びその抵抗値と、吸水後の含水率W2及びその抵抗値と、吸水率との測定結果を表1に示す。なお、表1中の各成分の括弧書きは、導電性組成物水溶液から溶媒を除いた成分の質量の合計を100質量部とした時の質量である。
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、実施例1~3では、導電性フィルムの吸水後における含水率W2は69%以下であった。一方、比較例1~3では、導電性フィルムの吸水後における含水率W2は95%以上であった。
 よって、実施例1~3の導電性フィルムは、比較例1~3の導電性フィルムと異なり、導電性フィルムの吸水後における含水率W2を69%以下とすることで、抵抗の上昇が抑えられるといえる。したがって、本実施形態に係る導電性フィルムを生体センサの生体電極として用いた際、導電性の低下を抑えることができるので、導電性フィルムの生体との接触インピーダンスが低く維持でき、生体から得られる電気信号を高感度で安定して検出することができるといえる。そのため、生体センサを被験者の肌に密着させて長時間(例えば、24時間)継続して心電図を安定して測定するのに有効に用いることができるといえる。
 以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更などを行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 本出願は、2020年3月30日に日本国特許庁に出願した特願2020-059653号に基づく優先権を主張するものであり、特願2020-059653号の全内容を本出願に援用する。

Claims (8)

  1.  導電高分子及びバインダー樹脂を含有する組成物の硬化物を備え、
     前記硬化物の吸水後における含水率が、70%以下である導電性フィルム。
  2.  前記硬化物の抵抗値が、120Ω以下である導電性フィルム。
  3.  前記硬化物の吸水前における含水率が、30%以下である請求項1又は2に記載の導電性フィルム。
  4.  前記硬化物の、吸水前の含水率に対する吸水後の含水率の比である吸水率が、9.0%以下である請求項1~3の何れか一項に導電性フィルム。
  5.  前記組成物は、架橋剤を0.01質量部~5.6質量部含む請求項1~4の何れか一項に記載の導電性フィルム。
  6.  前記組成物は、架橋剤を含まない請求項1~4の何れか一項に記載の導電性フィルム。
  7.  請求項1~6の何れか一項に記載の導電性フィルムを備える生体電極。
  8.  請求項7に記載の生体電極を備える生体センサ。
PCT/JP2021/013087 2020-03-30 2021-03-26 導電性フィルム、生体電極及び生体センサ WO2021200741A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180025305.6A CN115380337A (zh) 2020-03-30 2021-03-26 导电性膜、生物电极及生物传感器
US17/915,386 US20230128873A1 (en) 2020-03-30 2021-03-26 Conductive film, biomedical electrode, and biomedical sensor
EP21779527.7A EP4130162A4 (en) 2020-03-30 2021-03-26 CONDUCTIVE FILM, BIOELECTRODE AND BIOSENSOR
JP2021535957A JP6989733B1 (ja) 2020-03-30 2021-03-26 導電性フィルム、生体電極及び生体センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020059653 2020-03-30
JP2020-059653 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200741A1 true WO2021200741A1 (ja) 2021-10-07

Family

ID=77928608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013087 WO2021200741A1 (ja) 2020-03-30 2021-03-26 導電性フィルム、生体電極及び生体センサ

Country Status (5)

Country Link
US (1) US20230128873A1 (ja)
EP (1) EP4130162A4 (ja)
JP (1) JP6989733B1 (ja)
CN (1) CN115380337A (ja)
WO (1) WO2021200741A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115785499A (zh) * 2022-11-30 2023-03-14 中国科学院长春应用化学研究所 一种高导电可拉伸pedot:pss薄膜及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145987A (ja) * 2003-01-28 2005-06-09 Toppan Forms Co Ltd 導電性高分子ゲル及びその製造方法、アクチュエータ、イオン導入用パッチラベル並びに生体電極
JP2012251132A (ja) * 2011-03-28 2012-12-20 Fujifilm Corp 導電性組成物、当該組成物を用いた導電性膜及びその製造方法
JP2015147857A (ja) 2014-02-06 2015-08-20 東レ株式会社 導電性フィルム
JP2016166436A (ja) 2015-03-10 2016-09-15 日本合成化学工業株式会社 積層体、感熱記録媒体及びインクジェット記録媒体
JP2020059653A (ja) 2018-10-05 2020-04-16 青葉化成株式会社 天然高分子化合物組成物、その製造方法、食品および医療材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135126A1 (en) * 2001-06-26 2004-07-15 Schwark Dwight W. Coating composition containing polythiophene and solvent mixture
KR100968107B1 (ko) * 2003-01-28 2010-07-06 돗빤호무즈가부시기가이샤 도전성 고분자 겔 및 그 제조 방법, 액추에이터, 이온도입용 패치 라벨, 생체 전극, 토너, 도전 기능 부재, 대전방지 시트, 인쇄 회로 부재, 도전성 페이스트, 연료전지용 전극, 및 연료 전지
US9084546B2 (en) * 2005-08-31 2015-07-21 The Regents Of The University Of Michigan Co-electrodeposited hydrogel-conducting polymer electrodes for biomedical applications
JP7418944B2 (ja) * 2017-09-11 2024-01-22 日東電工株式会社 導電性組成物および生体センサ
TWI810256B (zh) * 2018-03-15 2023-08-01 日商三菱化學股份有限公司 導電膜及其製造方法、導電體、抗蝕劑圖案的形成方法及積層體

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145987A (ja) * 2003-01-28 2005-06-09 Toppan Forms Co Ltd 導電性高分子ゲル及びその製造方法、アクチュエータ、イオン導入用パッチラベル並びに生体電極
JP2012251132A (ja) * 2011-03-28 2012-12-20 Fujifilm Corp 導電性組成物、当該組成物を用いた導電性膜及びその製造方法
JP2015147857A (ja) 2014-02-06 2015-08-20 東レ株式会社 導電性フィルム
JP2016166436A (ja) 2015-03-10 2016-09-15 日本合成化学工業株式会社 積層体、感熱記録媒体及びインクジェット記録媒体
JP2020059653A (ja) 2018-10-05 2020-04-16 青葉化成株式会社 天然高分子化合物組成物、その製造方法、食品および医療材料

Also Published As

Publication number Publication date
EP4130162A4 (en) 2023-08-30
US20230128873A1 (en) 2023-04-27
JPWO2021200741A1 (ja) 2021-10-07
CN115380337A (zh) 2022-11-22
JP6989733B1 (ja) 2022-01-05
EP4130162A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP6163401B2 (ja) 帯電防止性剥離剤、帯電防止性剥離塗膜及び帯電防止性剥離基材
EP2894207B1 (en) Antistatic release agent and antistatic release film
TWI601809B (zh) 抗靜電性成形體之製造方法
JP6745153B2 (ja) 導電性離型層形成用塗料及びその製造方法、並びに導電性離型フィルム及びその製造方法
US20150225574A1 (en) Antistatic release agent and antistatic release film
TW201607977A (zh) 抗靜電膜的製造方法
JP6989733B1 (ja) 導電性フィルム、生体電極及び生体センサ
JPWO2015108001A1 (ja) 導電性高分子分散液及び導電性塗膜
JP6607832B2 (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルム及びその製造方法
JP6222832B2 (ja) 帯電防止性シートの製造方法及び帯電防止性成形体の製造方法
JP6858654B2 (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2018203858A (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP7085070B2 (ja) 生体電極及び生体センサ
JP2007246708A (ja) 導電性高分子溶液及び導電性塗膜
JP6465486B2 (ja) 導電性固形物の製造方法、導電性高分子有機溶剤分散液の製造方法、帯電防止フィルムの製造方法及び帯電防止フィルム
JP6948272B2 (ja) 導電性布帛の製造方法
DE102018119036B4 (de) Leitfähige polymerdispersion; leitfähiger film und verfahren zu dessen erstellung; und antistatischer behälter und verfahren zu dessen herstellung
US20230414144A1 (en) Living body sensor
JP2017115089A (ja) 導電性高分子分散液の製造方法及び導電性フィルムの製造方法
JP6660672B2 (ja) 導電性離型剤及びその製造方法、帯電防止フィルムの製造方法、及び帯電防止フィルム
JP6562539B2 (ja) 帯電防止性成形品の製造方法
JP2022081415A (ja) 生体センサ
KR101970698B1 (ko) 우수한 내수성, 내화학성, 및 내후성을 갖는 고분자 공중합체 및 이의 제조방법.
JP6875931B2 (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP6222836B2 (ja) 導電性高分子分散液及び導電性塗膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021535957

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021779527

Country of ref document: EP

Effective date: 20221031