WO2021200520A1 - 炭化物の製造方法および炭化物の製造設備 - Google Patents

炭化物の製造方法および炭化物の製造設備 Download PDF

Info

Publication number
WO2021200520A1
WO2021200520A1 PCT/JP2021/012439 JP2021012439W WO2021200520A1 WO 2021200520 A1 WO2021200520 A1 WO 2021200520A1 JP 2021012439 W JP2021012439 W JP 2021012439W WO 2021200520 A1 WO2021200520 A1 WO 2021200520A1
Authority
WO
WIPO (PCT)
Prior art keywords
retort
processed
combustion chamber
carbide
particle size
Prior art date
Application number
PCT/JP2021/012439
Other languages
English (en)
French (fr)
Inventor
高橋 茂樹
小水流 広行
亘 谷奥
小菅 克志
幸男 小脇
和真 安田
彰伸 今村
Original Assignee
日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄エンジニアリング株式会社 filed Critical 日鉄エンジニアリング株式会社
Priority to AU2021247762A priority Critical patent/AU2021247762A1/en
Priority to CN202180023354.6A priority patent/CN115315500A/zh
Publication of WO2021200520A1 publication Critical patent/WO2021200520A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B1/00Retorts
    • C10B1/10Rotary retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/32Arrangement of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/10Charging directly from hoppers or shoots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a carbide production method and a carbide production facility, and more particularly to a carbide production method and a carbide production facility using an externally heated rotary retort furnace that indirectly heats an object to be treated.
  • the rotary retort furnace is also called a rotary kiln, and is widely used for example, for reforming coal, burning cement and ore, burning municipal waste, and carbonizing livestock manure.
  • the rotary retort furnace is roughly divided into an internal heat type and an external heat type.
  • the internal heating type rotary retort furnace the object to be processed put into the retort is directly heated by the high temperature atmosphere generated by the heat generated by the burner provided in the retort and the object to be processed itself.
  • the external heat type rotary retort furnace a combustion chamber for heating the peripheral surface of the retort from the outside is provided, and the object to be processed is indirectly heated by the heat supplied from the combustion gas in the combustion chamber.
  • the external heat type rotary retort furnace has an advantage that the high temperature atmosphere does not come into direct contact with the object to be processed and uniform heating is easy as compared with the internal heat type one.
  • various techniques for effectively utilizing energy and improving processing efficiency have been proposed.
  • Patent Document 1 in order to effectively utilize energy in an externally heated rotary retort furnace, flammable gas generated from an object to be processed in the retort is passed through a through hole provided on the peripheral surface of the retort.
  • the technology to supply to the combustion chamber is described.
  • Patent Document 1 also describes that by providing a tubular body that is in contact with the through hole and protrudes inside the retort, it is possible to prevent the object to be processed in the retort from falling into the combustion chamber through the through hole. ..
  • Patent Document 1 the technique described in Patent Document 1 above is not sufficient to prevent the pulverized object to be processed from being released into the combustion chamber through the through hole. Since the pulverized object to be treated floats in the retort, even if a pipe body as described in Patent Document 1 is provided, it enters the inside thereof and is discharged into the combustion chamber through the through hole. If the amount of fine powder of the object to be processed released into the combustion chamber increases, the equipment that burns the unburned fine powder in the exhaust gas treatment process of the combustion chamber is loaded, which may lead to a decrease in productivity.
  • a rotating retort furnace including a rotating retort, a combustion chamber for heating the peripheral surface of the retort with combustion gas, and an exhaust means for discharging the gas generated in the retort to the combustion chamber is used for processing.
  • a method for producing a charcoal product that produces a charcoal by indirectly heating the material while moving it in the retort includes a step of separating components having a predetermined particle size or less from the object to be treated before being put into the retort. Method for producing charcoal.
  • the step according to [1] further comprising a step of processing the separated components of the object to be treated into a lump, and a step of returning the lump to the object to be treated before being put into the retort.
  • Carbide production method [3] The carbide according to [2], which further includes a step of recovering the powder from the combustion chamber, and in the process of processing, the powder is processed into an agglomerate together with the separated components of the object to be treated. Production method. [4] In the separation step, the first step of separating the components having the first particle size or less from the object to be processed and the components having the second particle size or less from the object to be processed which have undergone the first step are separated. The step according to [2] or [3], wherein in the step of processing including the second step, the components of the object to be treated separated by the first step and the second step are processed into an agglomerate. Method for producing carbides. [5] 6. Carbide manufacturing method.
  • a rotating retort furnace including a rotating retort, a combustion chamber for heating the peripheral surface of the retort with combustion gas, and an exhaust means for discharging the gas generated in the retort to the combustion chamber is provided, and an object to be processed is provided.
  • a classification means for separating components having a predetermined particle size or less from the object to be treated before being put into the retort is further provided. , Combustion manufacturing equipment.
  • an agglomeration means for processing the components of the object to be treated separated by the classification means into an agglomerate, and a transport means for returning the agglomerate to the object to be processed before being put into the retort.
  • the carbide according to [7] further comprising a recovery means for recovering the powder from the combustion chamber, the agglomerating means processing the powder into a mass together with the separated components of the object to be treated. Manufacturing equipment.
  • the classification means is a first classification means for separating components having a particle size of the first particle size or less from the object to be treated, and a component having a particle size or less than the second particle size from the object to be treated that has passed through the first classification means.
  • the agglomeration means mixes the components of the object to be treated separated by the first classification means and the second classification means and processes them into a mass.
  • the classification means includes any one of [6] to [9], which includes a dryer for air-drying the object to be processed and a bag filter for collecting the components of the object to be processed scattered with the air flow in the dryer. The method for producing a carbide according to the section.
  • the treatment is performed in a carbide production method and a carbide production facility using an externally heated rotary retort furnace having an exhaust means for discharging the gas generated in the retort into the combustion chamber. It is possible to prevent the fine powder of the substance from being released from the retort into the combustion chamber.
  • FIG. 1 It is a schematic vertical sectional view which shows the rotary retort furnace included in the carbide manufacturing equipment which concerns on 1st Embodiment of this invention. It is a cross-sectional view of the rotary retort furnace shown in FIG. It is a figure which shows the whole structure of the carbide manufacturing equipment which concerns on 1st Embodiment of this invention. It is a graph which shows the example of the particle size distribution of the coking coal before input in the conventional coal reforming equipment. It is a figure which shows the whole structure of the carbide manufacturing equipment which concerns on 2nd Embodiment of this invention. It is a figure which shows the whole structure of the carbide manufacturing equipment which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a schematic vertical sectional view showing a rotary retort furnace included in the carbide manufacturing facility according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the rotary retort furnace shown in FIG. .
  • the rotary retort furnace 1 includes a retort 2 and a combustion chamber 3.
  • the retort 2 has a cylindrical shape and rotates around the central axis O of the cylinder.
  • the combustion chamber 3 the external fuel supplied by the burner 4 and the flammable gas supplied by the exhaust pipe 8 described later are burned.
  • the retort 2 is arranged so as to penetrate the combustion chamber 3 in a substantially horizontal direction, and the peripheral surface of the retort 2 is heated by the combustion gas in the combustion chamber 3. Further, the retort 2 is provided with a gentle slope so that the exit side (right side in the figure) is lower than the inlet side (left side in the figure). As a result, the object to be processed is indirectly heated while moving from the inlet side to the outlet side in the retort 2.
  • the inlet side of the retort 2 is sealed by the inlet side hood 5, and the outlet side of the retort 2 is sealed by the outlet side hood 6.
  • the object to be treated can be heated in a state where the outside air is shut off.
  • the object to be treated which is charged from the hopper 7 provided on the inlet side of the retort 2, is dried by being heated while moving in the retort 2, and is further thermally decomposed into carbides and flammable gas.
  • the carbides produced by thermal decomposition are recovered from the outlet side of the retort 2.
  • the gas in the retort 2 including the flammable gas generated by thermal decomposition is supplied to the combustion chamber 3 via the exhaust pipe 8.
  • the combustible gas supplied to the combustion chamber 3 via the exhaust pipe 8 as described above is mixed with the fuel supplied from the burner 4 and the air supplied from the air supply port 9 and burned.
  • the exhaust gas from the combustion chamber 3 is discharged via the flue 10 and is treated in an exhaust gas treatment step described later.
  • the powdery object to be processed released from the exhaust pipe 8 together with the flammable gas and the powdery substance containing the fine powder ash generated by the combustion of the powdery object to be processed are collected.
  • a bottom chute 12 for the purpose may be provided. If the bottom chute 12 is not provided, the powdery substance accumulated in the combustion chamber 3 is recovered at the time of maintenance.
  • the exhaust pipe 8 includes an intake port 8a facing the outlet side of the retort 2 near the central axis O of the retort 2, an exhaust port 8b that opens on the peripheral surface of the retort 2 and communicates with the combustion chamber 3, and an intake port.
  • the pipe body 8c extending between the 8a and the exhaust port 8b is included.
  • the pipe body 8c has a bent portion for connecting to the intake port 8a facing the outlet side of the retort 2.
  • the intake port 8a may be directed toward the inlet side of the retort 2.
  • the intake port 8a since the intake port 8a is located near the central axis O, the object to be processed does not reach the height of the intake port 8a as long as the amount of the object to be processed is appropriate. Further, even if there is a lumpy object to be processed that falls in the vertical direction, the intake port 8a is directed to the outlet side of the retort 2, so that such the object to be processed is transferred from the intake port 8a to the exhaust pipe 8. It is prevented from entering. However, the pulverized object to be processed floating in the retort 2 may enter the exhaust pipe 8 from the intake port 8a.
  • FIG. 3 is a diagram showing an overall configuration of a carbide manufacturing facility according to the first embodiment of the present invention.
  • the coal reforming facility 100 shown in FIG. 3 is an example of a carbide manufacturing facility.
  • the coking coal 101 is crushed by the crusher 103 and then aerated and dried by the dryer 105.
  • the pulverized coal contained in the coking coal 101 (including the one generated by the crusher 103) is separated from the coking coal 101 by scattering with the air flow.
  • the pulverized coal is discharged from the dryer 105 together with the air flow and collected by the bag filter 107.
  • the dried coking coal 101 (dry coal) is put into the rotary retort furnace (dry distillation unit) 1.
  • the dry coal is further dried by being heated in the rotary retort furnace 1, and then carbonized.
  • Carbonization is a process in which coal is thermally decomposed into carbides (chars) and flammable gases.
  • the char 109 recovered from the rotary retort furnace 1 is used, for example, as a fuel or a raw material for processing.
  • the flammable gas is supplied to the combustion chamber 3 from inside the retort 2 as described above with reference to FIG. 1, and is burned as a fuel for heating the retort 2.
  • a part of the flammable gas may be separately recovered from the retort 2 and used as fuel, for example.
  • the exhaust gas from the combustion chamber 3 in the rotary retort furnace 1 is sent to the exhaust gas treatment process 111 via the flue 10 shown in FIG.
  • the exhaust gas treatment step 111 includes a combustion furnace 113, a boiler 115, a bag filter 117, and a gas treatment machine 119.
  • the combustion furnace 113 unburned fuel (including combustible gas supplied from the retort 2) contained in the exhaust gas is burned.
  • the heat generated in the combustion furnace 113 is recovered in the boiler 115.
  • the exhaust gas is finally treated by the gas processor 119.
  • the position and shape of the intake port 8a of the exhaust pipe 8 prevent the deposited object to be processed and the massive object to be processed from entering the exhaust pipe 8. No such means is provided for the pulverized object to be processed floating in the retort 2. Therefore, if the object to be processed in the retort 2 contains a large amount of pulverized components, the amount of fine powder of the object to be processed is discharged from the retort 2 to the combustion chamber 3 via the exhaust pipe 8. become. In that case, as described above, a load is applied to the combustion furnace 113 or the like that burns the fine powder in the exhaust gas treatment step 111, which may lead to a decrease in productivity.
  • the coking coal 101 is carbonized to form char 109.
  • Productivity is reduced because capacity does not change.
  • the processing amount of the coking coal 101 is suppressed so that the amount of fine powder released into the combustion chamber 3 becomes the amount that can be processed by the combustion furnace 113, the processing capacity of the rotary retort furnace 1 becomes excessive. After all productivity decreases.
  • a rotary retort furnace having no exhaust pipe 8 has been generally used, and the behavior of fine powder as described above has not been regarded as a problem. Therefore, as shown by a broken line in FIG. 3, a bag filter is used.
  • the pulverized coal recovered in 107 was directly returned to the coking coal 101 (dry coal) and put into the rotary retort furnace 1.
  • the pulverized coal contained in the coking coal 101 is discharged from the retort 2 to the combustion chamber 3 via the exhaust pipe 8 as described above. I found that it was causing a problem.
  • FIG. 4 is a graph showing an example of the particle size distribution of coking coal before input in a conventional coal reforming facility.
  • the coking coal 101 having an original particle size of 10 mm to 30 mm is crushed by maximizing the set particle size of the crusher 103, dried in the dryer 105, and scattered in the dryer 105 to be a bag filter.
  • the pulverized coal recovered in 107 is put back into the rotary retort furnace 1.
  • the graph shows the particle size distribution measured in each of the four input batches. These particle size distributions indicate that, for example, components having a particle size of 1 mm or less frequently reach 20% to 35%.
  • the pulverized coal recovered by the bag filter 107 is not returned to the coking coal 101 (dry coal) as it is, and the coking coal 101 is used.
  • the dryer 105 and the bag filter 107 are predetermined from the object to be processed by the step of ventilating the coking coal 101 which is the object to be processed and the step of recovering the components of the object to be processed scattered together with the airflow. It constitutes a classification means for executing a step of separating components having a particle size or less.
  • the amount of fine powder contained in the object to be processed to be charged into the rotary retort furnace 1 can be reduced, and as a result, the fine powder of the object to be processed is suppressed from being released from the retort 2 into the combustion chamber 3. can do.
  • the load on the combustion furnace 113 or the like that burns the fine powder in the exhaust gas treatment step 111 is reduced as described above. However, it is possible to prevent a decrease in productivity. Further, by suppressing the amount of fine powder released into the combustion chamber 3, the air originally used for burning the fuel supplied from the burner 4 and the combustible gas supplied through the exhaust pipe 8. Is used to burn fine powder, and as a result, it is possible to prevent the efficiency of heat generation due to combustion from decreasing.
  • the fine powder or ash after the fine powder is burned adheres to the inside of the combustion chamber 3 or the peripheral surface of the retort 2, and the heat transfer efficiency is lowered. It can also be prevented.
  • FIG. 5 is a diagram showing an overall configuration of a carbide manufacturing facility according to a second embodiment of the present invention.
  • the coal reforming facility 200 shown in FIG. 5 processes the pulverized coal recovered by the bag filter 107 into agglomerates in addition to the components of the coal reforming facility 100 according to the first embodiment.
  • the lumper 201 and a conveyor 203 for returning the lump to the coking coal 101 (dry coal) before being charged into the retort 2 of the rotary retort furnace 1 are included.
  • the agglomerator 201, together with the pulverized coal recovered by the bag filter 107 is a powdery substance recovered by the bottom chute 12 (see FIGS. 1 and 2) of the combustion chamber 3 in the rotary retort furnace (dry distillation machine) 1. May be processed into a mass.
  • the lumper 201 is, for example, a granulator such as a briquette machine that granulates a powdery substance containing fine coal by compression.
  • the lumper 201 may be a molding machine in which a powdery substance containing pulverized coal is kneaded with a tar-based binder or an organic-based binder and then compressed and molded.
  • the binder as described above does not affect the carbonization treatment of the coking coal 101 because the amount of the binder mixed is as small as 10% or less and it is gasified when heated in the rotary retort furnace 1.
  • the particles (pseudo-particles) of the agglomerate processed by the agglomerator 201 have a strength such that they do not collapse and become fine particles again during transportation on a conveyor 203 or the like and heating in the retort 2.
  • the pulverized coal separated from the coking coal 101 was treated separately from the coking coal 101 without returning to the coking coal 101 (dry coal).
  • the pulverized coal is treated by a method such as burning it separately from the coking coal 101 to recover the heat.
  • the productivity is improved as compared with the case where the combustion furnace 113 in the exhaust gas treatment step 111 has a processing capacity for burning the pulverized coal released into the combustion chamber 3.
  • the agglomerator 201 it is possible to carbonize the pulverized coal and then carbonize it in the rotary retort furnace 1.
  • FIG. 6 is a diagram showing an overall configuration of a carbide manufacturing facility according to a third embodiment of the present invention.
  • the coking coal 101 dry coal
  • the agglomerator 201 mixes the pulverized coal recovered by the bag filter 107 with the coal having a predetermined particle size or less separated from the coking coal 101 by the classifier 301, and then forms the agglomerate. Process.
  • the agglomerates are conveyed by the conveyor 203, passed through the classifier 301, and then returned to the coking coal 101 before being charged into the retort 2 of the rotary retort furnace 1.
  • the lumper 201 is a rotary retort together with the pulverized coal recovered by the bag filter 107 and the coal having a predetermined particle size or less separated by the classifier 301.
  • the powdery material recovered by the bottom chute 12 (see FIGS. 1 and 2) of the combustion chamber 3 in the furnace (dry distillation unit) 1 may be processed into an agglomerate.
  • the classifier 301 is a mechanical classifying means such as a vibrating sieving device, and separates coal particles having a particle size range different from that using the air flow by the dryer 105 and the bag filter 107 from the coking coal 101. Specifically, when the components (fine pulverized coal) of the coking coal 101 having the first particle size or less are separated by the dryer 105 and the bag filter 107, the classifier 301 has a second particle size larger than the first particle size. The components of the coking coal 101 having a particle size equal to or smaller than the above particle size are separated.
  • the classifier 301 may have an adjustable particle size (the above-mentioned second particle size) as a reference for separation. For example, in the case of a vibrating sieve device, the particle size that serves as a reference for separation can be adjusted by exchanging and using a plurality of sieve nets having different mesh sizes.
  • not only the pulverized coal separated by the air flow by the dryer 105 and the bag filter 107, but also the coal having a larger particle size (but smaller in the whole) is collected from the coking coal 101 by using the classifier 301.
  • Can be separated when there is a possibility that not only pulverized coal separated by an air flow but also coal having a larger particle size may float in the retort 2 and be discharged from the exhaust pipe 8 to the combustion chamber 3, the classifier 301 is used. As a result, such coal can also be separated from the coking coal 101, agglomerated by the agglomerator 201, and then returned to the coking coal 101.
  • pulverized coal can be separated as a matter of course, but the pulverized coal is automatically separated by an air flow in the step of drying the coking coal 101 in the dryer 105. It is advantageous to carry out the classification in two stages as in the present embodiment because, for example, clogging of the sieve net is less likely to occur in the vibrating sieve device because the pulverized coal is not charged into the classification machine 301. Is.
  • a coal having a larger particle size that is separated from the coking coal 101 by the classifier 301 and mixed with the pulverized coal by the lumper 201 may facilitate the lumping of the pulverized coal by the lumper 201.
  • the strength of the pseudo-particles after molding is improved by appropriately adjusting the particle size distribution of the material. Therefore, for example, it is necessary for the agglomerator 201 to properly agglomerate the pulverized coal regardless of whether or not it may float in the retort 2 and be discharged from the exhaust pipe 8 to the combustion chamber 3.
  • the grain size coal may be separated from the coking coal 101 using a classifier 301.
  • the appropriate particle size distribution for agglomeration also depends, for example, on the type of coal. Therefore, the particle size that serves as a reference for separation in the classifier 301 may be adjusted according to the type of coal. That is, in the present embodiment, the particle size that serves as a reference for separation can be freely set in a wider range, or the particle size distribution that is appropriate for the agglomeration of the separated object to be processed is prepared, so that the agglomerated subject is agglomerated. The strength of the processed material can be improved.
  • coal reforming was carried out in the coal reforming equipment 200 described as the second embodiment above.
  • a briquette machine was used as the agglomerator 201.
  • pulverized coal having a particle size of approximately 1 mm or less was separated from the coking coal 101.
  • the pulverized coal separated as shown by the broken line in FIG. 3 was returned to the coking coal 101 (dry coal) as it was, and the coal was reformed in the same manner.
  • the particle size distribution of coal containing pulverized coal was the same as the example shown in FIG. 4 above.
  • the results in Examples and Comparative Examples are shown in Table 1 below.
  • the scattered fine powder ratio is the mass ratio of the fine powder contained in the exhaust gas from the combustion chamber 3 and recovered by the bag filter 117 in the exhaust gas treatment step 111 to the coking coal 101.
  • This fine powder is discharged from the inside of the retort 2 into the combustion chamber 3 in the rotary retort furnace 1 via the exhaust pipe 8 and burned in the combustion chamber 3 or in the combustion furnace 113 of the exhaust gas treatment step 111.
  • the carbide yield is the mass ratio of the char 109 recovered from the rotary retort furnace 1 to the coking coal 101.
  • the exhaust gas generation amount is the cumulative flow rate of the exhaust gas in the combustion chamber 3 calculated based on the measured value of the current meter installed in the flue 10.
  • the scattered fine powder ratio (%) was reduced by about 40% as compared with the comparative example (12%). It is considered that this is because the pulverized coal contained in the coking coal 101 was separated, agglomerated and carbonized, so that the amount of pulverized coal released into the combustion chamber 3 was greatly reduced. Further, in the examples, the carbide yield (54%) increased by about 20% as compared with the comparative example (45%). This is because the pulverized coal released into the combustion chamber 3 in the comparative example is agglomerated and carbonized in the example, so that the proportion of coking coal 101 recovered as char 109 has increased. it is conceivable that. Further, in the examples, the amount of exhaust gas generated was also reduced because it did not contain the exhaust gas caused by such pulverized coal as compared with the comparative example in which the amount of exhaust gas of the pulverized coal released into the combustion chamber 3 was included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

回転するレトルトと、燃焼ガスによってレトルトの周面を加熱するための燃焼室と、レトルト内で発生したガスを燃焼室に排出する排気手段とを含む回転レトルト炉を用いて、被処理物をレトルト内で移動させながら間接的に加熱することによって炭化物を生成する炭化物の製造方法において、レトルトに投入される前の被処理物から所定の粒径以下の成分を分離する工程を含む炭化物の製造方法が提供される。

Description

炭化物の製造方法および炭化物の製造設備
 本発明は、炭化物の製造方法および炭化物の製造設備に関し、特に、被処理物を間接的に加熱する外熱式の回転レトルト炉を用いた炭化物の製造方法および炭化物の製造設備に関する。
 回転レトルト炉は、ロータリーキルンとも呼ばれ、例えば石炭の改質、セメントや鉱石の焼成、都市ごみの焼却、家畜糞の炭化などに広く利用されている。回転レトルト炉は、内熱式と外熱式とに大きく分けられる。内熱式の回転レトルト炉では、レトルトに投入された被処理物を、レトルト内に設けられたバーナや被処理物自体の発熱によって生成される高温雰囲気によって直接的に加熱する。一方、外熱式の回転レトルト炉では、レトルトの周面を外側から加熱するための燃焼室が設けられ、燃焼室内の燃焼ガスから供給される熱によって被処理物を間接的に加熱する。
 上記のうち、外熱式の回転レトルト炉は、内熱式の物に比べて、高温雰囲気が被処理物に直接的に接触することがなく、均一な加熱がしやすいという利点を有する。このような外熱式の回転レトルト炉において、エネルギーを有効利用したり、処理効率を高めたりするための技術が種々提案されている。
 例えば、特許文献1には、外熱式の回転レトルト炉においてエネルギーを有効利用するために、レトルト内の被処理物から発生した可燃性ガスを、レトルトの周面に設けられた貫通孔を介して燃焼室内に供給する技術が記載されている。特許文献1には、貫通孔に接してレトルトの内側に突出する管体を設けることによって、レトルト内の被処理物が貫通孔を介して燃焼室内に脱落するのを防ぐことも記載されている。
特開昭58-124192号公報
 しかしながら、上記の特許文献1に記載されたような技術は、微粉化した被処理物が貫通孔を介して燃焼室内に放出されるのを防ぐためには十分ではない。微粉化した被処理物はレトルト内を浮遊するため、特許文献1に記載されたような管体が設けられていたとしてもその内部に入り込み、貫通孔を介して燃焼室内に放出される。燃焼室に放出される被処理物の微粉が増大すれば、燃焼室の排ガス処理工程で未燃の微粉を燃焼させる設備に負荷がかかり、それが生産性の低下につながる可能性がある。
 そこで、本発明は、レトルト内で発生したガスを燃焼室に排出する排気手段を有する外熱式の回転レトルト炉を用いる炭化物の製造方法および炭化物の製造設備において、被処理物の微粉がレトルト内から燃焼室に放出されるのを抑制することが可能な、新規かつ改良された炭化物の製造方法および炭化物の製造設備を提供することを目的とする。
[1]回転するレトルトと、燃焼ガスによってレトルトの周面を加熱するための燃焼室と、レトルト内で発生したガスを燃焼室に排出する排気手段とを含む回転レトルト炉を用いて、被処理物をレトルト内で移動させながら間接的に加熱することによって炭化物を生成する炭化物の製造方法において、レトルトに投入される前の被処理物から所定の粒径以下の成分を分離する工程を含む、炭化物の製造方法。
[2]分離された被処理物の成分を塊成物に加工する工程と、塊成物をレトルトに投入される前の被処理物に戻し入れる工程とをさらに含む、[1]に記載の炭化物の製造方法。[3]燃焼室から粉状物を回収する工程をさらに含み、加工する工程では、分離された被処理物の成分とともに粉状物を塊成物に加工する、[2]に記載の炭化物の製造方法。
[4]分離する工程は、被処理物から第1の粒径以下の成分を分離する第1の工程と、第1の工程を経た被処理物から第2の粒径以下の成分を分離する第2の工程とを含み、加工する工程では、第1の工程および第2の工程によってそれぞれ分離された被処理物の成分を塊成物に加工する、[2]または[3]に記載の炭化物の製造方法。
[5]分離する工程は、被処理物に気流を通気させる工程と、気流とともに飛散した被処理物の成分を回収する工程とを含む、[1]から[4]のいずれか1項に記載の炭化物の製造方法。
[6]回転するレトルトと、燃焼ガスによってレトルトの周面を加熱するための燃焼室と、レトルト内で発生したガスを燃焼室に排出する排気手段とを含む回転レトルト炉を備え、被処理物をレトルト内で移動させながら間接的に加熱することによって炭化物を生成する炭化物の製造設備において、レトルトに投入される前の被処理物から所定の粒径以下の成分を分離する分級手段をさらに備える、炭化物の製造設備。
[7]分級手段によって分離された被処理物の成分を塊成物に加工する塊成手段と、塊成物をレトルトに投入される前の被処理物に戻し入れるための搬送手段とをさらに備える、[6]に記載の炭化物の製造設備。
[8]燃焼室から粉状物を回収する回収手段をさらに備え、塊成手段は、分離された被処理物の成分とともに粉状物を塊成物に加工する、[7]に記載の炭化物の製造設備。
[9]分級手段は、被処理物から第1の粒径以下の成分を分離する第1の分級手段と、第1の分級手段を通過した被処理物から第2の粒径以下の成分を分離する第2の分級手段とを含み、塊成手段は、第1の分級手段および第2の分級手段によってそれぞれ分離された被処理物の成分を混合して塊成物に加工する、[7]または[8]に記載の炭化物の製造設備。
[10]分級手段は、被処理物を通気乾燥させる乾燥機と、乾燥機において気流とともに飛散した被処理物の成分を回収するバグフィルターとを含む、[6]から[9]のいずれか1項に記載の炭化物の製造方法。
 以上で説明したように本発明によれば、レトルト内で発生したガスを燃焼室に排出する排気手段を有する外熱式の回転レトルト炉を用いる炭化物の製造方法および炭化物の製造設備において、被処理物の微粉がレトルト内から燃焼室に放出されるのを抑制することができる。
本発明の第1の実施形態に係る炭化物の製造設備に含まれる回転レトルト炉を示す概略的な縦断面図である。 図1に示す回転レトルト炉の横断面図である。 本発明の第1の実施形態に係る炭化物の製造設備の全体構成を示す図である。 従来の石炭改質設備における投入前の原料炭の粒度分布の例を示すグラフである。 本発明の第2の実施形態に係る炭化物の製造設備の全体構成を示す図である。 本発明の第3の実施形態に係る炭化物の製造設備の全体構成を示す図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 (第1の実施形態)
 図1は本発明の第1の実施形態に係る炭化物の製造設備に含まれる回転レトルト炉を示す概略的な縦断面図であり、図2は図1に示す回転レトルト炉の横断面図である。図示された例において、回転レトルト炉1は、レトルト2と、燃焼室3とを含む。レトルト2は円筒形であり、円筒の中心軸Oの回りに回転する。燃焼室3では、バーナ4が供給する外部燃料、および後述する排気管8が供給する可燃性ガスが燃焼させられる。レトルト2は、燃焼室3を略水平方向に貫通して配置されており、燃焼室3内ではレトルト2の周面が燃焼ガスによって加熱される。また、レトルト2には、入口側(図中左側)に対して出口側(図中右側)が低くなるような緩傾斜がつけられている。これによって、被処理物は、レトルト2内で入口側から出口側に向けて移動しながら間接的に加熱される。
 レトルト2の入口側は入口側フード5によって、レトルト2の出口側は出口側フード6によって、それぞれシールされている。これによって、レトルト2内では、外気を遮断した状態で被処理物を加熱することができる。レトルト2の入口側に設けられたホッパ7から投入された被処理物は、レトルト2内を移動しながら加熱されることによって乾燥され、さらに炭化物と可燃性ガスとに熱分解される。熱分解によって生成された炭化物はレトルト2の出口側から回収される。
 一方、熱分解によって生成された可燃性ガスを含むレトルト2内のガスは、排気管8を介して燃焼室3に供給される。上記のように排気管8を介して燃焼室3に供給された可燃性ガスは、バーナ4から供給される燃料とともに、空気供給口9から供給される空気と混合されて燃焼する。レトルト2内から燃焼室3に可燃性ガスを供給することによって、外部からバーナ4に供給する燃料を節約することができる。燃焼室3の排ガスは、煙道10を経由して排出され、後述する排ガス処理工程で処理される。また、燃焼室3には、排気管8から可燃性ガスとともに放出された粉状の被処理物、および粉状の被処理物が燃焼することによって発生した微粉灰を含む粉状物を回収するための底部シュート12が設けられてもよい。なお、底部シュート12が設けられない場合、燃焼室3内に堆積した粉状物はメンテナンス時に回収される。
 排気管8は、レトルト2の中心軸Oの近傍でレトルト2の出口側に向けられた吸気口8aと、レトルト2の周面に開口して燃焼室3に連通する排気口8bと、吸気口8aと排気口8bとの間に延びる管体8cとを含む。管体8cは、吸気口8aと排気口8bとの間でレトルト2の断面方向に延びる直線部に加えて、レトルト2の出口側に向けられた吸気口8aに接続するための折曲部を含む。なお、他の例において吸気口8aはレトルト2の入口側に向けられてもよい。
 上記のように、吸気口8aが中心軸Oの近傍に位置するため、被処理物が適正な量である限りレトルト2内に堆積した被処理物は吸気口8aの高さに達しない。また、鉛直方向に落下する塊状の被処理物があったとしても、吸気口8aがレトルト2の出口側に向けられていることによって、そのような被処理物が吸気口8aから排気管8に入り込むことが防止される。しかしながら、レトルト2内を浮遊する微粉化した被処理物については、吸気口8aから排気管8に入り込む場合がある。
 図3は、本発明の第1の実施形態に係る炭化物の製造設備の全体構成を示す図である。
図3に示された石炭改質設備100は、炭化物の製造設備の例である。石炭改質設備100では、原料炭101が粉砕機103で粉砕された後に、乾燥機105で通気乾燥させられる。このとき、原料炭101に含まれていた微粉石炭(粉砕機103で発生したものも含む)は、気流とともに飛散することで原料炭101から分離される。微粉石炭は気流とともに乾燥機105から排出され、バグフィルター107で回収される。一方、乾燥させられた原料炭101(乾燥炭)は、回転レトルト炉(乾留機)1に投入される。
 乾燥炭は、回転レトルト炉1において加熱されることによってさらに乾燥させられ、その後に乾留される。乾留は、石炭が炭化物(チャー)と可燃性ガスとに熱分解される工程である。回転レトルト炉1から回収されたチャー109は、例えば燃料や加工原料として利用される。一方、可燃性ガスは、上記で図1を参照して説明したようにレトルト2内から燃焼室3に供給され、レトルト2を加熱するための燃料として燃焼させられる。なお、図示していないが、可燃性ガスの一部をレトルト2内から別途回収し、例えば燃料として利用してもよい。
 回転レトルト炉1における燃焼室3の排ガスは、図1に示した煙道10を経由して排ガス処理工程111に送られる。排ガス処理工程111は、燃焼炉113と、ボイラー115と、バグフィルター117と、ガス処理機119とを含む。燃焼炉113では、排ガスに含まれる未燃焼の燃料(レトルト2内から供給された可燃性ガスを含む)が燃焼させられる。レトルト2内から排気管8を経由して燃焼室3に放出された被処理物の微粉も、燃焼炉113で燃焼させられる。燃焼炉113で発生した熱は、ボイラー115で回収される。その後、バグフィルター117で灰を含む排ガス中の固形物が回収された後に、ガス処理機119で排ガスが最終的に処理される。
 上述のように、回転レトルト炉1では、排気管8の吸気口8aの位置および形状によって、堆積した被処理物、および塊状の被処理物が排気管8に入り込むことが防止されている一方で、レトルト2内を浮遊する微粉化した被処理物についてはそのような手段が設けられていない。従って、レトルト2内の被処理物に微粉化した成分が多く含まれていれば、それだけ多くの被処理物の微粉がレトルト2内から排気管8を経由して燃焼室3に放出されることになる。その場合、排ガス処理工程111において微粉を燃焼させる燃焼炉113などに負荷がかかり、それが生産性の低下につながる可能性があることは既に説明した通りである。
 具体的には、例えば、燃焼室3に放出される微粉の量が増大したことに対応して燃焼炉113などの処理能力を増大させても、原料炭101を乾留してチャー109にする処理能力は変わらないため、生産性は低下する。また、燃焼室3に放出される微粉の量が燃焼炉113で処理可能な量になるように原料炭101の処理量を抑制した場合も、回転レトルト炉1の処理能力が過剰になるため、やはり生産性は低下する。
 ここで、従来は、排気管8をもたない回転レトルト炉が一般的であり、上記のような微粉の挙動は問題視されていなかったことから、図3に破線で示すように、バグフィルター107で回収された微粉石炭を、そのまま原料炭101(乾燥炭)に戻し入れて回転レトルト炉1に投入していた。しかしながら、本発明者らは、排気管8を有する回転レトルト炉1では、原料炭101に含まれる微粉石炭がレトルト2内から排気管8を経由して燃焼室3に放出されて上記のような問題を生じていることを見出した。
 図4は、従来の石炭改質設備における投入前の原料炭の粒度分布の例を示すグラフである。図示された例では、元の粒径が10mm~30mmの原料炭101を、粉砕機103の設定粒度を最大にして粉砕した後に、乾燥機105で乾燥させ、乾燥機105で飛散してバグフィルター107に回収された微粉石炭を戻し入れてから、回転レトルト炉1に投入している。グラフは、4回の投入バッチでそれぞれ測定された粒度分布が示されている。これらの粒度分布は、例えば粒径1mm以下の成分が頻度にして20%~35%に達することを示している。どの程度の粒径の石炭がレトルト2内から排気管8を経由して燃焼室3に放出されているかは不明であるが、実際に排ガス処理工程111の燃焼炉113で燃焼させられる微粉の量が増大していることから、被処理物が上記のように比較的小さな粒径の成分を多く含むことが、微粉の量の増大につながっていると推定される。
 そこで、図3に示すように、本実施形態に係る石炭改質設備100では、バグフィルター107で回収された微粉石炭を、そのまま原料炭101(乾燥炭)に戻すことなく、原料炭101とは分離して処理する。この場合、乾燥機105およびバグフィルター107は、被処理物である原料炭101に気流を通気させる工程と、気流とともに飛散した被処理物の成分を回収する工程とによって、被処理物から所定の粒径以下の成分を分離する工程を実行する分級手段を構成している。これによって、回転レトルト炉1に投入される被処理物に含まれる微粉の量を低減させることができ、結果として、被処理物の微粉がレトルト2内から燃焼室3に放出されるのを抑制することができる。
 被処理物の微粉がレトルト2内から燃焼室3に放出されるのが抑制されることによって、既に説明しているように、排ガス処理工程111において微粉を燃焼させる燃焼炉113などの負荷を低減し、生産性の低下を防止することができる。また、燃焼室3内に放出される微粉の量が抑制されることで、本来はバーナ4から供給される燃料や排気管8を介して供給される可燃性ガスを燃焼させるために使われる空気が微粉を燃焼させるために使われ、結果として燃焼による発熱の効率が低下することも防止できる。さらに、燃焼室3に放出される微粉の量が抑制されることで、微粉、または微粉が燃焼した後の灰が燃焼室3内、またはレトルト2の周面に付着し、伝熱効率を低下させることも防止できる。
 (第2の実施形態)
 図5は、本発明の第2の実施形態に係る炭化物の製造設備の全体構成を示す図である。図5に示された石炭改質設備200は、上記の第1の実施形態に係る石炭改質設備100の構成要素に加えて、バグフィルター107で回収された微粉石炭を塊成物に加工する塊成機201と、塊成物を回転レトルト炉1のレトルト2に投入される前の原料炭101(乾燥炭)に戻し入れるためのコンベヤ203とを含む。さらに、塊成機201は、バグフィルター107で回収された微粉石炭とともに、回転レトルト炉(乾留機)1で燃焼室3の底部シュート12(図1および図2参照)によって回収された粉状物を塊成物に加工してもよい。
 塊成機201は、例えば、圧縮によって微粉石炭を含む粉状物を粒状に成形するブリケットマシンなどの造粒機である。あるいは、塊成機201は、微粉石炭を含む粉状物をタール系バインダー、または有機系バインダーとともに混練した上で圧縮して成形する成形機であってもよい。上記のようなバインダーは、混入される量が例えば10%以下と少なく、また回転レトルト炉1での加熱時にはガス化するため、原料炭101の乾留処理には影響しない。塊成機201によって加工された塊成物の粒子(疑似粒子)は、コンベヤ203などでの搬送、およびレトルト2内での加熱時に崩壊して再び微粉化しない程度の強度を有することが望ましい。
 上記の第1の実施形態では、原料炭101から分離された微粉石炭を、原料炭101(乾燥炭)に戻すことなく、原料炭101とは分離して処理した。具体的には微粉石炭は、原料炭101とは別に燃焼させて熱を回収するなどの方法で処理される。この場合も、排ガス処理工程111の燃焼炉113に燃焼室3に放出された微粉石炭を燃焼させるための処理能力を持たせるのに比べれば生産性は向上する。これに対して、第2の実施形態では、塊成機201を設けることで、微粉石炭についても塊成した上で回転レトルト炉1において乾留することが可能になる。これによって、微粉石炭の処理のための燃焼炉やボイラーなどの設備が不要になるのに加えて、原料炭101から生成されるチャー109の歩留まりも向上する。加えて、回転レトルト炉(乾留機)1の燃焼室3から回収された粉状物を微粉石炭とともに塊成物に加工すれば、原料炭101から生成されるチャー109の歩留まりをさらに向上させることができる。ただし、燃焼室3から回収された粉状物には微粉灰も多く含まれるため、歩留まりの向上の効果は微粉石炭の方が大きい。
 (第3の実施形態)
 図6は、本発明の第3の実施形態に係る炭化物の製造設備の全体構成を示す図である。図6に示された石炭改質設備300は、上記の第2の実施形態に係る石炭改質設備200の構成要素に加えて、乾燥機105を通過した原料炭101(乾燥炭)が投入される分級機301を含む。本実施形態において、塊成機201は、バグフィルター107で回収された微粉石炭と、分級機301で原料炭101から分離された所定の粒径以下の石炭とを混合した上で塊成物に加工する。塊成物は、コンベヤ203によって搬送され、分級機301を通過した後、回転レトルト炉1のレトルト2に投入される前の原料炭101に戻し入れられる。本実施形態でも、上記の第2の実施形態と同様に、塊成機201が、バグフィルター107で回収された微粉石炭および分級機301で分離された所定の粒径以下の石炭とともに、回転レトルト炉(乾留機)1で燃焼室3の底部シュート12(図1および図2参照)によって回収された粉状物を塊成物に加工してもよい。
 分級機301は、例えば振動篩装置などの機械的な分級手段であり、乾燥機105およびバグフィルター107による気流を用いた分級とは異なる粒径範囲の石炭の粒子を原料炭101から分離する。具体的には、乾燥機105およびバグフィルター107で第1の粒径以下の原料炭101の成分(微粉石炭)が分離された場合、分級機301では、第1の粒径よりも大きい第2の粒径以下の原料炭101の成分が分離される。ここで、分級機301は、分離の基準になる粒径(上記の第2の粒径)を調節可能なものであってもよい。例えば、振動篩装置の場合、目の大きさが異なる複数の篩網を交換して用いることによって、分離の基準になる粒径を調節することができる。
 本実施形態では、乾燥機105およびバグフィルター107で気流によって分離される微粉石炭だけではなく、より大きい(しかし全体の中では小さい)粒径の石炭についても分級機301を用いて原料炭101から分離することができる。例えば、気流によって分離される微粉石炭だけではなく、より大きい粒径の石炭についてもレトルト2内を浮遊して排気管8から燃焼室3に放出される可能性がある場合、分級機301を用いることでそのような石炭をも原料炭101から分離し、塊成機201塊成した上で原料炭101に戻すことができる。なお、より大きい粒径の石炭を分離する分級機301では、当然に微粉石炭も分離可能であるが、微粉石炭は乾燥機105で原料炭101を乾燥させる工程で気流によって自動的に分離されること、および分級機301に微粉石炭が投入されないことによって例えば振動篩装置で篩網の目詰まりが発生しにくくなること、などから、本実施形態のように2段階で分級を実施することは有利である。
 あるいは、分級機301で原料炭101から分離されて塊成機201で微粉石炭と混合されるより大きい粒径の石炭が、塊成機201における微粉石炭の塊成を容易にする場合もある。例えば、造粒機を用いた圧縮による成形の場合、材料の粒度分布が適切に調整されていることで、成形後の疑似粒子の強度が向上する。従って、例えば、レトルト2内で浮遊して排気管8から燃焼室3に放出される可能性があるか否かにかかわらず、塊成機201で微粉石炭を適切に塊成するために必要な粒度の石炭を、分級機301を用いて原料炭101から分離してもよい。塊成のために適切な粒度分布は、例えば石炭の種類によっても異なる。それゆえ、分級機301で分離の基準になる粒径は、石炭の種類に応じて調節されてもよい。つまり、本実施形態では、分離の基準になる粒径をより広い範囲で自由に設定したり、分離された被処理物の塊成に適切な粒度分布を用意することで、塊成された被処理物の強度を向上させたりすることができる。
 続いて、本発明の実施例について説明する。実施例では、上記で第2の実施形態として説明した石炭改質設備200において、石炭の改質を実施した。塊成機201にはブリケットマシンを用いた。乾燥機105およびバグフィルター107では、概ね粒径が1mm以下の微粉石炭が原料炭101から分離された。一方、比較例では、上記で図3に破線で示したように分離された微粉石炭をそのまま原料炭101(乾燥炭)に戻し入れて、同様に石炭の改質を実施した。なお、実施例および比較例において、微粉石炭を含む石炭の粒度分布は上記で図4に示した例と同様であった。実施例および比較例における結果を、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001

 
 上記の結果のうち、飛散微粉割合は、燃焼室3からの排ガスに含まれ、排ガス処理工程111のバグフィルター117で回収された微粉の、原料炭101に対する質量比である。この微粉には、回転レトルト炉1においてレトルト2内から排気管8を経由して燃焼室3に放出され、燃焼室3内、または排ガス処理工程111の燃焼炉113で燃焼させられた微粉石炭の灰が含まれる。一方、炭化物収率は、回転レトルト炉1から回収されたチャー109の、原料炭101に対する質量比である。排ガス発生量は、煙道10に設置された流速計の測定値に基づいて算出された、燃焼室3の排ガスの累積流量である。
 表1に示す通り、実施例では、飛散微粉割合(5%)が比較例(12%)に比べて40%程度減少した。これは、原料炭101に含まれる微粉石炭が分離され、塊成した上で乾留されたことによって、燃焼室3に放出される微粉石炭の量が大きく減少したためと考えられる。また、実施例では、炭化物収率(54%)が比較例(45%)に比べて20%程度増加した。これは、比較例では燃焼室3に放出されていた微粉石炭が、実施例では塊成した上で乾留されるようになったことで、チャー109として回収される原料炭101の割合が増加したためと考えられる。また、実施例では、排ガス発生量も燃焼室3に放出された微粉石炭の排ガス量を含む比較例に比べてそのような微粉石炭起因の排ガスを含まないため減少した。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 1…回転レトルト炉(乾留機)、2…レトルト、3…燃焼室、8…排気管、10…煙道、12…底部シュート、100,200,300…石炭改質設備、103…粉砕機、105…乾燥機、107…バグフィルター、111…排ガス処理工程、201…塊成機、203…コンベヤ、301…分級機。

Claims (10)

  1.  回転するレトルトと、燃焼ガスによって前記レトルトの周面を加熱するための燃焼室と、前記レトルト内で発生したガスを前記燃焼室に排出する排気手段とを含む回転レトルト炉を用いて、被処理物を前記レトルト内で移動させながら間接的に加熱することによって炭化物を生成する炭化物の製造方法において、
     前記レトルトに投入される前の前記被処理物から所定の粒径以下の成分を分離する工程を含む、炭化物の製造方法。
  2.  前記分離された前記被処理物の成分を塊成物に加工する工程と、
     前記塊成物を前記レトルトに投入される前の前記被処理物に戻し入れる工程と
     をさらに含む、請求項1に記載の炭化物の製造方法。
  3.  前記燃焼室から粉状物を回収する工程をさらに含み、
     前記加工する工程では、前記分離された前記被処理物の成分とともに前記粉状物を前記塊成物に加工する、請求項2に記載の炭化物の製造方法。
  4.  前記分離する工程は、前記被処理物から第1の粒径以下の成分を分離する第1の工程と、前記第1の工程を経た前記被処理物から第2の粒径以下の成分を分離する第2の工程とを含み、
     前記加工する工程では、前記第1の工程および前記第2の工程によってそれぞれ分離された前記被処理物の成分を前記塊成物に加工する、請求項2または請求項3に記載の炭化物の製造方法。
  5.  前記分離する工程は、前記被処理物に気流を通気させる工程と、前記気流とともに飛散した前記被処理物の成分を回収する工程とを含む、請求項1から請求項4のいずれか1項に記載の炭化物の製造方法。
  6.  回転するレトルトと、燃焼ガスによって前記レトルトの周面を加熱するための燃焼室と、前記レトルト内で発生したガスを前記燃焼室に排出する排気手段とを含む回転レトルト炉を備え、被処理物を前記レトルト内で移動させながら間接的に加熱することによって炭化物を生成する炭化物の製造設備において、
     前記レトルトに投入される前の前記被処理物から所定の粒径以下の成分を分離する分級手段をさらに備える、炭化物の製造設備。
  7.  前記分級手段によって分離された前記被処理物の成分を塊成物に加工する塊成手段と、
     前記塊成物を前記レトルトに投入される前の前記被処理物に戻し入れるための搬送手段と
     をさらに備える、請求項6に記載の炭化物の製造設備。
  8.  前記燃焼室から粉状物を回収する回収手段をさらに備え、
     前記塊成手段は、前記分離された前記被処理物の成分とともに前記粉状物を前記塊成物に加工する、請求項7に記載の炭化物の製造設備。
  9.  前記分級手段は、前記被処理物から第1の粒径以下の成分を分離する第1の分級手段と、前記第1の分級手段を通過した前記被処理物から第2の粒径以下の成分を分離する第2の分級手段とを含み、
     前記塊成手段は、前記第1の分級手段および前記第2の分級手段によってそれぞれ分離された前記被処理物の成分を混合して前記塊成物に加工する、請求項7または請求項8に記載の炭化物の製造設備。
  10.  前記分級手段は、前記被処理物を通気乾燥させる乾燥機と、前記乾燥機において気流とともに飛散した前記被処理物の成分を回収するバグフィルターとを含む、請求項6から請求項9のいずれか1項に記載の炭化物の製造設備。
PCT/JP2021/012439 2020-03-30 2021-03-24 炭化物の製造方法および炭化物の製造設備 WO2021200520A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2021247762A AU2021247762A1 (en) 2020-03-30 2021-03-24 Method for producing carbide, and equipment for producing carbide
CN202180023354.6A CN115315500A (zh) 2020-03-30 2021-03-24 碳化物的制造方法以及碳化物的制造设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061050A JP2021162168A (ja) 2020-03-30 2020-03-30 炭化物の製造方法および炭化物の製造設備
JP2020-061050 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200520A1 true WO2021200520A1 (ja) 2021-10-07

Family

ID=77927474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012439 WO2021200520A1 (ja) 2020-03-30 2021-03-24 炭化物の製造方法および炭化物の製造設備

Country Status (4)

Country Link
JP (1) JP2021162168A (ja)
CN (1) CN115315500A (ja)
AU (1) AU2021247762A1 (ja)
WO (1) WO2021200520A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397643A (ja) * 1989-09-07 1991-04-23 Uchiyama Concrete Kogyo Kk 超軽量骨材を製造する方法および装置
JP2002071275A (ja) * 2000-08-30 2002-03-08 Takasago Ind Co Ltd 外熱式ロータリーキルンの制御方法
JP2006003027A (ja) * 2004-06-18 2006-01-05 Takasago Ind Co Ltd 外熱式ロータリキルン
JP2019157076A (ja) * 2018-03-16 2019-09-19 大同特殊鋼株式会社 炭化炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397643A (ja) * 1989-09-07 1991-04-23 Uchiyama Concrete Kogyo Kk 超軽量骨材を製造する方法および装置
JP2002071275A (ja) * 2000-08-30 2002-03-08 Takasago Ind Co Ltd 外熱式ロータリーキルンの制御方法
JP2006003027A (ja) * 2004-06-18 2006-01-05 Takasago Ind Co Ltd 外熱式ロータリキルン
JP2019157076A (ja) * 2018-03-16 2019-09-19 大同特殊鋼株式会社 炭化炉

Also Published As

Publication number Publication date
JP2021162168A (ja) 2021-10-11
AU2021247762A1 (en) 2022-10-27
CN115315500A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
JP5597778B2 (ja) 石炭改質方法及び石炭改質装置
AU2014337792B2 (en) A method and a system for producing a lightweight ceramic aggregate, particularly from coal ash
US4887722A (en) Method for beneficiating by carbonaceous refuse
JP6424182B2 (ja) コークス用石炭乾燥装置および乾燥方法
CN103421527B (zh) 蒸汽管干燥、分选、造粒一体化煤调湿工艺及其专用设备
JP5967616B2 (ja) ロータリーキルンの操業方法
JP2012046729A (ja) 繊維状バイオマスからの炭化物の製造方法
JPWO2019181619A1 (ja) フライアッシュの改質方法
JP5439830B2 (ja) 焼結用燃料炭材の製造方法
US4325311A (en) Method and equipment for treatment of fuel for fluidized bed combustion
WO2021200520A1 (ja) 炭化物の製造方法および炭化物の製造設備
JPS6325250A (ja) 微粉材の焙焼装置
JP3830096B2 (ja) 炭化システム
JP6741393B2 (ja) 流動床装置及びこれを用いた石炭の乾燥分級方法
JP2014181887A (ja) 湿潤燃料流動層乾燥装置及びその乾燥方法
JP2006241577A (ja) 炭材内装塊成化物の製造方法
BRPI0821263B1 (pt) Equipment and method of manufacture of briquette without fiber
CN205856557U (zh) 一种用于含碳材料循环焙烧装置
AU2008364237B2 (en) Method for preparing brown coal
CN100453939C (zh) 回转圆筒石英砂烘干工艺
JP6521259B2 (ja) 焼結鉱製造用焼結原料の製造方法
KR101222410B1 (ko) 분말 석유코크스 제조방법
US3168254A (en) Method for preparing the fuel component of agglomerator-feed mix
JP4101896B2 (ja) コークス原料炭の事前処理方法
CN219239560U (zh) 控制炭黑水分含量的节能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021247762

Country of ref document: AU

Date of ref document: 20210324

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782334

Country of ref document: EP

Kind code of ref document: A1