WO2021199723A1 - 研磨用組成物 - Google Patents

研磨用組成物 Download PDF

Info

Publication number
WO2021199723A1
WO2021199723A1 PCT/JP2021/005409 JP2021005409W WO2021199723A1 WO 2021199723 A1 WO2021199723 A1 WO 2021199723A1 JP 2021005409 W JP2021005409 W JP 2021005409W WO 2021199723 A1 WO2021199723 A1 WO 2021199723A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
weight
less
polishing composition
water
Prior art date
Application number
PCT/JP2021/005409
Other languages
English (en)
French (fr)
Inventor
後藤 修
真希 浅田
大輝 ▲高▼間
公亮 土屋
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2022511627A priority Critical patent/JPWO2021199723A1/ja
Publication of WO2021199723A1 publication Critical patent/WO2021199723A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition.
  • the surface of a silicon wafer used as a component of a semiconductor product is generally finished into a high-quality mirror surface through a wrapping step (coarse polishing step) and a polishing step (precision polishing step).
  • the polishing step typically includes a pre-polishing step (pre-polishing step) and a finishing polishing step (final polishing step).
  • the polishing composition used for polishing semiconductor substrates such as silicon wafers and other substrates is required to have the ability to achieve a high-quality surface after polishing.
  • many polishing compositions for such applications contain a water-soluble polymer for the purpose of protecting the surface of the substrate and improving wettability.
  • the water-soluble polymer contributes to the reduction of defects and haze on the polished surface by adsorbing or desorbing from the abrasive grains or the silicon wafer.
  • an object of the present invention is to provide a polishing composition capable of improving the surface quality of the substrate after polishing.
  • a polishing composition contains abrasive grains, a water-soluble polymer, a basic compound, and water, and a polyoxyalkylene alkyl ether in which a secondary carbon of an alkyl group is bonded to a polyoxyalkylene by an ether bond (hereinafter, "poly"). Also referred to as “oxyalkylene secondary alkyl ether”).
  • poly a polyoxyalkylene alkyl ether
  • the surface quality of the substrate after polishing can be improved. For example, haze can be improved.
  • the molecular weight of the polyoxyalkylene secondary alkyl ether is preferably less than 4000.
  • the haze improving effect can be suitably exhibited by using the polyoxyalkylene secondary alkyl ether having the above molecular weight in addition to the inclusion of the water-soluble polymer.
  • the content of the polyoxyalkylene secondary alkyl ether is less than 0.01% by weight.
  • the haze improving effect can be preferably exhibited.
  • Silica particles are preferably used as the abrasive particles.
  • the haze improving effect by using the polyoxyalkylene secondary alkyl ether is suitably exhibited in polishing using silica particles as abrasive grains.
  • the polishing composition disclosed here is suitable for polishing a silicon wafer. By performing polishing on a silicon wafer using the above polishing composition, haze can be improved and a high quality silicon wafer surface can be suitably realized.
  • the polishing composition disclosed herein can be preferably used in the finishing polishing step of a silicon wafer.
  • the polishing method includes a polishing step.
  • the substrate is polished with a polishing composition containing abrasive grains, a water-soluble polymer, a basic compound, and water, and further containing a polyoxyalkylene secondary alkyl ether.
  • the polishing method provided herein is, in some embodiments, a method for polishing a silicon wafer. That is, the substrate to be polished is a silicon wafer.
  • the haze improving effect by the technique disclosed herein is suitably realized in polishing a silicon wafer.
  • the polishing method comprises a pre-polishing step and a finishing polishing step. Then, in the finishing polishing step, polishing using the polishing composition disclosed herein is carried out. According to such a polishing method, in the finish polishing step, the wettability of the wafer surface after polishing is improved, and a higher quality silicon wafer surface can be obtained.
  • the polishing composition disclosed herein comprises abrasive grains.
  • Abrasive grains serve to mechanically polish the surface of the substrate.
  • the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected depending on the purpose and mode of use of the polishing composition.
  • Examples of abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include oxide particles such as silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, and red iron oxide particles; Nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate can be mentioned.
  • Specific examples of the organic particles include polymethylmethacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid means to comprehensively refer to acrylic acid and methacrylic acid). , Polyacrylonitrile particles and the like. One type of such abrasive grains may be used alone, or two or more types may be used in combination.
  • abrasive grains inorganic particles are preferable, particles made of metal or metalloid oxides are preferable, and silica particles are particularly preferable.
  • a polishing composition that can be used for polishing a substrate having a surface made of silicon (for example, finish polishing) such as a silicon wafer described later, it is particularly meaningful to use silica particles as abrasive grains.
  • the technique disclosed herein can be preferably carried out, for example, in a manner in which the abrasive grains are substantially composed of silica particles.
  • substantially means 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, and may be 100% by weight) of the particles constituting the abrasive grains. It means that it is a silica particle.
  • silica particles include colloidal silica, fumed silica, precipitated silica and the like.
  • the silica particles may be used alone or in combination of two or more.
  • the use of colloidal silica is particularly preferable because it is easy to obtain a polished surface having excellent surface quality after polishing.
  • colloidal silica for example, colloidal silica produced from water glass (Na silicate) by an ion exchange method or colloidal silica produced by an alkoxide method (a colloidal silica produced by a hydrolysis condensation reaction of alkoxysilane) is preferably adopted. be able to.
  • Colloidal silica can be used alone or in combination of two or more.
  • the true specific gravity of the abrasive grain constituent material is preferably 1.5 or more, more preferably 1.6 or more, still more preferably 1.7 or more.
  • the upper limit of the true specific gravity of silica is not particularly limited, but is typically 2.3 or less, preferably 2.2 or less, still more preferably 2.0 or less, for example, 1.9 or less.
  • a measured value by a liquid replacement method using ethanol as a replacement liquid can be adopted.
  • the average primary particle size of the abrasive grains is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of polishing efficiency and the like. From the viewpoint of obtaining a higher polishing effect (for example, effects such as haze reduction and defect removal), the average primary particle size is preferably 15 nm or more, and more preferably 20 nm or more (for example, more than 20 nm). From the viewpoint of scratch prevention and the like, the average primary particle size of the abrasive grains is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 45 nm or less.
  • the average primary particle size of the abrasive grains may be 43 nm or less, less than 40 nm, less than 38 nm, less than 35 nm, less than 32 nm. It may be less than 30 nm.
  • m 2 / g)) means the particle size (BET particle size) calculated by the formula.
  • the specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Co., Ltd., trade name "Flow Sorb II 2300".
  • the average secondary particle size of the abrasive grains is not particularly limited, and can be appropriately selected from the range of, for example, about 15 nm to 300 nm. From the viewpoint of improving polishing efficiency, the average secondary particle size is preferably 30 nm or more, and more preferably 35 nm or more. In some embodiments, the average secondary particle size may be, for example, 40 nm or more, 42 nm or more, preferably 44 nm or more. The average secondary particle size is usually preferably 250 nm or less, preferably 200 nm or less, and more preferably 150 nm or less. In some preferred embodiments, the average secondary particle size is 120 nm or less, more preferably 100 nm or less, still more preferably 70 nm or less, for example 60 nm or less, or 50 nm or less.
  • the average secondary particle size means the particle size (volume average particle size) measured by the dynamic light scattering method.
  • the average secondary particle size of the abrasive grains can be measured, for example, by a dynamic light scattering method using "Nanotrack (registered trademark) UPA-UT151” manufactured by Nikkiso Co., Ltd.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • the non-spherical particles include a peanut shape (that is, a peanut shell shape), a cocoon shape, a konpeito shape, a rugby ball shape, and the like.
  • abrasive grains in which many of the particles are peanut-shaped or cocoon-shaped can be preferably adopted.
  • the average value (average aspect ratio) of the major axis / minor axis ratio of the abrasive grains is, in principle, 1.0 or more, preferably 1.05 or more, and more preferably 1.1 or more. Is. Higher polishing efficiency can be achieved by increasing the average aspect ratio.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, still more preferably 1.5 or less, from the viewpoint of scratch reduction and the like.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observing with an electron microscope.
  • a specific procedure for grasping the average aspect ratio for example, for a predetermined number (for example, 200) of abrasive particles that can recognize the shape of independent particles using a scanning electron microscope (SEM), each particle is used.
  • the value obtained by dividing the length of the long side (value of the major axis) by the length of the short side (value of the minor axis) is the major axis / minor axis ratio (aspect ratio).
  • the average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the content of abrasive grains in the polishing composition is not particularly limited, and is, for example, 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.10% by weight or more, still more preferably. Is 0.15% by weight or more. Higher polishing efficiency can be achieved by increasing the abrasive grain content.
  • the content is preferably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, still more preferably 2% by weight or less, and may be, for example, 1% by weight or less. It may be 0.5% by weight or less. As a result, a surface with a lower haze can be realized.
  • the above-mentioned abrasive grain content can be preferably adopted in an embodiment in which the polishing composition is used in the form of a polishing liquid (working slurry).
  • the polishing composition disclosed herein comprises a water-soluble polymer.
  • the water-soluble polymer can be useful for protecting the surface of the substrate, improving the wettability of the surface of the substrate after polishing, and the like.
  • the effect of the technique disclosed herein can be realized by coexistence of a water-soluble polymer and a polyoxyalkylene secondary alkyl ether described later.
  • the water-soluble polymer includes a hydroxyl group, a carboxy group, an acyloxy group, a sulfo group, an amide structure, an imide structure, a quaternary ammonium structure, a heterocyclic structure, a vinyl structure and the like in the molecule. Examples include compounds containing.
  • the water-soluble polymer for example, a cellulose derivative, a starch derivative, a polymer containing an oxyalkylene unit, a polyvinyl alcohol-based polymer, a polymer containing a nitrogen atom, or the like is used, and as one embodiment of the polymer containing a nitrogen atom, N- Vinyl type polymers, N- (meth) acryloyl type polymers and the like can be used.
  • the water-soluble polymer may be a polymer derived from a natural product or a synthetic polymer. As the water-soluble polymer, one type may be used alone, or two or more types may be used in combination.
  • a polymer derived from a natural product is used as the water-soluble polymer.
  • examples of polymers derived from natural products include cellulose derivatives and starch derivatives.
  • the polymer derived from a natural product one kind may be used alone, or two or more kinds may be used in combination.
  • a cellulose derivative is used as the water-soluble polymer.
  • the cellulose derivative is a polymer containing ⁇ -glucose unit as a main repeating unit.
  • Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Of these, HEC is preferable.
  • HEC hydroxyethyl cellulose
  • one type may be used alone, or two or more types may be used in combination.
  • the starch derivative is used as the water-soluble polymer.
  • the starch derivative is a polymer containing an ⁇ -glucose unit as a main repeating unit, and examples thereof include pregelatinized starch, pullulan, carboxymethyl starch, and cyclodextrin.
  • One type of starch derivative may be used alone, or two or more types may be used in combination.
  • synthetic polymers are used as water-soluble polymers.
  • the haze improving effect disclosed herein is preferably exhibited in an embodiment in which a synthetic polymer is used as the water-soluble polymer.
  • a synthetic polymer is used as the water-soluble polymer.
  • the synthetic polymer one kind may be used alone, or two or more kinds may be used in combination.
  • a polymer containing an oxyalkylene unit is used as the water soluble polymer.
  • Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymers of EO and PO or BO. Etc. are exemplified. Among them, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable.
  • the block copolymer of EO and PO may be a diblock copolymer containing a PEO block and a polypropylene oxide (PPO) block, a triblock copolymer, or the like.
  • Examples of the above-mentioned triblock copolymers include PEO-PPO-PEO type triblock copolymers and PPO-PEO-PPO type triblock copolymers. Usually, PEO-PPO-PEO type triblock copolymer is more preferable.
  • copolymer in the present specification comprehensively refers to various copolymers such as random copolymers, alternating copolymers, block copolymers, and graft copolymers. be.
  • the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and even more preferably 3 or more (for example, 5 or more).
  • a polyvinyl alcohol-based polymer is used as the water-soluble polymer.
  • the polyvinyl alcohol-based polymer refers to a polymer containing a vinyl alcohol unit (hereinafter, also referred to as “VA unit”) as a repeating unit thereof.
  • VA unit vinyl alcohol unit
  • the polyvinyl alcohol-based polymer may contain only VA units as repeating units, and may contain repeating units other than VA units (hereinafter, also referred to as “non-VA units”) in addition to VA units.
  • the polyvinyl alcohol-based polymer may be a random copolymer containing VA units and non-VA units, a block copolymer, an alternating copolymer, or a graft copolymer.
  • the polyvinyl alcohol-based polymer may contain only one type of non-VA unit, or may contain two or more types of non-VA units.
  • the polyvinyl alcohol-based polymer may be unmodified polyvinyl alcohol (non-modified PVA) or modified polyvinyl alcohol (modified PVA).
  • the non-modified PVA is produced by hydrolyzing (saponifying) polyvinyl acetate, and is other than the repeating unit (-CH 2- CH (OCOCH 3 )-) and the VA unit having a structure in which vinyl acetate is polymerized with vinyl.
  • the saponification degree of the non-modified PVA may be, for example, 60% or more, 70% or more from the viewpoint of water solubility, 80% or more, or 90% or more.
  • the polyvinyl alcohol-based polymer has a VA unit and at least one selected from an oxyalkylene group, a carboxy group, a sulfo group, an amino group, a hydroxyl group, an amide group, an imide group, a nitrile group, an ether group, an ester group, and salts thereof.
  • It may be a modified PVA containing a non-VA unit having a structure.
  • the non-VA unit that can be contained in the modified PVA includes, for example, a repeating unit derived from an N-vinyl type monomer or an N- (meth) acryloyl type monomer, which will be described later, a repeating unit derived from ethylene, and an alkyl vinyl ether.
  • the alkyl vinyl ether may be a vinyl ether having an alkyl group having 1 or more and 10 or less carbon atoms, such as propyl vinyl ether, butyl vinyl ether, and 2-ethylhexyl vinyl ether.
  • the vinyl ester of a monocarboxylic acid having 3 or more carbon atoms is a vinyl ester of a monocarboxylic acid having 3 or more carbon atoms and 7 or less carbon atoms, such as vinyl propanoate, vinyl butanoate, vinyl pentanate, and vinyl hexanoate.
  • the polyvinyl alcohol-based polymer may be a modified PVA in which a part of the VA units contained in the polyvinyl alcohol-based polymer is acetalized with an aldehyde.
  • an alkyl aldehyde for example, an alkyl aldehyde can be preferably used, and an alkyl aldehyde having an alkyl group having 1 to 7 carbon atoms is preferable, and acetaldehyde, n-propyl aldehyde, n-butyraldehyde, and n-pentyl aldehyde are particularly preferable. Is preferable.
  • a polyvinyl alcohol-based polymer a cationically modified polyvinyl alcohol into which a cationic group such as a quaternary ammonium structure has been introduced may be used.
  • a cationic group derived from a monomer having a cationic group such as diallyldialkylammonium salt and N- (meth) acryloylaminoalkyl-N, N, N-trialkylammonium salt is introduced. The ones that have been done are listed.
  • the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol-based polymer may be, for example, 5% or more, 10% or more, 20% or more, or 30% or more. ..
  • the proportion of the number of moles of the VA unit may be 50% or more, 65% or more, 75% or more, or 80% or more. It may be 90% or more (for example, 95% or more, or 98% or more).
  • Substantially 100% of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units.
  • substantially 100% means that the polyvinyl alcohol-based polymer does not contain non-VA units at least intentionally, and typically the number of moles of non-VA units in the total number of moles of repeating units.
  • the ratio of is less than 2% (for example, less than 1%), and includes the case where it is 0%.
  • the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 95% or less, 90% or less, or 80% or less. However, it may be 70% or less.
  • the content of VA units (content based on weight) in the polyvinyl alcohol-based polymer may be, for example, 5% by weight or more, 10% by weight or more, 20% by weight or more, or 30% by weight or more.
  • the content of the VA unit may be 50% by weight or more (for example, more than 50% by weight), 70% by weight or more, or 80% by weight or more (for example, more than 50% by weight).
  • 90% by weight or more, 95% by weight or more, or 98% by weight or more) may be used.
  • Substantially 100% by weight of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units.
  • substantially 100% by weight means that the non-VA unit is not contained as a repeating unit constituting the polyvinyl alcohol-based polymer at least intentionally, and typically, the non-VA unit in the polyvinyl alcohol-based polymer is not contained.
  • the content of is less than 2% by weight (for example, less than 1% by weight).
  • the content of VA units in the polyvinyl alcohol-based polymer may be, for example, 95% by weight or less, 90% by weight or less, 80% by weight or less, or 70% by weight or less. ..
  • the polyvinyl alcohol-based polymer may contain a plurality of polymer chains having different VA unit contents in the same molecule.
  • the polymer chain refers to a portion (segment) that constitutes a part of one molecule of polymer.
  • polyvinyl alcohol-based polymers have a polymer chain A with a VA unit content of more than 50% by weight and a VA unit content of less than 50% by weight (ie, a non-VA unit content of more than 50% by weight).
  • Polymer chain B may be contained in the same molecule.
  • the polymer chain A may contain only VA units as repeating units, and may contain non-VA units in addition to VA units.
  • the content of VA units in the polymer chain A may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of VA units in the polymer chain A may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain A may be VA units.
  • the polymer chain B may contain only non-VA units as repeating units, and may contain VA units in addition to non-VA units.
  • the content of the non-VA unit in the polymer chain B may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of non-VA units in the polymer chain B may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain B may be non-VA units.
  • polyvinyl alcohol-based polymers containing polymer chain A and polymer chain B in the same molecule include block copolymers and graft copolymers containing these polymer chains.
  • the graft copolymer may be a graft copolymer having a structure in which a polymer chain B (side chain) is grafted on a polymer chain A (main chain), or a polymer chain A (side chain) on a polymer chain B (main chain). It may be a graft copolymer having a structure in which a chain) is grafted.
  • a polyvinyl alcohol-based polymer having a structure in which the polymer chain B is grafted onto the polymer chain A can be used.
  • polymer chain B examples include a polymer chain having a repeating unit derived from an N-vinyl type monomer as a main repeating unit, and a polymer chain having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit.
  • the main repeating unit means a repeating unit contained in excess of 50% by weight unless otherwise specified.
  • a preferred example of the polymer chain B is a polymer chain having an N-vinyl type monomer as a main repeating unit, that is, an N-vinyl-based polymer chain.
  • the content of the repeating unit derived from the N-vinyl type monomer in the N-vinyl polymer chain is typically more than 50% by weight, may be 70% by weight or more, and may be 85% by weight or more. It may be 95% by weight or more.
  • Substantially all of the polymer chain B may be a repeating unit derived from an N-vinyl type monomer.
  • examples of N-vinyl type monomers include monomers having a nitrogen-containing heterocycle (for example, a lactam ring) and N-vinyl chain amides.
  • Specific examples of the N-vinyllactam type monomer include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylmorpholinone, N-vinylcaprolactam, N-vinyl-1,3-oxazine-2-one, and N-vinyl-. Examples thereof include 3,5-morpholindione.
  • Specific examples of the N-vinyl chain amide include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like.
  • the polymer chain B is, for example, an N-vinyl-based polymer chain in which more than 50% by weight (for example, 70% by weight or more, 85% by weight or more, or 95% by weight or more) of the repeating unit is an N-vinylpyrrolidone unit. obtain. Substantially all of the repeating units constituting the polymer chain B may be N-vinylpyrrolidone units.
  • polymer chain B is a polymer chain having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit, that is, an N- (meth) acryloyl-based polymer chain.
  • the content of the repeating unit derived from the N- (meth) acryloyl type monomer in the N- (meth) acryloyl polymer chain is typically more than 50% by weight, may be 70% by weight or more, and may be 85% by weight or more. It may be 95% by weight or more, and may be 95% by weight or more.
  • Substantially all of the polymer chain B may be a repeating unit derived from an N- (meth) acryloyl-type monomer.
  • examples of the N- (meth) acryloyl type monomer include a chain amide having an N- (meth) acryloyl group and a cyclic amide having an N- (meth) acryloyl group.
  • Examples of chain amides having an N- (meth) acryloyl group are (meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl ( N-alkyl (meth) acrylamide such as meta) acrylamide and Nn-butyl (meth) acrylamide; N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) ) N, N-dialkyl (meth) acrylamide such as acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-di (n-butyl) (meth) acrylamide; and the like.
  • Examples of cyclic amides having an N- (meth) acryloyl group include N- (meth) acryloy
  • polymer chain B is a polymer chain containing an oxyalkylene unit as a main repeating unit, that is, an oxyalkylene polymer chain.
  • the content of the oxyalkylene unit in the oxyalkylene polymer chain is typically more than 50% by weight, may be 70% by weight or more, may be 85% by weight or more, and may be 95% by weight or more. There may be. Substantially all of the repeating units contained in the polymer chain B may be oxyalkylene units.
  • the oxyalkylene unit examples include an oxyethylene unit, an oxypropylene unit, an oxybutylene unit and the like. Each such oxyalkylene unit can be a repeating unit derived from the corresponding alkylene oxide.
  • the oxyalkylene unit contained in the oxyalkylene polymer chain may be one kind or two or more kinds. For example, it may be an oxyalkylene polymer chain containing an oxyethylene unit and an oxypropylene unit in combination. In an oxyalkylene polymer chain containing two or more types of oxyalkylene units, the oxyalkylene units may be random copolymers of corresponding alkylene oxides, block copolymers, or alternating copolymers. It may be a polymer or a graft copolymer.
  • a polymer chain containing a repeating unit derived from an alkyl vinyl ether for example, a vinyl ether having an alkyl group having 1 or more and 10 or less carbon atoms
  • a monocarboxylic acid vinyl ester for example, the number of carbon atoms
  • examples thereof include a polymer chain containing a repeating unit derived from (vinyl ester of 3 or more monocarboxylic acids), a polymer chain into which a cationic group (for example, a cationic group having a quaternary ammonium structure) has been introduced, and the like.
  • the polyvinyl alcohol-based polymer as the water-soluble polymer in the technique disclosed herein is preferably a modified polyvinyl alcohol which is a copolymer containing VA units and non-VA units.
  • the saponification degree of the polyvinyl alcohol-based polymer as the water-soluble polymer is usually 50 mol% or more, preferably 65 mol% or more, more preferably 70 mol% or more, for example, 75 mol% or more. In principle, the saponification degree of the polyvinyl alcohol-based polymer is 100 mol% or less.
  • an N-vinyl type polymer can be used as the water-soluble polymer.
  • N-vinyl type polymers include polymers containing repeating units derived from monomers having nitrogen-containing heterocycles (eg, lactam rings). Examples of such polymers include homopolymers and copolymers of N-vinyllactam-type monomers (for example, copolymers in which the copolymerization ratio of N-vinyllactam-type monomers exceeds 50% by weight), N-vinyl. Copolymers and copolymers of chain amides (for example, copolymers in which the copolymerization ratio of N-vinyl chain amide exceeds 50% by weight) and the like are included.
  • N-vinyllactam type monomer that is, a compound having a lactam structure and an N-vinyl group in one molecule
  • N-vinylpyrrolidone VP
  • N-vinylpiperidone N-vinylmorpholinone
  • N. -Vinyl caprolactam VC
  • N-vinyl-1,3-oxadin-2-one N-vinyl-3,5-morpholindione and the like can be mentioned.
  • polymers containing N-vinyllactam-type monomer units include polyvinylpyrrolidone, polyvinylcaprolactam, random copolymers of VP and VC, one or both of VP and VC and other vinyl monomers (eg, acrylics). Examples include a random copolymer with (monomer, vinyl ester-based monomer, etc.), a block copolymer containing a polymer chain containing one or both of VP and VC, an alternating copolymer, a graft copolymer, and the like.
  • Specific examples of the N-vinyl chain amide include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like.
  • an N- (meth) acryloyl type polymer may be used as the water soluble polymer.
  • N- (meth) acryloyl-type polymers include homopolymers and copolymers of N- (meth) acryloyl-type monomers (typically, the copolymerization ratio of N- (meth) acryloyl-type monomers is 50 weight by weight. % (Copolymer) is included.
  • Examples of N- (meth) acryloyl-type monomers include chain amides having an N- (meth) acryloyl group and cyclic amides having an N- (meth) acryloyl group.
  • chain amides having an N- (meth) acryloyl group are (meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl ( N-alkyl (meth) acrylamide such as meta) acrylamide and Nn-butyl (meth) acrylamide; N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) ) N, N-dialkyl (meth) acrylamide such as acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-di (n-butyl) (meth) acrylamide; and the like.
  • a copolymer of N-isopropylacrylamide and a copolymer of N-isopropylacrylamide for example, a copolymerization ratio of N-isopropylacrylamide Is a copolymer in excess of 50% by weight.
  • Examples of cyclic amides having an N- (meth) acryloyl group include N-acryloyl morpholine, N-acryloyl thiomorpholine, N-acryloyl piperidine, N-acryloyl piperidine, N-methacryloyl morpholine, N-methacryloyl piperidine, N-methacryloyl. Examples thereof include pyrrolidine.
  • An example of a polymer containing a cyclic amide having an N- (meth) acryloyl group as a monomer unit is an acryloyl morpholine-based polymer (PACMO).
  • acryloyl morpholine-based polymers include homopolymers of N-acryloyl morpholine (ACMO) and copolymers of ACMO (for example, copolymers in which the copolymerization ratio of ACMO exceeds 50% by weight).
  • ACMO N-acryloyl morpholine
  • the ratio of the number of moles of ACMO units to the number of moles of all repeating units is usually 50% or more, and 80% or more (for example, 90% or more, typically 95% or more). Is appropriate. All repeating units of the water-soluble polymer may be composed substantially of ACMO units.
  • the weight average molecular weight (Mw) of the water-soluble polymer is not particularly limited.
  • Mw of the water soluble polymer may be at approximately 200 ⁇ 10 4 or less, is suitably about 0.99 ⁇ 10 4 or less, from the viewpoint of detergency and the like, preferably not more about 100 ⁇ 10 4 or less, approximately It may be 50 ⁇ 10 4 or less.
  • the Mw of the water-soluble polymer for example may also be 0.2 ⁇ 10 4 or more, and preferably 0.5 ⁇ 10 4 or more.
  • the Mw is suitably 1.0 ⁇ 10 4 or more, may also be 2 ⁇ 10 4 or more, may be, for example, 5 ⁇ 10 4 or more.
  • the range of molecular weights of preferred water-soluble polymeric compounds may vary depending on the type of polymer used.
  • Mw of the cellulose derivatives and starch derivatives respectively can be approximately 200 ⁇ 10 4 or less, is suitably 0.99 ⁇ 10 4 or less.
  • the Mw may also be approximately 100 ⁇ 10 4 or less, may be about 50 ⁇ 10 4 or less (e.g., about 30 ⁇ 10 4 or less).
  • the Mw is, for example, approximately 0.2 ⁇ 10 4 or more, is suitably not more approximately 0.5 ⁇ 10 4 or more, preferably about 1.0 ⁇ 10 4 or more, more preferably about 3.0 ⁇ 10 4 or more, more preferably at about 10 ⁇ 10 4 or more, may be about 20 ⁇ 10 4 or more.
  • Mw of polymers containing polyvinyl alcohol-based polymer and nitrogen atom, respectively can be a 100 ⁇ 10 4 or less, it is appropriate 60 ⁇ 10 4 or less. From the viewpoint of concentration efficiency and the like, the Mw may be 30 ⁇ 10 4 or less, preferably 20 ⁇ 10 4 or less, for example, 10 ⁇ 10 4 or less, typically 8 ⁇ 10 4 or less. good. From the viewpoint of the polishing surface is suitably protected to reduce the haze, Mw may be for example 0.2 ⁇ 10 4 or more, usually preferably at 0.5 ⁇ 10 4 or more.
  • Mw is suitably 1.0 ⁇ 10 4 or more, preferably 1.5 ⁇ 10 4 or more, more preferably 2 ⁇ 10 4 or more, more preferably 3 ⁇ 10 4 or more, For example may also be 4 ⁇ 10 4 or more, may be 5 ⁇ 10 4 or more.
  • the Mw of the water-soluble polymer a molecular weight calculated from a value (water-based, in terms of polyethylene oxide) based on water-based gel permeation chromatography (GPC) can be adopted.
  • GPC gel permeation chromatography
  • the GPC measuring device it is preferable to use the model name "HLC-8320GPC" manufactured by Tosoh Corporation. The measurement can be performed under the following conditions, for example. The same method is adopted for the examples described later.
  • a nonionic polymer can be preferably used as the water-soluble polymer.
  • a synthetic polymer can be preferably adopted as the water-soluble polymer.
  • the polishing composition is substantially free of a naturally occurring polymer as the water-soluble polymer.
  • substantially not used means that the amount of the polymer derived from the natural product used is typically 3 parts by weight or less, preferably 1 part by weight or less, based on 100 parts by weight of the total content of the water-soluble polymer. This includes 0 parts by weight or below the detection limit.
  • the content of the water-soluble polymer (content on a weight basis) in the polishing composition is not particularly limited. For example, it can be 1.0 ⁇ 10 -4 % by weight or more. From the viewpoint of haze reduction and the like, the preferable content is 5.0 ⁇ 10 -4 % by weight or more, more preferably 1.0 ⁇ 10 -3 % by weight or more, and further preferably 2.0 ⁇ 10 -3 % by weight. The above is, for example, 5.0 ⁇ 10 -3 % by weight or more. Further, from the viewpoint of polishing removal speed and the like, the content is preferably 0.2% by weight or less, more preferably 0.1% by weight or less, and 0.05% by weight or less (for example, 0.02).
  • the above-mentioned content is the total content (weight-based content) of all the water-soluble polymers contained in the polishing composition. It means that. These contents can be preferably applied to the content in the polishing liquid (working slurry) supplied to the substrate, for example.
  • the content of the water-soluble polymer (the total amount of two or more water-soluble polymers when they are contained) can also be specified by the relative relationship with the abrasive grains.
  • the content of the water-soluble polymer with respect to 100 parts by weight of the abrasive grains can be, for example, 0.01 part by weight or more, and is 0. It is appropriate that the amount is 1 part by weight or more, preferably 0.5 part by weight or more, more preferably 1 part by weight or more, still more preferably 3 parts by weight or more, and for example, 4 parts by weight or more.
  • the content of the water-soluble polymer with respect to 100 parts by weight of the abrasive grains may be, for example, 50 parts by weight or less, or 30 parts by weight or less. From the viewpoint of dispersion stability of the polishing composition and the like, in some embodiments, the content of the water-soluble polymer with respect to 100 parts by weight of the abrasive grains is preferably 15 parts by weight or less, preferably 10 parts by weight. It may be 8 parts by weight or less, or 7 parts by weight or less.
  • the polishing composition disclosed herein contains a basic compound.
  • basic compound refers to a compound having a function of dissolving in water and raising the pH of an aqueous solution.
  • Examples of basic compounds include organic or inorganic basic compounds containing nitrogen, basic compounds containing phosphorus, alkali metal hydroxides, alkaline earth metal hydroxides, and various carbonates and hydrogen carbonates. Can be used.
  • nitrogen-containing basic compounds include quaternary ammonium compounds, ammonia, amines (preferably water-soluble amines) and the like.
  • phosphorus-containing basic compounds include quaternary phosphonium compounds. Such basic compounds may be used alone or in combination of two or more.
  • alkali metal hydroxides include potassium hydroxide and sodium hydroxide.
  • specific examples of the carbonate or hydrogen carbonate include ammonium hydrogen carbonate, ammonium carbonate, potassium hydrogen carbonate, potassium carbonate, sodium hydrogen carbonate, sodium carbonate and the like.
  • Specific examples of amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, and piperazine anhydride.
  • quaternary phosphonium compound include quaternary phosphonium hydroxides such as tetramethylphosphonium hydroxide and tetraethylphosphonium hydroxide.
  • quaternary ammonium salt typically a strong base
  • a quaternary ammonium salt such as a tetraalkylammonium salt or a hydroxyalkyltrialkylammonium salt
  • Anionic component in such quaternary ammonium salts are, for example, OH -, F -, Cl -, Br -, I -, ClO 4 -, BH 4 - may be like.
  • the quaternary ammonium compound include a quaternary ammonium salt having an anion of OH ⁇ , that is, a quaternary ammonium hydroxide.
  • quaternary ammonium hydroxide examples include hydroxylation of tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide and tetrahexylammonium hydroxide.
  • At least one basic compound selected from alkali metal hydroxide, quaternary ammonium hydroxide and ammonia can be preferably used.
  • tetraalkylammonium hydroxide for example, tetramethylammonium hydroxide
  • ammonia is particularly preferable.
  • the content of the basic compound with respect to the total amount of the polishing composition is not particularly limited. From the viewpoint of improving the polishing rate, it is usually appropriate to set the above content to 0.0005% by weight or more, preferably 0.001% by weight or more, and 0.003% by weight or more. Is even more preferable. Further, from the viewpoint of haze reduction and the like, the content is preferably less than 0.1% by weight, preferably less than 0.05% by weight, and less than 0.03% by weight (for example, 0. 025% by weight) is more preferable. When two or more kinds are used in combination, the above-mentioned content refers to the total content of two or more kinds of basic compounds. These contents can be preferably applied to the content in the polishing liquid (working slurry) supplied to the substrate, for example.
  • the polishing composition disclosed herein includes a polyoxyalkylene alkyl ether in which a secondary carbon of an alkyl group is bonded to a polyoxyalkylene by an ether bond (that is, a polyoxyalkylene secondary alkyl ether).
  • the polyoxyalkylene secondary alkyl ether means a secondary alcohol alkoxylate in which a secondary alcohol is ether-bonded to the end of a polyoxyalkylene (POA) chain via an oxygen atom of its hydroxyl group. ..
  • the haze of the surface of the substrate after polishing can be better reduced.
  • the reason is not particularly limited, but the POA chain having a hydrophilic tendency and the secondary alkyl group having a hydrophobic tendency are bound by an ether bond to form a polyoxy having a balance of prohydrophobicity. It is considered that the alkylene secondary alkyl ether contributes to the protection of the substrate surface and brings about the effect of reducing the haze of the substrate surface after polishing.
  • the molecular weight of the polyoxyalkylene secondary alkyl ether may vary depending on the substrate to be polished and the composition of the polishing composition, and is not limited to a specific range.
  • the polyoxyalkylene secondary alkyl ether has a molecular weight of less than 4000, preferably 3000 or less, more preferably 2500 or less, even more preferably 2000 or less, and may be 1500 or less, 900. The following (for example, 700 or less) may be used.
  • the polyoxyalkylene secondary alkyl ether having a relatively small molecular weight is also advantageous in terms of filterability, detergency and the like.
  • the molecular weight of the polyoxyalkylene secondary alkyl ether is preferably 200 or more from the viewpoint of surface activity and the like, and 250 or more (for example, 300 or more) from the viewpoint of haze reduction effect and the like. Preferably, it may be 400 or more, 500 or more, 600 or more, or 800 or more (for example, 1000 or more).
  • Mw weight average molecular weight obtained by the above GPC or the molecular weight calculated from the chemical formula
  • the number of carbon atoms of the secondary alkyl group contained in the molecule of the polyoxyalkylene secondary alkyl ether is not particularly limited.
  • the number of carbon atoms of the secondary alkyl group may be 3 or more, 5 or more, or 7 or more.
  • the secondary alkyl group preferably has 8 or more carbon atoms, more preferably 10 or more carbon atoms, and even more preferably 12 or more carbon atoms.
  • the number of carbon atoms of the secondary alkyl group may be 27 or less, 25 or less, or 20 or more.
  • the secondary alkyl group preferably has 18 or less carbon atoms, more preferably 16 or less carbon atoms, and even more preferably 14 or less carbon atoms.
  • the two alkyl groups bonded to the secondary carbon of the secondary alkyl group may be the same or different from each other.
  • the two alkyl groups bonded to the secondary carbon may be linear or branched.
  • the polyoxyalkylene (POA) chain contained in the polyoxyalkylene secondary alkyl ether is a polymer chain containing an oxyalkylene unit as a main repeating unit.
  • the content of the oxyalkylene unit in the POA chain is, for example, more than 50% by weight, 70% by weight or more, 85% by weight or more, or 95% by weight or more.
  • Substantially all of the repeating units contained in the POA chain may be oxyalkylene units.
  • the number of moles of the alkylene oxide added can be adjusted to obtain a polyoxyalkylene secondary alkyl ether having an appropriate molecular weight.
  • the upper limit of the number of moles of alkylene oxide added is not particularly limited, and is, for example, 100 or less, 80 or less is appropriate, preferably 60 or less, more preferably 40 or less, still more preferably 30 or less, and 25 or less. It may be 18 or less (for example, 14 or less).
  • the lower limit of the number of moles of alkylene oxide added is not particularly limited, and is, for example, 3 or more, 5 or more is appropriate, 7 or more (for example, 9 or more) is preferable, 10 or more may be used, or 12 or more may be used. It may be 15 or more (for example, 20 or more).
  • the oxyalkylene unit examples include oxyethylene unit, oxypropylene unit, oxybutylene unit and the like. Each such oxyalkylene unit can be a repeating unit derived from the corresponding alkylene oxide.
  • the oxyalkylene unit contained in the POA chain may be one type or two or more types. For example, it may be a POA chain containing a combination of an oxyethylene unit and an oxypropylene unit. In a POA chain containing two or more oxyalkylene units, the oxyalkylene units may be random copolymers of the corresponding alkylene oxides, block copolymers, alternating copolymers or It may be a graft copolymer.
  • the content ratio of those oxyalkylene units is not particularly limited.
  • 0 to 100% of the addition moles of the alkylene oxide may be ethylene oxide (EO), 0 to 100% may be propylene oxide (PO), and 0 to 100% may be butylene oxide (BO). It may be.
  • the ratio of the number of moles of EO added to the number of moles of PO added among the number of moles of alkylene oxide added is 90:10 to 10: 10. It may be in the range of 90, in the range of 80:20 to 20:80, or in the range of 75:35 to 35:75.
  • the polyoxyalkylene secondary alkyl ether one type may be used alone, or two or more types may be used in combination.
  • the content of the polyoxyalkylene secondary alkyl ether in the polishing composition is not particularly limited. For example, it can be 1.0 ⁇ 10-6 % by weight or more. From the viewpoint of haze reduction and the like, the preferable content is 5.0 ⁇ 10 -6 % by weight or more, more preferably 1.0 ⁇ 10 -5 % by weight or more, and further preferably 5.0 ⁇ 10 -5 % by weight. The above is, for example, 1.0 ⁇ 10 -4 % by weight or more.
  • the content is less than 0.2% by weight, preferably less than 0.05% by weight, more preferably less than 0.01% by weight, for example, 0. It may be less than .005% by weight or less than 0.001% by weight.
  • the above content is the total content of all the polyoxyalkylene secondary alkyl ethers contained in the polishing composition. It refers to the quantity.
  • the content of the polyoxyalkylene secondary alkyl ether (when two or more kinds of polyoxyalkylene secondary alkyl ethers are contained, the total amount thereof) can also be specified by the relative relationship with the abrasive grains.
  • the content of the polyoxyalkylene secondary alkyl ether with respect to 100 parts by weight of the abrasive grains can be, for example, 0.0001 parts by weight or more, such as haze reduction. From the viewpoint, it is suitable to be 0.001 part by weight or more, preferably 0.005 part by weight or more, more preferably 0.01 part by weight or more, and further preferably 0.05 part by weight or more.
  • the content of the polyoxyalkylene secondary alkyl ether with respect to 100 parts by weight of the abrasive grains is, for example, 0.5 parts by weight or less, and may be 0.3 parts by weight or less. From the viewpoint of dispersion stability of the polishing composition and the like, it is appropriate that the content of the polyoxyalkylene secondary alkyl ether with respect to 100 parts by weight of the abrasive grains is less than 0.30 parts by weight in some embodiments. Yes, preferably 0.20 parts by weight or less, and may be 0.10 parts by weight or less.
  • the weight ratio between the content W S content W A polyoxyalkylene secondary alkyl ethers of the water-soluble polymer is not particularly limited.
  • the lower limit of the weight ratio (W A / W S) may be, for example, 0.01 or more, usually preferably 0.05 or more, more preferably 0.1 or more.
  • the lower limit of the weight ratio (W A / W S) may be 1 or more, may be 10 or more, may be 20 or more.
  • the upper limit of the weight ratio (W A / W S) may be, for example 200 or less, usually preferably 100 or less, more preferably 80 or less.
  • ion-exchanged water deionized water
  • pure water ultrapure water
  • distilled water distilled water
  • the water used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid hindering the action of other components contained in the polishing composition as much as possible.
  • the purity of water can be increased by operations such as removal of impurity ions by an ion exchange resin, removal of foreign substances by a filter, and distillation.
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. It is preferable that 90% by volume or more of the solvent contained in the polishing composition is water, and more preferably 95% by volume or more (for example, 99 to 100% by volume) of water.
  • the polishing compositions disclosed herein are, for example, surfactants, organic acids, organic acid salts, inorganic acids, inorganic acid salts, chelating agents, preservatives, antifungal agents, to the extent that the effects of the present invention are not significantly impaired.
  • a known additive that can be used in a polishing composition for example, a polishing composition used in a finishing polishing step of a silicon wafer
  • an agent may be further contained.
  • the polishing composition disclosed herein may contain a surfactant as an optional component as long as the effects of the present invention are not impaired.
  • the surfactant in the present specification may include a polyoxyalkylene alkyl ether other than the above-mentioned polyoxyalkylene secondary alkyl ether such as the polyoxyalkylene primary alkyl ether, but the above-mentioned polyoxyalkylene second. It does not contain higher alkyl ethers.
  • any of anionic, cationic, nonionic and amphoteric ones can be used.
  • Anionic or nonionic surfactants can be employed.
  • a nonionic surfactant can be used from the viewpoint of low foaming property and ease of pH adjustment.
  • Mw organic compounds of less than 0.2 ⁇ 10 4 is used.
  • Mw of the surfactant from the viewpoint of cleanability, etc. of the filtration property and the object to be polished of the polishing liquid is preferably less than 0.2 ⁇ 10 4.
  • the Mw of the surfactant is 100 or more, more preferably 200 or more, still more preferably 250 or more, and particularly preferably 300 or more.
  • the polishing rate tends to increase due to the increase in Mw of the surfactant.
  • the surfactant examples include oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl amine, polyoxyethylene fatty acid ester, and poly.
  • Polyoxyalkylene derivatives such as oxyethylene glyceryl ether fatty acid ester and polyoxyethylene sorbitan fatty acid ester (for example, polyoxyalkylene adduct); copolymers of multiple types of oxyalkylene (for example, diblock type copolymer, triblock)
  • Nonionic surfactants such as type copolymers, random type copolymers, alternating copolymers); and the like.
  • the surfactant may include a surfactant containing a polyoxyalkylene structure. The surfactant may be used alone or in combination of two or more.
  • the polishing composition disclosed herein contains a surfactant
  • the content thereof is not particularly limited as long as it does not significantly impair the effects of the present invention.
  • the content of the surfactant with respect to 100 parts by weight of the abrasive grains is, for example, 20 parts by weight or less, may be less than 10 parts by weight, may be less than 3 parts by weight, may be less than 1 part by weight, and may be 0.3 parts by weight. It may be less than a portion (for example, less than 0.1 parts by weight).
  • the polishing composition disclosed herein can be preferably carried out in a manner substantially free of the above-mentioned surfactant.
  • organic acid and its salt, and the inorganic acid and its salt can be used alone or in combination of two or more.
  • organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, itaconic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid and succinic acid.
  • Organic sulfonic acids such as acid, glycolic acid, malonic acid, gluconic acid, alanine, glycine, lactic acid, hydroxyethylidene diphosphate (HEDP), methanesulfonic acid, nitrilotris (methylenephosphate) (NTMP), phosphonobustanetricarbon
  • organic phosphonic acids such as acid (PBTC).
  • organic acid salts include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of organic acids.
  • inorganic acids include hydrochloric acid, phosphoric acid, sulfuric acid, phosphonic acid, nitric acid, phosphinic acid, boric acid, carbonic acid and the like.
  • inorganic acid salts include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of inorganic acids.
  • the above chelating agent may be used alone or in combination of two or more.
  • the chelating agent include an aminocarboxylic acid-based chelating agent and an organic phosphonic acid-based chelating agent.
  • Preferable examples of the chelating agent include, for example, ethylenediaminetetrax (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and diethylenetriaminepentaacetic acid.
  • the preservatives and fungicides include isothiazolin compounds, paraoxybenzoic acid esters, phenoxyethanol and the like.
  • the polishing composition disclosed herein preferably contains substantially no oxidizing agent.
  • an oxidizing agent is contained in the polishing composition, the polishing composition is supplied to a substrate (for example, a silicon wafer) to oxidize the surface of the substrate to form an oxide film, which causes a polishing rate.
  • a substrate for example, a silicon wafer
  • Specific examples of the oxidizing agent referred to here include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate and the like.
  • H 2 O 2 hydrogen peroxide
  • sodium persulfate sodium persulfate
  • ammonium persulfate sodium dichloroisocyanurate
  • the fact that the polishing composition does not substantially contain an oxidizing agent means that the polishing composition does not contain an oxidizing agent at least intentionally.
  • a trace amount for example, the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less, preferably 0.0001 mol / L or less, more preferably 0.00001
  • a polishing composition inevitably containing an oxidant of mol / L or less, particularly preferably 0.000001 mol / L or less) is a concept of a polishing composition that does not substantially contain the oxidant. Can be included in.
  • the pH of the polishing composition disclosed herein is not particularly limited, and an appropriate pH may be adopted depending on the substrate, abrasive grain type, and the like.
  • the pH of the polishing composition is preferably 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher.
  • the pH of the polishing composition is usually preferably 12.0 or less. It is preferably 0.0 or less, more preferably 10.8 or less, and even more preferably 10.5 or less.
  • the pH of the polishing composition is determined by using a pH meter (for example, a glass electrode type hydrogen ion concentration indicator (model number F-72) manufactured by Horiba Seisakusho) and a standard buffer solution (model number F-72). Phphthalate pH buffer pH: 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C), carbonate pH buffer pH: 10.01 (25 ° C))
  • a pH meter for example, a glass electrode type hydrogen ion concentration indicator (model number F-72) manufactured by Horiba Seisakusho) and a standard buffer solution (model number F-72).
  • carbonate pH buffer pH: 10.01 (25 ° C) After calibrating at three points using the pH, the glass electrode is placed in the composition to be measured, and the value can be grasped by measuring the value after it has stabilized after 2 minutes or more.
  • the polishing composition disclosed herein is typically supplied onto the surface of a substrate in the form of a polishing liquid containing the polishing composition and used for polishing the substrate.
  • the polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein.
  • the polishing composition may be used as it is as a polishing liquid. That is, the concept of a polishing composition in the technique disclosed herein includes a polishing liquid (working slurry) supplied to a substrate and used for polishing the substrate, and a concentrated liquid (polishing) diluted and used as a polishing liquid. Both with the undiluted solution of the solution) are included.
  • the polishing liquid containing the polishing composition disclosed herein there is a polishing liquid obtained by adjusting the pH of the composition.
  • the polishing composition disclosed herein may be in a concentrated form (ie, in the form of a concentrated solution of a polishing solution) before being supplied to the substrate.
  • the polishing composition in such a concentrated form is advantageous from the viewpoint of convenience and cost reduction in production, distribution, storage and the like.
  • the concentration ratio is not particularly limited, and can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times (for example, about 10 to 40 times) is suitable.
  • Such a concentrated liquid can be used in an embodiment in which a polishing liquid (working slurry) is prepared by diluting at a desired timing and the polishing liquid is supplied to the substrate. The dilution can be performed, for example, by adding water to the concentrate and mixing.
  • the content of abrasive grains in the concentrated solution can be, for example, 25% by weight or less.
  • the content is usually preferably 20% by weight or less, more preferably 15% by weight or less.
  • the content of the abrasive grains may be 10% by weight or less, or 5% by weight or less.
  • the content of abrasive grains in the concentrate can be, for example, 0.1% by weight or more, preferably 0.5% by weight. % Or more, more preferably 0.7% by weight or more, still more preferably 1% by weight or more.
  • the polishing composition used in the technique disclosed herein may be a one-dosage form or a multi-dosage form including a two-dosage form.
  • part A containing at least abrasive grains among the constituents of the polishing composition and part B containing at least a part of the remaining components are mixed, and these are mixed and diluted at appropriate timings as necessary. This may be configured so that the polishing liquid is prepared.
  • the method for preparing the polishing composition is not particularly limited.
  • the mode in which these components are mixed is not particularly limited, and for example, all the components may be mixed at once, or may be mixed in an appropriately set order.
  • the polishing compositions disclosed herein can be applied to the polishing of substrates having various materials and shapes.
  • the material of the substrate is, for example, a metal or semi-metal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, or an alloy thereof; a glassy substance such as quartz glass, aluminosilicate glass, or glassy carbon.
  • Ceramic materials such as alumina, silica, sapphire, silicon nitride, tantalum nitride, titanium carbide; compound semiconductor substrate materials such as silicon carbide, gallium nitride, gallium arsenide; resin materials such as polyimide resin; and the like.
  • a substrate made of a plurality of these materials may be used.
  • the shape of the substrate is not particularly limited.
  • the polishing composition disclosed herein can be applied to, for example, polishing a substrate having a flat surface such as a plate shape or a polyhedron shape, or polishing an edge portion of the substrate (for example, polishing a wafer edge).
  • the polishing composition disclosed herein can be particularly preferably used for polishing a surface made of silicon (typically polishing a silicon wafer).
  • a typical example of the silicon wafer referred to here is a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
  • the polishing composition disclosed herein can be preferably applied to a polishing step of a substrate (for example, a silicon wafer).
  • the substrate may be subjected to general treatments such as wrapping and etching which can be applied to the substrate in a process upstream of the polishing step before the polishing step by the polishing composition disclosed herein.
  • the polishing composition disclosed here is effective for being used in the finishing step of a substrate (for example, a silicon wafer) or the polishing step immediately before the substrate (for example, silicon wafer), and is particularly preferably used in the finishing polishing step.
  • the finishing polishing step refers to the final polishing step in the manufacturing process of the target product (that is, a step in which no further polishing is performed after the step).
  • the polishing composition disclosed herein also refers to a pre-polishing step upstream of finish polishing (a pre-polishing step between a rough polishing step and a final polishing step, typically comprising at least a primary polishing step. , Further may include polishing steps such as secondary, tertiary ...), For example, it may be used in a polishing step performed immediately before finish polishing.
  • the polishing composition disclosed herein is, for example, to polishing a silicon wafer (typically finishing polishing or immediately preceding polishing) prepared by an upstream process to have a surface condition with a surface roughness of 0.01 nm to 100 nm. Is effective. Application to finish polishing is particularly preferred.
  • the surface roughness Ra of the substrate can be measured using, for example, a laser scan type surface roughness meter "TMS-3000WRC" manufactured by Schmitt Measurement System Inc.
  • the polishing composition disclosed herein can be used for polishing a substrate, for example, in an embodiment including the following operations.
  • a preferred embodiment of a method of polishing a silicon wafer as a substrate using the polishing composition disclosed herein will be described. That is, a polishing liquid containing any of the polishing compositions disclosed herein is prepared.
  • the preparation of the polishing liquid may include preparing the polishing liquid by subjecting the polishing composition to operations such as concentration adjustment (for example, dilution) and pH adjustment.
  • concentration adjustment for example, dilution
  • pH adjustment for example, a polishing liquid
  • the polishing composition may be used as it is as a polishing liquid.
  • the polishing liquid is supplied to the substrate and polished by a conventional method.
  • the silicon wafer that has undergone the wrapping process is set in a general polishing device, and a polishing liquid is applied to the surface to be polished of the silicon wafer through the polishing pad of the polishing device.
  • Supply typically, while continuously supplying the polishing liquid, the polishing pad is pressed against the surface to be polished of the silicon wafer to relatively move (for example, rotate) the two. Polishing of the substrate is completed through such a polishing step.
  • the polishing pad used in the above polishing process is not particularly limited.
  • a polishing pad such as a polyurethane foam type, a non-woven fabric type, or a suede type can be used.
  • Each polishing pad may or may not contain abrasive grains.
  • a polishing pad containing no abrasive grains is preferably used.
  • Substrates polished with the polishing compositions disclosed herein are typically washed. Cleaning can be performed using a suitable cleaning solution.
  • the cleaning liquid used is not particularly limited, and for example, SC-1 cleaning liquid (ammonium hydroxide (NH 4 OH), hydrogen hydrogen (H 2 O 2 ), and water (H 2 O), which are common in the field of semiconductors and the like. (Mixed solution of), SC-2 cleaning solution (mixed solution of HCl, H 2 O 2 and H 2 O) and the like can be used.
  • the temperature of the cleaning liquid can be, for example, in the range of room temperature (typically about 15 ° C. to 25 ° C.) or higher and up to about 90 ° C. From the viewpoint of improving the cleaning effect, a cleaning liquid having a temperature of about 50 ° C. to 85 ° C. can be preferably used.
  • the techniques disclosed herein include a method for producing a polished product (eg, a method for producing a silicon wafer) including a polishing step (preferably finish polishing) by any of the polishing methods described above, and the method.
  • a polishing step preferably finish polishing
  • the provision of manufactured abrasives may be included.
  • Example 1 Abrasive grains, a water-soluble polymer, a basic compound, a polyoxyalkylene alkyl ether, and deionized water were mixed to prepare a concentrated solution of the polishing composition according to this example.
  • Abrasives as colloidal silica (average primary particle diameter: 27 nm) was used to use a weight average molecular weight of about 2.8 ⁇ 10 5 of hydroxyethylcellulose (HEC) as a water-soluble polymer, as the basic compound Ammonia was used.
  • HEC hydroxyethylcellulose
  • the secondary alkyl group has about 13 carbon atoms, has the molecular weight of the value shown in Table 1, and has the number of moles of alkylene oxide added shown in Table 1.
  • Ether was used.
  • the oxyalkylene unit of the polyoxyalkylene alkyl ether in this example is an oxyethylene unit.
  • DIW deionized water
  • Example 2 As the polyoxyalkylene alkyl ether, the same as in Example 1 except that the polyoxyalkylene secondary alkyl ether having the molecular weight of the value shown in Table 1 and having the number of moles of alkylene oxide added shown in Table 1 was used.
  • the polishing composition according to each example was prepared.
  • the secondary alkyl group of the polyoxyalkylene alkyl ether has about 13 carbon atoms, and the oxyalkylene unit is an oxyethylene unit and an oxypropylene unit.
  • Example 1 Similar to Example 1 except that the polyoxyalkylene alkyl ether has a primary alkyl group having about 10 carbon atoms and a molecular weight of 378 and an ethylene oxide addition molar number of 5 is used. To prepare the polishing composition according to this example.
  • Example 5 Useful as the water-soluble polymer, and a weight average molecular weight using from about 7.0 ⁇ 10 4 of polyvinyl alcohol (hereinafter referred to as "PVA"), polyoxyalkylene alkyl ether, the molecular weight of the values shown in Table 2
  • PVA polyvinyl alcohol
  • the polishing composition according to each example was prepared in the same manner as in Example 1 except that the polyoxyalkylene secondary alkyl ether having the number of moles of alkylene oxide added shown in Table 2 was used.
  • the secondary alkyl group of the polyoxyalkylene alkyl ether has about 13 carbon atoms, and the oxyalkylene unit is an oxyethylene unit.
  • Example 8 As the water-soluble polymer, and a weight average molecular weight using PVA of about 7.0 ⁇ 10 4, a polyoxyalkylene alkyl ether has a molecular weight of the values shown in Table 2, alkylene oxide addition shown in Table 2
  • the polishing composition according to each example was prepared in the same manner as in Example 1 except that a polyoxyalkylene secondary alkyl ether having a molecular weight was used.
  • the secondary alkyl group of the polyoxyalkylene alkyl ether has about 13 carbon atoms, and the oxyalkylene unit is an oxyethylene unit and an oxypropylene unit.
  • Example 2 (Comparative Example 2) Instead of the polyoxyalkylene alkyl ether, a polyalkylene oxide having an addition molar number of 190 and a molecular weight of about 3000 was used, and the content was the same as in Example 5 except that the content was 0.00125%.
  • the polishing composition according to this example was prepared.
  • the oxyalkylene unit of the polyalkylene oxide is an oxyethylene unit and an oxypropylene unit.
  • Example 3 As the polyoxyalkylene alkyl ether, the same as in Example 5 except that the polyoxyalkylene primary alkyl ether having a primary alkyl group having about 10 carbon atoms and having a molecular weight of 378 and having an ethylene oxide addition molar number of 5 was used. To prepare the polishing composition according to this example.
  • a commercially available silicon single crystal wafer (conduction type: P type, crystal orientation: ⁇ 100>, COP (Crystal Organized Particle: crystal defect) free) having a diameter of 200 mm that has been wrapped and etched is prepared under the following polishing condition 1.
  • a polished silicon wafer was prepared.
  • Preliminary polishing was carried out using a polishing solution containing 1.0% of abrasive grains (coloidal silica having an average primary particle size of 42 nm) and 0.068% of potassium hydroxide in deionized water.
  • Polishing device Single-wafer polishing device model "PNX-322" manufactured by Okamoto Machine Tool Mfg. Co., Ltd. Polishing load: 15 kPa Surface plate rotation speed: 30 rpm Head (carrier) rotation speed: 30 rpm Polishing pad: Made by Fujibo Ehime Co., Ltd. Product name "FP55” Pre-polishing liquid supply rate: 550 mL / min Pre-polishing liquid temperature: 20 ° C Surface plate cooling water temperature: 20 ° C Polishing time: 3 min
  • polishing composition according to each example prepared above was used as a polishing liquid, and the silicon wafer after the pre-polishing was polished under the following polishing condition 2.
  • Polishing device Single-wafer polishing device model "PNX-322" manufactured by Okamoto Machine Tool Mfg. Co., Ltd. Polishing load: 15 kPa Surface plate rotation speed: 30 rpm Head (carrier) rotation speed: 30 rpm Polishing pad: Made by Fujibo Ehime Co., Ltd. Product name "POLYPAS27NX” Abrasive liquid supply rate: 400 mL / min Abrasive liquid temperature: 20 ° C Surface plate cooling water temperature: 20 ° C Polishing time: 4 min
  • SC-1 cleaning Specifically, two first and second cleaning tanks were prepared, and the cleaning liquid was contained in each of the cleaning tanks and kept at 60 ° C.
  • the polished silicon wafer is immersed in the first cleaning tank for 5 minutes, then immersed in ultrapure water to apply ultrasonic waves, and then immersed in the second cleaning tank for 5 minutes and then ultrapure water. It was dried using a spin dryer through a rinsing tank that was immersed in and subjected to ultrasonic waves.
  • ⁇ Haze measurement> The haze (ppm) of the surface of the silicon wafer after cleaning was measured in DWO mode using a wafer inspection device manufactured by KLA Tencor Co., Ltd., trade name "Surfscan SP2 XP". The obtained results are converted into a relative value (haze ratio) in which the haze value for Comparative Example 1 is 100%, and the relative value (haze ratio) in which the haze value for Comparative Example 3 is 100% is shown in Table 1. It is shown in Table 2 in terms of. If the haze ratio is less than 100%, it can be said that the haze improving effect can be significantly confirmed, and the smaller the haze ratio value, the higher the haze improving effect.
  • the polishing compositions of Examples 1 to 9 using the polyoxyalkylene secondary alkyl ether used Comparative Examples 1 and 3 using the polyoxyalkylene primary alkyl ether. It showed an excellent haze improving effect as compared with the polishing composition of. Further, the polishing compositions of Examples 5 to 9 showed an excellent haze improving effect as compared with the polishing composition of Comparative Example 2 in which polyalkylene oxide was used instead of the polyoxyalkylene secondary alkyl ether. ..
  • a polishing composition containing abrasive grains, a water-soluble polymer, a basic compound and water, and further containing a polyoxyalkylene alkyl ether in which a secondary carbon of an alkyl group is bonded to a polyoxyalkylene by an ether bond. According to the material, it can be seen that the surface quality of the substrate after polishing can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

研磨後の基板の表面品質を向上させることのできる研磨用組成物を提供すること。研磨用組成物は、砥粒、水溶性高分子、塩基性化合物および水を含む。上記研磨用組成物は、さらに、アルキル基の第2級炭素がエーテル結合でポリオキシアルキレンと結合したポリオキシアルキレンアルキルエーテルを含む。

Description

研磨用組成物
 本発明は、研磨用組成物に関する。本出願は、2020年3月31日に出願された日本国特許出願2020-63674号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 従来、金属や半金属、非金属、その酸化物等の材料表面に対して研磨用組成物を用いた精密研磨が行われている。例えば、半導体製品の構成要素等として用いられるシリコンウェーハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)と仕上げポリシング工程(最終研磨工程)とを含む。シリコンウェーハの研磨用組成物に関する技術文献として、例えば特許文献1および2が挙げられる。
日本国特許出願公開平10-22241号公報 日本国特許出願公開平11-140431号公報
 シリコンウェーハ等の半導体基板その他の基板の研磨に用いられる研磨用組成物には、研磨後において高品質の表面を実現する性能が求められる。かかる用途向けの研磨用組成物は、砥粒および水に加えて、基板表面の保護や濡れ性向上等の目的で水溶性高分子を含むものが多い。上記水溶性高分子は、砥粒やシリコンウェーハに吸着したり脱離したりすることによって、研磨表面の欠陥やヘイズの低減に寄与する。
 また、上記の基板研磨において、例えば仕上げポリシング工程(特に、シリコンウェーハ等の半導体基板その他の基板の仕上げポリシング工程)では、より高品位の研磨面が求められており、よりヘイズの低い基板表面を効率的に実現可能な研磨用組成物が提供されれば実用上有益である。そこで本発明は、研磨後の基板の表面品質を向上させることのできる研磨用組成物を提供することを目的とする。
 本明細書によると研磨用組成物が提供される。この研磨用組成物は、砥粒、水溶性高分子、塩基性化合物および水を含み、アルキル基の第2級炭素がエーテル結合でポリオキシアルキレンと結合したポリオキシアルキレンアルキルエーテル(以下、「ポリオキシアルキレン第2級アルキルエーテル」ともいう。)をさらに含む。かかる研磨用組成物によると、研磨後の基板の表面品質を向上させることができる。例えばヘイズを改善することができる。
 いくつかの態様において、上記ポリオキシアルキレン第2級アルキルエーテルの分子量は4000未満であることが好ましい。砥粒と塩基性化合物を含む組成において、水溶性高分子の含有に加えて、上記の分子量を有するポリオキシアルキレン第2級アルキルエーテルを用いることにより、ヘイズ改善効果が好適に発揮され得る。
 いくつかの好ましい態様において、上記ポリオキシアルキレン第2級アルキルエーテルの含有量は0.01重量%未満である。このように上記ポリオキシアルキレン第2級アルキルエーテルが少量である態様において、ヘイズ改善効果が好適に発揮され得る。
 上記砥粒としては、シリカ粒子が好ましく用いられる。ポリオキシアルキレン第2級アルキルエーテル使用によるヘイズ改善効果は、砥粒としてシリカ粒子を用いる研磨において好適に発揮される。
 ここに開示される研磨用組成物は、シリコンウェーハの研磨に好適である。上記研磨用組成物を用いてシリコンウェーハに対しポリシングを行うことにより、ヘイズを改善し、高品質のシリコンウェーハ表面を好適に実現することができる。特に、ここに開示される研磨用組成物は、シリコンウェーハの仕上げポリシング工程に好ましく用いられ得る。
 また、本明細書によると、ここに開示されるいずれかの研磨用組成物を用いた基板の研磨方法が提供される。上記研磨方法はポリシング工程を含む。上記ポリシング工程において、砥粒と、水溶性高分子と、塩基性化合物と、水とを含み、ポリオキシアルキレン第2級アルキルエーテルをさらに含む研磨用組成物を用いて基板を研磨する。
 本明細書によって提供される研磨方法は、いくつかの態様において、シリコンウェーハの研磨方法である。すなわち、研磨される基板はシリコンウェーハである。ここに開示される技術によるヘイズ改善効果は、シリコンウェーハの研磨において好適に実現される。いくつかの好ましい態様では、上記研磨方法は、予備ポリシング工程と仕上げポリシング工程とを含む。そして、上記仕上げポリシング工程において、ここに開示される研磨用組成物を用いた研磨が実施される。かかる研磨方法によると、上記仕上げポリシング工程において、研磨後のウェーハ表面の濡れ性が向上し、より高品位なシリコンウェーハ表面を得ることができる。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 <砥粒>
 ここに開示される研磨用組成物は、砥粒を含む。砥粒は、基板の表面を機械的に研磨する働きをする。砥粒の材質や性状は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましく、シリカ粒子が特に好ましい。後述するシリコンウェーハ等のようにシリコンからなる表面を有する基板の研磨(例えば仕上げポリシング)に用いられ得る研磨用組成物では、砥粒としてシリカ粒子を採用することが特に有意義である。ここに開示される技術は、例えば、上記砥粒が実質的にシリカ粒子からなる態様で好ましく実施され得る。ここで「実質的に」とは、砥粒を構成する粒子の95重量%以上(好ましくは98重量%以上、より好ましくは99重量%以上であり、100重量%であってもよい。)がシリカ粒子であることをいう。
 シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。シリカ粒子は、一種を単独でまたは二種以上を組み合わせて用いることができる。研磨後において表面品位に優れた研磨面が得られやすいことから、コロイダルシリカの使用が特に好ましい。コロイダルシリカとしては、例えば、イオン交換法により水ガラス(珪酸Na)を原料として作製されたコロイダルシリカや、アルコキシド法コロイダルシリカ(アルコキシシランの加水分解縮合反応により製造されたコロイダルシリカ)を好ましく採用することができる。コロイダルシリカは、一種を単独でまたは二種以上を組み合わせて用いることができる。
 砥粒構成材料(例えば、シリカ粒子を構成するシリカ)の真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の上限は特に限定されないが、典型的には2.3以下であり、2.2以下が好ましく、2.0以下がさらに好ましく、例えば1.9以下である。砥粒(例えばシリカ粒子)の真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。
 砥粒(典型的にはシリカ粒子)の平均一次粒子径は特に限定されないが、研磨効率等の観点から、好ましくは5nm以上、より好ましくは10nm以上である。より高い研磨効果(例えば、ヘイズの低減、欠陥の除去等の効果)を得る観点から、上記平均一次粒子径は、15nm以上が好ましく、20nm以上(例えば20nm超)がより好ましい。また、スクラッチ防止等の観点から、砥粒の平均一次粒子径は、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは45nm以下である。より低ヘイズの表面を得やすくする観点から、いくつかの態様において、砥粒の平均一次粒子径は、43nm以下でもよく、40nm未満でもよく、38nm未満でもよく、35nm未満でもよく、32nm未満でもよく、30nm未満でもよい。
 なお、本明細書において平均一次粒子径とは、BET法により測定される比表面積(BET値)から、平均一次粒子径(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出される粒子径(BET粒子径)をいう。上記比表面積は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて測定することができる。
 砥粒(例えばシリカ粒子)の平均二次粒子径は特に限定されず、例えば15nm~300nm程度の範囲から適宜選択し得る。研磨能率向上の観点から、上記平均二次粒子径は30nm以上であることが好ましく、35nm以上であることがより好ましい。いくつかの態様において、上記平均二次粒子径は、例えば40nm以上であってもよく、42nm以上でもよく、好ましくは44nm以上でもよい。また、上記平均二次粒子径は、通常、250nm以下であることが有利であり、200nm以下であることが好ましく、150nm以下であることがより好ましい。いくつかの好ましい態様において、上記平均二次粒子径は120nm以下であり、より好ましくは100nm以下、さらに好ましくは70nm以下、例えば60nm以下であってもよく、50nm以下であってもよい。
 なお、本明細書において平均二次粒子径とは、動的光散乱法により測定される粒子径(体積平均粒子径)をいう。砥粒の平均二次粒子径は、例えば、日機装株式会社製の「ナノトラック(登録商標)UPA-UT151」を用いた動的光散乱法により測定することができる。
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす粒子の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。例えば、粒子の多くがピーナッツ形状または繭型形状をした砥粒を好ましく採用し得る。
 特に限定するものではないが、砥粒の長径/短径比の平均値(平均アスペクト比)は、原理的に1.0以上であり、好ましくは1.05以上、さらに好ましくは1.1以上である。平均アスペクト比の増大によって、より高い研磨能率が実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。
 砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。
 研磨用組成物における砥粒の含有量は特に制限されず、例えば0.01重量%以上であり、0.05重量%以上であることが好ましく、より好ましくは0.10重量%以上、さらに好ましくは0.15重量%以上である。砥粒含有量の増大によって、より高い研磨能率が実現され得る。上記含有量は、10重量%以下が適当であり、好ましくは7重量%以下、より好ましくは5重量%以下、さらに好ましくは2重量%以下であり、例えば1重量%以下であってもよく、0.5重量%以下でもよい。これにより、よりヘイズの低い表面を実現することができる。上記の砥粒含有量は、研磨用組成物が研磨液(ワーキングスラリー)の形態で用いられる態様において好ましく採用され得る。
 <水溶性高分子>
 ここに開示される研磨用組成物は、水溶性高分子を含む。水溶性高分子は、基板表面の保護や、研磨後の基板表面の濡れ性向上等に役立ち得る。ここに開示される技術による効果は、水溶性高分子と、後述のポリオキシアルキレン第2級アルキルエーテルとを共存させることにより実現され得る。本発明の一実施形態において、水溶性高分子としては、分子中に、水酸基、カルボキシ基、アシルオキシ基、スルホ基、アミド構造、イミド構造、第四級アンモニウム構造、複素環構造、ビニル構造等を含む化合物が挙げられる。水溶性高分子としては、例えばセルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、ポリビニルアルコール系ポリマー、窒素原子を含有するポリマー等が用いられ、窒素原子を含有するポリマーの一態様として、N-ビニル型ポリマー、N-(メタ)アクリロイル型ポリマー等が用いられ得る。水溶性高分子は、天然物由来のポリマーであってもよく、合成ポリマーであってもよい。水溶性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 いくつかの態様では、水溶性高分子として天然物由来のポリマーが用いられる。天然物由来のポリマーとしては、セルロース誘導体やデンプン誘導体が挙げられる。天然物由来のポリマーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 いくつかの好ましい態様では、水溶性高分子としてセルロース誘導体が用いられる。ここで、セルロース誘導体は、主たる繰返し単位としてβ-グルコース単位を含むポリマーである。セルロース誘導体の具体例としては、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。なかでもHECが好ましい。セルロース誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 他のいくつかの態様では、水溶性高分子としてデンプン誘導体が用いられる。デンプン誘導体は、主繰返し単位としてα-グルコース単位を含むポリマーであり、例えばアルファ化デンプン、プルラン、カルボキシメチルデンプン、シクロデキストリン等が挙げられる。デンプン誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 他のいくつかの態様では、水溶性高分子として合成ポリマーが用いられる。ここに開示されるヘイズ改善効果は、水溶性高分子として合成ポリマーを用いる態様において好ましく発揮される。合成ポリマーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 いくつかの好ましい態様では、水溶性高分子としてオキシアルキレン単位を含むポリマーが用いられる。オキシアルキレン単位を含むポリマーとしては、ポリエチレンオキシド(PEO)や、エチレンオキシド(EO)とプロピレンオキシド(PO)またはブチレンオキシド(BO)とのブロック共重合体、EOとPOまたはBOとのランダム共重合体等が例示される。そのなかでも、EOとPOのブロック共重合体またはEOとPOのランダム共重合体が好ましい。EOとPOとのブロック共重合体は、PEOブロックとポリプロピレンオキシド(PPO)ブロックとを含むジブロック共重合体、またはトリブロック共重合体等であり得る。上記トリブロック共重合体の例には、PEO-PPO-PEO型トリブロック共重合体およびPPO-PEO-PPO型トリブロック共重合体が含まれる。通常は、PEO-PPO-PEO型トリブロック共重合体がより好ましい。
 なお、本明細書中において共重合体とは、特記しない場合、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等の各種の共重合体を包括的に指す意味である。
 EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比(EO/PO)は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上(例えば5以上)であることがさらに好ましい。
 いくつかの好ましい態様では、水溶性高分子としてポリビニルアルコール系ポリマーが用いられる。ポリビニルアルコール系ポリマーとは、その繰返し単位としてビニルアルコール単位(以下「VA単位」ともいう。)を含むポリマーを指す。ポリビニルアルコール系ポリマーは、繰返し単位としてVA単位のみを含んでいてもよく、VA単位に加えてVA単位以外の繰返し単位(以下「非VA単位」ともいう。)を含んでいてもよい。ポリビニルアルコール系ポリマーは、VA単位と非VA単位とを含むランダム共重合体であってもよく、ブロック共重合体であってもよく、交互共重合体やグラフト共重合体であってもよい。ポリビニルアルコール系ポリマーは、一種類の非VA単位のみを含んでもよく、二種類以上の非VA単位を含んでもよい。
 上記ポリビニルアルコール系ポリマーは、変性されていないポリビニルアルコール(非変性PVA)であってもよく、変性ポリビニルアルコール(変性PVA)であってもよい。ここで非変性PVAとは、ポリ酢酸ビニルを加水分解(けん化)することにより生成し、酢酸ビニルがビニル重合した構造の繰返し単位(-CH-CH(OCOCH)-)およびVA単位以外の繰返し単位を実質的に含まないポリビニルアルコール系ポリマーをいう。上記非変性PVAのけん化度は、例えば60%以上であってよく、水溶性の観点から70%以上でもよく、80%以上でもよく、90%以上でもよい。
 ポリビニルアルコール系ポリマーは、VA単位と、オキシアルキレン基、カルボキシ基、スルホ基、アミノ基、水酸基、アミド基、イミド基、ニトリル基、エーテル基、エステル基、およびこれらの塩から選ばれる少なくとも1つの構造を有する非VA単位とを含む変性PVAであってもよい。また、変性PVAに含まれ得る非VA単位としては、例えば後述するN-ビニル型のモノマーやN-(メタ)アクリロイル型のモノマーに由来する繰返し単位、エチレンに由来する繰返し単位、アルキルビニルエーテルに由来する繰返し単位、炭素原子数3以上のモノカルボン酸のビニルエステルに由来する繰返し単位、等であってもよいが、これらに限定されない。上記N-ビニル型のモノマーの一好適例として、N-ビニルピロリドンが挙げられる。上記N-(メタ)アクリロイル型のモノマーの一好適例として、N-(メタ)アクリロイルモルホリンが挙げられる。上記アルキルビニルエーテルは、例えばプロピルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル等の、炭素原子数1以上10以下のアルキル基を有するビニルエーテルであり得る。上記炭素原子数3以上のモノカルボン酸のビニルエステルは、例えばプロパン酸ビニル、ブタン酸ビニル、ペンタン酸ビニル、ヘキサン酸ビニル等の、炭素原子数3以上7以下のモノカルボン酸のビニルエステルであり得る。また、ポリビニルアルコール系ポリマーは、ポリビニルアルコール系ポリマーに含まれるVA単位の一部がアルデヒドでアセタール化された変性PVAであってもよい。上記アルデヒドとしては、例えばアルキルアルデヒドを好ましく用いることができ、炭素原子数1以上7以下のアルキル基を有するアルキルアルデヒドが好ましく、なかでもアセトアルデヒド、n-プロピルアルデヒド、n-ブチルアルデヒド、n-ペンチルアルデヒドが好ましい。ポリビニルアルコール系ポリマーとして、第四級アンモニウム構造等のカチオン性基が導入されたカチオン変性ポリビニルアルコールを使用してもよい。上記カチオン変性ポリビニルアルコールとしては、例えば、ジアリルジアルキルアンモニウム塩、N-(メタ)アクリロイルアミノアルキル-N,N,N-トリアルキルアンモニウム塩等のカチオン性基を有するモノマーに由来するカチオン性基が導入されたものが挙げられる。
 ポリビニルアルコール系ポリマーを構成する全繰返し単位のモル数に占めるVA単位のモル数の割合は、例えば5%以上であってよく、10%以上でもよく、20%以上でもよく、30%以上でもよい。特に限定するものではないが、いくつかの態様において、上記VA単位のモル数の割合は、50%以上であってよく、65%以上でもよく、75%以上でもよく、80%以上でもよく、90%以上(例えば95%以上、または98%以上)でもよい。ポリビニルアルコール系ポリマーを構成する繰返し単位の実質的に100%がVA単位であってもよい。ここで「実質的に100%」とは、少なくとも意図的にはポリビニルアルコール系ポリマーに非VA単位を含有させないことをいい、典型的には全繰返し単位のモル数に占める非VA単位のモル数の割合が2%未満(例えば1%未満)であり、0%である場合を包含する。他のいくつかの態様において、ポリビニルアルコール系ポリマーを構成する全繰返し単位のモル数に占めるVA単位のモル数の割合は、例えば95%以下であってよく、90%以下でもよく、80%以下でもよく、70%以下でもよい。
 ポリビニルアルコール系ポリマーにおけるVA単位の含有量(重量基準の含有量)は、例えば5重量%以上であってよく、10重量%以上でもよく、20重量%以上でもよく、30重量%以上でもよい。特に限定するものではないが、いくつかの態様において、上記VA単位の含有量は、50重量%以上(例えば50重量%超)であってよく、70重量%以上でもよく、80重量%以上(例えば90重量%以上、または95重量%以上、または98重量%以上)でもよい。ポリビニルアルコール系ポリマーを構成する繰返し単位の実質的に100重量%がVA単位であってもよい。ここで「実質的に100重量%」とは、少なくとも意図的にはポリビニルアルコール系ポリマーを構成する繰返し単位として非VA単位を含有させないことをいい、典型的にはポリビニルアルコール系ポリマーにおける非VA単位の含有量が2重量%未満(例えば1重量%未満)であることをいう。他のいくつかの態様において、ポリビニルアルコール系ポリマーにおけるVA単位の含有量は、例えば95重量%以下であってよく、90重量%以下でもよく、80重量%以下でもよく、70重量%以下でもよい。
 ポリビニルアルコール系ポリマーは、VA単位の含有量の異なる複数のポリマー鎖を同一分子内に含んでいてもよい。ここでポリマー鎖とは、一分子のポリマーの一部を構成する部分(セグメント)を指す。例えば、ポリビニルアルコール系ポリマーは、VA単位の含有量が50重量%より高いポリマー鎖Aと、VA単位の含有量が50重量%より低い(すなわち、非VA単位の含有量が50重量%より多い)ポリマー鎖Bとを、同一分子内に含んでいてもよい。
 ポリマー鎖Aは、繰返し単位としてVA単位のみを含んでいてもよく、VA単位に加えて非VA単位を含んでいてもよい。ポリマー鎖AにおけるVA単位の含有量は、60重量%以上でもよく、70重量%以上でもよく、80重量%以上でもよく、90重量%以上でもよい。いくつかの態様において、ポリマー鎖AにおけるVA単位の含有量は、95重量%以上でもよく、98重量%以上でもよい。ポリマー鎖Aを構成する繰返し単位の実質的に100重量%がVA単位であってもよい。
 ポリマー鎖Bは、繰返し単位として非VA単位のみを含んでいてもよく、非VA単位に加えてVA単位を含んでいてもよい。ポリマー鎖Bにおける非VA単位の含有量は、60重量%以上でもよく、70重量%以上でもよく、80重量%以上でもよく、90重量%以上でもよい。いくつかの態様において、ポリマー鎖Bにおける非VA単位の含有量は、95重量%以上でもよく、98重量%以上でもよい。ポリマー鎖Bを構成する繰返し単位の実質的に100重量%が非VA単位であってもよい。
 ポリマー鎖Aとポリマー鎖Bとを同一分子中に含むポリビニルアルコール系ポリマーの例として、これらのポリマー鎖を含むブロック共重合体やグラフト共重合体が挙げられる。上記グラフト共重合体は、ポリマー鎖A(主鎖)にポリマー鎖B(側鎖)がグラフトした構造のグラフト共重合体であってもよく、ポリマー鎖B(主鎖)にポリマー鎖A(側鎖)がグラフトした構造のグラフト共重合体であってもよい。一態様において、ポリマー鎖Aにポリマー鎖Bがグラフトした構造のポリビニルアルコール系ポリマーを用いることができる。
 ポリマー鎖Bの例としては、N-ビニル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖、N-(メタ)アクリロイル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖、オキシアルキレン単位を主繰返し単位とするポリマー鎖等が挙げられる。なお、本明細書において主繰返し単位とは、特記しない場合、50重量%を超えて含まれる繰返し単位をいう。
 ポリマー鎖Bの一好適例として、N-ビニル型のモノマーを主繰返し単位とするポリマー鎖、すなわちN-ビニル系ポリマー鎖が挙げられる。N-ビニル系ポリマー鎖におけるN-ビニル型モノマーに由来する繰返し単位の含有量は、典型的には50重量%超であり、70重量%以上であってもよく、85重量%以上であってもよく、95重量%以上であってもよい。ポリマー鎖Bの実質的に全部がN-ビニル型モノマーに由来する繰返し単位であってもよい。
 この明細書において、N-ビニル型のモノマーの例には、窒素を含有する複素環(例えばラクタム環)を有するモノマーおよびN-ビニル鎖状アミドが含まれる。N-ビニルラクタム型モノマーの具体例としては、N-ビニルピロリドン、N-ビニルピペリドン、N-ビニルモルホリノン、N-ビニルカプロラクタム、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン等が挙げられる。N-ビニル鎖状アミドの具体例としては、N-ビニルアセトアミド、N-ビニルプロピオン酸アミド、N-ビニル酪酸アミド等が挙げられる。ポリマー鎖Bは、例えば、その繰返し単位の50重量%超(例えば70重量%以上、または85重量%以上、または95重量%以上)がN-ビニルピロリドン単位であるN-ビニル系ポリマー鎖であり得る。ポリマー鎖Bを構成する繰返し単位の実質的に全部がN-ビニルピロリドン単位であってもよい。
 ポリマー鎖Bの他の例として、N-(メタ)アクリロイル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖、すなわち、N-(メタ)アクリロイル系ポリマー鎖が挙げられる。N-(メタ)アクリロイル系ポリマー鎖におけるN-(メタ)アクリロイル型モノマーに由来する繰返し単位の含有量は、典型的には50重量%超であり、70重量%以上であってもよく、85重量%以上であってもよく、95重量%以上であってもよい。ポリマー鎖Bの実質的に全部がN-(メタ)アクリロイル型モノマーに由来する繰返し単位であってもよい。
 この明細書において、N-(メタ)アクリロイル型モノマーの例には、N-(メタ)アクリロイル基を有する鎖状アミドおよびN-(メタ)アクリロイル基を有する環状アミドが含まれる。N-(メタ)アクリロイル基を有する鎖状アミドの例としては、(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ(n-ブチル)(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド;等が挙げられる。N-(メタ)アクリロイル基を有する環状アミドの例としては、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン等が挙げられる。
 ポリマー鎖Bの他の例として、オキシアルキレン単位を主繰返し単位として含むポリマー鎖、すなわちオキシアルキレン系ポリマー鎖が挙げられる。オキシアルキレン系ポリマー鎖におけるオキシアルキレン単位の含有量は、典型的には50重量%超であり、70重量%以上であってもよく、85重量%以上であってもよく、95重量%以上であってもよい。ポリマー鎖Bに含まれる繰返し単位の実質的に全部がオキシアルキレン単位であってもよい。
 オキシアルキレン単位の例としては、オキシエチレン単位、オキシプロピレン単位、オキシブチレン単位等が挙げられる。このようなオキシアルキレン単位は、それぞれ、対応するアルキレンオキシドに由来する繰返し単位であり得る。オキシアルキレン系ポリマー鎖に含まれるオキシアルキレン単位は、一種類であってもよく、二種類以上であってもよい。例えば、オキシエチレン単位とオキシプロピレン単位とを組合せで含むオキシアルキレン系ポリマー鎖であってもよい。二種類以上のオキシアルキレン単位を含むオキシアルキレン系ポリマー鎖において、それらのオキシアルキレン単位は、対応するアルキレンオキシドのランダム共重合体であってもよく、ブロック共重合体であってもよく、交互共重合体やグラフト共重合体であってもよい。
 ポリマー鎖Bのさらに他の例として、アルキルビニルエーテル(例えば、炭素原子数1以上10以下のアルキル基を有するビニルエーテル)に由来する繰返し単位を含むポリマー鎖、モノカルボン酸ビニルエステル(例えば、炭素原子数3以上のモノカルボン酸のビニルエステル)に由来する繰返し単位を含むポリマー鎖、カチオン性基(例えば、第四級アンモニウム構造を有するカチオン性基)が導入されたポリマー鎖、等が挙げられる。
 ヘイズ低減性能向上の観点から、ここに開示される技術における水溶性高分子としてのポリビニルアルコール系ポリマーは、VA単位および非VA単位を含む共重合体である変性ポリビニルアルコールであることが好ましい。また、水溶性高分子としてのポリビニルアルコール系ポリマーのけん化度は、通常は50モル%以上であり、好ましくは65モル%以上、より好ましくは70モル%以上、例えば75モル%以上である。なお、ポリビニルアルコール系ポリマーのけん化度は、原理上、100モル%以下である。
 他のいくつかの態様においては、水溶性高分子としてN-ビニル型ポリマーが用いられ得る。N-ビニル型ポリマーの例には、窒素を含有する複素環(例えばラクタム環)を有するモノマーに由来する繰返し単位を含むポリマーが含まれる。このようなポリマーの例には、N-ビニルラクタム型モノマーの単独重合体および共重合体(例えば、N-ビニルラクタム型モノマーの共重合割合が50重量%を超える共重合体)、N-ビニル鎖状アミドの単独重合体および共重合体(例えば、N-ビニル鎖状アミドの共重合割合が50重量%を超える共重合体)等が含まれる。
 N-ビニルラクタム型モノマー(すなわち、一分子内にラクタム構造とN-ビニル基とを有する化合物)の具体例としては、N-ビニルピロリドン(VP)、N-ビニルピペリドン、N-ビニルモルホリノン、N-ビニルカプロラクタム(VC)、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン等が挙げられる。N-ビニルラクタム型のモノマー単位を含むポリマーの具体例としては、ポリビニルピロリドン、ポリビニルカプロラクタム、VPとVCとのランダム共重合体、VPおよびVCの一方または両方と他のビニルモノマー(例えば、アクリル系モノマー、ビニルエステル系モノマー等)とのランダム共重合体、VPおよびVCの一方または両方を含むポリマー鎖を含むブロック共重合体、交互共重合体やグラフト共重合体等が挙げられる。
 N-ビニル鎖状アミドの具体例としては、N-ビニルアセトアミド、N-ビニルプロピオン酸アミド、N-ビニル酪酸アミド等が挙げられる。
 他のいくつかの態様においては、水溶性高分子としてN-(メタ)アクリロイル型ポリマーが用いられ得る。N-(メタ)アクリロイル型ポリマーの例には、N-(メタ)アクリロイル型モノマーの単独重合体および共重合体(典型的には、N-(メタ)アクリロイル型モノマーの共重合割合が50重量%を超える共重合体)が含まれる。N-(メタ)アクリロイル型モノマーの例には、N-(メタ)アクリロイル基を有する鎖状アミドおよびN-(メタ)アクリロイル基を有する環状アミドが含まれる。
 N-(メタ)アクリロイル基を有する鎖状アミドの例としては、(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ(n-ブチル)(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド;等が挙げられる。N-(メタ)アクリロイル基を有する鎖状アミドをモノマー単位として含むポリマーの例として、N-イソプロピルアクリルアミドの単独重合体およびN-イソプロピルアクリルアミドの共重合体(例えば、N-イソプロピルアクリルアミドの共重合割合が50重量%を超える共重合体)が挙げられる。
 N-(メタ)アクリロイル基を有する環状アミドの例としては、N-アクリロイルモルホリン、N-アクリロイルチオモルホリン、N-アクリロイルピペリジン、N-アクリロイルピロリジン、N-メタクリロイルモルホリン、N-メタクリロイルピペリジン、N-メタクリロイルピロリジン等が挙げられる。N-(メタ)アクリロイル基を有する環状アミドをモノマー単位として含むポリマーの例として、アクリロイルモルホリン系ポリマー(PACMO)が挙げられる。アクリロイルモルホリン系ポリマーの典型例として、N-アクリロイルモルホリン(ACMO)の単独重合体およびACMOの共重合体(例えば、ACMOの共重合割合が50重量%を超える共重合体)が挙げられる。アクリロイルモルホリン系ポリマーにおいて、全繰返し単位のモル数に占めるACMO単位のモル数の割合は、通常は50%以上であり、80%以上(例えば90%以上、典型的には95%以上)であることが適当である。水溶性高分子の全繰返し単位が実質的にACMO単位から構成されていてもよい。
 ここに開示される技術において、水溶性高分子の重量平均分子量(Mw)は特に限定されない。水溶性高分子のMwは、例えば凡そ200×10以下であってよく、凡そ150×10以下が適当であり、洗浄性等の観点から、好ましくは凡そ100×10以下であり、凡そ50×10以下であってもよい。また、研磨表面の保護性の観点から、水溶性高分子のMwは、例えば0.2×10以上であってもよく、0.5×10以上であることが好ましい。いくつかの態様において、上記Mwは1.0×10以上が適当であり、2×10以上であってもよく、例えば5×10以上でもよい。
 ここに開示される技術において、好ましい水溶性高分子化合物の分子量の範囲は、使用するポリマーの種類によって異なり得る。例えば、セルロース誘導体およびデンプン誘導体のMwは、それぞれ凡そ200×10以下とすることができ、150×10以下が適当である。上記Mwは、凡そ100×10以下であってもよく、凡そ50×10以下(例えば凡そ30×10以下)でもよい。また、研磨表面の保護性の観点から、上記Mwは、例えば凡そ0.2×10以上であり、凡そ0.5×10以上であることが適当であり、好ましくは凡そ1.0×10以上、より好ましくは凡そ3.0×10以上、さらに好ましくは凡そ10×10以上であり、凡そ20×10以上であってもよい。
 また例えば、ポリビニルアルコール系ポリマーおよび窒素原子を含有するポリマーのMwは、それぞれ、100×10以下とすることができ、60×10以下が適当である。濃縮効率等の観点から、上記Mwは、30×10以下であってもよく、好ましくは20×10以下、例えば10×10以下、典型的には8×10以下であってもよい。また、研磨表面を好適に保護してヘイズを低減するという観点から、Mwは例えば0.2×10以上であってもよく、通常は0.5×10以上であることが好ましい。いくつかの態様において、Mwは1.0×10以上が適当であり、好ましくは1.5×10以上、より好ましくは2×10以上、さらに好ましくは3×10以上であり、例えば4×10以上であってもよく、5×10以上でもよい。
 水溶性高分子のMwとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキシド換算)から算出される分子量を採用することができる。GPC測定装置としては、東ソー株式会社製の機種名「HLC-8320GPC」を用いるとよい。測定は、例えば下記の条件で行うことができる。後述の実施例についても同様の方法が採用される。
  [GPC測定条件]
  サンプル濃度:0.1重量%
  カラム:TSKgel GMPWXL
  検出器:示差屈折計
  溶離液:100mM 硝酸ナトリウム水溶液/アセトニトリル=10~8/0~2
  流速:1mL/分
  測定温度:40℃
  サンプル注入量:200μL
 凝集物の低減や洗浄性向上等の観点から、水溶性高分子としてはノニオン性のポリマーを好ましく採用し得る。また、化学構造や純度の制御容易性の観点から、水溶性高分子として合成ポリマーを好ましく採用し得る。例えば、ここに開示される技術が、水溶性高分子として合成ポリマーを含む態様で実施される場合、研磨用組成物は、水溶性高分子として天然物由来のポリマーを実質的に使用しないものであり得る。ここで、実質的に使用しないとは、水溶性高分子の合計含有量100重量部に対する天然物由来のポリマーの使用量が、典型的には3重量部以下、好ましくは1重量部以下であることをいい、0重量部または検出限界以下であることを包含する。
 研磨用組成物における水溶性高分子の含有量(重量基準の含有量)は、特に限定されない。例えば1.0×10-4重量%以上とすることができる。ヘイズ低減等の観点から、好ましい含有量は5.0×10-4重量%以上であり、より好ましくは1.0×10-3重量%以上、さらに好ましくは2.0×10-3重量%以上、例えば5.0×10-3重量%以上である。また、研磨除去速度等の観点から、上記含有量を0.2重量%以下とすることが好ましく、0.1重量%以下とすることがより好ましく、0.05重量%以下(例えば0.02重量%以下)とすることがさらに好ましい。なお、上記研磨用組成物が二種以上の水溶性高分子を含む場合、上記含有量とは該研磨用組成物に含まれる全ての水溶性高分子の合計含有量(重量基準の含有量)のことをいう。これらの含有量は、例えば、基板に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。
 水溶性高分子の含有量(二種以上の水溶性高分子を含む場合にはそれらの合計量)は、砥粒との相対的関係によっても特定され得る。特に限定するものではないが、いくつかの態様において、砥粒100重量部に対する水溶性高分子の含有量は、例えば0.01重量部以上とすることができ、ヘイズ低減等の観点から0.1重量部以上とすることが適当であり、好ましくは0.5重量部以上、より好ましくは1重量部以上、さらに好ましくは3重量部以上であり、例えば4重量部以上であってもよい。また、砥粒100重量部に対する水溶性高分子の含有量は、例えば50重量部以下であってもよく、30重量部以下でもよい。研磨用組成物の分散安定性等の観点から、いくつかの態様において、砥粒100重量部に対する水溶性高分子の含有量は、15重量部以下とすることが適当であり、好ましくは10重量部以下であり、8重量部以下としてもよく、7重量部以下でもよい。
 <塩基性化合物>
 ここに開示される研磨用組成物は、塩基性化合物を含有する。本明細書において塩基性化合物とは、水に溶解して水溶液のpHを上昇させる機能を有する化合物を指す。塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、リンを含む塩基性化合物、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。窒素を含む塩基性化合物の例としては、第四級アンモニウム化合物、アンモニア、アミン(好ましくは水溶性アミン)等が挙げられる。リンを含む塩基性化合物の例としては、第四級ホスホニウム化合物が挙げられる。このような塩基性化合物は、一種を単独でまたは二種以上を組み合わせて用いることができる。
 アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。第四級ホスホニウム化合物の具体例としては、水酸化テトラメチルホスホニウム、水酸化テトラエチルホスホニウム等の水酸化第四級ホスホニウムが挙げられる。
 第四級アンモニウム化合物としては、テトラアルキルアンモニウム塩、ヒドロキシアルキルトリアルキルアンモニウム塩等の第四級アンモニウム塩(典型的には強塩基)を用いることができる。かかる第四級アンモニウム塩におけるアニオン成分は、例えば、OH、F、Cl、Br、I、ClO 、BH 等であり得る。上記第四級アンモニウム化合物の例として、アニオンがOHである第四級アンモニウム塩、すなわち水酸化第四級アンモニウムが挙げられる。水酸化第四級アンモニウムの具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化テトラペンチルアンモニウムおよび水酸化テトラヘキシルアンモニウム等の水酸化テトラアルキルアンモニウム;水酸化2-ヒドロキシエチルトリメチルアンモニウム(コリンともいう。)等の水酸化ヒドロキシアルキルトリアルキルアンモニウム;等が挙げられる。
 これらの塩基性化合物のうち、例えば、アルカリ金属水酸化物、水酸化第四級アンモニウムおよびアンモニアから選択される少なくとも一種の塩基性化合物を好ましく使用し得る。なかでも水酸化テトラアルキルアンモニウム(例えば、水酸化テトラメチルアンモニウム)およびアンモニアがより好ましく、アンモニアが特に好ましい。
 研磨用組成物全量に対する塩基性化合物の含有量は、特に制限されない。研磨レート向上等の観点から、通常は、上記含有量を0.0005重量%以上とすることが適当であり、0.001重量%以上とすることが好ましく、0.003重量%以上とすることがさらに好ましい。また、ヘイズ低減等の観点から、上記含有量は、0.1重量%未満とすることが適当であり、0.05重量%未満とすることが好ましく、0.03重量%未満(例えば0.025重量%未満)とすることがより好ましい。なお、二種以上を組み合わせて用いる場合は、上記含有量は二種以上の塩基性化合物の合計含有量を指す。これらの含有量は、例えば、基板に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。
 <ポリオキシアルキレン第2級アルキルエーテル>
 ここに開示される研磨用組成物は、アルキル基の第2級炭素がエーテル結合でポリオキシアルキレンと結合したポリオキシアルキレンアルキルエーテル(すなわち、ポリオキシアルキレン第2級アルキルエーテル)を含む。本明細書においてポリオキシアルキレン第2級アルキルエーテルとは、第2級アルコールがその水酸基の酸素原子を介してポリオキシアルキレン(POA)鎖の末端とエーテル結合している、セカンダリーアルコールアルコキシレートをいう。研磨用組成物に水溶性高分子と組み合わせてポリオキシアルキレン第2級アルキルエーテルを含有させることにより、研磨後の基板表面のヘイズをよりよく低減し得る。その理由としては、特に限定解釈されるものではないが、親水性傾向を有するPOA鎖と疎水性傾向を有する第2級アルキル基がエーテル結合で結びつくことで、親疎水性のバランスを兼ね備えたポリオキシアルキレン第2級アルキルエーテルが基板表面の保護性に寄与し、研磨後の基板表面のヘイズ低減効果をもたらしているものと考えられる。
 ポリオキシアルキレン第2級アルキルエーテルの分子量は、研磨される基板や研磨用組成物の組成によって異なり得るので、特定の範囲に限定されない。いくつかの態様では、ポリオキシアルキレン第2級アルキルエーテルの分子量は4000未満であり、好ましくは3000以下、より好ましくは2500以下、さらに好ましくは2000以下であり、1500以下であってもよく、900以下(例えば700以下)でもよい。分子量が比較的小さいポリオキシアルキレン第2級アルキルエーテルは、濾過性や洗浄性等の点でも有利である。また、ポリオキシアルキレン第2級アルキルエーテルの分子量は、界面活性能等の観点から、200以上であることが適当であり、ヘイズ低減効果等の観点から250以上(例えば300以上)であることが好ましく、400以上であってもよく、500以上でもよく、600以上でもよく、800以上(例えば1000以上)でもよい。ポリオキシアルキレン第2級アルキルエーテルの分子量としては、上記GPCにより求められる重量平均分子量(Mw)または化学式から算出される分子量を採用することができる。
 ポリオキシアルキレン第2級アルキルエーテルの分子中に含まれる第2級アルキル基の炭素数は、特に制限されない。第2級アルキル基の炭素数は、3以上であってよく、5以上でもよく、7以上でもよい。表面保護性等の観点から、第2級アルキル基の炭素数は、8以上が好ましく、10以上がより好ましく、12以上がさらに好ましい。第2級アルキル基の炭素数は、27以下であってよく、25以下でもよく、20以上でもよい。溶解性等の観点から、第2級アルキル基の炭素数は、18以下が好ましく、16以下がより好ましく、14以下がさらに好ましい。第2級アルキル基の第2級炭素に結合する2つのアルキル基は同一であってよく、それぞれ異なってもいてもよい。第2級炭素に結合する2つのアルキル基は、それぞれ直鎖であってよく、分枝していてもよい。
 ポリオキシアルキレン第2級アルキルエーテルに含まれるポリオキシアルキレン(POA)鎖は、オキシアルキレン単位を主繰返し単位として含むポリマー鎖である。POA鎖におけるオキシアルキレン単位の含有量は、例えば50重量%超であり、70重量%以上であってもよく、85重量%以上でもよく、95重量%以上でもよい。POA鎖に含まれる繰返し単位の実質的に全部がオキシアルキレン単位であってもよい。
 上記アルキレンオキシドの付加モル数は、適当な分子量のポリオキシアルキレン第2級アルキルエーテルを得るために調整され得る。アルキレンオキシドの付加モル数の上限は特に制限されず、例えば100以下であり、80以下が適当であり、好ましくは60以下、より好ましくは40以下、さらに好ましくは30以下であり、25以下であってもよく、18以下(例えば14以下)でもよい。アルキレンオキシドの付加モル数の下限は特に制限されず、例えば3以上であり、5以上が適当であり、7以上(例えば9以上)が好ましく、10以上であってもよく、12以上でもよく、15以上(例えば20以上)でもよい。
 上記オキシアルキレン単位の例としては、オキシエチレン単位、オキシプロピレン単位、オキシブチレン単位等が挙げられる。このようなオキシアルキレン単位は、それぞれ、対応するアルキレンオキシドに由来する繰返し単位であり得る。POA鎖に含まれるオキシアルキレン単位は、一種類であってもよく、二種類以上であってもよい。例えば、オキシエチレン単位とオキシプロピレン単位とを組み合わせて含むPOA鎖であってもよい。二種類以上のオキシアルキレン単位を含むPOA鎖において、それらのオキシアルキレン単位は、対応するアルキレンオキシドのランダム共重合体であってもよく、ブロック共重合体であってもよく、交互共重合体やグラフト共重合体であってもよい。
 二種類以上のオキシアルキレン単位を含むPOA鎖において、それらのオキシアルキレン単位の含有比率は特に制限されない。例えば上記アルキレンオキシドの付加モル数のうち0~100%がエチレンオキシド(EO)であってよく、0~100%がプロピレンオキシド(PO)であってもよく、0~100%がブチレンオキシド(BO)であってもよい。例えばオキシアルキレン単位の例としてオキシエチレン単位とオキシプロピレン単位とを含むPOA鎖の場合、上記アルキレンオキシドの付加モル数のうちEO付加モル数とPO付加モル数の比は、90:10~10:90の範囲でもよく、80:20~20:80の範囲でもよく、75:35~35:75の範囲でもよい。
 ポリオキシアルキレン第2級アルキルエーテルは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。研磨用組成物におけるポリオキシアルキレン第2級アルキルエーテルの含有量は、特に限定されない。例えば1.0×10-6重量%以上とすることができる。ヘイズ低減等の観点から、好ましい含有量は5.0×10-6重量%以上であり、より好ましくは1.0×10-5重量%以上、さらに好ましくは5.0×10-5重量%以上、例えば1.0×10-4重量%以上である。また、洗浄性等の観点から、上記含有量を0.2重量%未満とすることが適当であり、好ましくは0.05重量%未満、より好ましくは0.01重量%未満であり、例えば0.005重量%未満であってもよく、0.001重量%未満でもよい。なお、上記研磨用組成物が二種以上のポリオキシアルキレン第2級アルキルエーテルを含む場合、上記含有量とは該研磨用組成物に含まれる全てのポリオキシアルキレン第2級アルキルエーテルの合計含有量のことをいう。これらの含有量は、例えば、基板に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。
 ポリオキシアルキレン第2級アルキルエーテルの含有量(二種以上のポリオキシアルキレン第2級アルキルエーテルを含む場合にはそれらの合計量)は、砥粒との相対的関係によっても特定され得る。特に限定するものではないが、いくつかの態様において、砥粒100重量部に対するポリオキシアルキレン第2級アルキルエーテルの含有量は、例えば0.0001重量部以上とすることができ、ヘイズ低減等の観点から0.001重量部以上とすることが適当であり、好ましくは0.005重量部以上、より好ましくは0.01重量部以上、さらに好ましくは0.05重量部以上である。また、砥粒100重量部に対するポリオキシアルキレン第2級アルキルエーテルの含有量は、例えば0.5重量部以下であり、0.3重量部以下でもよい。研磨用組成物の分散安定性等の観点から、いくつかの態様において、砥粒100重量部に対するポリオキシアルキレン第2級アルキルエーテルの含有量は、0.30重量部未満とすることが適当であり、好ましくは0.20重量部以下であり、0.10重量部以下でもよい。
 水溶性高分子の含有量Wとポリオキシアルキレン第2級アルキルエーテルの含有量Wとの重量比(W/W)は特に制限されない。重量比(W/W)の下限は例えば0.01以上とすることができ、通常は0.05以上が好ましく、0.1以上がより好ましい。例えば重量比(W/W)の下限は1以上であってもよく、10以上であってもよく、20以上であってもよい。また、重量比(W/W)の上限は例えば200以下とすることができ、通常は100以下が好ましく、80以下がより好ましい。
 <水>
 ここに開示される研磨用組成物に含まれる水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。なお、ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(例えば99~100体積%)が水であることがより好ましい。
 <その他の成分>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、例えば界面活性剤、有機酸、有機酸塩、無機酸、無機酸塩、キレート剤、防腐剤、防カビ剤等の、研磨用組成物(例えばシリコンウェーハの仕上げポリシング工程に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
 ここに開示される研磨用組成物には、本発明の効果を損なわない範囲で、任意成分として界面活性剤を含有させることができる。なお、本明細書における界面活性剤には、ポリオキシアルキレン第1級アルキルエーテル等の上記ポリオキシアルキレン第2級アルキルエーテル以外のポリオキシアルキレンアルキルエーテルは含まれ得るが、上記ポリオキシアルキレン第2級アルキルエーテルは含まれない。
 界面活性剤としては、アニオン性、カチオン性、ノニオン性、両性のいずれのものも使用可能である。アニオン性またはノニオン性の界面活性剤が採用され得る。低起泡性やpH調整の容易性の観点から、ノニオン性の界面活性剤が用いられ得る。また、界面活性剤としては、例えば、Mwが0.2×10未満の有機化合物が用いられる。研磨液の濾過性や研磨対象物の洗浄性等の観点から界面活性剤のMwは0.2×10未満であることが好ましい。また、ここに開示される技術の好ましい一態様において、界面活性剤のMwは、100以上であり、より好ましくは200以上であり、さらに好ましくは250以上、特に好ましくは300以上である。界面活性剤のMwの増大によって研磨速度が向上する傾向がある。
 界面活性剤としては例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン誘導体(例えば、ポリオキシアルキレン付加物);複数種のオキシアルキレンの共重合体(例えば、ジブロック型共重合体、トリブロック型共重合体、ランダム型共重合体、交互共重合体);等のノニオン性界面活性剤が挙げられる。上記界面活性剤としては、ポリオキシアルキレン構造を含有する界面活性剤を含み得る。界面活性剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。
 ここに開示される研磨用組成物が界面活性剤を含む場合、その含有量は、本発明の効果を著しく阻害しない範囲であれば特に制限はない。砥粒100重量部に対する界面活性剤の含有量は、例えば20重量部以下であり、10重量部未満であってもよく、3重量部未満でもよく、1重量部未満でもよく、0.3重量部未満(例えば0.1重量部未満)でもよい。ここに開示される研磨用組成物は、上記界面活性剤を実質的に含まない態様で好ましく実施され得る。
 有機酸およびその塩、ならびに無機酸およびその塩は、一種を単独でまたは二種以上を組み合わせて用いることができる。有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、イタコン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、グリコール酸、マロン酸、グルコン酸、アラニン、グリシン、乳酸、ヒドロキシエチリデン二リン酸(HEDP)、メタンスルホン酸等の有機スルホン酸、ニトリロトリス(メチレンリン酸)(NTMP)、ホスホノブタントリカルボン酸(PBTC)等の有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、塩酸、リン酸、硫酸、ホスホン酸、硝酸、ホスフィン酸、ホウ酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。
 上記キレート剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。上記キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。キレート剤の好適例としては、例えばエチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)およびジエチレントリアミン五酢酸が挙げられる。上記防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。
 ここに開示される研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該研磨用組成物が基板(例えばシリコンウェーハ)に供給されることで該基板の表面が酸化されて酸化膜が生じ、これにより研磨レートが低下してしまうことがあり得るためである。ここでいう酸化剤の具体例としては、過酸化水素(H)、過硫酸ナトリウム、過硫酸アンモニウム、ジクロロイソシアヌル酸ナトリウム等が挙げられる。なお、研磨用組成物が酸化剤を実質的に含まないとは、少なくとも意図的には酸化剤を含有させないことをいう。したがって、原料や製法等に由来して微量(例えば、研磨用組成物中における酸化剤のモル濃度が0.0005モル/L以下、好ましくは0.0001モル/L以下、より好ましくは0.00001モル/L以下、特に好ましくは0.000001モル/L以下)の酸化剤が不可避的に含まれている研磨用組成物は、ここでいう酸化剤を実質的に含有しない研磨用組成物の概念に包含され得る。
 <pH>
 ここに開示される研磨用組成物のpHは特に限定されず、基板や砥粒種等に応じて適当なpHが採用され得る。いくつかの態様において、研磨用組成物のpHは8.0以上が適当であり、好ましくは8.5以上、より好ましくは9.0以上である。研磨用組成物のpHが高くなると、研磨能率が向上する傾向にある。一方、砥粒(例えばシリカ粒子)の溶解を防いで機械的な研磨作用の低下を抑制する観点から、研磨用組成物のpHは、通常、12.0以下であることが適当であり、11.0以下であることが好ましく、10.8以下であることがより好ましく、10.5以下であることがさらに好ましい。
 なお、ここに開示される技術において、研磨用組成物のpHは、pHメーター(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-72))を使用し、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を測定対象の組成物に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。
 <研磨液>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で基板の表面上に供給され、その基板の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、基板に供給されて該基板の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該組成物のpHを調整してなる研磨液が挙げられる。
 <濃縮液>
 ここに開示される研磨用組成物は、基板に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は特に限定されず、例えば、体積換算で2倍~100倍程度とすることができ、通常は5倍~50倍程度(例えば10倍~40倍程度)が適当である。
 このような濃縮液は、所望のタイミングで希釈して研磨液(ワーキングスラリー)を調製し、該研磨液を基板に供給する態様で使用することができる。上記希釈は、例えば、上記濃縮液に水を加えて混合することにより行うことができる。
 また、希釈して研磨に用いられる研磨用組成物(すなわち濃縮液)の場合、上記濃縮液における砥粒の含有量は、例えば25重量%以下とすることができる。研磨用組成物の分散安定性や濾過性等の観点から、通常、上記含有量は、好ましくは20重量%以下であり、より好ましくは15重量%以下である。好ましい一態様において、砥粒の含有量を10重量%以下としてもよく、5重量%以下としてもよい。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、濃縮液における砥粒の含有量は、例えば0.1重量%以上とすることができ、好ましくは0.5重量%以上、より好ましくは0.7重量%以上、さらに好ましくは1重量%以上である。
 <研磨用組成物の調製>
 ここに開示される技術において使用される研磨用組成物は、一剤型であってもよく、二剤型を始めとする多剤型であってもよい。例えば、研磨用組成物の構成成分のうち少なくとも砥粒を含むパートAと、残りの成分の少なくとも一部を含むパートBとを混合し、これらを必要に応じて適切なタイミングで混合および希釈することにより研磨液が調製されるように構成されていてもよい。
 研磨用組成物の調製方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物を構成する各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
 <用途>
 ここに開示される研磨用組成物は、種々の材質および形状を有する基板の研磨に適用され得る。基板の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケートガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等であり得る。これらのうち複数の材質により構成された基板であってもよい。基板の形状は特に制限されない。ここに開示される研磨用組成物は、例えば、板状や多面体状等の、平面を有する基板の研磨、もしくは基板の端部の研磨(例えばウェーハエッジの研磨)に適用され得る。
 ここに開示される研磨用組成物は、シリコンからなる表面の研磨(典型的にはシリコンウェーハの研磨)に特に好ましく使用され得る。ここでいうシリコンウェーハの典型例はシリコン単結晶ウェーハであり、例えば、シリコン単結晶インゴットをスライスして得られたシリコン単結晶ウェーハである。
 ここに開示される研磨用組成物は、基板(例えばシリコンウェーハ)のポリシング工程に好ましく適用することができる。基板には、ここに開示される研磨用組成物によるポリシング工程の前に、ラッピングやエッチング等の、ポリシング工程より上流の工程において基板に適用され得る一般的な処理が施されていてもよい。
 ここに開示される研磨用組成物は、基板(例えばシリコンウェーハ)の仕上げ工程またはその直前のポリシング工程に用いることが効果的であり、仕上げポリシング工程における使用が特に好ましい。ここで、仕上げポリシング工程とは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。ここに開示される研磨用組成物は、また、仕上げポリシングよりも上流のポリシング工程(粗研磨工程と最終研磨工程との間の予備研磨工程を指す。典型的には少なくとも1次ポリシング工程を含み、さらに2次、3次・・・等のポリシング工程を含み得る。)、例えば仕上げポリシングの直前に行われるポリシング工程に用いられてもよい。
 ここに開示される研磨用組成物は、例えば、上流の工程によって表面粗さ0.01nm~100nmの表面状態に調製されたシリコンウェーハのポリシング(典型的には仕上げポリシングまたはその直前のポリシング)への適用が効果的である。仕上げポリシングへの適用が特に好ましい。基板の表面粗さRaは、例えば、Schmitt Measurement System Inc.社製のレーザースキャン式表面粗さ計「TMS-3000WRC」を用いて測定することができる。
 <研磨>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、基板の研磨に使用することができる。以下、ここに開示される研磨用組成物を用いて基板としてのシリコンウェーハを研磨する方法の好適な一態様につき説明する。
 すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液を用意する。上記研磨液を用意することには、研磨用組成物に濃度調整(例えば希釈)、pH調整等の操作を加えて研磨液を調製することが含まれ得る。あるいは、研磨用組成物をそのまま研磨液として使用してもよい。
 次いで、その研磨液を基板に供給し、常法により研磨する。例えば、シリコンウェーハの仕上げ研磨を行う場合、典型的には、ラッピング工程を経たシリコンウェーハを一般的な研磨装置にセットし、該研磨装置の研磨パッドを通じて上記シリコンウェーハの研磨対象面に研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、シリコンウェーハの研磨対象面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て基板の研磨が完了する。
 上記研磨工程に使用される研磨パッドは、特に限定されない。例えば、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプ等の研磨パッドを用いることができる。各研磨パッドは、砥粒を含んでもよく、砥粒を含まなくてもよい。通常は、砥粒を含まない研磨パッドが好ましく用いられる。
 ここに開示される研磨用組成物を用いて研磨された基板は、典型的には洗浄される。洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC-1洗浄液(水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液)、SC-2洗浄液(HClとHとHOとの混合液)等を用いることができる。洗浄液の温度は、例えば室温(典型的には約15℃~25℃)以上、約90℃程度までの範囲とすることができる。洗浄効果を向上させる観点から、50℃~85℃程度の洗浄液を好ましく使用し得る。
 上述したように、ここに開示される技術には、上述したいずれかの研磨方法によるポリシング工程(好ましくは仕上げポリシング)を含む研磨物の製造方法(例えば、シリコンウェーハの製造方法)および該方法により製造された研磨物(例えばシリコンウェーハ)の提供が含まれ得る。
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り重量基準である。
 <研磨用組成物の調製>
  (実施例1)
 砥粒、水溶性高分子、塩基性化合物、ポリオキシアルキレンアルキルエーテルおよび脱イオン水を混合して、本例に係る研磨用組成物の濃縮液を調製した。砥粒としてはコロイダルシリカ(平均一次粒子径:27nm)を使用し、水溶性高分子としては重量平均分子量が約2.8×10のヒドロキシエチルセルロース(HEC)を使用し、塩基性化合物としてはアンモニアを使用した。ポリオキシアルキレンアルキルエーテルとしては、第2級アルキル基の炭素数が約13であり、表1に示す値の分子量を有し、表1に示すアルキレンオキシド付加モル数のポリオキシアルキレン第2級アルキルエーテルを使用した。本例におけるポリオキシアルキレンアルキルエーテルのオキシアルキレン単位はオキシエチレン単位である。得られた研磨用組成物の濃縮液を脱イオン水(DIW)で体積比20倍に希釈することにより、砥粒の濃度を0.175%、水溶性高分子の濃度を0.0088%、塩基性化合物の濃度を0.005%、ポリオキシアルキレンアルキルエーテルの濃度を0.00015%とする、本例に係る研磨用組成物を得た。
  (実施例2~4)
 ポリオキシアルキレンアルキルエーテルとして、表1に示す値の分子量を有し、表1に示すアルキレンオキシド付加モル数のポリオキシアルキレン第2級アルキルエーテルを使用したこと以外は実施例1と同様にして、各例に係る研磨用組成物を調製した。各例においてポリオキシアルキレンアルキルエーテルの第2級アルキル基の炭素数は約13であり、オキシアルキレン単位はオキシエチレン単位およびオキシプロピレン単位である。
  (比較例1)
 ポリオキシアルキレンアルキルエーテルとして、第1級アルキル基の炭素数が約10であり、分子量378を有するエチレンオキシド付加モル数5のポリオキシアルキレン第1級アルキルエーテルを使用したこと以外は実施例1と同様にして、本例に係る研磨用組成物を調製した。
  (実施例5~7)
 水溶性高分子として、重量平均分子量が約7.0×10のポリビニルアルコール(以下「PVA」と表記)を使用したことと、ポリオキシアルキレンアルキルエーテルとして、表2に示す値の分子量を有し、表2に示すアルキレンオキシド付加モル数のポリオキシアルキレン第2級アルキルエーテルを使用したこと以外は実施例1と同様にして、各例に係る研磨用組成物を調製した。各例においてポリオキシアルキレンアルキルエーテルの第2級アルキル基の炭素数は約13であり、オキシアルキレン単位はオキシエチレン単位である。
  (実施例8、9)
 水溶性高分子として、重量平均分子量が約7.0×10のPVAを使用したことと、ポリオキシアルキレンアルキルエーテルとして、表2に示す値の分子量を有し、表2に示すアルキレンオキシド付加モル数のポリオキシアルキレン第2級アルキルエーテルを使用したこと以外は実施例1と同様にして、各例に係る研磨用組成物を調製した。各例においてポリオキシアルキレンアルキルエーテルの第2級アルキル基の炭素数は約13であり、オキシアルキレン単位はオキシエチレン単位およびオキシプロピレン単位である。
  (比較例2)
 ポリオキシアルキレンアルキルエーテルに代えて、アルキレンオキシド付加モル数が190で、分子量が約3000であるポリアルキレンオキシドを使用し、その含有量を0.00125%としたこと以外は実施例5と同様にして、本例に係る研磨用組成物を調製した。本例においてポリアルキレンオキシドのオキシアルキレン単位はオキシエチレン単位およびオキシプロピレン単位である。
  (比較例3)
 ポリオキシアルキレンアルキルエーテルとして、第1級アルキル基の炭素数が約10であり、分子量378を有するエチレンオキシド付加モル数5のポリオキシアルキレン第1級アルキルエーテルを使用したこと以外は実施例5と同様にして、本例に係る研磨用組成物を調製した。
<シリコンウェーハの研磨>
 基板として、ラッピングおよびエッチングを終えた直径200mmの市販シリコン単結晶ウェーハ(伝導型:P型、結晶方位:<100>、COP(Crystal Originated Particle:結晶欠陥)フリー)を下記の研磨条件1により予備ポリシングしたシリコンウェーハを用意した。予備ポリシングは、脱イオン水中に砥粒(平均一次粒子径が42nmのコロイダルシリカ)1.0%および水酸化カリウム0.068%を含む研磨液を使用して行った。
  [研磨条件1]
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨装置 型式「PNX-322」
 研磨荷重:15kPa
 定盤の回転速度:30rpm
 ヘッド(キャリア)の回転速度:30rpm
 研磨パッド:フジボウ愛媛株式会社製 製品名「FP55」
 予備研磨液の供給レート:550mL/min
 予備研磨液の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:3min
 上記で調製した各例に係る研磨用組成物を研磨液として使用し、上記予備ポリシング後のシリコンウェーハを下記の研磨条件2により研磨した。
  [研磨条件2]
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨装置 型式「PNX-322」
 研磨荷重:15kPa
 定盤の回転速度:30rpm
 ヘッド(キャリア)の回転速度:30rpm
 研磨パッド:フジボウ愛媛株式会社製 製品名「POLYPAS27NX」
 研磨液の供給レート:400mL/min
 研磨液の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:4min
 研磨後のシリコンウェーハを研磨装置から取り外し、NHOH(29%):H(31%):脱イオン水(DIW)=1:1:12(体積比)の洗浄液を用いて洗浄した(SC-1洗浄)。具体的には、第1および第2の2つの洗浄槽を用意し、それらの洗浄槽の各々に上記洗浄液を収容して60℃に保持した。研磨後のシリコンウェーハを第1の洗浄槽に5分浸漬し、その後超純水に浸漬して超音波を付与するリンス槽を経て、第2の洗浄槽に5分浸漬した後、超純水に浸漬して超音波を付与するリンス槽を経て、スピンドライヤーを用いて乾燥させた。
<ヘイズ測定>
 洗浄後のシリコンウェーハ表面につき、ケーエルエー・テンコール社製のウェーハ検査装置、商品名「Surfscan SP2XP」を用いて、DWOモードでヘイズ(ppm)を測定した。得られた結果を、比較例1についてのヘイズ値を100%とする相対値(ヘイズ比)に換算して表1に、比較例3についてのヘイズ値を100%とする相対値(ヘイズ比)に換算して表2に、それぞれ示した。ヘイズ比が100%未満であれば、へイズ改善効果が有意に確認できるといえ、ヘイズ比の値が小さいほど、ヘイズ改善効果が高いことを示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示されるように、ポリオキシアルキレン第2級アルキルエーテルを使用した実施例1~9の研磨用組成物は、ポリオキシアルキレン第1級アルキルエーテルを使用した比較例1および3の研磨用組成物に比べて、優れたヘイズ改善効果を示した。また、実施例5~9の研磨用組成物は、ポリオキシアルキレン第2級アルキルエーテルに代えてポリアルキレンオキシド使用した比較例2の研磨用組成物に比べて、優れたヘイズ改善効果を示した。
 上記の結果から、砥粒、水溶性高分子、塩基性化合物および水を含み、さらに、アルキル基の第2級炭素がエーテル結合でポリオキシアルキレンと結合したポリオキシアルキレンアルキルエーテルを含む研磨用組成物によると、研磨後の基板の表面品質を向上させ得ることがわかる。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。

Claims (5)

  1.  砥粒、水溶性高分子、塩基性化合物および水を含み、
     アルキル基の第2級炭素がエーテル結合でポリオキシアルキレンと結合したポリオキシアルキレンアルキルエーテルをさらに含む、研磨用組成物。
  2.  前記ポリオキシアルキレンアルキルエーテルの分子量は4000未満である、請求項1に記載の研磨用組成物。
  3.  前記ポリオキシアルキレンアルキルエーテルの含有量は0.01重量%未満である、請求項1または2に記載の研磨用組成物。
  4.  前記砥粒としてシリカ粒子を含む、請求項1から3のいずれか一項に記載の研磨用組成物。
  5.  シリコンウェーハの研磨に用いられる、請求項1から4のいずれか一項に記載の研磨用組成物。
PCT/JP2021/005409 2020-03-31 2021-02-15 研磨用組成物 WO2021199723A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511627A JPWO2021199723A1 (ja) 2020-03-31 2021-02-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020063674 2020-03-31
JP2020-063674 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021199723A1 true WO2021199723A1 (ja) 2021-10-07

Family

ID=77928279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005409 WO2021199723A1 (ja) 2020-03-31 2021-02-15 研磨用組成物

Country Status (3)

Country Link
JP (1) JPWO2021199723A1 (ja)
TW (1) TW202138531A (ja)
WO (1) WO2021199723A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160964A (ja) * 2004-12-10 2006-06-22 Asahi Kasei Chemicals Corp 研磨剤含有洗浄剤
WO2018124226A1 (ja) * 2016-12-28 2018-07-05 ニッタ・ハース株式会社 研磨用組成物及び研磨方法
WO2020013332A1 (ja) * 2018-07-13 2020-01-16 日本キャボット・マイクロエレクトロニクス株式会社 化学機械研磨組成物、リンス組成物、化学機械研磨方法及びリンス方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160964A (ja) * 2004-12-10 2006-06-22 Asahi Kasei Chemicals Corp 研磨剤含有洗浄剤
WO2018124226A1 (ja) * 2016-12-28 2018-07-05 ニッタ・ハース株式会社 研磨用組成物及び研磨方法
WO2020013332A1 (ja) * 2018-07-13 2020-01-16 日本キャボット・マイクロエレクトロニクス株式会社 化学機械研磨組成物、リンス組成物、化学機械研磨方法及びリンス方法

Also Published As

Publication number Publication date
JPWO2021199723A1 (ja) 2021-10-07
TW202138531A (zh) 2021-10-16

Similar Documents

Publication Publication Date Title
CN106663619B (zh) 硅晶圆研磨用组合物
JP7353051B2 (ja) シリコンウェーハ研磨用組成物
WO2015046163A1 (ja) 研磨用組成物およびその製造方法
WO2017150158A1 (ja) シリコン基板の研磨方法および研磨用組成物セット
KR102565682B1 (ko) 실리콘 기판 중간 연마용 조성물 및 실리콘 기판 연마용 조성물 세트
TWI832999B (zh) 研磨用組成物
JP7103823B2 (ja) シリコンウェーハの研磨方法および研磨用組成物
WO2020196370A1 (ja) 研磨用組成物
KR101732331B1 (ko) 실리콘 웨이퍼 연마용 조성물
WO2022070801A1 (ja) 研磨用組成物およびその利用
CN113631679B (zh) 研磨用组合物
WO2018096991A1 (ja) 研磨用組成物
WO2021182276A1 (ja) 研磨用組成物
WO2021199723A1 (ja) 研磨用組成物
WO2022113986A1 (ja) シリコンウェーハ用研磨用組成物およびその利用
WO2022065022A1 (ja) 研磨用組成物およびその利用
TWI829675B (zh) 研磨用組合物
WO2023063027A1 (ja) 研磨用組成物
WO2023181928A1 (ja) 研磨用組成物
WO2023189812A1 (ja) 研磨用組成物
WO2024070831A1 (ja) 研磨用組成物
WO2024029457A1 (ja) 研磨用組成物
WO2022209758A1 (ja) 研磨方法、研磨用組成物セット
WO2023181929A1 (ja) 研磨用組成物
JP2023149877A (ja) 研磨用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780645

Country of ref document: EP

Kind code of ref document: A1