WO2021199512A1 - 銅粒子及びその製造方法 - Google Patents

銅粒子及びその製造方法 Download PDF

Info

Publication number
WO2021199512A1
WO2021199512A1 PCT/JP2020/046651 JP2020046651W WO2021199512A1 WO 2021199512 A1 WO2021199512 A1 WO 2021199512A1 JP 2020046651 W JP2020046651 W JP 2020046651W WO 2021199512 A1 WO2021199512 A1 WO 2021199512A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
particles
copper particles
organic acid
aliphatic organic
Prior art date
Application number
PCT/JP2020/046651
Other languages
English (en)
French (fr)
Inventor
瑞樹 秋澤
隆史 佐々木
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2022511525A priority Critical patent/JP7482214B2/ja
Priority to CN202080098917.3A priority patent/CN115348907A/zh
Priority to US17/911,511 priority patent/US11980935B2/en
Priority to EP20928275.5A priority patent/EP4129528A4/en
Publication of WO2021199512A1 publication Critical patent/WO2021199512A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer

Definitions

  • the present invention relates to copper particles.
  • the copper particles of the present invention are useful, for example, as a raw material for a conductive composition or a raw material for a sintered material.
  • the applicant has previously proposed a technique for surface-treated copper powder for copper pastes having a surface-treated layer treated with fatty acids (see Patent Document 1).
  • This copper powder has an advantage that quality control becomes very easy because the paste viscosity is low and the change in viscosity with time is very small.
  • the applicant has an average particle size of the primary particles of 0.1 ⁇ m or more and 0.6 ⁇ m or less, and a surface treatment agent is applied to the surface of the particles, which occupies the particles in the state where the surface treatment agent is applied.
  • a technique for copper particles in which the proportion of the surface treatment agent is 0.25% by mass or more and 5.50% by mass or less in terms of carbon atoms (see Patent Document 2).
  • a fatty acid or an aliphatic amine having 6 to 18 carbon atoms is preferably used as the surface treatment agent. According to this technique, there is an advantage that the low temperature sinterability of copper particles is improved.
  • JP-A-2002-332502 Japanese Unexamined Patent Publication No. 2015-168878
  • a composition such as a paste or ink containing copper particles and an organic solvent is applied onto a substrate, and the coating film formed thereby is fired to conduct conductivity. It is possible to form a highly effective conductor film.
  • a surface treatment agent such as a fatty acid or an aliphatic amine
  • it may be performed under high temperature conditions in order to remove organic substances of the surface treatment agent. In this regard, there was room for improvement in order to achieve sintering at lower temperatures.
  • an object of the present invention lies in the improvement of the prior art, and specifically, in providing copper particles that can be sintered at a lower temperature.
  • the problems of the present invention can be solved by using a copper salt of an aliphatic organic acid as a treatment agent for coating the surface of copper particles. rice field.
  • the present invention includes core particles made of copper and a coating layer that covers the surface of the core particles.
  • the coating layer provides copper particles formed by a surface treatment agent containing a copper salt of an aliphatic organic acid.
  • the present invention also provides a method for producing copper particles, in which core particles made of copper are brought into contact with a solution containing a copper salt of an aliphatic organic acid to coat the surface of the core particles.
  • FIG. 1 is an IR spectrum after normalization of copper particles of Examples and Comparative Examples.
  • FIG. 2 is a graph after the IR spectra in Example 1 and Comparative Example 1 in FIG. 1 are differentiated twice.
  • the copper particles of the present invention are those in which a surface treatment agent containing a copper salt of an aliphatic organic acid is applied to the surface of the particles.
  • the coating layer made of the surface treatment agent is formed so as to continuously or discontinuously cover the surface of the core particles made of copper.
  • Surface treatment agents are used to suppress both copper oxidation and particle agglutination.
  • the surface treatment agent used in the present invention contains a copper salt of an aliphatic organic acid.
  • surface treatment agents such as fatty acids and fatty acid amines have been used in order to suppress both the oxidation of copper in copper particles and the aggregation of particles.
  • a treatment agent may not be sufficiently removed when the copper particles are sintered due to the high decomposition temperature of the treatment agent. Due to this, the sintering start temperature may rise, or the resistance of the conductor film obtained after sintering the copper particles may increase.
  • a copper salt of an aliphatic organic acid as a surface treatment agent, sintering is performed while suppressing both oxidation of copper and aggregation of particles.
  • the starting temperature can be lowered, and as a result, the resistance of the conductor film obtained after sintering can be lowered while improving the low-temperature sintering property of the particles. Furthermore, it has been found that the adhesion between the resin and the conductor film is improved even when the conductor film is formed on the resin sheet as the low-temperature sinterability is improved.
  • the number of carbon atoms of the aliphatic organic acid constituting the copper salt of the aliphatic organic acid is 6 from the viewpoint of suppressing the oxidation of copper and suppressing the aggregation of the particles while improving the low-temperature sintering property of the obtained copper particles. It is preferably 18 or more, more preferably 8 or more and 18 or less, further preferably 10 or more and 18 or less, and further preferably 12 or more and 18 or less.
  • Examples of such an aliphatic organic acid include a carboxylic acid having a linear or branched chain and being saturated or unsaturated, or a hydrocarbon group having a linear or branched chain and being saturated or unsaturated. Examples thereof include sulfonic acids, which are preferably linear and saturated or unsaturated carboxylic acids.
  • the valence of copper in the copper salt of an aliphatic organic acid is monovalent or divalent, preferably divalent.
  • carboxylic acid examples include citric acid, hexanoic acid, heptanic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, palmitic acid, oleic acid, stearic acid and the like, preferably lauric acid, oleic acid and Stearic acid, more preferably lauric acid and stearic acid.
  • sulfonic acid examples include hexane sulfonic acid, heptane sulfonic acid, octane sulfonic acid, nonane sulfonic acid, decane sulfonic acid, laurin sulfonic acid, palmitin sulfonic acid, olein sulfonic acid, stear sulfonic acid and the like.
  • aliphatic organic acids can be used alone or in combination of two or more.
  • the surface treatment agent is applied to the surface of the particles, for example, by contacting the obtained core particles with a copper salt of an aliphatic organic acid, which is a surface treatment agent, in a step after producing core particles made of copper. be able to.
  • the amount of the surface treatment agent applied is expressed as the ratio (mass%) of the entire surface treatment agent to the copper particles in the state where the surface treatment agent is applied, and is 0.2% by mass or more in terms of carbon atoms. It is preferably 0% by mass or less, and more preferably 0.3% by mass or more and 1.0% by mass or less.
  • the melting temperature of the copper particles can be lowered by the removal of the oxide film on the surface of the copper particles by the surface treatment agent and the effect of co-melting, and as a result, the low temperature sinterability can be obtained. Can be enhanced.
  • the proportion (mass%) of the surface treatment agent applied to the surface of the copper particles can be measured as follows. 0.5 g of copper powder, which is an aggregate of copper particles treated with a surface treatment agent, is heated in an oxygen stream with a carbon / sulfur analyzer (HORIBA, Ltd., EMIA-320V), and the carbon content in the copper powder Can be measured by decomposing CO or CO 2 and quantifying the amount.
  • a carbon / sulfur analyzer HORIBA, Ltd., EMIA-320V
  • a method such as nuclear magnetic resonance (NMR) method, Raman spectroscopy, infrared spectroscopy, liquid chromatography, time-of-flight secondary ion mass spectrometry (TOF-SIMS), etc. It can be used alone or in combination.
  • NMR nuclear magnetic resonance
  • Raman spectroscopy Raman spectroscopy
  • infrared spectroscopy liquid chromatography
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the copper particles of the present invention have a coating layer formed by using a copper salt of an aliphatic organic acid as a surface treatment agent on the surface of the core particles, and the coating layer uses a copper salt of an aliphatic organic acid. Whether or not it is formed can be determined by, for example, the following method. Specifically, the measurement sample diluted with KBr so that the mass of the copper particles is 5% by mass and mixed in a dairy pot is diffused using an infrared spectrophotometer (model number: FT-IR4600) manufactured by JASCO Corporation.
  • the infrared absorption peak is observed in the range of 1504cm -1 or 1514cm -1 or less, and to be observed in the range 1584 cm -1 or 1596cm -1 less, the coating layer is a copper salt of an aliphatic organic acid It can be judged that it was formed.
  • the copper particles of the present invention as measured by infrared spectroscopy, is the infrared absorption peak observed in the range of 1504cm -1 or 1514cm -1 or less, an infrared absorption peak in the range of 1584 cm -1 or 1596cm -1 or less It is preferably not observed.
  • Having an infrared absorption peak is defined according to the following method.
  • the arithmetic mean value is calculated from the absolute value of the amplitude from the reference line (zero) in each waveform separated waveform. Then, when the absolute value of the peak height is larger than half the value of the arithmetic mean value, it is defined as "having an infrared absorption peak".
  • an infrared absorption peak is detected in the range of 1584 cm -1 or more and 1596 cm -1 or less, as shown in Examples described later. Can be distinguished from the copper particles of the present invention.
  • the copper particles of the present invention and the copper particles using a fatty acid or an aliphatic amine as a surface treatment agent have a difference in the presence or absence of an infrared absorption peak at a specific wave number. Infrared spectroscopy is based on the measurement principle of measuring the absorption of light energy corresponding to the kinetic energy of bonds in a molecule by irradiating the substance or molecule to be measured with infrared rays.
  • infrared absorption when infrared absorption is observed in infrared spectroscopy, it indicates that some bond is present in the molecule.
  • infrared absorption is observed at a high frequency position, it can be said that a bond having a large binding energy exists in the molecule because the high frequency infrared has high energy.
  • the copper particles of the present invention have a small number of bonds having a large bond energy in the molecule as compared with the copper particles using a fatty acid or an aliphatic amine as a surface treatment agent.
  • the bond between the surface treatment agent and the core particles is relatively weak in the copper particles of the present invention, so that the surface treatment agent is easily desorbed at a low temperature, and the sintering of the particles is at a low temperature. It is thought that this can be achieved with.
  • the copper particles of the present invention can achieve improvement in low-temperature sinterability while suppressing both oxidation of copper and aggregation of particles.
  • the copper particles of the present invention can be analyzed by, for example, TOF-SIMS.
  • the temperature at which the ratio of the mass reduction value to the mass reduction value at 500 ° C. is 10% in the thermogravimetric analysis when heated from 25 ° C. to 1000 ° C.
  • it is preferably 150 ° C. or higher and 220 ° C. or lower, and more preferably 180 ° C. or higher and 220 ° C. or lower.
  • thermogravimetric analysis can be performed by, for example, the following method. That is, using TG-DTA2000SA manufactured by Bruker AXS Co., Ltd., the measurement sample is set to 50 mg, and the mass reduction rate when heated from 25 ° C. to 1000 ° C. is measured. The atmosphere is nitrogen and the rate of temperature rise is 10 ° C./min. The lower the temperature at which the mass reduction rate becomes a predetermined ratio, the lower the temperature at which the aliphatic organic acid forming the coating layer can be removed, which is a measure of the low temperature sinterability of the copper particles.
  • the copper particles to which the surface treatment agent has been applied are the primary particles of the copper particles.
  • the average particle size is preferably 0.05 ⁇ m or more and 1.0 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • a primary particle is an object that is recognized as the smallest unit as a particle, judging from its external geometric shape.
  • the average particle size of the primary particles for example, using a scanning electron microscope (JSM-6330F manufactured by JEOL Ltd.), observe the copper particles at a magnification of 10,000 times or 30,000 times, and horizontally ferret about 200 particles in the visual field. The diameter can be measured, and the volume average particle diameter converted into a sphere can be calculated from these measured values.
  • JSM-6330F manufactured by JEOL Ltd.
  • the copper particles of the present invention are formed so that the surface treatment layer made of the surface treatment agent covers the core particles made of copper.
  • the core particles preferably consist only of copper and residual unavoidable impurities.
  • the shape of the copper particles is spherical from the viewpoint of enhancing the dispersibility of the particles and obtaining a highly conductive conductor film.
  • the shape of the core particles may be spherical.
  • the spherical shape means that the circularity coefficient measured by the following method is preferably 0.85 or more, more preferably 0.90 or more.
  • the circularity coefficient is calculated by the following method. A scanning electron microscope image of metal particles is taken, and 1000 particles in which the particles do not overlap are randomly selected. When the area of the two-dimensional projection image of the particle is S and the perimeter is L, the circularity coefficient of the particle is calculated from the formula of 4 ⁇ S / L 2. The arithmetic mean value of the circularity coefficient of each particle is defined as the circularity coefficient described above. When the two-dimensional projection image of the particle is a perfect circle, the circularity coefficient of the particle is 1.
  • core particles made of copper and a solution containing a copper salt of an aliphatic organic acid are brought into contact with each other to form a coating layer covering the surface of the core particles.
  • core particles made of copper prior to surface treatment with a copper salt of an aliphatic organic acid For example, it can be produced by a wet method described in Japanese Patent Application Laid-Open No. 2015-168878. That is, in a liquid medium containing water and preferably a monovalent alcohol having 1 or more and 5 or less carbon atoms, monovalent copper chloride, copper acetate, copper hydroxide, copper sulfate, copper oxide, cuprous oxide or the like, or Prepare a reaction solution containing a divalent copper source.
  • This reaction solution and hydrazine are mixed at a ratio of preferably 0.5 mol or more and 50 mol or less with respect to 1 mol of copper, and the copper source is reduced to obtain core particles made of copper.
  • the core particles obtained by this method have no surface treatment agent such as a copper salt of an aliphatic organic acid applied to the surface thereof, and have a small particle size.
  • the core particles obtained in the above step are preferably washed.
  • the cleaning method include a decantation method and a rotary filter method.
  • the rotary filter method for example, an aqueous slurry in which the core particles are dispersed in a solvent such as water is prepared, and the washing is performed until the conductivity of the slurry is preferably 2.0 mS or less.
  • the cleaning conditions at this time are, for example, when water is used as the cleaning solvent, the cleaning temperature can be 15 ° C. or higher and 30 ° C. or lower, and the cleaning time can be 10 minutes or longer and 60 minutes or shorter.
  • the content ratio of the core particles made of copper in this slurry is preferably 5% by mass or more and 50% by mass or less from the viewpoint of achieving both improvement of cleaning efficiency and improvement of particle dispersibility.
  • the direct current thermal plasma (DC plasma) method described in Pamphlet No. 2015/12251 may be adopted as another method for producing core particles made of copper.
  • the copper mother powder can be subjected to a DC thermal plasma method, which is a kind of PVD method, to generate core particles from the mother powder.
  • the core particles obtained by this method also have no surface treatment agent such as a copper salt of an aliphatic organic acid applied to the surface thereof, and have a small particle size. If necessary, the obtained core particles may be subjected to a crushing treatment or a classification treatment to separate or remove coarse particles and fine particles.
  • the core particles obtained by the above method are surface-treated with a surface treatment agent to form a coating layer that covers the surface of the core particles.
  • a surface treatment method for example, a method of bringing the core particles into contact with a solution in which a copper salt of an aliphatic organic acid is dissolved in a solvent can be adopted.
  • the form of the core particles to be brought into contact with the copper salt of the aliphatic organic acid in this step may be an aqueous slurry in which the core particles are dispersed in a solvent such as water, or a dry state in which the core particles are not dispersed in a solvent or the like. There may be.
  • one of the core particles and the copper salt solution of the aliphatic organic acid may be added to the other, or the core particles and the copper salt solution of the aliphatic organic acid may be contacted at the same time. good. From the viewpoint of uniformly surface-treating the core particles with a copper salt of an aliphatic organic acid, it is preferable to adopt a method of adding a solution of the copper salt of the aliphatic organic acid to the slurry in which the core particles are dispersed.
  • the method of adding core particles to a copper salt solution of an aliphatic organic acid to perform surface treatment will be described below as an example.
  • the solvent used for the copper salt solution of the aliphatic organic acid is heated to a temperature equal to or lower than the boiling point of the solvent used (for example, 25 ° C. or higher and 80 ° C. or lower), and under that state, the aliphatic organic acid is added to the solvent.
  • the dried core particles or the core particle-containing slurry are added to the copper salt solution of the aliphatic organic acid for 1 hour thereafter.
  • the copper particles obtained by this method have a coating layer made of a copper salt of an aliphatic organic acid formed on the surface of core particles made of copper.
  • the slurry is heated to a temperature equal to or higher than the melting point of the copper salt of an aliphatic organic acid from the viewpoint of uniformly forming a coating layer on the surface of the core particles. preferable.
  • the content of the copper salt of the aliphatic organic acid in the reaction solution containing the core particles is 100 parts by mass of the core particles not subjected to the surface treatment. It is preferably 0.2 parts by mass or more and 2.0 parts by mass or less, and more preferably 0.5 parts by mass or more and 1.5 parts by mass or less.
  • Examples of the solvent for dissolving the copper salt of the aliphatic organic acid include organic solvents such as monohydric alcohols, polyhydric alcohols, esters of polyhydric alcohols, ketones and ethers having 1 or more and 5 or less carbon atoms. Of these, from the viewpoint of compatibility with water, economy, handleability, and ease of removal, it is preferable to use a monohydric alcohol having 1 or more and 5 or less carbon atoms, and an aqueous methanol solution, ethanol, or n-propanol. , Or isopropanol is more preferred.
  • the copper particles of the present invention obtained through the above steps may be used in the form of a slurry in which the copper particles are dispersed in a solvent such as water or an organic solvent after washing or solid-liquid separation as necessary.
  • the particles can be dried and used in the form of dry powder, which is an aggregate of copper particles.
  • the copper particles of the present invention are excellent in low-temperature sinterability while suppressing oxidation of copper as a constituent metal and suppressing aggregation of the particles.
  • the copper particles of the present invention can be further dispersed in an organic solvent, a resin, or the like and used in the form of a conductive composition such as a conductive ink or a conductive paste.
  • the conductive composition is composed of at least copper particles and an organic solvent.
  • organic solvent the same ones that have been used so far in the technical field of the conductive composition containing a metal powder can be used without particular limitation.
  • organic solvents include, for example, monohydric alcohols, polyhydric alcohols, polyhydric alcohol alkyl ethers, polyhydric alcohol aryl ethers, polyethers, esters, nitrogen-containing heterocyclic compounds, amides, amines, and saturated carbides. Examples include hydrogen. These organic solvents can be used alone or in combination of two or more.
  • a polyether such as polyethylene glycol and polypropylene glycol from the viewpoint of having a high reducing action and preventing unintended oxidation of copper particles during sintering.
  • polyethylene glycol when polyethylene glycol is used as the organic solvent, its number average molecular weight is preferably 120 or more and 400 or less, and more preferably 180 or more and 400 or less.
  • a dispersant examples include dispersants such as nonionic surfactants that do not contain sodium, calcium, phosphorus, sulfur, chlorine and the like.
  • the organic vehicle examples include resin components such as acrylic resin, epoxy resin, ethyl cellulose and carboxyethyl cellulose, terpene solvents such as tarpineol and dihydro tarpineol, and solvents such as ether solvents such as ethyl carbitol and butyl carbitol. Examples include mixtures containing.
  • the glass frit examples include borosilicate glass, barium borosilicate glass, zinc borosilicate glass and the like.
  • the conductive composition of the present invention can be applied onto a substrate to form a coating film, and the coating film is heated and sintered to form a conductor film containing copper.
  • the conductor film is suitably used, for example, for forming a circuit of a printed wiring board and ensuring electrical continuity of an external electrode of a ceramic capacitor.
  • the substrate include a printed circuit board made of heat-resistant polyethylene terephthalate resin, glass epoxy resin, etc., and a flexible printed circuit board made of polyimide, etc., depending on the type of electronic circuit in which copper particles are used.
  • the blending amount of the copper particles and the organic solvent in the conductive composition of the present invention can be adjusted according to the specific use of the conductive composition and the coating method of the conductive composition, but the conductive composition
  • the content ratio of the copper particles in the above is preferably 5% by mass or more and 95% by mass or less, and more preferably 80% by mass or more and 90% by mass or less.
  • the coating method for example, an inkjet method, a dispenser method, a micro dispenser method, a gravure printing method, a screen printing method, a dip coating method, a spin coating method, a spray coating method, a bar coating method, a roll coating method and the like can be used.
  • the heating temperature for sintering the formed coating film may be equal to or higher than the sintering start temperature of the copper particles, and can be, for example, 150 ° C. or higher and 220 ° C. or lower.
  • the atmosphere at the time of heating can be, for example, an oxidizing atmosphere or a non-oxidizing atmosphere.
  • the oxidizing atmosphere include an oxygen-containing atmosphere.
  • the non-oxidizing atmosphere include a reducing atmosphere such as hydrogen and carbon monoxide, a weakly reducing atmosphere such as a hydrogen-nitrogen mixed atmosphere, and an inert atmosphere such as argon, neon, helium and nitrogen.
  • the heating time is preferably 1 minute or more and 3 hours or less, and more preferably 3 minutes or more and 2 hours or less, provided that the heating is performed in the above temperature range.
  • the conductor film thus obtained is obtained by sintering the copper particles of the present invention, the sintering can proceed sufficiently even when sintering is performed under relatively low temperature conditions. Can be done. Further, at the time of sintering, since the copper particles are melted even at a low temperature, the contact area between the copper particles or between the copper particles and the surface of the base material can be increased, and as a result, the adhesion to the object to be bonded is high. Moreover, a dense sintered structure can be efficiently formed. Further, the obtained conductor film has high conductivity reliability.
  • Example 1 According to the method described in Example 1 of JP2015-168878, a slurry in which spherical core particles (copper: 100% by mass) to which no surface treatment agent was applied was dispersed in water was produced. This slurry was washed with a rotary filter at 25 ° C. for 30 minutes to obtain a slurry of washed core particles. The conductivity after washing was 1.0 mS, and the content of core particles made of copper in the slurry was 1000 g (10% by mass).
  • the washed core particle slurry was heated to 50 ° C., and under this state, a solution prepared by dissolving 17 g of copper (II) laurate in 4 L of isopropyl alcohol was instantly added as a surface treatment agent to 50 ° C. Was stirred for 1 hour. Then, solid-liquid separation was carried out by filtration to obtain copper particles having a copper salt-coated layer of an aliphatic organic acid formed on the surface of the core particles as a solid content. The content of the surface treatment agent for the obtained copper particles was 0.7% by mass in terms of carbon atoms. The primary particle size of the copper particles was 0.14 ⁇ m.
  • Example 2 Copper particles were obtained in the same manner as in Example 1 except that a solution prepared by dissolving 13 g of copper (II) caprylate in 4 L of isopropyl alcohol was added as a copper salt solution of an aliphatic organic acid.
  • the content of the surface treatment agent for the obtained copper particles was 0.6% by mass in terms of carbon atoms.
  • the primary particle size of the copper particles was 0.14 ⁇ m.
  • Example 3 Copper particles were obtained in the same manner as in Example 1 except that a solution prepared by dissolving 23 g of copper (II) stearate in 4 L of isopropyl alcohol was added as a copper salt solution of an aliphatic organic acid. The content of the surface treatment agent for the obtained copper particles was 0.7% by mass in terms of carbon atoms. The primary particle size of the copper particles was 0.14 ⁇ m.
  • Example 4 Copper particles were obtained in the same manner as in Example 1 except that a solution prepared by dissolving 23 g of copper (II) oleate in 4 L of isopropyl alcohol was added as a copper salt solution of an aliphatic organic acid. The content of the surface treatment agent for the obtained copper particles was 0.7% by mass in terms of carbon atoms. The primary particle size of the copper particles was 0.14 ⁇ m.
  • Example 1 instead of the copper salt of the aliphatic organic acid, a solution of lauric acid, which is an aliphatic organic acid, was used as a surface treatment agent.
  • the lauric acid solution was prepared by dissolving 13 g of lauric acid in 1 L of methanol.
  • the other procedures and conditions were carried out in the same manner as in Example 1 to obtain copper particles in which a coating layer of an aliphatic organic acid was formed on the surface of the core particles.
  • the content of the surface treatment agent for the obtained copper particles was 0.7% by mass in terms of carbon atoms.
  • the primary particle size of the copper particles was 0.14 ⁇ m.
  • the copper particles of Examples and Comparative Examples were subjected to sintering, and the sinterability was evaluated. Specifically, 8.5 g of copper particles of Examples and Comparative Examples and polyethylene glycol having a number average molecular weight of 200 are mixed using a 3-roll kneader to obtain a conductive paste containing 85% by mass of copper particles. rice field. The obtained paste was applied to a glass substrate, and the substrate was sintered at 190 ° C. for 10 minutes in a nitrogen atmosphere to form a conductor film on the glass substrate. Regarding the copper particles after sintering in the conductor film, the degree of fusion between the copper particles was observed using an electron microscope, and the sinterability was evaluated according to the following evaluation criteria. The results are shown in Table 1 below.
  • the obtained structure was put into a 100 mL beaker containing 50 mL of methanol, and the structure in the beaker was subjected to an ultrasonic bath (manufactured by Kaijo Co., Ltd., SONO CLEANER 200D) at 200 W and 38 kHz. The sound waves were applied for 1 minute. The state of the structure after irradiation was visually evaluated according to the following criteria. The results are shown in Table 1 below.
  • the copper particles of the example are superior in sinterability at low temperature as compared with the copper particles of the comparative example, and the resistance of the conductor film obtained by sintering the copper particles is high. It turns out that it is small enough. It can also be seen that the obtained conductor film has high adhesion to other members such as resin and is excellent in handleability. Further, as shown in Table 1 and FIG. 1, the infrared absorption peak was not observed in the range of 1584 cm -1 or more and 1596 cm -1 or less in any of the copper particles of the example, whereas the copper particles of the comparative example were in the range. Infrared absorption peaks have been observed.
  • Infrared absorption peak of 1504cm -1 or 1514cm -1 The following range is observed none of the copper particles in the Examples and Comparative Examples. This is also supported by the double-differentiated IR spectra in Example 1 and Comparative Example 1, as shown in FIG. If the peak of the graph in FIG. 2 is convex downward, it means that the peak of the IR spectrum in FIG. 1 has an upward convex peak, and the larger the amplitude in FIG. 2, the sharper the peak in FIG. Means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

本発明の銅粒子は、銅からなるコア粒子と、該コア粒子の表面を被覆する被覆層とを備え、被覆層は脂肪族有機酸の銅塩によって形成されている。銅粒子は、1504cm-1以上1514cm-1以下の範囲に赤外線吸収ピークを有し、1584cm-1以上1596cm-1以下の範囲に赤外線吸収ピークを有さないことも好適である。銅粒子は、熱重量分析において、500℃における質量減少値に対する質量減少値の割合が10%となる温度が150℃以上220℃以下であることも好適である。また本発明は、銅からなるコア粒子と、脂肪族有機酸の銅塩を含む溶液とを接触させて、該コア粒子の表面を被覆する、銅粒子の製造方法も提供する。

Description

銅粒子及びその製造方法
 本発明は銅粒子に関する。本発明の銅粒子は、例えば導電性組成物の原料や、焼結材料の原料として有用である。
 本出願人は先に、脂肪酸を用いて処理した表面処理層を備えた銅ペースト用の表面処理銅粉に関する技術を提案した(特許文献1参照)。この銅粉は、ペースト粘度が低く、粘度の経時変化を非常に小さいので、品質管理が非常に容易なものとなるという利点がある。
 また本出願人は、一次粒子の平均粒径が0.1μm以上0.6μm以下であり、粒子表面に表面処理剤が施されており、該表面処理剤が施された状態での粒子に占める該表面処理剤の割合が、炭素原子換算で0.25質量%以上5.50質量%以下である銅粒子に関する技術を提案した(特許文献2参照)。この技術においては表面処理剤として炭素数6以上18以下の脂肪酸又は脂肪族アミンが好適に用いられる。この技術によれば、銅粒子の低温焼結性が良好になるという利点がある。
特開2002-332502号公報 特開2015-168878号公報
 上述した特許文献1及び2に記載の技術によれば、銅粒子及び有機溶媒を含むペーストやインクなどの組成物を基板上に塗布し、それによって形成された塗膜を焼成することによって、導電性の高い導体膜を形成することができる。しかし、脂肪酸や脂肪族アミン等の表面処理剤によって被覆された銅粒子を焼成する場合、表面処理剤の有機物を除去するために、高温条件下で行う場合がある。この点に関して、より低温での焼結を達成させるために改善の余地があった。
 したがって本発明の課題は、従来技術の改良にあり、具体的には、更に低温での焼結が可能な銅粒子を提供することにある。
 前記の課題を解決すべく本発明者が鋭意検討した結果、銅粒子の表面を被覆する処理剤として、脂肪族有機酸の銅塩を用いることによって、本発明の課題を解決し得ることを見出した。
 すなわち本発明は、銅からなるコア粒子と、該コア粒子の表面を被覆する被覆層とを備え、
 前記被覆層は脂肪族有機酸の銅塩を含む表面処理剤によって形成されている、銅粒子を提供するものである。
 また本発明は、銅からなるコア粒子と、脂肪族有機酸の銅塩を含む溶液とを接触させて、該コア粒子の表面を被覆する、銅粒子の製造方法を提供するものである。
図1は、実施例及び比較例の銅粒子における規格化後のIRスペクトルである。 図2は、図1における実施例1及び比較例1におけるIRスペクトルを2回微分したあとのグラフである。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の銅粒子は、該粒子の表面に脂肪族有機酸の銅塩を含む表面処理剤が施されているものである。これによって、表面処理剤からなる被覆層が、銅からなるコア粒子の表面を連続的に又は不連続的に覆うように形成されている。表面処理剤は、銅の酸化と、粒子の凝集との双方を抑制するために用いられる。
 上述のとおり、本発明に用いられる表面処理剤は、脂肪族有機酸の銅塩を含んでいる。
 本技術分野においては、銅粒子における銅の酸化の抑制と、粒子どうしの凝集の抑制とを両立するために、脂肪酸や脂肪酸アミン等の表面処理剤が用いられてきた。しかし、このような処理剤は、該処理剤の分解温度が高く、銅粒子の焼結時に十分に除去できない場合があった。このことに起因して、焼結開始温度が上昇したり、銅粒子どうしの焼結後に得られる導体膜の抵抗が高くなったりすることがあった。この問題点を解決すべく本発明者が鋭意検討したところ、表面処理剤として、脂肪族有機酸の銅塩を用いることによって、銅の酸化及び粒子どうしの凝集の双方を抑制しつつ、焼結開始温度を低くすることができ、その結果、粒子どうしの低温焼結性を向上しつつ、焼結後に得られる導体膜の抵抗を低くすることができることを見出した。さらに、低温焼結性の向上に伴い、樹脂シート上に導体膜を形成した場合でも、樹脂と導体膜との密着性が向上することも見出した。
 得られる銅粒子の低温焼結性を高めつつ、銅の酸化抑制と粒子どうしの凝集抑制とを兼ね備える観点から、脂肪族有機酸の銅塩を構成する脂肪族有機酸の炭素原子数は、6以上18以下であることが好ましく、8以上18以下であることがより好ましく、10以上18以下であることが更に好ましく、12以上18以下であることが一層好ましい。このような脂肪族有機酸としては、例えば、直鎖又は分枝鎖であり且つ飽和又は不飽和であるカルボン酸、あるいは直鎖又は分枝鎖であり且つ飽和又は不飽和である炭化水素基を有するスルホン酸等が挙げられ、好ましくは直鎖であり、且つ飽和又は不飽和のカルボン酸である。また、脂肪族有機酸の銅塩における銅の価数は一価又は二価であり、好ましくは二価である。
 カルボン酸の具体例としては、クエン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、パルミチン酸、オレイン酸、ステアリン酸等が挙げられ、好ましくはラウリン酸、オレイン酸及びステアリン酸であり、更に好ましくはラウリン酸及びステアリン酸である。
 スルホン酸の具体例としては、ヘキサンスルホン酸、ヘプタンスルホン酸、オクタンスルホン酸、ノナンスルホン酸、デカンスルホン酸、ラウリンスルホン酸、パルミチンスルホン酸、オレインスルホン酸、ステアリンスルホン酸等が挙げられる。これらの脂肪族有機酸は、単独で又は二種以上を組み合わせて用いることができる。
 表面処理剤は、例えば、銅からなるコア粒子を製造した後の工程において、得られたコア粒子と、表面処理剤である脂肪族有機酸の銅塩とを接触させることによって、粒子表面に施すことができる。表面処理剤を施す量は、該表面処理剤が施された状態での銅粒子に占める該表面処理剤全体の割合(質量%)で表して、炭素原子換算で0.2質量%以上2.0質量%以下とすることが好ましく、0.3質量%以上1.0質量%以下とすることが更に好ましい。このような範囲にあることで、表面処理剤による銅粒子表面の酸化被膜の除去や、共融解による効果によって、銅粒子どうしの融解温度を低温化することができ、その結果、低温焼結性を高めることができる。
 銅粒子の表面に施された表面処理剤の割合(質量%)は、次のようにして測定することができる。表面処理剤が施された銅粒子の集合体である銅粉0.5gを、炭素・硫黄分析装置(堀場製作所製、EMIA-320V)にて酸素気流中で加熱し、銅粉中の炭素分をCOあるいはCOに分解させてその量を定量することで測定できる。
 表面処理剤の定性及び定量は、例えば核磁気共鳴(NMR)法、ラマン分光法、赤外分光法、液体クロマトグラフィー法、飛行時間型二次イオン質量分析法(TOF-SIMS)等の方法を単独で又は組み合わせて用いて行うことができる。
 本発明の銅粒子は、表面処理剤として脂肪族有機酸の銅塩を用いて形成された被覆層をコア粒子の表面に有するものであるところ、被覆層が脂肪族有機酸の銅塩を用いて形成されたものであるか否かは、例えば以下の方法によって判定することができる。詳細には、銅粒子の質量が5質量%となるようにKBrにて希釈し、乳鉢混合した測定試料を、日本分光社製の赤外分光光度計(型番:FT-IR4600)を用い、拡散反射法にて、分解能4cm-1、積算回数128回の条件で測定して、縦軸に吸光度をクベルカ-ムンク変換した値をとり、横軸に波数(500~4000cm-1)をとったグラフ(スペクトル)を得る。このとき、赤外線吸収ピークが1504cm-1以上1514cm-1以下の範囲に観察され、且つ1584cm-1以上1596cm-1以下の範囲に観察されなければ、被覆層が脂肪族有機酸の銅塩を用いて形成されたものと判断することができる。すなわち、本発明の銅粒子は、赤外分光法による測定において、1504cm-1以上1514cm-1以下の範囲に赤外線吸収ピークが観察され、1584cm-1以上1596cm-1以下の範囲に赤外線吸収ピークが観察されないことが好ましい。
 「赤外線吸収ピークを有する」とは、以下の方法に従い定義される。まず、2910cm-1以上2940cm-1以下の範囲に観測されるピークの最大値で規格化したIRスペクトルデータに対して二回微分を行い、1500cm-1以上1600cm-1以下の範囲においてゼロアップクロス法に基づいて波形分離する。次いで、波形分離した各波形における基準線(ゼロ)からの振幅の絶対値から、算術平均値を算出する。そして、当該算術平均値の半分の値よりも、ピーク高さの絶対値が大きい場合に「赤外線吸収ピークを有する」とする。
 なお、脂肪酸や脂肪族アミンを表面処理剤として用いた銅粒子の場合、後述する実施例に示すように、1584cm-1以上1596cm-1以下の範囲に赤外線吸収ピークが検出されるので、この点で本発明の銅粒子と区別することができる。
 脂肪族有機酸の銅塩を用いることによって、銅の酸化及び粒子どうしの凝集の双方を抑制しつつ、低温焼結性が高い銅粒子を得られる理由は明らかでないが、本発明者は以下のように推測している。
 上述のように、本発明の銅粒子と、脂肪酸や脂肪族アミンを表面処理剤として用いた銅粒子とでは、特定の波数における赤外線吸収ピークの有無に違いを有している。
 赤外分光法は、赤外線を測定対象の物質又は分子に照射することによって、分子中の結合の運動エネルギーに相当する光エネルギーの吸収を測定することを測定原理としている。一般に、赤外分光法において赤外吸収が観察される場合には、分子中に何らかの結合が存在していることを示している。特に、高波数位置に赤外吸収が観察される場合、高波数の赤外線はエネルギーが高いので、結合エネルギーが大きい結合が分子中に存在するといえる。
 本発明の銅粒子と、脂肪酸や脂肪族アミンを表面処理剤として用いた銅粒子とを比較すると、いずれの粒子も1504cm-1以上1514cm-1以下の範囲の低波数領域に赤外吸収が観測されるので、当該領域の吸収は、コア粒子表面に被覆層が結合して存在していることを意味すると推測される。このため、コア粒子の銅の酸化及び粒子どうしの凝集の双方を抑制することができると考えられる。
 一方、1584cm-1以上1596cm-1以下の範囲の高波数領域に着目すると、前者の銅粒子は、前記高波数領域に観測される赤外吸収が観察されないのに対し、後者の銅粒子は、赤外吸収が前記高波数領域に観測される。つまり、脂肪酸や脂肪族アミンを表面処理剤として用いた銅粒子と比較して、本発明の銅粒子は、結合エネルギーが大きい結合が分子中に少ないことを意味している。このことは、本発明の銅粒子において、表面処理剤とコア粒子との結合が比較的弱くなっていると考えられるので、表面処理剤が低温で脱離しやすくなり、粒子どうしの焼結が低温で達成できると考えられる。
 以上の理由から、本発明の銅粒子は、銅の酸化及び粒子どうしの凝集の双方を抑制しつつ、低温焼結性の向上が達成できると考えられる。
 また本発明の銅粒子について、脂肪族有機酸の銅塩を構成する脂肪族有機酸がどの有機酸であるかを特定するためには、例えばTOF-SIMSによって分析することができる。
 銅粒子の低温焼結性を更に優れたものとする観点から、25℃から1000℃まで加熱したときの熱重量分析において、500℃における質量減少値に対する質量減少値の割合が10%となる温度が、好ましくは150℃以上220℃以下、更に好ましくは180℃以上220℃以下である。
 上述した熱重量分析は、例えば以下の方法で行うことができる。すなわち、ブルカー・エイエックスエス社製のTG-DTA2000SAを用いて、測定サンプルを50mgとし、25℃から1000℃まで加熱したときの質量減少率を測定する。雰囲気は窒素とし、昇温速度は10℃/minとする。質量減少率が所定の割合となる温度が低いほど、被覆層を形成する脂肪族有機酸を除去できる温度が低いことを示すので、銅粒子の低温焼結性の尺度となるものである。
 銅粒子の低温での焼結性の向上と、該粒子の焼結によって得られる導体膜の導電性の向上とを両立する観点から、表面処理剤が施された銅粒子は、その一次粒子の平均粒径が、好ましくは0.05μm以上1.0μm以下、更に好ましくは0.1μm以上0.5μm以下である。一次粒子とは、外形上の幾何学的形態から判断して、粒子としての最小単位と認められる物体のことをいう。
 一次粒子の平均粒径は、例えば走査型電子顕微鏡(日本電子(株)製JSM-6330F)を用い、倍率10000倍又は30000倍で銅粒子を観察し、視野中の粒子200個について水平方向フェレ径を測定し、これらの測定値から、球に換算した体積平均粒径を算出することができる。
 上述のとおり、本発明の銅粒子は、表面処理剤からなる表面処理層が、銅からなるコア粒子を覆うように形成されている。コア粒子は、好ましくは銅及び残部不可避不純物のみからなる。
 また、銅粒子の形状は球状であることが、粒子の分散性を高めて、導電性の高い導体膜を得る観点から好ましい。球状の銅粒子を得るためには、例えばコア粒子の形状を球状とすればよい。なお、粒子が球状であるとは、以下の方法で測定した円形度係数が好ましくは0.85以上、更に好ましくは0.90以上であることをいう。円形度係数は、次の方法で算出される。金属粒子の走査型電子顕微鏡像を撮影し、粒子どうしが重なり合っていないものを無作為に1000個選び出す。粒子の二次元投影像の面積をSとし、周囲長をLとしたときに、粒子の円形度係数を4πS/Lの式から算出する。各粒子の円形度係数の算術平均値を上述した円形度係数とする。粒子の二次元投影像が真円である場合は、粒子の円形度係数は1となる。
 以下に、本発明の銅粒子の好適な製造方法について説明する。本製造方法は、銅からなるコア粒子と、脂肪族有機酸の銅塩を含む溶液とを接触させて、コア粒子の表面を被覆する被覆層を形成するものである。
 まず、脂肪族有機酸の銅塩による表面処理に先立ち、銅からなるコア粒子を用意する。銅のコア粒子の製造方法としては、例えば特開2015-168878号公報に記載の湿式による方法で製造することできる。すなわち、水と、好ましくは炭素原子数が1以上5以下の一価アルコールとを含む液媒体に、塩化銅、酢酸銅、水酸化銅、硫酸銅、酸化銅又は亜酸化銅等の一価又は二価の銅源を含む反応液を調製する。この反応液とヒドラジンとを、銅1モルに対して好ましくは0.5モル以上50モル以下の割合となるように混合し、該銅源を還元して、銅からなるコア粒子を得る。本方法で得られるコア粒子は、その表面に脂肪族有機酸の銅塩等の表面処理剤が施されていないものであり、且つ粒径が小さいものである。
 上述の工程で得られたコア粒子は、洗浄処理することが好ましい。洗浄方法としては、例えばデカンテーション法や、ロータリーフィルター法等が挙げられる。ロータリーフィルター法でコア粒子を洗浄する場合、例えばコア粒子を水等の溶媒に分散させた水性スラリーを調製し、該スラリーの導電率を好ましくは2.0mS以下となるまで洗浄を行う。このときの洗浄条件は、例えば、洗浄溶媒として水を用いた場合、洗浄温度を15℃以上30℃以下、洗浄時間を10分以上60分以下とすることができる。スラリーの導電率を上述の範囲とすることによって、洗浄対象のコア粒子が凝集することなく均一に分散したままで、後述する表面処理を効率よく行うことができる。このスラリー中の銅からなるコア粒子の含有割合は、洗浄効率の向上と粒子の分散性の向上とを両立する観点から、好ましくは5質量%以上50質量%以下である。
 また、上述の方法に代えて、銅からなるコア粒子の別の製造方法として、例えば国際公開第2015/122251号パンフレットに記載の直流熱プラズマ(DCプラズマ)法を採用してもよい。詳細には、銅の母粉をPVD法の一種である直流熱プラズマ法に付して、該母粉からコア粒子を生成させることができる。本方法で得られるコア粒子も、その表面に脂肪族有機酸の銅塩等の表面処理剤が施されていないものであり、且つ粒径が小さいものである。必要に応じて、得られたコア粒子に対して、解砕処理や分級処理を行って、粗大粒子や微粒子を分離又は除去してもよい。
 次いで、上述した方法で得られたコア粒子に対して、表面処理剤による表面処理を行って、コア粒子の表面を被覆する被覆層を形成する。表面処理の方法としては、例えばコア粒子と、脂肪族有機酸の銅塩を溶媒に溶解させた溶液とを接触させる方法を採用することができる。本工程において脂肪族有機酸の銅塩と接触させるコア粒子の形態は、コア粒子を水等の溶媒に分散させた水性スラリーであってもよく、溶媒等に分散させていない乾燥状態のものであってもよい。また本工程における接触順序としては、コア粒子及び脂肪族有機酸の銅塩溶液のうち一方を他方に添加してもよく、コア粒子及び脂肪族有機酸の銅塩の溶液を同時に接触させてもよい。
 コア粒子に対して脂肪族有機酸の銅塩による表面処理を均一に行う観点から、コア粒子が分散したスラリー中に脂肪族有機酸の銅塩の溶液を添加する方法を採用することが好ましい。
 脂肪族有機酸の銅塩溶液にコア粒子を添加して、表面処理を行う方法を例にとり以下に説明する。まず、脂肪族有機酸の銅塩溶液に用いられる溶媒を、使用する溶媒の沸点以下の温度(例えば25℃以上80℃以下)に加熱し、その状態下で、該溶媒に脂肪族有機酸の銅塩を添加し、脂肪族有機酸の銅塩溶液を調製する。次いで、銅塩溶液の温度を脂肪族有機酸の銅塩の融点以上に維持したまま、乾燥状態のコア粒子又はコア粒子含有スラリーを脂肪族有機酸の銅塩溶液に添加して、その後1時間撹拌し、コア粒子の表面に表面処理を施す。この方法によって得られた銅粒子は、銅からなるコア粒子の表面に脂肪族有機酸の銅塩からなる被覆層が形成されたものとなる。コア粒子含有スラリーを用いて表面処理を行う場合、該スラリーは脂肪族有機酸の銅塩の融点以上の温度に加熱されていることが、被覆層をコア粒子の表面に均一に形成させる観点から好ましい。
 脂肪族有機酸の銅塩の溶液を用いた表面処理において、コア粒子を含む反応溶液中の脂肪族有機酸の銅塩の含有量は、表面処理が施されていないコア粒子100質量部に対して、好ましくは0.2質量部以上2.0質量部以下、より好ましくは0.5質量部以上1.5質量部以下とする。このような量で表面処理を行うことによって、上述した炭素原子割合で表面処理された銅粒子を得ることができる。
 脂肪族有機酸の銅塩を溶解させる溶媒は、炭素原子数が1以上5以下である一価アルコール、多価アルコール、多価アルコールのエステル、ケトン、エーテル等の有機溶媒を挙げることができる。これらのうち、水との相溶性、経済性、取扱い性及び除去の容易性の観点から、炭素原子数が1以上5以下の一価アルコールを用いることが好ましく、メタノール水溶液、エタノール、n-プロパノール、又はイソプロパノールを用いることが更に好ましい。
 以上の工程を経て得られた本発明の銅粒子は、必要に応じて洗浄や固液分離を行った後、銅粒子を水や有機溶媒等の溶媒に分散させたスラリーの形態で用いてもよく、該粒子を乾燥させて、銅粒子の集合体である乾燥粉の形態で使用することができる。いずれの場合であっても、本発明の銅粒子は、構成金属である銅の酸化が抑制され、且つ粒子の凝集が抑制されたものでありながら、低温焼結性に優れたものとなる。また、本発明の銅粒子は、後述するように、有機溶媒や樹脂等に更に分散させて、導電性インクや導電性ペースト等の導電性組成物の形態で用いることもできる。
 本発明の銅粒子を導電性組成物の形態とする場合、導電性組成物は、銅粒子及び有機溶媒を少なくとも含んで構成される。有機溶媒としては、金属粉を含む導電性組成物の技術分野においてこれまで用いられてきたものと同様のものを特に制限なく用いることができる。そのような有機溶媒としては、例えば一価アルコール、多価アルコール、多価アルコールアルキルエーテル、多価アルコールアリールエーテル、ポリエーテル、エステル類、含窒素複素環化合物、アミド類、アミン類、及び飽和炭化水素などが挙げられる。これらの有機溶媒は、単独で又は二種以上を組み合わせて用いることができる。これらのうち、高い還元作用を有し、焼結時における銅粒子の意図しない酸化を防ぐ観点から、ポリエチレングリコール及びポリプロピレングリコールなどのポリエーテルを用いることが好ましい。同様の観点から、有機溶媒としてポリエチレングリコールを用いる場合、その数平均分子量は、120以上400以下であることが好ましく、180以上400以下であることが更に好ましい。
 本発明の導電性組成物には、必要に応じて、分散剤、有機ビヒクル及びガラスフリットの少なくとも一種を更に添加してもよい。分散剤としては、ナトリウム、カルシウム、リン、硫黄及び塩素等を含有しない非イオン性界面活性剤等の分散剤等が挙げられる。有機ビヒクルとしては、例えば、アクリル樹脂、エポキシ樹脂、エチルセルロース、カルボキシエチルセルロース等の樹脂成分と、ターピネオール及びジヒドロターピネオール等のテルペン系溶剤、エチルカルビトール及びブチルカルビトール等のエーテル系溶剤等の溶剤とを含む混合物が挙げられる。ガラスフリットとしては、例えばホウケイ酸ガラス、ホウケイ酸バリウムガラス、ホウケイ酸亜鉛ガラス等が挙げられる。
 本発明の導電性組成物は、これを基板上に塗布して塗膜とし、この塗膜を加熱して焼結させることによって、銅を含む導体膜を形成することができる。導体膜は、例えばプリント配線板の回路形成や、セラミックコンデンサの外部電極の電気的導通確保のために好適に用いられる。基板としては、銅粒子が用いられる電子回路の種類に応じて、例えば耐熱性ポリエチレンテレフタレート樹脂、ガラスエポキシ樹脂等からなるプリント基板や、ポリイミド等からなるフレキシブルプリント基板が挙げられる。
 本発明の導電性組成物における銅粒子及び有機溶媒の配合量は、該導電性組成物の具体的な用途や該導電性組成物の塗布方法に応じて調整可能であるが、導電性組成物における銅粒子の含有割合は、好ましくは5質量%以上95質量%以下、より好ましくは80質量%以上90質量%以下である。塗布方法としては、例えばインクジェット法、ディスペンサ法、マイクロディスペンサ法、グラビア印刷法、スクリーン印刷法、ディップコーティング法、スピンコーティング法、スプレー塗布法、バーコーティング法、ロールコーティング法などを用いることができる。
 形成された塗膜を焼結させる際の加熱温度は、銅粒子の焼結開始温度以上であればよく、例えば150℃以上220℃以下とすることができる。加熱時における雰囲気は、例えば酸化性雰囲気下、又は非酸化性雰囲気下で行うことができる。酸化性雰囲気としては、例えば酸素含有雰囲気が挙げられる。非酸化性雰囲気としては、例えば水素や一酸化炭素等の還元性雰囲気、水素-窒素混合雰囲気等の弱還元性雰囲気、アルゴン、ネオン、ヘリウム及び窒素等の不活性雰囲気が挙げられる。いずれの雰囲気を用いる場合であっても、加熱時間は、上述の温度範囲で加熱することを条件として、好ましくは1分以上3時間以下、更に好ましくは3分以上2時間以下とする。
 このようにして得られた導体膜は、本発明の銅粒子の焼結によって得られたものであるので、比較的低温の条件で焼結を行った場合でも、十分に焼結を進行させることができる。また焼結時には、銅粒子が低温でも溶融するので、銅粒子どうし、あるいは銅粒子と基材の表面との接触面積を大きくすることができ、その結果、接合対象物との密着性が高く、且つ密な焼結構造を効率良く形成することができる。更に、得られた導体膜は、導電信頼性が高いものとなる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。
 〔実施例1〕
 特開2015-168878号公報の実施例1に記載の方法に準じて、表面処理剤が施されていない球状のコア粒子(銅:100質量%)が水に分散したスラリーを製造した。このスラリーをロータリーフィルターによって25℃で30分間洗浄して、洗浄処理されたコア粒子のスラリーを得た。洗浄後の導電率は1.0mSであり、スラリー中の銅からなるコア粒子の含有量は、1000g(10質量%)であった。
 次いで、洗浄処理されたコア粒子のスラリーを50℃に加熱し、この状態下で、ラウリン酸銅(II)17gをイソプロピルアルコール4Lに溶解させた溶液を表面処理剤として瞬時に添加し、50℃で1時間撹拌した。その後、ろ過により固液分離を行い、脂肪族有機酸の銅塩の被覆層がコア粒子の表面に形成された銅粒子を固形分として得た。得られた銅粒子の表面処理剤の含有量は、炭素原子換算で0.7質量%であった。銅粒子の一次粒子径は、0.14μmであった。
 〔実施例2〕
 脂肪族有機酸の銅塩溶液として、カプリル酸銅(II)13gをイソプロピルアルコール4Lに溶解させた溶液を添加した以外は、実施例1と同様の方法で銅粒子を得た。得られた銅粒子の表面処理剤の含有量は、炭素原子換算で0.6質量%であった。銅粒子の一次粒子径は、0.14μmであった。
 〔実施例3〕
 脂肪族有機酸の銅塩溶液として、ステアリン酸銅(II)23gをイソプロピルアルコール4Lに溶解させた溶液を添加した以外は、実施例1と同様の方法で銅粒子を得た。得られた銅粒子の表面処理剤の含有量は、炭素原子換算で0.7質量%であった。銅粒子の一次粒子径は、0.14μmであった。
 〔実施例4〕
 脂肪族有機酸の銅塩溶液として、オレイン酸銅(II)23gをイソプロピルアルコール4Lに溶解させた溶液を添加した以外は、実施例1と同様の方法で銅粒子を得た。得られた銅粒子の表面処理剤の含有量は、炭素原子換算で0.7質量%であった。銅粒子の一次粒子径は、0.14μmであった。
 〔比較例1〕
 脂肪族有機酸の銅塩に代えて、脂肪族有機酸であるラウリン酸の溶液を表面処理剤として用いた。ラウリン酸溶液は、ラウリン酸13gをメタノール1Lに溶解させて調製した。これ以外の手順及び条件は、実施例1と同様の方法で行い、脂肪族有機酸の被覆層がコア粒子の表面に形成された銅粒子を得た。得られた銅粒子の表面処理剤の含有量は、炭素原子換算で0.7質量%であった。銅粒子の一次粒子径は、0.14μmであった。
 〔焼結性の評価〕
 実施例及び比較例の銅粒子を焼結に供して、焼結性の評価を行った。詳細には、実施例及び比較例の銅粒子8.5gと、数平均分子量が200のポリエチレングリコールとを3本ロール混練機を用いて混合し、銅粒子を85質量%含む導電性ペーストを得た。得られたペーストをガラス基板に塗布し、該基板を窒素雰囲気下、190℃で10分間焼結させ、導体膜をガラス基板上に形成させた。導体膜中の焼結後の銅粒子について、銅粒子どうしの融着度合を電子顕微鏡を用いて観察し、以下の評価基準で焼結性を評価した。結果を以下の表1に示す。
<焼結性の評価基準>
 A:粒子どうしが融着し、粒子間にネッキングが見られ、焼結性に優れる。
 B:粒子どうしが融着しておらず、焼結性が悪い。
〔導体膜の抵抗率の評価〕
 上述の〔焼結性の評価〕にて形成した導体膜につき、その抵抗率を、抵抗率計(三菱ケミカルアナリテック株式会社製、Loresta-GP MCP-T610)を用いて測定した。測定対象の導体膜について3回測定し、その算術平均値を抵抗率(Ω・cm)とした。抵抗率が低ければ低いほど導体膜の抵抗が小さいことを示す。結果を以下の表1に示す。
〔10%質量減少時の温度の評価〕
 25℃から1000℃まで加熱したときの熱重量分析において、500℃における質量減少値に対する質量減少値の割合が10%となる温度を、上述した条件で測定した。結果を表1に示す。
 〔赤外線吸収ピークの評価〕
 実施例及び比較例の銅粒子について、上述の方法で赤外分光法による測定を行った。1504cm-1以上1514cm-1以下、及び1584cm-1以上1596cm-1以下の各範囲を対象として、それぞれ独立に、赤外線吸収ピークを有するものを「あり」と評価し、赤外線吸収ピークを有しないものを「なし」と評価した。結果を表1並びに図1及び図2に示す。
 〔樹脂板との密着性の評価〕
 ガラス基板を耐熱性PETフィルム(東レ製ルミラーX10S、融点260℃。以下、「PETフィルム」ともいう。)に変更した以外は、上述した〔焼結性の評価〕と同様に塗布及び焼結を行って、導体膜をPETフィルム上に形成させた構造体を得た。次いで、得られた構造体をメタノール50mLが入った100mLビーカー中に投入し、該ビーカー中の構造体に対して、超音波バス(カイジョー社製、SONO CLEANER200D)を用いて、200W、38kHzの超音波を1分間照射した。照射後の構造体の状態を目視にて以下の基準で評価した。結果を以下の表1に示す。
<密着性の評価基準>
 A:PETフィルムから導体膜の剥離が見られず、密着性が良好である。
 B:PETフィルムから導体膜の剥離が見られるか、又は導体膜が破壊され、密着性が悪い。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の銅粒子は、比較例の銅粒子と比較して、低温での焼結性に優れており、該銅粒子の焼結によって得られた導体膜の抵抗が十分に小さいものであることが判る。また、得られた導体膜は、樹脂などの他の部材との密着性が高く、ハンドリング性に優れることも判る。
 また表1及び図1に示すように、実施例の銅粒子はいずれも、1584cm-1以上1596cm-1以下の範囲に赤外線吸収ピークが観察されないのに対し、比較例の銅粒子は当該範囲に赤外線吸収ピークが観察されている。1504cm-1以上1514cm-1以下の範囲の赤外線吸収ピークは、実施例及び比較例の銅粒子のいずれも観察されている。このことは、図2に示されるように、実施例1及び比較例1における2回微分したIRスペクトルからも支持される。
 なお、図2におけるグラフのピークが下に凸であれば、図1におけるIRスペクトルのピークが上に凸のピークを有することを意味し、図2における振幅が大きいほど図1におけるピークのシャープさを意味する。
 本発明によれば、低温焼結性に優れる銅粒子が提供される。

Claims (7)

  1.  銅からなるコア粒子と、該コア粒子の表面を被覆する被覆層とを備え、
     前記被覆層は脂肪族有機酸の銅塩を含む表面処理剤によって形成されている、銅粒子。
  2.  前記被覆層は脂肪族有機酸の銅塩によって形成されている、請求項1に記載の銅粒子。
  3.  1504cm-1以上1514cm-1以下の範囲に赤外線吸収ピークを有し、1584cm-1以上1596cm-1以下の範囲に赤外線吸収ピークを有さない、請求項1又は2に記載の銅粒子。
  4.  熱重量分析において、500℃における質量減少値に対する質量減少値の割合が10%となる温度が150℃以上220℃以下である、請求項1~3のいずれか一項に記載の銅粒子。
  5.  前記脂肪族有機酸の炭素原子数が6以上18以下である、請求項1~4のいずれか一項に記載の銅粒子。
  6.  銅からなるコア粒子と、脂肪族有機酸の銅塩を含む溶液とを接触させて、該コア粒子の表面を被覆する、銅粒子の製造方法。
  7.  請求項1~5のいずれか一項に記載の銅粒子と有機溶媒とを含む導電性組成物を基板上に塗布して塗膜とし、該塗膜を加熱する工程を有する、導体膜の製造方法。
PCT/JP2020/046651 2020-03-31 2020-12-15 銅粒子及びその製造方法 WO2021199512A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022511525A JP7482214B2 (ja) 2020-03-31 2020-12-15 銅粒子及びその製造方法
CN202080098917.3A CN115348907A (zh) 2020-03-31 2020-12-15 铜颗粒及其制造方法
US17/911,511 US11980935B2 (en) 2020-03-31 2020-12-15 Copper particles and method for producing same
EP20928275.5A EP4129528A4 (en) 2020-03-31 2020-12-15 COPPER PARTICLES AND METHOD OF PRODUCING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020062134 2020-03-31
JP2020-062134 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021199512A1 true WO2021199512A1 (ja) 2021-10-07

Family

ID=77930229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046651 WO2021199512A1 (ja) 2020-03-31 2020-12-15 銅粒子及びその製造方法

Country Status (6)

Country Link
US (1) US11980935B2 (ja)
EP (1) EP4129528A4 (ja)
JP (1) JP7482214B2 (ja)
CN (1) CN115348907A (ja)
TW (1) TW202144102A (ja)
WO (1) WO2021199512A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183207A (ja) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk 超微粒子及びその製造方法
JP2002332502A (ja) 2001-05-10 2002-11-22 Mitsui Mining & Smelting Co Ltd 銅ペースト用の表面処理銅粉、その表面処理銅粉の製造方法、その表面処理銅粉を用いた銅ペースト及びその銅ペーストを用いたプリント配線板
WO2010032841A1 (ja) * 2008-09-19 2010-03-25 旭硝子株式会社 導電性フィラー、導電性ペーストおよび導電膜を有する物品
JP2014148732A (ja) * 2013-02-04 2014-08-21 Yamagata Univ 新規被覆銅微粒子及びその製造方法
WO2015122251A1 (ja) 2014-02-14 2015-08-20 三井金属鉱業株式会社 銅粉
JP2015168878A (ja) 2014-03-10 2015-09-28 三井金属鉱業株式会社 銅粉
JP2017089000A (ja) * 2015-11-10 2017-05-25 旭硝子株式会社 銅粒子およびその製造方法、導電膜形成用ペースト、ならびに物品
JP2017519897A (ja) * 2014-05-05 2017-07-20 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー 金属ペーストおよびコンポーネントの結合のためのその使用
JP2019065363A (ja) * 2017-10-03 2019-04-25 東洋製罐グループホールディングス株式会社 金属銅微粒子及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499010A (en) * 1980-09-19 1985-02-12 Toyama Prefecture Conductive paint
EP2572814B1 (de) * 2011-09-20 2016-03-30 Heraeus Deutschland GmbH & Co. KG Paste und Verfahren zum Verbinden von elektronischem Bauelement mit Substrat
JP6368925B2 (ja) * 2014-10-01 2018-08-08 協立化学産業株式会社 被覆銅粒子及びその製造方法
EP3009211B1 (de) * 2015-09-04 2017-06-14 Heraeus Deutschland GmbH & Co. KG Metallpaste und deren verwendung zum verbinden von bauelementen
US10910340B1 (en) * 2019-10-14 2021-02-02 Heraeus Deutschland GmbH & Co. KG Silver sintering preparation and the use thereof for the connecting of electronic components

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183207A (ja) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk 超微粒子及びその製造方法
JP2002332502A (ja) 2001-05-10 2002-11-22 Mitsui Mining & Smelting Co Ltd 銅ペースト用の表面処理銅粉、その表面処理銅粉の製造方法、その表面処理銅粉を用いた銅ペースト及びその銅ペーストを用いたプリント配線板
WO2010032841A1 (ja) * 2008-09-19 2010-03-25 旭硝子株式会社 導電性フィラー、導電性ペーストおよび導電膜を有する物品
JP2014148732A (ja) * 2013-02-04 2014-08-21 Yamagata Univ 新規被覆銅微粒子及びその製造方法
WO2015122251A1 (ja) 2014-02-14 2015-08-20 三井金属鉱業株式会社 銅粉
JP2015168878A (ja) 2014-03-10 2015-09-28 三井金属鉱業株式会社 銅粉
JP2017519897A (ja) * 2014-05-05 2017-07-20 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー 金属ペーストおよびコンポーネントの結合のためのその使用
JP2017089000A (ja) * 2015-11-10 2017-05-25 旭硝子株式会社 銅粒子およびその製造方法、導電膜形成用ペースト、ならびに物品
JP2019065363A (ja) * 2017-10-03 2019-04-25 東洋製罐グループホールディングス株式会社 金属銅微粒子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129528A4

Also Published As

Publication number Publication date
US11980935B2 (en) 2024-05-14
EP4129528A1 (en) 2023-02-08
CN115348907A (zh) 2022-11-15
EP4129528A4 (en) 2023-08-02
TW202144102A (zh) 2021-12-01
JPWO2021199512A1 (ja) 2021-10-07
JP7482214B2 (ja) 2024-05-13
US20230107436A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP5843821B2 (ja) 金属粉ペースト、及びその製造方法
KR102118308B1 (ko) 구리분 및 그 제조방법
JP4801958B2 (ja) 導電性ペースト
JP6212480B2 (ja) 金属粉ペースト、及びその製造方法
JP5941082B2 (ja) 銅粉
JP6620808B2 (ja) 表面被覆銅フィラー、その製造方法、および導電性組成物
JP2007077479A (ja) 複合粒子粉、その分散液またはペースト並びにそれらの製造法
JP5924481B2 (ja) 銀微粒子の製造法及び該銀微粒子の製造法によって得られた銀微粒子並びに該銀微粒子を含有する導電性ペースト
JP2018066048A (ja) 導電性ペーストおよびその製造方法、ならびに太陽電池セル
WO2021199512A1 (ja) 銅粒子及びその製造方法
JP7315408B2 (ja) 銅粒子
JP2012140661A (ja) 扁平銅粒子
KR101803956B1 (ko) 대기압에서 소성 가능한 구리 나노입자의 제조방법
JP2014029845A (ja) 導電性ペーストの製造方法
JP4575867B2 (ja) 導電性ペースト
JP2017002364A (ja) 表面被覆金属微粒子の分散溶液、ならびにこの分散溶液の塗布および焼結する工程を含む、焼結導電体および導電接続部材の製造方法
WO2022045252A1 (ja) 酸化物含有銅微粒子およびその製造方法、ならびにそれを用いた焼結体の製造方法
JP5869538B2 (ja) 表面処理された金属粉の製造方法
TWI547325B (zh) A surface-treated metal powder, and a method for producing the same
JP2007095525A (ja) 導電性ペースト
JP2008159498A (ja) 導電性ペーストの製造方法および導電性ペースト
JP2007095527A (ja) 導電性ペーストおよびその製造方法
JP5991459B2 (ja) 銀微粒子とその製造法並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
JP2015132001A (ja) 表面処理された銅粉及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020928275

Country of ref document: EP

Effective date: 20221031