WO2021199202A1 - 中和装置 - Google Patents
中和装置 Download PDFInfo
- Publication number
- WO2021199202A1 WO2021199202A1 PCT/JP2020/014672 JP2020014672W WO2021199202A1 WO 2021199202 A1 WO2021199202 A1 WO 2021199202A1 JP 2020014672 W JP2020014672 W JP 2020014672W WO 2021199202 A1 WO2021199202 A1 WO 2021199202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- neutralization
- wastewater
- unit
- carbon dioxide
- Prior art date
Links
- 238000006386 neutralization reaction Methods 0.000 title claims abstract description 109
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 114
- 239000002351 wastewater Substances 0.000 claims abstract description 73
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 57
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 57
- 230000005587 bubbling Effects 0.000 claims abstract description 36
- 230000003472 neutralizing effect Effects 0.000 claims description 31
- 238000005192 partition Methods 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 58
- 230000008569 process Effects 0.000 description 46
- 238000003860 storage Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 10
- 238000009826 distribution Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002101 nanobubble Substances 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
Definitions
- This disclosure relates to a neutralizer.
- Wastewater with a high pH is wastewater or the like generated as a result of contacting cement with water.
- a neutralization device including a jet flow device, a pH sensor, and a recirculation device is disclosed (for example, Patent Document 1).
- the jet device of Patent Document 1 supplies carbon dioxide to the raw water (wastewater) guided from the raw water tank, generates a vortex, causes cavitation, and mixes and stirs the raw water.
- the pH sensor measures the pH of the raw water discharged from the jet device. When the detection result of the pH sensor exceeds the discharge reference value, the recirculation device recirculates the raw water discharged from the jet device to the raw water tank.
- the present disclosure aims to provide a neutralizing device capable of efficiently neutralizing wastewater in view of such problems.
- the neutralizing device includes a neutralizing section provided with an inflow port and an outlet, and a wastewater supply section for supplying wastewater to the neutralizing section through the inflow port.
- a bubbling section that supplies carbon dioxide bubbles with an average particle size of 2.5 mm or less to the waste water contained in the sum section, and a first pH sensor provided between the inlet and outlet in the neutralization section. , Measured value of either or both of the second pH sensor provided between the installation location of the first pH sensor in the neutralization section and the discharge port, and the first pH sensor and the second pH sensor.
- a control unit that controls the amount of carbon dioxide supplied by the bubbling unit is provided.
- the neutralization unit may be provided with a neutralization tank provided with an inflow port and an outlet and accommodating wastewater, and a partition plate provided in the neutralization tank.
- control unit is supplied by the steady operation mode in which the amount of carbon dioxide supplied by the bubbling unit is controlled based on the measured value of at least the second pH sensor, and the bubbling unit based on the measured value of at least the first pH sensor. You may switch between a non-steady operation mode that controls the amount of carbon dioxide produced.
- FIG. 1 is a diagram illustrating a neutralizing device according to an embodiment.
- FIG. 2 is a flowchart illustrating a process flow of the neutralization method of the embodiment.
- FIG. 3A is a diagram showing changes in pH of wastewater before neutralization and pH measured by a pH sensor when the neutralization method of the embodiment is performed.
- FIG. 3B is a diagram illustrating a change in the amount of carbon dioxide supplied when the neutralization method of the embodiment is performed.
- FIG. 4 is a block diagram of PID control in the steady operation mode execution process.
- FIG. 5 is a diagram illustrating an image of pH distribution in the neutralization tank in the steady operation mode execution process.
- FIG. 6 is a diagram for explaining an image of the pH distribution in the neutralization tank when the pH of the wastewater flowing into the neutralization tank rises and the amount of carbon dioxide supplied by the bubbling portion does not change.
- FIG. 7 is a block diagram of PID control after switching to the unsteady operation mode.
- FIG. 8 is a diagram illustrating an image of pH distribution in the neutralization tank in the unsteady operation mode execution process.
- FIG. 1 is a diagram illustrating a neutralizing device 100 of the present embodiment.
- the neutralizing device 100 includes a neutralizing unit 110, a pump 120, a bubbling unit 130, pH sensors 140 and 150, and a control unit 160.
- solid arrows indicate the flow of wastewater. Further, in FIG. 1, the broken line arrow indicates the signal flow.
- the neutralization unit 110 includes a neutralization tank 210 and partition plates 220a to 220c.
- the neutralization tank 210 is a container for accommodating wastewater.
- An inflow port 212 is provided on one end side of the neutralization tank 210.
- a discharge port 214 is provided on the other end side of the neutralization tank 210.
- the inflow port 212 is formed on the upper surface of the neutralization tank 210.
- the discharge port 214 is formed on the side surface of the neutralization tank 210.
- the partition plates 220a to 220c are provided in the neutralization tank 210.
- the partition plate 220a is provided between the inflow port 212 and the discharge port 214 in the neutralization tank 210.
- the partition plate 220a is erected from the bottom surface of the neutralization tank 210.
- the upper end of the partition plate 220a is separated from the upper surface of the neutralization tank 210. Therefore, the inside of the neutralization tank 210 is divided into a region 210A and a region 210B by the partition plate 220a.
- the partition plate 220b is provided between the inflow port 212 and the partition plate 220a in the neutralization tank 210.
- the partition plate 220c is provided between the partition plate 220a and the discharge port 214 in the neutralization tank 210.
- the partition plates 220b and 220c are erected (hanging) from the upper surface of the neutralization tank 210.
- the lower ends of the partition plates 220b and 220c are separated from the bottom surface of the neutralization tank 210. Therefore, the region 210A is divided into the region 210Aa and the region 210Ab by the partition plate 220b. Further, the region 210B is divided into a region 210Ba and a region 210Bb by a partition plate 220c.
- the suction side of the pump 120 (wastewater supply unit) is connected to the wastewater tank 102.
- the discharge side of the pump 120 is connected to the inflow port 212 of the neutralization unit 110.
- the pump 120 supplies wastewater (raw water) to the region 210Aa through the inflow port 212.
- the bubbling unit 130 supplies carbon dioxide bubbles having an average particle size (average bubble diameter) of 2.5 mm or less to the wastewater contained in the neutralizing unit 110.
- the bubbling portion 130 preferably supplies carbon dioxide bubbles having an average particle size of less than 1 mm.
- the bubbling unit 130 includes a carbon dioxide storage unit 250, an air diffuser plate 252, a connecting pipe 254, and a flow rate adjusting valve 256.
- the carbon dioxide storage unit 250 stores carbon dioxide.
- the carbon dioxide storage unit 250 is, for example, a carbon dioxide cylinder. Carbon dioxide cylinders store high-pressure compressed carbon dioxide.
- the air diffuser plate 252 is provided on the bottom surface of the neutralization tank 210.
- the air diffuser plate 252 is composed of a porous body.
- the porous body is composed of resin, glass, ceramic, metal and pumice.
- connection pipe 254 connects the carbon dioxide storage unit 250 and the air diffuser plate 252.
- the flow rate adjusting valve 256 is provided in the connecting pipe 254.
- the opening degree of the flow rate adjusting valve 256 is adjusted by the control unit 160 described later.
- the adjustment of the opening degree of the flow rate adjusting valve 256 by the control unit 160 will be described in detail later.
- the pH sensor 140 (first pH sensor) is provided between the inflow port 212 and the discharge port 214 in the neutralization unit 110.
- the pH sensor 140 is provided in the region 210Ab.
- the pH sensor 140 measures the pH of the wastewater in the region 210Ab.
- the measured value by the pH sensor 140 output value
- y a the measured value by the pH sensor 140
- the pH sensor 150 (second pH sensor) is provided between the installation location of the pH sensor 140 in the neutralization unit 110 and the discharge port 214.
- the pH sensor 150 is provided in the vicinity of the discharge port 214. That is, the pH sensor 150 is provided in the region 210Bb.
- the pH sensor 150 measures the pH of the wastewater in the region 210Bb.
- the measured value (output value) by the pH sensor 150 is defined as y b .
- the pH sensor 140 is provided on the upstream side of the pH sensor 150 in the flow direction of wastewater. In other words, the pH sensor 140 measures the pH of wastewater upstream of the pH sensor 150.
- the control unit 160 is composed of a semiconductor integrated circuit including a CPU (central processing unit).
- the control unit 160 reads a program, parameters, and the like for operating the CPU itself from the ROM.
- the control unit 160 manages and controls the entire neutralizing device 100 in cooperation with the RAM as a work area and other electronic circuits.
- the control unit 160 adjusts the opening degree of the flow rate adjusting valve 256 based on the measured values of the pH sensor 140 and the pH sensor 150. Details will be described later, the control unit 160, when the variation amount of the measured value y a by pH sensor 140 is small, controlling the bubbling portion 130 in the steady operation mode. On the other hand, the control unit 160, when the variation amount of the measured value y a by pH sensor 140 is large, and controls the bubbling unit 130 in the non-steady operation mode.
- the steady operation mode is a mode in which the amount of carbon dioxide supplied by the bubbling unit 130 is controlled based on the measured value y b of the pH sensor 150.
- Unsteady operation mode based on the measured value y a of the pH sensor 140, a mode for controlling the amount of carbon dioxide supplied by bubbling unit 130.
- the pump 120 of the neutralization device 100 supplies wastewater from the wastewater tank 102 to the neutralization unit 110.
- FIG. 2 is a flowchart illustrating a processing flow of the neutralization method of the present embodiment.
- 3A is a diagram illustrating the waste water before neutralization in the case of performing neutralization method of the present embodiment, the measured value y a of the pH sensor 140, a change in the pH measurements y b a pH sensor 150.
- FIG. 3B is a diagram illustrating a change in the amount of carbon dioxide supplied when the neutralization method of the present embodiment is performed.
- r is the set value
- y a ' has an average value of measured values y a of the pH sensor 140
- the flow rate of carbon dioxide u is supplied by bubbling unit 130 (Operation amount) is shown.
- the neutralization method includes a steady operation mode execution process S110, a sensor value stability determination process S120, an average value storage process S130, a fluctuation determination process S140, and an unsteady operation mode.
- the execution process S150, the time lapse determination process S160, the steady operation mode execution process S170, and the average value storage process S180 are included.
- each process will be described.
- Step S110 The control unit 160 controls the bubbling unit 130 in the steady operation mode. Specifically, the control unit 160 adjusts the opening degree of the flow rate adjusting valve 256 so that the measured value y b of the pH sensor 150 becomes a predetermined set value r.
- the set value r is a predetermined value equal to or less than the discharge reference value.
- FIG. 4 is a block diagram of PID control in the steady operation mode execution process S110.
- the control unit 160 performs PID control as shown in FIG.
- the control unit 160 sets the target value as the set value r and the output value as the measured value y b .
- t indicates time and e indicates (r (t) -y b (t)).
- K p is a proportional gain
- Ki is an integrated gain
- K d is a differential gain.
- K p , K i , and K d can be appropriately adjusted by the user.
- FIG. 5 is a diagram for explaining an image of the pH distribution in the neutralization tank 210 in the steady operation mode execution process S110.
- the control unit 160 performs the steady operation mode execution process S110, carbon dioxide is supplied to the wastewater by the bubbling unit 130.
- the wastewater is neutralized, and the pH of the wastewater decreases as the distance from the inflow port 212 increases.
- the wastewater flows from the inflow port 212 toward the discharge port 214. Therefore, as shown in FIG. 5, the pH in the neutralization tank 210 gradually decreases from the inflow port 212 toward the discharge port 214. Further, the pH of the waste liquid discharged from the discharge port 214 becomes the set value r.
- Control unit 160 determines whether the measured value y a of the pH sensor 140 is stable. As a result, if the measured value y a of the pH sensor 140 is determined to be stable (YES in S120), the control unit 160 moves the process to average value storage processing S130. On the other hand, when it is determined that the measured value y a of the pH sensor 140 is not stable (NO in S120), the control unit 160 controls the sensor while maintaining the steady operation mode based on the measured value y b of the pH sensor 150. The value stability determination process S120 is repeated.
- the control unit 160 determines, for example, a predetermined unit time (e.g., 1 minute) of the standard deviation of the measurements y a per, whether below a predetermined stable threshold. When the standard deviation of the measured value y a is determined to be below the stability threshold, the control unit 160 determines that the measured value y a of the pH sensor 140 is stable.
- a predetermined unit time e.g. 1 minute
- the control unit 160 for example, a predetermined time during which the measured value y a of the pH sensor 140 is stable (e.g., 1 minute) to calculate an average value y a measured value y a per '. Then, the control unit 160 stores the average value ya'in a memory (not shown).
- Control unit 160 determines whether the amount of variation of the measured value y a of the pH sensor 140 is large. In the present embodiment, the control unit 160, the measured value y a current pH sensor 140, an average value average y a calculated in storage processing S130 'the difference between the (measured value y a - mean value y a') Determines whether or not exceeds a predetermined switching threshold ⁇ (for example, 1).
- FIG. 6 is a diagram illustrating an image of the pH distribution in the neutralization tank 210 when the pH of the wastewater flowing into the neutralization tank 210 rises and the amount of carbon dioxide supplied by the bubbling unit 130 does not change.
- the solid line shows the pH distribution in the neutralization tank 210 when the pH of the wastewater (raw water) flowing into the neutralization tank 210 rises and the amount of carbon dioxide supplied by the bubbling unit 130 does not change. Is shown.
- the broken line the steady operation mode - the distribution of pH in the neutralization tank 210 in ((measured value y a case where the average value y a ') is less than switching threshold [delta]).
- the control unit 160 when it is determined that the variation amount of the measured value y a of the pH sensor 140 in the variation determination process S140 is larger (YES in S140), the non-steady operation mode from the normal operation mode To control the bubbling unit 130. Specifically, the control unit 160, the measured value y a of the pH sensor 140, so that the calculated mean value storage processing S130 average y a ', for adjusting the opening of flow control valve 256.
- FIG. 7 is a block diagram of PID control after switching to the unsteady operation mode.
- the control unit 160 also performs PID control in the unsteady operation mode execution process S150 in the same manner as in the steady operation mode execution process S110.
- the control unit 160 in the non-steady operation mode execution processing S150, the control unit 160, a target value as an average y a ', the output value and the measured value y a.
- FIG. 8 is a diagram illustrating an image of the pH distribution in the neutralization tank 210 in the unsteady operation mode execution process S150.
- the broken line shows an image of the pH distribution in the neutralization tank 210 in the steady operation mode.
- the control unit 160 performs the unsteady operation mode execution process S150, the bubbling unit 130 supplies a larger amount of carbon dioxide to the wastewater than the steady operation mode execution process S110 (see FIG. 3B).
- the control unit 160 determines whether or not a predetermined unsteady operation time has elapsed after switching to the unsteady operation mode. As a result, when it is determined that the unsteady operation time has elapsed (YES in S160), the control unit 160 shifts the process to the steady operation mode execution process S110. On the other hand, when it is determined that the unsteady operation time has not elapsed (NO in S160), the control unit 160 repeats the time lapse determination process S160.
- the unsteady operation time is determined based on, for example, the volume V (m 3 ) of the wastewater contained in the neutralization tank 210 and the flow rate Q (m 3 / min) of the wastewater supplied by the pump 120. NS.
- the unsteady operation time is the volume V of wastewater / the flow rate Q (minutes) of wastewater.
- Step S170 The control unit 160 adjusts the opening degree of the flow rate adjusting valve 256 so that the measured value y b of the pH sensor 150 becomes a predetermined set value r, similarly to the steady operation mode execution process S110.
- Controller 160 similarly to the average value storage processing S130, the predetermined time in the normal operation mode (e.g., 1 minute) to calculate an average value y a measured value y a per '. Then, the control unit 160 overwrites the mean value y a 'in the memory. After that, the control unit 160 shifts the process to the fluctuation determination process S140.
- the predetermined time in the normal operation mode e.g. 1 minute
- the neutralization device 100 As described above, the neutralization device 100 according to the present embodiment and the neutralization method using the neutralization device 100 include a bubbling unit 130.
- the bubbling unit 130 supplies carbon dioxide bubbles (including microbubbles or nanobubbles) having an average particle size of 2.5 mm or less to the wastewater. Therefore, the bubbling unit 130 can lengthen the residence time of carbon dioxide in wastewater as compared with the conventional technique of introducing carbon dioxide by a jet device or an ejector. That is, the neutralizing device 100 can prolong the contact time between wastewater and carbon dioxide. Therefore, the neutralizing device 100 can improve the dissolution efficiency of carbon dioxide in wastewater. As a result, the neutralizing device 100 can continuously and efficiently neutralize the wastewater.
- the bubbling portion 130 can increase the specific surface area of carbon dioxide as compared with the prior art. Therefore, the neutralizing device 100 can improve the dissolution efficiency of carbon dioxide in wastewater.
- the neutralizing device 100 can significantly reduce the time required for neutralizing wastewater as compared with the conventional technique. Therefore, the neutralization device 100 can carry out the neutralization reaction with a small amount of carbon dioxide as compared with the prior art. Therefore, the neutralization device 100 can reduce the cost of carbon dioxide required for neutralization.
- the neutralization device 100 includes a neutralization section 210 including a neutralization tank 210 and partition plates 220a to 220c.
- the neutralizing device 100 can lengthen the residence time of wastewater as compared with the conventional technique not provided with the partition plates 220a to 220c. As a result, the neutralizing device 100 can prolong the contact time between the carbon dioxide bubbles and the wastewater.
- the configuration is provided with only the pH sensor 150 (only in the steady operation mode)
- the amount of carbon dioxide supplied is increased until the pH sensor 150 detects the fluctuation in pH. It cannot be changed.
- the wastewater before neutralization changes to a composition that is difficult to be neutralized by carbon dioxide although there is no change in pH
- the amount of carbon dioxide supplied cannot be changed until the pH sensor 150 detects the change in pH. .. Therefore, when the configuration is provided with only the pH sensor 150, a situation may temporarily occur in which the pH of the neutralized wastewater cannot be set to the set value r or less.
- the neutralizing device 100 of the present embodiment includes a pH sensor 140 in addition to the pH sensor 150.
- the neutralizing device 100 can detect the pH fluctuation of the wastewater before the neutralization by the pH sensor 140 before the pH sensor 150 detects the pH fluctuation.
- the neutralizer 100 switches when the variation amount of the measured value y a of the pH sensor 140 is increased from the steady operation mode to the non-steady operation mode. Therefore, the neutralizing device 100 can surely set the pH of the wastewater after neutralization to the set value r or less even if the amount of fluctuation in the pH of the wastewater before neutralization becomes large.
- the configuration in which the neutralization unit 110 includes the neutralization tank 210 and the partition plates 220a to 220c is given as an example.
- the configuration of the neutralizing unit 110 is not limited.
- the neutralization unit 110 may include only one neutralization tank 210.
- the neutralization unit is a mechanism for communicating the plurality of neutralization tanks 210, the discharge port 214 of the neutralization tank 210 of 1, and the inflow port 212 of the neutralization tank 210 adjacent to the neutralization tank 210 of 1. May be provided.
- an air diffuser plate 252 is provided for each neutralization tank 210.
- the neutralization unit including the plurality of neutralization tanks 210 can appropriately change the number of neutralization tanks 210.
- the neutralization unit including the plurality of neutralization tanks 210 can change the neutralization treatment capacity of the wastewater. Further, the neutralization unit including the plurality of neutralization tanks 210 can modularize the plurality of neutralization tanks 210. Therefore, the neutralization unit including the plurality of neutralization tanks 210 can reduce the manufacturing cost and the design cost.
- the inflow port 212 is formed on the upper surface of the neutralization tank 210 and the discharge port 214 is formed on the side surface of the neutralization tank 210 has been given as an example.
- the positions of the inflow port 212 and the discharge port 214 are not limited.
- the inflow port 212 may be formed on the bottom surface of the neutralization tank 210.
- the partition plate 220a may be erected (hanging) from the upper surface of the neutralization tank 210, and the partition plates 220b and 220c may be erected from the bottom surface of the neutralization tank 210.
- the pump 120 is taken as an example as the wastewater supply unit.
- the structure of the wastewater supply unit is not limited as long as the wastewater can be supplied to the neutralization unit 110 through the inflow port 212.
- the wastewater supply unit may have the wastewater tank 102 arranged above the inflow port 212 and may include a pipe connecting the lower part of the wastewater tank 102 and the inflow port 212. Further, the wastewater supply unit may be provided with a flow rate adjusting valve in the pipe.
- the case where the carbon dioxide storage unit 250 is a carbon dioxide cylinder is taken as an example.
- the bubbling unit 130 can pump carbon dioxide without using a pump.
- the carbon dioxide storage unit 250 is a storage unit that stores carbon dioxide at atmospheric pressure or carbon dioxide having a low compression rate, or a generator that generates carbon dioxide at atmospheric pressure or carbon dioxide with a low compression rate. It may be.
- the bubbling unit 130 is configured to include a pump, and it is preferable to drive the pump to pump carbon dioxide from the carbon dioxide storage unit 250 to the connecting pipe 254 (air diffuser plate 252).
- the configuration in which the bubbling unit 130 includes the air diffuser plate 252 of 1 is given as an example.
- the number of air diffusers 252 is not limited.
- the bubbling portion 130 may be provided with an air diffuser pipe instead of the air diffuser plate 252.
- the control unit 160 has exemplified a configuration of calculating the average value y a 'measurements y a of the pH sensor 140.
- the control unit 160, the most recent predetermined time e.g., 1 minute
- - (median measured value y a) exceeds a predetermined switching threshold [delta] (e.g., 1)
- the control unit 160, the measured value y a current pH sensor 140, the difference between the calculated median It may be judged whether or not.
- control unit 160 may fully open the opening degree of the flow rate adjusting valve 256 in the unsteady operation mode execution process S150, for example.
- control unit 160 performs PID control is given as an example.
- control unit 160 can control the amount of carbon dioxide supplied by the bubbling unit based on the measured values of either or both of the first pH sensor and the second pH sensor, the control method There is no limit to.
- the control unit 160 may perform PI control, I-PD control, or two-degree-of-freedom PID control, for example.
- control unit 160 may execute the sensor value stability determination process S120 instead of the time lapse determination process S160.
- This disclosure can be used for a neutralizer.
- Neutralizer 110 Neutralizer 120: Pump (waste water supply) 130: Bubbling unit 140: pH sensor (first pH sensor) 150: pH sensor (second pH sensor) 160: Control unit 210: Neutralization tank 212: Inflow port 214: Discharge port 220a: Partition plate 220b: Partition plate 220c: Partition plate
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physical Water Treatments (AREA)
- Treating Waste Gases (AREA)
Abstract
中和装置100は、流入口212および排出口214が設けられる中和部110)と、流入口212を通じて中和部110に廃水を供給する廃水供給部(ポンプ120と、中和部110に収容された廃水に、平均粒径が2.5mm以下の二酸化炭素の泡を供給するバブリング部130と、中和部110における流入口212と排出口214との間に設けられる第1のpHセンサ140と、中和部110における第1のpHセンサ140の設置箇所と、排出口214との間に設けられる第2のpHセンサ150と、第1のpHセンサ140および第2のpHセンサ150のいずれか一方または両方の測定値に基づいて、バブリング部130によって供給される二酸化炭素の量を制御する制御部160と、を備える。
Description
本開示は、中和装置に関する。
高いpH(水素イオン指数)の廃水をそのまま放流することは、法律で禁じられている。このため、高いpHの廃水を中和して、放流基準値までpHを低下させる必要がある。高いpHの廃水は、セメントと水とを接触させた結果生じる廃水等である。
上記廃水を中和する技術として、噴流装置と、pHセンサと、還流装置とを備えた中和装置が開示されている(例えば、特許文献1)。特許文献1の噴流装置は、原水槽から導かれた原水(廃水)に二酸化炭素を供給し、渦流を発生させてキャビテーションを起こし原水を混合攪拌させる。pHセンサは、噴流装置から排出された原水のpHを測定する。還流装置は、pHセンサの検出結果が放流基準値を上回ると、噴流装置から排出された原水を原水槽に還流させる。
上記中和装置において、効率よく廃水を中和することができる技術の開発が希求されている。
本開示は、このような課題に鑑み、廃水を効率よく中和することが可能な中和装置を提供することを目的としている。
上記課題を解決するために、本開示の一態様に係る中和装置は、流入口および排出口が設けられる中和部と、流入口を通じて中和部に廃水を供給する廃水供給部と、中和部に収容された廃水に、平均粒径が2.5mm以下の二酸化炭素の泡を供給するバブリング部と、中和部における流入口と排出口との間に設けられる第1のpHセンサと、中和部における第1のpHセンサの設置箇所と、排出口との間に設けられる第2のpHセンサと、第1のpHセンサおよび第2のpHセンサのいずれか一方または両方の測定値に基づいて、バブリング部によって供給される二酸化炭素の量を制御する制御部と、を備える。
また、中和部は、流入口および排出口が設けられ、廃水を収容する中和槽と、中和槽内に設けられた仕切板と、を備えてもよい。
また、制御部は、少なくとも第2のpHセンサの測定値に基づきバブリング部によって供給される二酸化炭素の量を制御する定常運転モードと、少なくとも第1のpHセンサの測定値に基づきバブリング部によって供給される二酸化炭素の量を制御する非定常運転モードと、を切換えてもよい。
本開示によれば、効率よく廃水を中和することが可能となる。
以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。また本開示に直接関係のない要素は図示を省略する。
[中和装置100]
図1は、本実施形態の中和装置100を説明する図である。図1に示すように、中和装置100は、中和部110と、ポンプ120と、バブリング部130と、pHセンサ140、150と、制御部160とを含む。なお、図1中、実線の矢印は廃水の流れを示す。また、図1中、破線の矢印は信号の流れを示す。
図1は、本実施形態の中和装置100を説明する図である。図1に示すように、中和装置100は、中和部110と、ポンプ120と、バブリング部130と、pHセンサ140、150と、制御部160とを含む。なお、図1中、実線の矢印は廃水の流れを示す。また、図1中、破線の矢印は信号の流れを示す。
中和部110は、中和槽210と、仕切板220a~220cとを含む。中和槽210は、廃水を収容する容器である。中和槽210の一端側には、流入口212が設けられる。中和槽210の他端側には、排出口214が設けられる。本実施形態において、流入口212は、中和槽210の上面に形成される。また、排出口214は、中和槽210の側面に形成される。
仕切板220a~220cは、中和槽210内に設けられる。仕切板220aは、中和槽210における流入口212と排出口214との間に設けられる。仕切板220aは、中和槽210の底面から立設する。仕切板220aの上端は、中和槽210の上面と離隔する。したがって、中和槽210内は、仕切板220aによって、領域210Aと、領域210Bとに区画される。
仕切板220bは、中和槽210における流入口212と仕切板220aとの間に設けられる。仕切板220cは、中和槽210における仕切板220aと排出口214との間に設けられる。仕切板220b、220cは、中和槽210の上面から立設(垂下)する。仕切板220b、220cの下端は、中和槽210の底面と離隔する。したがって、領域210Aは、仕切板220bによって、領域210Aaと領域210Abとに区画される。また、領域210Bは、仕切板220cによって、領域210Baと領域210Bbとに区画される。
ポンプ120(廃水供給部)は、吸入側が廃水槽102に接続される。ポンプ120は、吐出側が中和部110の流入口212に接続される。ポンプ120は、流入口212を通じて、領域210Aaに廃水(原水)を供給する。
バブリング部130は、中和部110に収容された廃水に、平均粒径(平均の気泡径)が2.5mm以下の二酸化炭素の泡を供給する。バブリング部130は、好ましくは、平均粒径が1mm未満の二酸化炭素の泡を供給する。
本実施形態において、バブリング部130は、二酸化炭素貯留部250と、散気板252と、接続管254と、流量調整弁256とを含む。
二酸化炭素貯留部250は、二酸化炭素を貯留する。二酸化炭素貯留部250は、例えば、二酸化炭素ボンベである。二酸化炭素ボンベは、高圧圧縮された二酸化炭素を貯留する。
散気板252は、中和槽210の底面に設けられる。散気板252は、多孔質体で構成される。多孔質体は、樹脂、ガラス、セラミック、金属、軽石で構成される。
接続管254は、二酸化炭素貯留部250と散気板252とを接続する。流量調整弁256は、接続管254に設けられる。流量調整弁256は、後述する制御部160によって開度が調整される。制御部160による流量調整弁256の開度調整については後に詳述する。
pHセンサ140(第1のpHセンサ)は、中和部110における流入口212と排出口214との間に設けられる。本実施形態において、pHセンサ140は、領域210Abに設けられる。pHセンサ140は、領域210Abの廃水のpHを測定する。以下、pHセンサ140による測定値(出力値)をyaとする。
pHセンサ150(第2のpHセンサ)は、中和部110におけるpHセンサ140の設置箇所と、排出口214との間に設けられる。本実施形態において、pHセンサ150は、排出口214の近傍に設けられる。つまり、pHセンサ150は、領域210Bbに設けられる。pHセンサ150は、領域210Bbの廃水のpHを測定する。以下、pHセンサ150による測定値(出力値)をybとする。
すなわち、pHセンサ140は、pHセンサ150よりも廃水の流れ方向の上流側に設けられる。換言すれば、pHセンサ140は、pHセンサ150よりも上流側の廃水のpHを測定する。
制御部160は、CPU(中央処理装置)を含む半導体集積回路で構成される。制御部160は、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出す。制御部160は、ワークエリアとしてのRAMや他の電子回路と協働して中和装置100全体を管理および制御する。
本実施形態において、制御部160は、pHセンサ140およびpHセンサ150の測定値に基づいて、流量調整弁256の開度を調整する。詳細は後述するが、制御部160は、pHセンサ140による測定値yaの変動量が小さい場合に、定常運転モードでバブリング部130を制御する。一方、制御部160は、pHセンサ140による測定値yaの変動量が大きい場合に、非定常運転モードでバブリング部130を制御する。定常運転モードは、pHセンサ150の測定値ybに基づき、バブリング部130によって供給される二酸化炭素の量を制御するモードである。非定常運転モードは、pHセンサ140の測定値yaに基づき、バブリング部130によって供給される二酸化炭素の量を制御するモードである。
[中和方法]
続いて、上記中和装置100を用いた廃水の中和方法について説明する。なお、中和装置100のポンプ120は、廃水槽102から廃水を中和部110に供給する。
続いて、上記中和装置100を用いた廃水の中和方法について説明する。なお、中和装置100のポンプ120は、廃水槽102から廃水を中和部110に供給する。
図2は、本実施形態の中和方法の処理の流れを説明するフローチャートである。図3Aは、本実施形態の中和方法を行った場合の中和前の廃水、pHセンサ140の測定値ya、pHセンサ150の測定値ybのpHの変化を示す図である。図3Bは、本実施形態の中和方法を行った場合の二酸化炭素の供給量の変化を説明する図である。なお、図3A、図3Bをはじめとする以下の図では、rは設定値、ya’はpHセンサ140の測定値yaの平均値、uはバブリング部130によって供給される二酸化炭素の流量(操作量)を示す。
図2に示すように、本実施形態にかかる中和方法は、定常運転モード実行処理S110と、センサ値安定判定処理S120と、平均値記憶処理S130と、変動判定処理S140と、非定常運転モード実行処理S150と、時間経過判定処理S160と、定常運転モード実行処理S170と、平均値記憶処理S180とを含む。以下、各処理について説明する。
[定常運転モード実行処理S110]
制御部160は、定常運転モードでバブリング部130を制御する。具体的に説明すると、制御部160は、pHセンサ150の測定値ybが所定の設定値rとなるように、流量調整弁256の開度を調整する。設定値rは、放流基準値以下の所定の値である。
制御部160は、定常運転モードでバブリング部130を制御する。具体的に説明すると、制御部160は、pHセンサ150の測定値ybが所定の設定値rとなるように、流量調整弁256の開度を調整する。設定値rは、放流基準値以下の所定の値である。
図4は、定常運転モード実行処理S110におけるPID制御のブロック線図である。本実施形態において、制御部160は、図4に示すように、PID制御を行う。制御部160は、目標値を設定値rとし、出力値を測定値ybとする。なお、図4をはじめとする以下の図において、tは時間、eは(r(t)-yb(t))を示す。また、Kpは比例ゲイン、Kiは積分ゲイン、Kdは微分ゲインを示す。Kp、Ki、Kdは、ユーザによって適宜調整可能である。
図5は、定常運転モード実行処理S110における中和槽210内のpHの分布のイメージを説明する図である。制御部160が定常運転モード実行処理S110を行うと、バブリング部130によって二酸化炭素が廃水に供給される。これにより、廃水が中和され、流入口212からの距離が大きくなるに従って、廃水のpHが低下する。具体的に説明すると、廃水は、流入口212から排出口214に向かって流れる。このため、図5に示すように、中和槽210内のpHは、流入口212から排出口214に向かうに従って漸減する。また、排出口214から排出される廃液のpHは、設定値rとなる。
[センサ値安定判定処理S120]
制御部160は、pHセンサ140の測定値yaが安定しているか否かを判定する。その結果、pHセンサ140の測定値yaが安定していると判定した場合(S120におけるYES)、制御部160は、平均値記憶処理S130に処理を移す。一方、pHセンサ140の測定値yaが安定していないと判定した場合(S120におけるNO)、pHセンサ150の測定値ybに基づく定常運転モードを維持したまま、制御部160は、当該センサ値安定判定処理S120を繰り返す。
制御部160は、pHセンサ140の測定値yaが安定しているか否かを判定する。その結果、pHセンサ140の測定値yaが安定していると判定した場合(S120におけるYES)、制御部160は、平均値記憶処理S130に処理を移す。一方、pHセンサ140の測定値yaが安定していないと判定した場合(S120におけるNO)、pHセンサ150の測定値ybに基づく定常運転モードを維持したまま、制御部160は、当該センサ値安定判定処理S120を繰り返す。
制御部160は、例えば、所定の単位時間(例えば、1分)あたりの測定値yaの標準偏差が、所定の安定閾値を下回るか否かを判定する。そして、測定値yaの標準偏差が安定閾値を下回ると判定した場合に、制御部160は、pHセンサ140の測定値yaが安定していると判定する。
[平均値記憶処理S130]
制御部160は、例えば、pHセンサ140の測定値yaが安定している間の所定時間(例えば、1分)あたりの測定値yaの平均値ya’を算出する。そして、制御部160は、平均値ya’を不図示のメモリに記憶する。
制御部160は、例えば、pHセンサ140の測定値yaが安定している間の所定時間(例えば、1分)あたりの測定値yaの平均値ya’を算出する。そして、制御部160は、平均値ya’を不図示のメモリに記憶する。
[変動判定処理S140]
制御部160は、pHセンサ140の測定値yaの変動量が大きいか否かを判定する。本実施形態において、制御部160は、現在のpHセンサ140の測定値yaと、平均値記憶処理S130で算出した平均値ya’との差(測定値ya-平均値ya’)が所定の切換閾値δ(例えば、1)を上回るか否かを判定する。
制御部160は、pHセンサ140の測定値yaの変動量が大きいか否かを判定する。本実施形態において、制御部160は、現在のpHセンサ140の測定値yaと、平均値記憶処理S130で算出した平均値ya’との差(測定値ya-平均値ya’)が所定の切換閾値δ(例えば、1)を上回るか否かを判定する。
図6は、中和槽210に流入される廃水のpHが上昇し、かつ、バブリング部130による二酸化炭素の供給量が変化しない場合の中和槽210内のpHの分布のイメージを説明する図である。図6中、実線は、中和槽210に流入される廃水(原水)のpHが上昇し、かつ、バブリング部130による二酸化炭素の供給量が変化しない場合の中和槽210内のpHの分布を示す。また、図6中、破線は、定常運転モード((測定値ya-平均値ya’)が切換閾値δ以下である場合)における中和槽210内のpHの分布を示す。
0≦(測定値ya-平均値ya’)≦δである場合、つまり、測定値yaの上昇変動量が小さい場合、図6中、破線で示すように、排出口214から排出される廃水のpHは、設定値rとなる。したがって、(測定値ya-平均値ya’)が切換閾値δを上回らないと判定した場合(S140におけるNO)、制御部160は、定常運転モード実行処理S170に処理を移す。なお、(測定値ya-平均値ya’)<0である場合、つまり、測定値yaが低下した場合には、定常運転モード実行処理S170を継続しても、測定値ybは設定値rを下回るため、問題は生じない。
一方、(測定値ya-平均値ya’)>δである場合、つまり、測定値yaの上昇変動量が大きい(pHの増大を検知した)場合、図6中、実線で示すように、排出口214から排出される廃水のpHは、設定値rを上回ってしまう。そこで、(測定値ya-平均値ya’)が切換閾値δを上回ると判定した場合(S140におけるYES)、制御部160は、非定常運転モード実行処理S150に処理を移す(定常運転モードから非定常運転モードに切り換える、図3A参照)。
[非定常運転モード実行処理S150]
図2に戻って説明すると、制御部160は、変動判定処理S140においてpHセンサ140の測定値yaの変動量が大きいと判定した場合(S140におけるYES)に、定常運転モードから非定常運転モードに切り換えて、バブリング部130を制御する。具体的に説明すると、制御部160は、pHセンサ140の測定値yaが、平均値記憶処理S130で算出した平均値ya’となるように、流量調整弁256の開度を調整する。
図2に戻って説明すると、制御部160は、変動判定処理S140においてpHセンサ140の測定値yaの変動量が大きいと判定した場合(S140におけるYES)に、定常運転モードから非定常運転モードに切り換えて、バブリング部130を制御する。具体的に説明すると、制御部160は、pHセンサ140の測定値yaが、平均値記憶処理S130で算出した平均値ya’となるように、流量調整弁256の開度を調整する。
図7は、非定常運転モードへ切り換えた後のPID制御のブロック線図である。本実施形態において、制御部160は、非定常運転モード実行処理S150においても、定常運転モード実行処理S110と同様に、PID制御を行う。なお、図7に示すように、非定常運転モード実行処理S150において、制御部160は、目標値を平均値ya’とし、出力値を測定値yaとする。
図8は、非定常運転モード実行処理S150における中和槽210内のpHの分布のイメージを説明する図である。図8中、破線は、定常運転モードにおける中和槽210内のpHの分布のイメージを示す。制御部160が非定常運転モード実行処理S150を行うと、バブリング部130によって、定常運転モード実行処理S110よりも多量の二酸化炭素が廃水に供給される(図3B参照)。また、非定常運転モード実行処理S150において、制御部160は、pHセンサ140の測定値yaが、平均値記憶処理S130で算出した平均値ya’となるように、流量調整弁256の開度を調整する。このため、図8中、実線で示すように、pHセンサ150の測定値yb、つまり、排出口214から排出される廃液のpHは、設定値r以下となる。
[時間経過判定処理S160]
図2に戻って説明すると、制御部160は、非定常運転モードに切換えてから所定の非定常運転時間が経過したか否かを判定する。その結果、非定常運転時間が経過したと判定した場合(S160におけるYES)、制御部160は、定常運転モード実行処理S110に処理を移す。一方、非定常運転時間が経過していないと判定した場合(S160におけるNO)、制御部160は、時間経過判定処理S160を繰り返す。なお、非定常運転時間は、例えば、中和槽210に収容される廃水の体積V(m3)と、ポンプ120によって供給される廃水の流量Q(m3/分)とに基づいて決定される。本実施形態において、非定常運転時間は、廃水の体積V/廃水の流量Q(分)である。
図2に戻って説明すると、制御部160は、非定常運転モードに切換えてから所定の非定常運転時間が経過したか否かを判定する。その結果、非定常運転時間が経過したと判定した場合(S160におけるYES)、制御部160は、定常運転モード実行処理S110に処理を移す。一方、非定常運転時間が経過していないと判定した場合(S160におけるNO)、制御部160は、時間経過判定処理S160を繰り返す。なお、非定常運転時間は、例えば、中和槽210に収容される廃水の体積V(m3)と、ポンプ120によって供給される廃水の流量Q(m3/分)とに基づいて決定される。本実施形態において、非定常運転時間は、廃水の体積V/廃水の流量Q(分)である。
[定常運転モード実行処理S170]
制御部160は、上記定常運転モード実行処理S110と同様に、pHセンサ150の測定値ybが所定の設定値rとなるように、流量調整弁256の開度を調整する。
制御部160は、上記定常運転モード実行処理S110と同様に、pHセンサ150の測定値ybが所定の設定値rとなるように、流量調整弁256の開度を調整する。
[平均値記憶処理S180]
制御部160は、上記平均値記憶処理S130と同様に、定常運転モードにおける所定時間(例えば、1分)あたりの測定値yaの平均値ya’を算出する。そして、制御部160は、平均値ya’をメモリに上書きする。その後、制御部160は、変動判定処理S140に処理を移す。
制御部160は、上記平均値記憶処理S130と同様に、定常運転モードにおける所定時間(例えば、1分)あたりの測定値yaの平均値ya’を算出する。そして、制御部160は、平均値ya’をメモリに上書きする。その後、制御部160は、変動判定処理S140に処理を移す。
以上説明したように、本実施形態にかかる中和装置100およびこれを用いた中和方法は、バブリング部130を備える。バブリング部130は、平均粒径が2.5mm以下の二酸化炭素の泡(マイクロバブルまたはナノバブルを含む)を廃水に供給する。したがって、バブリング部130は、噴流装置やエジェクタによって二酸化炭素を導入する従来技術と比較して、廃水における二酸化炭素の滞留時間を長くすることが可能となる。つまり、中和装置100は、廃水と二酸化炭素の接触時間を長くすることができる。したがって、中和装置100は、廃水への二酸化炭素の溶解効率を向上させることが可能となる。これにより、中和装置100は、廃水を連続して、効率よく中和することができる。
また、バブリング部130は、従来技術と比較して、二酸化炭素の比表面積を大きくすることができる。このため、中和装置100は、廃水への二酸化炭素の溶解効率を向上させることが可能となる。
また、中和装置100は、従来技術と比較して、廃水の中和に要する時間を著しく短縮することが可能となる。しがって、中和装置100は、従来技術と比較して、少量の二酸化炭素で中和反応を行うことができる。このため、中和装置100は、中和のために要する二酸化炭素のコストを低減することが可能となる。
また、中和装置100は、中和槽210と、仕切板220a~220cとを備えた中和部110を備える。これにより、中和装置100は、仕切板220a~220cを備えない従来技術と比較して、廃水の滞留時間を長くすることができる。これにより、中和装置100は、二酸化炭素の泡と、廃水との接触時間を長くすることが可能となる。
また、仮に、pHセンサ150のみを備えた構成(定常運転モードのみ)とした場合、中和前の廃水のpHが変動すると、pHセンサ150でpHの変動を検知するまで二酸化炭素の供給量を変化させることができない。また、中和前の廃水が、pHの変動はないものの、二酸化炭素によって中和しにくい組成に変化すると、pHセンサ150でpHの変動を検知するまで二酸化炭素の供給量を変化させることができない。このため、pHセンサ150のみを備えた構成とした場合、中和後の廃水のpHを設定値r以下とすることができない事態が一時的に生じてしまう。
これに対し、本実施形態の中和装置100は、pHセンサ150に加えて、pHセンサ140を備える。これにより、中和装置100は、pHセンサ150がpHの変動を検知するよりも前に、pHセンサ140が中和前の廃水のpHの変動を検知することができる。そして、中和装置100は、pHセンサ140の測定値yaの変動量が大きくなった場合に定常運転モードから非定常運転モードへ切り換える。したがって、中和装置100は、中和前の廃水のpHの変動量が大きくなったとしても、中和後の廃水のpHを確実に設定値r以下とすることが可能となる。
以上、添付図面を参照しながら実施形態について説明したが、本開示は上記実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
例えば、上記実施形態において、中和部110が、中和槽210と、仕切板220a~220cとを備える構成を例に挙げた。しかし、中和部110の構成に限定はない。例えば、中和部110は、1の中和槽210のみを備えてもよい。また、中和部は、複数の中和槽210と、1の中和槽210の排出口214と、当該1の中和槽210に隣り合う中和槽210の流入口212とを連通させる機構を備えてもよい。この場合、中和槽210ごとに散気板252が設けられる。複数の中和槽210を備える中和部は、中和槽210の数を適宜変更することが可能となる。したがって、複数の中和槽210を備える中和部は、廃水の中和処理能力を変更させることができる。また、複数の中和槽210を備える中和部は、複数の中和槽210をモジュール化することが可能となる。このため、複数の中和槽210を備える中和部は、製造コストおよび設計コストを削減することが可能となる。
また、上記実施形態では、流入口212が中和槽210の上面に形成され、排出口214が中和槽210の側面に形成される場合を例に挙げた。しかし、流入口212および排出口214の位置に限定はない。例えば、流入口212が中和槽210の底面に形成されてもよい。この場合、仕切板220aは、中和槽210の上面から立設(垂下)し、仕切板220b、220cは、中和槽210の底面から立設するとよい。
また、上記実施形態において、廃水供給部としてポンプ120を例に挙げた。しかし、廃水供給部は、流入口212を通じて中和部110に廃水を供給することができれば、構成に限定はない。例えば、廃水供給部は、廃水槽102を流入口212よりも上方に配置しておき、廃水槽102の下部と流入口212とを接続する配管を備えてもよい。また、廃水供給部は、当該配管に流量調整弁を備えてもよい。
また、上記実施形態では、二酸化炭素貯留部250が二酸化炭素ボンベである場合を例に挙げた。このように、二酸化炭素貯留部250として二酸化炭素ボンベを採用することにより、バブリング部130は、ポンプを用いずとも二酸化炭素を圧送することができる。なお、二酸化炭素貯留部250は、大気圧の二酸化炭素、または、圧縮率の低い二酸化炭素を貯留した貯留部、または、大気圧の二酸化炭素、または、圧縮率の低い二酸化炭素を生成する生成装置であってもよい。この場合、バブリング部130は、ポンプを含んで構成され、ポンプを駆動して、二酸化炭素貯留部250から接続管254(散気板252)へ二酸化炭素を圧送するとよい。
また、上記実施形態において、バブリング部130は、1の散気板252を備える構成を例に挙げた。しかし、散気板252の数に限定はない。また、バブリング部130は、散気板252に代えて、散気管を備えてもよい。
また、上記実施形態においては、制御部160が、pHセンサ140の測定値yaの平均値ya’を算出する構成を例に挙げた。しかし、制御部160は、直近の所定時間(例えば、1分)あたりの測定値yaの中央値を算出してもよい。この場合、制御部160は、現在のpHセンサ140の測定値yaと、算出した中央値との差(測定値ya-中央値)が所定の切換閾値δ(例えば、1)を上回るか否かを判定すればよい。
また、制御部160は、非定常運転モード実行処理S150において、例えば、流量調整弁256の開度を全開にしてもよい。
また、上記実施形態において、制御部160がPID制御を行う場合を例に挙げた。しかし、制御部160は、第1のpHセンサおよび第2のpHセンサのいずれか一方または両方の測定値に基づいて、バブリング部によって供給される二酸化炭素の量を制御することができれば、制御方法に限定はない。制御部160は、例えば、PI制御、I-PD制御、または、2自由度PID制御を行ってもよい。
また、制御部160は、時間経過判定処理S160に換えて、センサ値安定判定処理S120を実行してもよい。
本開示は、中和装置に利用することができる。
100:中和装置 110:中和部 120:ポンプ(廃水供給部) 130:バブリング部 140:pHセンサ(第1のpHセンサ) 150:pHセンサ(第2のpHセンサ) 160:制御部 210:中和槽 212:流入口 214:排出口 220a:仕切板 220b:仕切板 220c:仕切板
Claims (3)
- 流入口および排出口が設けられる中和部と、
前記流入口を通じて前記中和部に廃水を供給する廃水供給部と、
前記中和部に収容された前記廃水に、平均粒径が2.5mm以下の二酸化炭素の泡を供給するバブリング部と、
前記中和部における前記流入口と前記排出口との間に設けられる第1のpHセンサと、
前記中和部における前記第1のpHセンサの設置箇所と、前記排出口との間に設けられる第2のpHセンサと、
前記第1のpHセンサおよび前記第2のpHセンサのいずれか一方または両方の測定値に基づいて、前記バブリング部によって供給される二酸化炭素の量を制御する制御部と、
を備える中和装置。 - 前記中和部は、
前記流入口および前記排出口が設けられ、前記廃水を収容する中和槽と、
前記中和槽内に設けられた仕切板と、
を備える請求項1に記載の中和装置。 - 前記制御部は、少なくとも前記第2のpHセンサの測定値に基づき前記バブリング部によって供給される二酸化炭素の量を制御する定常運転モードと、少なくとも前記第1のpHセンサの測定値に基づき前記バブリング部によって供給される二酸化炭素の量を制御する非定常運転モードと、を切換える請求項1または2に記載の中和装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/014672 WO2021199202A1 (ja) | 2020-03-30 | 2020-03-30 | 中和装置 |
CN202080098276.1A CN115244011B (zh) | 2020-03-30 | 中和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/014672 WO2021199202A1 (ja) | 2020-03-30 | 2020-03-30 | 中和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021199202A1 true WO2021199202A1 (ja) | 2021-10-07 |
Family
ID=77928007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014672 WO2021199202A1 (ja) | 2020-03-30 | 2020-03-30 | 中和装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021199202A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51122955A (en) * | 1975-04-18 | 1976-10-27 | Hokkaido Electric Power Co Inc:The | Apparatus for adjusting ph of drain containg coal-firing boiler exhaus t gas |
JPH08168781A (ja) * | 1994-12-20 | 1996-07-02 | Tokyo Gas Co Ltd | ボイラ排水の中和処理装置 |
JP2008194657A (ja) * | 2007-02-16 | 2008-08-28 | Showa Tansan Co Ltd | 排水のph中和処理装置 |
JP2014036950A (ja) * | 2013-04-25 | 2014-02-27 | Ihi Corp | 中和装置および中和方法 |
JP2015003299A (ja) * | 2013-06-20 | 2015-01-08 | Dowaエコシステム株式会社 | 排水処理装置および排水処理方法 |
KR101958754B1 (ko) * | 2018-04-23 | 2019-03-18 | 녹스 코리아(주) | 폐수 중화 장치 |
-
2020
- 2020-03-30 WO PCT/JP2020/014672 patent/WO2021199202A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51122955A (en) * | 1975-04-18 | 1976-10-27 | Hokkaido Electric Power Co Inc:The | Apparatus for adjusting ph of drain containg coal-firing boiler exhaus t gas |
JPH08168781A (ja) * | 1994-12-20 | 1996-07-02 | Tokyo Gas Co Ltd | ボイラ排水の中和処理装置 |
JP2008194657A (ja) * | 2007-02-16 | 2008-08-28 | Showa Tansan Co Ltd | 排水のph中和処理装置 |
JP2014036950A (ja) * | 2013-04-25 | 2014-02-27 | Ihi Corp | 中和装置および中和方法 |
JP2015003299A (ja) * | 2013-06-20 | 2015-01-08 | Dowaエコシステム株式会社 | 排水処理装置および排水処理方法 |
KR101958754B1 (ko) * | 2018-04-23 | 2019-03-18 | 녹스 코리아(주) | 폐수 중화 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN115244011A (zh) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI735506B (zh) | 供給液體製造裝置及供給液體製造方法 | |
EP2822072B1 (en) | Fuel cell system | |
JP2009053892A (ja) | 液位制御システム | |
CN104898738B (zh) | 一种电子坐便器的恒温加热控制方法 | |
JP7265891B2 (ja) | 微細気泡発生装置 | |
WO2021199202A1 (ja) | 中和装置 | |
JP7144977B2 (ja) | エジェクタシステム | |
WO2008090430A1 (en) | Drainage apparatus for fuel cell system generation water | |
JP2004188246A (ja) | オゾン水製造システム | |
KR20200139630A (ko) | 가스 용해액 공급 장치 및 가스 용해액 공급 방법 | |
JP7230574B2 (ja) | 中和装置 | |
KR20180045043A (ko) | 연료 전지 시스템 및 그 제어 방법 | |
CN115244011B (zh) | 中和装置 | |
JP4481887B2 (ja) | 散気システム | |
JP5412135B2 (ja) | オゾン水供給装置 | |
JP7247617B2 (ja) | 中和装置 | |
JP5215736B2 (ja) | 流体供給装置 | |
CN114931870A (zh) | 净水机及其出水控制系统与方法 | |
JP2005152734A (ja) | 微細空気供給装置 | |
JP2007170309A (ja) | ポンプの制御方法及び給水装置 | |
KR20230052728A (ko) | 분리형 bop 적용 수전해장치 | |
KR20210096013A (ko) | 오존수 제조 장치 | |
JP2005279546A (ja) | 配管装置 | |
JP2004237264A (ja) | 真空脱気装置 | |
JP2005262195A (ja) | 電解中に発生するガス抜き機構を備えた電解水生成器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20928183 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217051918 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20928183 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |