WO2021197145A1 - 一种局部增强型玻璃制品及其加工方法 - Google Patents

一种局部增强型玻璃制品及其加工方法 Download PDF

Info

Publication number
WO2021197145A1
WO2021197145A1 PCT/CN2021/082512 CN2021082512W WO2021197145A1 WO 2021197145 A1 WO2021197145 A1 WO 2021197145A1 CN 2021082512 W CN2021082512 W CN 2021082512W WO 2021197145 A1 WO2021197145 A1 WO 2021197145A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ion exchange
reinforced
locally
glass product
Prior art date
Application number
PCT/CN2021/082512
Other languages
English (en)
French (fr)
Inventor
胡伟
谈宝权
黄昊
陈芳华
Original Assignee
重庆鑫景特种玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆鑫景特种玻璃有限公司 filed Critical 重庆鑫景特种玻璃有限公司
Publication of WO2021197145A1 publication Critical patent/WO2021197145A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention belongs to the technical field of glass products, and in particular relates to a locally reinforced glass product and a processing method thereof.
  • Glass products such as cover glass and glass bottom plates, can be used in consumer and commercial electronic devices, such as LCD and LED displays, computer monitors, and automated teller machines (ATM). Some of these glass products may include a "touch" function, which makes the glass product must be in contact with various objects (including the user's finger and/or stylus device), so the glass must be strong enough to withstand normal contact without damage . In addition, such glass products can also be incorporated into portable electronic devices such as mobile phones, personal media players and tablet computers. With the rapid development of electronic products, the field of electronic equipment has put forward higher requirements for glass-made protective covers, casings, enclosures and other products. They not only require high strength and scratch resistance, but also hope to become thinner and thinner.
  • the thickness of the product is generally in the range of 0.4-2mm, and the glass substrate used is thin glass in the conventional sense.
  • the glass substrate used is thin glass in the conventional sense.
  • the brittleness of the glass itself is high, the fracture toughness is small, and the large number of cracks produced are easy to expand, which leads to a great reduction in the strength of the glass.
  • its light transmittance will inevitably be sacrificed. Therefore, how to improve the strength of the edge region of the glass is a problem that needs to be solved by those skilled in the art.
  • the invention patent CN107555804A is a method for preparing touch screen glass.
  • the edge of the glass is etched to remove the burrs on the edge of the glass, which eliminates stress concentration and makes the edge of the glass more uniform, thereby greatly increasing the strength of the glass.
  • the invention patent CN103108842A discloses a method for strengthening the edge of a glass product.
  • a protective coating or film of polymer or polymer resin is applied on at least one surface of the glass product. The surface may be melted or polished, and/or chemically strengthened or thermally strengthened.
  • CN106536439A discloses a method for strengthening the edge of a liquid crystal display (LCD) or organic light emitting diode (OLED) display glass substrate.
  • the method includes exposing the edge of the display panel to an acid solution, the duration and the temperature Effectively remove glass no more than 20 microns from the edge surface, wash away the acid solution from the edge and apply a polymer protective coating to the cleaned edge to maintain the etched strength of the edge surface.
  • the above method can increase the strength of the glass edge to a certain extent, the chemical corrosion process often causes a decrease in the optical performance of the glass surface, the strength of the glass recovery cannot be sustained, and the attenuation is very serious.
  • Another way is to coat the edge of the glass with a filling liquid to fill up the micro cracks and gaps at the edge of the glass to achieve the purpose of enhancing the edge strength of the glass.
  • the invention patent CN107628757A discloses a method for improving the edge strength of the flat glass of the display. The environmentally friendly filling liquid is used to fill the micro cracks and gaps on the edge of the flat glass, and then the peripheral edges of the flat glass are irradiated by laser to eliminate the edge.
  • the generated micro-cracks, gaps and edge chipping, etc. will not pollute the environment and are more environmentally friendly, and the method can better maintain the strength of the edge of the plate glass.
  • the disadvantage of this method is that the filling liquid is easily oxidized and corroded, and its hardness is lower than that of glass, and it is easy to be worn. Once the filling liquid is corroded or worn, the strengthening effect will be lost, causing the glass to break.
  • Glass ceramic is a new type of ceramic material developed in the 1970s. It is a composite material with microcrystals and glass phase uniformly distributed after heat treatment at a certain temperature. It is also called glass-ceramics. It has high mechanical strength and chemical Good stability and thermal stability, high service temperature, hardness and wear resistance, and many other valuable properties. In recent years, glass ceramics have been gradually applied to electronic display devices, especially as display protection screens for electronic devices. Although the mechanical properties of glass ceramics are stronger than conventional chemically strengthened glass, it also sacrifices its optical properties while increasing its strength, destroys the visual effects presented by the display of electronic equipment, and affects consumers' visual experience. Therefore, how to balance the two is also a recent research hotspot.
  • the invention patent CN1470470A discloses a partially crystallized glass, the crystallized glass contains precipitated halide crystals containing rare earth elements, the method includes: irradiating with a laser containing one or more rare earth elements and one or more halogenated The glass substrate of the object.
  • the glass involved in the patent is used to manufacture full-color displays, infrared sensors, short-wave solid-state lasers, etc., and the method to obtain partial crystallization not only requires the addition of rare earth elements and halides in the glass substrate, but also requires the application of expensive pulsed and high-focus The laser. This not only makes the cost high, but also makes the industrial production efficiency low, because the focus of the laser must pass through the material accurately and the focus can only handle a very small volume.
  • the purpose of the present invention is to provide a locally reinforced glass product.
  • the technical problem to be solved is how to reduce the cost and the influence on the light transmittance of the glass product while increasing the strength of the local area of the flake glass.
  • the present invention also provides the application of the partially reinforced glass product as a glass cover in protective cover glass such as handheld devices, notebook computers, desktop computers, and televisions.
  • Another object of the present invention is to also provide a method for processing the partially reinforced glass product, how to simplify the process, reduce the production cost, and facilitate industrial production.
  • a locally reinforced glass product including a locally reinforced area and a non-reinforced area; wherein the Vickers hardness of the locally reinforced area is greater than or equal to 620kgf/mm 2 , which is higher than the non-reinforced glass product.
  • the enhanced area is 5-20% higher.
  • the local enhanced zone includes an ion exchange zone and a non-ion exchange zone, and the average crystal content in the ion exchange zone is greater than the average crystal content in the non-ion exchange zone.
  • the average crystal content in the local reinforcement zone is at least 10 wt%. Further, the average crystal content in the local reinforced zone is 30 to 95 wt%.
  • the crystal size in the local enhancement zone is 20 nm to 200 nm.
  • the main crystal phase of the crystal in the local enhancement zone is lithium disilicate
  • the secondary crystal phase is lithium silicate.
  • the lithium disilicate occupies more than 60% of the crystal mass.
  • the ion exchange zone is formed by the exchange of X ions with Li ions and/or Na ions in the local strong zone; wherein, the X is at least one of Ag, Cu and lanthanides.
  • the locally enhanced region has a light transmittance of at least 81% in the visible light range; the non-enhanced region has a light transmittance of 90.5% to 93.5% in the visible light range.
  • the thickness of the glass product is 0.2 mm to 1.5 mm.
  • the mol% content of Li, Na or K oxides in the non-reinforced area of the glass product is 5%-30%, and Na 2 O is less than or equal to the total amount of Al 2 O 3 and B 2 O 3 .
  • Another object of the present invention is to provide a glass cover plate, which is formed by chemically strengthening the above-mentioned glass with a partially reinforced structure.
  • Another object of the present invention is to provide the use of the above-mentioned glass cover in partial protective cover glass for handheld electronic devices, notebook computers, desktop computers and televisions, or to form display substrates, touch sensors or integral touch covers At least part of the use of glass.
  • Another object of the present invention is to provide a method for processing partially reinforced glass products, which adopts cutting and forming precursor glass, and includes the following steps:
  • the salt bath in step S1 is 1wt% ⁇ 20wt% XNO 3 + 80wt% ⁇ 99wt% NaNO 3.
  • the temperature of the salt bath ion exchange in step S1 is 80°C below the glass transition point (Tg) to 60°C above the glass transition point (Tg), and the time is 1-10 h.
  • the temperature is 30-100° C. above the DSC glass transition point (Tg), and the nucleation treatment is 1 to 4 hours. Furthermore, in the nucleation treatment in step S2, the temperature is 50 to 80°C above the DSC glass transition point (Tg), and the nucleation treatment is 1 to 4 hours.
  • the temperature is 20-150°C below the first crystallization peak of DSC and/or 70-150°C below the second crystallization peak of DSC, crystallization treatment 1-2 2 to 6h each time.
  • the ion exchange insulating material is ink or SiO 2 isolation layer.
  • the precursor glass is alkali-containing aluminosilicate glass. Further, the precursor glass is formed by any one of a float method, an overflow method, a calender method, and a casting method.
  • the above processing method further includes: step S3, placing the product obtained in step S2 in an alkali metal salt bath for chemical strengthening. At least one ion exchange is carried out in an alkali metal salt bath, and the ion exchange temperature is 100°C below the glass transition point to 100°C above the glass transition point, and each ion exchange time is 0.1-8h.
  • the alkali metal salt bath is at least one of sodium salt, potassium salt and lithium salt.
  • the present invention has the following beneficial effects:
  • the glass prepared by the present invention includes a locally reinforced area and a non-reinforced area.
  • the Vickers hardness of the locally reinforced area is greater than or equal to 620kgf/mm 2 , which is increased by 5-20% compared with the non-reinforced area;
  • the crystal content of the local reinforcement zone is in a decreasing distribution in a direction extending from the main surface of the glass product to the center of the glass product in the longitudinal direction.
  • the locally reinforced glass product prepared by the present invention contains a crystal phase in the local reinforced zone, and the dispersed crystals can deflect the propagation path of the microcracks, making it difficult for the microcracks caused by edge cutting to grow.
  • crystallization is performed after cutting. During the crystallization process, a part of the edge cracks will heal, which improves the edge strength of the glass product from two aspects.
  • the average hardness, flexural strength, fracture toughness and other mechanical properties of the glass product can be improved, thereby improving the scratch resistance and drop resistance of the glass product to meet the requirements of high mechanical strength. Electronic display cover demand.
  • the basic component of the glass of the present invention controls the introduction amount of sodium oxide in the glass to be less than or equal to the introduction amount of alumina and boron oxide to ensure the ratio of bridging oxygen, so that lithium disilicate in the glass ceramic is the main crystalline phase.
  • a single "molecular weight" lithium silicate crystal has no bridging oxygen, and a single “molecular weight” lithium disilicate has a bridging oxygen, and the structure is relatively stable, thereby improving the crystallization efficiency of the enhanced region.
  • the glass products prepared by the present invention not only have good light transmittance and high strength in the edge area, but also can undergo an ion exchange strengthening process to form surface compressive stress and further obtain higher strength to meet the needs of high mechanical strength electronic displays
  • the cover plate needs to be used for partial protection and coverage of handheld devices, notebook computers, desktop computers and televisions, with a wide range of applications and good application prospects.
  • the production method of the present invention is simple, does not require ultraviolet light or laser heating, the production process is easy to control, and the production cost is low, the process is unique, the operability is strong, it is easy to popularize and apply, and can realize batch industrial production.
  • the present invention utilizes ion exchange insulating materials to realize the control of crystal nuclei in the glass distribution and micro-crystallization treatment. Since the glass substrate in the area covered by the insulating material cannot be effectively crystallized, the glass ceramic is finally chemically strengthened. The strength is further improved, thereby achieving good light transmittance in the middle area and high strength at the edges.
  • Fig. 1 is a schematic diagram of the structure of a partially reinforced glass product of the present invention.
  • Fig. 2 is a cross-sectional view taken along the line A-A in Fig. 1.
  • Fig. 3 is a B-B cross-sectional view of Fig. 1.
  • Fig. 4 is a cross-sectional view taken along line C-C in Fig. 1.
  • Fig. 5 is a curve characterizing the visible light transmittance of the glass product of the present invention.
  • Figure 6 shows the DSC curve of the precursor glass at a heating rate of 10°C/min.
  • precursor glass is a glass sheet cut and shaped, and the size is suitable for products such as handheld electronic devices to be installed.
  • the depth of the compressive stress layer refers to the depth of the compressive stress layer on the surface of the glass cover plate made of the partially reinforced glass product (Depth of Layer), in ⁇ m.
  • “chemically strengthened glass” is a chemically toughened glass that has been processed by a high-temperature ion exchange process.
  • the large alkali metal ions replace the small alkali metal ions in the glass to generate a difference in exchange ion volume, which produces a high to low compressive stress in the glass surface, which hinders and delays the growth of glass microcracks, and improves the glass machinery.
  • the purpose of strength is a chemically toughened glass that has been processed by a high-temperature ion exchange process.
  • the conventional method is used to measure the light transmittance
  • the transmittance of the top surface of the glass plate is used
  • the light spot of the test instrument is circular
  • the diameter of the light spot ⁇ (1/3a, 1/2a) measured every 10nm within 360-740nm
  • the present invention provides a locally reinforced glass product, including a locally reinforced zone 3; wherein the Vickers hardness of the locally reinforced zone is greater than or equal to 620kgf/mm 2 , which is 5-20% higher than the non-reinforced zone.
  • the Vickers hardness of the local reinforced zone is greater than or equal to 640kgf/mm 2 , 660kgf/mm 2 , 680kgf/mm 2 , 700kgf/mm 2 , 730kgf/mm 2 ; it is higher than the Vickers hardness of the non-reinforced zone 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%.
  • the local enhanced zone 3 includes an ion exchange zone 1 and a non-ion exchange zone 2, and the average crystal content of the ion exchange zone in the local enhancement zone 3>the average crystal content of the non-ion exchange zone.
  • the average crystal content in the ion exchange zone of the local enhancement zone is 30 to 95 wt%.
  • the ion exchange zone 1 is in a semi-enclosed state to surround the non-ion exchange zone 2 so that the visible light of the locally enhanced zone 3 is distributed in a decreasing direction from the end to the non-enhanced zone 4.
  • the ion exchange zone 1 in the thickness direction of the glass product, is in a semi-enclosed state to surround the non-ion exchange zone 2, so that the visible light of the local enhanced zone 3 extends from the end to the non-enhanced zone 4 Presents a decreasing distribution.
  • the locally enhanced region has a light transmittance of at least 81% in the visible light range; the non-enhanced region has a light transmittance of 90.5% to 93.5% in the visible light range. In this way, the crystal mass percentage is higher, and the fracture toughness and hardness are higher, although the visible light transmittance will be sacrificed, and the optical performance of the non-enhanced region 4 will not be affected.
  • the transmittance curve of the local enhanced zone 3 in the visible light range is shown in Fig. 5 curve C, and its average range is 90.5%-91.5%, the lowest value is greater than 86%, preferably greater than 88%, 89%, 90%.
  • the transmittance of the non-enhanced area 4 in the visible light range is shown in the curve D of FIG. 5, and the average value thereof ranges from 91.5% to 93.5%.
  • the transmittance curve of the local enhanced zone 3 in the visible light range is shown in Figure 5 curve A, and its average range is 87%-91.5%, and the lowest value is greater than 81%;
  • the transmittance of the enhanced zone 4 in the visible light range is shown in the curve B of FIG. 5, and the average value thereof ranges from 90.5% to 91.5%.
  • the glass product herein is transparent, and the thickness of the glass product is 0.2 mm to 1.5 mm.
  • the thickness of 1mm in the visible light range (wavelength range from 380nm to 780nm) average light transmittance is 87% or higher, 88% or higher, 89% or higher, 90% or higher, 91% or higher , 92% or higher, 93% or higher (including surface reflection loss).
  • similar glass products may be translucent in the wavelength range of 380nm to 780nm.
  • the average transmittance of the translucent glass product in the wavelength range of 450 nm to 600 nm is 20% to 85% or less.
  • the crystal content in the local reinforcement zone 3 is at least 10 wt%. In some embodiments, the average crystal content in the local reinforcement zone is 30 to 95 wt% and all ranges and sub-ranges therebetween. For example, 40 to 95 wt%, 50 to 95 wt%, 60 to 80 wt%, 70 to 90 wt%, 30 wt%, 40 wt%, 50 wt%, 60 wt%, 70 wt%, 80 wt%, or 95 wt%.
  • the average size of the crystals in the enhanced region is between 20 nm and 200 nm, preferably between 40 nm and 85 nm.
  • Crystals with an average crystal size between 40 nm and 85 nm do not affect the visible light transmittance of the glass.
  • the local enhanced zone 3 includes a crystal phase and a glass phase, and the crystal phase is distributed inside the glass phase.
  • the interface is the cross section that causes the scattering effect.
  • the scattering effect on the interface has a greater influence on the average visible light transmittance of glass products.
  • the size of the scattering effect mainly depends on the average size of the crystal. Generally speaking, the smaller the average crystal size of the crystal, the smaller the area of the cross section that causes the scattering effect.
  • the smaller the scattering effect of the cross section on visible light, the corresponding glass product The greater the average visible light transmittance.
  • the average crystal size of the crystal of the glass product of the present invention is less than or equal to 85 nm. Accordingly, the cross-sectional area of the crystal causing light scattering is relatively small, and the scattering effect of the crystal to light is relatively small, which makes the glass product have a higher visible light wave band.
  • the crystals in the glass product of the present invention can deflect the propagation path of the glass phase microcracks, making it difficult for the microcracks to expand, and further improving the drop resistance of the glass product.
  • the average crystal size of the crystals in the glass product will affect the mechanical properties of the glass product. Generally speaking, the smaller the average crystal size of the crystals in the glass product, the worse the mechanical properties of the corresponding glass product. Based on this, a preferred average crystal size of the crystals in the present invention is 40 nm to 85 nm.
  • the enhanced region in the precursor glass to be processed is introduced into the nucleus element X ions, preferably Ag ions.
  • the nucleus element X ions preferably Ag ions.
  • Ag ions and Na ions and/or Li ions in the glass substrate undergo ion exchange.
  • the ion exchange zone is in a semi-enclosed state to surround the non-ion exchange zone, so that the ion exchange content of the local enhanced zone is respectively It shows a decreasing distribution in the extending direction from the main surface of the glass to the center position.
  • concentration of the crystal nucleus ion X and the depth from the glass surface conform to the ion diffusion model.
  • the number of X ions after the maximum exchange depth of X ions is 0; in the X ion exchange depth zone, X ions account for Li and Na before ion exchange.
  • the minimum concentration m 0 ranges from 0.001% to 0.1%
  • the maximum concentration A+m 0 ranges from 0.2% to 1.2%.
  • the aforementioned ion exchange depth (that is, the penetration depth of the invading X ions into the glass) is usually 20-300 ⁇ m, such as 40-300 ⁇ m, and the ion exchange depth is controlled by the glass composition and immersion time. In the present invention, the ion exchange depth is not low 5% of the thickness of the glass. The time and temperature of ion exchange have an impact on the surface compressive stress of chemically strengthened glass products.
  • the enhanced region may undergo ion exchange to obtain the following layer depths: 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, 80 ⁇ m or more, 90 ⁇ m Or more, or 100 ⁇ m or more, and the depth of ion exchange is not less than 5% of the thickness of the glass.
  • the non-reinforced area is not subjected to the Li-X or Na-X ion exchange; then, the above-mentioned glass product is heat-treated to obtain a glass product with a partially reinforced type.
  • the local reinforced area 3 in the glass product occupies 1/25 to 3/5 of the total area of the glass product, and preferably the area of the reinforced area is 1/5 of the total area of the glass product.
  • the local reinforcement zone 3 is at least one edge of the glass product, and the "edge” is a band formed by extending the edge of the glass product to the inside of the glass by a certain width.
  • the local reinforced area 3 is the glass frame area of the glass product.
  • the frame area refers to at least one side of any polygon or four rectangular peripheries of the product (glass cover). It may include one or any combination of straight edge portions, curved edge portions, beveled edge portions, rough edge portions, and sharp edge portions.
  • the local reinforced area of a glass product is at least one frame area of a rectangle, the length of the frame is the length of the side where the rectangular glass is located, the frame width is m or n, m is 1%-10% of the width of the rectangular glass, and n is the rectangular glass. 1%-20% of the length; m ⁇ n.
  • the reinforced area extends from the edge of the glass to the inside, so the width of the glass product is within the above range, which can well control the propagation of micro-cracks at the edge of the glass, improve the strength of the glass, especially the strength of the edge of the glass, without affecting other properties of the glass. .
  • the present invention also provides the application of the glass product for a glass cover plate, which is formed by using the partially reinforced glass product after strengthening treatment. It can be widely used as partial protective cover glass for handheld electronic devices, notebook computers, desktop computers and televisions.
  • the glass cover in the present invention can be applied to electronic devices, such as mobile phones, tablet computers (Pad), computers, virtual reality (VR) terminal equipment, and augmented reality (Augmented Reality, AR) terminals Devices, wearable devices, televisions, etc.
  • the electronic device includes a housing having a front surface, a rear surface, and a side surface; electronic components located in the housing; a display located on the front surface of the housing or adjacent to the front surface of the housing; and
  • the covering substrate on the display is used to isolate and protect the display panel, and to prevent damage to the display panel caused by external things or forces.
  • the covering substrate or the outer shell includes any of the above-mentioned glass cover plates.
  • the glass cover includes a local reinforced area 3 and a non-reinforced area.
  • the average crystal size of the reinforced area of the glass product is in the range of 30nm to 200nm, preferably 40nm to 85nm. Within this preferred range, the average visible light transmittance of the reinforced area of the glass product reaches 87% or more, and the visible light transmittance of other display areas is not Affected by crystallization.
  • the glass cover plate has a good light transmittance, so it will not affect the use of the display panel below it. At the same time, since the glass cover has good mechanical strength, the scratch resistance and drop resistance of the glass cover are improved, so it is not easy to damage.
  • the present invention also provides a method for processing partially reinforced glass products, which adopts cutting and forming precursor glass, and includes the following steps:
  • S1 Mask the non-reinforced area of the precursor glass with an ion-exchange insulating material, and then immerse it in a salt bath containing X ions, so that the X ions in the salt bath and the Li ions and/or in the unmasked local regions of the glass Or Na ions for exchange; wherein, the X ions are at least one of Ag, Cu and lanthanides;
  • the precursor glass contains alkaline aluminosilicate, alkaline compound or alkaline compound.
  • the mol% content of Li, Na or K oxides in the glass product is 5%-30%, and Na 2 O is less than or equal to the total amount of Al 2 O 3 and B 2 O 3.
  • the addition of a certain amount of alkali metal oxides can reduce the high temperature viscosity of the glass and make the glass easier to melt. Controlling Na 2 O to be less than or equal to the total amount of Al 2 O 3 and B 2 O 3 is to ensure the ratio of bridging oxygen, so that lithium disilicate in the glass ceramic is the main crystalline phase.
  • a single "molecular weight” lithium silicate crystal has no bridging oxygen, and a single “molecular weight” lithium disilicate has a bridging oxygen, and its structure is relatively stable.
  • the structure of the glass is rearranged during the heat treatment, and the silicon-oxygen tetrahedrons are connected by bridging oxygen.
  • the bridging oxygen is less, and lithium silicate is preferentially precipitated; at the same time, the addition of sodium oxide breaks the glass network , The number of bridge oxygen decreases and the lithium silicate crystals increase.
  • the sodium oxide content increases to a certain ratio, only lithium silicate crystals can be precipitated.
  • the amount of sodium oxide introduced in the glass must be controlled to be less than or equal to the amount of alumina and boron oxide introduced to ensure the ratio of bridging oxygen, so that the lithium disilicate in the glass ceramic is the main crystalline phase.
  • the addition of small-sized alkali metal ions can ensure the ion exchange of the glass and form a compressive stress layer on the surface.
  • the glass product or precursor glass (the glass product or precursor glass is referred to as glass when referring to the components below) includes the following mol% components: Si 2 O at least 64%; Al 2 O 3 : 4-12%; B 2 O 3 : 1 ⁇ 3%; Li 2 O: 5 ⁇ 25%; NaCl: 0 ⁇ 1%; Na 2 SO 4 : 0 ⁇ 1%; Among them, Na 2 O: less than or equal to alumina and B 2 O The total amount of 3.
  • the mol% content of Li, Na or K oxides in the glass is 5%-30%.
  • SiO 2 is the main glass forming oxide, which is a glass network former, and can form a silicon-oxygen tetrahedron as the basic network of glass.
  • the high content of SiO 2 ensures that the glass has excellent properties such as high strength, heat-resistant expansion, and chemical stability, but too high SiO 2 makes the glass more difficult to melt and shape.
  • SiO 2 is the main component of many crystallites.
  • the content of SiO 2 in the glass base may include at least 64 mol% and all ranges and sub-ranges therebetween, such as 65 mol% or more, 68 mol% or more, 69 mol% Or more, 70 mol% or more, 75 mol% or more, 78 mol% or more, 79 mol% or more, 80 mol% or more, 82 mol% or more, 85 mol% or more, 88 mol% or more More, 89 mol% or more, 90 mol% or more, 92 mol% or more, 95 mol% or more.
  • Al 2 O 3 can also provide a stable network. It is a glass network intermediate. It can form [AlO 4+ ] tetrahedrons in the glass and connect the non-bridging oxygen of the [SiO 4+ ] network structure to consolidate the network structure and further improve the glass. Strength and stability, and the [AlO 4+ ] tetrahedron has a larger volume, which widens the gap of the network structure, which is beneficial to the subsequent chemical tempering process. Al 2 O 3 is also the main component for the formation of crystallites, which can increase the viscosity of the glass and inhibit crystallization.
  • the glass composition may include 4-12 mol% Al 2 O 3 and all ranges and sub-ranges therebetween, such as 4-11.5 mol%, 4-11 mol%, 4-10.5 mol%, 4 ⁇ 10mol%, 4 ⁇ 9.5mol%, 4 ⁇ 9mol%, 5 ⁇ 11.5mol%, 5 ⁇ 11mol%, 5 ⁇ 8.2mol%, 8.6 ⁇ 8.8mol%, 9mol%, 9.4mol%, 9.6mol%, 9.8 mol%, 10 mol%, 10.2 mol%, 10.4 mol%, 10.6 mol%, 10.8 mol%, 11 mol%, 11.2 mol%, 11.4 mol%, 11.6 mol%, 11.8 mol%, or 12 mol%.
  • B 2 O 3 can also be used as a glass network former, which can form a basic network of glass with boron-oxygen tetrahedrons and silicon-oxygen tetrahedrons. Helps to provide a glass precursor with a low melting point.
  • adding B 2 O 3 to the original silk glass and glass-ceramics helps to realize the interlocking crystal microstructure, and can also improve the damage resistance of the glass-ceramics.
  • the glass composition may include 1 to 3 mol% Al 2 O 3 and all ranges and sub-ranges therebetween, such as 1 to 2.8 mol%, 1 to 2.5 mol%, 1 to 2.4 mol%, 1 ⁇ 2mol%, 1 ⁇ 1.5mol%, 2 ⁇ 3mol%, 2 ⁇ 2.5mol%, 2.5 ⁇ 3mol%, 1mol%, 1.4mol%, 1.6mol%, 1.8mol%, 2mol%, 2.2mol%, 2.4 mol%, 2.6 mol%, 2.8 mol%, 3 mol%.
  • Na 2 O can reduce the viscosity of the glass liquid and break the network in the glass network. Too much Na ions will reduce the proportion of bridging oxygen in the glass network. 1 mol of sodium oxide provides 1 mol of oxygen for alumina or boron oxide to form a tetrahedron. 1 mol of bridging oxygen, so the amount of sodium oxide added needs to be less than or equal to the total amount of alumina and B 2 O 3. The addition of sodium oxide breaks the glass network, reduces the number of bridge oxygen, and increases lithium silicate crystals. When the sodium oxide content increases to a certain ratio, only lithium silicate crystals can be precipitated.
  • the amount of sodium oxide introduced in the glass must be controlled to be less than or equal to the total amount of alumina and boron oxide introduced to ensure the proportion of bridging oxygen so that the lithium disilicate in the glass ceramic is the main crystalline phase.
  • the glass composition may include Na 2 O: less than or equal to the total amount of alumina and B 2 O 3 and all ranges and sub-ranges therebetween, such as 5-15 mol%, 4-11 mol% , 4 ⁇ 10.5mol%, 4 ⁇ 10mol%, 4 ⁇ 9.5mol%, 4 ⁇ 9mol%, 5 ⁇ 11.5mol%, 5 ⁇ 11mol%, 5 ⁇ 8.2mol%, 8.6 ⁇ 8.8mol%, 5mol%, 6mol %, 7mol%, 8mol%, 9mol%, 10mol%, 11mol%, 11.4mol%, 11.6mol%, 11.8mol%, 12mol%, 13mol%, 14mol%, 14.5mol%, or 15mol%.
  • Li 2 O can significantly reduce the viscosity of the glass liquid, and too much introduction will cause the glass to crystallize at low temperature.
  • Lithium oxide is generally used for the formation of glass ceramics, while other alkali metal oxides tend to reduce the formation of glass ceramics, forming aluminosilicate residual glass in glass ceramics.
  • the glass composition may include Li 2 O 5-25% and all ranges and sub-ranges therebetween, such as 5-24 mol%, 5-22 mol%, 5-20 mol%, 5-18 mol% , 5 ⁇ 10mol%, 4 ⁇ 25mol%, 4 ⁇ 20mol%, 4 ⁇ 18mol%, 4 ⁇ 15mol%, 4 ⁇ 10mol%, 5mol%, 6mol%, 7mol%, 8mol%, 9mol%, 10mol%, 11mol %, 12mol%, 15mol%, 18mol%, 20mol%, 21mol%, 22mol%, 23mol%, 24mol%, or 25mol%.
  • the glass also contains a nucleating agent, and the nucleating agent is P 2 O 5 and/or ZrO 2 .
  • the content of the nucleating agent is P 2 O 5 and ZrO 2 independently selected from Y, 0 ⁇ Y ⁇ 3%.
  • the composition of the glass may also include P 2 O 5 , and P 2 O 5 can be used as a nucleating agent to generate a large amount of nucleation.
  • P 2 O 5 can be used as a nucleating agent to generate a large amount of nucleation.
  • a small amount of introduction will cause Li 3 PO 4 crystal nuclei to be precipitated during the heat treatment of the glass, and it will be easier to precipitate in the presence of heavy metal ions (lower temperature). If the concentration of P 2 O 5 is too high, it will be difficult to control the denitration effect of the precursor glass after forming and cooling.
  • the glass composition may include 0-3% P 2 O 5 and all ranges and sub-ranges therebetween, such as 0-2.8 mol%, 0-2.6 mol%, 0-2 mol%, 0 ⁇ 1.8mol%, 0 ⁇ 1.0mol%, 1 ⁇ 2.5mol%, 1 ⁇ 2.0mol%, 1 ⁇ 1.8mol%, 1 ⁇ 1.5mol%, 1 ⁇ 1.2mol%, 0mol%, 1.5mol%, 1.8mol %, 2mol%, 2.9mol%, 2.8mol%, 2.6mol%, 2.5mol%, 2.1mol%, 0.8mol%, 0.6mol%, 0.5mol%, 0.4mol%, 0.3mol%, 0.2mol%, or 0.1 mol%.
  • the glass composition can also include ZrO 2.
  • ZrO 2 can also be used as a nucleating agent to generate a large amount of nucleation. It can significantly reduce the denitrification effect of the glass during the formation process and lower the liquidus temperature to increase Li 2 O-Al 2 The stability of O 3 -SiO 2 -P 2 O 5 glass. The addition of ZrO 2 also helps to reduce the grain size of the crystals, thereby contributing to the formation of transparent glass ceramics.
  • the glass composition may include 0-3% ZrO 2 and all ranges and sub-ranges therebetween, such as 0-2.8 mol%, 0-2.6 mol%, 0-2 mol%, 0-1.8 mol%, 0 ⁇ 1.0mol%, 1 ⁇ 2.5mol%, 1 ⁇ 2.0mol%, 1 ⁇ 1.8mol%, 1 ⁇ 1.5mol%, 1 ⁇ 1.2mol%, 0mol%, 1.5mol%, 1.8mol%, 2mol%, 2.9mol%, 2.8mol%, 2.6mol%, 2.5mol%, 2.1mol%, 0.8mol%, 0.6mol%, 0.5mol%, 0.4mol%, 0.3mol%, 0.2mol%, or 0.1mol %.
  • the composition of the glass can also be a chemical fining agent.
  • clarifying agents include but are not limited to NaCl and Na 2 SO 4 .
  • the glass composition may include NaCl 0-1% and all ranges and sub-ranges therebetween, such as 0-0.9 mol%, 0-0.8 mol%, 0-0.7 mol%, 0-0.6 mol%, 0 ⁇ 0.5mol%, 0 ⁇ 0.4mol%, 0.5 ⁇ 1.0mol%, 0.5 ⁇ 0.8mol%, 0.5 ⁇ 0.7mol%, 0.5 ⁇ 0.6mol%, 1mol%, 0.9mol%, 0.8mol%, 0.7 mol%, 0.6 mol%, 0.5 mol%, 0.4 mol%, 0.3 mol%, 0.2 mol%, or 0.1 mol%.
  • the glass composition may include Na 2 SO 4 0-1% and all ranges and sub-ranges therebetween, such as 0-0.9 mol%, 0-0.8 mol%, 0-0.7 mol%, 0 ⁇ 0.6mol%, 0 ⁇ 0.5mol%, 0 ⁇ 0.4mol%, 0.5 ⁇ 1.0mol%, 0.5 ⁇ 0.8mol%, 0.5 ⁇ 0.7mol%, 0.5 ⁇ 0.6mol%, 1mol%, 0.9mol%, 0.8 mol%, 0.7 mol%, 0.6 mol%, 0.5 mol%, 0.4 mol%, 0.3 mol%, 0.2 mol%, or 0.1 mol%.
  • the locally strengthened glass product prepared by the present disclosure uses differential crystallization to strengthen the local glass product to prepare a glass product conforming to the stress distribution of the application. Specifically, this method introduces X ions differently, and then heats the precursor glass from the nucleation temperature to the crystallization temperature to form a local enhanced area.
  • the maximum compressive stress level and DOL level in this specific area of the product have obvious advantages, while at the same time Retain the high visible light transmittance of the non-enhanced area.
  • the precursor glass is cut and thoroughly cleaned, and then the non-reinforced area of the article is covered with an ion exchange insulating material.
  • the insulating material used is made of a material that is inert to the selected ions or nucleus ions (such as ink or SiO 2 isolation layer), where inert means that the material cannot pass ions and can be coated as a thin film , Printed and/or otherwise attached to one or more parts of the glass article.
  • the partially covered glass article is then immersed in a salt bath containing X ions for a predetermined duration. Among them, the covered area prevents ion exchange in this area, and the concentration of X ions diffused into this area by the ion diffusion model is negligible.
  • the uncovered part introduces nucleus ions, and then the ion exchange is removed from the glassware in part of the non-reinforced area Insulating material; Finally, the glass product is heated from the initial temperature (usually room temperature) to the nucleation temperature; it is strengthened to a specific compressive stress distribution.
  • the seed layer is heat-treated to initiate nucleation.
  • the X ion is at least one of gold, silver, copper, or lanthanide elements, preferably silver. That is, Ag ions are used to replace Na ions and/or Li ions in the glass substrate by means of ion exchange, and the Ag ions are transformed by heating treatment and the crystals are grown into micro-nano crystals of a target size.
  • the glass is immersed in a salt bath containing crystal nucleus ions for ion exchange, and the crystal nucleus ions replace the small-diameter Na ions and/or Li ions in the glass substrate in the salt bath.
  • the salt bath S1 is 1wt% ⁇ 20wt% XNO 3 + 80wt% ⁇ 99wt% NaNO 3, comprising all ranges and subranges and ranges between the above-described embodiments, in some embodiments the salt bath, e.g.
  • the nucleation temperature may be 30-100°C above the glass transition point (Tg).
  • the nucleation temperature may be 50 to 80°C above the glass transition point (Tg).
  • the nucleation temperature may be 35 to 65°C above the glass transition point (Tg).
  • Heating to the nucleation temperature may involve a single heating rate or multiple heating rates.
  • the glass article can be heated from the initial temperature to the intermediate temperature at a higher rate (for example, 15-25°C/min), and at a lower rate (for example, 6-12°C/min) Heating from intermediate temperature to nucleation temperature.
  • the glass product After the glass product reaches the nucleation temperature, the glass product is maintained at the nucleation temperature for a period of time, during which nuclei are established in the glass product.
  • the nucleation time can be 1 to 10 hours; preferably, the nucleation time can be 1 to 4 hours, and more preferably, the nucleation time can be 3 to 4 hours.
  • the glass article After nucleation, the glass article is heated from the nucleation temperature to the crystallization temperature.
  • the crystallization temperature is 20-150°C below the first crystallization peak of DSC or 70-150°C below the second crystallization peak of DSC.
  • the glass structure is unstable during low temperature heat treatment, and the proportion of bridge oxygen formed is relatively small.
  • lithium silicate is mainly precipitated; if you want to form lithium disilicate in the glass as the main crystalline phase, you can extend the time or increase the crystallization temperature.
  • the structure gradually stabilizes, the bridge oxygen ratio increases, and lithium silicate is gradually transformed into lithium disilicate.
  • the glass product After the glass product reaches the crystallization temperature, the glass product is maintained at the crystallization temperature for a period of time; during this process, at least one crystal phase grows in the glass.
  • the crystallization temperature is such that lithium disilicate is formed as the main crystalline phase in the glass.
  • the crystallization treatment is 1 to 2 times, and the crystallization time can be 2 to 6 hours.
  • the glass article At the end of the crystallization period, the glass article has become a localized crystalline phase.
  • Warpage is a type of mechanical instability that manifests as structural mutations due to bifurcations associated with loss of structural stability.
  • the present invention also includes the use of laminated crystallization in the crystallization process during the heat treatment, and the addition of a silicon carbide plate between each chip to enhance heat conduction provides a uniform and stable thermal field, and avoids single-chip crystallization and easy warping. .
  • the calendering process, float process, overflow process, and casting process used in the present invention can all adopt existing technologies.
  • the precursor glass is mechanically cut into a precursor glass plate with a certain shape, usually a rectangular glass plate product.
  • the raw materials are accurately weighed, and after the raw materials are fully mixed, they are heated at a high temperature for melting.
  • the melting of glass is a very complex process, which includes a series of physical, chemical, and physical and chemical phenomena and reactions. The results of these phenomena and reactions make various raw materials change from mechanical mixtures into complex melts, namely glass. liquid.
  • the melting of glass can be roughly divided into five stages: silicate formation, melting to form molten glass, clarification of molten glass, homogenization of molten glass, and cooling of molten glass.
  • the melting temperature used in the preparation of the present invention is 1610°C to 1650°C.
  • the precursor glass used in the locally reinforced glass product of the present invention may contain various glass components, glass ceramic components, and ceramic components.
  • the choice of glass is not limited to a specific glass composition.
  • the selected component can be any of a wide range of silicate, borosilicate, aluminosilicate or boroaluminosilicate glass components, which optionally can include one or more alkalis And/or alkaline earth modifier.
  • the partially reinforced glass product prepared by the present invention further includes step S3: placing the product obtained in step S2 in an alkali metal salt bath for chemical strengthening.
  • step S3 at least one ion exchange is performed in the alkali metal salt bath, and the temperature is 100°C below the glass transition point to 100°C above the glass transition point, and each strengthening is 0.1-8h; the alkali metal salt bath is sodium salt And at least one of potassium salts, such as pure or mixed salts of sodium nitrate, potassium nitrate and lithium nitrate.
  • the glass article is placed in an alkali metal salt bath for ion exchange. After ion exchange the aforementioned partially reinforced glass, a chemically strengthened glass product is obtained.
  • the alkali metal ions on the surface of the glass product are replaced by alkali metal ions with a larger radius to obtain a chemically strengthened glass product.
  • the volume difference forms a compressive stress layer with a certain depth on the surface of the chemically strengthened glass product.
  • the compressive stress layer can eliminate or inhibit the generation of micro-cracks on the surface of the chemically strengthened glass product. Expansion, so as to achieve the purpose of improving the mechanical properties of chemically strengthened glass products.
  • the traditional ion exchange process usually occurs at no more than the glass transition point. This process is performed by immersing the glass in a molten bath containing alkali metal salts (usually nitrates) whose ions are larger than the main alkali metal ions in the glass.
  • the host alkali metal ions are exchanged for larger alkali metal ions.
  • glass containing Na + can be immersed in a molten potassium nitrate (KNO 3 ) bath.
  • KNO 3 molten potassium nitrate
  • the larger K + in the molten bath will replace the smaller Na + in the glass. Due to the presence of larger alkali metal ions at the sites previously occupied by smaller alkali metal ions, compressive stress is generated at or near the surface of the glass, and tension is generated inside the glass.
  • the present invention also includes a method for preparing the aforementioned chemically strengthened glass product. That is, after the glass product is prepared, ion exchange is performed on the glass product to obtain a strengthened glass product. After the ion exchange process, the glass is removed from the molten bath and cooled.
  • the ion exchange depth (that is, the penetration depth of the invaded larger alkali metal ions into the glass) is usually 20-300 ⁇ m, such as 40-300 ⁇ m, and the ion exchange depth is controlled by the glass composition and the immersion time. In the present invention, the ion exchange depth Not less than 5% of the thickness of the glass. The time and temperature of ion exchange have an impact on the surface compressive stress of chemically strengthened glass products.
  • the surface compressive stress presents a trend of first increasing and then decreasing; based on this, the suitable ion exchange temperature of the present invention is 380°C to 450°C.
  • the surface compressive stress presents a tendency to first increase and then decrease; based on this, the suitable ion exchange time of the present invention is 2h-18h.
  • One or more ion exchange processes used to strengthen glass and/or glass ceramics may include, but are not limited to: immersing them in a single bath, or immersing them in multiple baths with the same or different compositions.
  • the composition of one or more baths may include more than one type of larger ion (e.g., Na + and K + ) or a single larger ion.
  • exemplary bath compositions may include nitrates, sulfates, and chlorides of larger alkali metal ions.
  • Typical nitrates include KNO 3 , NaNO 3 , LiNO 3 , NaSO 4 and combinations thereof.
  • the partially reinforced glass product is immersed in a molten salt bath of 100% NaNO 3 , 100% KNO 3 or a combination of NaNO 3 and KNO 3 , and the temperature of the molten salt bath is 370°C to 480°C.
  • the inner glass layer may be immersed in a molten mixed salt bath that includes 1% to 99% KNO 3 and 1% to 99% NaNO 3 .
  • after the inner glass layer is immersed in the first ion exchange solution it may be immersed in the second ion exchange solution.
  • the first ion exchange solution and the second ion exchange solution may have different compositions and/or temperatures from each other.
  • the immersion time in the first ion exchange solution and the second ion exchange solution can be varied.
  • the immersion in the first ion exchange solution may be longer than the immersion in the second bath.
  • the one-step ion exchange process mainly includes: soaking glass products in pure KNO 3 and/or NaNO 3 molten salt for 2 to 18 hours.
  • the process of multi-step ion exchange mainly includes: in the first step, the ion exchange temperature is immersed in a pure KNO 3 and/or NaNO 3 salt bath for T 1 h under the condition of 380 °C ⁇ 450 °C; KNO 3 and/or NaNO 3 salt bath, immersion for T 2 h at 380°C ⁇ 450°C; the third step, immersion in pure KNO 3 and/or NaNO 3 salt bath, 380°C ⁇ 450°C for T 3 h... ...
  • the nth step soak in a pure KNO 3 and/or NaNO 3 salt bath at 380°C to 450°C for T n hours.
  • the first ion exchange temperature is higher than the second ion exchange temperature, and/or the glass article is in contact with the first ion exchange medium for longer than the time in contact with the second ion exchange medium.
  • S2 Cast the molten glass in a preheated stainless steel mold, and then put it in an annealing furnace, and perform a long-term gradient annealing around the annealing point to eliminate the internal stress of the glass. Cut the glass bricks after annealing with a margin on six sides to obtain glass bricks of appropriate size. Then use wire cutting machines, CNC engraving machines, and flat grinding and polishing machines to perform fine-cutting, flat grinding, and edge sweeping to obtain a size of 160mm *80mm*0.65mm precursor glass plate.
  • S3 Coat the first and second surfaces of the non-reinforced area (central area) of the precursor glass plate with a high-temperature ink layer, and then immerse them in a salt bath containing Ag ions.
  • the salt bath used is 8wt% AgNO 3 + 92wt% NaNO 3
  • the exchange temperature is 380° C.
  • the exchange time is 3 hours. After the ion exchange is completed, take it out and wash, remove the ion exchange insulating material on the precursor glass, and obtain the pretreated glass.
  • step S4 Heat the glass pretreated in step S3, including 1 nucleation treatment and 2 crystallization treatments.
  • the nucleation temperature is 530°C for 5 hours; the first crystallization temperature is 590°C for 4 hours, and the second The secondary crystallization temperature is 650°C for 2 hours to perform partial heat treatment on the precursor glass plate to obtain a glass product.
  • step S5 The glass product of step S4 is subjected to the first step of ion exchange IOX1, the molten salt adopts a mixed salt bath of 20wt% NaNO 3 + 80wt% KNO 3 , the strengthening temperature is 450 °C, and the strengthening time is 6 hours. After the strengthening is completed, take it out for washing net.
  • the glass ceramic prepared by the first step of ion exchange IOX1 is subjected to the second step of ion exchange IOX2.
  • the molten salt adopts a mixed salt bath of 5wt% NaNO 3 + 94.5wt% KNO 3 + 0.5wt% LiNO 3 , and the strengthening temperature is 440°C. , The strengthening time is 2h. After the strengthening is completed, take it out and wash it to obtain a partially strengthened glass product.
  • Example 1 the difference from Example 1 is:
  • the molar parts of the raw material components are: 68.6% of SiO 2 , 4.2% of Al 2 O 3 , 1.0% of B 2 O 3 , 18% of LiO 2 , 1.0% of P 2 O 5 , 1.7% of ZrO 2. 0.5% NaCl and 5.5% Na 2 O.
  • the heat treatment temperature and time are different.
  • the nucleation temperature was 540°C, time 4h and the first crystallization temperature was 580°C, time 5h; the second crystallization temperature was 630°C, time 2h.
  • the chemical strengthening salt bath is different: the first step is ion exchange IOX1, the molten salt adopts a mixed salt bath of 15wt% NaNO 3 +85wt% KNO 3 , the strengthening temperature is 450 °C, and the strengthening time is 6 hours. After the strengthening is completed, take it out for washing. net.
  • the glass ceramic prepared by the first step of ion exchange IOX1 is subjected to the second step of ion exchange IOX2.
  • the molten salt adopts a mixed salt bath of 4wt% NaNO 3 + 94.5wt% KNO 3 + 1.5wt% LiNO 3 , and the strengthening temperature is 440°C. , The strengthening time is 2h. After the strengthening is completed, take it out and wash it to obtain a partially strengthened glass product.
  • Example 1 the difference from Example 1 is:
  • the mole fraction of the raw material components are: 68.6% of SiO 2 , 4.5% of Al 2 O 3 , 1.5% of B 2 O 3 , 19% of LiO 2 , 1.0% of P 2 O 5 , 1.6% of ZrO 2 , 0.3% NaCl, 4.8% Na 2 O.
  • the salt bath of X ion is different.
  • the salt bath used is 2wt% AgNO 3 + 98wt% NaNO 3 , the exchange temperature is 420°C, and the exchange time is 5 hours. After the ion exchange is completed, take it out and wash it.
  • the heat treatment temperature and time are different.
  • the nucleation temperature is 490°C, 5h and the first crystallization temperature is 550°C, 4h; the second crystallization temperature is 590°C, 4h.
  • Example 1 the difference from Example 1 is:
  • the molar parts of the raw material components are: 61.5% SiO 2 , 10% Al 2 O 3 , 1.5% B 2 O 3 , 18% LiO 2 , 1.0% P 2 O 5 , 1.7% ZrO 2 , 0.5% NaCl, 1.5% Na 2 O.
  • the salt bath of X ion is different.
  • the salt bath used is 2wt% AgNO 3 + 98wt% NaNO 3
  • the exchange temperature is 480°C
  • the exchange time is 3 hours. After the ion exchange is completed, take it out and wash it.
  • the heat treatment temperature and time are different.
  • the nucleation temperature is 580°C, the time is 4h; the crystallization temperature is 660°C, the time is 2h.
  • Example 1 the difference from Example 1 is:
  • the glass precursor raw material formulations are different, and the molar parts of the raw material components are: 67.6% of SiO 2 , 8.5% of Al 2 O 3 , 1.5% of B 2 O 3 , 19.0% of LiO 2 , 0.7% P 2 O 5 , 1.8% ZrO 2 , 0.5% NaCl, 1.0% Na 2 O.
  • the salt bath of X ion is different.
  • the salt bath used is 3wt% AgNO 3 + 97wt% NaNO 3
  • the exchange temperature is 480°C
  • the exchange time is 3 hours. After the ion exchange is completed, take it out and wash it.
  • the heat treatment temperature and time are different.
  • the nucleation temperature is 580°C and the time is 4h;
  • the first crystallization temperature is 620°C and the time is 2h;
  • the second crystallization temperature is 680°C and the time is 2h.
  • Example 1 the difference from Example 1 is:
  • the formula of the glass precursor raw materials is different.
  • the molar parts of the raw material components are: 66.8% SiO 2 , 6.2% Al 2 O 3 , 1.5% B 2 O 3 , 18.7% LiO 2 , 0.8% P 2 O 5 , 1.7% ZrO 2 , 0.5% NaCl, 4.8% Na 2 O.
  • the salt bath of X ion is different.
  • the salt bath used is 3wt% AgNO 3 + 97wt% NaNO 3
  • the exchange temperature is 420°C
  • the exchange time is 3 hours. After the ion exchange is completed, take it out and wash it.
  • the heat treatment temperature and time are different.
  • the nucleation temperature is 550°C and the time is 4h;
  • the first crystallization temperature is 610°C and the time is 4h;
  • the second crystallization temperature is 650°C and the time is 4h.
  • Example 1 the difference from Example 1 is:
  • the formula of the glass precursor raw materials is different.
  • the molar parts of the raw materials are: 65.5% SiO 2 , 6.5% Al 2 O 3 , 2.0% B 2 O 3 , 18.7% LiO 2 , 0.8% P 2 O 5 , 1.7% ZrO 2 , 0.5% NaCl, 4.8% Na 2 O.
  • the salt bath of X ion is different.
  • the salt bath used is 3wt% AgNO 3 + 97wt% NaNO 3
  • the exchange temperature is 420°C
  • the exchange time is 3 hours. After the ion exchange is completed, take it out and wash it.
  • the heat treatment temperature and time are different.
  • the nucleation temperature is 550°C and the time is 4h;
  • the first crystallization temperature is 610°C and the time is 4h;
  • the second crystallization temperature is 650°C and the time is 4h.
  • the locally reinforced glass products prepared in Examples 1 to 7 were analyzed for crystals, including the width of the reinforced zone and the crystal size, and the visible light transmittance and mechanical properties of the reinforced and non-enhanced zones were tested at the same time.
  • the visible light transmittance was at 550nm. Measured at the wavelength, and the results are shown in Table 1.
  • the present invention uses ion exchange insulating material to shield the glass substrate in the designated area, so that it cannot obtain effective ion exchange, and realizes the regulation and control of the crystal nucleus in the distribution of glass products, and finally passes through the chemically strengthened glass
  • the strength of the product is further improved, thereby achieving good light transmittance in the middle region of the glass product of the present invention and high strength at the edges.
  • the Vickers hardness of the reinforced zone is increased by 2% to 10% than that of the non-reinforced zone, and the average fracture toughness of the reinforced zone is increased by 9% to 50% than that of the non-reinforced zone, thereby effectively improving the reinforced Vickers hardness and Fracture toughness.
  • the present invention can better control the devitrified area, so as to achieve the purpose of local strengthening, and significantly improve the fracture toughness of the glass, especially the edges.
  • the microcracks on the edge will heal as a result.
  • the fracture toughness of the precipitated crystals is relatively large, which can hinder the further expansion of unhealed microcracks and effectively avoid a large number of microcracks on the edge of the glass. , Collapse point and collapse edge phenomenon.
  • the glass product prepared by the present invention not only improves the strength of the reinforced area (edge) of the thin glass, but also maintains a good visual effect in the non-reinforced area (display screen), and is suitable for partial protection and coverage of handheld devices, notebook computers, desktop computers, and televisions. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种局部增强型玻璃制品及其加工方法,玻璃制品包括局部增强区和非增强区;其中,局部增强区的维氏硬度大于或等于620kgf/mm2,比非增强区高5~20%。制备的玻璃制品不仅具有良好的透光性和局部高强度,还能够进行离子交换强化工艺形成表面压应力进一步获得更高的强度,以满足高机械强度的电子显示前盖板需求,可用于手持设备、笔记本电脑、桌面电脑和电视机的部分保护覆盖,适用范围广。该生产方法简单,生产工艺容易控制,并且生产成本较低,工艺独特,可操作性强,易于推广应用。

Description

一种局部增强型玻璃制品及其加工方法 技术领域
本发明属于玻璃制品技术领域,尤其涉及一种局部增强型玻璃制品及其加工方法。
背景技术
玻璃制品,例如覆盖玻璃和玻璃底板等,可用于消费者和商用电子器件,例如LCD和LED显示器、电脑监测器以及自动取款机(ATM)等。部分此类玻璃制品可包括“触摸”功能,这使得玻璃制品必须与各种物体(包括用户的手指和/或手写笔装置)接触,这样,玻璃必须足够的牢固,以经受常规接触而不损坏。此外,此类玻璃制品还可结合到便携式电子器件中,如移动电话、个人媒体播放器和平板电脑。随着电子产品的快速发展,电子设备领域对玻璃制成的保护盖板、外壳、封罩等制品提出了更高的要求,其不仅要求高强度、耐刮擦,还希望变得更薄、更轻、更坚固、更抗破裂和更美观。制品的厚度范围一般在0.4-2mm,所用的玻璃基材是常规意义上的薄玻璃。而上述薄玻璃在生产过程中,需要切割成合适的尺寸,切割时不可避免地会导致玻璃边部区域产生大量微裂纹、崩点和崩边。并且玻璃本身的脆性高,断裂韧性小,产生的大量裂纹极易扩展,从而导致玻璃强度的极大降低。为了能够满足使用的要求,必须使玻璃在较薄厚度下仍具有高的强度。然而,提高玻璃强度的同时,必然会牺牲其透光性。因此,如何提高玻璃边部区域的强度是本领域技术人员需要解决的问题。
为了解决上述问题学者们也做了大量的研究。传统方法是将玻璃的边部区域进行腐蚀处理,进而消除微裂纹,提升玻璃边部区域的强度。如发明专利CN107555804A一种触摸屏玻璃的制备方法,蚀刻玻璃的边缘,去除玻璃的边缘的毛刺,消除了应力集中,使玻璃边缘受力更均匀,从而大幅地增加了玻璃的强度。发明专利CN103108842A公开了强化玻璃制品边缘的方法,在玻璃制品的至少一个表面上施加有聚合物或聚合物树脂的保护涂层或膜。所述表面可熔化产生或经过抛光,以及/或者经过化学强化或热强化。用蚀刻剂蚀刻边缘以减小边缘上瑕疵的尺寸并减少其数量,从而强化边缘。CN106536439A公开了一种针对液晶显示器(LCD)或者有机发光二极管(OLED)显示器玻璃基材的边缘进行强化的方法,该方法包括将显示器面板的边缘暴露于酸溶液,持续的时间和所处的温度有效地从边缘表面去除不超过20微米的玻璃,从边缘清洗掉酸溶液并对经清洗的边缘施加聚合物保护涂层,以维持边缘表面的蚀刻后强度。上述方法虽然在一定程度上可以提升玻璃边缘的强度,但化学腐蚀过程经常会引起玻璃表面光学性能的降低,玻璃恢复的强度不能持久,衰减十分严重。另一种方式是在玻璃的边缘涂覆填充液,进而填补玻璃边缘的微裂纹和缝 隙,达到提升玻璃边缘强度的目的。如发明专利CN107628757A公开了一种提高显示器平板玻璃边缘强度的方法,采用环保的填充液先对平板玻璃边缘的微裂纹和缝隙进行填充,然后再通过激光照射平板玻璃的四周边缘,进而消除该边缘产生的微裂纹、缝隙和崩边等,因而不会对环境造成污染,更加环保,而且该方法能够更好地保持平板玻璃边缘的强度。但这种方式的弊端是填充液容易被氧化腐蚀,并且其硬度低于玻璃,易被磨损,一旦填充液被腐蚀或磨损即失去强化作用,导致玻璃的破裂。
玻璃陶瓷是20世纪70年代发展起来的新型陶瓷材料,它是在一定温度下热处理后变成有微晶体和玻璃相均匀分布的复合材料,也称作微晶玻璃,具有机械强度高、化学稳定性及热稳定性好、使用温度高及坚硬耐磨等许多宝贵性能。近几年玻璃陶瓷逐步应用到电子显示设备,特别是作为电子设备显示保护屏。虽然玻璃陶瓷机械性能强于常规化学强化玻璃,但在提高强度的同时也牺牲了其光学性能,破坏电子设备显示屏呈现的视觉效果,影响了消费者的视觉体验感。因此如何平衡两者也是最近的研究热点。例如发明专利CN1470470A公开了一种局部结晶的玻璃,所述结晶玻璃包含有稀土元素的沉淀卤化物结晶,所述方法包括:用激光照射包含一种或多种稀土元素和一种或多种卤化物的玻璃基底。但该专利涉及的玻璃用作制造全色显示器、红外传感器、短波固态激光器等,且获得局部结晶的方法不仅需要在玻璃基底中加入稀土元素和卤化物,而且需要应用昂贵的脉冲式和高聚焦的激光器。这不仅使得成本高昂,也使得工业生产化的效率较低,因为激光器的焦点必须精确穿过材料并且该焦点只能够处理非常小的体积。
因此,如何提供一种具有局部增强的玻璃制品,提高薄片玻璃边缘强度、维持电子设备显示区域的视觉效果成为当前所属领域技术人员急需解决的技术难题。
发明内容
针对上述现有技术的不足,本发明的目的在于提供一种局部增强型玻璃制品,解决的技术问题是提高薄片玻璃局部区域强度的同时,如何降低成本和降低对玻璃制品透光性的影响。本发明还提供所述局部增强型玻璃制品作为玻璃盖板在手持设备、笔记本电脑、桌面电脑和电视机等保护覆盖玻璃中的应用。
本发明的另一目的是还提供一种所述局部增强型玻璃制品的加工方法,如何简化工艺和降低生产成本,易工业化生产。
为了解决上述技术问题,本发明采用如下的技术方案:一种局部增强型玻璃制品,包括局部增强区和非增强区;其中,局部增强区的维氏硬度大于或等于620kgf/mm 2,比非增强区高5~20%。进一步,所述局部增强区中包含离子交换区和未离子交换区,离子交换区 中的平均晶体含量>未离子交换区中的平均晶体含量。
作为进一步优化,所述局部增强区中平均晶体含量至少为10wt%。进一步,所述局部增强区中平均晶体含量为30~95wt%。
作为进一步优化,所述局部增强区中晶体尺寸为20nm~200nm。
作为进一步优化,所述局部增强区中晶体的主晶相为二硅酸锂,次晶相为硅酸锂。进一步,所述二硅酸锂占晶体质量的60%以上。
作为进一步优化,所述离子交换区是X离子与所述局部强区中Li离子和/或Na离子进行交换形成;其中,所述X为Ag、Cu和镧系元素中的至少一种。
作为进一步优化,所述局部增强区在可见光范围内光具有至少81%的透过率;所述非增强区的可见光范围内光具有90.5%~93.5%的透光率。
作为进一步优化,所述玻璃制品的厚度为0.2mm~1.5mm。
作为进一步优化,所述玻璃制品中非增强区的Li、Na或K的氧化物的mol%含量为5%~30%,Na 2O小于或等于Al 2O 3和B 2O 3的总量。
本发明的另一个目的在于提供一种玻璃盖板,采用上述具有局部增强结构的玻璃经化学强化处理而成。
本发明的另一个目的在于提供上述玻璃盖板在用于手持电子设备、笔记本电脑、桌面电脑和电视机的部分保护覆盖玻璃方面的用途,或在形成显示器基材、触摸传感器或者整体式触摸覆盖玻璃的至少部分方面的用途。
本发明的另一个目的在于提供一种局部增强型玻璃制品加工方法,采用切割成型的前体玻璃,包括以下步骤:
S1:用离子交换绝缘材料掩蔽所述前体玻璃的非增强区的上下表面,然后将其浸入含有X离子的盐浴中,使盐浴中的X离子与前体玻璃未掩蔽的局部区域中的Li离子和/或Na离子进行交换;其中,所述X为Ag、Cu和镧系元素中的至少一种;
S2:X离子交换完成后,去除掉所述前体玻璃的离子交换绝缘材料,得到预处理后的玻璃,然后对预处理后的玻璃进行热处理,所述热处理包括核化处理和晶化处理。
作为进一步优化,步骤S1中所述盐浴为1wt%~20wt%XNO 3+80wt%~99wt%NaNO 3
作为进一步优化,步骤S1中所述盐浴离子交换的温度为玻璃转变点(Tg)以下80℃至玻璃转变点(Tg)以上60℃,时间为1~10h。
作为进一步优化,步骤S2中所述核化处理中,温度为DSC玻璃转变点(Tg)以上30~100℃,核化处理1~4h。进一步,步骤S2中所述核化处理中,温度为DSC玻璃转变点 (Tg)以上50~80℃,核化处理1~4h。
作为进一步优化,步骤S2中所述晶化处理中,温度为DSC第一个析晶峰以下20~150℃和/或DSC第二个析晶峰以下70~150℃,晶化处理1~2次,每次处理2~6h。
作为进一步优化,所述离子交换绝缘材料为油墨或SiO 2隔离层。
作为进一步优化,所述前体玻璃为含碱的铝硅酸盐玻璃。进一步,所述前体玻璃采用浮法、溢流法、压延法及浇铸成型法中的任一种方法成型而成。
作为进一步优化,上述加工方法中还包括:步骤S3,将步骤S2所得的制品置于碱金属盐浴中进行化学强化。在碱金属盐浴中至少进行1次离子交换,离子交换温度在玻璃转变点以下100℃至玻璃转变点以上100℃,每次离子交换时间为0.1~8h。其中,所述碱金属盐浴为钠盐、钾盐和锂盐中的至少一种。
相比现有技术,本发明具有如下有益效果:
1、本发明制备的玻璃所述玻璃制品包括局部增强区和非增强区,所述局部增强区的维氏硬度大于或等于620kgf/mm 2,与非增强区相比提高了5~20%;所述局部增强区的晶体含量从所述玻璃制品的主表面沿纵向上延伸到所述玻璃制品的中心的方向上呈递减分布。这样,不仅有效提高了玻璃制品局部增强区的强度,还有效保留了非增强区的高透光率,使获得的薄玻璃制品具有局部机械强度高、更抗破裂和透光性能好高的特点,既解决薄玻璃边缘强度的问题,又解决玻璃陶瓷影响显示屏视觉效果的问题。
2、本发明制备的局部增强型玻璃制品的局部增强区含有晶体相,分散的晶体可以偏转微裂纹的扩展路径,使边缘切割造成的微裂纹难以扩展。其次,在切割后进行晶化处理,在析晶过程中,边缘的一部分裂纹会愈合,从两方面提高了所述玻璃制品的边缘强度。通过局部增强区增强的机械性能,可以提高所述玻璃制品的平均硬度、抗折强度、断裂韧性等机械性能,从而提升所述玻璃制品的抗划伤和抗跌落等性能,满足高机械强度的电子显示盖板需求。
3、本发明玻璃基础成分通过控制玻璃内氧化钠的引入量,小于等于氧化铝和氧化硼的引入量,保证桥氧的比例,使玻璃陶瓷内二硅酸锂为主晶相。基于单个“分子量”的硅酸锂晶体无桥氧,单个“分子量”的二硅酸锂有一个桥氧,结构相对稳定,从而提高了增强区域的结晶效率。
4、本发明制备的玻璃制品,不仅具有良好的透光性和边部区域的高强度,还能够进行离子交换强化工艺形成表面压应力进一步获得更高的强度,以满足高机械强度的电子显示盖板需求,可用于手持设备、笔记本电脑、桌面电脑和电视机的部分保护覆盖,适用范 围广,具有良好的应用前景。
5、本发明的生产方法简单,无需紫外光或激光加热,生产工艺容易控制,并且生产成本较低,工艺独特,可操作性强,易于推广应用,可以实现批量化工业化生产。本发明利用离子交换绝缘材料,实现了晶核在玻璃分布中的调控,并微晶化处理,由于绝缘材料遮挡区域的玻璃基材无法得到有效的晶化,最后通过化学强化后的玻璃陶瓷的强度得到进一步提高,从而实现了中间区域良好的透光率和边缘的高强度。
附图说明
图1为本发明局部增强型玻璃制品的结构示意图。
图2为图1的A-A剖视图。
图3为图1的B-B剖视图。
图4为图1的C-C剖视图。
图5为表征本发明玻璃制品可见光透过率的曲线。
图6为10℃/min升温速率下前体玻璃的DSC曲线。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
以下是对本发明相关专用名称及相关测量方法的解释:
在本发明中,“前体玻璃”是切割成型的玻璃片,大小适用于待安装的手持电子设备等产品。
在本发明中,“压缩应力层的深度(DOL)”是指所述局部增强型玻璃制品制得的玻璃盖板表面压缩应力层的深度(Depth of Layer),单位μm。
在本发明中,“化学强化玻璃”是经过高温离子交换工艺处理后的化学钢化玻璃。在高温熔盐中大碱金属离子取代玻璃中的小碱金属离子从而产生交换离子体积差,在玻璃表层中产生由高到低的压应力,阻碍和延缓玻璃微裂纹的扩展,达到提高玻璃机械强度的目的。
在本发明中采用常规方法测量透光率,采用玻璃板俯视面的透过率,测试仪器光斑为圆形,光斑直径∈(1/3a,1/2a),360-740nm内每隔10nm测量一次透过率,得到透过率曲线。
参见图1,本发明提供一种局部增强型玻璃制品,包括局部增强区3;其中,局部增强区的维氏硬度大于或等于620kgf/mm 2,比非增强区高5~20%。在一些实施例中,局部增强区的维氏硬度大于或等于640kgf/mm 2,660kgf/mm 2,680kgf/mm 2,700kgf/mm 2, 730kgf/mm 2;比非增强区的维氏硬度高12%,13%,14%,15%,16%,17%,18%,19%。
参见图2~图3,所述局部增强区3中包含离子交换区1和未离子交换区2,局部增强区3中离子交换区的平均晶体含量>未离子交换区中的平均晶体含量。所述局部增强区的离子交换区中平均晶体含量为30~95wt%。所述玻璃制品在厚度方向上,离子交换区1呈半包围状态将未离子交换区2包围,使局部增强区3的可见光自端面向非增强区4延伸方向上呈递减分布。
同样参见图2~图3,所述玻璃制品在厚度方向上,离子交换区1呈半包围状态将未离子交换区2包围,使局部增强区3的可见光自端面向非增强区4延伸方向上呈递减分布。所述局部增强区在可见光范围内光具有至少81%的透过率;所述非增强区的可见光范围内光具有90.5%-93.5%的透光率。这样晶体质量百分比较高,断裂韧性和硬度更高,虽然会牺牲可见光透过率,不影响非增强区4的光学性能。
若前体玻璃无成核剂时,局部增强区3在可见光范围内的透过率曲线如图5曲线C所示,并且其平均值范围90.5%-91.5%,最低值大于86%,优先大于88%、89%、90%。非增强区4在可见光范围内的透过率如图5曲线D所示,并且其平均值范围91.5%-93.5%。
若前体玻璃有少量成核剂时,局部增强区3在可见光范围内的透过率曲线如图5曲线A所示,并且其平均值范围87%-91.5%,最低值大于81%;非增强区4在可见光范围内的透过率如图5曲线B所示,并且其平均值范围90.5%-91.5%。
在发明中,本文玻璃制品是透明的,所述玻璃制品的厚度为0.2mm~1.5mm。例如1mm的厚度在可见光范围内(波长范围从380nm到780nm)平均透光率为87%或更高,88%或更高,89%或更高,90%或更高,91%或更高,92%或更高,93%或更高(包括表面反射损失)。而通常同类的玻璃制品可能在380nm到780nm的波长范围内是半透明的。对于厚度为1毫米的玻璃制品,在450纳米至600纳米的波长范围内,半透明玻璃制品的平均透过率为20%至85%以下。
在一个实施方式中,所述的局部增强区3中晶体含量至少为10wt%,在一些实施例中,所述局部增强区中平均晶体含量为30~95wt%及其之间的所有范围和子范围,例如40~95wt%、50~95wt%、60~80wt%、70~90wt%、30wt%、40wt%、50wt%、60wt%、70wt%、80wt%或者95wt%。增强区域的晶体的平均尺寸在20nm~200nm之间,优选在40nm~85nm之间。平均晶体尺寸在40nm~85nm之间的晶体不影响玻璃的可见光透过率,所述局部增强区3包含晶体相和玻璃相,晶体相分布在玻璃相内部。当可见光射入玻璃制品内部时,会在晶体相和玻璃相的分界面(所述分界面为引起散射作用的截面)发生散射和/或折射。 其中,分界面上散射作用对玻璃制品的平均可见光透过率影响较大。散射作用的大小主要取决晶体平均尺寸的大小,一般来说,晶体平均晶体尺寸越小,引起散射作用的截面的面积就越小,相应地,截面对可见光的散射作用就越小,相应玻璃制品的平均可见光透过率越大。本发明玻璃制品晶体的平均晶体尺寸小于或等于85nm,相应地晶体引起光散射作用的截面积较小,相应地晶体对光的散射作用较小,这就使得该玻璃制品在可见光波段具有较高的透过率。在本发明中,玻璃制品的增强区在可见光波段的透过率达到87%以上。
本发明的玻璃制品中的晶体可以偏转玻璃相微裂纹的扩展路径,使微裂纹难以扩展,进一步提升玻璃制品的抗跌落性能。晶体的平均晶体尺寸越小,相应地玻璃制品的平均可见光透过率越高。但是,玻璃制品内晶体平均晶体尺寸的大小,会对玻璃制品的机械性能产生影响。一般来说,玻璃制品内晶体的平均晶体尺寸越小,相应玻璃制品的机械性能越差。基于此,本发明中晶体的一个较佳的平均晶体尺寸是40nm~85nm。
将待处理的前体玻璃中所述增强区域引入晶核元素X离子,优选为Ag离子。Ag离子与玻璃基板中的Na离子和/或Li离子发生离子交换,所述玻璃制品在厚度方向上,离子交换区呈半包围状态将未离子交换区包围,使局部增强区的离子交换含量分别自玻璃主表面向中心位置延伸方向上呈递减分布。并且所述晶核离子X的浓度与距玻璃表面的深度符合离子扩散模型。所述离子交换区中,超过X离子(Ag、Cu和镧系元素中的至少一种)交换最大深度后X离子数为0;在X离子交换深度区域,X离子占离子交换前Li和Na离子数和的摩尔浓度与距离局部增强区的玻璃表面的深度的关系符合函数公式①m=Ae^(-n/t)+m 0,其中m:X离子占离子交换前Li和Na离子数和的摩尔浓度;n:距离局部增强区的玻璃表面的深度;m 0:X离子交换最大深度处的X离子摩尔浓度;A+m 0等于离子交换区域玻璃表面X离子摩尔浓度;A、t为常数,A的值为2×10 -3~1.2×10 -2,t的值为10~25。在一些实施例中,最小浓度m 0范围为0.001%~0.1%,最大浓度A+m 0范围为0.2%~1.2%。
上述离子交换深度(即侵入的X离子渗入玻璃的深度)通常为20-300μm,例如40-300μm,并通过玻璃组成和浸泡时间控制所述离子交换深度,在本发明中离子交换的深度不低于玻璃厚度的5%。离子交换的时间和温度对化学强化玻璃制品的表面压应力存在影响。在一些实施方式中,增强区域可进行离子交换来获得下述层深度:30μm或更大,40μm或更大,50μm或更大,60μm或更大,70μm或更大,80μm或更大,90μm或更大,或100μm或更大,且离子交换的深度不低于玻璃厚度的5%。所述非增强区域未进行所述Li-X或Na-X离子交换;然后将上述玻璃制品进行热处理,即得到具有局部增强型的玻璃 制品。
本发明中,玻璃制品中局部增强区3占玻璃制品总面积的1/25~3/5,优选增强区域面积为玻璃制品总面积的1/5。作为一实施例,所述局部增强区3为玻璃制品的至少一个边部,所述“边部”为玻璃制品边缘往玻璃内部延伸一定宽度所形成的带状。作为另一实施例,所述局部增强区3为玻璃制品的玻璃边框区域,本文中,边框区域是指制品(玻璃盖板)的任意多边形至少一边或矩形的四条周边。可包括直边缘部分、弯边缘部分、斜边缘部分、粗糙边缘部分和锐利边缘部分当中的一种或任意组合。例如,玻璃制品的局部增强区为矩形的至少一个边框区域,边框的长度为矩形玻璃所在边的长度,边框宽度为m或者n,m为矩形玻璃宽的1%~10%,n为矩形玻璃长的1%~20%;m≦n。增强区域由玻璃的边缘向内部延伸,所以玻璃制品宽度在上述范围内,能很好的控制玻璃边缘的微裂纹扩展,提高玻璃的强度,尤其是玻璃边缘的强度,同时不影响玻璃的其它性能。
本发明还提供所述玻璃制品用于玻璃盖板的应用,采用所述局部增强型玻璃制品经强化处理而成。可广泛用于手持电子设备、笔记本电脑、桌面电脑和电视机的部分保护覆盖玻璃。
本发明中的玻璃盖板可以被应用在电子装置中,例如手机(mobile phone)、平板电脑(Pad)、电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、可穿戴设备、电视等。该电子装置包括具有前表面、后表面和侧表面的外壳;位于所述外壳内的电子组件;位于所述外壳的前表面或者与所述外壳的前表面相邻的显示器;以及布置在所述显示器上的覆盖基材,以便隔离和保护显示面板,避免外界事物或者作用力对显示面板造成损坏。所述覆盖基材或外壳包括上述任意所述的玻璃盖板。玻璃盖板包括局部增强区3和非增强区。玻璃制品的增强区域的平均晶体尺寸在30nm~200nm范围内,优选40nm~85nm,在此优选范围内,玻璃制品的增强区域平均可见光透过率达到87%以上,其他显示区域可见光透过率不受结晶影响。如前所述,同时,该玻璃盖板具有较好的光线透过率,故而不会影响在其下方的显示面板的使用。同时,由于该玻璃盖板具有较好的机械强度,因此,玻璃盖板抗划伤与抗跌落等性能获得提升,故而不容易损坏。
进一步,本发明还提供一种局部增强型玻璃制品加工方法,采用切割成型的前体玻璃,包括以下步骤:
S1:用离子交换绝缘材料掩蔽所述前体玻璃的非增强区,然后将其浸入含有X离子的盐浴中,使盐浴中的X离子与玻璃未掩蔽的局部区域中的Li离子和/或Na离子进行交换;其中,所述X离子为Ag、Cu和镧系元素中的至少一种;
S2:X离子交换完成后,去除掉所述前体玻璃的绝缘材料,得到预处理后的玻璃,然后对预处理后的玻璃进行热处理,所述热处理包括核化处理和晶化处理。
所述前体玻璃中包含碱性铝硅酸盐、含碱性化合物或者碱性化合物。所述玻璃制品中的Li、Na或K的氧化物的mol%含量为5%~30%,Na 2O小于或等于Al 2O 3和B 2O 3的总量。碱金属氧化物的一定量添加,可降低玻璃高温粘度,使玻璃更容易熔制。控制Na 2O小于或等于Al 2O 3和B 2O 3的总量,是为了保证桥氧的比例,使玻璃陶瓷内二硅酸锂为主晶相。单个“分子量”的硅酸锂晶体无桥氧,单个“分子量”的二硅酸锂有一个桥氧,结构相对稳定。热处理过程中玻璃的结构重排,硅氧四面体通过桥氧连接,当低温热处理时,玻璃结构不够稳定,桥氧较少,硅酸锂优先析出;同时,氧化钠的加入断开了玻璃网络,桥氧数减少,硅酸锂晶体增多当氧化钠含量增大到一定比例时,只能够析出硅酸锂晶体。因此,必须控制玻璃内氧化钠的引入量,小于等于氧化铝和氧化硼的引入量,保证桥氧的比例,使玻璃陶瓷内二硅酸锂为主晶相。且小尺寸的碱金属离子加入可以保证玻璃进行离子交换,在表面形成压应力层。
具体的,玻璃制品或前体玻璃(以下涉及成分时以玻璃表示玻璃制品或前体玻璃)中包括以下mol%的成分:Si 2O至少64%;Al 2O 3:4~12%;B 2O 3:1~3%;Li 2O:5~25%;NaCl:0~1%;Na 2SO 4:0~1%;其中,Na 2O:小于或等于氧化铝和B 2O 3的总量。
所述玻璃中Li、Na或K的氧化物mol%含量为5%~30%。
在玻璃和微晶玻璃中,SiO 2作为主要玻璃形成氧化物,是玻璃网络形成体,能够形成硅-氧四面体作为玻璃的基础网络。高含量的SiO 2是保证玻璃具有高强度、耐热膨胀、化学稳定等优异性能,但过高的SiO 2是使玻璃更加难以熔融及成形。SiO 2是众多微晶的主要成分。在一些实施例中,所述玻璃基础中SiO 2的含量所述玻璃组合物可包括至少64mol%及其之间的所有范围和子范围,例如65mol%或更多,68mol%或更多,69mol%或更多,70mol%或更多,75mol%或更多,78mol%或更多,79mol%或更多,80mol%或更多,82mol%或更多,85mol%或更多,88mol%或更多,89mol%或更多,90mol%或更多,92mol%或更多,95mol%或更多。
Al 2O 3也可以提供稳定的网络,是玻璃网络中间体,在玻璃中能形成[AlO 4+]四面体并连接[SiO 4+]网络架构的非桥氧,夯实网络架构,进一步提高玻璃强度和稳定性,并且[AlO 4+]四面体体积较大,扩宽了网络架构空隙,利于后续的化学钢化工艺。Al 2O 3也是形成微晶的主要成分,可提高玻璃粘度,抑制析晶。若氧化铝的量过高,锂硅酸盐晶体的分数可能会减少,可能到无法形成连锁结构的程度,同时熔体的粘度通常也会增加。在一些实施例 中,所述玻璃组合物可包括4~12mol%Al 2O 3及其之间的所有范围和子范围,例如4~11.5mol%,4~11mol%,4~10.5mol%,4~10mol%,4~9.5mol%,4~9mol%,5~11.5mol%,5~11mol%,5~8.2mol%,8.6~8.8mol%,9mol%,9.4mol%,9.6mol%,9.8mol%,10mol%,10.2mol%,10.4mol%,10.6mol%,10.8mol%,11mol%,11.2mol%,11.4mol%,11.6mol%,11.8mol%,或者12mol%。
B 2O 3也可作为玻璃网络形成体,能够形成硼-氧四面体与硅-氧四面体形成玻璃的基础网络。有助于提供低熔点的玻璃前驱体。此外,在原丝玻璃和微晶玻璃中加入B 2O 3有助于实现互锁晶体微观结构,还可以提高微晶玻璃的抗损伤能力。在一些实施例中,所述玻璃组合物可包括1~3mol%Al 2O 3及其之间的所有范围和子范围,例如1~2.8mol%,1~2.5mol%,1~2.4mol%,1~2mol%,1~1.5mol%,2~3mol%,2~2.5mol%,2.5~3mol%,1mol%,1.4mol%,1.6mol%,1.8mol%,2mol%,2.2mol%,2.4mol%,2.6mol%,2.8mol%,3mol%。
Na 2O能降低玻璃液粘度,在玻璃网络中起断网作用,Na离子过多会降低玻璃网络中的桥氧比例,1mol氧化钠提供1mol氧供氧化铝或氧化硼形成四面体,即提供1mol桥氧,所以氧化钠的加入量需要小于或等于氧化铝和B 2O 3的总量。氧化钠的加入断开了玻璃网络,桥氧数减少,硅酸锂晶体增多当氧化钠含量增大到一定比例时,只能够析出硅酸锂晶体。因此,必须控制玻璃内氧化钠的引入量,小于等于氧化铝和氧化硼的引入总量,保证桥氧的比例,使玻璃陶瓷内二硅酸锂为主晶相。在一些实施例中,所述玻璃组合物可包括Na 2O:小于或等于氧化铝和B 2O 3的总量及其之间的所有范围和子范围,例如5~15mol%,4~11mol%,4~10.5mol%,4~10mol%,4~9.5mol%,4~9mol%,5~11.5mol%,5~11mol%,5~8.2mol%,8.6~8.8mol%,5mol%,6mol%,7mol%,8mol%,9mol%,10mol%,11mol%,11.4mol%,11.6mol%,11.8mol%,12mol%,13mol%,14mol%,14.5mol%,或者15mol%。
Li 2O能够显著降低玻璃液粘度,引入过多会使玻璃低温析晶。氧化锂一般用于玻璃陶瓷的形成,而其他的碱金属氧化物则倾向于减少玻璃陶瓷的形成,在玻璃陶瓷中形成铝硅酸盐残留玻璃。在一些实施例中,所述玻璃组合物可包括Li 2O 5~25%及其之间的所有范围和子范围,例如5~24mol%,5~22mol%,5~20mol%,5~18mol%,5~10mol%,4~25mol%,4~20mol%,4~18mol%,4~15mol%,4~10mol%,5mol%,6mol%,7mol%,8mol%,9mol%,10mol%,11mol%,12mol%,15mol%,18mol%,20mol%,21mol%,22mol%,23mol%,24mol%,或者25mol%。
所述玻璃中还包含有成核剂,所述成核剂为P 2O 5和/或ZrO 2。所述成核剂为P 2O 5与ZrO 2的含量独立选自Y,0≦Y≦3%。
玻璃的组合物还可以包括P 2O 5,P 2O 5可以作为成核剂产生大量成核。少量引入就会使玻璃热处理过程中可以析出Li 3PO 4晶核,重金属离子存在情况下会更易析出(较低温)。若P 2O 5的浓度过高,前驱体玻璃成型冷却后的脱硝作用就难以控制。在一些实施例中,所述玻璃组合物可包括P 2O 50~3%及其之间的所有范围和子范围,例如0~2.8mol%,0~2.6mol%,0~2mol%,0~1.8mol%,0~1.0mol%,1~2.5mol%,1~2.0mol%,1~1.8mol%,1~1.5mol%,1~1.2mol%,0mol%,1.5mol%,1.8mol%,2mol%,2.9mol%,2.8mol%,2.6mol%,2.5mol%,2.1mol%,0.8mol%,0.6mol%,0.5mol%,0.4mol%,0.3mol%,0.2mol%,或者0.1mol%。
玻璃的组合物还可以包括ZrO 2,ZrO 2也可以作为成核剂产生大量成核,可以通过显著降低玻璃在形成过程中的脱氮作用和降低液相线温度来提高Li 2O-Al 2O 3-SiO 2-P 2O 5玻璃的稳定性。ZrO 2的加入还有助于降低晶体的晶粒尺寸,从而有助于透明玻璃陶瓷的形成。在一些实施例中,所述玻璃组合物可包括ZrO 2 0~3%及其之间的所有范围和子范围,例如0~2.8mol%,0~2.6mol%,0~2mol%,0~1.8mol%,0~1.0mol%,1~2.5mol%,1~2.0mol%,1~1.8mol%,1~1.5mol%,1~1.2mol%,0mol%,1.5mol%,1.8mol%,2mol%,2.9mol%,2.8mol%,2.6mol%,2.5mol%,2.1mol%,0.8mol%,0.6mol%,0.5mol%,0.4mol%,0.3mol%,0.2mol%,或者0.1mol%。
玻璃的组合物还可以化学澄清剂。这种澄清剂包括但不限于NaCl和Na 2SO 4。在一些实施例中,所述玻璃组合物可包括NaCl 0~1%及其之间的所有范围和子范围,例如0~0.9mol%,0~0.8mol%,0~0.7mol%,0~0.6mol%,0~0.5mol%,0~0.4mol%,0.5~1.0mol%,0.5~0.8mol%,0.5~0.7mol%,0.5~0.6mol%,1mol%,0.9mol%,0.8mol%,0.7mol%,0.6mol%,0.5mol%,0.4mol%,0.3mol%,0.2mol%,或者0.1mol%。在一些实施例中,所述玻璃组合物可包括Na 2SO 4 0~1%及其之间的所有范围和子范围,例如0~0.9mol%,0~0.8mol%,0~0.7mol%,0~0.6mol%,0~0.5mol%,0~0.4mol%,0.5~1.0mol%,0.5~0.8mol%,0.5~0.7mol%,0.5~0.6mol%,1mol%,0.9mol%,0.8mol%,0.7mol%,0.6mol%,0.5mol%,0.4mol%,0.3mol%,0.2mol%,或者0.1mol%。
本公开所制备的局部强化型玻璃制品的是采用差别晶化来强化局部玻璃制品以制备符合应用场合的应力分布的玻璃制品。具体的,该方法差别引入X离子,然后将前体玻璃从成核温度加热至结晶温度,以形成局部增强区域,在制品的该特定区域的最大压缩应力水平和DOL水平有明显优势,同时又保留非增强区的高可见光透光性。
首先,前体玻璃被切割并被彻底清洁,并接着用离子交换绝缘材料覆盖制品的非增强 区域。所用的绝缘材料由对所选择的离子或者晶核离子呈惰性的材料(例如油墨或SiO 2隔离层)制成,此处的呈惰性表示该材料不能使离子通过,并且可以作为薄膜被涂布、印刷和/或以其它方式附接在玻璃制品的一个或多个部分上。然后将部分被覆盖的玻璃制品接着被浸没在含有X离子的盐浴中达预定的持续时间。其中,覆盖区域阻止此区域的离子交换,并且依靠离子扩散模型扩散到该区域的X离子浓度可以忽略不计,未覆盖部分引入晶核离子,接着,从部分非增强区域的玻璃制品移除离子交换绝缘材料;最后将玻璃制品从初始温度(通常为室温)加热至成核温度;得到被强化到特定的压缩应力分布。
作为说明,在将X离子沉积在可热处理的玻璃层以后,热处理该晶种层以引发成核。X离子为金、银、铜或镧系元素中的至少一种,优选为银。即通过离子交换的方式采用Ag离子取代所述玻璃基板中的Na离子和/或Li离子,通过加热处理使Ag离子转变并使晶体生长长成目标大小的微纳米晶体。所述玻璃浸没含有晶核离子的盐浴中进行离子交换,在所述盐浴中晶核离子取代所述玻璃基板中小直径的Na离子和/或Li离子。
在实施例中,所述S1中盐浴为1wt%~20wt%XNO 3+80wt%~99wt%NaNO 3,在一些实施例中盐浴中含有上述范围及其之间的所有范围和子范围,例如1wt%XNO 3+99wt%NaNO 3、5wt%XNO 3+95wt%NaNO 3、10wt%XNO 3+90wt%NaNO 3、20wt%XNO 3+80wt%NaNO 3、12wt%XNO 3+88wt%NaNO 3、15wt%XNO 3+85wt%NaNO 3、18wt%XNO 3+82wt%NaNO 3或者19wt%XNO 3+81wt%NaNO 3。进一步,所述盐浴离子交换的温度为玻璃转变点(Tg)以下80℃至玻璃转变点(Tg)以上60℃,时间为1~10h。。
对于上文所述的玻璃,成核温度可以是玻璃转变点(Tg)以上30~100℃。作为优选,成核温度可以是玻璃转变点(Tg)以上50~80℃。作为优选,成核温度可以是玻璃转变点(Tg)以上35~65℃。加热至成核温度可涉及单加热速率或者多加热速率。例如,在多加热速率的情况下,可以较高速率(例如,15~25℃/分钟)将玻璃制品从初始温度加热至中间温度,以及以较低速率(例如,6~12℃/分钟)从中间温度加热至成核温度。
在玻璃制品到达成核温度之后,将玻璃制品在成核温度维持一段时间,在该过程中在玻璃制品中建立起晶核。成核时长可以为1~10h;作为优选,成核时长还可以为1~4h,更为优选的,成核时长还可以为3~4h。
在成核之后,将玻璃制品从成核温度加热至结晶温度。结晶温度为DSC第一个析晶峰以下20~150℃或DSC第二个析晶峰以下70~150℃。低温热处理时玻璃结构不稳定,形成的桥氧比例相对较少,此时主要析出硅酸锂;如果希望在玻璃中形成二硅酸锂作为主晶相,则可以延长时间或者提高结晶温度,玻璃结构逐渐稳定,桥氧比例提升,硅酸锂逐渐转变 为二硅酸锂。
在玻璃制品到达结晶温度之后,将玻璃制品在结晶温度维持一段时间;在该过程中,至少一个晶相在玻璃中生长。在一个实施方式中,结晶温度使得在玻璃中形成二硅酸锂作为主晶相。晶化处理1~2次,结晶时长可以为2~6h。在结晶时间段结束时,玻璃制品已经变成局部的结晶相。
翘曲是一种机械不稳定性,表现为由于与结构稳定性损失相关联的分叉而导致的结构突变。作为优选,本发明在热处理过程中还包括在析晶过程中采用叠片析晶方式,每片之间加上碳化硅板增强导热提供均匀并且稳定的热场,避免单片析晶易翘曲。
具体地,本发明中采用的压延法工艺、浮法工艺、溢流法、浇铸法工艺均采用现有技术即可。具体地,本发明将前体玻璃经过机械裁切制备成具有一定形状的前体玻璃板,通常为矩形玻璃板制品。准确称量原料,将原料充分混合之后,将其高温加热,进行熔化。玻璃的熔化是一个非常复杂的过程,它包括一系列物理的、化学的、物理化学的现象和反应,这些现象和反应的结果使各种原料由机械混合物变成了复杂的熔融物,即玻璃液。玻璃的熔化大致可以分为硅酸盐形成、熔化形成玻璃液、玻璃液澄清、玻璃液均化、玻璃液冷却5个阶段。本发明在制备时采用的熔化温度为1610℃~1650℃。
本发明局部增强玻璃制品中采用的前体玻璃可以包含各种玻璃成分、玻璃陶瓷成分和陶瓷成分。玻璃的选择不限于特定的玻璃成分。例如,所选择的成分可以是硅酸盐、硼硅酸盐、铝硅酸盐或硼铝硅酸盐玻璃成分的宽范围中的任一种,其任选地可以包括一种或多种碱和/或碱土改性剂。
作为又一实施例,本发明制备的局部增强型玻璃制品还包括步骤S3:将步骤S2所得的制品置于碱金属盐浴中进行化学强化。所述步骤S3中,碱金属盐浴中至少进行1次离子交换,温度在玻璃转变点以下100℃至玻璃转变点以上100℃,每次强化0.1~8h;所述碱金属盐浴为钠盐和钾盐中的至少一种,如硝酸钠、硝酸钾和硝酸锂的纯盐或混盐。将所述玻璃制品置于碱金属盐浴中进行离子交换。将前述的局部增强型玻璃进行离子交换之后得到化学强化玻璃制品。离子交换之后,玻璃制品表面的碱金属离子被半径更大的碱金属离子所替换得到化学强化玻璃制品。这使得离子交换前后,在强化玻璃制品表面形成一个体积差,体积差在化学强化玻璃制品表面形成具有一定深度的压应力层,压应力层可以消除或抑制化学强化玻璃制品表面微裂纹的产生和扩展,从而达到提高化学强化玻璃制品的机械性能的目的。
传统的离子交换过程通常发生在不超过玻璃的转变点。通过以下方式进行该过程:将 玻璃浸没在包含碱金属盐(通常是硝酸盐)的熔浴中,所述碱金属盐的离子大于所述玻璃中的主体碱金属离子。所述主体碱金属离子被交换为较大的碱金属离子。例如,可以将含Na +的玻璃浸在硝酸钾(KNO 3)熔浴中。熔浴中的较大K +将置换玻璃中的较小Na +。由于在之前被较小的碱金属离子占据的位点存在较大的碱金属离子,在玻璃表面处或表面附近产生压缩应力,在玻璃内部产生张力。
在本发明中还包括制备前述的化学强化玻璃制品的方法。即在制备玻璃制品后,将玻璃制品进行离子交换,得到强化玻璃制品。在离子交换过程之后,将玻璃从熔浴中取出并冷却。离子交换深度(即侵入的较大碱金属离子渗入玻璃的深度)通常为20-300μm,例如40-300μm,并通过玻璃组成和浸泡时间控制所述离子交换深度,在本发明中离子交换的深度不低于玻璃厚度的5%。离子交换的时间和温度对化学强化玻璃制品的表面压应力存在影响。随着离子交换温度的不断升高(离子交换时间相同),表面压应力呈现先升高后降低的趋势;基于此,本发明合适的离子交换温度为380℃~450℃。另外,随着离子交换时间的延长(离子交换温度不变),表面压应力呈现先升高后降低的趋势;基于此,本发明合适的离子交换时间为2h~18h。
用来强化玻璃和/或玻璃陶瓷的一种或更多种离子交换过程可包括,但不限于:将其浸没在单一浴中,或者将其浸没在具有相同或不同组成的多个浴中。另外,一个或多个浴的组成可以包括一种以上类型的较大离子(例如,Na +和K +)或单个较大离子。本领域技术人员将理解,离子交换工艺的参数包括但不限于:浴的组成和温度、浸入时间、内部玻璃层在一个或多个盐浴中的浸入次数、多个盐浴的使用、附加步骤(诸如退火、洗涤),示例性熔池组成可以包括较大碱金属离子的硝酸盐、硫酸盐和氯化物。典型的硝酸盐包括KNO 3、NaNO 3、LiNO 3、NaSO 4及其组合。
作为优选的,将局部增强型玻璃制品浸入100%的NaNO 3、100%的KNO 3或NaNO 3和KNO 3的组合的熔融盐浴中,所述熔融盐浴的温度为370℃至480℃。在一些实施例中,可以将内部玻璃层浸入熔融混合盐浴中,所述浴包括1%至99%的KNO 3和1%至99%的NaNO 3。在一个或多个实施例中,在将内部玻璃层浸入第一离子交换溶液之后,可将其浸入第二离子交换溶液中。第一离子交换溶液和第二离子交换溶液可以具有彼此不同的组成和/或温度。在第一离子交换溶液和第二离子交换溶液中的浸入时间可以变化。例如,在第一离子交换溶液中的浸入可以比在第二浴中的浸入更长。例如,一步法离子交换的工艺主要为:将玻璃制品在纯KNO 3和/或NaNO 3熔盐中浸泡2h~18h。又例如,多步法离子交换的工艺主要为:第一步,离子交换温度在纯KNO 3和/或NaNO 3盐浴,380℃~450℃条件下 浸泡T 1h;第二步,在纯KNO 3和/或NaNO 3盐浴,380℃~450℃条件下浸泡T 2h;第三步,在纯KNO 3和/或NaNO 3盐浴,380℃~450℃条件下浸泡T 3h……第n步,在纯KNO 3和/或NaNO 3盐浴,380℃~450℃条件下浸泡T n小时。在某些实施例中,第一离子交换温度高于第二离子交换温度下,并且/或玻璃制品与第一离子交换介质接触的时间长于与第二离子交换介质接触的时间。
实施例1
S1:首先根据玻璃前体原材料的配比准确称量,包括以下摩尔份数的组分:67%的SiO 2,9%的Al 2O 3,1.5%的B 2O 3,15%的LiO 2,1.3%的P 2O 5,1.2%的ZrO 2,0.8%的NaCl,4.6%的Na 2O。将原料充分混合之后,将其1650℃的高温下保温4h,进行熔化,得到玻璃液。
S2:将玻璃液浇铸在预热好的不锈钢模具中,再放入退火炉中,在退火点左右进行长时间梯度退火,以消除玻璃的内应力。将退火完成后的玻璃砖,六面进行余量切割,获得尺寸合适的玻璃砖,再采用线切割机、CNC精雕机、平磨抛光机进行尺寸精切割、平磨、扫边,得到尺寸为160mm*80mm*0.65mm的前体玻璃板。
S3:将上述前体玻璃板的非增强区域(中心区域)的第一表面和第二表面涂布高温油墨层,然后将其浸入含有Ag离子的盐浴中,采用的盐浴采用8wt%的AgNO 3+92wt%的NaNO 3,交换温度为380℃,交换时间为3h,离子交换完成后,取出洗净,去除掉所述前体玻璃上的离子交换绝缘材料,得到预处理后的玻璃。
S4:将步骤S3预处理后的玻璃进行热处理,其中包括核化处理1次和晶化处理2次,核化温度为530℃处理5h;第一次晶化温度为590℃处理4h,第二次晶化温度为650℃处理2h对前体玻璃板进行局部热处理得到玻璃制品。
S5:将步骤S4的玻璃制品进行第一步离子交换IOX1,熔盐采用20wt%NaNO 3+80wt%KNO 3的混合盐浴,强化温度为450℃,强化时间为6h,强化完成后,取出洗净。将经第一步离子交换IOX1制得的玻璃陶瓷进行第二步离子交换IOX2,熔盐采用5wt%NaNO 3+94.5wt%KNO 3+0.5wt%LiNO 3的混合盐浴,强化温度为440℃,强化时间为2h,强化完成后,取出洗净,得到具有局部增强型玻璃制品。
实施例2
与实施例1相同方法获得前体玻璃板;
其中,与实施例1不同的是:
(1)玻璃前体原材料配方不同。其原料成份的摩尔份组分为:68.6%的SiO 2,4.2%的 Al 2O 3,1.0%的B 2O 3,18%的LiO 2,1.0%的P 2O 5,1.7%的ZrO 2,0.5%的NaCl和5.5%的Na 2O。
(2)X离子的盐浴不同。采用的盐浴采用5wt%的AgNO 3+95wt%的NaNO 3,交换温度为430℃,交换时间为7h,离子交换完成后,取出洗净。
(3)热处理温度和时间不同。核化温度540℃,时间4h及第一次晶化温度580℃,时间5h;第二次晶化温度630℃,时间2h。
(4)化学强化盐浴不同:第一步离子交换IOX1,熔盐采用15wt%NaNO 3+85wt%KNO 3的混合盐浴,强化温度为450℃,强化时间为6h,强化完成后,取出洗净。将经第一步离子交换IOX1制得的玻璃陶瓷进行第二步离子交换IOX2,熔盐采用4wt%NaNO 3+94.5wt%KNO 3+1.5wt%LiNO 3的混合盐浴,强化温度为440℃,强化时间为2h,强化完成后,取出洗净,得到具有局部增强型玻璃制品。
实施例3
与实施例1相同方法获得前体玻璃板;
其中,与实施例1不同的是:
(1)玻璃前体原材料配方不同。其原料成份的摩尔份组分为:68.6%的SiO 2,4.5%的Al 2O 3,1.5%的B 2O 3,19%的LiO 2,1.0%的P 2O 5,1.6%的ZrO 2,0.3%的NaCl,4.8%的Na 2O。
(2)X离子的盐浴不同。采用的盐浴采用2wt%的AgNO 3+98wt%的NaNO 3,交换温度为420℃,交换时间为5h,离子交换完成后,取出洗净。
(3)热处理温度和时间不同。核化温度490℃,5h及第一次晶化温度550℃,4h;第二次晶化温度590℃,4h。
实施例4
与实施例1相同方法获得前体玻璃板;
其中,与实施例1不同的是:
(1)玻璃前体原材料配方不同。其原料成份的摩尔份组分为:61.5%的SiO 2,10%的Al 2O 3,1.5%的B 2O 3,18%的LiO 2,1.0%的P 2O 5,1.7%的ZrO 2,0.5%的NaCl,1.5%的Na 2O。
(2)X离子的盐浴不同。采用的盐浴采用2wt%的AgNO 3+98wt%的NaNO 3,交换温度为480℃,交换时间为3h,离子交换完成后,取出洗净。
(3)热处理温度和时间不同。核化温度580℃,时间4h;晶化温度660℃,时间2h。
实施例5
与实施例1相同方法获得前体玻璃板;
其中,与实施例1不同的是:
(1)玻璃前体原材料配方不同,其原料成份的摩尔份组分为:67.6%的SiO 2,8.5%的Al 2O 3,1.5%的B 2O 3,19.0%的LiO 2,0.7%的P 2O 5,1.8%的ZrO 2,0.5%的NaCl,1.0%的Na 2O。
(2)X离子的盐浴不同。采用的盐浴采用3wt%的AgNO 3+97wt%的NaNO 3,交换温度为480℃,交换时间为3h,离子交换完成后,取出洗净。
(3)热处理温度和时间不同。核化温度580℃,时间4h;第一次晶化温度620℃,时间2h;第二次晶化温度680℃,时间2h。
实施例6
与实施例1相同方法获得前体玻璃板;
其中,与实施例1不同的是:
(1)玻璃前体原材料配方不同,其原料成份的摩尔份组分为:66.8%的SiO 2,6.2%的Al 2O 3,1.5%的B 2O 3,18.7%的LiO 2,0.8%的P 2O 5,1.7%的ZrO 2,0.5%的NaCl,4.8%的Na 2O。
(2)X离子的盐浴不同。采用的盐浴采用3wt%的AgNO 3+97wt%的NaNO 3,交换温度为420℃,交换时间为3h,离子交换完成后,取出洗净。
(3)热处理温度和时间不同。核化温度550℃,时间4h;第一次晶化温度610℃,时间4h;第二次晶化温度650℃,时间4h。
实施例7
与实施例1相同方法获得前体玻璃板;
其中,与实施例1不同的是:
(1)玻璃前体原材料配方不同,其原料成份的摩尔份组分为:65.5%的SiO 2,6.5%的Al 2O 3,2.0%的B 2O 3,18.7%的LiO 2,0.8%的P 2O 5,1.7%的ZrO 2,0.5%的NaCl,4.8%的Na 2O。
(2)X离子的盐浴不同。采用的盐浴采用3wt%的AgNO 3+97wt%的NaNO 3,交换温度为420℃,交换时间为3h,离子交换完成后,取出洗净。
(3)热处理温度和时间不同。核化温度550℃,时间4h;第一次晶化温度610℃,时间4h;第二次晶化温度650℃,时间4h。
将实施例1~7制备的局部增强型玻璃制品进行晶体分析,包括增强区宽度、晶体尺寸, 同时测试增强区和非增强区的可见光透过率和机械性能,其中可见光透光率是在550nm波长下测定的,结果如表1所示。
表1
Figure PCTCN2021082512-appb-000001
通过表1可以看出,本发明利用离子交换绝缘材料遮挡指定区域的玻璃基材,使其无法得到有效的离子交换,实现了晶核在玻璃制品分布中的调控,最后通过化学强化后的玻璃制品的强度得到进一步提高,从而实现了本发明玻璃制品中间区域良好的透光率和边缘的高强度。经过结晶处理后增强区比非增强区的维氏硬度提高了2%~10%,增强区比非增强区的平均断裂韧性提高了9%~50%,进而有效提升增强化的维氏硬度和断裂韧性。由此可见,本发明可较好的控制析晶的区域,从而达到局部强化的目的,显著提高玻璃局部特别是边部的断裂韧性。对玻璃板的边部进行热处理的过程中,边部的微裂纹会因此愈合,另外,析出的晶体的断裂韧性较大,能够阻碍未愈合的微裂纹进一步扩展,有效避免玻璃边缘产生大量微裂纹、崩点和崩边的现象。可见,本发明制备的玻璃制品不仅提高薄片玻璃增强区(边部)强度还维持非增强区(显示屏)良好的视觉效果,适用于手持设备、笔记本电脑、桌面电脑和电视机的部分保护覆盖。
以上所述仅为本发明的较佳实施例而已,并不以本发明为限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (25)

  1. 一种局部增强型玻璃制品,其特征在于,包括局部增强区和非增强区;其中,局部增强区的维氏硬度大于或等于620kgf/mm 2,比非增强区高5~20%。
  2. 根据权利要求1所述局部增强型玻璃制品,其特征在于,所述局部增强区中包含离子交换区和未离子交换区,离子交换区中的平均晶体含量>未离子交换区中的平均晶体含量。
  3. 根据权利要求2所述局部增强型玻璃制品,其特征在于,所述局部增强区中平均晶体含量至少为10wt%。
  4. 根据权利要求3所述局部增强型玻璃制品,其特征在于,所述局部增强区中平均晶体含量为30~95wt%。
  5. 根据权利要求2所述局部增强型玻璃制品,其特征在于,所述局部增强区中晶体尺寸为20nm~200nm。
  6. 根据权利要求2所述局部增强型玻璃制品,其特征在于,所述局部增强区中晶体的主晶相为二硅酸锂,次晶相为硅酸锂。
  7. 根据权利要求6所述局部增强型玻璃制品,其特征在于,所述二硅酸锂占晶体质量的60%以上。
  8. 根据权利要求2所述局部增强型玻璃制品,其特征在于,所述离子交换区是X离子与所述局部增强区中Li离子和/或Na离子进行交换形成;其中,所述X为Ag、Cu和镧系元素中的至少一种。
  9. 根据权利要求1所述局部增强型玻璃制品,其特征在于,所述局部增强区在可见光范围内光具有至少81%的透过率;所述非增强区的可见光范围内光具有90.5%~93.5%的透光率。
  10. 根据权利要求1~9任一项所述局部增强型玻璃制品,其特征在于,所述玻璃制品的厚度为0.2mm~1.5mm。
  11. 根据权利要求1~9任一项所述局部增强型玻璃制品,其特征在于,所述玻璃制品中的Li、Na或K的氧化物的mol%含量为5%~30%,Na 2O小于或等于Al 2O 3和B 2O 3的总量。
  12. 一种玻璃盖板,其特征在于,采用权利要求11所述具有局部增强结构的玻璃经化学强化处理而成。
  13. 一种如权利要求12所述玻璃盖板在用于手持电子设备、笔记本电脑、桌面电脑和电视机的部分保护覆盖玻璃方面的用途,或在形成显示器基材、触摸传感器或者整体式 触摸覆盖玻璃的至少部分方面的用途。
  14. 一种局部增强型玻璃制品的加工方法,采用切割成型的前体玻璃,其特征在于,包括以下步骤:
    S1:用离子交换绝缘材料掩蔽所述前体玻璃的非增强区的上下表面,然后将其浸入含有X离子的盐浴中,使盐浴中的X离子与前体玻璃未掩蔽的局部区域中的Li离子和/或Na离子进行交换;其中,所述X为Ag、Cu和镧系元素中的至少一种;
    S2:X离子交换完成后,去除掉所述前体玻璃的离子交换绝缘材料,得到预处理后的玻璃,然后对预处理后的玻璃进行热处理,所述热处理包括核化处理和晶化处理。
  15. 根据权利要求14所述局部增强型玻璃制品的加工方法,其特征在于,步骤S1中所述盐浴为1wt%~20wt%XNO 3+80wt%~99wt%NaNO 3
  16. 根据权利要求14所述局部增强型玻璃制品的加工方法,其特征在于,步骤S1中所述盐浴离子交换的温度为玻璃转变点(Tg)以下80℃至玻璃转变点(Tg)以上60℃,时间为1~10h。
  17. 根据权利要求14所述局部增强型玻璃制品的加工方法,其特征在于,步骤S2中所述核化处理中,温度为DSC玻璃转变点(Tg)以上30~100℃,核化处理1~4h。
  18. 根据权利要求14所述局部增强型玻璃制品的加工方法,其特征在于,步骤S2中所述核化处理中,温度为DSC玻璃转变点(Tg)以上50~80℃,核化处理1~4h。
  19. 根据权利要求14所述局部增强型玻璃制品的加工方法,其特征在于,步骤S2中所述晶化处理中,温度为DSC第一个析晶峰以下20~150℃和/或DSC第二个析晶峰以下70~150℃,晶化处理1~2次,每次处理2~6h。
  20. 根据权利要求14所述局部增强型玻璃制品的加工方法,其特征在于,所述离子交换绝缘材料为油墨或SiO 2隔离层。
  21. 根据权利要求14所述局部增强型玻璃制品的加工方法,其特征在于,所述前体玻璃为含碱的铝硅酸盐玻璃。
  22. 根据权利要求14所述局部增强型玻璃制品的加工方法,其特征在于,所述前体玻璃采用浮法、溢流法、压延法及浇铸成型法中的任一种方法成型而成。
  23. 根据权利要求14~22任一项所述局部增强型玻璃制品的加工方法,其特征在于,还包括:步骤S3,将步骤S2所得的制品置于碱金属盐浴中进行化学强化。
  24. 根据权利要求23所述局部增强型玻璃制品的加工方法,其特征在于,所述步骤S3中,在碱金属盐浴中至少进行1次离子交换,离子交换的温度在玻璃转变点以下100℃ 至玻璃转变点以上100℃,每次交换时间为0.1~8h。
  25. 根据权利要求24所述局部增强型玻璃制品的加工方法,其特征在于,所述碱金属盐浴为钠盐、钾盐和锂盐中的至少一种。
PCT/CN2021/082512 2020-03-29 2021-03-24 一种局部增强型玻璃制品及其加工方法 WO2021197145A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010233402.1A CN111253087B (zh) 2020-03-29 2020-03-29 一种局部增强型玻璃制品及其加工方法
CN202010233402.1 2020-03-29

Publications (1)

Publication Number Publication Date
WO2021197145A1 true WO2021197145A1 (zh) 2021-10-07

Family

ID=70942309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082512 WO2021197145A1 (zh) 2020-03-29 2021-03-24 一种局部增强型玻璃制品及其加工方法

Country Status (2)

Country Link
CN (2) CN111253087B (zh)
WO (1) WO2021197145A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253087B (zh) * 2020-03-29 2022-07-12 重庆鑫景特种玻璃有限公司 一种局部增强型玻璃制品及其加工方法
CN113173696A (zh) * 2021-04-30 2021-07-27 重庆鑫景特种玻璃有限公司 一种具有高致密性的玻璃材料制备方法及玻璃材料和应用
CN115677193A (zh) * 2021-07-29 2023-02-03 重庆鑫景特种玻璃有限公司 一种微晶玻璃、及其制备方法和用途
CN115703669B (zh) * 2021-08-05 2024-03-12 重庆鑫景特种玻璃有限公司 一种透明微晶玻璃、及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107915412A (zh) * 2017-12-01 2018-04-17 成都光明光电股份有限公司 微晶玻璃及其基板
WO2019191358A1 (en) * 2018-03-29 2019-10-03 Corning Incorporated Ion exchanged glass-ceramic articles
WO2019199791A1 (en) * 2018-04-09 2019-10-17 Corning Incorporated Locally strengthened glass-ceramics and methods of making the same
CN110845153A (zh) * 2019-12-03 2020-02-28 深圳市东丽华科技有限公司 一种具有高压应力层深度的强化微晶玻璃及其制备方法
CN111253087A (zh) * 2020-03-29 2020-06-09 重庆两江新区夏美西科技合伙企业(有限合伙) 一种局部增强型玻璃制品及其加工方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480044A (en) * 1984-02-01 1984-10-30 Corning Glass Works High expansion glass-ceramic articles
US8776547B2 (en) * 2011-02-28 2014-07-15 Corning Incorporated Local strengthening of glass by ion exchange
EP3036205A2 (en) * 2013-08-23 2016-06-29 Corning Incorporated Strengthened glass articles, edge-strengthened laminated glass articles, and methods for making the same
TWI699340B (zh) * 2015-04-21 2020-07-21 美商康寧公司 邊緣及轉角強化之物件及其製造方法
JP2019001691A (ja) * 2017-06-19 2019-01-10 日本電気硝子株式会社 強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板
US10246371B1 (en) * 2017-12-13 2019-04-02 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
CN110002760B (zh) * 2019-04-30 2021-09-24 重庆鑫景特种玻璃有限公司 一种含有微纳米晶体的玻璃陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107915412A (zh) * 2017-12-01 2018-04-17 成都光明光电股份有限公司 微晶玻璃及其基板
WO2019191358A1 (en) * 2018-03-29 2019-10-03 Corning Incorporated Ion exchanged glass-ceramic articles
WO2019199791A1 (en) * 2018-04-09 2019-10-17 Corning Incorporated Locally strengthened glass-ceramics and methods of making the same
CN110845153A (zh) * 2019-12-03 2020-02-28 深圳市东丽华科技有限公司 一种具有高压应力层深度的强化微晶玻璃及其制备方法
CN111253087A (zh) * 2020-03-29 2020-06-09 重庆两江新区夏美西科技合伙企业(有限合伙) 一种局部增强型玻璃制品及其加工方法

Also Published As

Publication number Publication date
CN111253087A (zh) 2020-06-09
CN111253087B (zh) 2022-07-12
CN114956604B (zh) 2023-07-25
CN114956604A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2021197145A1 (zh) 一种局部增强型玻璃制品及其加工方法
JP7498894B2 (ja) 強化ガラス及び強化用ガラス
TWI624443B (zh) 用於3d成型之離子可交換式含鋰玻璃組合物
CN110627365B (zh) 一种透明的强化玻璃陶瓷及其制备方法
JP5255611B2 (ja) ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
JP2013528561A (ja) 3d精密成形及び熱曲げ加工用アルカリアルミノケイ酸ガラス
US11292741B2 (en) Ion-exchangeable lithium-containing aluminosilicate glasses
US6593257B1 (en) Glass-ceramic composition for recording disk substrate
JP2002174810A (ja) ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
WO2011103799A1 (zh) 用于3d精密模压的薄锂铝硅玻璃
TW201202205A (en) Tempered glass substrate and method for fabricating the same
TW201323371A (zh) 平面顯示器用玻璃基板及其製造方法
JP2010202514A (ja) 携帯型液晶ディスプレイ用のガラス基板及びその製造方法並びにこれを用いた携帯型液晶ディスプレイ
TW201307240A (zh) 用於製造化學強化玻璃之方法
KR20220117309A (ko) 다결정핵 복합 투명 유리 세라믹 및 그 제조 방법
CN111592225A (zh) 锂铝硅酸盐纳米晶透明陶瓷、其制备方法及产品
WO2014002932A1 (ja) 有機el用ガラス基板及びその製造方法
CN110563337A (zh) 一种锂铝硅酸盐纳米晶玻璃陶瓷的强化方法
CN114956577A (zh) 一种高强度透明微晶玻璃及其制备方法
WO2024088186A1 (zh) 一种微晶玻璃、微晶玻璃前驱体及其制备方法
JPWO2019194110A1 (ja) 化学強化用ガラス
CN112110645B (zh) 一种玻璃、玻璃制品及其制造方法
WO2021197146A1 (zh) 一种具有局部增强结构的玻璃及其加工方法
WO2024017081A1 (zh) 一种耐酸碱性优异的微晶玻璃及其制备方法和用途
CN114890679B (zh) 强化玻璃、分相玻璃及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781432

Country of ref document: EP

Kind code of ref document: A1