WO2021197079A1 - 一种显示组件、显示装置和驱动方法 - Google Patents

一种显示组件、显示装置和驱动方法 Download PDF

Info

Publication number
WO2021197079A1
WO2021197079A1 PCT/CN2021/081399 CN2021081399W WO2021197079A1 WO 2021197079 A1 WO2021197079 A1 WO 2021197079A1 CN 2021081399 W CN2021081399 W CN 2021081399W WO 2021197079 A1 WO2021197079 A1 WO 2021197079A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
layer
display
drain
light
Prior art date
Application number
PCT/CN2021/081399
Other languages
English (en)
French (fr)
Inventor
赵阳
吴欣凯
刘俊彦
郭小军
贺海明
侯霄
尹晓宽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21780267.7A priority Critical patent/EP4113613A4/en
Priority to US17/915,920 priority patent/US20230147182A1/en
Publication of WO2021197079A1 publication Critical patent/WO2021197079A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • H10K39/34Organic image sensors integrated with organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/08Biomedical applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • This application relates to the field of display technology, and more specifically to a display assembly, a display device, and a driving method.
  • the mainstream fingerprint recognition technology is under-screen optical fingerprint recognition.
  • the optical fingerprint recognition module is placed on the back side of the display panel substrate.
  • the light emitted by the fingerprint recognition light source irradiates the finger, and penetrates the display panel after being reflected by the finger, and then is exposed to light.
  • the component receives, converts the light signal into an electrical signal, and then realizes fingerprint recognition.
  • the light used for fingerprint recognition penetrates the entire display panel in the thickness direction of the display panel, and the light loss is large, which seriously affects the amount of light received by the photosensitive element, and further affects the accuracy of fingerprint recognition.
  • the touch function and fingerprint recognition function are independent module structures, which leads to a complex structure in the display component and increases the complexity of the manufacturing process. Spend.
  • the present application provides a display assembly, a display device, and a driving method, which utilizes a functional unit composed of a switching transistor and a phototransistor to simultaneously realize the touch function and fingerprint recognition function, and the functional unit is set on the light-emitting surface of the display panel.
  • an embodiment of the present application provides a display assembly, including: a display panel and a functional module located on the light-emitting surface of the display panel, the functional module includes a plurality of functional units, and each functional unit includes at least one phototransistor And a switching transistor; the phototransistor includes a first active layer, a first gate, a first source, and a first drain.
  • the first active layer is made of organic semiconductor materials, and the first active layer is located On the side of the first gate far away from the display panel, in the direction perpendicular to the display component, the first drain and the first gate partially overlap to form a first capacitor;
  • the switching transistor includes a second active layer, a second gate, The second source and the second drain, wherein the second source and the first drain are connected;
  • each functional unit includes a transparent electrode, the transparent electrode is located on the side of the first active layer away from the first gate, in the vertical In the direction of the display assembly, the transparent electrode and the first active layer overlap, and a dielectric layer is arranged between the transparent electrode and the first active layer.
  • the setting function module includes multiple functional units composed of switching transistors, phototransistors and transparent electrodes, which can simultaneously fingerprint recognition and touch functions.
  • the fingerprint recognition and touch functions are integrated into one functional module, which can reduce the number of display components.
  • the set of modules is conducive to reducing the overall thickness of the display assembly.
  • the functional module is set on the light-emitting surface of the display panel. During fingerprint recognition, the light reflected by the finger can be received by the functional module without having to penetrate the structural film of the display panel, which shortens the transmission of the reflected light from the fingerprint. The distance can increase the collimation of the reflected light of the fingerprint, avoid the light loss caused by the reflected light of the fingerprint penetrating the structural film layer of the display panel, and improve the accuracy of fingerprint recognition.
  • the structure of the phototransistor and the switching transistor are similar.
  • the phototransistor and the switching transistor can share at least part of the process during production, which can display the complexity of the structure and the process of the device, and is also beneficial to reduce the overall thickness of the display device.
  • the thickness of the dielectric layer is d1, where 500nm ⁇ d1 ⁇ 1000nm.
  • the sensitivity of touch detection can be guaranteed while meeting the requirements of the manufacturing process of the dielectric layer.
  • the display assembly further includes a planarization layer and a protective cover plate, the planarization layer is located on the side of the functional module away from the display panel, and the protective cover plate is located on the side of the planarization layer away from the functional module;
  • the sum of the thickness of the planarization layer and the protective cover plate is d2, where 300nm ⁇ d2 ⁇ 1.5 ⁇ m. Setting the size of d2 to meet a certain range can provide good protection for the display assembly while ensuring that the distance between the transparent electrode and the outer surface of the display assembly is relatively small.
  • the material of the dielectric layer includes any one or more of silicon oxide, aluminum oxide, hafnium oxide, silicon nitride, ES2110, polyvinyl alcohol cinnamate (PVCN), polyvinyl alcohol, and polymethyl methacrylate. .
  • the material of the dielectric layer can be selected according to specific design requirements.
  • the dielectric constant of the material of the dielectric layer and the thickness of the dielectric layer cooperate with the first active layer and the transparent electrode to form a capacitance, thereby ensuring the realization of the touch position detection function.
  • the functional module includes a first metal layer, wherein the first source, the first drain, the second source, and the second drain are all located on the first metal layer.
  • the source and drain of the phototransistor and the source and drain of the switching transistor are fabricated in the same etching process, which can reduce the complexity of the process.
  • the functional module further includes a second metal layer and a first insulating layer, the second metal layer is located on the side of the first metal layer close to the display panel, and the first insulating layer is located between the first metal layer and the second metal layer. Between the metal layers; wherein, the first gate is located in the second metal layer.
  • the first active layer and the second active layer are both located on the side of the first insulating layer away from the second metal layer, and both are in contact with the first insulating layer.
  • the first active layer and the second active layer are equivalent to being located at the same film layer height, which can help reduce the film thickness of the functional module, and thereby help reduce the overall thickness of the display assembly.
  • the first source electrode and the first gate electrode are connected through a via hole on the first insulating layer.
  • the second gate is located on the second metal layer.
  • Both the switching transistor and the phototransistor have a bottom gate structure, and the switching transistor and the phototransistor have the same structure and can be fabricated in the same process, which further reduces the complexity of the structure and process of the display component.
  • the second active layer and the first active layer are made of the same layer and the same material. It can further simplify the process and reduce the complexity of the process.
  • the functional unit further includes a light-shielding part, the light-shielding part is located on a side of the second active layer away from the display panel, and the orthographic projection of the light-shielding part on the plane where the second active layer is located covers the second active layer.
  • the light shielding part can block the light to prevent the light from irradiating the surface of the second active layer to increase the carriers inside the second active layer, thereby avoiding affecting the switching state of the switching transistor and ensuring the accuracy and detection of fingerprint recognition. Performance reliability.
  • the second gate is located on a side of the second active layer away from the display panel, and a dielectric layer is spaced between the second gate and the second active layer.
  • the second grid can be reused as a light shielding part, and the second grid can shield light to prevent fingerprint reflected light from irradiating the surface of the second active layer.
  • the display panel includes a plurality of pixel areas and non-pixel areas located between adjacent pixel areas, wherein the orthographic projection of the functional unit on the display panel is located in the non-pixel area.
  • the functional unit will not block the light emitted from the pixel area, ensuring that the setting of the functional module does not affect the display effect.
  • an embodiment of the present application further provides a display device, including the display component provided in any embodiment of the present application.
  • an embodiment of the present application also provides a display device, including any embodiment of the present application provides a method for driving a display component, which is applicable to the display component provided by any embodiment of the present application, and the driving method includes : Control both the switching transistor and the phototransistor are turned off, the leakage current of the phototransistor causes the first capacitor to charge and accumulate the initial charge; the control switching transistor is turned on, the first capacitor is discharged, and the initial charge is read through the second drain to control the switching transistor Turn off; in response to a finger’s touch, the electric field between the transparent electrode and the first active layer changes, the first capacitor is charged to accumulate the amount of touch charge; the switching transistor is controlled to turn on, the first capacitor is discharged, and the touch is read through the second drain The amount of charge, and the touch position of the finger is judged based on the amount of touch charge.
  • the driving method further includes: judging the fingerprint recognition light source corresponding to the touch position according to the touch position, and controlling the fingerprint recognition light source to turn on; after the phototransistor receives the light reflected by the finger, the leakage current increases, and the first capacitor is charged to accumulate fingerprints The amount of charge; the control switch transistor is turned on, the first capacitor is discharged, and the amount of fingerprint charge is read through the second drain.
  • the display assembly, display device, and driving method provided in this application have the following beneficial effects:
  • the fingerprint recognition and touch functions are integrated into one functional module, which can reduce the module settings in the display assembly. It is beneficial to reduce the overall thickness of the display assembly.
  • the functional module is arranged on the light-emitting surface of the display panel, which shortens the distance to be transmitted by the reflected light of the fingerprint, can increase the collimation of the reflected light of the fingerprint, and improve the accuracy of fingerprint recognition.
  • the present application can control the lighting of the fingerprint recognition light source through the touch detection function, and avoid the damage to the display assembly caused by the pressing method to light the light source.
  • the structure of the phototransistor and the switching transistor are similar.
  • the phototransistor and the switching transistor can share at least part of the process during production, which can display the complexity of the structure and the process of the device, and is also beneficial to reduce the overall thickness of the display device.
  • the phototransistor can achieve a relatively small size, and it also has a good photosensitive effect.
  • the phototransistor is arranged on the light-emitting surface of the display panel, which will not block the light from the display panel.
  • FIG. 1 is a schematic diagram of a partial film structure of a display module provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the light path of the light used by the display assembly for fingerprint detection in the fingerprint recognition stage in the embodiment of FIG. 1;
  • FIG. 3 is a schematic diagram of another partial film structure of a display assembly provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of another partial film structure of the display assembly provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a circuit structure of a functional unit in a display assembly provided by an embodiment of the application;
  • FIG. 6 is a timing diagram of the circuit of the functional unit in the embodiment of FIG. 5 in the touch phase;
  • FIG. 7 is a timing diagram of the circuit of the functional unit in the embodiment of FIG. 5 in the fingerprint recognition phase
  • FIG. 8 is a schematic diagram of a circuit structure of a functional module in a display assembly provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another partial film structure of the display assembly provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a circuit structure of the functional unit in the embodiment of FIG. 9;
  • FIG. 11 is a schematic partial top view of a display assembly provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another partial film structure of a display assembly provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of a display device provided by an embodiment of the application.
  • a solution is proposed in which a switch transistor and a photodiode are integrated into a module that can realize fingerprint recognition and touch functions, and are arranged on the packaging film of the display panel.
  • fingerprint recognition process the distance that the reflected light of the fingerprint needs to be transmitted can be shortened, and the accuracy of fingerprint detection can be improved.
  • the structure and manufacturing process of the switching transistor and the photodiode are quite different, and the switching transistor and the photodiode need to be fabricated separately, resulting in display components
  • the complexity of the manufacturing process increases, and the overall thickness of the module composed of switching transistors and photodiodes is also larger.
  • the pressure detection unit is integrated on the light emitting layer of the display panel, and the photosensitive element is integrated on the packaging layer of the display panel.
  • the pixel unit emits light as a light source. After the light source shines on the finger, the light beam is diffusely reflected by the finger, and the difference in light energy between the valley and the peak of the finger fingerprint is detected to realize fingerprint recognition. That is, the pixel unit of the display panel is illuminated by the pressing of the finger, and then the photosensitive element is used to realize the function of fingerprint recognition.
  • This technology integrates multiple pressure detection units on the light-emitting layer of the display panel, which increases the thickness of the display assembly; at the same time, the pixel unit is illuminated by pressing with a finger, which increases the loss of the panel due to pressing.
  • an embodiment of the present application provides a display assembly in which a functional module integrating a phototransistor and a switching transistor is arranged on the light-emitting surface of the display panel, which can simultaneously realize the fingerprint recognition function and the touch function, and improve the accuracy of fingerprint recognition , Reduce the complexity of the structure and process of the display assembly, and at the same time can avoid the loss of the display assembly caused by the pressing method to light the light source.
  • FIG. 1 is a schematic diagram of a partial film structure of a display module provided by an embodiment of the application.
  • 2 is a schematic diagram of the light path of the light used for fingerprint detection by the display assembly in the embodiment of FIG. 1 in the fingerprint identification stage.
  • the display assembly includes: a display panel 10 and a functional module 20 located on the light-emitting surface of the display panel 10.
  • the light-emitting surface of the display panel 10 is the surface on the side of the display screen of the display panel.
  • the display panel 10 is any one of an organic light-emitting display panel, a liquid crystal display panel, and a micro-diode display panel.
  • FIG. 1 only illustrates that the display panel is an organic light-emitting display panel.
  • the display panel 10 includes a base substrate 101, an array substrate 102, and a display panel.
  • the base substrate 101 may be a flexible substrate or a rigid substrate; the array substrate 102 includes a plurality of pixel circuits, and the figure only illustrates the driving transistor 1021 in the pixel circuit; the display layer 103 includes a pixel definition layer 1031 and a plurality of light emitting devices 1032 In the figure, only one light-emitting device 1032 is shown.
  • the light-emitting device 1032 includes an anode 31, a light-emitting layer 32, and a cathode 33 stacked in sequence.
  • the anode 31 is electrically connected to the driving transistor 1021 through a via hole;
  • the package isolates water and oxygen to ensure the service life of the light-emitting device 1032.
  • the packaging structure 104 may be a rigid packaging, including a packaging cover plate and a frame sealant; the packaging structure 104 may be a thin film packaging, including at least one organic packaging layer and at least one inorganic packaging layer stacked alternately.
  • the functional module 20 includes a plurality of functional units. Each functional unit includes at least one phototransistor 1 and a switch transistor 2 connected to the phototransistor 1. Only one functional unit is shown in the figure.
  • the phototransistor 1 includes a first active layer 11, a first gate 12, a first source 13 and a first drain 14.
  • the first active layer 11 is made of an organic semiconductor material, and the first active layer 11 is located on the side of the first gate 12 away from the display panel 10.
  • the organic semiconductor material is a parallel Pentacene (Pentacene), 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-pentacene), copper phthalocyanine (CuPc), (dinaphtho[2,3-b:2′ ,3′-f]thieno[3,2-b]thiophene) (DNTT), 2,6-bis(methoxyphenyl)anthracene (BOPAnt), poly3-hexylthiophene (P3HT), poly(double (3-dodecyl-2-thienyl)-2,2'-bisthiophene-5,5'-substituted)(Poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene- 5,5'-d
  • the first active layer 11 When the first active layer 11 is fabricated, a solution method may be used to coat and form a film, and then an etching process may be used to form the pattern of the first active layer 11.
  • the first active layer 11 may also be formed by vapor deposition and film formation.
  • Organic semiconductor materials have strong absorption of light.
  • the first active layer 11 is used as a light sensing layer. When light is irradiated on the surface of the first active layer 11, each photon absorbed in the first active layer 11 corresponds to The generation of an electron-hole pair, due to the effect of the electric field, the electron-hole separation produces charge carriers, and the charge carriers migrate inside the material to form a current, thereby realizing the conversion of optical signals into electrical signals.
  • Different organic semiconductor materials have different sensitive wavelength bands to light.
  • the first active layer is made of organic semiconductor materials that are sensitive to visible light, such as green light-sensitive organic semiconductor materials, which are matched with a fingerprint recognition light source that emits green light; the first active layer is made of organic semiconductor materials that are sensitive to infrared light. It is matched with a fingerprint recognition light source capable of emitting infrared light.
  • the working state of the phototransistor 1 includes a dark state and a bright state.
  • the dark state of the phototransistor 1 is the state when no light is irradiated on the surface of the first active layer 11. In the dark state, a bias voltage is applied to the phototransistor 1, There will be a small leakage current in the first active layer 11; correspondingly, the bright state of the phototransistor 1 is the state when light is irradiated on the surface of the first active layer 11. In the bright state, the first active layer 11 There is a small leakage current and photocurrent generated by light excitation.
  • the switching transistor 2 includes a second active layer 21, a second gate 22, a second source 23, and a second drain 24.
  • the second source 23 is connected to the first drain 14;
  • the material of the layer 21 can be a silicon semiconductor material, such as a single crystal silicon semiconductor or a polysilicon semiconductor; or it can also be an organic semiconductor material.
  • the material of the second active layer 21 includes Pentacene, TIPS-pentacene, CuPc, DNTT, BOPAnt, P3HT, PQT-12, PDVT-10, DPP-DTT, 2,7-dioctyl [1] benzothieno [3,2-B]benzothiophene (C8-BTBT), [4,4,9,9-tetra(4-hexylphenyl)-s-benzobisindeno[1,2-b:5, 6-b']Dithiophene]-benzothiadiazole copolymer (C16-IDTBT), 2,8-difluoro-5,11-bis(triethylsilylethynyl)bisthiophenanthracene (diF-TES- ADT), 2,9-diphenyl-dinaphthyl[2,3-b:2',3'-f]thieno[3,2-b]thiophene (Dph-DNTT
  • Each functional unit includes a transparent electrode 15.
  • the transparent electrode 15 is located on the side of the first active layer 11 away from the first gate 12. In the direction perpendicular to the display assembly, the transparent electrode 15 and the first active layer 11 overlap.
  • a dielectric layer 16 is provided between the transparent electrode 15 and the first active layer 11.
  • the transparent electrode 15 has a relatively high transmittance to light, and can be made of a metal oxide material, such as indium tin oxide.
  • a capacitance is formed between the transparent electrode 15 and the first active layer 11.
  • the transparent electrode 15 and The electric field between the first active layers 11 changes.
  • the change in the electric field may be due to the change of the capacitance value, or it may be due to the capacitive coupling caused by the charge carried by the finger.
  • a small amount of electric charge carried on the finger passes through the thinner film layer between the finger and the transparent electrode 15 and is transferred to the transparent electrode 15, the electric field between the transparent electrode 15 and the first active layer 11 is changed.
  • the dielectric layer 16 between the transparent electrode 15 and the first active layer 11 is deformed due to the slight pressing of the finger, thereby causing the transparent electrode 15 and the first active layer 11 to deform.
  • the capacitance between an active layer 11 changes.
  • the display component provided by the embodiment of the present application can realize the touch function and the fingerprint recognition function at the same time.
  • the driving method for realizing the touch function and fingerprint recognition function is described below.
  • the driving method includes: a startup phase, an initial signal reading phase, a touch signal accumulation phase, and a touch signal reading phase.
  • the control switch transistor 2 and the phototransistor 1 are both turned off, the phototransistor 1 is in the dark state, and the phototransistor 1 has a small leakage current, so that the first drain 14 and the first gate 12 of the phototransistor 1
  • the first capacitor Cs formed in between is charged to accumulate a small amount of initial charge, which is recorded as the initial charge Q 0 .
  • the switching transistor 2 In the initial signal reading phase, when the switching transistor 2 is controlled to be turned on, the second source 23 and the second drain 24 of the switching transistor 2 are turned on, and since the first drain 14 and the second source 23 are connected, then The first capacitor Cs is discharged, the initial charge Q 0 is read through the second drain 24, and then the switching transistor 2 is controlled to turn off.
  • the electric field between the transparent electrode 15 and the first active layer 11 changes, causing the amount of charge accumulated by charging the first capacitor Cs to increase, which is recorded as the amount of touch charge Q 1 .
  • the touch phase of the read signal controlling the switching transistor 2 is opened, discharging the first capacitor Cs, the drain electrode 24 through the second touch reading the charge amount Q 1, and the charge amount Q 1 according to the touch finger touch position is determined.
  • the touch charge Q 1 reaches a certain charge threshold, it is recognized as a finger touch operation; when it is detected that the touch charge Q 1 is less than the charge threshold, it is recognized that there is no touch operation, thereby ensuring the touch
  • the accuracy of the operation avoids misjudgment of the touch and affects the user experience.
  • the position of the finger touch is determined according to the coordinate position of the functional unit set in the system motherboard. Then the system motherboard controls the display component to perform corresponding operations according to the touch position, such as opening the application, returning to the main interface, etc., thereby realizing the touch function.
  • the driving method includes: startup phase, initial signal reading phase, touch signal accumulation phase, touch signal reading phase, fingerprint recognition light source calling phase, fingerprint signal accumulation phase and Fingerprint signal reading stage.
  • FIG. 2 only uses the light-emitting device 1032 in the display panel 10 to be multiplexed as a fingerprint identification light source.
  • the light emitted by the light emitting device 1032 is emitted from the light emitting surface of the display panel 10, penetrates the functional module 20 and then irradiates the user's finger 88.
  • the light reflected by the finger penetrates the transparent electrode 15 and then irradiates the first active layer of the phototransistor 1.
  • the first active layer absorbs the light reflected by the fingerprint and converts the optical signal into an electrical signal.
  • the control switch transistor 2 and the phototransistor 1 are both turned off, the phototransistor 1 is in the dark state, and the phototransistor 1 has a small leakage current, so that the first drain 14 and the first gate 12 of the phototransistor 1
  • the first capacitor Cs formed in between is charged to accumulate a small amount of initial charge, which is recorded as the initial charge Q 0 .
  • the switching transistor 2 In the initial signal reading phase, when the switching transistor 2 is controlled to be turned on, the second source 23 and the second drain 24 of the switching transistor 2 are turned on, and since the first drain 14 and the second source 23 are connected, then The first capacitor Cs is discharged, the initial charge Q 0 is read through the second drain 24, and then the switching transistor 2 is controlled to turn off.
  • the electric field between the transparent electrode 15 and the first active layer 11 changes, causing the amount of charge accumulated by charging the first capacitor Cs to increase, which is recorded as the amount of touch charge Q 1 .
  • the touch phase of the read signal controlling the switching transistor 2 is opened, discharging the first capacitor Cs, the drain electrode 24 through the second touch reading the charge amount Q 1, and the charge amount Q 1 according to the touch finger touch position is determined.
  • the touch charge amount Q 1 of the charge amount reaches a certain threshold, it is recognized as a finger touch operation; when the touch is detected charge amount Q 1 is smaller than a threshold charge amount, no touch operation is recognized.
  • the touch position of the finger can be judged according to the coordinate position of the functional unit set in the system motherboard.
  • the pixel unit of the display panel 10 can be reused as the fingerprint recognition light source, or the fingerprint recognition light source is also It may be an external light source, which is arranged on the side of the display panel 10 away from the functional module 20.
  • the pixel unit of the display panel 10 includes a light emitting device. After the touch position of the finger is determined, multiple light-emitting devices around the coordinate position are selected as the fingerprint recognition light source according to the coordinates of the touch position.
  • the entire surface fingerprint identification can be realized, and the fingerprint identification does not need to be limited to a fixed area.
  • the fingerprint recognition light source After the fingerprint recognition light source is turned on, the light emitted by the light source is reflected by the finger and then penetrates the transparent electrode 15 and is directed toward the first active layer 11 of the phototransistor 1.
  • the phototransistor 1 In the fingerprint signal accumulation stage, after the phototransistor 1 receives the light reflected by the finger, the phototransistor 1 is in the bright state, and the first active layer 11 generates charge carriers inside after being irradiated with light, and the current in the phototransistor 1 increases Therefore, the amount of charge accumulated by charging the first capacitor Cs increases, which is recorded as the fingerprint charge amount Q 2 .
  • the ridge of the fingerprint of the finger When the finger is pressed on the surface of the display component, the ridge of the fingerprint of the finger directly contacts the surface of the display component, and the light emitted by the fingerprint recognition light source is reflected on the interface where the fingerprint ridge and the display component are in contact, and then is received by the phototransistor 1; the fingerprint valley of the finger
  • the light reflected by the ridge is stronger than the light reflected by the valley.
  • the photocurrent generated in the phototransistor that receives the light reflected by the ridge is greater than that in the phototransistor that receives the light reflected by the valley.
  • the generated photocurrent, and then the charge accumulated on the first capacitor in the phototransistor that receives the reflected light from the ridge, is more. Therefore, the fingerprint valley and the fingerprint ridge can be distinguished according to the magnitude of the fingerprint charge in the subsequent arithmetic processing.
  • the switching transistor 2 is controlled to be turned on, and the second source 23 and the second drain 24 of the switching transistor 2 are turned on again, the first capacitor Cs is discharged, and the fingerprint is read through the second drain 24 The amount of charge Q 2 .
  • the initial charge Q 0 and the fingerprint charge Q 2 are respectively read through the second drain, and the initial charge Q 0 and the fingerprint charge Q 2 are transferred to the fingerprint data processing module (module in the system motherboard), and the fingerprint data
  • the processing module collects the fingerprint detection signals returned by multiple fingerprint identification units and performs arithmetic processing, and finally generates fingerprint information to realize the fingerprint identification function.
  • the functional module includes multiple functional units composed of switching transistors, phototransistors, and transparent electrodes, capable of simultaneous fingerprint recognition and touch functions, and integrates fingerprint recognition and touch functions into one function
  • the module arrangement in the display assembly can be reduced, which is beneficial to reducing the overall thickness of the display assembly.
  • the functional module is set on the light-emitting surface of the display panel. During fingerprint recognition, the light reflected by the finger can be received by the functional module without having to penetrate the structural film of the display panel, which shortens the transmission of the reflected light from the fingerprint.
  • the distance can increase the collimation of the reflected light of the fingerprint, avoid the light loss caused by the reflected light of the fingerprint penetrating the structural film layer of the display panel, and improve the accuracy of fingerprint recognition. It can control the lighting of the fingerprint recognition light source through the touch detection function, and avoid the damage to the display assembly caused by the pressing method to light the light source.
  • phototransistors and switching transistors are used in functional modules to form functional units. The structures of phototransistors and switching transistors are similar. The phototransistors and switching transistors can share at least part of the process during production, which can show the complexity of the component structure and process. , It is also conducive to reducing the overall thickness of the display assembly.
  • the phototransistor in the functional unit is used as the photosensitive element.
  • the photosensitive effect (ie, photosensitive effect) of the photosensitive element is related to the order of magnitude that can be achieved by dividing the photocurrent by the dark current, that is, the greater the difference between the photocurrent and the dark current, the better the photosensitive effect, and the more sensitive the fingerprint recognition.
  • the dark current is the leakage current of the photosensitive element in the dark state (without light irradiation)
  • the photocurrent is the current generated by the light-excited light of the photosensitive element in the bright state (with light irradiation).
  • a photodiode is used as a photosensitive element, and its leakage current in the dark state is nA. It is usually necessary to make the photosensitive area of the photodiode relatively large to ensure the photosensitive effect of the photodiode. This leads to a larger area occupied by the fingerprint recognition module composed of switch transistors and photodiodes.
  • the fingerprint recognition module is placed on the display surface of the display panel, and the fingerprint recognition module blocks the display panel from light, which affects the display effect. .
  • a phototransistor and a switching transistor are used to form a functional unit.
  • the leakage current of the phototransistor in the dark state is pA level, that is, the leakage current of the phototransistor in the dark state is much smaller than that of the photodiode in the dark state. Therefore, the phototransistor of the present application can achieve a relatively small size and also has a good photosensitive effect.
  • the phototransistor is arranged on the light-emitting surface of the display panel, which will not block the light from the display panel.
  • the thickness of the dielectric layer 16 between the transparent electrode 15 and the first active layer 11 is d1, where 500nm ⁇ d1 ⁇ 1000nm.
  • d1 the thickness of the dielectric layer 16 between the transparent electrode 15 and the first active layer 11
  • the capacitance formula when the thickness of the dielectric layer is too large, the capacitance formed between the transparent electrode and the first active layer is small, and the small amount of charge carried by the finger has little effect on the capacitance or the slight pressure of the finger on the capacitance The impact of is small, it will affect the sensitivity of touch detection.
  • the manufacturing process is different, and the thickness of the dielectric layer that can be manufactured by the corresponding manufacturing process is also different. This embodiment can ensure the sensitivity of touch detection while meeting the requirements of the manufacturing process of the dielectric layer.
  • the dielectric layer also has a planarizing effect.
  • the dielectric layer is fabricated to form a flat surface, and the transparent electrode is fabricated on the flat surface.
  • the distances between the parts of the transparent electrode and the outer surface of the display assembly are approximately equal, wherein the outer surface of the display assembly is also the surface touched by the user's finger during use.
  • the material of the dielectric layer can be an inorganic insulating material or an organic insulating material.
  • the dielectric layer is made of silicon oxide, aluminum oxide, hafnium oxide, silicon nitride, ES2110, poly(vinylcinnamate) (PVCN), polyvinyl alcohol (PVA), polymethyl methacrylate Any one or more of (PMMA).
  • the material of the dielectric layer can be selected according to specific design requirements.
  • the dielectric constant of the material of the dielectric layer and the thickness of the dielectric layer cooperate with the first active layer and the transparent electrode to form a capacitance, thereby ensuring the realization of the touch position detection function.
  • the display assembly further includes a planarization layer 17 and a protective cover plate 18.
  • the planarization layer 17 is located on the side of the functional module 20 away from the display panel 10, and the protective cover plate 18 is located on the planarization layer 17 away from the function.
  • the sum of the thickness of the planarization layer 17 on the transparent electrode 15 and the protective cover plate 18 is d2, where 300nm ⁇ d2 ⁇ 1.5 ⁇ m.
  • the planarization layer on the transparent electrode ensures the flatness of the outer surface of the display assembly, and the protective cover can protect the functional module and ensure the service life of the display assembly.
  • d2 is the distance between the transparent electrode and the outer surface of the display assembly. Setting d2 to meet a certain range can protect the display assembly while ensuring that the distance between the transparent electrode and the outer surface of the display assembly is relatively small. During position detection, when the finger touches the corresponding position of the transparent electrode, the small amount of charge carried on the finger is effectively transferred to the transparent electrode, thereby ensuring the sensitivity of touch detection.
  • the planarization layer 17 and the protective cover plate 18 are not provided with an anti-impact layer, so as to reduce the distance between the transparent electrode 15 and the outer surface of the display assembly.
  • the functional module 20 includes a first metal layer 41, wherein the first source 13, the first drain 14, the second source 23, and the second drain 24 are all located in the first metal layer. 41. That is, the first source 13, the first drain 14, the second source 23, and the second drain 24 can be manufactured in the same etching process during the manufacturing process of the display device, which can reduce the complexity of the process.
  • the first drain 14 and the second source 23 are integrally formed to form a common electrode, one end of the common electrode serves as the first drain 14 and the other end serves as the second source 23.
  • the functional module 20 further includes a second metal layer 42 and a first insulating layer 51.
  • the second metal layer 42 is located on the side of the first metal layer 41 close to the display panel 10, and the first insulating layer 51 is located Between the first metal layer 41 and the second metal layer 42; wherein the first gate electrode 12 is located on the second metal layer 42. That is, the first gate 12 of the phototransistor 1 is located on the side of the first active layer 11 close to the display panel 10.
  • the active layer 11 is blocked by light, so as to ensure that the reflected light of the fingerprint can be directed to the first active layer 11 during the fingerprint identification stage, so that the phototransistor 1 can convert the optical signal into an electrical signal.
  • the second gate 22 of the switching transistor 2 is also located on the second metal layer 42.
  • the second gate 22 of the switching transistor 2 can be made of the same layer and the same material as the first gate 12 of the phototransistor 1.
  • the switching transistor and the phototransistor are both bottom gate structures, and the switching transistor and the phototransistor have the same structure. , Can be manufactured in the same process, further reducing the complexity of the display assembly structure and process.
  • the first active layer 11 and the second active layer 21 are both located on the side of the first insulating layer 51 away from the second metal layer 42, and both are in contact with the first insulating layer 51.
  • a first insulating layer 51 is formed on the first gate electrode 12; then a first metal layer 41 is formed on the first insulating layer 51; A metal layer 41 is patterned to form the first source 13, the first drain 14, the second source 23, and the second drain 24; then the first active layer 11 and the second active layer 21 are fabricated.
  • Both ends of the source layer 11 are connected to the first source 13 and the first drain 14 respectively, and both ends of the second active layer 21 are connected to the second source 23 and the second drain 24 respectively. Both the first active layer 11 and the second active layer 21 are in contact with the first insulating layer 51, and the first active layer 11 and the second active layer 21 are equivalent to being located at the same film height, which can help reduce functions
  • the thickness of the film layer of the module is beneficial to reduce the overall thickness of the display assembly.
  • the first active layer and the second active layer are made of the same layer and the same material, that is, the pattern of the first active layer and the pattern of the second active layer are simultaneously formed in the same process. It can further simplify the process and reduce the complexity of the process.
  • the second active layer and the first active layer are made of the same layer and the same material, the second active layer and the first active layer have the same light-sensitive wavelength band.
  • FIG. 3 is another partial film of the display component provided by the embodiment of the present application.
  • Schematic diagram of layer structure The first source 13, the first drain 14, the second source 23, and the second drain 24 are all located on the first metal layer 41; the first gate 12 and the second gate 22 are all located on the second metal layer 42, The first active layer 11 and the second active layer 21 are made of the same layer and the same material, and both are in contact with the first insulating layer 51.
  • the functional module 20 also includes a plurality of shading parts 61 (only one is shown in the figure).
  • One shading part 61 corresponds to one switching transistor 2.
  • the shading part 61 is located on the side of the second active layer 21 away from the display panel 10.
  • the shading part 61 The orthographic projection on the plane where the second active layer 21 is located covers the second active layer 21.
  • the light-shielding part 61 can be made of metal materials or organic light-absorbing materials.
  • the corresponding material can be selected to make the light-shielding part according to the photosensitive wavelength band of the organic semiconductor material used in the first active layer to ensure that the light-shielding part Block the light in this band.
  • the light shielding part can block the light to prevent the light from irradiating the surface of the second active layer to increase the carriers inside the second active layer, thereby avoiding affecting the switching state of the switching transistor and ensuring the accuracy and detection of fingerprint recognition. Performance reliability.
  • the light-shielding portion 61 is in direct contact with the dielectric layer 16, which is equivalent to arranging the light-shielding portion 61 and the transparent electrode 15 at the same film height, which can help reduce the thickness of the film layer of the functional module, thereby helping to reduce the display The overall thickness of the component.
  • the first active layer 11 and the second active layer 21 are both in contact with the first insulating layer 51, and the second active layer 21 and the first active layer 11 are If made of different materials, the light-sensitive wavelength band of the second active layer 21 is different from the light-sensitive wavelength band of the first active layer 11.
  • the first active layer is sensitive to the light emitted by the fingerprint recognition light source. Even if the fingerprint reflected light is irradiated on the surface of the second active layer, it will not be absorbed by the second active layer and affect the switching transistor. switch status.
  • This embodiment does not require a light-shielding portion to be provided on the second active layer to shield light, and can save the process of manufacturing the light-shielding portion.
  • FIG. 4 is a schematic diagram of another partial film structure of the display assembly provided by an embodiment of the application.
  • the first source 13, the first drain 14, the second source 23, and the second drain 24 are all located on the first metal layer 41;
  • the first gate 12 is located on the second metal layer 42, and the first active layer 11 and
  • the second active layers 21 are all located on the side of the first insulating layer 51 away from the second metal layer 42 and are in contact with the first insulating layer 51.
  • the second gate 22 is located on a side of the second active layer 21 away from the display panel 10, and a dielectric layer 15 is spaced between the second gate 22 and the second active layer 21.
  • the first active layer and the second active layer can be made of the same layer and the same material to ensure that the switching transistor and the phototransistor share part of the process and reduce the complexity of the manufacturing process.
  • the second grid located on the side of the second active layer away from the display panel can be reused as a light shielding part.
  • the second grid can block light to prevent fingerprint reflection light from irradiating the second
  • the surface of the active layer increases the carriers inside the second active layer, thereby avoiding affecting the switching state of the switching transistor, and ensuring the accuracy and performance reliability of fingerprint recognition.
  • the first source electrode 13 and the first gate electrode 12 are connected through a via 511 on the first insulating layer 51. That is, the first gate 12 and the first source 13 of the phototransistor 1 are turned on, and the phototransistor 1 always works in the off state.
  • the phototransistor 1 does not illuminate the surface of the first active layer 11, the leakage current of the phototransistor 1 is very small.
  • the leakage current of the phototransistor 1 is very small.
  • the carriers generated inside an active layer make the leakage current of the phototransistor 1 significantly increase, which can ensure that the phototransistor has a higher light sensitivity.
  • FIG. 5 is a schematic diagram of a circuit structure of a functional unit in the display assembly provided by an embodiment of the application
  • FIG. 6 is a timing diagram of the circuit of the functional unit in the embodiment of FIG. 5 in the touch phase.
  • FIG. 7 is a timing diagram of the circuit of the functional unit in the embodiment of FIG. 5 in the fingerprint recognition phase.
  • the functional module includes a control signal line 71, a data signal line 72, and a third voltage signal line 73; the second gate of the switching transistor 2 is electrically connected to the control signal line 71, and the second drain of the switching transistor 2
  • the electrode is electrically connected to the data signal line 72, and both the first gate electrode 12 and the first source electrode 13 are electrically connected to the third voltage signal line 73.
  • the switching transistors and phototransistors in the embodiments of the present application may be p-type transistors or n-type transistors, as long as the types of the switching transistors and phototransistors are the same.
  • the control signal line 71 provides the control signal Vscan to the switching transistor 2.
  • the control signal line 71 provides an inactive level signal to control the switching transistor 2 to turn off, and the data signal line 72 to the switching transistor
  • the second drain of 2 is connected to a reading potential, the first source and the first gate of the phototransistor 1 are turned on, and the bias voltage Vbias is connected through the third voltage signal line 73, and the phototransistor 1 is in the off state. , That is, the phototransistor 1 is in the dark state.
  • the first capacitor Cs Due to the leakage current of the phototransistor 1, the first capacitor Cs begins to charge and accumulate a small amount of charge, which is recorded as the initial charge Q 0 ; in the initial signal reading phase, the control signal line 71 provides an active level signal to the switching transistor 2 to control the switching transistor 2 to turn on, the first capacitor Cs is discharged, the data signal line 72 reads the initial charge Q 0 through the second drain 24, and then the control signal line 71 provides an inactive level The signal control switch transistor 2 is turned off; there is no finger touch during the startup phase and the initial signal reading phase, that is, without touch in the timing chart.
  • the finger touches the display component (touch), which is transparent in response to the finger touch
  • the electric field between the electrode 15 and the first active layer 11 changes, causing the amount of charge accumulated during the charging of the first capacitor Cs to increase, which is recorded as the touch charge amount Q 1 ; in the touch signal reading phase, the control signal line 71 provides effective electricity
  • the level signal controls the switching transistor 2 to turn on, the first capacitor Cs is discharged, the touch charge quantity Q 1 is read through the second drain 24, and the touch position of the finger is determined according to the touch charge quantity Q 1.
  • the position of the touch of the finger is determined according to the coordinate position of the functional unit set in the system motherboard. Then the system motherboard controls the display component to perform corresponding operations according to the touch position, thereby realizing the touch function.
  • the control signal line 71 provides the control signal Vscan to the switching transistor 2.
  • the control signal line 71 provides an inactive level signal to control the switching transistor 2 to turn off, and the data signal line 72 to the switching transistor 2
  • the second drain of the phototransistor is connected to a read potential, the first source and the first gate of the phototransistor 1 are turned on, and the bias voltage Vbias is connected through the third voltage signal line 73, and the phototransistor 1 is in the off state.
  • the phototransistor 1 is in the dark state, and the first capacitor Cs starts to be charged and accumulates a small amount of charge due to the leakage current of the phototransistor 1, which is recorded as the initial charge Q 0 ; in the initial signal reading phase, the control signal line 71
  • the switch transistor 2 is provided with an active level signal to control the switch transistor 2 to turn on, the first capacitor Cs is discharged, the data signal line 72 reads the initial charge Q 0 through the second drain 24, and then the control signal line 71 provides an inactive level signal
  • the control switch transistor 2 is turned off; there is no finger touch (without touch) during the startup phase and the initial signal reading phase, and the finger touches the display component (touch) in the touch signal accumulation phase.
  • the transparent electrode 15 and the first The electric field between the active layers 11 changes, causing the amount of charge accumulated during the charging of the first capacitor Cs to increase, which is recorded as the amount of touch charge Q 1 ;
  • the control signal line 71 provides an effective level signal to control the switching transistor 2 is turned on, the first capacitor Cs is discharged, the touch charge Q 1 is read through the second drain 24, and the touch position of the finger is judged according to the touch charge Q 1 ;
  • the touch is judged and touched according to the touch position Position the fingerprint identification light source corresponding to the position, and control the fingerprint identification light source to turn on, so that the light emitted by the light source is reflected by the finger and penetrates the transparent electrode 15 to the first active layer 11 of the phototransistor 1; in the fingerprint signal accumulation stage, the phototransistor 1 After receiving the light reflected by the finger, the phototransistor 1 changes from a dark state to a bright state (illumination), and the current
  • the initial charge Q 0 and fingerprint charge Q 2 are transmitted to the fingerprint data processing module (module in the system motherboard).
  • the fingerprint data processing module collects the fingerprint detection signals returned by multiple fingerprint identification units and performs arithmetic processing, and finally generates Fingerprint information, to realize the function of fingerprint identification.
  • FIG. 8 is a schematic diagram of a circuit structure of the functional module in the display assembly provided by the embodiment of the application.
  • the multiple functional units 201 are arranged in an array.
  • Each functional unit 201 includes at least one phototransistor 1 and one switching transistor 2.
  • the second gates of the multiple switching transistors 2 in the same row are electrically connected to a control signal line 71.
  • the second drains of the multiple switching transistors 2 located in the same column are all electrically connected to one data signal line 72, and the first gates 12 and first sources 13 of the multiple phototransistors 1 located in the same row are all connected to one
  • the third voltage signal line 73 is electrically connected.
  • the realization of touch or fingerprint recognition functions requires access to the gate, source, drain of the switching transistor, and one of the electrodes of the photodiode.
  • the voltage signal and the drive circuit are more complicated.
  • to realize the touch or fingerprint recognition function it is only necessary to pass a voltage signal to the second gate, the second drain of the switching transistor and the first gate (or the first source) of the phototransistor to drive
  • the circuit is relatively simple. Only three signal lines of control signal line, data signal line and third voltage signal line need to be provided in the functional module, which can also simplify the wiring method in the functional module and save the space occupied by the wiring.
  • the circuit of the functional module and the circuit that drives the display of the display panel are independent of each other, and the touch detection or fingerprint recognition detection does not need to be time-division multiplexed with the scanning time of a frame of picture, which reduces the complexity of the circuit structure.
  • the data signal line 72 and the second drain electrode are located in the same metal layer, that is, the data signal line 72 is located in the first metal layer (refer to the film layer position shown in FIG. 1), then the data signal line 72 may be the same as the second drain electrode.
  • the production is completed in the same process, and the data signal line 72 and the second drain do not need to be connected through the via hole of the insulating layer, which simplifies the process.
  • the control signal line 71 and the second gate are located on the same metal layer.
  • the control signal line 71 and the second gate are manufactured in the same process.
  • the control signal line 71 and the second gate do not need to pass through the vias of the insulating layer. Connection to simplify the process.
  • the third voltage signal line 73 may be located on the same metal layer as the first gate electrode, or may be located on the same metal layer as the first source electrode.
  • the data signal line and the second drain are located on the first metal layer
  • the third voltage signal line and the first gate are located on the second metal layer
  • the control signal line and the second gate are located on the same metal layer.
  • the fingerprint data signal line, the fingerprint control signal line and the third voltage signal line are respectively wired in three different metal layers, which can reduce the wiring density in each metal layer.
  • FIG. 9 is a schematic diagram of another partial film structure of a display assembly provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a circuit structure of the functional unit in the embodiment of FIG. 9.
  • the functional module 20 is located on the light-emitting surface of the display panel 10.
  • the functional module 20 includes multiple functional units.
  • Each functional unit includes at least one phototransistor 1 and one switching transistor 2.
  • the phototransistor 1 includes a first active layer 11, a first gate 12, a first source 13 and The first drain 14 and the first active layer 11 are made of an organic semiconductor material.
  • the first drain 14 and the first gate 12 partially overlap to form a first capacitor Cs;
  • the switching transistor 2 includes a second active layer 21 , The second gate 22, the second source 23 and the second drain 24, and the first drain 14 and the second source 23 are connected.
  • the embodiment of FIG. 9 there is no conduction between the first source electrode 13 and the first gate electrode 12.
  • the functional module includes a control signal line 71, a data signal line 72, a first voltage signal line 74, and a second voltage signal line 75; the second gate is electrically connected to the control signal line 71, and the second drain It is electrically connected to the data signal line 72, the first gate is electrically connected to the first voltage signal line 74, and the first source is electrically connected to the second voltage signal line 75.
  • the control The voltage provided by the first voltage signal line 74 to the first gate is greater than the voltage provided by the second voltage signal line 75 to the first source to control the phototransistor 1 to be in the off state.
  • FIG. 11 is a schematic partial top view of a display assembly provided by an embodiment of the application.
  • the non-pixel area 121 between adjacent pixel areas 111.
  • the pixel area 111 is a pixel light-emitting area
  • the non-pixel area 121 is a non-light-emitting area.
  • the pixel area 111 is the area where the light-emitting device is located
  • the non-pixel area 121 is the area where the pixel definition layer of the spacing light-emitting device is located.
  • the liquid crystal display panel includes a black matrix
  • the black matrix includes a plurality of openings
  • the area exposed by the openings is the pixel area 111
  • the area between adjacent openings is the non-pixel area.
  • the orthographic projection of the functional unit 201 on the display panel 10 is located in the non-pixel area 121.
  • the orthographic projection direction of the functional unit 201 to the display panel 10 is the same as the top-view direction. Therefore, the orthographic projection of the functional unit 201 and the functional unit 201 on the display panel 10 overlap in the top-view direction.
  • Fig. 11 only shows that the functional unit 201 is provided in a part of the fixed area.
  • the functional unit may be provided corresponding to the entire surface of the display area, so that the entire surface of the touch and fingerprint recognition function can be realized.
  • the functional unit corresponds to the non-pixel area of the display panel. When the display component is displayed, the functional unit will not block the light from the pixel area, ensuring that the setting of the functional module does not affect the display effect.
  • the foregoing embodiments all illustrate that the display panel is an organic light-emitting display panel, and in the display assembly provided in the embodiment of the present application, the display panel may also be a liquid crystal display panel.
  • the display panel may also be a liquid crystal display panel.
  • FIG. 12 which is an implementation of the application.
  • the example provides a schematic diagram of another partial film structure of the display module.
  • the display panel 10 includes a base substrate 101, an array substrate 105, a liquid crystal molecule layer 106, and a color filter substrate 107 that are sequentially stacked.
  • the array substrate 105 includes a plurality of pixel circuits. The figure only illustrates the driving transistor 1051 in the pixel circuit.
  • the array substrate also includes a pixel electrode 1052 and a common electrode 1053.
  • the driving transistor 1051 is connected to the pixel electrode 1052.
  • the relative positions of the common electrode 1053 can be interchanged.
  • the color filter substrate 107 includes a color resist layer and a black matrix.
  • the functional module 20 is located on the display panel.
  • the functional module 20 includes a functional unit.
  • the functional unit at least includes a phototransistor 1 and a switching transistor 2.
  • FIG. 13 is a schematic diagram of a display device provided in an embodiment of the present application.
  • the display device includes the display component 100 provided in any embodiment of the present application.
  • the specific structure of the display component 100 has been described in detail in the above-mentioned embodiments, and will not be repeated here.
  • the display device shown in FIG. 13 is only a schematic illustration, and the display device may be any electronic device with touch control and fingerprint recognition functions, such as a mobile phone, a tablet computer, a notebook computer, an electronic paper book, or a television.
  • the display device may be a rigid display device, or a flexible or foldable display device.
  • the pixel units in the display panel are multiplexed as a light source for fingerprint recognition in the fingerprint recognition stage.
  • the display device includes a fingerprint recognition light source, and the fingerprint recognition light source is located on a side of the display panel away from the functional module.
  • the fingerprint recognition light source may be an infrared light source or a visible light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种显示组件、显示装置和驱动方法。显示组件包括显示面板和位于显示面板出光面之上的功能模组,功能模组中功能单元至少包括一个光电晶体管和一个开关晶体管;光电晶体管包括第一有源层、第一栅极、第一源极和第一漏极,第一有源层的制作材料包括有机半导体材料,第一有源层位于第一栅极远离显示面板的一侧,第一漏极和第一栅极部分交叠形成第一电容;开关晶体管包括第二有源层、第二栅极、第二源极和第二漏极,第二源极和第一漏极相连;功能单元包括位于第一有源层之上且与第一有源层绝缘交叠的透明电极。功能模组能够同时实现指纹识别和触控功能,降低显示组件结构和工艺的复杂度,有利于减小显示组件整体厚度,提升指纹识别准确度。

Description

一种显示组件、显示装置和驱动方法
本申请要求于2020年03月31日提交中国专利局、申请号为202010246056.0、申请名称为“一种显示组件、显示装置和驱动方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,更具体的涉及一种显示组件、显示装置和驱动方法。
背景技术
随着电子技术的发展,智能手机、平板电脑等便携式电子设备已经成为人们生活中必备的工具。自从全面屏的概念被提出之后,全面屏就成为各个大厂商研究的重点方向。将电子设备的正面的实体按键去掉,采用触控功能达到对电子设备显示的控制,并且逐渐的缩小边框,以提升显示屏占比,提升视觉体验。
随着指纹识别技术的发展,指纹检测也被应用在电子设备中,用于身份认证和权限管理。目前主流的指纹识别技术为屏下光学指纹识别,将光学指纹识别模块置于显示面板基板的背侧,指纹识别光源发出的光线照射到手指,经手指的反射后穿透显示面板,然后被感光元件接收,将光信号转化成电信号,进而实现指纹识别。而现有技术方案中,用于指纹识别的光线在显示面板厚度方向上穿透整个显示面板后光损失较大,严重影响感光元件接收的光量,进而影响指纹识别的准确度。另外,在同时具备触控功能和指纹识别功能的显示组件中,通常情况下,触控功能和指纹识别功能为独立的模组结构,这就导致显示组件中结构复杂,增加了制作工艺的复杂度。
因此,提高指纹识别检测的准确度,并且简化集成触控功能和指纹识别功能的显示组件的工艺复杂度是目前亟待解决的技术问题。
发明内容
有鉴于此,本申请提供一种显示组件、显示装置和驱动方法,利用开关晶体管和光电晶体管构成的功能单元同时实现触控功能和指纹识别功能,并且将该功能单元设置显示面板的出光面之上,提高了指纹识别检测的准确度,同时简化了显示组件的工艺复杂度。
第一方面,本申请实施例提供一种显示组件,包括:显示面板和位于显示面板出光面之上的功能模组,功能模组包括多个功能单元,每个功能单元均至少包括一个光电晶体管和一个开关晶体管;光电晶体管包括第一有源层、第一栅极、第一源极和第一漏极,第一有源层的制作材料包括有机半导体材料,其中,第一有源层位于第一栅极远离显示面板的一侧,在垂直于显示组件方向上,第一漏极和第一栅极部分交叠形 成第一电容;开关晶体管包括第二有源层、第二栅极、第二源极和第二漏极,其中,第二源极和第一漏极相连;每个功能单元均包括透明电极,透明电极位于第一有源层远离第一栅极一侧,在垂直于显示组件方向上,透明电极和第一有源层交叠,且在透明电极和第一有源层之间设置有介质层。
设置功能模组包括由开关晶体管、光电晶体管和透明电极构成的多个功能单元,能够同时指纹识别和触控功能,将指纹识别和触控功能集成在一个功能模组中,能够减少显示组件中的模组设置,有利于减小显示组件的整体厚度。并且将功能模组设置在显示面板出光面之上,在指纹识别时,经手指反射的光不需要穿透显示面板的结构膜层即能够被功能模组接收,缩短了指纹反射光所要传输的距离,能够增大指纹反射光的准直性,避免指纹反射光穿透显示面板的结构膜层造成光损失,提升指纹识别的准确度。能够通过触摸位置检测功能控制指纹识别光源的点亮,避免采用按压方式点亮光源对显示组件造成的损害。而且,光电晶体管与开关晶体管的结构相似,在制作时光电晶体管与开关晶体管能够共用至少部分的工艺制程,能够显示组件结构和工艺的复杂度,也有利于减小显示组件的整体厚度。
具体的,介质层厚度为d1,其中,500nm≤d1≤1000nm。能够在满足介质层制作工艺需求的情况下保证触控检测的灵敏度。
具体的,显示组件还包括平坦化层和保护盖板,平坦化层位于功能模组远离显示面板的一侧,保护盖板位于平坦化层远离功能模组的一侧;位于透明电极之上的平坦化层和保护盖板的厚度之和为d2,其中,300nm≤d2≤1.5μm。设置d2大小满足一定的范围,能够对显示组件起到良好的保护作用同时保证透明电极距显示组件的外表面的距离相对较小,在触摸位置检测时,手指触摸到透明电极对应位置处时有效的将手指上携带的少量电荷传递到透明电极上,从而确保触控检测的灵敏度。
其中,介质层的制作材料包括氧化硅、氧化铝、氧化铪、氮化硅、ES2110、聚乙烯醇肉桂酸酯(PVCN)、聚乙烯醇、聚甲基丙烯酸甲酯中任意一种或多种。介质层的制作材料可以根据具体的设计需要进行选择,通过介质层的制作材料的介电常数以及介质层的厚度配合第一有源层和透明电极形成电容,进而确保触摸位置检测功能的实现。
在一种实施例中,功能模组包括第一金属层,其中,第一源极、第一漏极、第二源极和第二漏极均位于第一金属层。光电晶体管的源漏极和开关晶体管的源漏极在同一个刻蚀工艺中制作,能够降低工艺的复杂度。
在一种实施例中,功能模组还包括第二金属层和第一绝缘层,第二金属层位于第一金属层的靠近显示面板一侧,第一绝缘层位于第一金属层和第二金属层之间;其中,第一栅极位于第二金属层。
在一种实施例中,第一有源层和第二有源层均位于第一绝缘层远离第二金属层的一侧,且均与第一绝缘层相接触。第一有源层和第二有源层相当于位于同一膜层高度上,能够有利于减少功能模组的膜层厚度,进而有利于减小显示组件整体厚度。
在一种实施例中,第一源极和第一栅极通过第一绝缘层上的过孔相连接。
可选的,第二栅极位于第二金属层。开关晶体管和光电晶体管均为底栅结构,开关晶体管和光电晶体管结构相同,能够在相同的工艺中制作,进一步降低显示组件结 构和工艺的复杂度。
可选的,第二有源层和第一有源层同层同材料制作。能够进一步简化工艺制程,降低工艺的复杂度。
在一种实施例中,功能单元还包括遮光部,遮光部位于第二有源层远离显示面板的一侧,遮光部在第二有源层所在平面的正投影覆盖第二有源层。遮光部能够对光线进行遮挡,防止光线照射到第二有源层的表面使得第二有源层内部的载流子增大,从而避免影响开关晶体管的开关状态,确保指纹识别检测的准确度和性能可靠性。
在一种实施例中,第二栅极位于第二有源层远离显示面板的一侧,且第二栅极和第二有源层之间间隔有介质层。第二栅极能够复用为遮光部使用,第二栅极能够对光线进行遮挡,避免指纹反射光照射到第二有源层的表面。
具体的,显示面板包括多个像素区和位于相邻像素区之间的非像素区,其中,功能单元在显示面板的正投影位于非像素区。在显示组件显示时功能单元不会对像素区的出光造成遮挡,保证功能模组的设置不影响显示效果。
第二方面,基于同一发明构思,本申请实施例还提供一种显示装置,包括本申请任意实施例提供的显示组件。
第三方面,基于同一发明构思,本申请实施例还提供一种显示装置,包括本申请任意实施例提供一种显示组件的驱动方法,适用于本申请任意实施例提供的显示组件,驱动方法包括:控制开关晶体管和光电晶体管均关闭,光电晶体管的漏电流作用使得第一电容充电积累初始电荷量;控制开关晶体管打开,第一电容放电,通过第二漏极读取初始电荷量后控制开关晶体管关闭;响应于手指的触摸,透明电极和第一有源层之间的电场发生变化,第一电容充电积累触摸电荷量;控制开关晶体管打开,第一电容放电,通过第二漏极读取触摸电荷量,并根据触摸电荷量判断手指的触摸位置。
进一步的,驱动方法还包括:根据触摸位置,判断与触摸位置相对应的指纹识别光源,并控制指纹识别光源开启;光电晶体管接收经手指反射的光线后漏电流增大,第一电容充电积累指纹电荷量;控制开关晶体管打开,第一电容放电,通过第二漏极读取指纹电荷量。
本申请提供的显示组件、显示装置和驱动方法,具有如下有益效果:
由开关晶体管、光电晶体管和透明电极构成的多个功能单元,能够同时指纹识别和触控功能,将指纹识别和触控功能集成在一个功能模组中,能够减少显示组件中的模组设置,有利于减小显示组件的整体厚度。并且将功能模组设置在显示面板出光面之上,缩短了指纹反射光所要传输的距离,能够增大指纹反射光的准直性,提升指纹识别的准确度。本申请能够通过触摸检测功能控制指纹识别光源的点亮,避免采用按压方式点亮光源对显示组件造成的损害。而且,光电晶体管与开关晶体管的结构相似,在制作时光电晶体管与开关晶体管能够共用至少部分的工艺制程,能够显示组件结构和工艺的复杂度,也有利于减小显示组件的整体厚度。另外,光电晶体管能够做到尺寸相对较小的情况下,也具有很好的感光效果,将光电晶体管设置在显示面板出光面之上,不会对显示面板的出光造成遮挡。
附图说明
图1为本申请实施例提供的显示组件局部膜层结构示意图;
图2为图1实施例中显示组件在指纹识别阶段用于指纹检测的光线的光路示意图;
图3为本申请实施例提供的显示组件另一种局部膜层结构示意图;
图4为本申请实施例提供的显示组件的另一种局部膜层结构示意图;
图5为本申请实施例提供的显示组件中功能单元的一种电路结构示意图;
图6为图5实施例中功能单元的电路在触控阶段的时序图;
图7为图5实施例中功能单元的电路在指纹识别阶段的时序图;
图8为本申请实施例提供的显示组件中功能模组的一种电路结构示意图;
图9为本申请实施例提供的显示组件的另一种局部膜层结构示意图;
图10图9实施例中功能单元的一种电路结构示意图;
图11为本申请实施例提供的显示组件的局部俯视示意图;
图12为本申请实施例提供的显示组件的另一种局部膜层结构示意图;
图13为本申请实施例提供的显示装置示意图。
具体实施方式
相关技术中提出了一种方案,将开关晶体管和光敏二极管集成能够实现指纹识别和触控功能的模组,并设置在显示面板的封装薄膜之上。在指纹识别过程中能够缩短指纹反射光所要传输的距离,提升指纹检测准确度,但是开关晶体管和光敏二极管在结构和制备工艺上差别较大,则需要分别制作开关晶体管和光敏二极管,导致显示组件制作工艺的复杂度增大,开关晶体管和光敏二极管构成的模组的整体厚度也较大。
相关技术中提出有一种实现指纹识别的方法,将压力检测单元集成在显示面板的发光层,同时将感光元件集成在显示面板的封装层上,在暗态的条件下通过按压屏幕使显示面板的像素单元发光,作为光源,光源照到手指后,光束由手指发生漫反射,检测手指指纹的谷和峰漫反射时光能的差异来实现指纹识别。也即通过手指的按压使显示面板的像素单元发光,再利用感光元件实现指纹识别的功能。该技术在显示面板发光层之上集成了多个压力检测单元,增加了显示组件的厚度;同时使用手指按压的方式点亮像素单元发光,加大了面板由于按压造成的损耗。
基于此,本申请实施例提供一种显示组件,将光电晶体管和开关晶体管集成的功能模组设置在显示面板出光面之上,能够同时实现指纹识别功能和触控功能,提升指纹识别的准确度、降低显示组件结构和工艺的复杂度,同时也能够避免按压方式点亮光源对显示组件造成损耗。
图1为本申请实施例提供的显示组件局部膜层结构示意图。图2为图1实施例中显示组件在指纹识别阶段用于指纹检测的光线的光路示意图。
如图1所示,显示组件包括:显示面板10和位于显示面板10出光面之上的功能模组20。显示面板10出光面即为显示面板显示画面一侧的表面。显示面板10为有机发光显示面板、液晶显示面板、微型二极管显示面板中任意一种,图1仅以显示面板为有机发光显示面板进行示意,显示面板10包括衬底基板101、阵列基板102、显示层103和封装结构104,则显示面板10的出光面即为封装结构104的远离显示层103 一侧的外表面。其中,衬底基板101可以为柔性基板或者刚性基板;阵列基板102包括多个像素电路,图中仅示意出像素电路中的驱动晶体管1021;显示层103包括像素定义层1031和多个发光器件1032,图中仅示意出一个发光器件1032,发光器件1032包括依次堆叠的阳极31、发光层32和阴极33,阳极31通过过孔与驱动晶体管1021电连接;封装结构104用于对显示层103进行封装隔绝水氧,以保证发光器件1032的使用寿命。封装结构104可以为刚性封装,包括封装盖板和封框胶;封装结构104可以为薄膜封装,包括交替堆叠的至少一层有机封装层和至少一层无机封装层。
功能模组20包括多个功能单元,每个功能单元均至少包括一个光电晶体管1和与光电晶体管1相连的一个开关晶体管2,图中仅示意出一个功能单元。
光电晶体管1包括第一有源层11、第一栅极12、第一源极13和第一漏极14,第一有源层11的制作材料包括有机半导体材料,其中,第一有源层11位于第一栅极12远离显示面板10的一侧,在垂直于显示组件方向上,第一漏极14和第一栅极12部分交叠形成第一电容Cs;其中,有机半导体材料为并五苯(Pentacene)、6,13-双(三异丙基硅烷基乙炔基)并五苯(TIPS-pentacene)、酞菁铜(CuPc)、(双萘并[2,3-b:2′,3′-f]噻吩并[3,2-b]噻吩)(DNTT)、2,6-双(甲氧基苯基)蒽(BOPAnt)、聚3-己基噻吩(P3HT)、聚[双(3-十二烷基-2-噻吩基)-2,2'-双噻吩-5,5'-取代](Poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene-5,5'-diyl],PQT-12)、PDVT-10(poly[2,5-bis(alkyl)pyrrolo[3,4-c]-1,4(2H,5H)-dione-alt-5,5’-di(thiophene-2-yl)-2,2’-(E)-2-(2-(thiophen-2-yl)vinyl)thio-phene])、双烷基取代吡咯并吡咯二酮-噻吩-联噻吩-噻吩共聚物(DPP-DTT)中任意一种或多种。第一有源层11制作时可以采用溶液法涂布成膜,然后采用刻蚀工艺形成第一有源层11的图案。第一有源层11也可以采用蒸镀发成膜形成。有机半导体材料对光线具有较强的吸收,第一有源层11作为光感应层,当有光线照射到第一有源层11表面时,每吸收一个光子在第一有源层11内部就相应的产生一个电子-空穴对,由于电场的作用电子-空穴发生分离产生电荷载流子,电荷载流子在材料内部迁移形成电流,从而实现将光信号转换成电信号。不同的有机半导体材料对光线的敏感波段不同,在了实现指纹识别功能,实际可以通过有机半导体材料的光敏感波段和指纹识别光源相配合。第一有源层选用对可见光敏感的有机半导体材料,比如对绿光敏感的有机半导体材料,则配合能够发出绿光的指纹识别光源;第一有源层选用对红外光敏感的有机半导体材料,则配合能够发出红外光的指纹识别光源。
光电晶体管1的工作状态包括暗态和亮态,光电晶体管1的暗态为没有光照射到第一有源层11的表面时的状态,在暗态下,对光电晶体管1施加偏置电压,第一有源层11内会有较小的漏电流;相应的,光电晶体管1的亮态为有光照射到第一有源层11表面时的状态,在亮态下,第一有源层11内存在较小的漏电流和受光激发产生的光电流。
开关晶体管2包括第二有源层21、第二栅极22、第二源极23和第二漏极24,其中,第二源极23和第一漏极14相连;其中,第二有源层21的制作材料可以为硅类半导体材料,比如单晶硅半导体、多晶硅半导体;或者也可以为有机半导体材料。第二有源层21的制作材料包括Pentacene、TIPS-pentacene、CuPc、DNTT、BOPAnt、P3HT、 PQT-12、PDVT-10、DPP-DTT、2,7-二辛基[1]苯并噻吩并[3,2-B]苯并噻吩(C8-BTBT)、[4,4,9,9-四(4-己基苯基)-s-苯并二茚并[1,2-b:5,6-b']二噻吩]-苯并噻二唑共聚物(C16-IDTBT)、2,8-二氟-5,11-双(三乙基硅乙炔基)双噻吩蒽(diF-TES-ADT)、2,9-二苯基-二萘基[2,3-b:2’,3’-f]噻吩并[3,2-b]噻吩(Dph-DNTT)中任意一种或多种。第二有源层21可以与第一有源层11采用相同材料制作,第二有源层21的制作材料也可以与第一有源层11的制作材料不同。
每个功能单元均包括透明电极15,透明电极15位于第一有源层11远离第一栅极12一侧,在垂直于显示组件方向上,透明电极15和第一有源层11交叠,且在透明电极15和第一有源层11之间设置有介质层16。其中,透明电极15对光具有较高的透过率,可以采用金属氧化物材料制作,比如铟锡氧化物。透明电极15和第一有源层11交叠,则在透明电极15和第一有源层11之间形成电容,当有手指触摸到显示组件的透明电极15对应位置处时,透明电极15和第一有源层11之间的电场发生变化,电场的变化可能源于电容值的变化,也可能是源于手指所带电荷引起的电容耦合作用。当手指上携带的少量电荷会穿过手指与透明电极15之间较薄的膜层传递到透明电极15上,从而引起透明电极15和第一有源层11之间的电场变化。或者,当有手指触摸到显示组件的透明电极15对应位置处时,由于手指的轻微按压导致透明电极15和第一有源层11之间的介质层16发生形变,从而引起透明电极15和第一有源层11之间的电容变化。
本申请实施例提供的显示组件能够同时实现触控功能和指纹识别功能。下面对实现触控功能和指纹识别功能的驱动方法进行说明。
以一个功能单元的工作过程为例,在触控阶段,驱动方法包括:启动阶段、初始信号读取阶段、触摸信号积累阶段和触摸信号读取阶段。其中,
在启动阶段,控制开关晶体管2和光电晶体管1均关闭,则光电晶体管1处于暗态下,光电晶体管1存在较小的漏电流,从而光电晶体管1的第一漏极14和第一栅极12之间形成的第一电容Cs充电积累少量的初始电荷,记为初始电荷量Q 0
在初始信号读取阶段,控制开关晶体管2打开,则开关晶体管2的第二源极23和第二漏极24之间导通,又由于第一漏极14和第二源极23相连,则第一电容Cs放电,通过第二漏极24读取初始电荷量Q 0,然后控制开关晶体管2关闭。
在触摸信号积累阶段,响应于手指的触摸,透明电极15和第一有源层11之间的电场发生变化,引起第一电容Cs充电积累的电荷量增加,记为触摸电荷量Q 1
在触摸信号读取阶段,控制开关晶体管2打开,第一电容Cs放电,通过第二漏极24读取触摸电荷量Q 1,并根据触摸电荷量Q 1判断手指的触摸位置。可选的,当触摸电荷量Q 1达到一定的电荷量阈值时,则识别为手指的触摸操作;当检测到触摸电荷量Q 1小于电荷量阈值时,则识别没有触摸操作,从而保证触控操作的准确度,避免对触摸误判而影响用户体验。
当识别出手指的触摸操作后,再根据系统主板中设定的该功能单元的坐标位置,来判断手指的触摸位置。然后系统主板根据触摸位置控制显示组件执行相应的操作,比如:打开应用程序、返回主界面等,从而实现了触控功能。
以一个功能单元的工作过程为例,在指纹识别阶段,驱动方法包括:启动阶段、 初始信号读取阶段、触摸信号积累阶段、触摸信号读取阶段、指纹识别光源调用阶段、指纹信号积累阶段和指纹信号读取阶段。参考图2中的示意,图2仅以显示面板10中的发光器件1032复用为指纹识别光源进行示意。如图2所示,在指纹识别阶段,发光器件1032发出的光线由显示面板10的出光面射出后,穿透功能模组20之后照射到用户手指88上。经手指反射后的光线穿透透明电极15之后照射到光电晶体管1的第一有源层上,第一有源层吸收指纹反射的光之后将光信号转换成电信号。其中,
在启动阶段,控制开关晶体管2和光电晶体管1均关闭,则光电晶体管1处于暗态下,光电晶体管1存在较小的漏电流,从而光电晶体管1的第一漏极14和第一栅极12之间形成的第一电容Cs充电积累少量的初始电荷,记为初始电荷量Q 0
在初始信号读取阶段,控制开关晶体管2打开,则开关晶体管2的第二源极23和第二漏极24之间导通,又由于第一漏极14和第二源极23相连,则第一电容Cs放电,通过第二漏极24读取初始电荷量Q 0,然后控制开关晶体管2关闭。
在触摸信号积累阶段,响应于手指的触摸,透明电极15和第一有源层11之间的电场发生变化,引起第一电容Cs充电积累的电荷量增加,记为触摸电荷量Q 1
在触摸信号读取阶段,控制开关晶体管2打开,第一电容Cs放电,通过第二漏极24读取触摸电荷量Q 1,并根据触摸电荷量Q 1判断手指的触摸位置。可选的,当触摸电荷量Q 1达到一定的电荷量阈值时,则识别为手指的触摸操作;当检测到触摸电荷量Q 1小于电荷量阈值时,则识别没有触摸操作。当识别出手指的触摸操作后,根据系统主板中设定的该功能单元的坐标位置,能够判断手指的触摸位置。
在指纹识别光源调用阶段,根据触摸位置,判断与触摸位置相对应的指纹识别光源,并控制指纹识别光源开启;其中,可以复用显示面板10的像素单元作为指纹识别光源,或者指纹识别光源也可以为外置光源,设置在显示面板10远离功能模组20的一侧。以显示面板10的像素单元作为指纹识别光源为例,在有机发光显示面板中,像素单元包括发光器件。当判断出手指的触摸位置之后,则根据触摸位置的坐标选定该坐标位置周围的多个发光器件作为指纹识别光源,此时仅需要将手指触摸位置处的多个发光器件点亮,而不需要点亮显示区内全部的发光器件。而且,当对显示组件的整面显示区内均设置有功能单元时,通过对指纹识别光源的调用,能够实现整面的指纹识别,不需要将指纹识别限定在固定区域。
指纹识别光源开启后,光源发出的光线经手指反射后穿透透明电极15射向光电晶体管1的第一有源层11。
在指纹信号积累阶段,光电晶体管1接收经手指反射的光线后,光电晶体管1处于亮态,第一有源层11经光照射后在内部产生电荷载流子,则光电晶体管1内电流增大,从而第一电容Cs充电积累的电荷量增加,记为指纹电荷量Q 2。当手指按压在显示组件的表面时,手指指纹的脊与显示组件的表面直接接触,指纹识别光源发出的光线在指纹脊与显示组件接触的界面上发生反射后被光电晶体管1接收;手指指纹谷与显示组件的表面之间间隔有空气,指纹识别光源发出的光线穿透显示组件与空气的界面,然后被指纹谷反射,然后再穿透显示组件与空气的界面之后才能被光电晶体管1接收。所以经脊反射的光的光强大于经谷反射的光的光强,相应的在指纹信号积累阶段,接收脊反射的光的光电晶体管内产生的光电流大于接收谷反射的光的光电晶体管 内产生的光电流,进而接收脊反射光的光电晶体管内第一电容上积累的电荷更多。从而在后续运算处理中能够根据指纹电荷量的大小区别出指纹谷和指纹脊。
在指纹信号读取阶段,控制开关晶体管2打开,则开关晶体管2的第二源极23和第二漏极24之间再次导通,第一电容Cs放电,通过第二漏极24读取指纹电荷量Q 2
通过第二漏极分别读取初始电荷量Q 0和指纹电荷量Q 2,并将取初始电荷量Q 0和指纹电荷量Q 2传输给指纹数据处理模块(系统主板中的模块),指纹数据处理模块收集多个指纹识别单元回传的指纹检测信号并进行运算处理,最终生成指纹信息,实现指纹识别功能。
本申请实施例提供的显示组件中,功能模组包括由开关晶体管、光电晶体管和透明电极构成的多个功能单元,能够同时指纹识别和触控功能,将指纹识别和触控功能集成在一个功能模组中,能够减少显示组件中的模组设置,有利于减小显示组件的整体厚度。并且将功能模组设置在显示面板出光面之上,在指纹识别时,经手指反射的光不需要穿透显示面板的结构膜层即能够被功能模组接收,缩短了指纹反射光所要传输的距离,能够增大指纹反射光的准直性,避免指纹反射光穿透显示面板的结构膜层造成光损失,提升指纹识别的准确度。能够通过触摸检测功能控制指纹识别光源的点亮,避免采用按压方式点亮光源对显示组件造成的损害。而且,功能模组中采用光电晶体管和开关晶体管构成功能单元,光电晶体管与开关晶体管的结构相似,在制作时光电晶体管与开关晶体管能够共用至少部分的工艺制程,能够显示组件结构和工艺的复杂度,也有利于减小显示组件的整体厚度。
另外,本申请实施例中在指纹识别阶段,功能单元中的光电晶体管作为感光元件。感光元件的感光效果(也即光敏效果)与光电流除以暗电流能够达到的数量级相关,也即光电流与暗电流差异越大,感光效果越好,则指纹识别越灵敏。其中,暗电流为感光元件在暗态下(没有光照射的状态下)的漏电流,光电流为感光元件在亮态下(有光照射的状态下)的受光激发产生的电流。在相关技术的指纹识别方案中采用光敏二极管作为感光元件,其在暗态下的漏电流为nA级,则通常需要将光敏二极管的感光面积做的比较大,以保证光敏二极管的感光效果,由此导致开关晶体管和光敏二极管构成的指纹识别模组占据的面积较大,将该指纹识别模组设置在显示面板显示面之上,指纹识别模组对显示面板的出光遮挡较高,影响显示效果。而本申请实施例中,采用光电晶体管和开关晶体管构成功能单元,光电晶体管在暗态下的漏电流为pA级,也即光电晶体管在暗态下的漏电流远远小于光敏二极管在暗态下的漏电流,所以本申请光电晶体管能够做到尺寸相对较小的情况下,也具有很好的感光效果,将光电晶体管设置在显示面板出光面之上,不会对显示面板的出光造成遮挡。
继续参考图1所示的,透明电极15和第一有源层11之间的介质层16的厚度为d1,其中,500nm≤d1≤1000nm。当手指触摸显示组件时,需要根据相互交叠的透明电极15和第一有源层11之间的电容变化,来实现触摸检测。根据电容公式,当介质层的厚度过大时,透明电极和第一有源层之间形成的电容较小,手指携带的少量的电荷对该电容的影响较小或者手指的轻微按压对该电容的影响较小,则会影响触控检测的灵敏度。而根据介质层的制作材料不同,其制作工艺不同,而相应的制作工艺能够 制作的介质层厚度也不同。该实施方式能够在满足介质层制作工艺需求的情况下保证触控检测的灵敏度。
可选的,介质层也具有平坦化的作用,在第一有源层和第二有源层制作完成之后,制作介质层形成一个平坦的表面,将透明电极制作在平坦的表面之上,从而透明电极的各个部分距显示组件的外表面的距离大致相等,其中,显示组件的外表面也即在使用时用户手指触摸的表面。在触摸位置检测时,能够保证手指触摸到透明电极对应位置处时,有效的将手指上携带的少量电荷传递到透明电极上。
其中,介质层的制作材料可以为无机绝缘材料,也可以为有机绝缘材料。介质层的制作材料包括氧化硅、氧化铝、氧化铪、氮化硅、ES2110、聚乙烯醇肉桂酸酯(poly(vinylcinnamate),PVCN)、聚乙烯醇(PV A)、聚甲基丙烯酸甲酯(PMMA)中任意一种或多种。介质层的制作材料可以根据具体的设计需要进行选择,通过介质层的制作材料的介电常数以及介质层的厚度配合第一有源层和透明电极形成电容,进而确保触摸位置检测功能的实现。
继续参考图1所示的,显示组件还包括平坦化层17和保护盖板18,平坦化层17位于功能模组20远离显示面板10的一侧,保护盖板18位于平坦化层17远离功能模组20的一侧;其中,保护盖板18可以为刚性盖板,也可以为柔性盖板。位于透明电极15之上的平坦化层17和保护盖板18的厚度之和为d2,其中,300nm≤d2≤1.5μm。其中,透明电极之上的平坦化层保证了显示组件外表面的平整性,保护盖板能够对功能模组起到保护作用,保证显示组件的使用寿命。d2也就是透明电极距显示组件的外表面的距离,设置d2大小满足一定的范围,能够对显示组件起到良好的保护作用同时保证透明电极距显示组件的外表面的距离相对较小,在触摸位置检测时,手指触摸到透明电极对应位置处时有效的将手指上携带的少量电荷传递到透明电极上,从而确保触控检测的灵敏度。
可选的,在本申请实施例中,平坦化层17和保护盖板18不设置抗冲击层,以减小透明电极15距显示组件外表面的距离。
继续参考图1所示的,功能模组20包括第一金属层41,其中,第一源极13、第一漏极14、第二源极23和第二漏极24均位于第一金属层41。也即,在显示组件制作过程中第一源极13、第一漏极14、第二源极23和第二漏极24能够在同一个刻蚀工艺中制作,能够降低工艺的复杂度。可选的,如图1所示的,第一漏极14和第二源极23一体成型形成共电极,共电极的一端作为第一漏极14,另一端作为第二源极23。
参考图1所示的,功能模组20还包括第二金属层42和第一绝缘层51,第二金属层42位于第一金属层41的靠近显示面板10一侧,第一绝缘层51位于第一金属层41和第二金属层42之间;其中,第一栅极12位于第二金属层42。也即,光电晶体管1的第一栅极12位于第一有源层11的靠近显示面板10的一侧,光电晶体管1为底栅结构的晶体管,第一栅极12不会对射向第一有源层11光造成遮挡,从而确保在指纹识别阶段,指纹反射光能够射向第一有源层11,实现光电晶体管1将光信号转换成电信号。
在一种实施例中,如图1中示意的,开关晶体管2的第二栅极22也位于第二金属层42。开关晶体管2的第二栅极22可以与光电晶体管1的第一栅极12同层同材料制 作,在该实施例中,开关晶体管和光电晶体管均为底栅结构,开关晶体管和光电晶体管结构相同,能够在相同的工艺中制作,进一步降低显示组件结构和工艺的复杂度。
继续参考图1所示的,第一有源层11和第二有源层21均位于第一绝缘层51远离第二金属层42的一侧,且均与第一绝缘层51相接触。在制作过程中,完成第一栅极12的图案化工艺之后,在第一栅极12之上制作第一绝缘层51;然后在第一绝缘层51之上制作第一金属层41;对第一金属层41图案化形成第一源极13、第一漏极14、第二源极23和第二漏极24;然后制作第一有源层11和第二有源层21,第一有源层11的两端分别与第一源极13和第一漏极14连接,第二有源层21的两端分别与第二源极23和第二漏极24连接。第一有源层11和第二有源层21均与第一绝缘层51相接触,第一有源层11和第二有源层21相当于位于同一膜层高度上,能够有利于减少功能模组的膜层厚度,进而有利于减小显示组件整体厚度。
在一种实施例中,第一有源层和第二有源层同层同材料制作,也即在同一个工艺制程中同时形成第一有源层的图案和第二有源层的图案,能够进一步简化工艺制程,降低工艺的复杂度。
当第二有源层和第一有源层同层同材料制作时,则第二有源层和第一有源层对光的敏感波段相同。基于此,为了保证在指纹识别阶段开关晶体管的性能可靠性,本申请实施例提出了另一种显示组件,如图3所示,图3为本申请实施例提供的显示组件另一种局部膜层结构示意图。第一源极13、第一漏极14、第二源极23和第二漏极24均位于第一金属层41;第一栅极12和第二栅极22均位于第二金属层42,第一有源层11和第二有源层21同层同材料制作,且均与第一绝缘层51相接触。功能模组20还包括多个遮光部61(图中仅示意一个),一个遮光部61对应一个开关晶体管2,遮光部61位于第二有源层21远离显示面板10的一侧,遮光部61在第二有源层21所在平面的正投影覆盖第二有源层21。其中,遮光部61的制作材料可以为金属材料或者有机吸光材料等,在实际中,可根据第一有源层采用的有机半导体材料的光敏波段,来选择相应的材料制作遮光部,保证遮光部对该波段的光进行遮挡。遮光部能够对光线进行遮挡,防止光线照射到第二有源层的表面使得第二有源层内部的载流子增大,从而避免影响开关晶体管的开关状态,确保指纹识别检测的准确度和性能可靠性。
具体的,遮光部61与介质层16直接接触,相当于将遮光部61与透明电极15设置在同一膜层高度上,能够有利于减少功能别模组的膜层厚度,进而有利于减小显示组件整体厚度。
具体的,在图1示意的实施例中,第一有源层11和第二有源层21均与第一绝缘层51相接触,且第二有源层21与第一有源层11采用不同的材料制作,则第二有源层21对光的敏感波段与第一有源层11对光的敏感波段不同。在指纹识别阶段,仅有第一有源层对指纹识别光源发出的光敏感,指纹反射光即使照射到第二有源层的表面,也不会被第二有源层吸收而影响开关晶体管的开关状态。该种实施方式不需要对第二有源层设置遮光部来遮光,能够节省制作遮光部的工艺制程。
在另一种实施例中,开关晶体管的第二栅极与光电晶体管的第一栅极位于不同金属层。如图4所示,图4为本申请实施例提供的显示组件的另一种局部膜层结构示意图。第一源极13、第一漏极14、第二源极23和第二漏极24均位于第一金属层41; 第一栅极12位于第二金属层42,第一有源层11和第二有源层21均位于第一绝缘层51远离第二金属层42的一侧,且均与第一绝缘层51相接触。第二栅极22位于第二有源层21远离显示面板10的一侧,且第二栅极22和第二有源层21之间间隔有介质层15。其中,第一有源层和第二有源层可以同层同材料制作,以保证开关晶体管和光电晶体管共用部分工艺制程,降低制作工艺的复杂度。同时,在指纹识别阶段,位于第二有源层远离显示面板一侧设置的第二栅极能够复用为遮光部使用,第二栅极能够对光线进行遮挡,避免指纹反射光照射到第二有源层的表面使得第二有源层内部的载流子增大,从而避免影响开关晶体管的开关状态,确保了指纹识别的准确度和性能可靠性。
继续参考图1所示的,第一源极13和第一栅极12通过第一绝缘层51上的过孔511相连接。也即光电晶体管1的第一栅极12和第一源极13导通,光电晶体管1始终工作在关态。则光电晶体管1在没有光线照射到第一有源层11表面时,光电晶体管1的漏电流非常小,而在指纹识别阶段,有指纹反射光照射到第一有源层11表面时,在第一有源层内部产生的载流子使得光电晶体管1的漏电流明显变大,能够保证光电晶体管具有较高的光灵敏度。
图5为本申请实施例提供的显示组件中功能单元的一种电路结构示意图,图6为图5实施例中功能单元的电路在触控阶段的时序图。图7为图5实施例中功能单元的电路在指纹识别阶段的时序图。
如图5所示,功能模组包括控制信号线71、数据信号线72和第三电压信号线73;开关晶体管2的第二栅极与控制信号线71电连接,开关晶体管2的第二漏极与数据信号线72电连接,第一栅极12和第一源极13均与第三电压信号线73电连接。需要说明的是,本申请实施例中开关晶体管和光电晶体管可以为p型晶体管,也可以为n型晶体管,只要保证开关晶体管和光电晶体管的类型相同即可。
在触控检测过程中:在启动阶段,控制信号线71向开关晶体管2提供控制信号Vscan,在此阶段控制信号线71提供非有效电平信号控制开关晶体管2关闭,数据信号线72向开关晶体管2的第二漏极通入一个读取电位,光电晶体管1的第一源极和第一栅极导通,并通过第三电压信号线73通入偏置电压Vbias,光电晶体管1处于关闭状态,也即光电晶体管1处于暗态(dark),由于光电晶体管1的漏电流作用第一电容Cs开始充电积累少量的电荷,记为初始电荷量Q 0;在初始信号读取阶段,控制信号线71向开关晶体管2提供有效电平信号控制开关晶体管2打开,第一电容Cs放电,数据信号线72通过第二漏极24读取初始电荷量Q 0,然后控制信号线71提供非有效电平信号控制开关晶体管2关闭;在启动阶段和初始信号读取阶段没有手指的触摸,也即时序图中without touch,在触摸信号积累阶段,手指触摸显示组件(touch),响应于手指的触摸,透明电极15和第一有源层11之间的电场发生变化,引起第一电容Cs充电积累的电荷量增加,记为触摸电荷量Q 1;在触摸信号读取阶段,控制信号线71提供有效电平信号控制开关晶体管2打开,第一电容Cs放电,通过第二漏极24读取触摸电荷量Q 1,并根据触摸电荷量Q 1判断手指的触摸位置。当识别出手指的触摸操作后,再根据系统主板中设定的该功能单元的坐标位置,来判断手指的触摸位置。然后系统主板根据触摸位置控制显示组件执行相应的操作,从而实现了触控功能。
在指纹识别过程中,在启动阶段,控制信号线71向开关晶体管2提供控制信号Vscan,在此阶段控制信号线71提供非有效电平信号控制开关晶体管2关闭,数据信号线72向开关晶体管2的第二漏极通入一个读取电位,光电晶体管1的第一源极和第一栅极导通,并通过第三电压信号线73通入偏置电压Vbias,光电晶体管1处于关闭状态,也即光电晶体管1处于暗态(dark),由于光电晶体管1的漏电流作用第一电容Cs开始充电积累少量的电荷,记为初始电荷量Q 0;在初始信号读取阶段,控制信号线71向开关晶体管2提供有效电平信号控制开关晶体管2打开,第一电容Cs放电,数据信号线72通过第二漏极24读取初始电荷量Q 0,然后控制信号线71提供非有效电平信号控制开关晶体管2关闭;在启动阶段和初始信号读取阶段没有手指的触摸(without touch),在触摸信号积累阶段,手指触摸显示组件(touch),响应于手指的触摸,透明电极15和第一有源层11之间的电场发生变化,引起第一电容Cs充电积累的电荷量增加,记为触摸电荷量Q 1;在触摸信号读取阶段,控制信号线71提供有效电平信号控制开关晶体管2打开,第一电容Cs放电,通过第二漏极24读取触摸电荷量Q 1,并根据触摸电荷量Q 1判断手指的触摸位置;在指纹识别光源调用阶段,根据触摸位置,判断与触摸位置相对应的指纹识别光源,并控制指纹识别光源开启,从而光源发出的光线经手指反射后穿透透明电极15射向光电晶体管1的第一有源层11;在指纹信号积累阶段,光电晶体管1接收经手指反射的光线后,光电晶体管1由暗态变为亮态(illumination),光电晶体管1内电流增大,从而第一电容Cs充电积累的电荷量增加,记为指纹电荷量Q 2;在指纹信号读取阶段,指纹控制信号线71提供有效电平信号控制开关晶体管2打开,则第一电容Cs放电,指纹数据信号线72通过第二漏极24读取指纹电荷量Q 2。将取初始电荷量Q 0和指纹电荷量Q 2传输给指纹数据处理模块(系统主板中的模块),指纹数据处理模块收集多个指纹识别单元回传的指纹检测信号并进行运算处理,最终生成指纹信息,实现指纹识别功能。
具体的,功能模组中多个功能单元呈阵列排布,如图8所示,图8为本申请实施例提供的显示组件中功能模组的一种电路结构示意图。多个功能单元201呈阵列排布,每个功能单元201均至少包括一个光电晶体管1和一个开关晶体管2,位于同一行的多个开关晶体管2的第二栅极均与一条控制信号线71电连接,位于同一列的多个开关晶体管2的第二漏极均与一条数据信号线72电连接,位于同一行的多个光电晶体管1的第一栅极12和第一源极13均与一条第三电压信号线73电连接。
在相关技术采用开关晶体管和光敏二极管集成触控和指纹识别的方案中,实现触控或者指纹识别功能需要向开关晶体管的栅极、源极、漏极、以及光敏二极管的其中一个电极分别通入电压信号,驱动电路较为复杂。而本申请实施例中,实现触控或者指纹识别功能仅需要向开关晶体管的第二栅极、第二漏极和光电晶体管的第一栅极(或者第一源极)通入电压信号,驱动电路相对简单。在功能模组中仅需要设置控制信号线、数据信号线和第三电压信号线三种信号线,也能够简化功能模组中的布线方式,节省布线占据的空间。而且功能模组的电路与驱动显示面板显示的电路相互独立,触控检测或者指纹识别检测不需要与一帧画面的扫描时间分时复用,降低了电路结构的复杂度。
具体的,数据信号线72与第二漏极位于同一金属层,也即数据信号线72位于第 一金属层(参考图1示意的膜层位置),则数据信号线72可以与第二漏极在同一个工艺制程中制作完成,数据信号线72与第二漏极不需要通过绝缘层的过孔相连接,简化工艺制程。控制信号线71与第二栅极位于同一金属层,控制信号线71与第二栅极在同一个工艺制程中制作完成,控制信号线71与第二栅极不需要通过绝缘层的过孔相连接,简化工艺制程。另外,第三电压信号线73可以与第一栅极位于同一金属层,也可以与第一源极位于同一金属层。
在一种实施例中,数据信号线和第二漏极位于第一金属层,第三电压信号线和第一栅极位于第二金属层,控制信号线和第二栅极位于同一金属层且位于第二有源层远离显示面板的一侧。将指纹数据信号线、指纹控制信号线和第三电压信号线分别在三个不同金属层中布线,能够减小各个金属层中的布线密度。
在另一种实施例中,第一源极和第一栅极之间不导通,在指纹识别阶段或者触控阶段,通过分别控制向第一源极和第一栅极通入电压的大小,来控制光电晶体管工作在关态。图9为本申请实施例提供的显示组件的另一种局部膜层结构示意图。图10图9实施例中功能单元的一种电路结构示意图。
如图9所示,仍然以显示面板10为有机发光显示面板为例,功能模组20位于显示面板10出光面之上。功能模组20包括多个功能单元,每个功能单元均至少包括一个光电晶体管1和一个开关晶体管2,光电晶体管1包括第一有源层11、第一栅极12、第一源极13和第一漏极14,第一有源层11的制作材料包括有机半导体材料,第一漏极14和第一栅极12部分交叠形成第一电容Cs;开关晶体管2包括第二有源层21、第二栅极22、第二源极23和第二漏极24,第一漏极14和第二源极23相连。与上述图1实施例不同的是,图9实施例中第一源极13和第一栅极12之间不导通。
如图10所示,功能模组包括控制信号线71、数据信号线72、第一电压信号线74和第二电压信号线75;第二栅极与控制信号线71电连接,第二漏极与数据信号线72电连接,第一栅极与第一电压信号线74电连接,第一源极与第二电压信号线75电连接,其中,在指纹识别阶段或者触控检测阶段,通过控制第一电压信号线74向第一栅极提供的电压大于第二电压信号线75向第一源极提供的电压,来控制光电晶体管1处于关态。
该实施方式中功能单元在触控阶段和指纹识别阶段的工作过程可以参照上述图5、图6和图7实施例进行理解,在此不再赘述。
进一步的,图11为本申请实施例提供的显示组件的局部俯视示意图,如图11所示,显示面板10包括显示区55和非显示区56,显示区55包括多个像素区111和位于相邻像素区111之间的非像素区121。像素区111即为像素发光区,非像素区121即为非发光区。以有机发光显示面板为例,像素区111即为发光器件所在的区域,非像素区121即为间隔发光器件的像素定义层所在的区域。以液晶显示面板为例,液晶显示面板中包括黑矩阵,黑矩阵包括多个开口,开口暴露的区域即为像素区111,相邻的开口之间的区域即为非像素区。其中,功能单元201在显示面板10的正投影位于非像素区121。功能单元201向显示面板10的正投影方向与俯视方向相同,所以在俯视方向上功能单元201与功能单元201在显示面板10的正投影重合,在俯视图中,以功能单元201代表其在显示面板10的正投影。图11中仅示意在部分固定区域设置有 功能单元201,可选的,也可以对应显示区整面设置功能单元,从而能够实现整面的触控和指纹识别功能。该实施方式中,功能单元与显示面板的非像素区相对应,在显示组件显示时功能单元不会对像素区的出光造成遮挡,保证功能模组的设置不影响显示效果。
上述实施例均以显示面板为有机发光显示面板进行示意,而本申请实施例提供的显示组件中,显示面板也可以为液晶显示面板,具体的参考图12中的示意,图12为本申请实施例提供的显示组件的另一种局部膜层结构示意图。显示面板10包括依次堆叠的衬底基板101、阵列基板105、液晶分子层106和彩膜基板107。阵列基板105包括多个像素电路,图中仅示意性像素电路中的驱动晶体管1051,阵列基板中还包括像素电极1052和公共电极1053,驱动晶体管1051与像素电极1052连接,图中像素电极1052和公共电极1053的相对位置可以互换。彩膜基板107中包括色阻层和黑矩阵。功能模组20位于显示面板之上,功能模组20包括功能单元,功能单元至少包括一个光电晶体管1和一个开关晶体管2。功能模组中光电晶体管1和开关晶体管2的结构可以参考上述任意实施例中的说明,在此不再赘述。
基于同一发明构思,本申请实施例还提供一种显示装置,图13为本申请实施例提供的显示装置示意图,如图13所示,显示装置包括本申请任意实施例提供的显示组件100。其中,显示组件100的具体结构已经在上述实施例中进行了详细说明,此处不再赘述。当然,图13所示的显示装置仅仅为示意说明,该显示装置可以是例如手机、平板计算机、笔记本电脑、电纸书或电视机等任何具有触控和指纹识别功能的电子设备。显示装置可以为刚性显示装置、也可以为柔性或者可折叠显示装置。在一种实施例中,显示面板中的像素单元在指纹识别阶段复用为指纹识别的光源。在另一种实施例中,显示装置包括指纹识别光源,指纹识别光源位于显示面板的远离功能模组的一侧,其中,指纹识别光源可以为红外光源,也可以为可见光光源。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种显示组件,其特征在于,包括:显示面板和位于所述显示面板出光面之上的功能模组,所述功能模组包括多个功能单元,每个所述功能单元均至少包括一个光电晶体管和一个开关晶体管;
    所述光电晶体管包括第一有源层、第一栅极、第一源极和第一漏极,所述第一有源层的制作材料包括有机半导体材料,其中,所述第一有源层位于所述第一栅极远离所述显示面板的一侧,在垂直于所述显示组件方向上,所述第一漏极和所述第一栅极部分交叠形成第一电容;
    所述开关晶体管包括第二有源层、第二栅极、第二源极和第二漏极,其中,所述第二源极和所述第一漏极相连;
    每个所述功能单元均包括透明电极,所述透明电极位于所述第一有源层远离所述第一栅极一侧,在垂直于所述显示组件方向上,所述透明电极和所述第一有源层交叠,且在所述透明电极和所述第一有源层之间设置有介质层。
  2. 根据权利要求1所述的显示组件,其特征在于,
    所述介质层厚度为d1,其中,500nm≤d1≤1000nm。
  3. 根据权利要求1所述的显示组件,其特征在于,
    所述显示组件还包括平坦化层和保护盖板,所述平坦化层位于所述功能模组远离所述显示面板的一侧,所述保护盖板位于所述平坦化层远离所述功能模组的一侧;
    位于所述透明电极之上的所述平坦化层和所述保护盖板的厚度之和为d2,其中,300nm≤d2≤1.5μm。
  4. 根据权利要求1所述的显示组件,其特征在于,
    所述介质层的制作材料包括氧化硅、氧化铝、氧化铪、氮化硅、聚乙烯醇肉桂酸酯、聚乙烯醇、聚甲基丙烯酸甲酯中任意一种或多种。
  5. 根据权利要求1至4任一项所述的显示组件,其特征在于,
    所述功能模组包括第一金属层,其中,所述第一源极、所述第一漏极、所述第二源极和所述第二漏极均位于所述第一金属层。
  6. 根据权利要求5所述的显示组件,其特征在于,
    所述功能模组还包括第二金属层和第一绝缘层,所述第二金属层位于所述第一金属层的靠近所述显示面板一侧,所述第一绝缘层位于所述第一金属层和所述第二金属层之间;其中,
    所述第一栅极位于所述第二金属层。
  7. 根据权利要求6所述的显示组件,其特征在于,
    所述第一有源层和所述第二有源层均位于所述第一绝缘层远离所述第二金属层的一侧,且均与所述第一绝缘层相接触。
  8. 根据权利要求6所述的显示组件,其特征在于,
    所述第一源极和所述第一栅极通过所述第一绝缘层上的过孔相连接。
  9. 根据权利要求6所述的显示组件,其特征在于,
    所述第二栅极位于所述第二金属层。
  10. 根据权利要求9所述的显示组件,其特征在于,
    所述第二有源层和所述第一有源层同层同材料制作。
  11. 根据权利要求10所述的显示组件,其特征在于,
    所述功能单元还包括遮光部,所述遮光部位于所述第二有源层远离所述显示面板的一侧,所述遮光部在所述第二有源层所在平面的正投影覆盖所述第二有源层。
  12. 根据权利要求1至4任一项所述的显示组件,其特征在于,
    所述第二栅极位于所述第二有源层远离所述显示面板的一侧,且所述第二栅极和所述第二有源层之间间隔有所述介质层。
  13. 根据权利要求1所述的显示组件,其特征在于,
    所述显示面板包括多个像素区和位于相邻所述像素区之间的非像素区,其中,
    所述功能单元在所述显示面板的正投影位于所述非像素区。
  14. 一种显示装置,其特征在于,包括权利要求1至13任一项所述的显示组件。
  15. 一种显示组件的驱动方法,适用于权利要求1至13任一项所述的显示组件,其特征在于,所述驱动方法包括:
    控制所述开关晶体管和所述光电晶体管均关闭,所述光电晶体管的漏电流作用使得所述第一电容充电积累初始电荷量;
    控制所述开关晶体管打开,所述第一电容放电,通过所述第二漏极读取所述初始电荷量后控制所述开关晶体管关闭;
    响应于手指的触摸,所述透明电极和所述第一有源层之间的电场发生变化,所述第一电容充电积累触摸电荷量;
    控制所述开关晶体管打开,所述第一电容放电,通过所述第二漏极读取所述触摸电荷量,并根据所述触摸电荷量判断手指的触摸位置。
  16. 根据权利要求15所述的驱动方法,其特征在于,所述驱动方法还包括:
    根据所述触摸位置,判断与所述触摸位置相对应的指纹识别光源,并控制所述指纹识别光源开启;
    所述光电晶体管接收经手指反射的光线后漏电流增大,所述第一电容充电积累指纹电荷量;
    控制所述开关晶体管打开,所述第一电容放电,通过所述第二漏极读取所述指纹电荷量。
PCT/CN2021/081399 2020-03-31 2021-03-18 一种显示组件、显示装置和驱动方法 WO2021197079A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21780267.7A EP4113613A4 (en) 2020-03-31 2021-03-18 DISPLAY COMPONENT, DISPLAY DEVICE AND DRIVE METHOD
US17/915,920 US20230147182A1 (en) 2020-03-31 2021-03-18 Display assembly, display apparatus, and driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010246056.0A CN113471251B (zh) 2020-03-31 2020-03-31 一种显示组件、显示装置和驱动方法
CN202010246056.0 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021197079A1 true WO2021197079A1 (zh) 2021-10-07

Family

ID=77865727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081399 WO2021197079A1 (zh) 2020-03-31 2021-03-18 一种显示组件、显示装置和驱动方法

Country Status (4)

Country Link
US (1) US20230147182A1 (zh)
EP (1) EP4113613A4 (zh)
CN (1) CN113471251B (zh)
WO (1) WO2021197079A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721553B (zh) * 2022-06-06 2022-12-13 惠科股份有限公司 触控结构、oled触控显示面板及制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342308A (zh) * 2017-06-30 2017-11-10 上海天马微电子有限公司 一种有机发光显示面板和电子设备
CN107479763A (zh) * 2017-09-28 2017-12-15 武汉天马微电子有限公司 触控显示基板和触控显示装置
CN107579101A (zh) * 2017-08-30 2018-01-12 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
US20180150670A1 (en) * 2016-11-28 2018-05-31 Samsung Display Co., Ltd. Display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106095211B (zh) * 2016-06-30 2019-06-18 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN107316884B (zh) * 2017-06-19 2020-08-14 武汉天马微电子有限公司 一种显示面板及显示装置
CN107422560A (zh) * 2017-09-04 2017-12-01 京东方科技集团股份有限公司 一种阵列基板、其检测方法及显示装置
JP2019165129A (ja) * 2018-03-20 2019-09-26 株式会社ジャパンディスプレイ 光センサー装置、および、表示装置
WO2020215275A1 (zh) * 2019-04-25 2020-10-29 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN110286796B (zh) * 2019-06-27 2023-10-27 京东方科技集团股份有限公司 电子基板及其制作方法、显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180150670A1 (en) * 2016-11-28 2018-05-31 Samsung Display Co., Ltd. Display device
CN107342308A (zh) * 2017-06-30 2017-11-10 上海天马微电子有限公司 一种有机发光显示面板和电子设备
CN107579101A (zh) * 2017-08-30 2018-01-12 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN107479763A (zh) * 2017-09-28 2017-12-15 武汉天马微电子有限公司 触控显示基板和触控显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113613A4

Also Published As

Publication number Publication date
CN113471251B (zh) 2023-12-08
EP4113613A1 (en) 2023-01-04
CN113471251A (zh) 2021-10-01
US20230147182A1 (en) 2023-05-11
EP4113613A4 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2020186428A1 (zh) 显示面板及其制作方法
CN107480639B (zh) 一种触控显示面板和显示装置
CN106897699B (zh) 一种指纹识别器件、oled显示装置
US8451241B2 (en) Liquid crystal display device
CN110286796A (zh) 电子基板及其制作方法、显示面板
CN114578610B (zh) 显示面板
US10885305B2 (en) Fingerprint identification structure and method for fabricating the same
KR101415894B1 (ko) 유기 전계발광 디바이스의 픽셀 구조
CN105336751A (zh) 光电传感器及其制造方法
US11662635B2 (en) Display device, display panel and method for manufacturing same
CN112070057A (zh) 一种显示面板及显示装置
WO2018126608A1 (zh) 成像传感器和成像模组
WO2021197079A1 (zh) 一种显示组件、显示装置和驱动方法
WO2021253529A1 (zh) 显示面板及显示装置
CN109545835B (zh) 显示基板及其制备方法、显示装置
WO2021197118A1 (zh) 一种显示组件、显示装置和指纹识别方法
CN112420617A (zh) 显示面板的制备方法及显示面板
CN110221726B (zh) 触控基板、显示面板
CN112054017A (zh) 一种显示面板、制备方法及显示装置
JP2022521622A (ja) 薄膜トランジスタ及び有機フォトダイオードを備えている画像センサマトリクスアレイデバイス
CN112420618B (zh) 显示面板及显示面板的制备方法
US20220351539A1 (en) Texture recognition apparatus and electronic apparatus
CN112993184A (zh) 一种显示基板及显示装置
CN113743162A (zh) 一种传感器、显示面板、显示装置
CN113741736A (zh) 一种传感器、显示面板、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021780267

Country of ref document: EP

Effective date: 20220928

NENP Non-entry into the national phase

Ref country code: DE