WO2020215275A1 - 显示面板及其制造方法、显示装置 - Google Patents

显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2020215275A1
WO2020215275A1 PCT/CN2019/084293 CN2019084293W WO2020215275A1 WO 2020215275 A1 WO2020215275 A1 WO 2020215275A1 CN 2019084293 W CN2019084293 W CN 2019084293W WO 2020215275 A1 WO2020215275 A1 WO 2020215275A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
touch electrode
touch
insulating layer
Prior art date
Application number
PCT/CN2019/084293
Other languages
English (en)
French (fr)
Inventor
王杨
唐国强
盖人荣
汪杨鹏
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2019/084293 priority Critical patent/WO2020215275A1/zh
Priority to US16/759,197 priority patent/US11502133B2/en
Priority to CN201980000532.6A priority patent/CN110214378A/zh
Publication of WO2020215275A1 publication Critical patent/WO2020215275A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel, a manufacturing method thereof, and a display device.
  • AMOLED Active Matrix Organic Light Emitting Diode, Active Matrix Organic Light Emitting Diode
  • a display panel including: a substrate; a pixel structure layer on the substrate, the pixel structure layer including a plurality of sub-pixels, at least one of the plurality of sub-pixels
  • the pixel is configured to emit first light;
  • the second light is generated after the light is reflected by an external object, and the second light is converted into an electric signal.
  • the pixel structure layer further includes a pixel defining layer; each sub-pixel includes a functional layer, wherein the functional layers of different sub-pixels are separated by the pixel defining layer; wherein the photoelectric conversion device is The orthographic projection on the substrate is located inside the orthographic projection of the pixel defining layer on the substrate.
  • the sub-pixel includes a green sub-pixel, wherein the photoelectric conversion device is disposed above a pixel defining layer adjacent to the functional layer of the green sub-pixel.
  • the photoelectric conversion device includes an organic phototransistor, and the organic phototransistor includes a thin film transistor and an organic photoelectric structure electrically connected to the thin film transistor.
  • the display panel further includes: an encapsulation layer between the sensor layer and the pixel structure layer.
  • the thin film transistor includes: a gate; a first insulating layer covering the gate; a first organic semiconductor layer on the first insulating layer; on the first organic semiconductor layer The first protective layer; the source and drain respectively connected to the first organic semiconductor layer, wherein the source covers a part of the first protective layer and a part of the first organic semiconductor layer , The drain electrode covers another part of the first protective layer and another part of the first organic semiconductor layer; a second insulating layer between the encapsulation layer and the gate; and The source electrode, the drain electrode, and a third insulating layer on the first protective layer.
  • the organic photoelectric structure includes: a first electrode layer electrically connected to the source electrode or the drain electrode; an organic photoelectric conversion layer on the first electrode layer; The second protective layer on the photoelectric conversion layer.
  • the sensor layer further includes a touch device; the touch device includes: a touch electrode layer above the encapsulation layer; the touch electrode layer includes spaced-apart first touch electrodes And a second touch electrode; wherein the first touch electrode and the second touch electrode are in the same layer as the gate; or, the first touch electrode and the gate are in the same layer Layer, the second touch electrode is above or below the first touch electrode.
  • the touch device includes: a touch electrode layer above the encapsulation layer; the touch electrode layer includes spaced-apart first touch electrodes And a second touch electrode; wherein the first touch electrode and the second touch electrode are in the same layer as the gate; or, the first touch electrode and the gate are in the same layer Layer, the second touch electrode is above or below the first touch electrode.
  • the sensor layer further includes a touch device;
  • the touch device includes: a touch electrode layer above the encapsulation layer;
  • the touch electrode layer includes spaced-apart first touch electrodes And a second touch electrode; wherein the first touch electrode and the second touch electrode are both in the same layer as the source electrode and the drain electrode; or, the first touch electrode and the The source electrode and the drain electrode are in the same layer, and the second touch electrode is above or below the first touch electrode.
  • the touch device further includes: a fourth insulating layer on the encapsulation layer, the fourth insulating layer and the second insulating layer being in the same layer; and the fourth insulating layer On the fifth insulating layer, the fifth insulating layer and the first insulating layer are in the same layer; the second organic semiconductor layer on the fifth insulating layer, the second organic semiconductor layer and the first An organic semiconductor layer is in the same layer; a third protective layer on the second organic semiconductor layer, the third protective layer and the first protective layer are in the same layer; and a first protective layer covering the third protective layer Six insulating layers, the sixth insulating layer and the third insulating layer are in the same layer.
  • a display device including: the display panel as described above.
  • a method for manufacturing a display panel including: forming a pixel structure layer on a substrate, the pixel structure layer including a plurality of sub-pixels, wherein at least one of the plurality of sub-pixels One sub-pixel is configured to emit first light; and a sensor layer is formed on a side of the pixel structure layer away from the substrate, the sensor layer includes a photoelectric conversion device, wherein the photoelectric conversion device is configured to receive The second light is generated after the first light is reflected by an external object and converts the second light into an electrical signal.
  • the photoelectric conversion device includes an organic phototransistor; the organic phototransistor includes: a thin film transistor and an organic photoelectric structure electrically connected to the thin film transistor; the sensor layer further includes a touch device; The step of the sensor layer includes: forming the thin film transistor and the organic photoelectric structure of the organic phototransistor, and forming the touch device.
  • the manufacturing method before forming the sensor layer, further includes: forming an encapsulation layer on the pixel structure layer; wherein the photoelectric conversion device is formed on the encapsulation layer away from the pixel structure layer. Side.
  • the step of forming the thin film transistor of the organic phototransistor includes: forming a second insulating layer on the encapsulation layer; forming a gate on the second insulating layer; Forming a first insulating layer; forming a first organic semiconductor layer on the first insulating layer; forming a first protective layer on the first organic semiconductor layer; forming a source and a source connected to the first organic semiconductor layer, respectively Drain electrode, wherein the source electrode covers a part of the first protective layer and a part of the first organic semiconductor layer, and the drain electrode covers another part of the first protective layer and the first organic semiconductor layer.
  • the step of forming the organic photoelectric structure of the organic phototransistor includes: forming a first electrode layer electrically connected to the source electrode or the drain electrode; and forming an organic photoelectric conversion layer on the first electrode layer. And forming a second protective layer on the organic photoelectric conversion layer.
  • the step of forming the touch device includes: forming a touch electrode layer above the encapsulation layer, the touch electrode layer including a first touch electrode and a second touch electrode that are spaced apart; Wherein, the first touch electrode and the second touch electrode are both formed by the same patterning process as the gate; or, the first touch electrode and the gate are formed by the same patterning process, so The second touch electrode is formed above or below the first touch electrode.
  • the step of forming the touch device includes: forming a touch electrode layer above the encapsulation layer; the touch electrode layer includes a first touch electrode and a second touch electrode that are spaced apart; Wherein, the first touch electrode and the second touch electrode are formed by the same patterning process as the source electrode and the drain electrode; or, the first touch electrode and the source electrode and the drain electrode are formed by the same patterning process.
  • the drain is formed by the same patterning process, and the second touch electrode is formed above or below the first touch electrode.
  • the step of forming the touch device further includes: forming a fourth insulating layer on the packaging layer, the fourth insulating layer and the second insulating layer being integrally formed; A fifth insulating layer is formed on the insulating layer, and the fifth insulating layer is formed integrally with the first insulating layer; a second organic semiconductor layer is formed on the fifth insulating layer, and the second organic semiconductor layer and the The first organic semiconductor layer is formed using the same patterning process; a third protective layer is formed on the second organic semiconductor layer, and the third protective layer and the first protective layer are formed using the same patterning process; and forming a cover The sixth insulating layer of the third protective layer, the sixth insulating layer and the third insulating layer are integrally formed.
  • FIG. 1 is a schematic cross-sectional view showing a display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 3 is a top view showing an opening of sub-pixels of a display panel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 5 is a top view showing a touch electrode layer of a touch device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 10 is a flowchart showing a method of manufacturing a display panel according to an embodiment of the present disclosure
  • 11A is a schematic cross-sectional view showing a structure of a stage in a manufacturing process of a display panel according to an embodiment of the present disclosure
  • 11B is a schematic cross-sectional view showing the structure of another stage in the manufacturing process of the display panel according to an embodiment of the present disclosure
  • FIG. 12A is a schematic cross-sectional view showing a structure of a stage in the manufacturing process of an organic phototransistor for a display panel according to an embodiment of the present disclosure
  • 12B is a schematic cross-sectional view showing the structure of another stage in the manufacturing process of the organic phototransistor for the display panel according to an embodiment of the present disclosure
  • 12C is a schematic cross-sectional view showing a structure at another stage in the manufacturing process of an organic phototransistor for a display panel according to an embodiment of the present disclosure
  • 12D is a schematic cross-sectional view showing the structure of another stage in the manufacturing process of the organic phototransistor for the display panel according to an embodiment of the present disclosure
  • FIG. 13A is a schematic cross-sectional view showing a structure of a stage in a manufacturing process of a display panel according to another embodiment of the present disclosure
  • 13B is a schematic cross-sectional view showing the structure of another stage in the manufacturing process of the display panel according to another embodiment of the present disclosure
  • 13C is a schematic cross-sectional view showing the structure of another stage in the manufacturing process of the display panel according to another embodiment of the present disclosure.
  • 14A is a schematic cross-sectional view showing a structure of a stage in a manufacturing process of a display panel according to another embodiment of the present disclosure
  • 14B is a schematic cross-sectional view showing a structure at another stage in the manufacturing process of the display panel according to another embodiment of the present disclosure
  • 14C is a schematic cross-sectional view showing a structure at another stage in the manufacturing process of the display panel according to another embodiment of the present disclosure.
  • a specific device when it is described that a specific device is located between the first device and the second device, there may or may not be an intermediate device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to another device, the specific device may be directly connected to the other device without an intermediate device, or may not be directly connected to the other device but has an intermediate device.
  • the inventor of the present disclosure found that in the AMOLED display field, there is currently a relatively mature back-side partial fingerprint recognition technology.
  • the fingerprint recognition module is integrated under the display area, so that the fingerprint recognition function is realized on the back of the display panel.
  • this technology only a partial fingerprint recognition function can be realized, and it is almost impossible to realize a large-screen fingerprint recognition function and a full-screen fingerprint recognition function.
  • the embodiments of the present disclosure provide a display panel, which can implement a fingerprint recognition function on its light-emitting side.
  • the display panel according to some embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • FIG. 1 is a schematic cross-sectional view showing a display panel according to an embodiment of the present disclosure.
  • the display panel includes a substrate 100, a pixel structure layer 20 on the substrate 100, and a sensor layer 30 on a side of the pixel structure layer 20 away from the substrate 100.
  • the pixel structure layer 20 may include a plurality of sub-pixels 200. At least one sub-pixel of the plurality of sub-pixels 200 is configured to emit the first light 510.
  • the sensor layer 30 is above the pixel structure layer 20.
  • the sensor layer 30 includes a photoelectric conversion device 300.
  • the photoelectric conversion device 300 is configured to receive the second light 520 generated after the first light 510 is reflected by the external object 500, and convert the second light 520 into an electrical signal.
  • the external object 500 may include fingerprints.
  • the electrical signal generated by the photoelectric conversion device 300 may be transmitted to a processing circuit (not shown in the figure).
  • the processing circuit is configured to perform signal processing (such as reading and arithmetic processing, etc.) on the electrical signal to obtain fingerprint information.
  • the fingerprint recognition function is realized on the light-emitting surface of the display panel.
  • the display panel includes a substrate, a pixel structure layer on the substrate, and a sensor layer on the side of the pixel structure layer away from the substrate.
  • the sensor layer includes a photoelectric conversion device.
  • the photoelectric conversion device is arranged on the light emitting side of the display panel. In this way, the first light emitted by the sub-pixels in the pixel structure layer is reflected by an external object (such as a fingerprint) to generate second light, and the photoelectric conversion device receives the second light and converts the second light into an electrical signal (or , Generate electrical signals according to the second light). After the electrical signal is processed, the relevant information of the external object, such as fingerprint information, can be obtained. Since the photoelectric conversion device is arranged on the light emitting side of the display panel, more photoelectric conversion devices can be arranged in the display panel, which is beneficial to realize the fingerprint recognition function of large screen or even full screen.
  • the display panel may further include an encapsulation layer 400 between the sensor layer 30 and the pixel structure layer 20.
  • the photoelectric conversion device 300 is disposed on the side of the encapsulation layer 400 away from the pixel structure layer 20.
  • the photoelectric conversion device 300 is provided on the encapsulation layer 400.
  • the display panel may further include a cover plate 413 on a side of the sensor layer 30 away from the substrate 100.
  • the material of the cover plate 413 may include glass.
  • FIG. 2 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • the pixel structure layer 20 may further include a pixel defining layer 225.
  • the pixel defining layer 225 has an opening.
  • Each sub-pixel 200 may include a functional layer 232.
  • the functional layers 232 of different sub-pixels are separated by the pixel defining layer 225.
  • the functional layer 232 is in the opening of the pixel defining layer 225.
  • the orthographic projection of the photoelectric conversion device 300 on the substrate 100 is located inside the orthographic projection of the pixel defining layer 225 on the substrate 100.
  • the orthographic projection of the photoelectric conversion device 300 on the substrate 100 and the orthographic projection of the functional layer 232 on the substrate 100 do not overlap.
  • the photoelectric conversion device is disposed at a non-luminous position between different sub-pixels. In this way, the display effect of the display panel is not affected, and the light emitted by the sub-pixels is reflected by external objects such as fingerprints and then enters the photoelectric conversion device, thereby realizing the fingerprint recognition function.
  • the sub-pixel 200 may include a green sub-pixel.
  • the photoelectric conversion device 300 is disposed above the pixel defining layer adjacent to the functional layer of the green sub-pixel.
  • a photoelectric conversion device 300 is provided above the pixel defining layer adjacent to the functional layer of each green sub-pixel.
  • by arranging the photoelectric conversion device above the pixel defining layer next to the green sub-pixels it not only ensures that the photoelectric conversion device is in a position where no light is emitted between the sub-pixels, but also meets the requirement of fingerprint imaging resolution. So as to realize the fingerprint recognition function in the display panel.
  • the photoelectric conversion device 300 may include an organic photoelectric triode (OPT).
  • OPT organic photoelectric triode
  • the photoelectric conversion device of the embodiments of the present disclosure is not limited to the organic phototransistor.
  • the photoelectric conversion device may include a photoelectric conversion device manufactured using an inorganic material (e.g., gallium arsenide).
  • the organic phototransistor may include: a thin film transistor 310 and an organic photoelectric structure 320 electrically connected to the thin film transistor 310.
  • the thin film transistor 310 is located on the side of the packaging layer 400 away from the pixel structure layer 20 (for example, the sub-pixel 200 of the pixel structure layer).
  • the thin film transistor 310 is on the packaging layer 400.
  • the thin film transistor 310 may include a gate 311.
  • the gate 311 is above the encapsulation layer 400.
  • the gate 311 may be directly on the packaging layer 400.
  • the thin film transistor 310 may further include a first insulating layer 312 covering the gate 311.
  • the material of the first insulating layer 312 may include silicon dioxide or silicon nitride.
  • the thin film transistor 310 may further include a first organic semiconductor layer 313 on the first insulating layer 310.
  • the material of the first organic semiconductor layer 313 may include: P3HT: PC 61 BM BHJ (poly(3-hexylthiophene): phenyl-C 61 -butyric acid methyl ester bulk heterojunction, 3-hexyl substituted polythiophene: (6, 6)-Phenyl C 61 -butyric acid methyl ester heterojunction) and so on.
  • the thin film transistor 310 may further include a source (may be referred to as a first source) 314 and a drain (may be referred to as a first drain) 315 respectively connected to the first organic semiconductor layer 313.
  • a source may be referred to as a first source
  • a drain may be referred to as a first drain
  • the use of an organic semiconductor layer in the thin film transistor is beneficial to improve the flexibility of the display panel.
  • the thin film transistor 310 may further include: a third insulating layer 316 on the source electrode 314, the drain electrode 315 and the first organic semiconductor layer 313.
  • the organic photoelectric structure 320 may include a first electrode layer 321 electrically connected to the source electrode 314 or the drain electrode 315.
  • the first electrode layer 321 may be electrically connected to the drain electrode 315 (or the source electrode 314) through the first conductive via 325.
  • the first conductive via 325 includes a through hole passing through the third insulating layer 316 and exposing the drain electrode 315 or the source electrode 314 and a conductive material layer (for example, a metal layer) in the through hole.
  • the organic photoelectric structure 320 may further include an organic photoelectric conversion layer 322 on the first electrode layer 321.
  • the material of the organic photoelectric conversion layer 322 may include: MEH-PPV: PC 61 BM BHJ (poly(2-methoxy-5(2'-ethylhexyloxy)phenylenevinylene): phenyl-C 61 -butyric acid methyl ester bulk heterojunction, Polymethoxyethylhexyloxy-p-phenylene vinylene: (6,6)-phenyl C 61 -methyl butyrate heterojunction) and so on.
  • organic photoelectric conversion layer When light is irradiated on the organic photoelectric conversion layer, photons can transfer their energy to the electrons in the organic photoelectric conversion layer to move the electrons, thereby forming an electric current. In this way, the photoelectric conversion function of the organic photoelectric conversion layer is realized.
  • the use of an organic photoelectric conversion layer in the organic photoelectric structure is beneficial to improve the flexibility of the display panel.
  • the organic photoelectric structure 320 may further include a second protective layer 323 on the organic photoelectric conversion layer 322.
  • the material of the second protection layer 323 includes a photosensitive organic polymer (such as photoresist).
  • the second protective layer may protect the organic photoelectric conversion layer.
  • using a photosensitive organic polymer material as the second protective layer can improve the bending performance of the second protective layer.
  • the organic photoelectric conversion layer converts the optical signal into an electrical signal, and passes the electrical signal through the thin film transistor 310 is transmitted to the processing circuit.
  • the processing circuit performs signal processing on the electrical signal to obtain relevant information (such as fingerprint information). In this way, the fingerprint recognition function can be realized on the light-emitting surface of the display panel.
  • the substrate 100 may include a substrate layer 101 and a buffer layer 102 on the substrate layer 101.
  • the sub-pixel 200 is located on the buffer layer 102.
  • the substrate layer may include a flexible substrate layer.
  • the material of the buffer layer includes silicon dioxide or silicon nitride.
  • the sub-pixel 200 may include a driving transistor and a light emitting device electrically connected to the driving transistor.
  • the driving transistor may include a semiconductor layer (for example, it may be referred to as a third semiconductor layer) 213 on the buffer layer 102.
  • the material of the semiconductor layer 213 may include polysilicon or the like.
  • the driving transistor may further include a first dielectric layer 221 covering the semiconductor layer 213.
  • the material of the first dielectric layer 221 may include silicon dioxide or silicon nitride.
  • the driving transistor may further include a control electrode 211 on the first dielectric layer 221.
  • the control electrode may be a gate (may be referred to as a second gate).
  • the driving transistor may further include a second dielectric layer 222 covering the control electrode 211.
  • the material of the second dielectric layer 222 may include silicon dioxide or silicon nitride.
  • the sub-pixel 200 may further include an electrode plate layer 212 on the second dielectric layer 222.
  • the electrode plate layer 212 and the aforementioned control electrode 211 can be used as two electrode plates of the capacitor.
  • the driving transistor may further include a third dielectric layer 223 covering the electrode plate layer 212.
  • the material of the third dielectric layer 223 may include silicon dioxide or silicon nitride.
  • the driving transistor may further include a source (may be called a second source) 214 and a drain (may be called a second drain) 215 on the third dielectric layer 223.
  • the source electrode 214 is electrically connected to the semiconductor layer 213 through the second conductive via 216.
  • the second conductive via 216 penetrates the third dielectric layer 223, the second dielectric layer 222, and the first dielectric layer 221 to be electrically connected to the semiconductor layer 213.
  • the second conductive via 216 includes a through hole passing through the third dielectric layer 223, the second dielectric layer 222, and the first dielectric layer 221, and a conductive material layer (for example, a metal layer) in the through hole.
  • the drain 215 is electrically connected to the semiconductor layer 213 through the third conductive via 217.
  • the third conductive via 217 penetrates the third dielectric layer 223, the second dielectric layer 222, and the first dielectric layer 221 to be electrically connected to the semiconductor layer 213.
  • the third conductive via 217 includes a through hole passing through the third dielectric layer 223, the second dielectric layer 222, and the first dielectric layer 221, and a conductive material layer (such as a metal layer) in the through hole.
  • the driving transistor may further include a planarization layer 224 covering the source electrode 214 and the drain electrode 215.
  • the material of the planarization layer 224 includes an insulating material, such as a photosensitive organic polymer.
  • the photosensitive organic polymer may include photoresist and the like.
  • the pixel defining layer 225 is on the planarization layer 224.
  • the above-mentioned light emitting device may include a second electrode layer (for example, anode layer) 231 on the planarization layer 224.
  • the second electrode layer 231 is electrically connected to the drain 215 (or the source 214) through the fourth conductive via 234.
  • the fourth conductive via 234 includes a through hole passing through the planarization layer 224 and exposing the drain 215 (or source 214) and a conductive material layer (for example, a metal layer) in the through hole.
  • the light emitting device may further include a functional layer 232 in the opening of the pixel defining layer 225 and on the second electrode layer 231.
  • the functional layer 232 may include: an electron transport layer, a hole transport layer, a light emitting layer, and the like.
  • the light emitting device may further include a third electrode layer (for example, a cathode layer) 233 on the functional layer 232.
  • the encapsulation layer 400 covers the third electrode layer 233.
  • the driving transistor may transmit a driving current to the light-emitting device to drive the light-emitting device to emit light.
  • the first light emitted by the light-emitting device is reflected by an external object (such as a fingerprint) to generate second light
  • the photoelectric conversion device receives the second light and converts the second light into an electrical signal.
  • the relevant information of the external object such as fingerprint information, can be obtained.
  • the display panel may further include a fourth dielectric layer 324 covering the organic photoelectric structure 320.
  • the fourth dielectric layer 324 may include silicon dioxide, silicon nitride, or the like.
  • the display panel may further include: a polarizer (POL for short) layer 412 on the fourth dielectric layer 324.
  • the cover plate 413 is on the POL layer 412.
  • the POL layer may include a polyvinyl alcohol (PVA) layer, a cellulose triacetate (TAC) layer, a pressure-sensitive adhesive film (PSA film), a release film (Release film), a protective film (Protective film), and the like.
  • FIG. 3 is a top view showing an opening of a sub-pixel of a display panel according to an embodiment of the present disclosure.
  • 3 shows the first opening 2001 for the first green sub-pixel G1, the second opening 2002 for the second green sub-pixel G2, the third opening 2003 for the red sub-pixel R, and the third opening 2003 for the blue sub-pixel G1.
  • the opening here refers to the opening of the pixel defining layer 225.
  • FIG. 3 also shows the connector 2006 connected to each sub-pixel and the contact pad 2007 connected to the corresponding connector 2006.
  • the photoelectric conversion device 300 is disposed at a non-luminous position between different sub-pixels.
  • the photoelectric conversion device 300 is disposed above the portion of the pixel defining layer adjacent to the functional layer of the green sub-pixels (for example, the first green sub-pixel G1 and the second green sub-pixel G2).
  • One photoelectric conversion device 300 may be disposed above the pixel defining layer adjacent to the functional layer of each green sub-pixel. In this way, it can be ensured that the photoelectric conversion device is in a position where no light is emitted between the sub-pixels, and the requirement of fingerprint imaging resolution can be met, thereby realizing the fingerprint recognition function in the display panel.
  • FIG. 4 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • the sensor layer 30 may further include a touch device 600.
  • the touch device 600 may include a touch electrode layer 610 on the packaging layer 400.
  • FIG. 5 is a top view showing a touch electrode layer of a touch device according to an embodiment of the present disclosure.
  • the touch electrode layer 610 may include a first touch electrode 611 and a second touch electrode 612 spaced apart.
  • the touch electrode layer 610 in FIG. 4 is a cross-sectional view of the structure taken on the line A-A' in FIG. 5.
  • the first touch electrode 611 and the second touch electrode 612 are both in the same layer as the gate 311. This facilitates the manufacture of the display panel.
  • “same layer” refers to a layer structure formed by using the same film forming process to form a film layer for forming a specific pattern, and then using the same mask plate to form a layer structure through a patterning process.
  • a patterning process may include multiple exposure, development or etching processes, and the specific pattern in the formed layer structure may be continuous or discontinuous. These specific graphics may also be at different heights or have different thicknesses.
  • first touch electrode 611 and the gate 311 are in the same layer, and the second touch electrode 612 is above or below the first touch electrode 611 (described later in conjunction with the drawings). The first touch electrode 611 and the second touch electrode 612 are separated.
  • the capacitance formed by the first touch electrode and the second touch electrode changes, thereby causing the voltage between the two touch electrodes to change.
  • the touch operation or touch position can be obtained by detecting the change of the voltage, thereby realizing the touch function.
  • the touch device 600 may further include a fifth insulating layer 625 covering the touch electrode layer 610.
  • the material of the fifth insulating layer 625 is the same as the material of the first insulating layer 312.
  • the fifth insulating layer 625 and the first insulating layer 312 are in the same layer.
  • the fifth insulating layer 625 is connected to the first insulating layer 312. This facilitates the manufacture of the display panel.
  • the touch device 600 may further include a second organic semiconductor layer 622 on the fifth insulating layer 625.
  • the second organic semiconductor layer 622 and the first organic semiconductor layer 313 are in the same layer.
  • the material of the second organic semiconductor layer 622 is the same as the material of the first organic semiconductor layer 313. This facilitates the manufacture of the display panel.
  • the touch device 600 may further include a sixth insulating layer 626 covering the second organic semiconductor layer 622.
  • the material of the sixth insulating layer 626 is the same as the material of the third insulating layer 316.
  • the sixth insulating layer 626 and the third insulating layer 316 are in the same layer.
  • the sixth insulating layer 626 is connected to the third insulating layer 316. This facilitates the manufacture of the display panel.
  • FIG. 6 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 6 shows the thin film transistor 310 and the touch device 6001 in the display panel.
  • FIG. 6 shows the thin film transistor 310 and the touch device 6001 in the display panel.
  • other structures of the display panel are not shown in FIG. 6.
  • the thin film transistor 310 includes a gate electrode 311, a first insulating layer 312, a first organic semiconductor layer 313, a source electrode 314 and a drain electrode 315.
  • the thin film transistor 310 may further include a first protective layer 318 on the first organic semiconductor layer 313.
  • the first protection layer 318 exposes two parts of the first organic semiconductor layer 313.
  • the source electrode 314 covers a part of the first protection layer 318 and a part of the first organic semiconductor layer 313, and the drain electrode 315 covers another part of the first protection layer 318 and another part of the first organic semiconductor layer 313.
  • the material of the first protection layer 318 may include photoresist or the like.
  • the first protective layer may be used to effectively protect the first organic semiconductor layer 313 when the source and drain electrodes are formed through an etching process.
  • the thin film transistor 310 may further include a second insulating layer 317 between the encapsulation layer 400 and the gate 311.
  • the material of the second insulating layer 317 may include silicon nitride or the like.
  • the second insulating layer 317 may function as a buffer layer.
  • the thin film transistor 310 may further include a third insulating layer 316 on the source electrode 314, the drain electrode 315 and the first protection layer 318.
  • the third insulating layer 316 covers the source electrode 314, the drain electrode 315, the first protective layer 318, the first insulating layer 312, and the like.
  • the material of the third insulating layer 316 may include silicon nitride or the like.
  • the touch device 6001 includes a touch electrode layer 610.
  • the touch electrode layer 610 may include a first touch electrode 611 and a second touch electrode 612 spaced apart as shown in FIG. 5.
  • the touch device 6001 may further include a fourth insulating layer 624 on the packaging layer 400.
  • the fourth insulating layer 624 and the second insulating layer 317 are in the same layer.
  • the touch device 6001 may further include a fifth insulating layer 625 on the fourth insulating layer 624.
  • the fifth insulating layer 625 and the first insulating layer 312 are in the same layer.
  • the touch device 6001 may further include a second organic semiconductor layer 622 on the fifth insulating layer 625.
  • the second organic semiconductor layer 622 and the first organic semiconductor layer 313 are in the same layer.
  • the touch device 6001 may further include a third protective layer 628 on the second organic semiconductor layer 622.
  • the third protection layer 628 and the first protection layer 318 are in the same layer.
  • the material of the third protection layer 628 may include photoresist or the like.
  • the touch device 6001 may further include a sixth insulating layer 626 covering the third protective layer 628.
  • the sixth insulating layer 626 may directly cover the third protective layer 628.
  • the sixth insulating layer 626 and the third insulating layer 316 are in the same layer.
  • the above-mentioned layer structure is provided in the touch device, which facilitates the formation of the touch device during the process of forming the thin film transistor 310, thereby facilitating the manufacture of the display panel.
  • FIG. 7 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 7 shows the thin film transistor 310 and the touch device 6002 in the display panel.
  • the touch device 6002 includes a touch electrode layer 610.
  • the touch electrode layer 610 includes a first touch electrode 611 and a second touch electrode 612 spaced apart.
  • the second touch electrode 612 is under the first touch electrode 611.
  • the second touch electrode 612 may be above the first touch electrode 611 (not shown in the figure).
  • the first touch electrode 611 and the second touch electrode 612 are separated by a seventh insulating layer 629.
  • the thin film transistor 310 may further include an eighth insulating layer 319 between the second insulating layer 317 and the gate 311.
  • the eighth insulating layer 319 and the seventh insulating layer 629 are in the same layer.
  • the eighth insulating layer 319 is connected to the seventh insulating layer 629.
  • the other layer structures shown in FIG. 7 have been described in detail above and will not be repeated here.
  • FIG. 8 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 8 shows the thin film transistor 310 and the touch device 6003 of the display panel.
  • the touch device 6003 includes a touch electrode layer 610 above the packaging layer 400.
  • the touch electrode layer 610 may include a first touch electrode 611 and a second touch electrode 612 spaced apart as shown in FIG. 5.
  • the first touch electrode 611 and the second touch electrode 612 are both in the same layer as the source electrode 314 and the drain electrode 315. This facilitates the manufacture of the display panel.
  • first touch electrode and the second touch electrode are designed to be in the same layer as the source electrode and the drain electrode, so that the first touch electrode and the second touch electrode are both in the same layer as the third electrode layer (for example, the cathode layer is relatively far away, so that the parasitic capacitance formed between the touch device and the third electrode layer is relatively small. This can make the touch device less affected by the signal of the third electrode layer, so it can reduce noise and improve the signal-to-noise ratio of the touch device.
  • FIG. 9 is a schematic cross-sectional view showing a display panel according to another embodiment of the present disclosure.
  • FIG. 9 shows the thin film transistor 310 and the touch device 6004 of the display panel.
  • the touch device 6004 includes a touch electrode layer 610 above the packaging layer 400.
  • the touch electrode layer 610 may include a first touch electrode 611 and a second touch electrode 612 spaced apart.
  • the first touch electrode 611 is in the same layer as the source electrode 314 and the drain electrode 315.
  • the second touch electrode 612 is above the first touch electrode 611. In other embodiments, the second touch electrode 612 may be under the first touch electrode 611 (not shown in the figure).
  • the first touch electrode is designed to be in the same layer as the source electrode and the drain electrode, and the second touch electrode is above or below the first touch electrode, so that the first touch electrode and the second touch electrode Both are relatively far from the third electrode layer (for example, the cathode layer) of the sub-pixel, so that the parasitic capacitance formed between the touch device and the third electrode layer is relatively small. This can make the touch device less affected by the signal of the third electrode layer, and therefore can reduce noise and improve the signal-to-noise ratio of the touch device.
  • the first touch electrode 611 and the second touch electrode 612 are separated by a sixth insulating layer 626.
  • the sixth insulating layer 626 covers the first touch electrode 611, and the second touch electrode 612 is on the sixth insulating layer 626.
  • the display panel may further include a ninth insulating layer 630 covering the second touch electrode 612 and a tenth insulating layer 330 covering the third insulating layer 316.
  • the material of the ninth insulating layer 630 is the same as the material of the tenth insulating layer 330.
  • the materials of the ninth insulating layer 630 and the tenth insulating layer 330 may both include silicon dioxide or silicon nitride.
  • the ninth insulating layer 630 and the tenth insulating layer 330 are in the same layer.
  • the ninth insulating layer 630 is connected to the tenth insulating layer 330. This facilitates the manufacture of the display panel.
  • the other layer structures shown in FIG. 9 have been described above, and will not be repeated here.
  • the shape of the source electrode 314 and the drain electrode 315 may be the shape shown in FIG. 2 or FIG. 4, or the shape shown in FIG. 6, FIG. 7, FIG. 8 or FIG. Therefore, the scope of the embodiments of the present disclosure is not limited to the shapes of the source electrode 314 and the drain electrode 315 disclosed herein.
  • a display device is also provided.
  • the display device may include the display panel as described above.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc.
  • FIG. 10 is a flowchart showing a method of manufacturing a display panel according to an embodiment of the present disclosure.
  • the manufacturing method includes S1002 to S1004.
  • 11A, 11B, and 1 are schematic cross-sectional views showing the structure of several stages in the manufacturing process of the display panel according to some embodiments of the present disclosure.
  • a method of manufacturing a display panel according to some embodiments of the present disclosure will be described in detail with reference to FIG. 10 and FIGS. 11A, 11B, and 1.
  • a pixel structure layer is formed on the substrate, and the pixel structure layer includes a plurality of sub-pixels.
  • the pixel structure layer 20 is formed on the substrate 100.
  • the pixel structure layer 20 includes a plurality of sub-pixels 200. At least one sub-pixel 200 among the plurality of sub-pixels is configured to emit first light.
  • a sensor layer is formed on the side of the pixel structure layer away from the substrate, and the sensor layer includes a photoelectric conversion device.
  • an encapsulation layer 400 is formed on the pixel structure layer 20.
  • the sensor layer 30 is formed on the side of the pixel structure layer 20 away from the substrate 100.
  • the sensor layer 30 is formed on the encapsulation layer 400.
  • the sensor layer 30 includes a photoelectric conversion device 300.
  • the photoelectric conversion device 300 is formed on the side of the packaging layer 400 away from the pixel structure layer 20.
  • the photoelectric conversion device 300 is formed on the packaging layer 400.
  • the photoelectric conversion device 300 is configured to receive the second light 520 generated after the first light 510 is reflected by the external object 500, and convert the second light 520 into an electrical signal.
  • a method of manufacturing a display panel is provided.
  • a pixel structure layer is formed on a substrate, the pixel structure layer includes a plurality of sub-pixels; and a sensor layer is formed on a side of the pixel structure layer away from the substrate, and the sensor layer includes a photoelectric conversion device.
  • a photoelectric conversion device can be formed on the light emitting side of the display panel.
  • more photoelectric conversion devices can be provided in the display panel, thereby facilitating the realization of large-screen and even full-screen fingerprint recognition functions.
  • the photoelectric conversion device includes an organic phototransistor.
  • the organic photoelectric transistor includes a thin film transistor and an organic photoelectric structure electrically connected with the thin film transistor.
  • the aforementioned sensor layer may also include a touch device.
  • the above step of forming the sensor layer may include: forming a thin film transistor of an organic phototransistor and an organic photoelectric structure, and forming a touch device.
  • FIGS. 12A to 12D are schematic cross-sectional views showing the structure of several stages in the manufacturing process of an organic phototransistor for a display panel according to some embodiments of the present disclosure.
  • the manufacturing process of the organic phototransistor will be described in detail below with reference to FIGS. 12A to 12D.
  • a second insulating layer 317 is formed on the encapsulation layer 400, for example, by a process such as deposition.
  • a gate electrode 311 is formed on the second insulating layer 317, for example, through processes such as deposition and patterning.
  • a first insulating layer 312 covering the gate 311 is formed, for example, by a process such as deposition.
  • the first organic semiconductor layer 313 may be formed on the first insulating layer 312 by processes such as coating, exposure, and development.
  • a first protective layer 318 is formed on the first organic semiconductor layer 313.
  • an ashing process may be performed on the first protective layer 318, so that the first protective layer 318 exposes two parts of the first organic semiconductor layer 313, so as to form a source electrode and a source electrode respectively connected to the first organic semiconductor layer 313. Drain.
  • a source electrode 314 and a drain electrode 315 respectively connected to the first organic semiconductor layer 313 are formed by processes such as deposition and patterning.
  • the above-mentioned first protection layer 318 can protect the first organic semiconductor layer 313.
  • the source electrode 314 covers a part of the first protection layer 318 and a part of the first organic semiconductor layer 313 (that is, a part of the exposed part of the first organic semiconductor layer 313)
  • the drain electrode 315 covers the first protection layer 318 And another part of the first organic semiconductor layer 313 (that is, another part of the exposed part of the first organic semiconductor layer 313).
  • a third insulating layer 316 is formed on the source electrode 314, the drain electrode 315, and the first protective layer 318, for example, by a process such as deposition.
  • a thin film transistor of an organic phototransistor is formed.
  • a first electrode layer 321 electrically connected to the source electrode 314 or the drain electrode 315 is formed.
  • the first conductive via 325 passing through the third insulating layer 316 may be formed by processes such as patterning and deposition.
  • the first conductive via 325 is connected to the drain 315 (or source 314).
  • a first electrode layer 321 is formed on the third insulating layer 316 by processes such as deposition and patterning, and the first electrode layer 321 is connected to the first conductive via 325.
  • an organic photoelectric conversion layer 322 may be formed on the first electrode layer 321 through processes such as coating, exposure, and development.
  • the second protective layer 323 may be formed on the organic photoelectric conversion layer 322 by a process such as deposition (for example, chemical vapor deposition).
  • an organic photoelectric structure of an organic phototransistor is formed.
  • an organic phototransistor for a display panel according to some embodiments of the present disclosure is formed.
  • the use of an organic semiconductor layer in the thin film transistor and the use of an organic photoelectric conversion layer in the organic photoelectric structure are all conducive to improving the flexibility of the display panel.
  • the step of forming a touch device may include: forming a touch electrode layer above the packaging layer.
  • the touch electrode layer includes a first touch electrode and a second touch electrode that are spaced apart.
  • both the first touch electrode and the second touch electrode and the gate eg, gate 311 are formed by the same patterning process.
  • the first touch electrode and the gate for example, the gate 311 of the thin film transistor 310) are formed by the same patterning process, and the second touch electrode is formed above or below the first touch electrode.
  • the same patterning process refers to using the same film forming process to form a film layer for forming a specific pattern, and then using the same mask to form a layer structure through one patterning process. It should be noted that, depending on the specific pattern, a patterning process may include multiple exposure, development or etching processes. The specific pattern in the formed layer structure may be continuous or discontinuous. These specific graphics may also be at different heights or have different thicknesses.
  • the step of forming the touch device may further include: forming a fourth insulating layer on the encapsulation layer; forming a fifth insulating layer on the fourth insulating layer; and forming a second organic semiconductor layer on the fifth insulating layer ; Forming a third protective layer on the second organic semiconductor layer; and forming a sixth insulating layer covering the third protective layer.
  • FIGS. 13A to 13C and FIG. 6 are schematic cross-sectional views showing structures at several stages in a manufacturing process of a display panel according to other embodiments of the present disclosure.
  • the manufacturing process of the display panel according to other embodiments of the present disclosure will be described in detail below with reference to FIGS. 13A to 13C and FIG. 6.
  • the process of forming the thin film transistor and the touch device of the organic phototransistor is mainly described.
  • a second insulating layer 317 is formed on the encapsulation layer 400, and a fourth insulating layer 624 is formed on the encapsulation layer 400.
  • the fourth insulating layer 624 and the second insulating layer 317 are integrally formed.
  • a gate electrode 311 is formed on the second insulating layer 317, and a touch electrode layer 610 is formed on the fourth insulating layer 624 (that is, above the encapsulation layer 400).
  • the touch electrode layer 610 may include a first touch electrode 611 and a second touch electrode 612 that are spaced apart (refer to FIG. 5 above).
  • both the first touch electrode 611 and the second touch electrode 612 and the gate 311 are formed by the same patterning process.
  • a first insulating layer 312 covering the gate electrode 311 is formed, and a fifth insulating layer 625 is formed on the fourth insulating layer 624.
  • the fifth insulating layer covers the touch electrode layer 610.
  • the fifth insulating layer 625 and the first insulating layer 312 are integrally formed.
  • a first organic semiconductor layer 313 is formed on the first insulating layer 312, and a second organic semiconductor layer 622 is formed on the fifth insulating layer 625.
  • the second organic semiconductor layer 622 and the first organic semiconductor layer 313 are formed by the same patterning process.
  • a first protective layer 318 is formed on the first organic semiconductor layer 313, and a third protective layer 628 is formed on the second organic semiconductor layer 622.
  • the third protection layer 628 and the first protection layer 318 are formed by the same patterning process.
  • the source electrode 314 and the drain electrode 315 respectively connected to the first organic semiconductor layer 313 are formed.
  • a third insulating layer 316 is formed on the source electrode 314, the drain electrode 315, and the first protective layer 318, and a sixth insulating layer 626 covering the third protective layer 628 is formed.
  • the sixth insulating layer 626 and the third insulating layer 316 are integrally formed.
  • the touch device is also formed in the process of forming the thin film transistor of the organic phototransistor.
  • the manufacturing of the display panel can be facilitated.
  • the above-mentioned manufacturing method can reduce the additional exposure, development, and etching processes that are caused when the organic phototransistor and the touch device are manufactured separately. Therefore, the above manufacturing method can save manufacturing cost.
  • the manufacturing process of the thin film transistor and the touch device in the case where the first touch electrode and the second touch electrode are both in the same layer as the gate electrode are described above with reference to FIGS. 13A to 13C and FIG. 6.
  • the first touch electrode and the gate electrode may be formed by the same patterning process, and the second touch electrode spaced apart from the first touch electrode may be formed after or before the first touch electrode is formed.
  • a second touch electrode is formed above or below the first touch electrode.
  • the step of forming a touch device includes: forming a touch electrode layer on the packaging layer.
  • the touch electrode layer includes a first touch electrode and a second touch electrode that are spaced apart.
  • both the first touch electrode and the second touch electrode are formed by the same patterning process as the source electrode (for example, the source electrode 314) and the drain electrode (for example, the drain electrode 315).
  • the first touch electrode, the source (such as the source 314) and the drain (such as the drain 315) are formed by the same patterning process, and the second touch electrode is formed above or below the first touch electrode.
  • FIG. 14A to 14C and FIG. 8 are schematic cross-sectional views showing the structure of several stages in the manufacturing process of the display panel according to other embodiments of the present disclosure.
  • the manufacturing process of the display panel according to other embodiments of the present disclosure will be described in detail below with reference to FIGS. 14A to 14C and FIG. 8.
  • the process of forming the thin film transistor and touch device of the organic phototransistor is mainly described.
  • a second insulating layer 317 is formed on the encapsulation layer 400, and a fourth insulating layer 624 is formed on the encapsulation layer 400.
  • the fourth insulating layer 624 and the second insulating layer 317 are integrally formed.
  • a gate electrode 311 is formed on the second insulating layer 317.
  • a first insulating layer 312 covering the gate electrode 311 is formed, and a fifth insulating layer 625 is formed on the fourth insulating layer 624.
  • the fifth insulating layer 625 and the first insulating layer 312 are integrally formed.
  • a first organic semiconductor layer 313 is formed on the first insulating layer 312, and a second organic semiconductor layer 622 is formed on the fifth insulating layer 625.
  • the second organic semiconductor layer 622 and the first organic semiconductor layer 313 are formed by the same patterning process.
  • a first protective layer 318 is formed on the first organic semiconductor layer 313, and a third protective layer 628 is formed on the second organic semiconductor layer 622.
  • the third protection layer 628 and the first protection layer 318 are formed by the same patterning process.
  • the two protective layers can protect the first organic semiconductor layer and the second organic semiconductor layer during the process of forming the source electrode and the drain electrode.
  • a source electrode 314 and a drain electrode 315 respectively connected to the first organic semiconductor layer 313 are formed, and a touch electrode layer 610 is formed on the third protective layer 628 (that is, above the encapsulation layer).
  • the touch electrode layer 610 includes a first touch electrode 611 and a second touch electrode 612 that are spaced apart (see FIG. 5 for reference).
  • the first touch electrode 611 and the second touch electrode 612 are formed by the same patterning process as the source electrode 314 and the drain electrode 315.
  • a third insulating layer 316 is formed on the source electrode 314, the drain electrode 315 and the first protective layer 318, and a sixth insulating layer 626 covering the third protective layer 628 is formed.
  • the sixth insulating layer covers the side surface of the third protective layer 628.
  • the sixth insulating layer also covers the touch electrode layer 610.
  • the sixth insulating layer 626 and the third insulating layer 316 are integrally formed.
  • the touch device can be formed in the process of forming the thin film transistor of the organic phototransistor.
  • the manufacturing process of the organic phototransistor can be compatible with the FSLOC (Flexible single layer on cell flexible single-layer touch-control) process, which can facilitate the manufacturing of the display panel, thereby saving manufacturing costs.
  • FSLOC Flexible single layer on cell flexible single-layer touch-control
  • FIGS. 14A to 14C and FIG. 8 describe the manufacturing process of the thin film transistor and the touch device when the first touch electrode and the second touch electrode are both in the same layer as the source electrode and the drain electrode.
  • the first touch electrode and the source electrode and the drain electrode may be formed by the same patterning process, and the second touch electrode spaced apart from the first touch electrode may be formed after or before the first touch electrode is formed.
  • the control electrode thereby forming a second touch electrode above or below the first touch electrode.

Abstract

本公开提供了一种显示面板及其制造方法、显示装置,涉及显示技术领域。该显示面板包括:基板、在基板上的像素结构层和在像素结构层的远离基板的一侧的传感器层。该像素结构层包括多个子像素。该多个子像素中的至少一个子像素被配置为发出第一光。该传感器层包括光电转换器件。该光电转换器件被配置为接收在第一光被外部物体反射后产生的第二光,并将该第二光转换为电信号。本公开有利于实现大屏化乃至全屏化的指纹识别功能。

Description

显示面板及其制造方法、显示装置 技术领域
本公开涉及显示技术领域,特别涉及一种显示面板及其制造方法、显示装置。
背景技术
随着经济和科技的发展,以手机为代表的消费类电子产品快速普及。目前,超高屏占比的产品或者全屏无边框的产品将是未来发展的趋势。AMOLED(Active Matrix Organic Light Emitting Diode,有源矩阵有机发光二极管)显示屏作为显示领域的前沿技术和高端产品的代表,将面对市场需求趋势带来的技术挑战。此外,例如手机等终端的一个重要功能是指纹识别功能。
发明内容
根据本公开实施例的一个方面,提供了一种显示面板,包括:基板;在所述基板上的像素结构层,所述像素结构层包括多个子像素,所述多个子像素中的至少一个子像素被配置为发出第一光;在所述像素结构层的远离所述基板的一侧的传感器层,所述传感器层包括光电转换器件,所述光电转换器件被配置为接收在所述第一光被外部物体反射后产生的第二光,并将所述第二光转换为电信号。
在一些实施例中,所述像素结构层还包括像素界定层;每个子像素包括功能层,其中,不同子像素的功能层被所述像素界定层间隔开;其中,所述光电转换器件在所述基板上的正投影位于所述像素界定层在所述基板上的正投影的内部。
在一些实施例中,所述子像素包括绿色子像素,其中,所述光电转换器件被设置在与所述绿色子像素的功能层相邻的像素界定层的上方。
在一些实施例中,所述光电转换器件包括有机光电三极管,所述有机光电三极管包括:薄膜晶体管和与所述薄膜晶体管电连接的有机光电结构。
在一些实施例中,所述显示面板还包括:在所述传感器层与所述像素结构层之间的封装层。
在一些实施例中,所述薄膜晶体管包括:栅极;覆盖所述栅极的第一绝缘层;在所述第一绝缘层上的第一有机半导体层;在所述第一有机半导体层上的第一保护层;分别与所述第一有机半导体层连接的源极和漏极,其中,所述源极覆盖在所述第一保 护层的一部分和所述第一有机半导体层的一部分上,所述漏极覆盖在所述第一保护层的另一部分和所述第一有机半导体层的另一部分上;在所述封装层与所述栅极之间的第二绝缘层;以及在所述源极、所述漏极和所述第一保护层上的第三绝缘层。
在一些实施例中,所述有机光电结构包括:与所述源极或所述漏极电连接的第一电极层;在所述第一电极层上的有机光电转换层;和在所述有机光电转换层上的第二保护层。
在一些实施例中,所述传感器层还包括触控器件;所述触控器件包括:在所述封装层上方的触控电极层;所述触控电极层包括间隔开的第一触控电极和第二触控电极;其中,所述第一触控电极和所述第二触控电极均与所述栅极处于同层;或者,所述第一触控电极与所述栅极处于同层,所述第二触控电极在所述第一触控电极的上方或下方。
在一些实施例中,所述传感器层还包括触控器件;所述触控器件包括:在所述封装层上方的触控电极层;所述触控电极层包括间隔开的第一触控电极和第二触控电极;其中,所述第一触控电极和所述第二触控电极均与所述源极和所述漏极处于同层;或者,所述第一触控电极与所述源极和所述漏极处于同层,所述第二触控电极在所述第一触控电极的上方或下方。
在一些实施例中,所述触控器件还包括:在所述封装层上的第四绝缘层,所述第四绝缘层与所述第二绝缘层处于同层;在所述第四绝缘层上的第五绝缘层,所述第五绝缘层与所述第一绝缘层处于同层;在所述第五绝缘层上的第二有机半导体层,所述第二有机半导体层与所述第一有机半导体层处于同层;在所述第二有机半导体层上的第三保护层,所述第三保护层与所述第一保护层处于同层;以及覆盖所述第三保护层的第六绝缘层,所述第六绝缘层与所述第三绝缘层处于同层。
根据本公开实施例的另一个方面,提供了一种显示装置,包括:如前所述的显示面板。
根据本公开实施例的另一个方面,提供了一种显示面板的制造方法,包括:在基板上形成像素结构层,所述像素结构层包括多个子像素,其中,所述多个子像素中的至少一个子像素被配置为发出第一光;以及在所述像素结构层的远离所述基板的一侧形成传感器层,所述传感器层包括光电转换器件,其中,所述光电转换器件被配置为接收在所述第一光被外部物体反射后产生的第二光,并将所述第二光转换为电信号。
在一些实施例中,所述光电转换器件包括有机光电三极管;所述有机光电三极管 包括:薄膜晶体管和与所述薄膜晶体管电连接的有机光电结构;所述传感器层还包括触控器件;形成所述传感器层的步骤包括:形成所述有机光电三极管的薄膜晶体管和有机光电结构,以及形成所述触控器件。
在一些实施例中,在形成传感器层之前,所述制造方法还包括:在所述像素结构层上形成封装层;其中,所述光电转换器件形成在所述封装层的远离所述像素结构层的一侧。
在一些实施例中,形成所述有机光电三极管的薄膜晶体管的步骤包括:在所述封装层上形成第二绝缘层;在所述第二绝缘层上形成栅极;形成覆盖所述栅极的第一绝缘层;在所述第一绝缘层上形成第一有机半导体层;在所述第一有机半导体层上形成第一保护层;形成分别与所述第一有机半导体层连接的源极和漏极,其中,所述源极覆盖在所述第一保护层的一部分和所述第一有机半导体层的一部分上,所述漏极覆盖在所述第一保护层的另一部分和所述第一有机半导体层的另一部分上;以及在所述源极、所述漏极和所述第一保护层上形成第三绝缘层。
在一些实施例中,形成所述有机光电三极管的有机光电结构的步骤包括:形成与所述源极或所述漏极电连接的第一电极层;在所述第一电极层形成有机光电转换层;和在所述有机光电转换层上形成第二保护层。
在一些实施例中,形成所述触控器件的步骤包括:在所述封装层上方形成触控电极层,所述触控电极层包括间隔开的第一触控电极和第二触控电极;其中,所述第一触控电极和所述第二触控电极均与所述栅极利用同一构图工艺形成;或者,所述第一触控电极与所述栅极利用同一构图工艺形成,所述第二触控电极形成在所述第一触控电极的上方或下方。
在一些实施例中,形成所述触控器件的步骤包括:在所述封装层上方形成触控电极层;所述触控电极层包括间隔开的第一触控电极和第二触控电极;其中,所述第一触控电极和所述第二触控电极均与所述源极和所述漏极利用同一构图工艺形成;或者,所述第一触控电极与所述源极和所述漏极利用同一构图工艺形成,所述第二触控电极形成在所述第一触控电极的上方或下方。
在一些实施例中,形成所述触控器件的步骤还包括:在所述封装层上形成第四绝缘层,所述第四绝缘层与所述第二绝缘层一体形成;在所述第四绝缘层上形成第五绝缘层,所述第五绝缘层与所述第一绝缘层一体形成;在所述第五绝缘层上形成第二有机半导体层,所述第二有机半导体层与所述第一有机半导体层利用同一构图工艺形成; 在所述第二有机半导体层上形成第三保护层,所述第三保护层与所述第一保护层利用同一构图工艺形成;以及形成覆盖所述第三保护层的第六绝缘层,所述第六绝缘层与所述第三绝缘层一体形成。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是示出根据本公开一个实施例的显示面板的截面示意图;
图2是示出根据本公开另一个实施例的显示面板的截面示意图;
图3是示出根据本公开一个实施例的显示面板的子像素的开口顶视图;
图4是示出根据本公开另一个实施例的显示面板的截面示意图;
图5是示出根据本公开一个实施例的触控器件的触控电极层的顶视图;
图6是示出根据本公开另一个实施例的显示面板的截面示意图;
图7是示出根据本公开另一个实施例的显示面板的截面示意图;
图8是示出根据本公开另一个实施例的显示面板的截面示意图;
图9是示出根据本公开另一个实施例的显示面板的截面示意图;
图10是示出根据本公开一个实施例的显示面板的制造方法的流程图;
图11A是示出根据本公开一个实施例的显示面板的制造过程中一个阶段的结构的截面示意图;
图11B是示出根据本公开一个实施例的显示面板的制造过程中另一个阶段的结构的截面示意图;
图12A是示出根据本公开一个实施例的用于显示面板的有机光电三极管的制造过程中一个阶段的结构的截面示意图;
图12B是示出根据本公开一个实施例的用于显示面板的有机光电三极管的制造过程中另一个阶段的结构的截面示意图;
图12C是示出根据本公开一个实施例的用于显示面板的有机光电三极管的制造过程中另一个阶段的结构的截面示意图;
图12D是示出根据本公开一个实施例的用于显示面板的有机光电三极管的制造过程中另一个阶段的结构的截面示意图;
图13A是示出根据本公开另一个实施例的显示面板的制造过程中一个阶段的结构的截面示意图;
图13B是示出根据本公开另一个实施例的显示面板的制造过程中另一个阶段的结构的截面示意图;
图13C是示出根据本公开另一个实施例的显示面板的制造过程中另一个阶段的结构的截面示意图;
图14A是示出根据本公开另一个实施例的显示面板的制造过程中一个阶段的结构的截面示意图;
图14B是示出根据本公开另一个实施例的显示面板的制造过程中另一个阶段的结构的截面示意图;
图14C是示出根据本公开另一个实施例的显示面板的制造过程中另一个阶段的结构的截面示意图。
应当明白,附图中所示出的各个部分的尺寸并不必须按照实际的比例关系绘制。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件 与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
本公开的发明人发现,在AMOLED显示领域,目前已经具有较为成熟的背面局部指纹识别技术。在该技术中,将指纹识别模组集成在显示区域下方,从而在显示面板背面实现指纹识别功能。但是,利用这种技术,只能实现局部的指纹识别功能,而几乎无法实现大屏化的指纹识别功能以及全屏化的指纹识别功能。
鉴于此,本公开的实施例提供了一种显示面板,该显示面板可以在其出光侧实现指纹识别功能。下面结合附图详细描述根据本公开一些实施例的显示面板。
图1是示出根据本公开一个实施例的显示面板的截面示意图。
如图1所示,该显示面板包括基板100、在该基板100上的像素结构层20和在该像素结构层20的远离基板100的一侧的传感器层30。该像素结构层20可以包括多个子像素200。该多个子像素200中的至少一个子像素被配置为发出第一光510。该传感器层30在像素结构层20的上方。该传感器层30包括光电转换器件300。该光电转换器件300被配置为接收在第一光510被外部物体500反射后产生的第二光520,并将该第二光520转换为电信号。
例如,该外部物体500可以包括指纹。光电转换器件300产生的电信号可以被传输到处理电路(图中未示出)中。该处理电路被配置为对该电信号进行信号处理(例如读取和运算处理等)以获得指纹信息。这样在显示面板的出光面实现了指纹识别功能。
至此,提供了根据本公开一些实施例的显示面板。该显示面板包括基板、在基板上的像素结构层和在像素结构层的远离基板的一侧的传感器层。该传感器层包括光电转换器件。该光电转换器件设置在显示面板的出光侧。这样,像素结构层中的子像素发出的第一光被外部物体(例如指纹)反射后产生第二光,而光电转换器件接收该第 二光并将该第二光转换为电信号(或者说,根据第二光产生电信号)。在对该电信号进行信号处理后即可得到外部物体的相关信息,例如指纹信息。由于光电转换器件设置在显示面板的出光侧,可以在显示面板中设置较多的光电转换器件,从而有利于实现大屏化乃至全屏化的指纹识别功能。
在一些实施例中,如图1所示,该显示面板还可以包括在传感器层30与像素结构层20之间的封装层400。光电转换器件300设置在封装层400的远离像素结构层20的一侧。例如,光电转换器件300设置在该封装层400上。
在一些实施例中,如图1所示,该显示面板还可以包括在传感器层30的远离基板100的一侧的盖板413。例如该盖板413的材料可以包括玻璃。
图2是示出根据本公开另一个实施例的显示面板的截面示意图。
在一些实施例中,如图2所示,像素结构层20还可以包括像素界定层225。该像素界定层225具有开口。每个子像素200可以包括功能层232。不同子像素的功能层232被像素界定层225间隔开。该功能层232在像素界定层225的开口中。光电转换器件300在基板100上的正投影位于像素界定层225在基板100上的正投影的内部。光电转换器件300在基板100上的正投影与功能层232在基板100上的正投影不重叠。在该实施例中,将光电转换器件设置在不同子像素之间的不发光的位置。这样既不影响显示面板的显示效果,也有利于使得子像素发出的光被指纹等外部物体反射后进入光电转换器件,从而实现指纹识别功能。
在一些实施例中,子像素200可以包括绿色子像素。光电转换器件300被设置在与该绿色子像素的功能层相邻的像素界定层的上方。例如,在与每个绿色子像素的功能层相邻的像素界定层的上方设置一个光电转换器件300。在该实施例中,通过将光电转换器件设置在绿色子像素旁边的像素界定层的上方,既保证了光电转换器件处于子像素之间不发光的位置,又可以满足指纹成像分辨率的需求,从而在显示面板中实现指纹识别功能。
在一些实施例中,光电转换器件300可以包括有机光电三极管(Organic Photoelectric Triode,简称为OPT)。利用有机光电三极管作为光电转换器件,有利于在柔性屏幕中实现大屏化乃至全屏化的指纹识别功能。再者,由于有机光电三极管的柔性比较好,因此其制造过程可以与柔性显示面板的制程兼容。
另外,本领域技术人员可以理解,本公开实施例的光电转换器件并不仅限于有机光电三极管。例如,该光电转换器件可以包括利用无机材料(例如砷化镓)制造的光 电转换器件。
在一些实施例中,如图2所示,该有机光电三极管可以包括:薄膜晶体管310和与该薄膜晶体管310电连接的有机光电结构320。该薄膜晶体管310位于封装层400的远离像素结构层20(例如像素结构层的子像素200)的一侧。例如,该薄膜晶体管310在封装层400上。
在一些实施例中,如图2所示,该薄膜晶体管310可以包括栅极311。该栅极311在封装层400上方。例如,该栅极311可以直接在封装层400上。又例如,在封装层400与栅极311之间还可以具有第二绝缘层(后面将描述)。该薄膜晶体管310还可以包括覆盖栅极311的第一绝缘层312。例如,该第一绝缘层312的材料可以包括二氧化硅或氮化硅等。该薄膜晶体管310还可以包括在第一绝缘层310上的第一有机半导体层313。例如,该第一有机半导体层313的材料可以包括:P3HT:PC 61BM BHJ(poly(3-hexylthiophene):phenyl-C 61-butyric acid methyl ester bulk heterojunction,3-己基取代聚噻吩:(6,6)-苯基C 61-丁酸甲酯体异质结)等。该薄膜晶体管310还可以包括分别与第一有机半导体层313连接的源极(可以称为第一源极)314和漏极(可以称为第一漏极)315。这里,在薄膜晶体管中采用有机半导体层,有利于提高显示面板的柔性。
在一些实施例中,如图2所示,薄膜晶体管310还可以包括:在源极314、漏极315和第一有机半导体层313上的第三绝缘层316。
在一些实施例中,如图2所示,有机光电结构320可以包括与源极314或漏极315电连接的第一电极层321。例如,该第一电极层321可以通过第一导电过孔325与漏极315(或源极314)电连接。这里,第一导电过孔325包括穿过第三绝缘层316并露出漏极315或源极314的通孔和在该通孔内的导电材料层(例如金属层)。
在一些实施例中,如图2所示,该有机光电结构320还可以包括在第一电极层321上的有机光电转换层322。例如,该有机光电转换层322的材料可以包括:MEH-PPV:PC 61BM BHJ(poly(2-methoxy-5(2'-ethylhexyloxy)phenylenevinylene):phenyl-C 61-butyric acid methyl ester bulk heterojunction,聚甲氧基乙基己氧基对苯撑乙烯:(6,6)-苯基C 61-丁酸甲酯体异质结)等。当光照射到有机光电转换层上后,光子可以将其能量传递给有机光电转换层内的电子使得电子运动,从而形成电流。这样实现了有机光电转换层的光电转换功能。在有机光电结构中采用有机光电转换层,有利于提高显示面板的柔性。
在一些实施例中,如图2所示,该有机光电结构320还可以包括在有机光电转换层322上的第二保护层323。例如,该第二保护层323的材料包括感光有机聚合物(例如光刻胶)。这里,第二保护层可以对有机光电转换层起到保护作用。另外,采用感光有机聚合物材料作为第二保护层,可以提高该第二保护层的弯折性能。
在上述有机光电三极管中,当光信号(例如第二光)进入有机光电结构320的有机光电转换层后,该有机光电转换层将该光信号转换为电信号,并将该电信号通过薄膜晶体管310传输到处理电路中。该处理电路对该电信号进行信号处理以获得相关信息(例如指纹信息)。这样在显示面板的出光面即可实现指纹识别功能。
在一些实施例中,如图2所示,基板100可以包括基板层101和在该基板层101上的缓冲层102。子像素200位于该缓冲层102上。例如,该基板层可以包括柔性基板层。例如,该缓冲层的材料包括二氧化硅或氮化硅等。
在一些实施例中,子像素200可以包括驱动晶体管以及与该驱动晶体管电连接的发光器件。
在一些实施例中,如图2所示,该驱动晶体管可以包括在缓冲层102上的半导体层(例如可以称为第三半导体层)213。例如该半导体层213的材料可以包括多晶硅等。该驱动晶体管还可以包括覆盖该半导体层213的第一电介质层221。例如该第一电介质层221的材料可以包括二氧化硅或氮化硅等。该驱动晶体管还可以包括在该第一电介质层221上的控制电极211。例如,该控制电极可以为栅极(可以称为第二栅极)。该驱动晶体管还可以包括覆盖该控制电极211的第二电介质层222。例如该第二电介质层222的材料可以包括二氧化硅或氮化硅等。
在一些实施例中,如图2所示,子像素200还可以包括在第二电介质层222上的电极板层212。该电极板层212和上述控制电极211可以作为电容器的两个电极板。
在一些实施例中,如图2所示,该驱动晶体管还可以包括覆盖电极板层212的第三电介质层223。例如该第三电介质层223的材料可以包括二氧化硅或氮化硅等。该驱动晶体管还可以包括在第三电介质层223上的源极(可以称为第二源极)214和漏极(可以称为第二漏极)215。该源极214通过第二导电过孔216从而与半导体层213电连接。这里,第二导电过孔216穿过第三电介质层223、第二电介质层222和第一电介质层221从而与半导体层213电连接。该第二导电过孔216包括穿过第三电介质层223、第二电介质层222和第一电介质层221的通孔和在该通孔内的导电材料层(例如金属层)。该漏极215通过第三导电过孔217从而与半导体层213电连接。这里, 第三导电过孔217穿过第三电介质层223、第二电介质层222和第一电介质层221从而与半导体层213电连接。该第三导电过孔217包括穿过第三电介质层223、第二电介质层222和第一电介质层221的通孔和在该通孔内的导电材料层(例如金属层)。
在一些实施例中,如图2所示,该驱动晶体管还可以包括覆盖源极214和漏极215的平坦化层224。该平坦化层224的材料包括绝缘材料,例如感光有机聚合物。例如,感光有机聚合物可以包括光刻胶等。如图2所示,像素界定层225在平坦化层224上。
在一些实施例中,上述发光器件可以包括在平坦化层224上的第二电极层(例如阳极层)231。该第二电极层231通过第四导电过孔234从而与漏极215(或者源极214)电连接。该第四导电过孔234包括穿过平坦化层224并暴露漏极215(或源极214)的通孔和在该通孔内的导电材料层(例如金属层)。该发光器件还可以包括在像素界定层225的开口中且在第二电极层231上的功能层232。例如,该功能层232可以包括:电子传输层、空穴传输层和发光层等。该发光器件还可以包括在功能层232上的第三电极层(例如阴极层)233。在一些实施例中,如图2所示,封装层400覆盖在该第三电极层233上。
在上述实施例中,在子像素工作期间,驱动晶体管可以向发光器件传输驱动电流,以驱动发光器件发光。例如,该发光器件发出的第一光被外部物体(例如指纹)反射后产生第二光,而光电转换器件接收该第二光并将该第二光转换为电信号。在对该电信号进行信号处理后即可得到外部物体的相关信息,例如指纹信息。
在一些实施例中,如图2所示,显示面板还可以包括覆盖有机光电结构320的第四电介质层324。该第四电介质层324可以包括二氧化硅或氮化硅等。
在一些实施例中,如图2所示,显示面板还可以包括:在第四电介质层324上的的偏光片(polarizer,简称为POL)层412。盖板413在该POL层412上。例如,该POL层可以包括聚乙烯醇(PVA)层、三醋酸纤维素(TAC)层、压敏胶膜(PSA film)、离型膜(Release film)和保护膜(Protective film)等。
图3是示出根据本公开一个实施例的显示面板的子像素的开口顶视图。图3示出了用于第一绿色子像素G1的第一开口2001、用于第二绿色子像素G2的第二开口2002、用于红色子像素R的第三开口2003和用于蓝色子像素B的第四开口2004。这里的开口是指像素界定层225的开口。在该开口中具有相应子像素的功能层。另外,图3还示出了与每个子像素连接的连接件2006以及与相应的连接件2006连接的接触焊盘2007。
如图3所示,光电转换器件300被设置在不同子像素之间的不发光的位置。例如,光电转换器件300被设置在与绿色子像素(例如第一绿色子像素G1和第二绿色子像素G2)的功能层相邻的像素界定层的部分的上方。可以在与每个绿色子像素的功能层相邻的像素界定层的上方设置一个光电转换器件300。这样可以保证光电转换器件处于子像素之间不发光的位置,而且可以满足指纹成像分辨率的需求,从而在显示面板中实现了指纹识别功能。
图4是示出根据本公开另一个实施例的显示面板的截面示意图。
在一些实施例中,传感器层30还可以包括触控器件600。例如,如图4所示,该触控器件600可以包括在封装层400上方的触控电极层610。
图5是示出根据本公开一个实施例的触控器件的触控电极层的顶视图。例如,如图5所示,该触控电极层610可以包括间隔开的第一触控电极611和第二触控电极612。例如图4中的触控电极层610是以图5中的线A-A’截取的结构的截面图。
在一些实施例中,结合图4和图5所示,第一触控电极611和第二触控电极612均与栅极311处于同层。这样便于显示面板的制造。需要说明的是,“同层”指的是采用同一成膜工艺形成用于形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的。这些特定图形还可能处于不同的高度或者具有不同的厚度。
在另一些实施例中,第一触控电极611与栅极311处于同层,第二触控电极612在第一触控电极611的上方或下方(后面将结合附图描述)。第一触控电极611与第二触控电极612被隔离开。
在本公开的一些实施例中,当手指按压屏幕时,第一触控电极和第二触控电极所形成的电容发生变化,从而引起这两个触控电极之间的电压发生变化。通过检测该电压的变化情况即可获得触控操作或触控位置,从而实现触控功能。
在一些实施例中,如图4所示,触控器件600还可以包括覆盖触控电极层610的第五绝缘层625。例如,该第五绝缘层625的材料与第一绝缘层312的材料相同。该第五绝缘层625与第一绝缘层312处于同层。例如,该第五绝缘层625与第一绝缘层312连接。这样便于显示面板的制造。
在一些实施例中,如图4所示,触控器件600还可以包括在第五绝缘层625上的第二有机半导体层622。该第二有机半导体层622与第一有机半导体层313处于同层。 例如,该第二有机半导体层622的材料与第一有机半导体层313的材料相同。这样便于显示面板的制造。
在一些实施例中,如图4所示,触控器件600还可以包括覆盖第二有机半导体层622的第六绝缘层626。例如,该第六绝缘层626的材料与第三绝缘层316的材料相同。该第六绝缘层626与第三绝缘层316处于同层。例如,该第六绝缘层626与第三绝缘层316连接。这样便于显示面板的制造。
图6是示出根据本公开另一个实施例的显示面板的截面示意图。图6中示出了显示面板中的薄膜晶体管310和触控器件6001。为了示出的方便,图6中没有示出显示面板的其他结构。
如图6所示,该薄膜晶体管310包括栅极311、第一绝缘层312、第一有机半导体层313、源极314和漏极315。
在一些实施例中,如图6所示,薄膜晶体管310还可以包括在第一有机半导体层313上的第一保护层318。该第一保护层318露出第一有机半导体层313的两部分。源极314覆盖在第一保护层318的一部分和第一有机半导体层313的一部分上,漏极315覆盖在第一保护层318的另一部分和第一有机半导体层313的另一部分上。例如,该第一保护层318的材料可以包括光刻胶等。在制造过程中,该第一保护层可以用于在通过刻蚀工艺形成源极和漏极时有效地保护第一有机半导体层313。
在一些实施例中,如图6所示,薄膜晶体管310还可以包括在封装层400与栅极311之间的第二绝缘层317。例如该第二绝缘层317的材料可以包括氮化硅等。该第二绝缘层317可以起到缓冲层的作用。
在一些实施例中,如图6所示,薄膜晶体管310还可以包括在源极314、漏极315和第一保护层318上的第三绝缘层316。该第三绝缘层316覆盖源极314、漏极315、第一保护层318和第一绝缘层312等。例如,该第三绝缘层316的材料可以包括氮化硅等。
如图6所示,该触控器件6001包括触控电极层610。该触控电极层610可以包括如图5所示的间隔开的第一触控电极611和第二触控电极612。
在一些实施例中,如图6所示,该触控器件6001还可以包括在封装层400上的第四绝缘层624。该第四绝缘层624与第二绝缘层317处于同层。
该触控器件6001还可以包括在第四绝缘层624上的第五绝缘层625。该第五绝缘层625与第一绝缘层312处于同层。
该触控器件6001还可以包括在第五绝缘层625上的第二有机半导体层622。该第二有机半导体层622与第一有机半导体层313处于同层。
该触控器件6001还可以包括在第二有机半导体层622上的第三保护层628。该第三保护层628与第一保护层318处于同层。例如,该第三保护层628的材料可以包括光刻胶等。
该触控器件6001还可以包括覆盖第三保护层628的第六绝缘层626。例如,该第六绝缘层626可以直接覆盖该第三保护层628。又例如,在第六绝缘层626与第三保护层628之间还可以存在其他结构层,从而使得第六绝缘层626可以间接覆盖第三保护层628。该第六绝缘层626与第三绝缘层316处于同层。
在上述实施例中,在触控器件中设置上述层结构,便于在形成薄膜晶体管310的过程中形成触控器件,从而便于显示面板的制造。
图7是示出根据本公开另一个实施例的显示面板的截面示意图。
与图6类似地,图7示出了显示面板中的薄膜晶体管310和触控器件6002。该触控器件6002包括触控电极层610。该触控电极层610包括间隔开的第一触控电极611和第二触控电极612。例如,第一触控电极611与栅极311处于同层。第二触控电极612在第一触控电极611的下方。在另一些实施例中,第二触控电极612可以在第一触控电极611的上方(图中未示出)。如图7所示,第一触控电极611与第二触控电极612被第七绝缘层629隔离开。
在一些实施例中,薄膜晶体管310还可以包括在第二绝缘层317与栅极311之间的第八绝缘层319。该第八绝缘层319与该第七绝缘层629处于同层。例如,该第八绝缘层319与该第七绝缘层629连接。此外,对于图7中示出的其他层结构,前面已经详细描述,这里不再赘述。
图8是示出根据本公开另一个实施例的显示面板的截面示意图。
与图6类似地,图8示出了显示面板的薄膜晶体管310和触控器件6003。该触控器件6003包括在封装层400上方的触控电极层610。该触控电极层610可以包括如图5所示的间隔开的第一触控电极611和第二触控电极612。该第一触控电极611和该第二触控电极612均与源极314和漏极315处于同层。这样方便显示面板的制造。此外,将第一触控电极和第二触控电极设计为均与源极和漏极处于同层,可以使得第一触控电极和第二触控电极均与子像素的第三电极层(例如阴极层)的距离比较远,使得触控器件与第三电极层之间形成的寄生电容比较小。这可以使得触控器件受到第三 电极层信号的影响比较小,因此可以减少噪声,提高触控器件的信噪比。
此外,对于图8中示出的其他层结构,前面已经描述,这里不再赘述。
图9是示出根据本公开另一个实施例的显示面板的截面示意图。
与图7类似地,图9示出了显示面板的薄膜晶体管310和触控器件6004。该触控器件6004包括在封装层400上方的触控电极层610。该触控电极层610可以包括间隔开的第一触控电极611和第二触控电极612。该第一触控电极611与源极314和漏极315处于同层。该第二触控电极612在第一触控电极611的上方。在另一些实施例中,该第二触控电极612可以在第一触控电极611的下方(图中未示出)。此外,将第一触控电极设计为与源极和漏极处于同层,且第二触控电极在第一触控电极的上方或下方,可以使得第一触控电极和第二触控电极均与子像素的第三电极层(例如阴极层)比较远,使得触控器件与第三电极层之间形成的寄生电容比较小。这可以使得触控器件受到第三电极层信号的影响比较小,因此可以减少噪声,提高触控器件的信噪比。
在一些实施例中,如图9所示,第一触控电极611与第二触控电极612被第六绝缘层626隔离开。该第六绝缘层626覆盖第一触控电极611,第二触控电极612在该第六绝缘层626上。
在一些实施例中,显示面板还可以包括覆盖第二触控电极612的第九绝缘层630和覆盖第三绝缘层316的第十绝缘层330。例如,该第九绝缘层630的材料与该第十绝缘层330的材料相同。例如,该第九绝缘层630和该第十绝缘层330的材料可以均包括二氧化硅或氮化硅等。该第九绝缘层630与该第十绝缘层330处于同层。例如,该第九绝缘层630与该第十绝缘层330连接。这样方便显示面板的制造。此外,图9中示出的其他层结构前面已经描述,这里不再赘述。
需要说明的是,源极314和漏极315的形状可以是图2或图4中所示的形状,也可以是图6、图7、图8或图9中所示的形状。因此,本公开实施例的范围并不仅限于这里所公开的源极314和漏极315的形状。
在本公开的一些实施例中,还提供了一种显示装置。该显示装置可以包括如前所述的显示面板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
图10是示出根据本公开一个实施例的显示面板的制造方法的流程图。如图10所示,该制造方法包括S1002至S1004。图11A、图11B和图1是示出根据本公开一些实施例的显示面板的制造过程中若干阶段的结构的截面示意图。下面结合图10以及 图11A、图11B、图1详细描述根据本公开一些实施例的显示面板的制造方法。
如图10所示,在步骤S1002,在基板上形成像素结构层,该像素结构层包括多个子像素。例如,如图11A所示,在基板100上形成像素结构层20。该像素结构层20包括多个子像素200。该多个子像素中的至少一个子像素200被配置为发出第一光。
回到图10,在步骤S1004,在像素结构层的远离基板的一侧形成传感器层,该传感器层包括光电转换器件。
例如,如图11B所示,在像素结构层20上形成封装层400。接下来,如图1所示,在像素结构层20的远离基板100的一侧形成传感器层30。例如,在封装层400上形成传感器层30。该传感器层30包括光电转换器件300。该光电转换器件300形成在封装层400的远离像素结构层20的一侧。例如,该光电转换器件300形成在封装层400上。该光电转换器件300被配置为接收在第一光510被外部物体500反射后产生的第二光520,并将该第二光520转换为电信号。
至此,提供了根据本公开一个实施例的显示面板的制造方法。在该制造方法中,在基板上形成像素结构层,该像素结构层包括多个子像素;以及在该像素结构层的远离基板的一侧形成传感器层,该传感器层包括光电转换器件。这样,可以在显示面板的出光侧形成光电转换器件。由此,可以在显示面板中设置较多的光电转换器件,从而有利于实现大屏化乃至全屏化的指纹识别功能。
在一些实施例中,该光电转换器件包括有机光电三极管。该有机光电三极管包括薄膜晶体管和与薄膜晶体管电连接的有机光电结构。上述传感器层还可以包括触控器件。在一些实施例中,上述形成传感器层的步骤可以包括:形成有机光电三极管的薄膜晶体管和有机光电结构,以及形成触控器件。
图12A至图12D是示出根据本公开一些实施例的用于显示面板的有机光电三极管的制造过程中若干阶段的结构的截面示意图。下面结合图12A至图12D详细描述有机光电三极管的制造过程。
首先,如图12A所示,例如通过沉积等工艺,在封装层400上形成第二绝缘层317。
接下来,如图12A所示,例如通过沉积和图案化等工艺,在第二绝缘层317上形成栅极311。
接下来,如图12A所示,例如通过沉积等工艺,形成覆盖栅极311的第一绝缘层312。
接下来,如图12B所示,例如可以通过涂覆、曝光和显影等工艺,在第一绝缘层 312上形成第一有机半导体层313。
接下来,如图12B所示,在第一有机半导体层313上形成第一保护层318。例如可以对第一保护层318执行灰化(Ashing)工艺,使得该第一保护层318露出第一有机半导体层313的两部分,以便于形成分别与第一有机半导体层313连接的源极和漏极。
接下来,如图12C所示,例如通过沉积和图案化等工艺,形成分别与第一有机半导体层313连接的源极314和漏极315。在图案化过程中,上述第一保护层318可以对第一有机半导体层313起到保护作用。该源极314覆盖在第一保护层318的一部分和第一有机半导体层313的一部分(即第一有机半导体层313的被露出部分的一部分)上,该漏极315覆盖在第一保护层318的另一部分和第一有机半导体层313的另一部分(即第一有机半导体层313的被露出部分的另一部分)上。
接下来,如图12C所示,例如通过沉积等工艺,在源极314、漏极315和第一保护层318上形成第三绝缘层316。
通过上面所述的步骤,形成了有机光电三极管的薄膜晶体管。
接下来,如图12D所示,形成与源极314或漏极315电连接的第一电极层321。例如,可以通过图案化和沉积等工艺形成穿过第三绝缘层316的第一导电过孔325。该第一导电过孔325与漏极315(或源极314)连接。然后,通过沉积和图案化等工艺在第三绝缘层316上形成第一电极层321,该第一电极层321与第一导电过孔325连接。
接下来,如图12D所示,例如可以通过涂覆、曝光和显影等工艺,在第一电极层321形成有机光电转换层322。
接下来,如图12D所示,例如可以通过沉积(例如化学气相沉积)等工艺,在有机光电转换层322上形成第二保护层323。
通过上面所述的步骤,形成了有机光电三极管的有机光电结构。
至此,形成了根据本公开一些实施例的用于显示面板的有机光电三极管。在该实施例的有机光电三极管制造过程中,在薄膜晶体管中采用有机半导体层,以及在有机光电结构中采用有机光电转换层,均有利于提高显示面板的柔性。
在一些实施例中,形成触控器件的步骤可以包括:在封装层上方形成触控电极层。该触控电极层包括间隔开的第一触控电极和第二触控电极。例如,该第一触控电极和该第二触控电极均与栅极(例如栅极311)利用同一构图工艺形成。又例如,该第一 触控电极与栅极(例如,薄膜晶体管310的栅极311)利用同一构图工艺形成,第二触控电极形成在该第一触控电极的上方或下方。
需要说明的是,同一构图工艺是指采用同一成膜工艺形成用于形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺形成层结构。需要说明的是,根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺。而形成的层结构中的特定图形可以是连续的也可以是不连续的。这些特定图形还可能处于不同的高度或者具有不同的厚度。
在一些实施例中,形成触控器件的步骤还可以包括:在封装层上形成第四绝缘层;在第四绝缘层上形成第五绝缘层;在第五绝缘层上形成第二有机半导体层;在第二有机半导体层上形成第三保护层;以及形成覆盖第三保护层的第六绝缘层。
图13A至图13C以及图6是示出根据本公开另一些实施例的显示面板的制造过程中若干阶段的结构的截面示意图。下面结合图13A至图13C以及图6详细描述根据本公开另一些实施例的显示面板的制造过程。在该制造过程中,主要描述了形成有机光电三极管的薄膜晶体管和触控器件的过程。
首先,如图13A所示,在封装层400上形成第二绝缘层317,并且在封装层400上形成第四绝缘层624。例如,第四绝缘层624与第二绝缘层317一体形成。
接下来,如图13A所示,在第二绝缘层317上形成栅极311,并且在第四绝缘层624上(即在封装层400上方)形成触控电极层610。该触控电极层610可以包括间隔开的第一触控电极611和第二触控电极612(可以参考前面图5所示)。例如,该第一触控电极611和该第二触控电极612均与栅极311利用同一构图工艺形成。
接下来,如图13B所示,形成覆盖栅极311的第一绝缘层312,并且在第四绝缘层624上形成第五绝缘层625。该第五绝缘层覆盖触控电极层610。例如,该第五绝缘层625与第一绝缘层312一体形成。
接下来,如图13B所示,在第一绝缘层312上形成第一有机半导体层313,并且在第五绝缘层625上形成第二有机半导体层622。例如,该第二有机半导体层622与第一有机半导体层313利用同一构图工艺形成。
接下来,如图13C所示,在第一有机半导体层313上形成第一保护层318,并且在第二有机半导体层622上形成第三保护层628。例如,该第三保护层628与第一保护层318利用同一构图工艺形成。
接下来,如图6所示,形成分别与第一有机半导体层313连接的源极314和漏极 315。
接下来,如图6所示,在源极314、漏极315和第一保护层318上形成第三绝缘层316,并且形成覆盖第三保护层628的第六绝缘层626。例如,该第六绝缘层626与该第三绝缘层316一体形成。
至此,提供了根据本公开另一些实施例的显示面板的制造方法。在该制造方法中,在形成有机光电三极管的薄膜晶体管过程中也形成了触控器件。通过将这两个器件的制造工艺整合,可以方便显示面板的制造。另外,上述制造方法可以减少在分别制造有机光电三极管和触控器件的情况下所带来的额外的曝光、显影和刻蚀等工艺。因此,上述制造方法可以节约制造成本。
上面结合图13A至图13C以及图6描述了在第一触控电极和第二触控电极均与栅极同层的情况下的薄膜晶体管和触控器件的制造过程。在另一些实施例中,第一触控电极可以与栅极利用同一构图工艺形成,而且可以在形成第一触控电极之后或之前形成与第一触控电极间隔开的第二触控电极,从而在第一触控电极的上方或下方形成第二触控电极。
在另一些实施例中,形成触控器件的步骤包括:在封装层上方形成触控电极层。该触控电极层包括间隔开的第一触控电极和第二触控电极。例如,第一触控电极和第二触控电极均与源极(例如源极314)和漏极(例如漏极315)利用同一构图工艺形成。又例如,第一触控电极与源极(例如源极314)和漏极(例如漏极315)利用同一构图工艺形成,第二触控电极形成在该第一触控电极的上方或下方。
图14A至图14C以及图8是示出根据本公开另一些实施例的显示面板的制造过程中若干阶段的结构的截面示意图。下面结合图14A至图14C以及图8详细描述根据本公开另一些实施例的显示面板的制造过程。在该制造过程中,主要描述了形成有机光电三极管的薄膜晶体管和触控器件的过程。
首先,如图14A所示,在封装层400上形成第二绝缘层317,并且在封装层400上形成第四绝缘层624。例如,第四绝缘层624与第二绝缘层317一体形成。
接下来,如图14A所示,在第二绝缘层317上形成栅极311。
接下来,如图14A所示,形成覆盖栅极311的第一绝缘层312,并且在第四绝缘层624上形成第五绝缘层625。例如,该第五绝缘层625与第一绝缘层312一体形成。
接下来,如图14A所示,在第一绝缘层312上形成第一有机半导体层313,并且在第五绝缘层625上形成第二有机半导体层622。例如,该第二有机半导体层622与 第一有机半导体层313利用同一构图工艺形成。
接下来,如图14B所示,在第一有机半导体层313上形成第一保护层318,并且在第二有机半导体层622上形成第三保护层628。例如,该第三保护层628与第一保护层318利用同一构图工艺形成。这两个保护层可以在形成源极和漏极的过程中起到对第一有机半导体层和第二有机半导体层的保护作用。
接下来,如图14C所示,形成分别与第一有机半导体层313连接的源极314和漏极315,并且在第三保护层628上(即在封装层上方)形成触控电极层610。该触控电极层610包括间隔开的第一触控电极611和第二触控电极612(可以参考图5所示)。例如,第一触控电极611和第二触控电极612均与源极314和漏极315利用同一构图工艺形成。
接下来,如图8所示,在源极314、漏极315和第一保护层318上形成第三绝缘层316,并且形成覆盖第三保护层628的第六绝缘层626。这里,第六绝缘层覆盖了第三保护层628的侧面。该第六绝缘层还覆盖在触控电极层610上。例如,该第六绝缘层626与该第三绝缘层316一体形成。
至此,提供了根据本公开另一些实施例的显示面板的制造方法。在该制造方法中,可以形成有机光电三极管的薄膜晶体管过程中形成触控器件。通过将这两个器件的制造工艺整合,即有机光电三极管的制造过程可以与FSLOC(Flexible single layer on cell柔性单层屏上触控)工艺兼容,可以方便显示面板的制造,从而节约制造成本。
上面图14A至图14C以及图8描述了在第一触控电极和第二触控电极均与源极和漏极同层的情况下的薄膜晶体管和触控器件的制造过程。在另一些实施例中,第一触控电极与源极和漏极可以利用同一构图工艺形成,而且可以在形成第一触控电极之后或之前形成与第一触控电极间隔开的第二触控电极,从而在第一触控电极的上方或下方形成第二触控电极。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (17)

  1. 一种显示面板,包括:
    基板;
    在所述基板上的像素结构层,所述像素结构层包括多个子像素,所述多个子像素中的至少一个子像素被配置为发出第一光;
    在所述像素结构层的远离所述基板的一侧的传感器层,所述传感器层包括光电转换器件,所述光电转换器件被配置为接收在所述第一光被外部物体反射后产生的第二光,并将所述第二光转换为电信号。
  2. 根据权利要求1所述的显示面板,其中,
    所述像素结构层还包括像素界定层;
    每个子像素包括功能层,其中,不同子像素的功能层被所述像素界定层间隔开;
    其中,所述光电转换器件在所述基板上的正投影位于所述像素界定层在所述基板上的正投影的内部。
  3. 根据权利要求2所述的显示面板,其中,
    所述子像素包括绿色子像素,其中,所述光电转换器件被设置在与所述绿色子像素的功能层相邻的像素界定层的上方。
  4. 根据权利要求1所述的显示面板,其中,
    所述光电转换器件包括有机光电三极管,所述有机光电三极管包括:薄膜晶体管和与所述薄膜晶体管电连接的有机光电结构。
  5. 根据权利要求4所述的显示面板,其中,
    所述显示面板还包括:在所述传感器层与所述像素结构层之间的封装层;
    所述薄膜晶体管包括:
    栅极;
    覆盖所述栅极的第一绝缘层;
    在所述第一绝缘层上的第一有机半导体层;
    在所述第一有机半导体层上的第一保护层;
    分别与所述第一有机半导体层连接的源极和漏极,其中,所述源极覆盖在所述第一保护层的一部分和所述第一有机半导体层的一部分上,所述漏极覆盖在所述第一保护层的另一部分和所述第一有机半导体层的另一部分上;
    在所述封装层与所述栅极之间的第二绝缘层;以及
    在所述源极、所述漏极和所述第一保护层上的第三绝缘层。
  6. 根据权利要求5所述的显示面板,其中,所述有机光电结构包括:
    与所述源极或所述漏极电连接的第一电极层;
    在所述第一电极层上的有机光电转换层;和
    在所述有机光电转换层上的第二保护层。
  7. 根据权利要求5所述的显示面板,其中,
    所述传感器层还包括触控器件;
    所述触控器件包括:在所述封装层上方的触控电极层;所述触控电极层包括间隔开的第一触控电极和第二触控电极;
    其中,所述第一触控电极和所述第二触控电极均与所述栅极处于同层;或者,所述第一触控电极与所述栅极处于同层,所述第二触控电极在所述第一触控电极的上方或下方。
  8. 根据权利要求5所述的显示面板,其中,
    所述传感器层还包括触控器件;
    所述触控器件包括:在所述封装层上方的触控电极层;所述触控电极层包括间隔开的第一触控电极和第二触控电极;
    其中,所述第一触控电极和所述第二触控电极均与所述源极和所述漏极处于同层;或者,所述第一触控电极与所述源极和所述漏极处于同层,所述第二触控电极在所述第一触控电极的上方或下方。
  9. 根据权利要求7或8所述的显示面板,其中,所述触控器件还包括:
    在所述封装层上的第四绝缘层,所述第四绝缘层与所述第二绝缘层处于同层;
    在所述第四绝缘层上的第五绝缘层,所述第五绝缘层与所述第一绝缘层处于同层;
    在所述第五绝缘层上的第二有机半导体层,所述第二有机半导体层与所述第一有机半导体层处于同层;
    在所述第二有机半导体层上的第三保护层,所述第三保护层与所述第一保护层处于同层;以及
    覆盖所述第三保护层的第六绝缘层,所述第六绝缘层与所述第三绝缘层处于同层。
  10. 一种显示装置,包括:如权利要求1至9任意一项所述的显示面板。
  11. 一种显示面板的制造方法,包括:
    在基板上形成像素结构层,所述像素结构层包括多个子像素,其中,所述多个子像素中的至少一个子像素被配置为发出第一光;以及
    在所述像素结构层的远离所述基板的一侧形成传感器层,所述传感器层包括光电转换器件,其中,所述光电转换器件被配置为接收在所述第一光被外部物体反射后产生的第二光,并将所述第二光转换为电信号。
  12. 根据权利要求11所述的制造方法,其中,
    所述光电转换器件包括有机光电三极管;所述有机光电三极管包括:薄膜晶体管和与所述薄膜晶体管电连接的有机光电结构;
    所述传感器层还包括触控器件;
    形成所述传感器层的步骤包括:形成所述有机光电三极管的薄膜晶体管和有机光电结构,以及形成所述触控器件。
  13. 根据权利要求12所述的制造方法,其中,
    在形成传感器层之前,所述制造方法还包括:在所述像素结构层上形成封装层;其中,所述光电转换器件形成在所述封装层的远离所述像素结构层的一侧;
    形成所述有机光电三极管的薄膜晶体管的步骤包括:
    在所述封装层上形成第二绝缘层;
    在所述第二绝缘层上形成栅极;
    形成覆盖所述栅极的第一绝缘层;
    在所述第一绝缘层上形成第一有机半导体层;
    在所述第一有机半导体层上形成第一保护层;
    形成分别与所述第一有机半导体层连接的源极和漏极,其中,所述源极覆盖在所述第一保护层的一部分和所述第一有机半导体层的一部分上,所述漏极覆盖在所述第一保护层的另一部分和所述第一有机半导体层的另一部分上;以及
    在所述源极、所述漏极和所述第一保护层上形成第三绝缘层。
  14. 根据权利要求13所述的制造方法,其中,形成所述有机光电三极管的有机光电结构的步骤包括:
    形成与所述源极或所述漏极电连接的第一电极层;
    在所述第一电极层形成有机光电转换层;和
    在所述有机光电转换层上形成第二保护层。
  15. 根据权利要求13所述的制造方法,其中,形成所述触控器件的步骤包括:
    在所述封装层上方形成触控电极层,所述触控电极层包括间隔开的第一触控电极和第二触控电极;
    其中,所述第一触控电极和所述第二触控电极均与所述栅极利用同一构图工艺形成;或者,所述第一触控电极与所述栅极利用同一构图工艺形成,所述第二触控电极形成在所述第一触控电极的上方或下方。
  16. 根据权利要求13所述的制造方法,其中,形成所述触控器件的步骤包括:
    在所述封装层上方形成触控电极层;所述触控电极层包括间隔开的第一触控电极和第二触控电极;
    其中,所述第一触控电极和所述第二触控电极均与所述源极和所述漏极利用同一构图工艺形成;或者,所述第一触控电极与所述源极和所述漏极利用同一构图工艺形成,所述第二触控电极形成在所述第一触控电极的上方或下方。
  17. 根据权利要求15或16所述的制造方法,其中,形成所述触控器件的步骤还包括:
    在所述封装层上形成第四绝缘层,所述第四绝缘层与所述第二绝缘层一体形成;
    在所述第四绝缘层上形成第五绝缘层,所述第五绝缘层与所述第一绝缘层一体形成;
    在所述第五绝缘层上形成第二有机半导体层,所述第二有机半导体层与所述第一有机半导体层利用同一构图工艺形成;
    在所述第二有机半导体层上形成第三保护层,所述第三保护层与所述第一保护层利用同一构图工艺形成;以及
    形成覆盖所述第三保护层的第六绝缘层,所述第六绝缘层与所述第三绝缘层一体形成。
PCT/CN2019/084293 2019-04-25 2019-04-25 显示面板及其制造方法、显示装置 WO2020215275A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/084293 WO2020215275A1 (zh) 2019-04-25 2019-04-25 显示面板及其制造方法、显示装置
US16/759,197 US11502133B2 (en) 2019-04-25 2019-04-25 Display panel, manufacturing method thereof, and display device
CN201980000532.6A CN110214378A (zh) 2019-04-25 2019-04-25 显示面板及其制造方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/084293 WO2020215275A1 (zh) 2019-04-25 2019-04-25 显示面板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020215275A1 true WO2020215275A1 (zh) 2020-10-29

Family

ID=67797962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084293 WO2020215275A1 (zh) 2019-04-25 2019-04-25 显示面板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US11502133B2 (zh)
CN (1) CN110214378A (zh)
WO (1) WO2020215275A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286796B (zh) * 2019-06-27 2023-10-27 京东方科技集团股份有限公司 电子基板及其制作方法、显示面板
CN112616321B (zh) * 2019-08-06 2024-03-05 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN110970481B (zh) * 2019-12-18 2023-11-24 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN113327955B (zh) * 2020-02-28 2023-05-23 上海和辉光电股份有限公司 一种显示面板和显示装置
CN113471251B (zh) * 2020-03-31 2023-12-08 华为技术有限公司 一种显示组件、显示装置和驱动方法
CN111723771A (zh) * 2020-06-30 2020-09-29 京东方科技集团股份有限公司 显示装置及其制作方法
CN112035007B (zh) * 2020-08-11 2022-02-22 惠州市华星光电技术有限公司 触控显示面板及其制备方法
CN112114700A (zh) * 2020-09-03 2020-12-22 深圳市华星光电半导体显示技术有限公司 传感器组件及显示装置
CN112034645A (zh) * 2020-09-03 2020-12-04 深圳市华星光电半导体显示技术有限公司 显示装置及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106056099A (zh) * 2016-06-23 2016-10-26 京东方科技集团股份有限公司 一种指纹识别显示面板及显示装置
CN106775081A (zh) * 2016-12-13 2017-05-31 上海天马有机发光显示技术有限公司 有机发光显示面板及压力感应显示装置
CN108596015A (zh) * 2018-01-31 2018-09-28 北京小米移动软件有限公司 显示组件及其制备方法、显示装置
CN109216421A (zh) * 2017-07-04 2019-01-15 三星电子株式会社 有机发光二极管面板和包括其的显示装置
CN109378333A (zh) * 2018-10-19 2019-02-22 京东方科技集团股份有限公司 显示面板及显示装置
US20190073071A1 (en) * 2017-09-07 2019-03-07 Samsung Display Co., Ltd. Display device including touch sensor and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736587B2 (en) * 2008-07-10 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8994891B2 (en) * 2012-05-16 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and touch panel
KR102636734B1 (ko) * 2016-09-07 2024-02-14 삼성디스플레이 주식회사 유기발광 표시장치
JP2018045034A (ja) * 2016-09-13 2018-03-22 株式会社ジャパンディスプレイ 表示装置
CN108182872B (zh) * 2016-12-08 2021-01-26 群创光电股份有限公司 具有光感测单元的显示装置
CN106981503B (zh) * 2017-04-27 2019-11-15 上海天马微电子有限公司 一种显示面板及电子设备
CN107425038B (zh) * 2017-06-09 2020-01-21 武汉天马微电子有限公司 一种有机发光显示面板及其制造方法、以及电子设备
CN109411506B (zh) * 2017-08-18 2021-04-02 京东方科技集团股份有限公司 Oled背板及制备方法、oled显示装置及驱动方法
KR102576093B1 (ko) * 2018-02-14 2023-09-11 삼성디스플레이 주식회사 생체 정보 센서 및 이를 포함하는 표시 장치
FR3082025B1 (fr) * 2018-06-04 2021-07-16 Isorg Dispositif combinant capteur d'images et un écran d'affichage organiques aptes a la détection d'empreintes digitales

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106056099A (zh) * 2016-06-23 2016-10-26 京东方科技集团股份有限公司 一种指纹识别显示面板及显示装置
CN106775081A (zh) * 2016-12-13 2017-05-31 上海天马有机发光显示技术有限公司 有机发光显示面板及压力感应显示装置
CN109216421A (zh) * 2017-07-04 2019-01-15 三星电子株式会社 有机发光二极管面板和包括其的显示装置
US20190073071A1 (en) * 2017-09-07 2019-03-07 Samsung Display Co., Ltd. Display device including touch sensor and manufacturing method thereof
CN108596015A (zh) * 2018-01-31 2018-09-28 北京小米移动软件有限公司 显示组件及其制备方法、显示装置
CN109378333A (zh) * 2018-10-19 2019-02-22 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US11502133B2 (en) 2022-11-15
CN110214378A (zh) 2019-09-06
US20210233962A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2020215275A1 (zh) 显示面板及其制造方法、显示装置
US10622415B2 (en) Fingerprint recognition device and OLED display device
CN110286796B (zh) 电子基板及其制作方法、显示面板
US11903234B2 (en) Display substrate, preparation method thereof and display device
US20210167134A1 (en) Photosensitive touch substrate, fabrication method thereof and display apparatus
CN109801954B (zh) 阵列基板及其制造方法、显示面板及显示装置
CN109378326B (zh) 显示面板及其制作方法
US20110140114A1 (en) Organic light emitting display apparatus and method of manufacturing the same
US20230075199A1 (en) Display substrate and manufacturing method therefor, and display device
WO2022017026A1 (zh) 可拉伸显示面板及其制造方法、显示装置
US11387437B2 (en) Method of fabricating display substrate, display substrate, and display apparatus
US20220406880A1 (en) Flexible display panel and manufacturing method therefor, and display device
US11444262B2 (en) Display panel and display device having a non-planar substrate surface
US11239293B2 (en) Array substrate, display panel, display device and method for preparing array substrate
CN110212111B (zh) 显示基板及制作方法、显示面板、显示装置
US10216028B2 (en) Array substrate and manufacturing method thereof, display panel, display device
WO2021104050A1 (zh) 显示基板、显示面板及显示装置
TWI297210B (en) System for displaying images including electroluminescent device and method for fabricating the same
WO2022160798A1 (zh) 显示面板、显示装置和制造方法
US11953372B2 (en) Optical sensing device
US20240038766A1 (en) Display panel and electronic device
WO2022267189A1 (zh) 显示面板及其制备方法
WO2023050347A1 (zh) 显示基板及其制备方法、显示装置
US11625132B2 (en) Touch pad and method for manufacturing the same, touch display device
WO2023245599A1 (zh) 显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925583

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19925583

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19925583

Country of ref document: EP

Kind code of ref document: A1