WO2021196826A1 - 采用无线射频制作泡沫塑料的模具组件及设备 - Google Patents

采用无线射频制作泡沫塑料的模具组件及设备 Download PDF

Info

Publication number
WO2021196826A1
WO2021196826A1 PCT/CN2021/071019 CN2021071019W WO2021196826A1 WO 2021196826 A1 WO2021196826 A1 WO 2021196826A1 CN 2021071019 W CN2021071019 W CN 2021071019W WO 2021196826 A1 WO2021196826 A1 WO 2021196826A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor plate
module
mold
cavity
groove
Prior art date
Application number
PCT/CN2021/071019
Other languages
English (en)
French (fr)
Inventor
罗曼诺夫维克多
何国贤
Original Assignee
库尔特机电设备(珠海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 库尔特机电设备(珠海)有限公司 filed Critical 库尔特机电设备(珠海)有限公司
Publication of WO2021196826A1 publication Critical patent/WO2021196826A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles

Definitions

  • the invention relates to the field of foam molding molds, in particular to a mold assembly and equipment for making foam plastics by using radio frequency.
  • the Chinese invention patent application with the publication number CN108472843A provides a method and equipment for manufacturing granular foam parts.
  • capacitor plates are set on opposite sides of the mold, and the RF emission source and the capacitor plate are electrically connected to each other. Connected, heat is provided to the foam particles in the mold cavity through RF electromagnetic radiation, and the foam can directly absorb the RF radiation to heat, realize the welding between the foam particles, and form a foam part with the same shape as the mold cavity.
  • RF electromagnetic heating may cause uneven heating of the foam particles everywhere in the mold cavity, resulting in uneven density throughout the foam parts produced, and affecting the performance of the foam parts.
  • the mold assembly provided by the present invention includes a first capacitor plate, a second capacitor plate, and a mold body composed of at least two modules.
  • the mold body has a mold cavity surrounded by each module; the first capacitor plate and the second capacitor plate Distributed at intervals along the first direction, the mold body is fixed between the first capacitor plate and the second capacitor plate; the outer surface of the mold body on the side facing the first capacitor plate has grooves with a depth in the first direction, and/or The outer surface of the mold body facing the second capacitor plate has a groove with a depth in the first direction; the distance between the groove bottom of the groove and the inner wall of the cavity in the first direction is the wall thickness dimension, and the cavity is in the The dimension in the first direction is the cavity thickness dimension, and the wall thickness dimension of each groove is directly related to the cavity thickness dimension of the cavity area that is directly opposite in the first direction.
  • the phantom includes a first module and a second module, the first module and the second module are distributed along the first direction, and the first capacitor plate is fixed on the outer surface of the first module on the side facing away from the second module
  • the second capacitor plate is fixed on the outer surface of the second module facing away from the first module; the outer surface of the first module facing away from the second module is provided with grooves, and/or the back of the second module A groove is provided on the outer surface of the first module.
  • the outer surface of the mold body facing the first capacitor plate has multiple grooves, and/or the outer surface of the mold body facing the second capacitor plate has multiple grooves;
  • the wall thickness dimension corresponding to each groove is directly related to the cavity thickness dimension of the cavity area that the groove faces in the first direction.
  • the first capacitor plate is a flat plate whose main surface normal is along the first direction
  • the second capacitor plate is a flat plate whose main surface normal is along the first direction
  • the device provided by the present invention for making foamed plastics using radio frequency includes an RF radiation source and the aforementioned mold assembly, and both the first capacitor plate and the second capacitor plate are connected to the RF radiation source.
  • a preferred solution is that it also includes a material container and a pipeline, and the pipeline connects the material container and the mold body.
  • the wall thickness of the corresponding module in the first direction is relatively thick, so that its dielectric constant is higher, and the mold body corresponding to the cavity area generates more heat.
  • the wall thickness of the corresponding module in the first direction is relatively thin, so that its dielectric constant is low, and corresponds to the cavity area
  • the mold body produces less heat; in this way, because the heat generated by the mold body is transferred to the foam particles in the cavity, the cavity area with a larger size in the first direction gets relatively more heat, and the size in the first direction
  • the small cavity area gets relatively less heat, which is beneficial to match the heat absorbed by the foam particles in each cavity area with the heat demand of the foam particles in the cavity area, and is beneficial to uniformly heat the foam particles.
  • the wall thickness of the mold body is changed by setting grooves on the mold body The size, so that the undulation of the groove bottom of the groove in the first direction will not affect the arrangement of the first capacitor plate and the second capacitor plate, so that the first capacitor plate and the second capacitor plate can adopt ordinary flat capacitor plates, It is conducive to the simple structure of the mold assembly, and is beneficial to improving the economy of the mold assembly.
  • the device of the present invention using radio frequency to make foam plastics adopts the aforementioned mold assembly, which is beneficial to match the heat absorbed by the foam in each mold cavity area to the heat demand of the foam in the mold cavity area, and is beneficial to heat each foam particle Uniformity is conducive to uniform expansion of the foam particles, uniform density throughout the foam parts produced, and uniform material properties throughout the foam parts.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of the equipment for making foam plastic by using radio frequency according to the present invention
  • FIG. 2 is a schematic cross-sectional view of the first embodiment of the mold assembly for making foam plastic by using radio frequency according to the present invention
  • FIG. 3 is a three-dimensional structural view of the first module in the first embodiment of the mold assembly for making foam plastic by using radio frequency according to the present invention
  • FIG. 4 is a schematic cross-sectional view of the second embodiment of the mold assembly for making foam plastics by using radio frequency according to the present invention.
  • Example one of mold components and equipment for making foam plastics using radio frequency Example one of mold components and equipment for making foam plastics using radio frequency:
  • the equipment for making foam plastics using radio frequency includes a material container 1, a mold assembly 2 of this embodiment, an RF radiation source 3, and a pipeline 4 leading from the material container 1 to the mold assembly 2.
  • the material container 1 is used to contain foam particles, and the foam particles are supplied from the material container to the mold assembly 2 through the pipeline 4.
  • For the composition structure and functional principle of the equipment using radio frequency to make foam plastics please refer to China Invention Patent Application CN108472843A and China Invention Patent Application CN108602218A.
  • the mold assembly 2 of this embodiment includes a first capacitor plate 21, a second capacitor plate 22, a first module 23, and a second module 24.
  • the first capacitor plate 21 and the second capacitor plate 22 are respectively Connected to the RF radiation source 3, the first module 23 and the second module 24 are distributed along the vertical direction, the first capacitor plate 21 is located above the second capacitor plate 22, and the mold cavity 25 is formed between the first module 23 and the second module 24 In between, the first capacitor plate 21 is a flat plate with the main surface normal in the vertical direction, and the second capacitor plate 22 is a flat plate with the main surface normal in the vertical direction.
  • the first capacitor plate 21 is pasted on the upper surface of the first module 23. Above, the second capacitor plate 22 is pasted on the lower surface of the second module 24.
  • the reason for the uneven heating of the foam particles is that the heat required by the foam particles does not match the heat generated by the electromagnetic RF radiation. The larger the size in the vertical direction, the more foam particles need to be filled in the corresponding position, and the more heat is required.
  • this embodiment is provided with a plurality of first grooves 231 on the upper surface of the first module 23, and the vertical distance between the bottom of the first grooves 231 and the inner wall of the cavity 25 is the first A distance, the dimension of the mold cavity 25 in the vertical direction is the first dimension, and the first distance of each first groove 231 is positively related to the first dimension of the area of the mold cavity 25 that it faces in the vertical direction. That is, where the size of the mold cavity 25 in the vertical direction is relatively large, the distance between the bottom of the first groove 231 and the inner wall of the mold cavity 25 in the vertical direction is relatively large.
  • the thickness of the first module 23 between the mold cavity 25 at this position and the first groove 231 opposite is relatively thick; similarly, the position where the mold cavity 25 has a relatively small size in the vertical direction is relatively thick. The size of the bottom of the first groove 231 and the mold cavity 25 in the first direction that are directly opposite in the vertical direction is relatively small. The thickness of the first module 23 is relatively thin.
  • the first distance corresponding to the cavity 25 area with the first size b1 is a1
  • the first distance corresponding to the cavity 25 area with the first size b2 is a2
  • b1 is greater than b2
  • a1 is greater than a2 .
  • the first distance in this embodiment is the wall thickness dimension, and the first dimension in this embodiment is the cavity thickness dimension.
  • a plurality of second grooves 241 are opened on the lower surface of the second module 24, and the setting method and principle of the distance between the bottom of the second groove 241 and the cavity 25 can refer to the first groove
  • the setting method and principle of 231 will not be repeated here.
  • the mold body and the foam particles both absorb the electromagnetic waves and generate heat.
  • the first groove 231 and the second groove 241 For the cavity area with a larger size in the vertical direction, since the wall thickness of the first module 23 and the wall thickness of the second module 24 corresponding to the vertical direction are relatively thick, the cavity area corresponds to The first module 23 and the second module 24 produce more heat, the first module 23 and the second module 24 will transfer more heat to the cavity area, so the cavity area with a larger vertical dimension In the same way, for a cavity area with a smaller size in the vertical direction, the wall thickness of the first module 23 and the wall thickness of the second module 24 corresponding to the vertical direction are relatively thin.
  • the mold body corresponding to the mold cavity area generates less heat, and the first module 23 and the second module 24 transfer less heat to the mold cavity area, so the mold cavity area with a smaller size in the vertical direction obtains the heat Less; in this way, it is beneficial to match the heat absorbed by the foam in each mold cavity area with the heat demand of the foam in the mold cavity area, which is beneficial to uniformly heat the foam particles, helps to make the foam particles expand evenly, and is beneficial to The density of the foam parts produced is uniform throughout, which is beneficial to make the material properties of the foam parts uniform.
  • the first capacitor plate 21 and the second capacitor plate 22 are not necessarily distributed in the vertical direction, but may also be distributed in the horizontal direction at intervals, and at this time, the depth direction of the grooves on the first module and the second module should be along the The spacing direction between the first capacitor plate 21 and the second capacitor plate 22.
  • the distance between the first capacitor plate 21 and the second capacitor plate 22 is along the opening and closing directions of the first module 23 and the second module 24, which is beneficial to the first capacitor plate 21, the second capacitor plate 22, and the first module 23 and the second module 24.
  • the module 23 and the fourth module 24 are installed and fixed to each other.
  • the component of the foam particles may be polyurethane (ETPU). Since the dielectric loss factor of the polyurethane (ETPU) is high, more heat is generated after absorbing electromagnetic waves, and the foam plastic particles can melt faster.
  • the composition of the foam particles can also be polyether block amide (EPEBA), based on polylactide (PLA), based on polyamide (EPA), and on this basis can be used based on polyester ether elastomer (ETPEE) or based on poly Ethylene terephthalate (EPET) or polybutylene terephthalate (EPBT); of course, the composition of the foamed plastic particles can also be materials that are not easy to absorb electromagnetic waves, such as expandable polystyrene (EPS ), expandable polypropylene (EPP), expandable polyethylene (EPE) and polymers related to these three raw materials, such as expandable polystyrene and polyethylene copolymer (EPO); specifically When the foam particles are materials that are not easy to absorb electromagnetic waves,
  • the first module 23 and the second module 24 in this embodiment are both electromagnetic penetrating materials
  • the electromagnetic penetrating materials are materials that can be penetrated by electromagnetic waves, such as polytetrafluoroethylene (PTFE) and ultra-high molecular weight polyethylene.
  • PTFE polytetrafluoroethylene
  • UHMWPE polyethylene
  • PE polyethylene
  • PEEK polyether ether ketone
  • Ceramic ceramic
  • the material that is not penetrated by electromagnetic waves can be used as the material surrounding the mold edge to become a passive heating layer, thereby enhancing the mold cavity temperature.
  • the mold assembly of the embodiment may also include electromagnetic impermeable materials.
  • the electromagnetic impermeable materials are materials that cannot be penetrated by electromagnetic waves, such as PET (polyterephthalate plastics), and electromagnetic impermeable materials such as It can be used to protect and heat the mold components.
  • a third groove 232 is formed on the upper surface of the first module 23, and the bottom of the third groove 232 and the inner wall of the cavity 25 have a second distance in the vertical direction.
  • the mold cavity 25 has a second dimension in the vertical direction, and the second distance between the third grooves 232 is directly related to the second dimension of the area of the mold cavity 25 that is directly opposite in the vertical direction.
  • the second distance in this embodiment is the wall thickness dimension, and the second dimension in this embodiment is the cavity thickness dimension.
  • a fourth groove 242 is opened on the lower surface of the second module 24.
  • the setting method and principle of the distance between the bottom of the fourth groove 242 and the mold cavity 25 can refer to the setting method and principle of the third groove 232, here No longer.
  • the arrangement of the third groove 232 and the fourth groove 242 is conducive to the heat generation of the RF radiation in each cavity area and each cavity
  • the matching of the heat demand of the area is beneficial to uniformly heating the foam particles, the expansion of the foam particles is uniform, the density of the foam parts produced is uniform, and the material properties of the foam parts are uniform.
  • the rest of the second embodiment is the same as the first embodiment.
  • the mold assembly and equipment for making foamed plastics using radio frequency of the present invention are used to produce foamed plastics with foam particles as raw materials.
  • the foamed particles are accommodated in the cavity of the mold assembly, and heat is provided to the foam in the cavity through RF electromagnetic radiation. Particles, to realize the welding between the foam particles, and finally form a foam part with the same shape as the mold cavity.
  • the groove is used to change the wall thickness of the mold body, so that the undulation of the groove bottom of the groove in the first direction will not affect the arrangement of the first capacitor plate and the second capacitor plate, so that the first capacitor plate and the second capacitor plate.

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种采用无线射频制作泡沫塑料的模具组件(2),包括第一电容板(21)、第二电容板(22)和由至少两个模块(23、24)组成的模体,模体内具有模腔(25),模腔(25)由各模块(23、24)围成;第一电容板(21)和第二电容板(22)沿第一方向间隔分布,模体固定在第一电容板(21)和第二电容板(22)之间;模体的朝向第一电容板(21)一侧的外表面上具有深度沿第一方向的凹槽(231、232);凹槽(231、232)各处的壁厚尺寸(a1、a2)正相关于在第一方向上正对的模腔(25)区域的腔厚尺寸(b1、b2)。

Description

采用无线射频制作泡沫塑料的模具组件及设备 技术领域
本发明涉及发泡成型的模具领域,具体是涉及一种采用无线射频制作泡沫塑料的模具组件及设备。
背景技术
公开号为CN108472843A的中国发明专利申请提供了一种用于制造颗粒泡沫部件的方法和设备,该设备中,在模具的相对的两侧设置分别设置电容板,并通过RF发射源与电容板电连接,通过RF电磁辐射将热量提供至模具模腔中的泡沫颗粒,泡沫可以直接吸收RF辐射加热,实现各泡沫颗粒之间的焊接,形成形状与模具模腔相同的泡沫部件。
技术问题
由于模腔在不同位置的厚度有所不同,RF电磁加热可能导致模腔各处的泡沫颗粒受热不均,导致生产的泡沫部件各处密度不均匀,影响泡沫部件的性能。
解决技术手段
本发明提供的模具组件包括第一电容板、第二电容板和由至少两个模块组成的模体,模体内具有模腔,模腔由各模块围成;第一电容板与第二电容板沿第一方向间隔分布,模体固定在第一电容板与第二电容板之间;模体的朝向第一电容板一侧的外表面上具有深度沿第一方向的凹槽,和/或模体的朝向第二电容板一侧的外表面上具有深度沿第一方向的凹槽;凹槽的槽底与模腔内壁之间在第一方向上的距离为壁厚尺寸,模腔在第一方向上的尺寸为腔厚尺寸,凹槽各处的壁厚尺寸正相关于该处在第一方向上正对的模腔区域的腔厚尺寸。
一个优选的方案是,模体包括第一模块和第二模块,第一模块与第二模块沿第一方向分布,第一电容板固定在第一模块的背向第二模块一侧的外表面上,第二电容板固定在第二模块的背向第一模块一侧的外表面上;第一模块的背向第二模块的外表面上设有凹槽,和/或第二模块的背向第一模块的外表面上设有凹槽。
另一个优选的方案是,模体的朝向第一电容板一侧的外表面上具有多个凹槽,和/或模体的朝向第二电容板一侧的外表面上具有多个凹槽;各凹槽对应的壁厚尺寸正相关于该凹槽在第一方向上正对的模腔区域的腔厚尺寸。
再一个优选的方案是,第一电容板为主面法向沿第一方向的平板,第二电容板为主面法向沿第一方向的平板。
本发明提供的采用无线射频制作泡沫塑料的设备,包括RF辐射源和前述的模具组件,第一电容板与第二电容板均与RF辐射源连接。
一个优选的方案是,还包括材料容器和管线,管线连接材料容器和模体。
有益效果
本发明通过对模具组件的结构设计,在采用模具组件生产塑料产品时,第一电容板与第二电容板之间形成电磁波,模体与泡沫颗粒均吸收电磁波产热,本发明中,对于在第一方向上尺寸较大的模腔区域而言,其在第一方向上对应的模块壁厚相对较厚,以致其介电常数较高,并对该模腔区域对应的模体产热较多;同理,对于第一方向上尺寸较小的模腔区域而言,其在第一方向上对应的模块壁厚相对较薄,以致其介电常数较低,并对该模腔区域对应的模体产热较少;这样,由于模体产热向模腔中的泡沫颗粒传递,使得在第一方向上尺寸较大的模腔区域得到的热量相对较多,在第一方向上尺寸较小的模腔区域得到的热量相对较少,有利于使各模腔区域中泡沫颗粒所吸收的热量与该模腔区域中泡沫颗粒的热需求相匹配,有利于使各泡沫颗粒受热均匀,有利于使各泡沫颗粒膨胀均匀,有利于使生产的泡沫部件各处密度均匀,有利于使泡沫部件各处的材料性能均匀;此外,通过在模体上设置凹槽来改变模体的壁厚尺寸,这样凹槽的槽底在第一方向上的起伏,不会影响第一电容板与第二电容板的设置,这样第一电容板与第二电容板能够采用普通的平板状电容板,有利于模具组件的结构简洁,有利于提升模具组件的经济性。
本发明的采用无线射频制作泡沫塑料的设备由于采用前述的模具组件,有利于使各模腔区域中泡沫所吸收的热量该模腔区域中泡沫的热需求相匹配,有利于使各泡沫颗粒受热均匀,有利于使各泡沫颗粒膨胀均匀,有利于使生产的泡沫部件各处密度均匀,有利于使泡沫部件各处的材料性能均匀。
附图说明
图1是本发明采用无线射频制作泡沫塑料的设备实施例一的结构示意图;
图2是本发明采用无线射频制作泡沫塑料的模具组件实施例一的剖视示意图;
图3是本发明采用无线射频制作泡沫塑料的模具组件实施例一中第一模块的立体结构图;
图4是本发明采用无线射频制作泡沫塑料的模具组件实施例二的剖视示意图。
具体实施方式
采用无线射频制作泡沫塑料的模具组件及设备实施例一:
请参照图1,本实施例中,采用无线射频制作泡沫塑料的设备包括材料容器1、本实施例的模具组件2、RF辐射源3以及从材料容器1通向模具组件2的管线4。材料容器1用于盛装泡沫颗粒,泡沫颗粒通过管线4从材料容器向模具组件2供给,采用无线射频制作泡沫塑料的设备的组成结构、功能原理等可以参考中国发明专利申请CN108472843A和中国发明专利申请CN108602218A。
请参照图2及图3,本实施例的模具组件2包括第一电容板21、第二电容板22、第一模块23、第二模块24,第一电容板21与第二电容板22分别与RF辐射源3连接,第一模块23与第二模块24沿竖直方向分布,第一电容板21位于第二电容板22上方,模腔25形成于第一模块23与第二模块24之间,第一电容板21为主面法向沿竖直方向的平板,第二电容板22为主面法向沿竖直方向的平板,第一电容板21粘贴在第一模块23的上表面上,第二电容板22粘贴在第二模块24的下表面上。
发明人发现泡沫组件各处密度不均、模腔25中各泡沫颗粒在加热过程中受热不均的原因为各处泡沫颗粒需要的热量与电磁RF辐射在该处产生的热量不匹配,模腔25竖直方向上的尺寸越大,对应位置需要填充的泡沫颗粒数量越多,需要的热量也越多。
两电容板之间的距离越近,两电容板之间的电磁RF产热越多,并且,由于模体与泡沫颗粒均能吸收电磁波产热,使得在两电容板各处距离相等的情况下,模体厚度越厚的区域,模体与泡沫颗粒总共的产热越多。
因而优选地,本实施例在第一模块23的上表面上开设有多个第一凹槽231,第一凹槽231的槽底与模腔25内壁之间在竖直方向上的距离为第一距离,模腔25在竖直方向上的尺寸为第一尺寸,各第一凹槽231的第一距离均正相关于其在竖直方向上正对的模腔25区域的第一尺寸。也即,模腔25在竖直方向上尺寸相对较大的位置,其沿竖直方向正对的第一凹槽231的槽底与模腔25内壁在竖直方向上的距离就相对较大,该位置的模腔25与正对的第一凹槽231之间具有的第一模块23的厚度就相对较厚;同理,模腔25在竖直方向上尺寸相对较小的位置,其沿竖直方向正对的第一凹槽231的槽底与模腔25在第一方向上的尺寸就相对较小,该位置的模腔25与正对的第一凹槽231之间具有的第一模块23的厚度就相对较薄。
例如,图2中,第一尺寸为b1的模腔25区域对应的第一距离为a1,第一尺寸为b2的模腔25区域对应的第一距离为a2,b1大于b2,且a1大于a2。
本实施例的第一距离为壁厚尺寸,本实施例的第一尺寸为腔厚尺寸。
同理,优选地,第二模块24的下表面上开设有多个第二凹槽241,第二凹槽241的槽底与模腔25之间距离的设置方式及原理可以参考第一凹槽231的设置方式和原理,这里不再赘述。
在采用模具组件生产塑料产品时,第一电容板21与第二电容板22之间具有电磁波,模体与泡沫颗粒均吸收电磁波产热,这样,通过第一凹槽231与第二凹槽241的设置,对于在竖直方向上尺寸较大的模腔区域而言,由于其在竖直方向上对应的第一模块23壁厚及第二模块24壁厚相对较厚,该模腔区域对应的第一模块23和第二模块24产热较多,第一模块23和第二模块24向该模腔区域传递的热量就会较多,因而在竖直方向上尺寸较大的模腔区域得到的热量较多;同理,对于竖直方向上尺寸较小的模腔区域而言,其在竖直方向上对应的第一模块23壁厚及第二模块24壁厚相对较薄,该模腔区域对应的模体产热较少,第一模块23和第二模块24向该模腔区域传递的热量就会较少,因而在竖直方向上尺寸较笑的模腔区域得到的热量较少;这样,有利于使各模腔区域中泡沫吸收的热量与该模腔区域中泡沫的热需求相匹配,有利于使各泡沫颗粒受热均匀,有利于使各泡沫颗粒膨胀均匀,有利于使生产的泡沫部件各处密度均匀,有利于使泡沫部件各处的材料性能均匀。
可选择地,第一电容板21与第二电容板22不一定沿竖直方向分布,也可以沿水平方向间隔分布,并且此时第一模块及第二模块上的凹槽的深度方向应当沿第一电容板21与第二电容板22的间隔方向。
优选地,第一电容板21与第二电容板22的间隔方向沿第一模块23与第二模块24的开合模方向,这样有利于第一电容板21、第二电容板22、第一模块23及第四模块24互相之间的安装固定。
在本实施例中,泡沫颗粒的成分可以为聚氨酯(ETPU),由于聚氨酯(ETPU)的介电损耗因子高,因此在吸收电磁波之后产生的热量多,泡沫塑料颗粒能够熔融得更快。泡沫塑料颗粒的成分也可以为聚醚嵌段酰胺(EPEBA)、基于聚丙交酯(PLA)、基于聚酰胺(EPA),在此基础上可以使用基于聚酯醚弹性体(ETPEE)或基于聚对苯二甲酸乙二醇酯(EPET)或聚对苯二甲酸丁二醇酯(EPBT);当然,泡沫塑料颗粒的成分也可以为不易吸收电磁波的材料,例如可发性聚苯乙烯(EPS)、可发性聚丙烯(EPP)、可发性聚乙稀(EPE)以及这三种原料相关的聚合物,譬如可发性聚苯乙烯与聚乙烯的共聚合物(EPO);具体地,当泡沫颗粒为不易吸收电磁波的材料时,可以通过为泡沫颗粒混入易吸收电磁波的介质,例如为不易吸收电磁波的泡沫颗粒混入水等,以便泡沫颗粒吸收电磁波产热膨胀。
具体地,本实施例中第一模块23及第二模块24均为电磁穿透材料,电磁穿透材料是可以被电磁波穿透的材料,例如聚四氟乙烯(PTFE)、超高分子量聚乙烯(UHMWPE) 、聚乙烯(PE)、聚醚醚酮(PEEK),陶瓷(Ceramic),另,亦可利用不被电磁波穿透材料作为包围模边的物料,成为被动受热层,从而提升模腔温度。
当然,实施例的模具组件还可以包括电磁不可穿透材料,电磁不可穿透材料是不可以被电磁波穿透的材料,例如PET(聚对苯二甲酸类塑料),采用电磁不可穿透材料例如可以用于对模具组件进行防护、保温等。
采用无线射频制作泡沫塑料的模具组件及设备实施例二:
请参照图4,本实施例中第一模块23的上表面上开设有第三凹槽232,第三凹槽232的槽底与模腔25内壁之间在竖直方向上具有第二距离,模腔25在竖直方向上具有第二尺寸,第三凹槽232各处的第二距离正相关于其竖直方向上正对的模腔25区域的第二尺寸。
本实施例的第二距离为壁厚尺寸,本实施例的第二尺寸为腔厚尺寸。
第二模块24的下表面上开设有第四凹槽242,第四凹槽242的槽底与模腔25之间距离的设置方式及原理可以参考第三凹槽232的设置方式和原理,这里不再赘述。
与实施例一中第一凹槽231与第二凹槽241原理类似,第三凹槽232与第四凹槽242的设置,有利于使RF辐射在各模腔区域的产热与各模腔区域的热需求相匹配,有利于使各泡沫颗粒受热均匀,有利于使各泡沫颗粒膨胀均匀,有利于使生产的泡沫部件各处密度均匀,有利于使泡沫部件各处的材料性能均匀。
实施例二的其余部分同实施例一。
最后需要强调的是,以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业应用性
本发明的采用无线射频制作泡沫塑料的模具组件及设备用于以泡沫颗粒为原料生产泡沫塑料,泡沫颗粒容置于模具组件的模腔中,通过RF电磁辐射将热量提供至模腔中的泡沫颗粒,实现各泡沫颗粒之间的焊接,最终形成形状与模腔相同的泡沫部件。通过在模具外表面上开设凹槽,并调整壁厚尺寸与腔厚尺寸的关系,有利于使各模腔区域中泡沫颗粒所吸收的热量与该模腔区域中泡沫颗粒的热需求相匹配,有利于使各泡沫颗粒受热均匀,有利于使各泡沫颗粒膨胀均匀,有利于使生产的泡沫部件各处密度均匀,有利于使泡沫部件各处的材料性能均匀;并且,通过在模体上设置凹槽来改变模体的壁厚尺寸,这样凹槽的槽底在第一方向上的起伏,不会影响第一电容板与第二电容板的设置,这样第一电容板与第二电容板能够采用普通的平板状电容板,有利于模具组件的结构简洁,有利于提升模具组件的经济性。

Claims (6)

  1. 采用无线射频制作泡沫塑料的模具组件,包括第一电容板、第二电容板和由至少两个模块组成的模体,所述模体内具有模腔,所述模腔由各所述模块围成;
    所述第一电容板与所述第二电容板沿第一方向间隔分布,所述模体固定在所述第一电容板与所述第二电容板之间;
    其特征在于:
    所述模体的朝向所述第一电容板一侧的外表面上具有深度沿所述第一方向的凹槽,和/或所述模体的朝向所述第二电容板一侧的外表面上具有深度沿所述第一方向的凹槽;
    所述凹槽的槽底与所述模腔内壁之间在所述第一方向上的距离为壁厚尺寸,所述模腔在所述第一方向上的尺寸为腔厚尺寸,所述凹槽各处的所述壁厚尺寸正相关于该处在所述第一方向上正对的模腔区域的所述腔厚尺寸。
  2. 根据权利要求1所述的模具组件,其特征在于:
    所述模体包括第一模块和第二模块,所述第一模块与所述第二模块沿所述第一方向分布,所述第一电容板固定在所述第一模块的背向所述第二模块一侧的外表面上,所述第二电容板固定在所述第二模块的背向所述第一模块一侧的外表面上;
    所述第一模块的背向所述第二模块的外表面上设有所述凹槽,和/或所述第二模块的背向所述第一模块的外表面上设有所述凹槽。
  3. 根据权利要求1所述的模具组件,其特征在于:
    所述模体的朝向所述第一电容板一侧的外表面上具有多个所述凹槽,和/或所述模体的朝向所述第二电容板一侧的外表面上具有多个所述凹槽;
    各所述凹槽对应的所述壁厚尺寸正相关于该凹槽在第一方向上正对的模腔区域的所述腔厚尺寸。
  4. 根据权利要求1至3任一项所述的模具组件,其特征在于:
    所述第一电容板为主面法向沿所述第一方向的平板,所述第二电容板为主面法向沿所述第一方向的平板。
  5. 采用无线射频制作泡沫塑料的设备,包括RF辐射源,其特征在于:
    还包括如权利要求1至4任一项所述的采用无线射频制作泡沫塑料的模具组件,所述第一电容板与所述第二电容板均与RF辐射源连接。
  6. 根据权利要求5所述的设备,其特征在于:
    还包括材料容器和管线,所述管线连接所述材料容器和所述模体。
PCT/CN2021/071019 2020-03-30 2021-01-11 采用无线射频制作泡沫塑料的模具组件及设备 WO2021196826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010238638.4 2020-03-30
CN202010238638.4A CN111409226A (zh) 2020-03-30 2020-03-30 采用无线射频制作泡沫塑料的模具组件及设备

Publications (1)

Publication Number Publication Date
WO2021196826A1 true WO2021196826A1 (zh) 2021-10-07

Family

ID=71487983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071019 WO2021196826A1 (zh) 2020-03-30 2021-01-11 采用无线射频制作泡沫塑料的模具组件及设备

Country Status (2)

Country Link
CN (1) CN111409226A (zh)
WO (1) WO2021196826A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111409226A (zh) * 2020-03-30 2020-07-14 库尔特机电设备(珠海)有限公司 采用无线射频制作泡沫塑料的模具组件及设备
CN114683464B (zh) * 2020-12-31 2023-11-14 青岛海尔电冰箱有限公司 电器包装用泡沫底座、制作其的模具及制作其的方法
CN113246367B (zh) * 2021-06-09 2021-11-02 东莞利达运动用品有限公司 一种新型发泡胶成型工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134942A (en) * 1975-12-24 1979-01-16 Outboard Marine Corporation Method for producing foamed articles
US4441876A (en) * 1979-05-24 1984-04-10 Michel Marc Flow molding
CN108472843A (zh) * 2016-01-18 2018-08-31 库尔兹股份有限公司 用于制造颗粒泡沫部件的方法和设备
CN210139557U (zh) * 2019-06-21 2020-03-13 库尔特机电设备(珠海)有限公司 一种采用无线射频制作泡沫塑料的设备
CN111409226A (zh) * 2020-03-30 2020-07-14 库尔特机电设备(珠海)有限公司 采用无线射频制作泡沫塑料的模具组件及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134942A (en) * 1975-12-24 1979-01-16 Outboard Marine Corporation Method for producing foamed articles
US4441876A (en) * 1979-05-24 1984-04-10 Michel Marc Flow molding
CN108472843A (zh) * 2016-01-18 2018-08-31 库尔兹股份有限公司 用于制造颗粒泡沫部件的方法和设备
CN210139557U (zh) * 2019-06-21 2020-03-13 库尔特机电设备(珠海)有限公司 一种采用无线射频制作泡沫塑料的设备
CN111409226A (zh) * 2020-03-30 2020-07-14 库尔特机电设备(珠海)有限公司 采用无线射频制作泡沫塑料的模具组件及设备

Also Published As

Publication number Publication date
CN111409226A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2021196826A1 (zh) 采用无线射频制作泡沫塑料的模具组件及设备
ES2843475T3 (es) Método y aparato para generar productos aptos para formación
CN108472843B (zh) 用于制造颗粒泡沫部件的方法和设备
JP5135336B2 (ja) 熱可塑性ポリマー系を選択的に加熱するためのマイクロ波エネルギーの使用
WO2020253774A1 (en) Apparatus for manufacturing foam plastic by adopting rf and working method of the same
US20130270747A1 (en) Method and apparatus for producing formable products
US5387452A (en) Process for preparing thermoinsulating and/or structural double-walled molded bodies and products thereby obtained
US10667443B2 (en) Electromagnetic wave blocking device having electromagnetic wave shielding and absorbing capacity and manufacturing method therefor
JP4642354B2 (ja) 改良された生分解性発泡体および関連技術
CN211993874U (zh) 采用无线射频制作泡沫塑料的模具组件及设备
CN210139557U (zh) 一种采用无线射频制作泡沫塑料的设备
JP2005507326A5 (zh)
JPH1058475A (ja) 熱可塑性樹脂発泡粒子の型内成形方法
JP2017168436A (ja) 加熱処理装置、加熱処理装置用の断熱性収容箱及び加熱処理方法
JPS61283525A (ja) 複数層の熱可塑性材料からなるプラスチツク製品の製造方法
CN113301833A (zh) 微波炉用烹调器具及其制造方法
JPH0584729B2 (zh)
CN112140443A (zh) 一种塑料发泡体成型工艺
KR101366963B1 (ko) 발포 장치
KR102465632B1 (ko) 선형 패턴화된 표면을 갖는 폴리에스테르 수지 발포시트 및 이의 제조방법
JPWO2018105394A1 (ja) 発泡断熱材の製造方法および発泡断熱材
JP2023128857A (ja) 冷蔵庫用樹脂部品
JP2023160451A (ja) 傾斜発泡成形体の製造方法
JPH1177717A (ja) プラスチックの一軸回転成形
KR20220024259A (ko) 엠보 패턴화된 표면을 갖는 폴리에스테르 수지 발포시트 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781972

Country of ref document: EP

Kind code of ref document: A1