WO2021196789A1 - 量子点结构、其制作方法及量子点发光器件 - Google Patents

量子点结构、其制作方法及量子点发光器件 Download PDF

Info

Publication number
WO2021196789A1
WO2021196789A1 PCT/CN2020/141593 CN2020141593W WO2021196789A1 WO 2021196789 A1 WO2021196789 A1 WO 2021196789A1 CN 2020141593 W CN2020141593 W CN 2020141593W WO 2021196789 A1 WO2021196789 A1 WO 2021196789A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal element
quantum dot
precursor
core structure
shell layer
Prior art date
Application number
PCT/CN2020/141593
Other languages
English (en)
French (fr)
Inventor
杨绪勇
曹璠
叶海桥
柳杨
冯靖雯
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/416,261 priority Critical patent/US11795393B2/en
Publication of WO2021196789A1 publication Critical patent/WO2021196789A1/zh
Priority to US18/244,230 priority patent/US20230416604A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7492Arsenides; Nitrides; Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present disclosure relates to the technical field of quantum dot materials, in particular to a quantum dot structure, a manufacturing method thereof, and a quantum dot light-emitting device.
  • quantum dots Due to the characteristics of high purity color, high fluorescence intensity, and good biocompatibility, quantum dots are widely used in light-emitting devices, solar cells, biological fluorescence imaging, lasers and other technical fields.
  • quantum dots with a core-shell structure have better optical properties, but there is a problem of lattice mismatch between the core structure and the shell layer of the quantum dots, resulting in a low fluorescence quantum yield of the quantum dots.
  • the quantum dot structure provided by the implementation of the present disclosure includes:
  • the core structure includes: a first metal element, at least one second metal element, and a non-metal element bonded by a chemical bond; wherein the first metal element is a group III element, and the non-metal element is a group V element,
  • the second metal element is a metal element different from the first metal element; in the direction from the inside to the outside of the core structure, the content of the first metal element tends to decrease, and each of the second metal elements The total content of the elements shows an increasing trend, and the optical band gap of the core structure shows an increasing trend;
  • the shell layer is wrapped on the surface of the core structure.
  • the second metal element is zinc, gallium, aluminum or magnesium.
  • the core structure includes any one of the second metal elements of zinc, gallium, aluminum, or magnesium; or, the core structure includes any of zinc, gallium, aluminum, or magnesium. At least two of the second metal elements are combined.
  • the first metal element is indium.
  • the non-metallic element is phosphorus.
  • the shell layer includes one or a combination of zinc sulfide, zinc selenide, and zinc sulfide selenide.
  • the quantum dot structure includes two layers of the shell layers, and the two shell layers are divided into a first shell layer and a second shell layer;
  • the first shell layer is located between the core structure and the second shell layer;
  • the first shell layer includes zinc selenide, and the second shell layer includes zinc sulfide.
  • embodiments of the present disclosure also provide a quantum dot light-emitting device, wherein the quantum dot light-emitting layer of the quantum dot light-emitting device has the above-mentioned quantum dot structure.
  • an embodiment of the present disclosure also provides a method for manufacturing the aforementioned quantum dot structure, which includes:
  • the shell precursor is added to the solution forming the core structure and heated to form the shell layer of the quantum dot structure.
  • the mixing of the precursor of the first metal element, the precursor of the second metal element containing the surfactant, the fatty acid ligand, and the non-coordinating solvent includes:
  • Inert gas is introduced into the reaction vessel and heated to a first temperature; wherein, the first temperature is in the range of 100°C to 180°C.
  • heating the mixed solution and adding a non-metallic element precursor includes:
  • the mixed solution is heated to a second temperature, and a phosphorus source and a phosphorus coordination solvent are added; the second temperature is in the range of 180°C to 300°C.
  • the adding and heating the shell precursor to the solution forming the core structure includes:
  • it further includes:
  • the formed quantum dot structure is purified by using n-hexane and ethanol.
  • the precursor of the first metal element is indium methanesulfonate, indium acetate, indium dodecanoate, indium myristate, indium hexadecanoate, indium octadecanoate, two One or a combination of indium decaacid and indium acetylacetonate.
  • the precursor of the second metal element containing a surfactant includes: a precursor of the second metal element containing an acetylacetonate group or a derivative of an acetylacetonate group;
  • the second metal element is one or a combination of zinc, gallium, aluminum, and magnesium.
  • the fatty acid ligand is one or a combination of dodecanoic acid, myristic acid, palmitic acid, octadecanoic acid, and arachidic acid.
  • FIG. 1 is one of the flowcharts of the manufacturing method of the foregoing quantum dot structure provided by an embodiment of the disclosure
  • FIG. 3 is an X-ray photoelectron spectroscopy analysis diagram after the centrifugal purification treatment is performed after the phosphorus source is injected in step (2) and kept for 3 minutes in the embodiment of the disclosure;
  • Fig. 4 is an X-ray energy spectrum analysis (EDS) characterization of the centrifugal purification process after the phosphorus source is injected in the step (2) in the embodiment of the disclosure;
  • EDS X-ray energy spectrum analysis
  • FIG. 5 is an X-ray energy spectrum analysis (EDS) characterization after the nucleation stage after the phosphorus source is injected in the step (2) of the embodiment of the disclosure and the centrifugal purification process is performed;
  • EDS X-ray energy spectrum analysis
  • Fig. 6 is an ultraviolet-visible light absorption and fluorescence emission spectrum diagram of the quantum dot structure obtained by adopting steps (1) to (3) in an embodiment of the disclosure.
  • embodiments of the present invention provide a quantum dot structure, a manufacturing method thereof, and a quantum dot light-emitting device.
  • the embodiments of the present disclosure provide a quantum dot structure, which includes:
  • the core structure includes: a first metal element, at least one second metal element, and a non-metal element bonded by chemical bonds; wherein the first metal element is a group III element, the non-metal element is a group V element, and the second metal element It is a metal element different from the first metal element; in the direction from the inside to the outside of the core structure, the content of the first metal element shows a decreasing trend, and the total content of each second metal element shows an increasing trend.
  • the band gap is increasing;
  • the shell is wrapped around the surface of the core structure.
  • the core structure includes a first metal element, at least one second metal element, and a non-metal element bonded by chemical bonds.
  • the content of the first metal element is Decrease, the total content of each second metal element shows an increasing trend, so that the optical band gap of the core structure shows an increasing trend, thereby reducing the optical band gap difference between the core structure and the shell layer. It can effectively solve the problem of lattice mismatch between the core structure and the shell layer, and can also reduce the interface defects between the core structure and the shell layer, thereby greatly improving the fluorescence quantum yield of the quantum dot structure.
  • the optical band gap represents the value of the forbidden band width measured by spectroscopy.
  • the forbidden band width is mainly determined by the energy band structure of the semiconductor, that is, it is related to the crystal structure and the bonding properties of atoms.
  • the forbidden band width reflects The strength of the valence electrons is bound, that is, the minimum energy required to generate intrinsic excitation.
  • the precursor of the first metal element, the precursor of the second metal element containing the surfactant, the fatty acid ligand and the non-coordinating solvent can be mixed, and then the temperature is raised and the precursor of the non-metal element is added.
  • the non-metal element can be combined with the first metal element first, and then with the second metal element. The metal elements are combined, and therefore, the content of the first metal element is higher inside the core structure, and the content of the second metal element outside the core structure is higher, so that the core structure has a gradient alloy structure.
  • the optical band gap of the shell layer is generally larger than that of the core structure. Therefore, by selecting a suitable second metal element, the optical band gap of the core structure can be increased, thereby reducing the core structure and the shell layer. The optical band gap difference between the two can effectively solve the problem of lattice mismatch between the core structure and the shell.
  • the second metal element may be zinc, gallium, aluminum, or magnesium.
  • the second metal element may also be capable of chemically bonding with the first metal element, Other metals that combine non-metal elements and can increase the optical band gap of the core structure are not limited here.
  • the foregoing core structure may include any one of the second metal elements of zinc, gallium, aluminum, or magnesium; or, the foregoing core structure may include zinc, gallium, or aluminum. Or at least two of the second metal elements formed by any combination of magnesium.
  • the above-mentioned core structure may include two second metal elements of gallium and aluminum, or the above-mentioned core structure may include three second metal elements of zinc, gallium, and magnesium. Two metal elements.
  • the first metal element is a group III element
  • the non-metal element is a group V element. Therefore, the quantum dot structure is a non-toxic and environmentally friendly structure.
  • the first metal element may be indium
  • the non-metallic element may be indium.
  • the metal element may be phosphorus.
  • the foregoing shell layer may include one or a combination of zinc sulfide, zinc selenide, and zinc sulfide selenide
  • the foregoing quantum dot structure may include a shell layer, such as It may include one layer of ZnS shell layer, or the above quantum dot structure may also include at least two shell layers.
  • the foregoing quantum dot structure includes two shell layers, and the two shell layers are divided into a first shell layer and a second shell layer;
  • the first shell layer is located between the core structure and the second shell layer;
  • the first shell layer includes zinc selenide, and the second shell layer includes zinc sulfide.
  • first shell layer and the second shell layer can also be made of other materials, and the material of the shell layer in the quantum dot structure is not limited here.
  • embodiments of the present invention also provide a quantum dot light emitting device, wherein the quantum dot light emitting layer of the quantum dot light emitting device has the above quantum dot structure. Since the problem-solving principle of the quantum dot light-emitting device is similar to the foregoing quantum dot structure, the implementation of the quantum dot light-emitting device can refer to the implementation of the foregoing quantum dot structure, and the repetition will not be repeated.
  • the embodiment of the present invention also provides a method for manufacturing the above-mentioned quantum dot structure. Since the principle of the method for solving the problem is similar to that of the above-mentioned quantum dot structure, the implementation of the method can refer to the above-mentioned quantum dot structure. Implementation, the repetition will not be repeated.
  • the manufacturing method of the foregoing quantum dot structure provided by the embodiment of the present disclosure, as shown in FIG. 1, includes:
  • the above-mentioned manufacturing method provided by the embodiments of the present disclosure is achieved by mixing the precursor of the first metal element, the precursor of the second metal element containing the surfactant, the fatty acid ligand and the non-coordinating solvent, and then the temperature is raised and the non-metal element is added.
  • the precursor of the first metal element and the precursor of the second metal element, as well as the surface activation of the surfactant, can make the non-metal element combine with the first metal element first, and then Combined with the second metal element, therefore, in the direction from the inside to the outside of the core structure, the content of the first metal element shows a decreasing trend, and the sum of the contents of each second metal element shows an increasing trend, so that the core structure
  • the optical band gap is increasing, thereby reducing the difference in optical band gap between the core structure and the shell layer, effectively solving the problem of lattice mismatch between the core structure and the shell layer, and reducing the difference between the core structure and the shell layer.
  • the interface defects between the shell layers greatly improve the fluorescence quantum yield of the quantum dot structure.
  • the foregoing step S101 may include:
  • Inert gas is introduced into the reaction vessel and heated to a first temperature; wherein, the first temperature is in the range of 100°C to 180°C.
  • the non-metal element can be combined with the first metal element first, and then combined with the second metal element by the activation effect of the surfactant. Therefore, the content of the first metal element is higher inside the core structure, and the content of the second metal element outside the core structure is higher.
  • the element is only gallium, gallium acetylacetonate can be added to the reaction vessel.
  • the quantum dot structure to be formed contains two second metal elements, gallium and aluminum, gallium acetylacetonate and aluminum acetylacetonate can be added to the reaction vessel. middle.
  • the above-mentioned fatty acid ligand is a surface ligand that can coordinate with the precursor of the first metal element. After coordination, the fatty acid will be released at high temperature, allowing the first metal element to combine with non-metal elements. Fatty acids are not easy to fall off, so they have a stabilizing effect at low temperatures.
  • the aforementioned non-coordinating solvent can be a non-toxic and environmentally friendly solvent, for example, octadecene can be selected.
  • inert gas is introduced into the reaction vessel and heated to the first temperature, so that the precursor of the first metal element, the precursor of the second metal element containing the surfactant, and the fatty acid ligand can be dissolved to the non-complex It is located in the solvent, and can exhaust the water vapor and oxygen in the reaction vessel, so that the reactants are kept in an inert gas environment to avoid oxidation.
  • the above-mentioned reaction vessel may be a three-port burning screen or other vessels, which is not limited here.
  • the above-mentioned inert gas may be nitrogen or other inert gas, which is not limited here.
  • first temperature in the range of 100°C to 180°C can ensure that the precursor of the first metal element, the precursor of the second metal element containing the surfactant, and the fatty acid ligand can be dissolved in the non-coordinating solvent And, it can exhaust water vapor and oxygen.
  • the foregoing first metal element may be indium, and the precursor of the foregoing first metal element may be indium methanesulfonate, indium acetate, indium dodecanoate, and indium myristate.
  • the above-mentioned first metal element may also be other elements in group III elements. Accordingly, the precursor of the above-mentioned first metal element may also be other materials, which is not limited here.
  • the foregoing precursor of the second metal element containing a surfactant may include: a precursor of the second metal element containing an acetylacetone group or a derivative of an acetylacetone group Body; wherein, the second metal element is one or a combination of zinc, gallium, aluminum, and magnesium.
  • the surfactant can be an acetylacetonyl group or a derivative of an acetylacetonyl group, and the derivative of an acetylacetonyl group can be 2,4-nonanedione, 2,4-heptanedione, or other Surfactant is not limited here.
  • the above-mentioned second metal element is preferably gallium or aluminum.
  • the second metal element can also be zinc, magnesium or other metal materials. There is no limitation here.
  • the above-mentioned fatty acid ligand can be one or a combination of dodecanoic acid, myristic acid, palmitic acid, octadecanoic acid, and arachidic acid. Other materials are not limited here.
  • the foregoing step S102 may include:
  • the mixed solution is heated to the second temperature, and the phosphorus source and the phosphorus coordination solvent are added; the second temperature is in the range of 180°C to 300°C.
  • Heating the mixed solution to the second temperature is conducive to the combination of the second metal element and the non-metal element to be added.
  • Setting the second temperature in the range of 180°C to 300°C can ensure that the second metal element and the non-metal element The elements can be combined smoothly.
  • the mixed solution can be quickly heated to the second temperature, for example, at least 15°C per minute.
  • the aforementioned non-metallic element may be a phosphorus element
  • the precursor of the aforementioned non-metallic element may be a phosphorus source
  • the phosphorus source may be a material such as tris(trimethylsilyl)phosphine.
  • a phosphorus coordination solvent such as trioctylphosphine
  • the phosphorus coordination solvent can be wrapped on the surface of the phosphorus source to prevent the phosphorus source from being corroded by water vapor and oxygen and make the phosphorus source more stable.
  • the content of the first metal element added to the reaction vessel can be made excessive, in order to avoid the excessive first metal element from affecting the formation of the shell layer in the subsequent step S103
  • the solution forming the core structure may be purified to remove the excess first metal element.
  • the foregoing step S103 may include:
  • One or a combination precursor of zinc sulfide, zinc selenide, and zinc sulfide selenide is added to the solution forming the core structure and heated to a third temperature; the third temperature is in the range of 280°C to 350°C.
  • zinc precursor and sulfur source can be added to a non-coordinating solvent to form a shell precursor, and then the shell precursor is added to the solution forming the core structure, and the solution is heated To the third temperature to form a shell on the outside of the core structure.
  • Setting the third temperature in the range of 280°C to 350°C can ensure that the shell precursor can form a shell layer on the outside of the core structure.
  • the above-mentioned sulfur source may include one or a combination of tri-n-octylphosphine-sulfur, tri-n-butylphosphine-sulfur, octadecene-sulfur, octanethiol, and dodecanethiol
  • the above-mentioned selenium source may include three One or a combination of n-octyl phosphine-selenium and tri-n-butyl phosphine.
  • the above step S103 can be repeated to wrap at least two shell layers outside the core structure.
  • the above step S103 can also be repeated multiple times, and the more the outer shell layer is repeated the more times, the better the effect of the formed shell layer .
  • the core structure may undergo high-temperature maturation, which will decompose small particles and provide them to large particles, resulting in smaller particles and larger particles, resulting in poor particle size uniformity and affecting quantum dots. Therefore, in the above step S103, after the solution is heated to the third temperature, it can be kept warm for a certain period of time and then the temperature can be lowered. For example, the temperature can be lowered to 180° C.
  • step S103 it may further include:
  • n-hexane and ethanol to purify the formed quantum dot structure to remove impurities attached to the surface of the quantum dot structure and prevent impurities from affecting the light-emitting effect of the quantum dot structure.
  • the manufacturing method of the quantum dot structure includes:
  • Step (1) Add 0.15mmol of indium acetate (indium precursor), 0.06mmol of gallium acetylacetonate, 0.45mmol of hexadecanoic acid (fatty acid ligand), 0.1mmol of zinc carboxylate, and octadecanoate into a three-necked flask. Alkene (non-coordinating solvent), and pass nitrogen into the three-port burning screen, raise the temperature to 120°C and vacuum for 30 minutes.
  • the zinc carboxylate can improve the quality of nucleation and reduce the surface defects of the core structure.
  • the zinc carboxylate can be zinc stearate.
  • Step (2) The mixed solution is heated to 260°C, and 0.1mmol of tris(trimethylsilyl)phosphine (phosphorus source) and 1mL of trioctylphosphine solution (coordinating solvent of phosphorus source) are injected, and the temperature is kept for 3 minutes , To form a core structure.
  • the trioctyl phosphine solution can be wrapped on the surface of the phosphorus source to prevent the phosphorus source from being corroded by water vapor and oxygen.
  • TMS TMS 3 P+(1-x)In(MA) 3 +x Ga(MA) 3 ⁇ In 1-x Ga x P+3TMS-MA;
  • (TMS) 3 P represents tris(trimethylsilyl) phosphine
  • In(MA) 3 represents indium acetate
  • Ga(MA) 3 represents gallium acetylacetonate
  • In 1-x Ga x P represents the chemical formula of the formed core structure
  • TMS-MA stands for trimethylsilyl acetic acid.
  • the specific chemical reaction formula for forming the first shell layer is as follows:
  • TOP-Se means tri-n-octylphosphine-selenium
  • Zn-complex means zinc stearate
  • ZnSe means zinc selenide.
  • Form the second shell layer add 1mmol of zinc oleate and keep for 30 minutes, then dissolve 0.1mmol of 1-dodecanethiol into 1mL of octadecene to form a shell precursor, and remove the formed shell precursor solution. Dropped into a three-necked flask, heated to 300°C for 3 minutes, then quickly cooled to 180°C, and matured at a high temperature with a core structure. After that, the temperature was raised and the steps of forming the second shell layer were repeated ten times, and then the heating was stopped.
  • C 12 H 26 S represents 1-dodecanethiol
  • Zn-complex represents zinc stearate
  • ZnS represents zinc sulfide
  • Purification treatment is performed using n-hexane and ethanol to remove impurities, specifically, the precipitate is dissolved in n-octane, and the reaction is completed.
  • Figure 3 is the X-ray photoelectron spectroscopy (XPS) diagram after the phosphorus source is injected and kept for 3 minutes in the above step (2), and the centrifugal purification process is performed. It can be clearly seen from Figure 3. There are indium (In) elements, gallium (Ga) elements, and phosphorus (P) elements in the formed core structure, so it can be proved that a core structure with a chemical formula of In 1-x Ga x P is formed.
  • XPS X-ray photoelectron spectroscopy
  • Figure 4 shows the X-ray energy spectroscopy (EDS) characterization after the phosphorus source is injected in the above step (2) before the nucleation stage (incubation for 1 minute) and after the centrifugal purification treatment
  • Figure 5 is the phosphorus source injected in the above step (2)
  • the content of In) element is higher.
  • the content of gallium (Ga) is higher, and the content of indium (In) is lower. It is more active and can be preferentially combined with non-metal (P) elements.
  • Figure 6 is the ultraviolet-visible light absorption and fluorescence emission spectra of the quantum dot structure obtained using the above steps (1) to (3), where the dotted line L1 represents the fluorescence emission curve of the quantum dot structure, and the solid line L2 represents the quantum dot structure
  • the ultraviolet-visible light absorption curve is shown in Figure 6. It can be seen from the dotted line L1 that the emission peak of the quantum dot structure is at 527nm and the half-peak width is relatively narrow.
  • the quantum dot structure has a
  • the width of the first exciton peak (that is, the position indicated by the arrow B in the figure) is narrow, about 65-70 nm, the size uniformity of the quantum dot structure is better, and the fluorescence quantum yield is higher.
  • Table 1 is a comparative analysis table of the luminous efficiency of each quantum dot structure. As shown in Table 1, the two columns on the left in Table 1 are the quantum dot structures with a gradient alloy structure and the corresponding luminous efficiencies in the embodiments of the disclosure. Listed in some examples are the quantum dot structures without gradient alloy structure and the corresponding luminous efficiency. Among them, the luminous efficiency in Table 1 is the photoluminescence efficiency measured by dissolving the quantum dot structure in n-hexane, as shown in Table 1.
  • the core structure includes a first metal element, at least one second metal element, and a non-metal element that are combined by chemical bonds.
  • the content of the first metal element shows a decreasing trend
  • the sum of the content of each second metal element shows an increasing trend
  • the optical band gap of the core structure shows an increasing trend, thereby reducing the core structure and the shell
  • the optical band gap difference between the layers can effectively solve the problem of lattice mismatch between the core structure and the shell layer, and can also reduce the interface defects between the core structure and the shell layer, thereby greatly improving the fluorescence quantum of the quantum dot structure Yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供一种量子点结构、其制作方法及量子点发光器件。该量子点结构包括:核结构及壳层;其中,核结构包括:通过化学键结合的第一金属元素,至少一种第二金属元素,以及非金属元素;其中,第一金属元素为Ⅲ族元素,非金属元素为Ⅴ族元素,第二金属元素为不同于第一金属元素的金属元素;在核结构从内向外的方向上,第一金属元素的含量呈减少的趋势,各第二金属元素的含量总和呈增大的趋势,核结构的光学带隙呈增大的趋势;壳层包裹在核结构的表面。

Description

量子点结构、其制作方法及量子点发光器件 技术领域
本公开涉及量子点材料技术领域,尤指一种量子点结构、其制作方法及量子点发光器件。
背景技术
由于量子点具有高纯度颜色、高荧光强度、良好的生物相容性等特点,而被广泛应用于发光器件,太阳能电池,生物荧光成像,激光等技术领域。
其中,具有核壳结构的量子点具有较好的光学性能,但是量子点的核结构和壳层之间存在晶格失配的问题,导致量子点的荧光量子产率较低。
发明内容
本公开实施提供的量子点结构,其中,包括:
核结构,包括:通过化学键结合的第一金属元素,至少一种第二金属元素,以及非金属元素;其中,所述第一金属元素为Ⅲ族元素,所述非金属元素为Ⅴ族元素,所述第二金属元素为不同于所述第一金属元素的金属元素;在所述核结构从内向外的方向上,所述第一金属元素的含量呈减少的趋势,各所述第二金属元素的含量总和呈增大的趋势,所述核结构的光学带隙呈增大的趋势;
壳层,包裹在所述核结构的表面。
可选地,在本公开实施例中,所述第二金属元素为锌、镓、铝或镁。
可选地,在本公开实施例中,所述核结构包括锌、镓、铝或镁中任一种所述第二金属元素;或,所述核结构包括锌、镓、铝或镁中任意组合而成的至少两种所述第二金属元素。
可选地,在本公开实施例中,所述第一金属元素为铟。
可选地,在本公开实施例中,所述非金属元素为磷。
可选地,在本公开实施例中,所述壳层包括硫化锌、硒化锌、硫硒化锌中的一种或组合。
可选地,在本公开实施例中,所述量子点结构包括两层所述壳层,两层所述壳层分为第一壳层和第二壳层;
所述第一壳层位于所述核结构与所述第二壳层之间;
所述第一壳层包括硒化锌,所述第二壳层包括硫化锌。
相应地,本公开实施例还提供了一种量子点发光器件,其中,所述量子点发光器件的量子点发光层中具有上述量子点结构。
相应地,本公开实施例还提供了一种上述量子点结构的制作方法,其中,包括:
将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂混合;
对混合后的溶液进行加热,并加入非金属元素的前驱体,以形成所述量子点结构的核结构;
向形成所述核结构的溶液中加入壳前驱体并加热,以形成所述量子点结构的壳层。
可选地,在本公开实施例中,所述将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂混合,包括:
将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂加入到反应容器中;
向所述反应容器通入惰性气体并加热至第一温度;其中,所述第一温度在100℃~180℃的范围内。
可选地,在本公开实施例中,所述对混合后的溶液进行加热,并加入非金属元素的前驱体,包括:
将混合后的溶液加热至第二温度,并加入磷源和磷配位溶剂;所述第二温度在180℃~300℃的范围内。
可选地,在本公开实施例中,所述向形成所述核结构的溶液中加入壳前 驱体并加热,包括:
向形成所述核结构的溶液中加入硫化锌、硒化锌、硫硒化锌中的一种或组合的前驱体,并加热至第三温度;所述第三温度在280℃~350℃的范围内。
可选地,在本公开实施例中,还包括:
采用正己烷和乙醇对形成的所述量子点结构进行纯化处理。
可选地,在本公开实施例中,所述第一金属元素的前驱体为甲磺酸铟,乙酸铟,十二酸铟,十四酸铟,十六酸铟,十八酸铟,二十酸铟,乙酰丙酮铟中的一种或组合。
可选地,在本公开实施例中,所述含表面活化剂的第二金属元素的前驱体,包括:含乙酰丙酮基或乙酰丙酮基的衍生物的所述第二金属元素的前驱体;其中,所述第二金属元素为锌、镓、铝、镁中的一种或组合。
可选地,在本公开实施例中,所述脂肪酸配体为十二酸,十四酸,十六酸,十八酸,二十酸的一种或组合。
附图说明
图1为本公开实施例提供的上述量子点结构的制作方法流程图之一;
图2为本公开实施例提供的上述量子点结构的制作方法流程图之二;
图3为本公开实施例中步骤(2)中注入磷源并保温3分钟后,进行离心纯化处理后的X射线光电子能谱分析图;
图4为本公开实施例中步骤(2)中注入磷源后成核前期后进行离心纯化处理后的X射线能谱分析(EDS)表征;
图5为本公开实施例中步骤(2)中注入磷源后成核后期后进行离心纯化处理后的X射线能谱分析(EDS)表征;
图6为本公开实施例中采用步骤(1)至步骤(3)得到的量子点结构的紫外-可见光吸收和荧光发射光谱图。
具体实施方式
针对量子点的核结构和壳层之间存在晶格失配的问题,本发明实施例提供了一种量子点结构、其制作方法及量子点发光器件。
下面结合附图,对本发明实施例提供的量子点结构、其制作方法及量子点发光器件的具体实施方式进行详细地说明。
本公开实施例提供了一种量子点结构,其中,包括:
核结构,包括:通过化学键结合的第一金属元素,至少一种第二金属元素,以及非金属元素;其中,第一金属元素为Ⅲ族元素,非金属元素为Ⅴ族元素,第二金属元素为不同于第一金属元素的金属元素;在核结构从内向外的方向上,第一金属元素的含量呈减少的趋势,各第二金属元素的含量总和呈增大的趋势,核结构的光学带隙呈增大的趋势;
壳层,包裹在核结构的表面。
本公开实施提供的量子点结构,核结构包括通过化学键结合的第一金属元素,至少一种第二金属元素以及非金属元素,在核结构从内向外的方向上,第一金属元素的含量呈减少的趋势,各第二金属元素的含量总和呈增大的趋势,以使核结构的光学带隙呈增大的趋势,从而减小了核结构与壳层之间的光学带隙差异,能有效解决核结构与壳层之间晶格失配的问题,并且还能减少核结构与壳层之间的界面缺陷,从而大大提高量子点结构的荧光量子产率。
其中,光学带隙表示用光谱测试法测得的禁带宽度值,禁带宽度的大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关,禁带宽度的大小反映了价电子被束缚强弱程度,也就是产生本征激发所需要的最小能量。
在实际工艺过程中,可以将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂混合,然后升温并加入非金属元素的前驱体,利用第一金属元素的前驱体与第二金属元素的前驱体之间的反应活性差异,以及表面活化剂的表面活化作用,可以使非金属元素先与第一金属元素结合,之后再与第二金属元素结合,因而,在核结构的内部第一金属元素的含量较多,在核结构的外部第二金属元素的含量较多,使核结 构具有梯度合金结构。
在具体实施时,一般壳层的光学带隙大于核结构的光学带隙,因而,通过选取合适的第二金属元素,可以使核结构的光学带隙增大,从而减小核结构与壳层之间的光学带隙差异,有效解决核结构与壳层之间晶格失配的问题。
在具体实施时,本公开实施例提供的上述量子点结构中,上述第二金属元素可以为锌、镓、铝或镁,此外,第二金属元素也可以为能够通过化学键与第一金属元素、非金属元素结合,并且能够使核结构的光学带隙增大的其他金属,此处不做限定。
具体地,本公开实施例提供的上述量子点结构中,上述核结构可以包括锌、镓、铝或镁中任一种所述第二金属元素;或,上述核结构可以包括锌、镓、铝或镁中任意组合而成的至少两种所述第二金属元素,例如,上述核结构可以包括镓和铝两种第二金属元素,或者,上述核结构可以包括锌、镓、镁三种第二金属元素。
在实际应用中,上述第一金属元素为Ⅲ族元素,上述非金属元素为Ⅴ族元素,因而上述量子点结构为无毒环保的结构,具体地,上述第一金属元素可以为铟,上述非金属元素可以为磷。
具体地,本公开实施例提供的上述量子点结构中,上述壳层可以包括硫化锌、硒化锌、硫硒化锌中的一种或组合,上述量子点结构可以包括一层壳层,例如可以包括一层ZnS壳层,或者,上述量子点结构也可以包括至少两层壳层。
更具体地,本公开实施例提供的上述量子点结构中,上述量子点结构包括两层壳层,两层壳层分为第一壳层和第二壳层;
第一壳层位于核结构与第二壳层之间;
第一壳层包括硒化锌,第二壳层包括硫化锌。
此外,第一壳层和第二壳层也可以采用其他材料,此处不对量子点结构中壳层的材料进行限定。
基于同一发明构思,本发明实施例还提供了一种量子点发光器件,其中, 量子点发光器件的量子点发光层中具有上述量子点结构。由于该量子点发光器件解决问题的原理与上述量子点结构相似,因此该量子点发光器件的实施可以参见上述量子点结构的实施,重复之处不再赘述。
基于同一发明构思,本发明实施例还提供了一种上述量子点结构的制作方法,由于该制作方法解决问题的原理与上述量子点结构相似,因此该制作方法的实施可以参见上述量子点结构的实施,重复之处不再赘述。
本公开实施例提供的上述量子点结构的制作方法,如图1所示,包括:
S101、将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂混合;
S102、对混合后的溶液进行加热,并加入非金属元素的前驱体,以形成量子点结构的核结构;
S103、向形成核结构的溶液中加入壳前驱体并加热,以形成量子点结构的壳层。
本公开实施例提供的上述制作方法,通过将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂混合,然后升温并加入非金属元素的前驱体,利用第一金属元素的前驱体与第二金属元素的前驱体之间的反应活性差异,以及表面活化剂的表面活化作用,可以使非金属元素先与第一金属元素结合,之后再与第二金属元素结合,因而,在核结构从内向外的方向上,第一金属元素的含量呈减少的趋势,各第二金属元素的含量总和呈增大的趋势,以使核结构的光学带隙呈增大的趋势,从而减小了核结构与壳层之间的光学带隙差异,能有效解决核结构与壳层之间晶格失配的问题,并且还能减少核结构与壳层之间的界面缺陷,从而大大提高量子点结构的荧光量子产率。
具体地,本公开实施例提供的上述制作方法中,上述步骤S101,可以包括:
将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂加入到反应容器中;
向反应容器通入惰性气体并加热至第一温度;其中,第一温度在100℃~180℃的范围内。
在上述步骤S101中,通过加入含表面活化剂的第二金属元素的前驱体,利用表面活化剂的活化作用,可以使非金属元素先与第一金属元素结合,之后再与第二金属元素结合,因而,在核结构的内部第一金属元素的含量较多,在核结构的外部第二金属元素的含量较多。在具体实施时,需要根据将要形成的量子点结构中第二金属元素的数量,将对应的含有表面活化剂的前驱体加入到反应容器中,例如将要形成的量子点结构中含有的第二金属元素仅为镓,则可以将乙酰丙酮镓加入到反应容器中,若将要形成的量子点结构中含有镓和铝两种第二金属元素,则可以将乙酰丙酮镓和乙酰丙酮铝加入到反应容器中。
上述脂肪酸配体是一种表面配体,可以与第一金属元素的前驱体配位,配位之后的脂肪酸在高温下会脱下来,使第一金属元素与非金属元素结合,而在低温下脂肪酸不容易脱下来,从而在低温下起到稳定作用。
具体地,上述非配位溶剂可以选择无毒环保的溶剂,例如可以选择十八烯。
在上述步骤S101中,向反应容器通入惰性气体并加热至第一温度,可以使第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体溶解到非配位溶剂中,并且可以将反应容器中的水汽和氧气排出来,使各反应物保持在一个惰性气体的环境中,避免被氧化。具体地,上述反应容器可以为三口烧屏,也可以为其他容器,此处不做限定。上述惰性气体可以为氮气,也可以为其他惰性气体,此处不做限定。
将上述第一温度设置在100℃~180℃的范围内,可以保证第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体能够溶解到非配位溶剂中,并且,能够将水汽和氧气排出去。
具体地,本公开实施例提供的上述制作方法中,上述第一金属元素可以为铟,上述第一金属元素的前驱体可以为甲磺酸铟,乙酸铟,十二酸铟,十 四酸铟,十六酸铟,十八酸铟,二十酸铟,乙酰丙酮铟中的一种或组合。在具体实施时,上述第一金属元素也可以为Ⅲ族元素中的其他元素,相应地,上述第一金属元素的前驱体也可以为其他材料,此处不做限定。
可选地,本公开实施例提供的上述制作方法中,上述含表面活化剂的第二金属元素的前驱体,可以包括:含乙酰丙酮基或乙酰丙酮基的衍生物的第二金属元素的前驱体;其中,第二金属元素为锌、镓、铝、镁中的一种或组合。也就是说,表面活化剂可以为乙酰丙酮基或乙酰丙酮基的衍生物,其中,乙酰丙酮基的衍生物可以为2,4-壬二酮,2,4-庚二酮,也可以采用其他表面活化剂,此处不做限定。此外,由于镓和铝也属于Ⅲ族元素,比较容易与非金属元素结合,因而,上述第二金属元素优选为采用镓或铝,当然第二金属元素也可以为锌、镁或其他金属材料,此处不做限定。
在实际应用中,本公开实施例提供的上述制作方法中,上述脂肪酸配体可以为十二酸,十四酸,十六酸,十八酸,二十酸的一种或组合,也可以采用其他材料,此处不做限定。
在实际应用中,本公开实施例提供的上述制作方法中,上述步骤S102,可以包括:
将混合后的溶液加热至第二温度,并加入磷源和磷配位溶剂;第二温度在180℃~300℃的范围内。
将混合后的溶液加热至第二温度,有利于第二金属元素与即将加入的非金属元素结合,将第二温度设置在180℃~300℃的范围内,可以保证第二金属元素与非金属元素能够顺利结合,在具体实施时,可以将混合后的溶液迅速加热至第二温度,例如可以至少每分钟加热15℃。
在具体实施时,上述非金属元素可以为磷元素,上述非金属元素的前驱体可以为磷源,磷源可以为三(三甲硅烷基)膦等材料。在加入磷源的同时加入磷配位溶剂,例如三辛基膦,磷配位溶剂可以包裹在磷源的表面,防止磷源受水汽和氧气的侵蚀,使磷源更加稳定。
在实际工艺过程中,为了使形成核结构的反应更加充分,可以使加入到 反应容器中的第一金属元素的含量过量,为了避免过量的第一金属元素影响后续步骤S103中的壳层的形成,在上述步骤S102之后,在上述步骤S103之前,还可以对形成核结构的溶液进行纯化处理,以去除多余的第一金属元素。
具体地,本公开实施例提供的上述制作方法中,上述步骤S103,可以包括:
向形成核结构的溶液中加入硫化锌、硒化锌、硫硒化锌中的一种或组合的前驱体,并加热至第三温度;第三温度在280℃~350℃的范围内。
在具体实施时,可以将锌前驱体和硫源(和/或硒源)加入到非配位溶剂中形成壳前驱体,然后将壳前驱体加入到形成核结构的溶液中,并将溶液加热至第三温度,以在核结构的外侧形成壳层。将第三温度设置在280℃~350℃的范围内,可以保证壳前驱体能够在核结构的外侧形成壳层。
具体地,上述硫源可以包括三正辛基膦-硫、三正丁基膦-硫、十八烯-硫、辛硫醇,十二硫醇的一种或组合,上述硒源可以包括三正辛基膦-硒、三正丁基膦的一种或组合。
若上述量子点结构包括至少两层壳层,例如可以包括ZnSe/ZnS两层壳层,可以重复执行上述步骤S103,以在核结构的外侧包裹至少两层壳层,此外,为了使形成的壳层的包裹效果较好,在制作每一层壳层时,也可以重复执行多次上述步骤S103,并且,越靠外侧的壳层重复的次数越多,可以使形成的壳层的效果更好。
在实际应用中,若长时间高温加热,核结构可能会发生高温熟化,使小颗粒分解提供给大颗粒,导致小颗粒更小大颗粒更大,从而导致颗粒尺寸均一性变差,影响量子点的光学性能,因此,在上述步骤S103中,将溶液加热到第三温度后,可以保温一定时间后降温,例如可以保温3分钟后降温至180℃,以避免核结构出现高温熟化的现象。
进一步地,本公开实施例提供的上述制作方法中,上述步骤S103之后,还可以包括:
采用正己烷和乙醇对形成的量子点结构进行纯化处理,以去除量子点结 构表面附着的杂质,避免杂质影响量子点结构的发光效果。
为了更清楚的说明本公开实施例提供的上述制作方法,以下以制作荧光发射峰为527nm的In 1-xGa xP/ZnSe/ZnS(表示核结构为In 1-xGa xP,两层核层分别为ZnSe层和ZnS层,x表示Ga的含量,1-x表示In的含量,x在0.01-0.99的范围内,在核结构从内向外的方向上,x的取值呈增大的趋势)量子点结构为例,对上述制作方法进行详细说明,结合图2,该量子点结构的制作方法,包括:
步骤(1):向三口烧瓶中加入0.15mmol的乙酸铟(铟前驱体)、0.06mmol的乙酰丙酮镓、0.45mmol的十六酸(脂肪酸配体)、0.1mmol的羧酸锌,以及十八烯(非配位溶剂),并向三口烧屏中通入氮气,升温至120℃并抽真空30分钟。其中,羧酸锌可以改善成核的质量,减少核结构的表面缺陷,例如羧酸锌可以为硬脂酸酸锌。
步骤(2):将混合后的溶液升温至260℃,并注入0.1mmol三(三甲硅烷基)膦(磷源)和1mL的三辛基膦溶液(磷源的配位溶剂),保温3分钟,以形成核结构。其中,三辛基膦溶液可以包裹在磷源的表面,避免磷源受水汽和氧气的侵蚀。
形成核结构的具体化学反应式如下:
(TMS) 3P+(1-x)In(MA) 3+x Ga(MA) 3→In 1-xGa xP+3TMS-MA;
其中,(TMS) 3P表示三(三甲硅烷基)膦,In(MA) 3表示乙酸铟,Ga(MA) 3表示乙酰丙酮镓,In 1-xGa xP表示形成的核结构的化学式,TMS-MA表示三甲硅烷基乙酸。
步骤(3):形成第一层壳层:将形成核结构的溶液升温至280℃,将0.1mmol的硬脂酸锌(锌前驱体)和0.1mmol的三正辛基膦-硒(硒源)溶解在1mL的十八烯(非配位溶剂)中,形成壳前驱体,将形成的壳前驱体溶液逐滴滴入三口烧瓶中,保温3分钟后迅速降温至180℃,以防止核结构发生高温熟化,之后升温并重复上述包壳步骤两次。
形成第一层壳层的具体化学反应式如下:
TOP-Se+Zn-complex→ZnSe;
其中,TOP-Se表示三正辛基膦-硒,Zn-complex表示硬脂酸锌,ZnSe表示硒化锌。
形成第二层壳层:加入1mmol的油酸锌保温30分钟,之后将0.1mmol 1-十二硫醇溶解至1mL的十八烯中,形成壳前驱体,并将形成的壳前驱体溶液逐滴滴入三口烧瓶中,升温至300℃保温3分钟后迅速降温至180℃,以核结构发生高温熟化,之后升温并重复上述形成第二层壳层的步骤十次后停止加热。
形成第二层壳层的具体化学反应式如下:
C 12H 26S+Zn-complex→ZnS;
其中,C 12H 26S表示1-十二硫醇,Zn-complex表示硬脂酸锌,ZnS表示硫化锌。
纯化处理:使用正己烷和乙醇进行纯化处理,以去除杂质,具体地,将沉淀物溶解于正辛烷中,反应结束。
以下结合附图,对In 1-xGa xP/ZnSe/ZnS量子点结构的核结构的成分进行说明。
图3为上述步骤(2)中注入磷源并保温3分钟后,进行离心纯化处理后的X射线光电子能谱分析(X-ray photoelectron spectroscopy,XPS)图,从图3中可以明显看出,形成的核结构中存在铟(In)元素、镓(Ga)元素和磷(P)元素,从而可以证明,形成了化学式为In 1-xGa xP的核结构。
图4为上述步骤(2)中注入磷源后成核前期(保温1分钟)后进行离心纯化处理后的X射线能谱分析(EDS)表征,图5为上述步骤(2)中注入磷源后成核后期(保温3分钟)后进行离心纯化处理后的X射线能谱分析(EDS)表征,对比图4和图5,在成核前期,镓(Ga)元素的含量较少,铟(In)元素的含量较多,而成核后期,镓(Ga)元素的含量较多,铟(In)元素的含量较少,从而可以证明,在成核前期,第一金属(In)元素的活性更高,能够优先与非金属(P)元素结合,随着成核反应的继续进行,更多的第二金属(Ga) 元素与非金属(P)元素结合,从而形成梯度合金结构,即在核结构从内向外的方向上,第一金属(In)元素的含量呈减少的趋势,各第二金属(Ga)元素的含量总和呈增大的趋势。
图6为采用上述步骤(1)至步骤(3)得到的量子点结构的紫外-可见光吸收和荧光发射光谱图,其中,虚线L1表示量子点结构的荧光发射曲线,实线L2表示量子点结构的紫外-可见光吸收曲线,如图6所示,由虚线L1可以看出,该量子点结构的发射峰在527nm,且半峰宽度较窄,由实线L2可以看出,该量子点结构的第一激子峰(即图中箭头B所示的位置)宽度较窄,大约为65~70nm,量子点结构的尺寸均一性较好,荧光量子产率较高。
表1为各量子点结构的发光效率对比分析表,如表1所示,表1中左侧两列为本公开实施例中具有梯度合金结构的量子点结构及对应的发光效率,右侧两列为一些实施例中不具有梯度合金结构的量子点结构及对应的发光效率,其中,表1中的发光效率为将量子点结构溶解在正己烷中测得的光致发光效率,表1中左侧第一列中的核结构的分子式In 1-xGa xP中,x表示Ga的含量,1-x表示In的含量,其中,x在0-0.33的范围取值,在核结构从内向外的方向上,x的取值呈增大的趋势。
由表1可知,具有梯度合金结构的量子点结构的发光效率明显高于不具有梯度合金结构的量子点结构的发光效率,并且,量子点结构具有的壳层数量越多,对应的发光效率越高。
表1各量子点结构的发光效率对比分析表
Figure PCTCN2020141593-appb-000001
本公开实施例提供的量子点结构、其制作方法及量子点发光器件,核结 构包括通过化学键结合的第一金属元素,至少一种第二金属元素以及非金属元素,在核结构从内向外的方向上,第一金属元素的含量呈减少的趋势,各第二金属元素的含量总和呈增大的趋势,以使核结构的光学带隙呈增大的趋势,从而减小了核结构与壳层之间的光学带隙差异,能有效解决核结构与壳层之间晶格失配的问题,并且还能减少核结构与壳层之间的界面缺陷,从而大大提高量子点结构的荧光量子产率。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (16)

  1. 一种量子点结构,其中,包括:
    核结构,包括:通过化学键结合的第一金属元素,至少一种第二金属元素,以及非金属元素;其中,所述第一金属元素为Ⅲ族元素,所述非金属元素为Ⅴ族元素,所述第二金属元素为不同于所述第一金属元素的金属元素;在所述核结构从内向外的方向上,所述第一金属元素的含量呈减少的趋势,各所述第二金属元素的含量总和呈增大的趋势,所述核结构的光学带隙呈增大的趋势;
    壳层,包裹在所述核结构的表面。
  2. 如权利要求1所述的量子点结构,其中,所述第二金属元素为锌、镓、铝或镁。
  3. 如权利要求2所述的量子点结构,其中,所述核结构包括锌、镓、铝或镁中任一种所述第二金属元素;或,所述核结构包括锌、镓、铝或镁中任意组合而成的至少两种所述第二金属元素。
  4. 如权利要求1所述的量子点结构,其中,所述第一金属元素为铟。
  5. 如权利要求1所述的量子点结构,其中,所述非金属元素为磷。
  6. 如权利要求1~5任一项所述的量子点结构,其中,所述壳层包括硫化锌、硒化锌、硫硒化锌中的一种或组合。
  7. 如权利要求6所述的量子点结构,其中,所述量子点结构包括两层所述壳层,两层所述壳层分为第一壳层和第二壳层;
    所述第一壳层位于所述核结构与所述第二壳层之间;
    所述第一壳层包括硒化锌,所述第二壳层包括硫化锌。
  8. 一种量子点发光器件,其中,所述量子点发光器件的量子点发光层中具有如权利要求1~7任一项所述的量子点结构。
  9. 一种如权利要求1~7任一项所述的量子点结构的制作方法,其中,包括:
    将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂混合;
    对混合后的溶液进行加热,并加入非金属元素的前驱体,以形成所述量子点结构的核结构;
    向形成所述核结构的溶液中加入壳前驱体并加热,以形成所述量子点结构的壳层。
  10. 如权利要求9所述的制作方法,其中,所述将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂混合,包括:
    将第一金属元素的前驱体、含表面活化剂的第二金属元素的前驱体、脂肪酸配体及非配位溶剂加入到反应容器中;
    向所述反应容器通入惰性气体并加热至第一温度;其中,所述第一温度在100℃~180℃的范围内。
  11. 如权利要求9所述的制作方法,其中,所述对混合后的溶液进行加热,并加入非金属元素的前驱体,包括:
    将混合后的溶液加热至第二温度,并加入磷源和磷配位溶剂;所述第二温度在180℃~300℃的范围内。
  12. 如权利要求9所述的制作方法,其中,所述向形成所述核结构的溶液中加入壳前驱体并加热,包括:
    向形成所述核结构的溶液中加入硫化锌、硒化锌、硫硒化锌中的一种或组合的前驱体,并加热至第三温度;所述第三温度在280℃~350℃的范围内。
  13. 如权利要求9所述的制作方法,其中,还包括:
    采用正己烷和乙醇对形成的所述量子点结构进行纯化处理。
  14. 如权利要求9~13任一项所述的制作方法,其中,所述第一金属元素的前驱体为甲磺酸铟,乙酸铟,十二酸铟,十四酸铟,十六酸铟,十八酸铟,二十酸铟,乙酰丙酮铟中的一种或组合。
  15. 如权利要求9~13任一项所述的制作方法,其中,所述含表面活化剂 的第二金属元素的前驱体,包括:含乙酰丙酮基或乙酰丙酮基的衍生物的所述第二金属元素的前驱体;其中,所述第二金属元素为锌、镓、铝、镁中的一种或组合。
  16. 如权利要求9~13任一项所述的制作方法,其中,所述脂肪酸配体为十二酸,十四酸,十六酸,十八酸,二十酸的一种或组合。
PCT/CN2020/141593 2020-03-30 2020-12-30 量子点结构、其制作方法及量子点发光器件 WO2021196789A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/416,261 US11795393B2 (en) 2020-03-30 2020-12-30 Quantum dot structure, manufacturing method thereof, and quantum dot light-emitting device
US18/244,230 US20230416604A1 (en) 2020-03-30 2023-09-09 Quantum dot structure, manufacturing method thereof, and quantum dot light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010236101.4A CN111423870A (zh) 2020-03-30 2020-03-30 量子点结构、其制作方法及量子点发光器件
CN202010236101.4 2020-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/416,261 A-371-Of-International US11795393B2 (en) 2020-03-30 2020-12-30 Quantum dot structure, manufacturing method thereof, and quantum dot light-emitting device
US18/244,230 Continuation US20230416604A1 (en) 2020-03-30 2023-09-09 Quantum dot structure, manufacturing method thereof, and quantum dot light-emitting device

Publications (1)

Publication Number Publication Date
WO2021196789A1 true WO2021196789A1 (zh) 2021-10-07

Family

ID=71549293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141593 WO2021196789A1 (zh) 2020-03-30 2020-12-30 量子点结构、其制作方法及量子点发光器件

Country Status (3)

Country Link
US (2) US11795393B2 (zh)
CN (1) CN111423870A (zh)
WO (1) WO2021196789A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114958341A (zh) * 2022-07-18 2022-08-30 合肥福纳科技有限公司 一种InP量子点及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423870A (zh) * 2020-03-30 2020-07-17 京东方科技集团股份有限公司 量子点结构、其制作方法及量子点发光器件
KR20220095394A (ko) * 2020-12-29 2022-07-07 삼성디스플레이 주식회사 양자점 및 이의 제조 방법, 양자점을 포함한 광학 부재 및 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140586A1 (en) * 2006-09-25 2010-06-10 Eoul National University Industry Foundation Quantum dots having composition gradient shell structure and manufacturing method thereof
CN104498021A (zh) * 2014-11-25 2015-04-08 合肥工业大学 一种蓝到绿光发射、均匀合金化核的核壳量子点的合成方法
CN107350483A (zh) * 2017-07-14 2017-11-17 河南大学 一种梯度合金量子点及其制备方法
CN108110123A (zh) * 2017-12-08 2018-06-01 吉林大学 一种高性能量子点白光led及其制备方法
CN108822853A (zh) * 2017-05-26 2018-11-16 优美特创新材料股份有限公司 超大量子点及其形成方法
CN111423870A (zh) * 2020-03-30 2020-07-17 京东方科技集团股份有限公司 量子点结构、其制作方法及量子点发光器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462658B1 (ko) * 2008-12-19 2014-11-17 삼성전자 주식회사 반도체 나노 결정 및 그 제조 방법
CN106701059B (zh) * 2016-11-11 2019-07-02 纳晶科技股份有限公司 InP量子点及其制备方法
CN109929552A (zh) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 一种量子点及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140586A1 (en) * 2006-09-25 2010-06-10 Eoul National University Industry Foundation Quantum dots having composition gradient shell structure and manufacturing method thereof
CN104498021A (zh) * 2014-11-25 2015-04-08 合肥工业大学 一种蓝到绿光发射、均匀合金化核的核壳量子点的合成方法
CN108822853A (zh) * 2017-05-26 2018-11-16 优美特创新材料股份有限公司 超大量子点及其形成方法
CN107350483A (zh) * 2017-07-14 2017-11-17 河南大学 一种梯度合金量子点及其制备方法
CN108110123A (zh) * 2017-12-08 2018-06-01 吉林大学 一种高性能量子点白光led及其制备方法
CN111423870A (zh) * 2020-03-30 2020-07-17 京东方科技集团股份有限公司 量子点结构、其制作方法及量子点发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114958341A (zh) * 2022-07-18 2022-08-30 合肥福纳科技有限公司 一种InP量子点及其制备方法

Also Published As

Publication number Publication date
US11795393B2 (en) 2023-10-24
CN111423870A (zh) 2020-07-17
US20230416604A1 (en) 2023-12-28
US20230174859A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2021196789A1 (zh) 量子点结构、其制作方法及量子点发光器件
JP7314327B2 (ja) 半導体ナノ粒子およびその製造方法
KR101739751B1 (ko) 합금-쉘 양자점 제조 방법, 합금-쉘 양자점 및 이를 포함하는 백라이트 유닛
TWI237314B (en) Doping method for forming quantum dots
JP5739152B2 (ja) 量子ドットの製造方法
JP7307046B2 (ja) コアシェル型半導体ナノ粒子、その製造方法および発光デバイス
Kolny-Olesiak Synthesis of copper sulphide-based hybrid nanostructures and their application in shape control of colloidal semiconductor nanocrystals
CN111139060B (zh) 具有周期核壳结构的超大尺寸磷化铟量子点的制备方法
CN107614423A (zh) 核壳粒子、核壳粒子的制造方法及薄膜
CN108587628B (zh) 一种量子点的合成方法
CN111117602A (zh) 具有梯度核壳结构的大尺寸磷化铟量子点的制备方法
CN113846373A (zh) 一种钙钛矿CsPbX3纳米晶及其制备方法和应用
JP6433586B2 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
WO2021195882A1 (zh) 量子点结构、其制作方法及量子点发光器件
JP7104170B2 (ja) 量子ドットの製造方法
TWI462879B (zh) 奈米粒子和具有其之奈米粒子複合物及其製造方法
JPWO2018092638A1 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
JPWO2018092639A1 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
KR101264193B1 (ko) 코어-쉘 구조의 저독성 반도체 나노입자의 제조 방법
CN108892112A (zh) 金属硒化物纳米晶的制备方法
Bai et al. An alloyed mid-shell strategy assisted realization of thick-shell violet-blue ZnSe/ZnSexS1-x/ZnS quantum dots with high color purity
TWI741954B (zh) 穩定性佳的量子點及其製作方法
TWI843173B (zh) 半導體量子點及其製法
JP7475840B2 (ja) ウルツ鉱型硫化物ナノ粒子の合成方法
TW201831398A (zh) 雙粒徑分佈之量子點奈米晶體的製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929314

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20929314

Country of ref document: EP

Kind code of ref document: A1