WO2021196452A1 - 一种列车空气制动控制系统及其方法 - Google Patents

一种列车空气制动控制系统及其方法 Download PDF

Info

Publication number
WO2021196452A1
WO2021196452A1 PCT/CN2020/102924 CN2020102924W WO2021196452A1 WO 2021196452 A1 WO2021196452 A1 WO 2021196452A1 CN 2020102924 W CN2020102924 W CN 2020102924W WO 2021196452 A1 WO2021196452 A1 WO 2021196452A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
brake
valve
output
control
Prior art date
Application number
PCT/CN2020/102924
Other languages
English (en)
French (fr)
Inventor
孙环阳
罗飞平
王群
舒浩然
马璐
邓文明
鹿峰凯
刘亮
Original Assignee
南京中车浦镇海泰制动设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中车浦镇海泰制动设备有限公司 filed Critical 南京中车浦镇海泰制动设备有限公司
Publication of WO2021196452A1 publication Critical patent/WO2021196452A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • B61H11/06Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types of hydrostatic, hydrodynamic, or aerodynamic brakes
    • B61H11/10Aerodynamic brakes with control flaps, e.g. spoilers, attached to the vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • B61H11/06Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types of hydrostatic, hydrodynamic, or aerodynamic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H13/00Actuating rail vehicle brakes

Definitions

  • the present invention relates to the technical field of train braking control, in particular to a train air braking control system and method.
  • the rescue conversion device can only be activated when the train is at a standstill.
  • the train will be rescued by locomotives or other trains, and the train will not be able to be rescued normally without power supply.
  • the train There is no backup brake system, and the safety is relatively low.
  • the existing indirect braking system can only be activated by operating certain equipment when the train is at a standstill. The operation is more complicated and the preconditions are many.
  • the indirect brake system is available; at the same time, the indirect brake system is only for emergency use, and can only be used to generate stepless brake pressure through the gas brake control handle. Its operation is to observe the extensive control of the pressure gauge operating handle, which reduces The braking performance of the train cannot rescue other trains; the most important thing is that the direct braking system cannot work synchronously when the indirect braking system is activated, which reduces the safety of train braking.
  • the purpose of the present invention is to provide a train air brake control system.
  • the direct brake system and the indirect brake system work and switch at the same time, improve the control accuracy of the indirect brake system, and realize that the train can rescue other trains and also when there is no electricity. Was rescued.
  • Another object of the present invention is to provide a control method applied to the above-mentioned train air brake control system, including: normal braking control during normal driving, common braking control during rescue, emergency braking control, and being rescued by electricity. Controlled and controlled by rescue without electricity, it provides passengers with higher safety and reliability.
  • the present invention provides a train air brake control system, which includes: a rescue brake switch, a service brake commander, an emergency brake button, a through brake system, and an indirect brake system.
  • the rescue brake switch has three signal modes.
  • the first is the neutral position, which does not output electrical signals.
  • the second type is the rescue position, which outputs the rescue brake electrical signal.
  • the third position is the rescued position, which outputs the rescued electrical signal.
  • Service brake commander output service brake electrical signal.
  • Emergency brake button output emergency brake electrical signal.
  • the brake system receives the service brake electrical signal to realize the service brake of the train.
  • the rescue brake electrical signal is received at the same time, only the main duct pressure air is adjusted to apply the friction brake to the basic brake input brake pressure.
  • the electric brake is requested to the traction system; the electric signal of emergency braking is received to realize the emergency braking of the train, and the air pressure of the main air pipe is adjusted to apply the brake pressure to the basic brake input Friction braking.
  • Straight-through braking system including controller, emergency solenoid valve, two-way valve, empty and heavy vehicle valve, electro-pneumatic conversion valve, relay valve.
  • the controller receives the rescue brake electrical signal, the service brake electrical signal, and the emergency brake electrical signal, outputs the electrical brake request signal to the traction system, outputs the pressure conversion control signal to the electro-pneumatic conversion valve, and outputs high to the empty and heavy vehicle valve.
  • Low-speed switching signal The controller has a calculation function to control the braking force generated by the output electric brake request signal and the pressure conversion control signal to meet the deceleration requirements of the service brake electrical signal and the emergency brake electrical signal.
  • the output high and low voltage switching signal changes with the speed.
  • the emergency solenoid valve receives the emergency brake electrical signal, and when it is energized, it conducts the pressure of the main air pipe and inputs it to the two-way valve.
  • Two-way valve input the control pressure generated by the emergency solenoid valve and compare the control pressure generated by the air distribution valve and output the maximum pressure of the two to the empty and heavy vehicle valve.
  • the empty and heavy vehicle valve adjusts the control pressure generated by the two-way valve according to the input air spring pressure and outputs it to the second chamber of the relay valve.
  • the characteristic of the empty and heavy vehicle valve is that the output pressure corresponds linearly to the pressure of the air spring.
  • the output pressure increases.
  • the high-low speed switching signal input by the receiving controller is energized, the linear corresponding relationship slope is low, and when the high-low speed switching signal input from the receiving controller loses power, the linear corresponding relationship slope is low.
  • High when the control pressure generated by the two-way valve is less than the output pressure corresponding to the air spring pressure, the control pressure generated by the two-way valve is directly input to the second chamber of the relay valve.
  • the control pressure generated by the two-way valve is greater than the air spring pressure, the control pressure is linearly corresponding Input the output pressure linearly corresponding to the air spring pressure to the second chamber of the relay valve.
  • the electro-pneumatic conversion valve receives the pressure conversion control signal and adjusts the pressure of the main air pipe to the pre-control pressure corresponding to the pressure conversion control signal and outputs it to the first chamber of the relay valve.
  • the characteristic of the electro-pneumatic conversion valve lies in the output pressure and pressure conversion.
  • the control signal corresponds linearly, and the output pressure increases when the input pressure conversion control signal increases.
  • the relay valve has two pre-control chambers, namely the first chamber and the second chamber, with a total air pressure input port and a brake pressure output port.
  • the characteristics of the relay valve are the output pressure and two pre-control chambers.
  • the maximum pressure of the control chamber corresponds linearly.
  • Indirect braking system including air distribution valve module, train pipe pressure control module, emergency exhaust valve.
  • the air distribution valve module outputs the brake control pressure according to the change of the train pipe pressure, and outputs the brake pressure through the through brake system to the basic brake to generate friction brake. It includes an air distribution valve, a first air cylinder and a second air cylinder.
  • the air distribution valve takes the train pipe pressure as input, and outputs the control pressure to the two-way valve in the direct braking system.
  • the output control pressure corresponds linearly to the input control pressure. When the input train pipe pressure decreases, the output pressure increases.
  • the first air cylinder stores part of the pressure output by the distribution valve and plays a buffering role.
  • the second air cylinder stores the air pressure and serves as the supply of the output pressure of the distribution valve.
  • Train pipe pressure control module when receiving both rescue brake electrical signals and service brake electrical signals, the main air pipe pressure air is adjusted to input the train pipe pressure to the train pipe, and the main air pipe pressure direction is stopped when the emergency brake electrical signal is received.
  • the train pipe inputs and exhausts the compressed air from the train pipe.
  • controllers electro-pneumatic conversion valves, relay valves, switching valves, pressure switches, pressure sensors, pressure reducing valves, check valves, and inflation valves.
  • the controller can receive rescue brake electrical signals, service brake electrical signals, emergency brake electrical signals, rescued electrical signals, and can also receive the train pipe pressure signal input by the pressure sensor, and can output pressure conversion control to the electro-pneumatic conversion valve Signal, can output a switching control signal to the switching valve, can output an inflation control signal to the inflation valve, can output a service brake electrical signal, the controller has a calculation function, and the train tube pressure generated by the control output pressure conversion control signal meets The deceleration required for the service brake electrical signal and the emergency brake electrical signal is required.
  • the switching control signal is outputted to be energized.
  • the electro-pneumatic conversion valve receives the pressure conversion control signal and adjusts the pressure of the main duct to the pre-control pressure corresponding to the pressure conversion control signal and outputs it to the relay valve.
  • the characteristic of the electro-pneumatic conversion valve is that the output pressure corresponds linearly to the pressure conversion control signal , The output pressure increases when the input pressure conversion control signal increases.
  • the relay valve has a pre-control chamber, a total air pressure input port and a train pipe pressure output port.
  • the characteristic of the relay valve is that the output pressure corresponds linearly to the pressure of the pre-control chamber, and the output is output when the input pre-control pressure increases.
  • the brake pressure increases and is supplied by the total wind pressure input end as the pressure, and the train tube pressure output end has a larger flow.
  • the switching valve when the switching control signal is energized, connects the passage from the relay valve output end to the train pipe, and when the switching control signal loses power, it cuts off the passage from the relay valve output end to the train pipe.
  • the pressure switch when the pressure of the train tube is detected to be too low, outputs the emergency brake electrical signal, in order to realize the emergency brake when the pressure switch detects that the pressure of the train tube is too low, the train tube is continuously drained and the pressure air cannot be refilled, and the pressure switch outputs
  • the emergency brake electrical signal is automatically shielded and output by an external circuit within a certain period of time.
  • the pressure sensor collects the pressure of the train pipe and outputs it to the controller.
  • the pressure reducing valve takes the pressure of the main air pipe as input. When the pressure of the main air pipe is greater than the set value, it will output the set value pressure. When the pressure of the main air pipe is less than the set value, it will output according to the total air pressure value.
  • the check valve has a pressure input end and a pressure output end, and only allows pressure to flow from the input end to the output end.
  • the charging valve when the charging control signal is energized, connects the passage from the check valve output end to the train pipe, and when the charging control signal is de-energized, cuts off the passage from the check valve output end to the train pipe.
  • the control method of the air brake control system includes the common braking control method in normal driving, the common braking control method in rescue, the emergency braking control method, the control method of being rescued with electricity, and the control method of being rescued without electricity.
  • the service brake In normal driving, the service brake is controlled, the rescue switch is in the neutral position, and the service brake commander generates the service brake electrical signal.
  • the straight-through braking system receives the electrical signal of the common brake, and the controller sends an electric braking request signal to the traction system to generate electric braking force.
  • the controller controls the action of the electro-pneumatic conversion valve to generate the brake pressure and output to the basic system through the flow amplification of the relay valve.
  • the friction braking force is generated dynamically, and the electric braking force and the friction braking force meet the requirements of deceleration required by the electrical signal of the common brake.
  • the indirect brake system does not receive the rescue brake electrical signal, emergency brake electrical signal, and rescued electrical signal.
  • the controller controls the action of the inflation valve to output the fixed pressure generated by the pressure reducing valve to the train pipe, and the distribution valve receives the fixed value Pressure does not output control pressure, so brake pressure is not generated.
  • the rescue switch is in the rescue position to output rescue brake electrical signals, and the service brake commander generates service brake electrical signals.
  • the through brake system receives the rescue brake electrical signal, the controller prohibits the output of the electrical brake request signal to the traction system, receives the service brake electrical signal, the controller controls the action of the electro-pneumatic conversion valve and the relay valve flow amplifies the brake pressure output To the basic braking, friction braking force is generated, and the friction braking force meets the requirements of deceleration required by the electrical signal of normal braking.
  • the indirect brake system receives the rescue brake electrical signal and the service brake electrical signal.
  • the controller controls the electro-pneumatic conversion valve and the switching valve action according to the service brake electrical signal and closes the charging valve at the same time.
  • the pre-control pressure output by the electro-pneumatic conversion valve is passed through The flow of the relay valve is amplified and output to the train pipe through the switching valve.
  • the distribution valve receives the pre-control pressure corresponding to the pressure output of the train pipe and generates redundant brake pressure output through the two-way valve, empty and heavy car valve and relay valve of the direct brake system. To the basic braking, friction braking force is generated, and the friction braking force meets the requirements of deceleration required by the electrical signal of normal braking.
  • the emergency button generates an emergency brake electrical signal or the pressure switch detects the pressure of the train pipe to generate an emergency brake electrical signal.
  • the through brake system receives the emergency brake electrical signal, the controller prohibits the output of the electrical brake request signal to the traction system, and the emergency solenoid valve acts to input the total air pressure to the empty and heavy vehicle valve, and then input to the relay valve for adjustment after the empty and heavy vehicle.
  • the flow amplification generates the brake pressure and outputs it to the basic brake to generate friction braking force.
  • the friction braking force meets the requirements of the deceleration required by the electrical signal of emergency braking.
  • the indirect brake system receives the emergency braking electrical signal, the controller controls the electro-pneumatic conversion valve and the switching valve to close the inflation valve at the same time, and exhausts the train pipe pressure through the electro-pneumatic conversion valve, the relay valve, and the switching valve.
  • the emergency solenoid valve Receive the emergency brake electrical signal to drain the train pipe pressure
  • the distribution valve receives the train pipe pressure to output the corresponding pre-control pressure through the two-way valve of the direct braking system, the empty and the load valve and the relay valve to generate redundant brake pressure
  • the friction braking force is output to the basic brake, and the friction braking force meets the requirements of the deceleration required by the electrical signal of emergency braking.
  • the straight-through braking system receives the electrical signal of the service brake, and the controller controls the action of the electro-pneumatic changeover valve to generate the brake pressure through the relay valve flow amplification and output to the basic brake to generate friction braking force.
  • the friction brake force meets the requirements of the electrical signal of the service brake. Deceleration requirements.
  • the indirect brake system receives the rescued electrical signal, and the controller collects the train pipe pressure through the pressure sensor and outputs the corresponding service brake electrical signal for the direct brake system service brake command. At the same time, the controller controls the charging valve and the switching valve to close, The distribution valve receives the pre-control pressure corresponding to the pressure output of the train pipe.
  • the redundant brake pressure is generated through the two-way valve of the direct braking system, the empty and the load valve and the relay valve, and the output is output to the basic brake to generate the friction braking force, and the friction braking force meets the requirements.
  • the distribution valve receives the pre-control pressure corresponding to the pressure output of the train pipe and outputs the brake pressure generated by the two-way valve, empty and load valve and relay valve of the direct brake system to the basic brake to generate friction braking force.
  • the frictional braking force meets the requirements of the decompression volume of rescue locomotives or trains.
  • the direct brake system and the indirect brake system work and switch at the same time, which improves the control accuracy of the indirect brake system, and realizes that the train can rescue other trains and also when there is no electricity.
  • the present invention also provides a control method applied to the above-mentioned train air brake control system, which includes: normal braking control during normal driving, common braking control during rescue, emergency braking control, rescue control with electricity, and control without electricity Being controlled by rescue provides passengers with higher safety and reliability.
  • Fig. 1 is a schematic structural diagram of an air brake control system provided by an embodiment of the present invention.
  • Fig. 2 is a flowchart of a method for controlling a service brake during normal driving provided by an embodiment of the present invention.
  • Fig. 3 is a flow chart of a method for common braking control during rescue provided by an embodiment of the present invention.
  • Fig. 4 is a flowchart of an emergency braking control method provided by an embodiment of the present invention.
  • Fig. 5 is a flowchart of a method for controlling a rescued person with power provided by an embodiment of the present invention.
  • Fig. 6 is a flowchart of a method for controlling a rescued without power provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a train air brake control system provided by an embodiment of the present invention.
  • the train air brake control system includes: a rescue brake switch 10, a service brake commander 20, an emergency brake button 30, a through brake system 40, and an indirect brake system 50, 60, 70.
  • the rescue brake switch 10 has three signal positions.
  • the rescue brake electrical signal 1D When in the rescue position, the rescue brake electrical signal 1D is output.
  • the direct braking system controller 41 stops implementing electric braking and only uses friction braking.
  • the indirect braking system controller 61 opens the switching valve 64 and Close the air charging valve 69 so that the train pipe pressure P64 can be controlled according to the brake command. Through this signal, the train can be braked and indirect brake can work at the same time, and can also realize the rescue of other trains.
  • the rescued electrical signal 4D When in the rescued position, the rescued electrical signal 4D is output.
  • the indirect brake system controller 61 closes the switching valve 64 and the inflation valve 69 so that the pressure sensor 66 can detect the train pipe pressure and output the service brake electrical signal 2D. Through this signal, the train can be rescued by locomotives or other trains.
  • the service brake commander 20 outputs the service brake electrical signal 2D.
  • the direct brake system 40 generates electric brake and friction brake after receiving the signal.
  • the indirect brake system 50, 60, 70 receives the signal and simultaneously receives rescue After the braking electrical signal 1D, the change of the train pipe pressure P64 is controlled to produce friction braking, and the normal train braking can be realized through this signal.
  • the emergency brake button 30 outputs the emergency brake electrical signal 3D.
  • the direct brake system 40 generates friction braking after receiving the signal, and the indirect brake system 50, 60, 70 receives the signal and controls the train pipe pressure P64 to change to generate friction. Braking, through this signal can realize the train emergency braking.
  • the brake system 40 receives the service brake electrical signal 2D to realize the service brake of the train.
  • the rescue brake electrical signal 1D is received at the same time, only the air pressure P41 of the main air pipe is adjusted and the brake pressure is input to the basic brake 90 P45 applies friction brake, and requests the traction system 80 to apply electric brake when the rescue brake electric signal 1D is not received; receives the emergency brake electric signal 3D to realize the emergency braking of the train, and adjusts the air pressure of the main air duct P41
  • the brake pressure P45 is input to the basic brake 90 to apply friction braking.
  • the straight-through braking system 40 includes a controller 41, an emergency solenoid valve 42, a two-way valve 43, an empty and heavy vehicle valve 44, an electro-pneumatic conversion valve 45, and a relay valve 46.
  • the controller 45 includes a signal input interface and a signal output interface.
  • the signal input interface can receive the rescue brake electrical signal 1D, the service brake electrical signal 2D, and the emergency brake electrical signal 3D.
  • the signal output interface can be used for the traction system 80 outputs the electric brake request signal 5D, can output the pressure conversion control signal 6D to the electro-pneumatic conversion valve 45, and can output the high and low speed switching signal 7D to the empty and heavy vehicle valve 44.
  • the controller has a calculation function to control the output of the electric system The braking force generated by the activation request signal 5D and the pressure conversion control signal 6D meets the required deceleration requirements of the service brake electrical signal 2D and the emergency brake electrical signal 3D, and the control output high and low pressure switch signal 7D changes with the speed.
  • the emergency solenoid valve 42 receives the emergency brake electrical signal 3D, and when energized, the air pressure P41 of the main air duct is inputted to the two-way valve 43.
  • the two-way valve 43 inputs the control pressure P42 generated by the emergency solenoid valve 42 and compares the control pressure P51 generated by the air distribution valve 53 to output the maximum pressure P43 of the two to the empty and heavy vehicle valve 44.
  • the empty and heavy vehicle valve 44 adjusts the control pressure P43 generated by the two-way valve 43 according to the input air spring pressure and outputs it to the second chamber of the relay valve 46.
  • the characteristic of the empty and heavy vehicle valve 44 lies in the output pressure and The input air spring pressure corresponds linearly. When the input air spring pressure increases, the output pressure increases.
  • the high and low speed switching signal 7D input by the receiving controller 41 is energized, the linear corresponding relationship has a low slope.
  • the switching signal 7D is de-energized, the linear corresponding relationship has a high slope.
  • control pressure P43 generated by the two-way valve 43 When the control pressure P43 generated by the two-way valve 43 is less than the output pressure corresponding to the linear pressure of the air spring, the control pressure P43 generated by the two-way valve is directly input to the second of the relay valve 46 In the chamber, when the control pressure generated by the two-way valve 43 is greater than the output pressure linearly corresponding to the air spring pressure, the output pressure linearly corresponding to the air spring pressure is input to the second chamber of the relay valve 46.
  • the electro-pneumatic conversion valve 45 receives the pressure conversion control signal 6D and adjusts the main air duct air pressure P41 to the pre-control pressure P45 corresponding to the pressure conversion control signal 6D and outputs it to the first chamber of the relay valve 46, the electro-pneumatic conversion valve 45
  • the characteristic is that the output pressure P45 linearly corresponds to the pressure conversion control signal 6D, and the output pressure increases when the input pressure conversion control signal increases.
  • the relay valve 46 has two pre-control chambers, namely the first chamber and the second chamber, and has a total air pressure input port and a brake pressure output port.
  • the characteristics of the relay valve are the output pressure P46 and two The maximum pressure of each pre-control chamber corresponds linearly.
  • the indirect braking system includes an air distribution valve module 50, a train pipe pressure control module 60, and an emergency exhaust valve 70.
  • the air distribution valve module 60 outputs the brake control pressure P51 according to the change of the train pipe pressure P64, and outputs the brake pressure P46 to the basic brake 90 through the through brake system to generate friction braking. It includes an air distribution valve 53, an air cylinder 51, and an air cylinder 52.
  • the air distribution valve 53 takes the train pipe pressure P64 as input, and outputs the control pressure P51 to the two-way valve 43 in the through brake system.
  • the output control pressure P51 corresponds linearly with the input control pressure P64.
  • the output pressure increases.
  • the first air cylinder stores part of the pressure output by the distribution valve 53 and plays a buffering role.
  • the second air cylinder stores air pressure and serves as a supply of the output pressure of the distribution valve 53.
  • the train pipe pressure control module 60 when receiving the rescue brake electrical signal 1D and the service brake electrical signal 2D at the same time, adjust the main air pipe air pressure P41 to the train pipe and input the train pipe pressure P64 to the train pipe.
  • the emergency brake electrical signal 3D Stop the main air duct air pressure P41 to input the train duct pressure air P64 to the train duct. It includes a controller 61, an electro-pneumatic conversion valve 62, a relay valve 63, a switching valve 64, a pressure switch 65, a pressure sensor 66, a pressure reducing valve 67, a check valve 68, and an inflation valve 69.
  • the controller 61 includes a signal input interface and a signal output interface.
  • the signal input interface can receive the rescue brake electrical signal 1D, the service brake electrical signal 2D, the emergency brake electrical signal 3D, the rescued electrical signal 4D, and can also receive
  • the train pipe pressure signal 9D input by the pressure sensor 66, the signal output interface can output the pressure conversion control signal 8D to the electro-pneumatic conversion valve 62, can output the switching control signal 10 to the switching valve 64, and can output the charging control signal to the charging valve 69 11D, can output service brake electrical signal 2D, the controller has a calculation function, and the train tube pressure P64 generated by the output pressure conversion control signal 8D meets the requirements of service brake electrical signal 2D and emergency brake electrical signal 3D For deceleration requirements, when the rescue brake electrical signal 1D and emergency brake electrical signal 3D are received, the switching control signal 9D is outputted to be energized, and when the rescue brake signal 1D, emergency brake electrical signal 3D and the rescued electrical signal are received In 4D, the output charging control
  • the electro-pneumatic conversion valve 62 receives the pressure conversion control signal 8D and adjusts the main air duct air pressure P41 to the pre-control pressure P61 corresponding to the pressure conversion control signal 8D and outputs it to the relay valve 63.
  • the characteristic of the electro-pneumatic conversion valve 62 lies in the output pressure P61 linearly corresponds to the pressure conversion control signal 8D, and the output pressure increases when the input pressure conversion control signal increases.
  • the relay valve 63 has a pre-control chamber, a total air pressure input port and a train pipe pressure output port.
  • the characteristic of the relay valve 63 is that the output pressure P62 linearly corresponds to the pre-control chamber pressure P61, and the input pre-control pressure When it increases, the output brake pressure increases, and is supplied by the total wind pressure input end as the pressure, and the train tube pressure output end has a larger flow.
  • the switching valve 64 when the switching control signal 10D is energized, connects the passage from the output end of the relay valve 63 to the train pipe, and when the switching control signal 10D loses power, it cuts off the passage from the output end of the relay valve to the train pipe.
  • the pressure switch 65 When the pressure switch 65 detects that the train tube pressure P64 is too low, it outputs the emergency brake electrical signal 3D. In order to realize the emergency brake is generated when the pressure switch 65 detects that the train tube pressure P64 is too low, the train tube pressure P64 cannot be recharged. When the pressure switch 65 outputs the emergency braking electrical signal 3D for a certain period of time, the output is automatically shielded by the external circuit.
  • the pressure sensor 66 collects the train pipe pressure P64 and outputs it to the controller 61.
  • the pressure reducing valve 67 takes the air pressure P41 of the main air pipe as input. When the air pressure P41 of the main air pipe is greater than the set value, it will output the set value pressure. When the air pressure P41 of the main air pipe is less than the set value, it will follow the total air pressure Pressure value output.
  • the check valve 68 has a pressure input end and a pressure output end, and only allows pressure to flow from the input end to the output end.
  • the charging valve 69 when the charging control signal 11D is energized, the passage from the output end of the check valve 68 to the train pipe is turned on, and when the charging control signal 11D is de-energized, the passage from the output end of the check valve 68 to the train pipe is blocked.
  • the emergency exhaust valve 70 exhausts the train pipe pressure P64 when the emergency brake electrical signal 3D loses power.
  • FIG. 2 is a flowchart of a method for controlling a service brake during normal driving provided by an embodiment of the present invention.
  • the controller 41 receives the service brake electrical signal 2D, and outputs the pressure conversion control signal 6D to the electro-pneumatic conversion valve 45; at the same time, it outputs the electric brake request signal 5D to the traction system 80.
  • the electro-pneumatic conversion valve 45 receives the pressure conversion control signal 6D, and outputs the pre-control pressure P45 to the relay valve 46.
  • the relay valve 46 receives the pre-control pressure P45, and outputs the brake pressure P46 to the basic brake 90.
  • the traction system 80 receives the electric braking request signal 5D to generate electric braking force; the basic brake 90 receives the braking pressure P46 to generate friction braking force.
  • the controller 61 does not receive the rescue brake electrical signal 1D, the emergency brake electrical signal 3D, and the rescued electrical signal 4D, and outputs the inflation control signal 11D to the solenoid valve 69.
  • the solenoid valve 69 receives the charging control signal 11D, and inputs the train pipe pressure P63 generated by the pressure reducing valve 67 to the train pipe to generate the train pipe pressure P64; the train pipe pressure P64 is the constant pressure of the train pipe, such as 600 kPa.
  • the distribution valve 53 receives the train pipe pressure P64 and outputs the control pressure P51; at this time, P51 is 0kPa, and there is no brake pressure output.
  • FIG. 3 is a flowchart of a common braking control method during rescue provided by an embodiment of the present invention.
  • S20 Operate the rescue brake switch 10 to generate a rescue brake electrical signal 1D; operate the service brake commander 20 to generate a service brake electrical signal 2D.
  • the controller 41 receives the service brake electrical signal 2D, and outputs the pressure conversion control signal 6D to the electro-pneumatic conversion valve 45; the controller 41 receives the rescue brake electrical signal 1D, and prohibits the output of the electrical brake request signal 5D to the traction system 80.
  • the electro-pneumatic conversion valve 45 receives the pressure conversion control signal 6D, and outputs the pre-control pressure P45 to the relay valve 46.
  • the relay valve 46 receives the pre-control pressure P45, and outputs the brake pressure P46 to the basic brake 90.
  • the basic brake 90 receives the brake pressure P46 to generate friction braking force.
  • S220 The indirect braking systems 50 and 60 and the direct braking system 40 act.
  • the controller 61 receives the service brake electrical signal 2D, and outputs the pressure conversion control signal 8D to the electro-pneumatic conversion valve 62; the controller 61 receives the rescue brake electrical signal 1D, outputs the switching control signal 10D to the switching valve 64, and stops outputting gas
  • the control signal 11D goes to the inflation valve 69.
  • the electro-pneumatic conversion valve 62 receives the pressure conversion control signal 8D, and outputs the pre-control pressure P61 to the relay valve 63.
  • the relay valve 63 receives the pre-control pressure P61, and outputs the train pipe pressure P62 to the switching valve 64.
  • the switching valve 64 receives the switching control signal 10D, and inputs the train pipe pressure P62 generated by the relay valve 63 to the train pipe to generate the train pipe pressure P64; the charging valve 69 receives the controller signal 11D and cuts off the pressure reducing valve 67 to generate The train pipe pressure P63 is input to the train pipe.
  • the distribution valve 53 receives the train pipe pressure P64 and outputs the control pressure P51 to the two-way valve 43.
  • the two-way valve 43 receives the control pressure P51, compares it with the emergency braking pressure P42, and then outputs the control pressure P43 to the empty and heavy vehicle valve 44.
  • the empty and heavy vehicle valve 44 receives the control pressure P43, and outputs the control pressure P44 to the relay valve 46 after the empty and heavy vehicle is adjusted.
  • the relay valve 46 receives the pre-control pressure P44 and the direct brake pre-control pressure P45, whichever is greater, and outputs the brake pressure P46 to the basic brake 90.
  • the basic brake 90 receives the brake pressure P46 to generate friction braking force.
  • FIG. 4 is a flowchart of an emergency braking control method provided by an embodiment of the present invention.
  • the emergency solenoid valve 42 receives the emergency brake electrical signal 3D, and outputs the control pressure P42 to the two-way valve 42; the controller 41 receives the emergency brake electrical signal 3D, and outputs the pressure conversion control signal 6D to the electro-pneumatic conversion valve 45, and outputs according to the speed The high and low speed switching signal 7D is to the empty and heavy vehicle valve 44.
  • the two-way valve 42 receives the control pressure P42, compares it with the control pressure P51, and then outputs the control pressure P43 to the empty and heavy vehicle valve 44.
  • the empty and heavy vehicle valve 44 receives the control pressure P43 and outputs the control pressure P44 to the relay valve 46 after the empty and heavy vehicle adjustment; the electro-pneumatic conversion valve 45 receives the pressure conversion control signal 6D, and outputs the pre-control pressure P45 to the relay valve 46 .
  • the relay valve 46 receives the larger pressures P44 and P45, and outputs the brake pressure P46 to the basic brake 90.
  • S315 The basic brake 90 receives the brake pressure P46 to generate friction braking force.
  • S320 The indirect braking system 50/60/70 and the direct braking system 40 act.
  • the emergency exhaust valve 70 receives the emergency brake electrical signal 3D and empties the train pipe pressure P64; the controller 61 receives the emergency brake electrical signal 3D, and outputs the pressure conversion control signal 8D to the electro-pneumatic conversion valve 62, and outputs switching control The signal 10D is sent to the switching valve 64, and the output of the inflation control signal 11D to the inflation valve 69 is stopped.
  • the electro-pneumatic conversion valve 62 receives the pressure conversion control signal 8D, and the output pre-control pressure P61 is 0 kPa; the switching valve 64 receives the switching control signal 10D, and connects the relay valve 63 and the train pipe.
  • the relay valve 63 receives the pre-control pressure P61 to empty the train pipe pressure P64; the charging valve 69 receives the controller signal 11D, and cuts off the train pipe pressure P63 generated by the pressure reducing valve 67 to be input to the train pipe.
  • the distribution valve 53 receives the train pipe pressure P64 and outputs the control pressure P51 to the two-way valve 43.
  • the two-way valve 43 receives the control pressure P51, compares it with the emergency braking pressure P42, and then outputs the control pressure P43 to the empty and heavy vehicle valve 44.
  • the empty and heavy vehicle valve 44 receives the control pressure P43, and outputs the control pressure P44 to the relay valve 46 after being adjusted by the empty and heavy vehicle.
  • the relay valve 46 receives the pre-control pressure P44 and the direct brake pre-control pressure P45, whichever is greater, and outputs the brake pressure P46 to the basic brake 90.
  • the basic brake 90 receives the brake pressure P46 to generate friction braking force.
  • FIG. 5 is a flowchart of a method for controlling a rescued person with power provided by an embodiment of the present invention.
  • the controller 41 receives the service brake electrical signal 2D, and outputs the pressure conversion control signal 6D to the electro-pneumatic conversion valve 45.
  • the electro-pneumatic conversion valve 45 receives the pressure conversion control signal 6D, and outputs the pre-control pressure P45 to the relay valve 46.
  • the relay valve 46 receives the pre-control pressure P45, and outputs the brake pressure P46 to the basic brake 90.
  • the basic brake 90 receives the brake pressure P46 to generate friction braking force.
  • the pressure sensor 66 collects the train pipe pressure P64, and outputs an electrical signal 9D to the controller 61.
  • the controller 61 receives the electrical signal 9D and outputs the service brake electrical signal 2D; the controller 61 receives the rescued electrical signal 4D, stops outputting the switching control signal 10D to the switching valve 64, and stops outputting the inflation control signal 11D to the inflation valve 69.
  • the distribution valve 53 receives the train pipe pressure P64, and outputs the control pressure P51 to the two-way valve 43.
  • the two-way valve 43 receives the control pressure P51, compares it with the emergency braking pressure P42, and then outputs the control pressure P43 to the empty and heavy vehicle valve 44.
  • the empty and heavy vehicle valve 44 receives the control pressure P43, and outputs the control pressure P44 to the relay valve 46 after being adjusted by the empty and heavy vehicle.
  • the relay valve 46 receives the pre-control pressure P44 and the direct brake pre-control pressure P45, whichever is greater, and outputs the brake pressure P46 to the basic brake 90
  • the basic brake 90 receives the brake pressure P46 to generate friction braking force
  • FIG. 6 is a flowchart of a method for controlling a rescued without power provided by an embodiment of the present invention.
  • S50 Rescued without electricity: the indirect braking systems 50 and 60 and the direct braking system 40 operate.
  • the distribution valve 53 receives the train pipe pressure P64 and outputs the control pressure P51 to the two-way valve 43.
  • the two-way valve 43 receives the control pressure P51, and outputs the control pressure P43 to the empty and heavy vehicle valve 44.
  • the empty and heavy vehicle valve 44 receives the control pressure P43, and outputs the control pressure P44 to the relay valve 46 after the empty and heavy vehicle is adjusted.
  • the relay valve 46 receives the pre-control pressure P44, and outputs the brake pressure P46 to the basic brake 90.
  • the basic brake 90 receives the brake pressure P46 to generate friction braking force.
  • an air brake control system provided by the embodiment of the present invention, the direct brake system and the indirect brake system work and switch at the same time, improve the control accuracy of the indirect brake system, and realize that the train can rescue other trains and other trains. It can be rescued even when powered on.
  • the present invention also provides a control method applied to the above-mentioned train air brake control system, which includes: normal braking control during normal driving, common braking control during rescue, emergency braking control, rescue control with electricity, and control without electricity Being controlled by rescue provides passengers with higher safety and reliability.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

一种列车空气制动控制系统,包括救援制动开关(10)、常用制动指令器(20)、紧急制动按钮(30)、直通制动系统(40)和间接制动系统(50;60;70)。直通制动系统(40)和间接制动系统(50;60;70)可根据救援制动开关(10)、常用制动指令器(20)、紧急制动按钮(30)的制动指令信号同时工作。直通制动系统(40)根据制动指令信号产生制动压力输出至基础制动产生摩擦制动力;间接制动系统(50;60;70)根据制动指令信号控制列车管压力(P64)变化并产生对应的预控压力(P45)通过直通制动系统(40)产生制动压力(P46)输出至基础制动(90)产生摩擦制动力。能够实现直通制动系统和间接制动系统同时工作与切换,提高间接制动系统控制精度,并实现列车能救援其他列车与无电时也能被救援,安全性和可靠性高。还包括一种列车空气制动控制方法。

Description

一种列车空气制动控制系统及其方法 技术领域
本发明涉及列车制动控制技术领域,尤其涉及一种列车空气制动控制系统及其方法。
背景技术
目前,列车上制动系统主要有两种类型,即直通制动系统和间接制动系统,其中欧洲以间接制动系统为主,日本则主要为直通制动系统为主。中国国内主要以直通制动为主,设置救援转换装置,用于救援其他列车和被机车救援;部分动车组设置了备用的间接制动系统,用于无电救援、回送及紧急制动等工况。
对于仅设置了直通制动系统的列车,在直通制动系统故障只能在列车停车处于静止状态下启动救援转换装置被机车或其他列车救援,并且列车无供电将无法实现正常被救援,同时列车未设置备用的制动系统,安全性相对较低。
对于设置了直通制动系统和间接制动系统的列车,现有的间接制动系统只有在列车停车处于静止状态下才能通过操作一定的设备来激活,其操作较为复杂、前提条件较多,降低了间接制动系统的可用;同时间接制动系统只是应急使用,只能通过的气体制动控制手柄产生无级位的制动压力,其操作为通过观察压力表操作手柄的粗放控制,降低了列车的制动性能,不能救援其他列车;最重要的是,间接制动系统激活时直通制动系统不能同步工作,降低了列车制动的安全性。
所以,如何克服现有空气制动控制系统存在的各项技术缺陷,提供一种直通制动系统和间接制动系统同时工作与切换,提高间接制动系统控制精度,并实现列车能救援其他列车与无电时也能被救援的空气制动控制系统方案是本领域技术人员亟待解决的问题。
发明内容
本发明的目的是提供一种列车空气制动控制系统,直通制动系统和间接制动系统同时工作与切换,提高间接制动系统控制精度,并实现列车能救援其他列车与无电时也能被救援。
本发明的另一目的在于提供了一种应用在上述列车空气制动控制系统上的控制方法,包括:正常行车常用制动控制、救援时常用制动控制、紧急制动控制、有电被救援控制、无电被救援控制,为乘客提供了更高的安全性和可靠性。
为实现上述目的,本发明提供一种列车空气制动控制系统,包括:救援制动开关、常用制动指令器、紧急制动按钮、直通制动系统、间接制动系统。
救援制动开关,具有三种信号模式。
第一种为中立位置,该位置不输出电气信号。
第二种为救援位置,该位置输出救援制动电气信号。
第三种位置为被救援位置,该位置输出被救援电气信号。
常用制动指令器,输出常用制动电气信号。
紧急制动按钮,输出紧急制动电气信号。
直通制动系统,接收常用制动电气信号实现列车常用制动,在同时接收到救援制动电气信号时仅将总风管压力空气经调节后向基础制动输入制动压力施加摩擦制动,在未接收到救援制动电气信号时还向牵引系统请求施加电制动;接收紧急制动电气信号实现列车紧急制动,将总风管压力空气经调节后向基础制动输入制动压力施加摩擦制动。
直通制动系统,包括控制器、紧急电磁阀、双向阀、空重车阀、电空变换阀、中继阀。
控制器,接收救援制动电气信号、常用制动电气信号、紧急制动电气信号,向牵引系统输出电制动请求信号,向电空变换阀输出压力变换控制信号,向空重车阀输出高低速切换信号,所述控制器具有计算功能,控制输出的电制动请求信号与压力变换控制信号所产生的制动力满足常用制动电气信号与紧急制动电气信号所需减速度的要求,控制输出的高低压切换信号随速度变化。
紧急电磁阀,接收紧急制动电气信号,在得电时导通总风管压力输入至双向阀。
双向阀,输入紧急电磁阀产生的控制压力与空气分配阀产生的控制压力进行比较后输出二者最大的压力至空重车阀。
空重车阀,根据输入的空气弹簧压力将双向阀产生的控制压力进行空重车调节后输出至中继阀第二腔室,空重车阀的特性在于输出压力与空簧压力线性对应,输入空簧压力增大时输出压力增大,在接收控制器输入的高低速切换信号得电时其线性对应关系斜率低,在接收控制器输入的高低速切换信号失电时其线性对应关系斜率高,当双向阀产生的控制压力小于空簧压力线性对应的输出压力时直接将双向阀产生的控制压力输入至中继阀第二腔室,当双向阀产生的控制压力大于空簧压力线性对应的输出压力时将空簧压力线性对应的输出压力输入至中继阀第二腔室。
电空变换阀,接收压力变换控制信号将总风管压力空气调节为与压力变换控制信号对应的预控压力输出至中继阀第一腔室,电空变换阀的特性在于输出压力与压力变换控制信号线性对应,输入压力变换控制信号增大时输出压力增大。
中继阀,具备两个预控腔室,即第一腔室和第二腔室,具备一路总风压力输入端和一路制动压力输出端,中继阀的特性在于输出压力与两个预控腔室压力最大值线性对应,输入预控压力增大时输出制动压力增大,并由总风压力输入端作为压力供给,其制动压力输出端具 有较大的流量。
间接制动系统,包括空气分配阀模块、列车管压力控制模块、紧急排风阀。
空气分配阀模块,根据列车管压力变化输出制动控制压力,经直通制动系统输出制动压力至基础制动产生摩擦制动。包括空气分配阀、第一风缸和第二风缸。
空气分配阀以列车管压力作为输入,输出控制压力至直通制动系统中的双向阀,输出控制压力与输入控制压力线性对应,输入列车管压力减小时输出压力增大。
第一风缸,存储分配阀输出的部分压力,起到缓冲作用。
第二风缸,存储空气压力,作为分配阀输出压力的供给。
列车管压力控制模块,同时接收救援制动电气信号和常用制动电气信号时将总风管压力空气经调节后向列车管输入列车管压力,接收紧急制动电气信号时停止总风管压力向列车管输入并排空列车管压力空气。包括控制器、电空变换阀、中继阀、切换阀、压力开关、压力传感器、减压阀、止回阀、充气阀。
控制器,能接收救援制动电气信号、常用制动电气信号、紧急制动电气信号、被救援电气信号,还能接收压力传感器输入的列车管压力信号,能向电空变换阀输出压力变换控制信号,能向切换阀输出切换控制信号,能向充气阀输出充气控制信号,能输出常用制动电气信号,所述控制器具有计算功能,控制输出的压力变换控制信号所产生的列车管压力满足常用制动电气信号与紧急制动电气信号所需减速度的要求,在接收到救援制动电气信号和紧急制动电气信号时输出切换控制信号得电,在接收到救援制动信号、紧急制动电气信号和被救援电气信号时输出充气控制信号失电,在接收到被救援信号时根据压力传感器采集的列车管压力信号输出对应的常用制动电气信号。
电空变换阀,接收压力变换控制信号将总风管压力空气调节为与压力变换控制信号对应的预控压力输出至中继阀,电空变换阀的特性在于输出压力与压力变换控制信号线性对应,输入压力变换控制信号增大时输出压力增大。
中继阀,具备一个预控腔室、一路总风压力输入端和一路列车管压力输出端,中继阀的特性在于输出压力与预控腔室压力线性对应,输入预控压力增大时输出制动压力增大,并由总风压力输入端作为压力供给,其列车管压力输出端具有较大的流量。
切换阀,切换控制信号得电时导通中继阀输出端至列车管的通路,切换控制信号失电时截断中继阀输出端至列车管的通路。
压力开关,检测到列车管压力过低时,输出紧急制动电气信号,为实现压力开关检测到列车管压力过低时产生紧急制动持续排空列车管压力空气无法再次充气,在压力开关输出紧 急制动电气信号一定时间内通过外部电路自动屏蔽输出。
压力传感器,采集列车管压力输出至控制器。
减压阀,将总风管压力作为输入,当总风管压力大于设定值时将输出设定值压力,当总风管压力小于设定值时将按照总风压力值输出。
止回阀,具备压力输入端和压力输出端,只允许压力由输入端流向输出端。
充气阀,充气控制信号得电时导通止回阀输出端至列车管的通路,充气控制信号失电时截断止回阀输出端至列车管的通路。
紧急排风阀,紧急制动电气信号失电时将列车管压力排空。
空气制动控制系统的控制方法,包含正常行车常用制动控制方法、救援时常用制动控制方法、紧急制动控制方法、有电被救援控制方法、无电被救援控制方法。
正常行车常用制动控制,救援开关处于中立位置,常用制动指令器产生常用制动电气信号。直通制动系统接收常用制动电气信号,控制器向牵引系统发送电制动请求信号产生电制动力,同时控制器控制电空变换阀动作经中继阀流量放大产生制动压力输出至基础制动产生摩擦制动力,电制动力与摩擦制动力满足常用制动电气信号所需减速度的要求。间接制动系统未接收到救援制动电气信号、紧急制动电气信号、被救援电气信号,控制器控制充气阀动作将减压阀产生的定值压力输出至列车管,分配阀接收到定值压力不输出控制压力,因此不产生制动压力。
救援时常用制动控制,救援开关处于救援位置输出救援制动电气信号,常用制动指令器产生常用制动电气信号。通过该控制可以实现列车直通制动系统和间接制动系统同时工作,并能救援其他列车。直通制动系统接收救援制动电气信号,控制器禁止输出电制动请求信号至牵引系统,接收常用制动电气信号,控制器控制电空变换阀动作经中继阀流量放大产生制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足常用制动电气信号所需减速度的要求。间接制动系统接收救援制动电气信号和常用制动电气信号,控制器根据常用制动电气信号控制电空变换阀与切换阀动作同时关闭充气阀,电空变换阀输出的预控压力经中继阀流量放大并经切换阀输出至列车管,分配阀接收到列车管压力输出对应的预控压力通过直通制动系统双向阀、空重车阀与中继阀产生冗余的制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足常用制动电气信号所需减速度的要求。
紧急制动控制,紧急按钮产生紧急制动电气信号或压力开关检测到列车管压力产生紧急制动电气信号。直通制动系统接收紧急制动电气信号,控制器禁止输出电制动请求信号至牵引系统,紧急电磁阀动作将总风压力输入至空重车阀经空重车调整后输入至中继阀进行流量 放大产生制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足紧急制动电气信号所需减速度的要求。间接制动系统接收到紧急制动电气信号,控制器控制电空变换阀与切换阀动作同时关闭充气阀,通过电空变换阀、中继阀、切换阀排空列车管压力,同时紧急电磁阀接收到紧急制动电气信号排空列车管压力,,分配阀接收到列车管压力输出对应的预控压力通过直通制动系统双向阀、空重车阀与中继阀产生冗余的制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足紧急制动电气信号所需减速度的要求。
有电被救援控制,救援制动开关产生被救援制动电气信信号。直通制动系统接收常用制动电气信号,控制器控制电空变换阀动作经中继阀流量放大产生制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足常用制动电气信号所需减速度的要求。间接制动系统接收到被救援电气信号,控制器通过压力传感器采集列车管压力输出相应的常用制动电气信号用于直通制动系统常用制动指令,同时控制器控制充气阀与切换阀关闭,分配阀接收到列车管压力输出对应的预控压力通过直通制动系统双向阀、空重车阀与中继阀产生冗余的制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足救援机车或列车列车管减压量的要求。
无电被救援控制,分配阀接收到列车管压力输出对应的预控压力通过直通制动系统双向阀、空重车阀与中继阀产生的制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足救援机车或列车列车管减压量的要求。
显然,本发明所提供的一种空气制动控制系统,直通制动系统和间接制动系统同时工作与切换,提高间接制动系统控制精度,并实现列车能救援其他列车与无电时也能被救援。本发明还提供了一种应用在上述列车空气制动控制系统上的控制方法,包括:正常行车常用制动控制、救援时常用制动控制、紧急制动控制、有电被救援控制、无电被救援控制,为乘客提供了更高的安全性和可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例所提供的一种空气制动控制系统的结构示意图。
图2为本发明实施例所提供的正常行车常用制动控制方法的流程图。
图3为本发明实施例所提供的救援时常用制动控制方法的流程图。
图4为本发明实施例所提供的紧急制动控制方法的流程图。
图5为本发明实施例所提供的有电被救援控制方法的流程图。
图6为本发明实施例所提供的无电被救援控制方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
参见图1,图1为本发明实施例所提供的一种列车空气制动控制系统的结构示意图。
列车空气制动控制系统,包括:救援制动开关10、常用制动指令器20、紧急制动按钮30、直通制动系统40、间接制动系统50、60、70。
救援制动开关10,具有三种信号位置。
处于中立位置时不输出电气信号,为列车正常行车位置,此时直通制动系统40正常工作,间接制动系统50、60、70仅能实施紧急制动。
处于救援位置时输出救援制动电气信号1D,直通制动系统控制器41接收该信号后停止实施电制动仅采用摩擦制动,间接制动系统控制器61接收该信号后打开切换阀64并关闭充风阀69以便能根据制动指令控制列车管压力P64变化,通过该信号可以实现列车直通制动和间接制动同时工作,并还可以实现救援其他列车.
处于被救援位置时输出被救援电气信号4D,间接制动系统控制器61接收该信号后关闭切换阀64与充风阀69以便能通过压力传感器66检测列车管压力输出常用制动电气信号2D,通过该信号可以实现列车被机车或其它列车救援。
常用制动指令器20,输出常用制动电气信号2D,直接制动系统40接收该信号后产生电制动和摩擦制动,间接制动系统50、60、70接收到该信号并同时接收救援制动电气信号1D后控制列车管压力P64变化产生摩擦制动,通过该信号可以实现列车常用制动。
紧急制动按钮30,输出紧急制动电气信号3D,直接制动系统40接收该信号后产生摩擦制动,间接制动系统50、60、70接收到该信号后控制列车管压力P64变化产生摩擦制动,通过该信号可以实现列车紧急制动。
直通制动系统40,接收常用制动电气信号2D实现列车常用制动,在同时接收到救援制动电气信号1D时仅将总风管空气压力P41经调节后向基础制动90输入制动压力P45施加摩擦制动,在未接收到救援制动电气信号1D时还向牵引系统80请求施加电制动;接收紧急制动电气信号3D实现列车紧急制动,将总风管空气压力P41经调节后向基础制动90输入制动 压力P45施加摩擦制动。
直通制动系统40,包括控制器41、紧急电磁阀42、双向阀43、空重车阀44、电空变换阀45、中继阀46。
控制器45,包含信号输入接口和信号输出接口,所述信号输入接口能接收救援制动电气信号1D、常用制动电气信号2D、紧急制动电气信号3D,所述信号输出接口能向牵引系统80输出电制动请求信号5D,能向电空变换阀45输出压力变换控制信号6D,能向空重车阀44输出高低速切换信号7D,所述控制器具有计算功能,控制输出的电制动请求信号5D与压力变换控制信号6D所产生的制动力满足常用制动电气信号2D与紧急制动电气信号3D所需减速度的要求,控制输出的高低压切换信号7D随速度变化。
紧急电磁阀42,接收紧急制动电气信号3D,在得电时导通总风管空气压力P41输入至双向阀43。
双向阀43,输入紧急电磁阀42产生的控制压力P42与空气分配阀53产生的控制压力P51进行比较后输出二者最大的压力P43至空重车阀44。
空重车阀44,根据输入的空气弹簧压力将双向阀43产生的控制压力P43进行空重车调节后输出至中继阀46的第二腔室,空重车阀44的特性在于输出压力与输入空簧压力线性对应,输入空簧压力增大时输出压力增大,在接收控制器41输入的高低速切换信号7D得电时其线性对应关系斜率低,在接收控制器41输入的高低速切换信号7D失电时其线性对应关系斜率高,当双向阀43产生的控制压力P43小于空簧压力线性对应的输出压力时直接将双向阀产生的控制压力P43输入至中继阀46的第二腔室,当双向阀43产生的控制压力大于空簧压力线性对应的输出压力时将空簧压力线性对应的输出压力输入至中继阀46的第二腔室。
电空变换阀45,接收压力变换控制信号6D将总风管空气压力P41调节为与压力变换控制信号6D对应的预控压力P45输出至中继阀46的第一腔室,电空变换阀45的特性在于输出压力P45与压力变换控制信号6D线性对应,输入压力变换控制信号增大时输出压力增大。
中继阀46,具备两个预控腔室,即第一腔室和第二腔室,具备一路总风压力输入端和一路制动压力输出端,中继阀的特性在于输出压力P46与两个预控腔室压力最大值线性对应,输入预控压力增大时输出制动压力增大,并由总风压力输入端作为压力供给,其制动压力输出端具有较大的流量。
间接制动系统,包括空气分配阀模块50、列车管压力控制模块60、紧急排风阀70。
空气分配阀模块60,根据列车管压力P64变化输出制动控制压力P51,经直通制动系统输出制动压力P46至基础制动90产生摩擦制动。包括空气分配阀53、风缸51和风缸52。
空气分配阀53以列车管压力P64作为输入,输出控制压力P51至直通制动系统中的双向阀43,输出控制压力P51与输入控制压力P64线性对应,输入列车管压力减小时输出压力增大。
第一风缸,存储分配阀53输出的部分压力,起到缓冲作用。
第二风缸,存储空气压力,作为分配阀53输出压力的供给。
列车管压力控制模块60,同时接收救援制动电气信号1D和常用制动电气信号2D时将总风管空气压力P41经调节后向列车管输入列车管压力P64,接收紧急制动电气信号3D时停止总风管空气压力P41向列车管输入并排空列车管压力空气P64。包括控制器61、电空变换阀62、中继阀63、切换阀64、压力开关65、压力传感器66、减压阀67、止回阀68、充气阀69。
控制器61,包含信号输入接口和信号输出接口,所述信号输入接口能接收救援制动电气信号1D、常用制动电气信号2D、紧急制动电气信号3D、被救援电气信号4D,还能接收压力传感器66输入的列车管压力信号9D,所述信号输出接口能向电空变换阀62输出压力变换控制信号8D,能向切换阀64输出切换控制信号10,能向充气阀69输出充气控制信号11D,能输出常用制动电气信号2D,所述控制器具有计算功能,控制输出的压力变换控制信号8D所产生的列车管压力P64满足常用制动电气信号2D与紧急制动电气信号3D所需减速度的要求,在接收到救援制动电气信号1D和紧急制动电气信号3D时输出切换控制信号9D得电,在接收到救援制动信号1D、紧急制动电气信号3D和被救援电气信号4D时输出充气控制信号11D失电,在接收到被救援信号4D时根据压力传感器66采集的列车管压力信号9D输出对应的常用制动电气信号2D。
电空变换阀62,接收压力变换控制信号8D将总风管空气压力P41调节为与压力变换控制信号8D对应的预控压力P61输出至中继阀63,电空变换阀62的特性在于输出压力P61与压力变换控制信号8D线性对应,输入压力变换控制信号增大时输出压力增大。
中继阀63,具备一个预控腔室、一路总风压力输入端和一路列车管压力输出端,中继阀63的特性在于输出压力P62与预控腔室压力P61线性对应,输入预控压力增大时输出制动压力增大,并由总风压力输入端作为压力供给,其列车管压力输出端具有较大的流量。
切换阀64,切换控制信号10D得电时导通中继阀63输出端至列车管的通路,切换控制信号10D失电时截断中继阀输出端至列车管的通路。
压力开关65,检测到列车管压力P64过低时,输出紧急制动电气信号3D,为实现压力开关65检测到列车管压力P64过低时产生紧急制动持续排空列车管压力P64无法再次充气, 在压力开关65输出紧急制动电气信号3D一定时间内通过外部电路自动屏蔽输出。
压力传感器66,采集列车管压力P64输出至控制器61。
减压阀67,将总风管空气压力P41作为输入,当总风管空气压力P41大于设定值时将输出设定值压力,当总风管空气压力P41小于设定值时将按照总风压力值输出。
止回阀68,具备压力输入端和压力输出端,只允许压力由输入端流向输出端。
充气阀69,充气控制信号11D得电时导通止回阀68输出端至列车管的通路,充气控制信号11D失电时截断止回阀68输出端至列车管的通路。
紧急排风阀70,紧急制动电气信号3D失电时将列车管压力P64排空。
参见图2,图2为本发明实施例所提供的正常行车常用制动控制方法的流程图。
S10:操作常用制动指令器20,产生常用制动电气信号2D;救援制动开关10处于中立位。
S110:直通制动系统40动作。
S111:控制器41接收常用制动电气信号2D,输出压力变换控制信号6D至电空变换阀45;同时输出电制动请求信号5D至牵引系统80。
S112:电空变换阀45接收压力变换控制信号6D,输出预控压力P45至中继阀46。
S113:中继阀46接收预控压力P45,输出制动压力P46至基础制动90。
S114:牵引系统80接收电制动请求信号5D产生电制动力;基础制动90接收制动压力P46产生摩擦制动力。
S120:间接制动系统50和60动作。
S121:控制器61未接收到救援制动电气信号1D、紧急制动电气信号3D、被救援电气信号4D,输出充气控制信号11D至电磁阀69。
S122:电磁阀69接收充气控制信号11D,将减压阀67产生的列车管压力P63导通输入至列车管,产生列车管压力P64;列车管压力P64为列车管定压,如600kPa。
S123:分配阀53接收列车管压力P64,输出控制压力P51;此时P51为0kPa,无制动压力输出。
参见图3,图3为本发明实施例所提供的救援时常用制动控制方法的流程图。
S20:操作救援制动开关10,产生救援制动电气信号1D;操作常用制动指令器20,产生常用制动电气信号2D。
S210:直通制动系统40动作。
S211:控制器41接收常用制动电气信号2D,输出压力变换控制信号6D至电空变换阀45;控制器41接收救援制动电气信号1D,禁止输出电制动请求信号5D至牵引系统80。
S212:电空变换阀45接收压力变换控制信号6D,输出预控压力P45至中继阀46。
S213:中继阀46接收预控压力P45,输出制动压力P46至基础制动90。
S214:基础制动90接收制动压力P46产生摩擦制动力。
S220:间接制动系统50和60、直通制动系统40动作。
S221:控制器61接收常用制动电气信号2D,输出压力变换控制信号8D至电空变换阀62;控制器61接收救援制动电气信号1D,输出切换控制信号10D至切换阀64,停止输出充气控制信号11D至充气阀69。
S222:电空变换阀62接收压力变换控制信号8D,输出预控压力P61至中继阀63。
S223:中继阀63接收预控压力P61,输出列车管压力P62至切换阀64。
S224:切换阀64接收切换控制信号10D,将中继阀63产生的列车管压力P62导通输入至列车管,产生列车管压力P64;充气阀69接收控制器信号11D,切断减压阀67产生的列车管压力P63输入至列车管。
S225:分配阀53接收列车管压力P64,输出控制压力P51至双向阀43。
S226:双向阀43接收控制压力P51,与紧急制动压力P42对比取大后输出控制压力P43至空重车阀44。
S227:空重车阀44接收控制压力P43,经空重车调整后输出控制压力P44至中继阀46。
S228:中继阀46接收预控压力P44与直通制动预控压力P45取大,输出制动压力P46至基础制动90。
S229:基础制动90接收制动压力P46产生摩擦制动力。
参见图4,图4为本发明实施例所提供的紧急制动控制方法的流程图。
S30:操作紧急按钮30实施紧急制动,产生紧急制动电气信号3D;压力开关65检测到列车管压力P64,产生紧急制动电气信号3D。
S310:直通制动系统40动作。
S311:紧急电磁阀42接收紧急制动电气信号3D,输出控制压力P42至双向阀42;控制器41接收紧急制动电气信号3D,输出压力变换控制信号6D至电空变换阀45,根据速度输出高低速切换信号7D至空重车阀44。
S312:双向阀42接收控制压力P42,与控制压力P51对比取大后输出控制压力P43至空重车阀44。
S313:空重车阀44接收控制压力P43,经空重车调整后输出控制压力P44至中继阀46;电空变换阀45接收压力变换控制信号6D,输出预控压力P45至中继阀46。
S314:中继阀46接收压力P44与P45取大,输出制动压力P46至基础制动90。
S315:基础制动90接收制动压力P46产生摩擦制动力。
S320:间接制动系统50/60/70、直通制动系统40动作。
S321:紧急排风阀70接收紧急制动电气信号3D,将列车管压力P64排空;控制器61接收紧急制动电气信号3D,输出压力变换控制信号8D至电空变换阀62,输出切换控制信号10D至切换阀64,停止输出充气控制信号11D至充气阀69。
S322:电空变换阀62接收压力变换控制信号8D,输出预控压力P61为0kPa;切换阀64接收切换控制信号10D,导通中继阀63与列车管。
S323:中继阀63接收预控压力P61,排空列车管压力P64;充气阀69接收控制器信号11D,切断减压阀67产生的列车管压力P63输入至列车管。
S324:分配阀53接收列车管压力P64,输出控制压力P51至双向阀43。
S325:双向阀43接收控制压力P51,与紧急制动压力P42对比取大后输出控制压力P43至空重车阀44。
S326:空重车阀44接收控制压力P43,经空重车调整后输出控制压力P44至中继阀46。
S327:中继阀46接收预控压力P44与直通制动预控压力P45取大,输出制动压力P46至基础制动90。
S328:基础制动90接收制动压力P46产生摩擦制动力。
参见图5,图5为本发明实施例所提供的有电被救援控制方法的流程图。
S40:有电被救援:操作救援制动开关10,产生被救援制动电气信号4D。
S410:直通制动系统40动作。
S411:控制器41接收常用制动电气信号2D,输出压力变换控制信号6D至电空变换阀45。
S412:电空变换阀45接收压力变换控制信号6D,输出预控压力P45至中继阀46。
S413:中继阀46接收预控压力P45,输出制动压力P46至基础制动90。
S414:基础制动90接收制动压力P46产生摩擦制动力。
S420:间接制动系统50和60、直通制动系统40动作。
S421:压力传感器66采集列车管压力P64,输出电气信号9D至控制器61。
S422:控制器61接收电气信号9D,输出常用制动电气信号2D;控制器61接收被救援电气信号4D,停止输出切换控制信号10D至切换阀64,停止输出充气控制信号11D至充气阀69。
S423:分配阀53接收列车管压力P64,输出控制压力P51至双向阀43。
S424:双向阀43接收控制压力P51,与紧急制动压力P42对比取大后输出控制压力P43至空重车阀44。
S425:空重车阀44接收控制压力P43,经空重车调整后输出控制压力P44至中继阀46。
S426:中继阀46接收预控压力P44与直通制动预控压力P45取大,输出制动压力P46至基础制动90
S427:基础制动90接收制动压力P46产生摩擦制动力
参见图6,图6为本发明实施例所提供的无电被救援控制方法的流程图。
S50:无电被救援:间接制动系统50和60、直通制动系统40动作。
S501:分配阀53接收列车管压力P64,输出控制压力P51至双向阀43。
S502:双向阀43接收控制压力P51,输出控制压力P43至空重车阀44。
S503:空重车阀44接收控制压力P43,经空重车调整后输出控制压力P44至中继阀46。
S504:中继阀46接收预控压力P44,输出制动压力P46至基础制动90。
S505:基础制动90接收制动压力P46产生摩擦制动力。
基于上述技术方案,本发明实施例提供的一种空气制动控制系统,直通制动系统和间接制动系统同时工作与切换,提高间接制动系统控制精度,并实现列车能救援其他列车与无电时也能被救援。本发明还提供了一种应用在上述列车空气制动控制系统上的控制方法,包括:正常行车常用制动控制、救援时常用制动控制、紧急制动控制、有电被救援控制、无电被救援控制,为乘客提供了更高的安全性和可靠性。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
应当理解,在本发明中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在 不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (11)

  1. 一种列车空气制动控制系统,其特征在于包括:
    救援制动开关,所述救援制动开关包括三种信号模式:第一种为中立位置,所述中立位置不输出电气信号;第二种为救援位置,所述救援位置输出救援制动电气信号;第三种为被救援位置,所述被救援位置输出被救援电气信号;
    常用制动指令器,所述常用制动指令器输出常用制动电气信号;
    紧急制动按钮,所述紧急制动按钮输出紧急制动电气信号;
    直通制动系统,所述直通制动系统接收常用制动电气信号实现列车常用制动,在同时接收到救援制动电气信号时仅将总风管压力空气经调节后向基础制动输入制动压力施加摩擦制动,在未接收到救援制动电气信号时还向牵引系统请求施加电制动;接收紧急制动电气信号实现列车紧急制动,将总风管压力空气经调节后向基础制动输入制动压力施加摩擦制动;
    间接制动系统,所述间接制动系统包括空气分配阀模块、列车管压力控制模块、紧急排风阀;空气分配阀模块,所述空气分配阀模块根据列车管压力变化输出制动控制压力,经直通制动系统输出制动压力至基础制动产生摩擦制动;
    列车管压力控制模块,所述列车管压力控制模块同时接收救援制动电气信号和常用制动电气信号时将总风管压力空气经调节后向列车管输入列车管压力,接收紧急制动电气信号时停止总风管压力向列车管输入并排空列车管压力空气;
    紧急排风阀,所述紧急排放阀接收紧急制动电气信号时排空列车管压力空气。
  2. 根据权力要求1所述的一种列车空气制动控制系统,其特征在于所述直通制动系统包括控制器、紧急电磁阀、双向阀、空重车阀、电空变换阀、中继阀,所述控制器接收救援制动电气信号、常用制动电气信号、紧急制动电气信号,所述控制器向牵引系统输出电制动请求信号、向电空变换阀输出压力变换控制信号、向空重车阀输出高低速切换信号,所述控制器具有计算功能,控制输出的电制动请求信号与压力变换控制信号所产生的制动力满足常用制动电气信号与紧急制动电气信号所需减速度的要求,控制输出的高低压切换信号随速度变化,所述紧急电磁阀接收紧急制动电气信号,在得电时导通总风管压力输入至双向阀,所述双向阀输入紧急电磁阀产生的控制压力与空气分配阀产生的控制压力进行比较后输出二者最大的压力至空重车阀,所述空重车阀根据输入的空气弹簧压力将双向阀产生的控制压力进行空重车调节后输出至中继阀第二腔室,空重车阀的特性在于输出压力与空簧压力线性对应,输入空簧压力增大时输出压力增大,在接收控制器输入的高低速切换信号得电时其线性对应关系斜率低,在接收控制器输入的高低速切换信号失电时其线性对应关系斜率高,当双向阀产生的控制压力小于空簧压力线性对应的输出压力时直接将双向阀产生的控制压力输入至中继阀 第二腔室,当双向阀产生的控制压力大于空簧压力线性对应的输出压力时将空簧压力线性对应的输出压力输入至中继阀第二腔室,所述电空变换阀接收压力变换控制信号将总风管压力空气调节为与压力变换控制信号对应的预控压力输出至中继阀第一腔室,电空变换阀的特性在于输出压力与压力变换控制信号线性对应,输入压力变换控制信号增大时输出压力增大,所述中继阀具备两个预控腔室,即第一腔室和第二腔室,具备一路总风压力输入端和一路制动压力输出端,中继阀的特性在于输出压力与两个预控腔室压力最大值线性对应,输入预控压力增大时输出制动压力增大,并由总风压力输入端作为压力供给,其列车管压力输出端具有较大的流量。
  3. 根据权力要求1所述的一种列车空气制动控制系统,其特征在于所述空气分配阀模块包括空气分配阀、第一风缸和第二风缸,所述空气分配阀以列车管压力作为输入,输出控制压力至直通制动系统中的双向阀,输出控制压力与输入控制压力线性对应,输入列车管压力减小时输出压力增大,所述第一风缸存储分配阀输出的部分压力,起到缓冲作用,所述第二风缸存储空气压力,作为分配阀输出压力的供给。
  4. 根据权力要求1或3所述的一种列车空气制动控制系统,其特征在于所述列车管压力控制模块包括控制器、电空变换阀、中继阀、切换阀、压力开关、压力传感器、减压阀、止回阀、充气阀,所述控制器接收救援制动电气信号、常用制动电气信号、紧急制动电气信号、被救援电气信号,还接收压力传感器输入的列车管压力信号,向电空变换阀输出压力变换控制信号,向切换阀输出切换控制信号,向充气阀输出充气控制信号,输出常用制动电气信号,所述控制器具有计算功能,控制输出的压力变换控制信号所产生的列车管压力满足常用制动电气信号与紧急制动电气信号所需减速度的要求,在接收到救援制动电气信号和紧急制动电气信号时输出切换控制信号得电,在接收到救援制动信号、紧急制动电气信号和被救援电气信号时输出充气控制信号失电,在接收到被救援信号时根据压力传感器采集的列车管压力信号输出对应的常用制动电气信号,所述电空变换阀接收压力变换控制信号将总风管压力空气调节为与压力变换控制信号对应的预控压力输出至中继阀,电空变换阀的特性在于输出压力与压力变换控制信号线性对应,输入压力变换控制信号增大时输出压力增大,所述中继阀具备一个预控腔室、一路总风压力输入端和一路列车管压力输出端,中继阀的特性在于输出压力与预控腔室压力线性对应,输入预控压力增大时输出制动压力增大,并由总风压力输入端作为压力供给,其列车管压力输出端具有较大的流量。所述切换阀,其特征在于,切换控制信号得电时导通中继阀输出端至列车管的通路,切换控制信号失电时截断中继阀输出端至列车管的通路。所述压力开关,其特征在于,检测到列车管压力过低时,输出紧急制动电气信号, 为实现压力开关检测到列车管压力过低时产生紧急制动持续排空列车管压力空气无法再次充气,在压力开关输出紧急制动电气信号一定时间内通过外部电路自动屏蔽输出。所述压力传感器,其特征在于,采集列车管压力输出至控制器。所述减压阀,其特征在于,将总风管压力作为输入,当总风管压力大于设定值时将输出设定值压力,当总风管压力小于设定值时将按照总风压力值输出。所述止回阀,其特征在于,具备压力输入端和压力输出端,只允许压力由输入端流向输出端。所述充气阀,其特征在于,充气控制信号得电时导通止回阀输出端至列车管的通路,充气控制信号失电时截断止回阀输出端至列车管的通路。
  5. 根据权力要求1或2或3所述的一种列车空气制动控制系统,其特征在于所述紧急排风阀紧急制动电气信号失电时将列车管压力排空。
  6. 一种列车空气制动控制方法,利用权利要求1所述的一种列车空气制动控制系统,其特征在于包括正常行车常用制动控制方法、救援时常用制动控制方法、紧急制动控制方法、有电被救援控制方法、无电被救援控制方法。
  7. 根据权力要求6所述的一种列车空气制动控制方法,其特征在于所述正常行车常用制动控制方法中救援开关处于中立位置,常用制动指令器产生常用制动电气信号,直通制动系统接收常用制动电气信号,控制器向牵引系统发送电制动请求信号产生电制动力,同时控制器控制电空变换阀动作经中继阀流量放大产生制动压力输出至基础制动产生摩擦制动力,电制动力与摩擦制动力满足常用制动电气信号所需减速度的要求,间接制动系统未接收到救援制动电气信号、紧急制动电气信号、被救援电气信号,控制器控制充气阀动作将减压阀产生的定值压力输出至列车管,分配阀接收到定值压力不输出控制压力,不产生制动压力。
  8. 根据权力要求7所述的一种列车空气制动控制方法,其特征在于救援时常用制动控制方法中救援开关处于救援位置输出救援制动电气信号,常用制动指令器产生常用制动电气信号,通过该控制可以实现列车直通制动系统和间接制动系统同时工作,并能救援其他列车,直通制动系统接收救援制动电气信号,控制器禁止输出电制动请求信号至牵引系统,接收常用制动电气信号,控制器控制电空变换阀动作经中继阀流量放大产生制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足常用制动电气信号所需减速度的要求,间接制动系统接收救援制动电气信号和常用制动电气信号,控制器根据常用制动电气信号控制电空变换阀与切换阀动作同时关闭充气阀,电空变换阀输出的预控压力经中继阀流量放大并经切换阀输出至列车管,分配阀接收到列车管压力输出对应的预控压力通过直通制动系统双向阀、空重车阀与中继阀产生冗余的制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足常用制动电气信号所需减速度的要求。
  9. 根据权力要求8所述的一种列车空气制动控制方法,其特征在于紧急制动控制方法中紧急按钮产生紧急制动电气信号或压力开关检测到列车管压力产生紧急制动电气信号,直通制动系统接收紧急制动电气信号,控制器禁止输出电制动请求信号至牵引系统,紧急电磁阀动作将总风压力输入至空重车阀经空重车调整后输入至中继阀进行流量放大产生制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足紧急制动电气信号所需减速度的要求,间接制动系统接收到紧急制动电气信号,控制器控制电空变换阀与切换阀动作同时关闭充气阀,通过电空变换阀、中继阀、切换阀排空列车管压力,同时紧急电磁阀接收到紧急制动电气信号排空列车管压力,分配阀接收到列车管压力输出对应的预控压力通过直通制动系统双向阀、空重车阀与中继阀产生冗余的制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足紧急制动电气信号所需减速度的要求。
  10. 根据权力要求9所述的一种列车空气制动控制方法,其特征在于有电被救援控制方法中救援制动开关产生被救援制动电气信信号,直通制动系统接收常用制动电气信号,控制器控制电空变换阀动作经中继阀流量放大产生制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足常用制动电气信号所需减速度的要求,间接制动系统接收到被救援电气信号,控制器通过压力传感器采集列车管压力输出相应的常用制动电气信号用于直通制动系统常用制动指令,同时控制器控制充气阀与切换阀关闭,分配阀接收到列车管压力输出对应的预控压力通过直通制动系统双向阀、空重车阀与中继阀产生冗余的制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足救援机车或列车列车管减压量的要求。
  11. 根据权力要求10所述的一种列车空气制动控制方法,其特征在于无电被救援控制方法分配阀接收到列车管压力输出对应的预控压力通过直通制动系统双向阀、空重车阀与中继阀产生的制动压力输出至基础制动产生摩擦制动力,摩擦制动力满足救援机车或列车列车管减压量的要求。
PCT/CN2020/102924 2020-04-02 2020-07-20 一种列车空气制动控制系统及其方法 WO2021196452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010253775.5 2020-04-02
CN202010253775.5A CN111409665B (zh) 2020-04-02 2020-04-02 一种列车空气制动控制系统及其方法

Publications (1)

Publication Number Publication Date
WO2021196452A1 true WO2021196452A1 (zh) 2021-10-07

Family

ID=71488029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102924 WO2021196452A1 (zh) 2020-04-02 2020-07-20 一种列车空气制动控制系统及其方法

Country Status (2)

Country Link
CN (1) CN111409665B (zh)
WO (1) WO2021196452A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114475265A (zh) * 2022-03-02 2022-05-13 南京铁道职业技术学院 一种轨道交通连续紧急制动装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111409665B (zh) * 2020-04-02 2021-06-22 南京中车浦镇海泰制动设备有限公司 一种列车空气制动控制系统及其方法
CN113401162B (zh) * 2021-07-08 2023-03-28 中车资阳机车有限公司 一种用于列车救援的制动系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089911A (ko) * 2007-04-03 2008-10-08 현대로템 주식회사 구원열차로 구원되는 피구원열차의 제동압 제어방법
CN102963390A (zh) * 2012-05-31 2013-03-13 南京浦镇海泰制动设备有限公司 铁路客车用制动控制装置
CN204821600U (zh) * 2015-07-15 2015-12-02 南车南京浦镇车辆有限公司 一种列车联挂救援常用制动一键缓解装置
CN109109851A (zh) * 2018-08-07 2019-01-01 中车大连机车车辆有限公司 轨道车辆紧急制动安全环线电路及轨道车辆
CN109353369A (zh) * 2018-09-30 2019-02-19 中车长春轨道客车股份有限公司 一种轨道车辆救援制动系统及控制方法
CN109703595A (zh) * 2019-01-29 2019-05-03 中车青岛四方机车车辆股份有限公司 一种轨道车辆双模式救援转换装置、方法及车辆
CN209191968U (zh) * 2018-09-30 2019-08-02 中车长春轨道客车股份有限公司 一种轨道车辆救援制动系统
CN111409665A (zh) * 2020-04-02 2020-07-14 南京中车浦镇海泰制动设备有限公司 一种列车空气制动控制系统及其方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089911A (ko) * 2007-04-03 2008-10-08 현대로템 주식회사 구원열차로 구원되는 피구원열차의 제동압 제어방법
CN102963390A (zh) * 2012-05-31 2013-03-13 南京浦镇海泰制动设备有限公司 铁路客车用制动控制装置
CN204821600U (zh) * 2015-07-15 2015-12-02 南车南京浦镇车辆有限公司 一种列车联挂救援常用制动一键缓解装置
CN109109851A (zh) * 2018-08-07 2019-01-01 中车大连机车车辆有限公司 轨道车辆紧急制动安全环线电路及轨道车辆
CN109353369A (zh) * 2018-09-30 2019-02-19 中车长春轨道客车股份有限公司 一种轨道车辆救援制动系统及控制方法
CN209191968U (zh) * 2018-09-30 2019-08-02 中车长春轨道客车股份有限公司 一种轨道车辆救援制动系统
CN109703595A (zh) * 2019-01-29 2019-05-03 中车青岛四方机车车辆股份有限公司 一种轨道车辆双模式救援转换装置、方法及车辆
CN111409665A (zh) * 2020-04-02 2020-07-14 南京中车浦镇海泰制动设备有限公司 一种列车空气制动控制系统及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114475265A (zh) * 2022-03-02 2022-05-13 南京铁道职业技术学院 一种轨道交通连续紧急制动装置
CN114475265B (zh) * 2022-03-02 2023-06-02 南京铁道职业技术学院 一种轨道交通连续紧急制动装置

Also Published As

Publication number Publication date
CN111409665B (zh) 2021-06-22
CN111409665A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2021196452A1 (zh) 一种列车空气制动控制系统及其方法
CN109383554B (zh) 控制车集中制动控制系统、方法及动车组制动控制系统
US6626506B2 (en) Method and apparatus for controlling electro-pneumatic braking on a train
ATE377533T1 (de) Elektropneumatische bremseinrichtung eines schienenfahrzeugs mit durchgängigem regelbereich
WO2020135620A1 (zh) 用于轨道车辆的机电制动系统及其控制方法、轨道车辆
JPS6255255A (ja) 電空式ブレ−キ制御装置
CA2508406A1 (en) Interface system from pneumatic to electrically-controlled pneumatic brake systems
JP2008189130A (ja) 貨物列車用ブレーキ制御装置
EP3617014A1 (en) Locomotive and dual mode brake control system thereof
CA2305311C (en) Brake control unit with redundancy
US8010246B2 (en) Locomotive air/vacuum control system
CN108501922B (zh) 一种气压式电子驻车系统
JP3586140B2 (ja) 電気車の空気ブレーキ装置及び空気ブレーキ方法
CA1213633A (en) Vigilance safety control system
JP3209288B2 (ja) 鉄道車両用ブレーキ装置
US6746087B1 (en) Electronic equalizing reservoir controller with pneumatic penalty override
JP3775095B2 (ja) 車両用回生協調ブレーキ制御装置
CN117207940A (zh) 制动控制方法及相关设备、车辆
ES2964153T3 (es) Sistema electroneumático de control de frenado de emergencia y de servicio para al menos un vehículo ferroviario
CN113928292B (zh) 车辆制动方法、系统及计算机可读存储介质
JPH1044964A (ja) 鉄道車両用ブレーキ装置
JP2000318602A (ja) 列車分離検知システム及びこれを用いた鉄道車両用ブレーキ装置
CN117341643A (zh) 轨道工程车的电控制动装置、电控制动机和列车
JP3244132B2 (ja) 鉄道車両用ブレーキ装置
CN115158264A (zh) 列车制动系统、制动方法和列车组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929064

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20929064

Country of ref document: EP

Kind code of ref document: A1