WO2021193887A1 - バイオディーゼル燃料の製造方法 - Google Patents

バイオディーゼル燃料の製造方法 Download PDF

Info

Publication number
WO2021193887A1
WO2021193887A1 PCT/JP2021/012757 JP2021012757W WO2021193887A1 WO 2021193887 A1 WO2021193887 A1 WO 2021193887A1 JP 2021012757 W JP2021012757 W JP 2021012757W WO 2021193887 A1 WO2021193887 A1 WO 2021193887A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
glycerin
fatty acid
separation step
acid
Prior art date
Application number
PCT/JP2021/012757
Other languages
English (en)
French (fr)
Inventor
央士 梶間
Original Assignee
バイオ燃料技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バイオ燃料技研工業株式会社 filed Critical バイオ燃料技研工業株式会社
Priority to JP2022510712A priority Critical patent/JP7252588B2/ja
Priority to EP21776355.6A priority patent/EP4130202A4/en
Publication of WO2021193887A1 publication Critical patent/WO2021193887A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/128Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis
    • C07C29/1285Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis of esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/86Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/88Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/02Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
    • C11C1/04Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis
    • C11C1/045Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis using enzymes or microorganisms, living or dead
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • C10G2300/1007Used oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for producing biodiesel fuel, and more specifically, to a method in which wastes containing fats and oils, waste cooking oil, waste glycerin and the like can be used as raw materials.
  • Biodiesel fuels made from such materials are attracting attention.
  • a method for synthesizing biodiesel fuel a method of synthesizing a fatty acid alkyl ester by a transesterification reaction using animal and plant fats and oils and monohydric alcohol as raw materials and using an alkaline substance such as potassium hydroxide as a catalyst is the mainstream (for example, non-).
  • Patent Document 1 biodiesel fuel containing hydrocarbon as a main component has been attracting attention as a so-called "next-generation biodiesel fuel”.
  • Patent Document 1 proposes a method for producing a hydrocarbon by a catalytic cracking method using fats and oils such as vegetable oil and waste cooking oil as raw materials. According to such a method, among the fatty acid glycerin esters, hydrocarbons derived from the hydrocarbon group of the fatty acid, propane derived from the glycerin moiety, carbon dioxide derived from the ester group, carbon monoxide and the like are produced.
  • fatty acid glycerin such as waste glycerin produced as a by-product in the production of fatty acid alkyl ester. It is difficult to use ester-containing waste and free fatty acid-containing waste such as high acid value oil, which has an extremely high acid value among waste cooking oils, as a raw material. In recent years, the treatment of such waste has become an urgent issue, and it is desired to develop a method that can use these wastes as raw materials also in the production of next-generation biodiesel fuel.
  • the present invention has been made in view of the above problems, and is a method for producing a biodiesel fuel containing a hydrocarbon as a main component, wherein a raw material containing at least one of free fatty acid and fatty acid glycerin ester is used.
  • the challenge is to provide a new manufacturing method that can be used.
  • the present inventor added an inorganic acid or an enzyme to a raw material containing at least one of glycerin and a fatty acid glycerin ester to separate them, and used the obtained oil or the oil.
  • an inorganic acid or an enzyme to separate them, and used the obtained oil or the oil.
  • a method for producing biodiesel fuel A first separation step of mixing a raw material containing at least one of a free fatty acid and a fatty acid glycerin ester with an inorganic acid or an enzyme to separate the first oil and the first glycerin solution. At least one method other than the alkali catalyst method, which is selected from the group consisting of an acid catalyst method, an acid alkali catalyst method, a biocatalyst method, an ion exchange resin method, a supercritical method, a subcritical method and a solid catalyst method.
  • the esterification step of reacting the first oil with a monovalent alcohol to obtain a fatty acid alkyl ester.
  • a catalytic cracking step of contacting the fatty acid alkyl ester with a catalyst to obtain a hydrocarbon A manufacturing method comprising.
  • a second separation step of separating the second oil and the precipitated inorganic salt from the neutralized glycerin solution comprises an alcohol separation step of separating a monohydric alcohol from a glycerin solution from which the second oil component and the inorganic salt have been separated.
  • the monohydric alcohol in the esterification step the monohydric alcohol separated in the alcohol separation step is used.
  • the production method according to [1] or [2]. [4] A method for producing biodiesel fuel.
  • a manufacturing method comprising. [5] A neutralization step of neutralizing the obtained first glycerin solution with an alkaline substance by using an inorganic acid in the first separation step. It comprises a second separation step of separating the second oil and the precipitated inorganic salt from the neutralized glycerin solution.
  • the raw material in the first separation step contains at least one of a high acid value oil having an acid value of 10 mgKOH / g or more and waste glycerin produced as a by-product in the production process of the fatty acid alkyl ester [1]. ] To [5].
  • the production method according to any one of the following items. [7] The production method according to any one of [1] to [6], wherein an inorganic acid is used in the first separation step, and the inorganic acid is concentrated sulfuric acid. [8] The production method according to any one of [1] to [7], wherein an inorganic acid is used in the first separation step, and the pH of the mixed solution of the raw material and the inorganic acid is 3 or less. ..
  • a raw material containing at least one of free fatty acid and fatty acid glycerin ester can be used, for example, free fatty acid-containing waste and waste.
  • Fatty acid glycerin ester-containing waste can be effectively recycled.
  • a raw material containing at least one of a free fatty acid and a fatty acid glycerin ester is mixed with an inorganic acid or an enzyme, and a first oil component and a first glycerin solution are mixed. It comprises a first separation step of separating and; a catalytic decomposition step of bringing a raw material containing an oil or fatty acid alkyl ester into contact with a catalyst to obtain a hydrocarbon.
  • the first oil component may be used (hereinafter, referred to as "first embodiment");
  • a method other than the alkali catalyst method which is selected from the group consisting of an acid catalyst method, an acid alkali catalyst method, a biocatalyst method, an ion exchange resin method, a supercritical method, a subcritical method and a solid catalyst method.
  • an esterification step of reacting the first oil obtained in the first separation step with a monovalent alcohol to obtain a fatty acid alkyl ester is further provided, and the obtained fatty acid alkyl ester is subjected to the above contact. It may be used as a raw material in the decomposition step (hereinafter, referred to as "second embodiment").
  • FIG. 1 is a diagram showing a flow for obtaining a first oil component in the first embodiment.
  • first separation step for obtaining the first oil content
  • the neutralization step for obtaining the first oil content
  • the second separation step for obtaining the first oil content
  • the alcohol separation step is the first optional steps. It is illustrated to be performed after the separation step.
  • waste containing free fatty acids and fatty acid glycerin esters contains components other than these. Therefore, if these are applied to the biodiesel fuel production reaction (contact cracking method) as they are, there arises a problem that the catalytic cracking reaction is hindered or a large amount of impurities remain in the product.
  • impurities such as glycerin and inorganic salts
  • the raw material used in the present embodiment is not particularly limited as long as it contains at least one of free fatty acid and fatty acid glycerin ester.
  • Examples of raw materials containing free fatty acids include wastes containing free fatty acids.
  • a raw material containing a fatty acid glycerin ester a waste containing a fatty acid glycerin ester is exemplified.
  • the free fatty acid-containing waste and the fatty acid glycerin ester-containing waste will be described in some detail.
  • the free fatty acid-containing waste that can be used in the present embodiment includes waste glycerin, sweet water, and washing waste water of fatty acid alkyl ester, which are by-produced in the process of producing biodiesel fuel. Illustrated.
  • the washing wastewater of the fatty acid alkyl ester is the waste water generated when the reaction product is washed in the process of producing the fatty acid alkyl ester such as biodiesel fuel, and in addition to water, unreacted free fatty acid and its salt thereof.
  • glycerin produced as a by-product in the production reaction of fatty acid alkyl ester, unreacted monohydric alcohol and the like are contained.
  • sweet water is a by-product in the case of saponifying (alkaline hydrolysis) fats and oils to produce fatty acid salts (for example, in the manufacturing process of soap), and contains glycerin, water, alkali and the like.
  • the fatty acid alkyl ester used as a biodiesel fuel can be obtained by adding a monohydric alcohol such as methanol and an alkali catalyst such as potassium hydroxide to a raw material fat such as vegetable oil and performing a transesterification reaction.
  • Raw oils and fats for biodiesel fuel include vegetable oils such as rapeseed oil, palm oil, olive oil, sunflower oil, soybean oil, rice oil and cannabis oil; animal oils such as fish oil, pork fat and cow pig; waste cooking oil such as tempura oil; Can be used.
  • vegetable oils such as rapeseed oil, palm oil, olive oil, sunflower oil, soybean oil, rice oil and cannabis oil
  • animal oils such as fish oil, pork fat and cow pig
  • waste cooking oil such as tempura oil
  • Can be used as the monohydric alcohol, methanol, ethanol, 1-propanol, ethylhexanol and the like can be used, and methanol and ethanol are preferable, and methanol is particularly preferable.
  • Potassium hydroxide, sodium hydroxide, calcium oxide and the like can be used as the alkali catalyst, but potassium hydroxide is used from the viewpoint of precipitation property and ease of reuse of the inorganic salt separated and recovered in the present embodiment. preferable.
  • the fatty acid glycerin ester contained in the raw material fat and oil reacts with the monohydric alcohol to produce the fatty acid alkyl ester and glycerin.
  • the obtained reaction solution is separated into a fatty acid alkyl ester phase and a waste glycerin phase, and in the production of biodiesel fuel, the obtained fatty acid alkyl ester phase is recovered and washed to obtain the biodiesel fuel. do.
  • the waste glycerin phase contains unreacted monohydric alcohol, unreacted fats and oils, fatty acids and salts thereof, alkali catalysts, and impurities derived from raw material fats and oils, in addition to containing glycerin in a high concentration.
  • the waste glycerin may be liquid waste glycerin or solid waste glycerin, but from the viewpoint of workability, handling and the like, liquid waste glycerin is preferable.
  • the content of glycerin, monohydric alcohol, fats and oils, free fatty acids and salts thereof in waste glycerin is not particularly limited, but usually, glycerin is 25% by mass or more and 65% by mass or less, and monohydric alcohol is 2 with respect to the whole waste glycerin. In many cases, the total amount of fats and oils, free fatty acids and salts thereof is 30% by mass or more and 20% by mass or less, and 30% by mass or more and 50% by mass or less. From the viewpoint of making the biodiesel fuel production method according to the present embodiment more stable, glycerin is 30% by mass or more and 65% by mass or less, and monohydric alcohol is 3% by mass with respect to the whole waste glycerin.
  • the total content of fats and oils, free fatty acids and salts thereof may be 25% by mass or more and 55% by mass or less.
  • the pH is often 9 or more, and in the present embodiment, it may be 9 to 13.
  • the water content in the waste glycerin is determined from the viewpoint of facilitating the acid-catalyzed esterification reaction by the unreacted fats and oils contained in the waste glycerin and the monohydric alcohol. It is preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • the water content of the waste glycerin can be appropriately adjusted by heating, reducing the pressure, using a desiccant or the like, or permeating the purified glycerin.
  • waste glycerin produced as a by-product in the biodiesel fuel production process is used among the free fatty acid-containing wastes described above. Is particularly preferable.
  • composition containing a fatty acid glycerin ester can also be used as a raw material.
  • an esterification reaction or the like in the first separation step occurs using a composition containing a fatty acid glycerin ester. As a result, free fatty acids can be recovered and glycerin can be separated.
  • Compositions containing fatty acid glycerin ester include, for example, waste cooking oil, animal oil (beef fat, pig oil, bird oil, butter, waste milk, fish oil, liver oil, etc.), vegetable oil (rapeseed oil, palm oil, olive oil, sunflower oil, large size). Fats and oils mainly composed of fatty acid glycerin ester of bean oil, rice oil, cannabis oil, margarine, etc.), high acid value oil (gristrap oil, sewage oil, gutter oil, waste liquid treatment recycled oil, mayonnaise, dressing, etc.); , A composition containing a fatty acid salt such as soap as a main component; a waste liquid produced as a by-product in the process of producing free fatty acids; and the like.
  • a fatty acid salt such as soap as a main component
  • a waste liquid produced as a by-product in the process of producing free fatty acids and the like.
  • the main component means the component having the highest content in the composition (however, when the most abundant component is water, the component having the second highest content). means.
  • the content is preferably 40% by mass or more, more preferably 50% by mass or more.
  • the high acid value oil refers to an oil or fat having an acid value of 10 mgKOH / g or more, and contains free fatty acids and the like in addition to the fatty acid glycerin ester which is the main component of the oil and fat.
  • the acid value may be 20 mgKOH / g or more, and further may be 50 mgKOH / g or more.
  • the upper limit of the acid value is usually 200 mgKOH / g or less.
  • Oil slag is a by-product separated from fats and oils (crude oil) in the deoxidizing step in the refining of vegetable fats and oils, and contains fatty acid salts, fatty acid glycerin esters, alkalis, water and the like.
  • the waste liquid produced as a by-product in the process of producing free fatty acids is the waste produced as a by-product when hydrolyzing the fats and oils of animals and plants to produce free fatty acids.
  • Examples of the method for producing free fatty acid by hydrolysis include a high-temperature and high-pressure decomposition method and an enzymatic decomposition method.
  • the waste liquid produced as a by-product in such a production process includes unreacted fats and oils, glycerin produced by hydrolysis, partially hydrolyzed fats and oils, and the like.
  • the separation step (hereinafter, this step may be referred to as "first separation step" in comparison with the second separation step described later) is a free fatty acid and fatty acid glycerin ester.
  • This is a step of mixing a raw material containing at least one kind with an inorganic acid or an enzyme to phase-separate the first oil component and the first glycerin solution.
  • the oils separated in this step include free fatty acids and fatty acid glycerin esters in addition to fatty acid alkyl esters.
  • a fatty acid alkyl ester is produced by an esterification reaction with an unreacted monohydric alcohol contained in waste glycerin using an inorganic acid or an enzyme as a catalyst.
  • the fatty acid is present as a salt, it is preferable to use an inorganic acid in this step because the fatty acid salt is converted into a free fatty acid by the inorganic acid and easily separated from glycerin.
  • a fatty acid glycerin ester-containing composition When a fatty acid glycerin ester-containing composition is used as a raw material, a fatty acid alkyl ester and glycerin are produced by a transesterification reaction with a monohydric alcohol. Since such glycerin can be recovered separately as described later, the glycerin portion of the fatty acid glycerin ester can also be effectively recycled without providing a lower hydrocarbon recovery facility.
  • the monohydric alcohol in the transesterification reaction can be added separately, and for example, the monohydric alcohol recovered in the alcohol separation step described later can be used.
  • the unreacted monohydric alcohol contained in the waste glycerin may be utilized by treating the waste glycerin at the same time as the fatty acid glycerin ester-containing composition.
  • this step can also be referred to as an esterification step.
  • the first separation step may be referred to as "first esterification step".
  • the fatty acid glycerin ester is a free fatty acid, glycerin, or a partially hydrolyzed fatty acid glycerin ester (monoglyceride, diglyceride) in the presence of an acid in the first separation step. ) Is generated.
  • the raw material contains a fatty acid salt
  • the fatty acid salt is converted into a free fatty acid by the acid, and it becomes easy to separate from glycerin. Therefore, even when the raw material does not contain monohydric alcohol, the present embodiment can be suitably applied.
  • the first separation step is performed in the presence of an inorganic acid or an enzyme, various raw materials can be processed at the same time.
  • wastes containing free fatty acids and fatty acid glycerin esters such as waste glycerin, waste cooking oil, and high acid value oil can be effectively utilized, which also contributes to reduction of environmental load.
  • high acid value oil has a high acid value of 10 mgKOH / g or more, so that it is difficult to use it as a raw material for the transesterification reaction using the alkali catalyst described above.
  • a high acid value oil can also be suitably used as a raw material, and is particularly suitable when an inorganic acid is used.
  • the fatty acid alkyl ester and free fatty acid produced in the first separation step move to the oil phase consisting of the first oil, so that the first glycerin Can be separated from the liquid.
  • the raw material that can be used in the first separation step preferably has a water content of 10% by mass or less, and preferably 5% by mass or less.
  • a raw material having a low water content for example, waste glycerin having a low water content
  • the water content of the raw material can be appropriately adjusted by heating, reducing the pressure, using a desiccant or the like, or permeating the purified glycerin.
  • examples of the inorganic acid include concentrated sulfuric acid, phosphoric acid, concentrated nitric acid, hydrogen chloride and the like, but concentrated sulfuric acid and phosphoric acid having a low water content are preferable, and concentrated sulfuric acid is preferable. Especially preferable.
  • the pH of the mixed solution (reaction solution) of the raw material and the inorganic acid is preferably 3 or less, and particularly preferably 1 or less.
  • the pH of the reaction solution can be adjusted by the amount of the above-mentioned inorganic acid added.
  • the reaction solution preferably has a water content of 10% by mass or less, and particularly preferably 0.5% by mass or less.
  • the water content of the reaction solution can be appropriately adjusted by adjusting the water content and input amount of each raw material, using a desiccant in the reaction solution, and the like.
  • the efficiency of the acid-catalyzed esterification reaction can be enhanced, and the first oil content and the first glycerin solution (including the acidic glycerin phase and the inorganic salt) can be increased. Can be well separated.
  • the temperature of the reaction solution in the first separation step can be 30 to 64 ° C, and further can be 50 to 60 ° C.
  • the reaction time can be 0.5 to 12 hours, further 4 to 12 hours, and further 8 to 12 hours. During this time, it is preferable to stir the reaction solution. After the above reaction (or stirring) is completed, the mixture is allowed to stand for 0.2 to 12 hours to contain the first oil containing fatty acid alkyl ester, unreacted fat and oil, and the first containing an acidic glycerin phase and an inorganic salt. Separates from the glycerin solution.
  • the enzyme when an enzyme is used in the first separation step, the enzyme is not particularly limited as long as it can catalyze the transesterification reaction, and for example, lipase, phospholipase, acyltransferase and the like can be used. Of these, lipase is particularly preferable.
  • the enzyme is preferably immobilized on a carrier. The pH, reaction temperature, reaction time, etc. of the reaction solution can be appropriately adjusted according to the enzyme used. After the reaction, the mixture is allowed to stand for 0.2 to 12 hours to separate the first oil containing fatty acid alkyl ester, unreacted fat and oil, and the first glycerin solution containing glycerin and an enzyme.
  • the first oil (fatty acid alkyl ester, free fatty acid, etc.) obtained by recovering the oil phase can be used as a raw material in the catalytic cracking step described later.
  • the pH of the obtained first oil tends to be acidic due to the acid-catalyzed esterification reaction, so it is preferable to adjust the pH so that it becomes neutral.
  • an alkaline substance to adjust the pH.
  • hydroxides such as potassium hydroxide and sodium hydroxide can be used.
  • various substances can be used as the alkaline substance.
  • an alkaline substance containing a free fatty acid can be used as the alkaline substance.
  • by-products of the alkali-catalyzed transesterification reaction of fats and oils such as waste glycerin; compositions containing fatty acid salts as main components such as oil slag and alkaline soap; and the like can be mentioned. These are preferable from this point of view because they can not only neutralize the acidic oil content but also increase the yield of free fatty acids.
  • the first oil content obtained as described above can be used as a raw material in the catalytic cracking step described later.
  • the oil content may be further recovered by going through the neutralization step and the second separation step described later, or the monohydric alcohol may be recovered by the alcohol separation step.
  • the neutralization step is a step of neutralizing the obtained first glycerin solution with an alkaline substance when an inorganic acid is used in the first separation step. As shown in FIG. 1, when an enzyme is used in the first separation step, this step can be omitted.
  • an alkaline substance hydroxides such as potassium hydroxide and sodium hydroxide can be used.
  • various substances can be used as the alkaline substance.
  • the alkaline substance a substance containing glycerin can be used.
  • glycerin-containing alkaline substances include the above-mentioned waste glycerin and the like, which are by-products of the alkali-catalyzed transesterification reaction of fats and oils. Since these can not only neutralize acidic glycerin but also increase the yield of glycerin, the use of a glycerin-containing alkaline substance is preferable from this viewpoint as well.
  • the glycerin-containing alkaline substance may contain a fatty acid salt or a fatty acid glycerin ester.
  • the glycerin-containing alkaline substance preferably has a glycerin content of 25% by mass or more, and particularly preferably 50% by mass or more.
  • the upper limit is not particularly limited, but may be, for example, 99% by mass or less, or 90% by mass or less.
  • the pH of the glycerin-containing alkaline substance is preferably 9 or more, and particularly preferably 9 to 13.
  • a composition containing a fatty acid salt as a main component may be used as the alkaline substance.
  • examples of the alkaline substance containing a fatty acid salt as a main component include oil slag and alkaline soap.
  • the pH of the glycerin solution is 4.0 to 7.5, further 4.5 to 7.0, and particularly 5.0 to 6.5. It is preferable to neutralize.
  • the pH of the glycerin solution can be appropriately adjusted by controlling the amount of the alkaline substance added.
  • the glycerin solution obtained in the neutralization step preferably has a water content of 10% by mass or less, and particularly preferably 3% by mass or less.
  • the upper limit of the water content is set as described above. It is preferable to specify.
  • the lower limit of the water content is not particularly limited, but may be, for example, 0.5% by mass or more.
  • the neutralization step it is preferable to add the above alkaline substance while stirring the acidic glycerin solution so that the liquid property shifts from acidic to near neutral.
  • a substance containing a fatty acid salt may be used as the alkaline substance used for neutralization, but the fatty acid salt is converted into a free fatty acid by the acid by the addition order as described above.
  • the free fatty acid shifts from the glycerin solution to the phase-separated oil phase, and even if the pH of the glycerin solution becomes high, it becomes difficult to redissolve in the glycerin solution. This makes the separation in the subsequent second separation step even easier.
  • the fatty acid salt is contained not only in the above-mentioned substance containing a fatty acid salt as a main component, but also in a by-product of an alkali-catalyzed transesterification reaction of fats and oils and alkali hydrolysis.
  • the alkaline substance neutralizes the first glycerin solution obtained in the first separation step.
  • the neutralized glycerin solution is subjected to the subsequent second separation step.
  • the second separation step is a step of separating the second oil content and solid content from the glycerin solution obtained in the above step.
  • the glycerin solution obtained by separating the second oil content and the solid content by this step may be referred to as a second glycerin solution.
  • the second oil to be separated includes fats and oils and fatty acids that were not separated even in the first separation step and remained in the first glycerin solution, as well as fats and oils derived from alkaline substances added in the neutralization step. Contains free fatty acids and the like.
  • the solid content separated in the second separation step is a precipitated inorganic salt.
  • the inorganic salt is a salt of an inorganic acid (concentrated sulfuric acid or the like) added in the first separation step and an alkali (potassium, sodium or the like), and is preferably potassium sulfate.
  • the alkali is contained in a raw material (waste glycerin, etc.) added to the first separation step or an alkaline substance added in the neutralization step, and an inorganic salt is contained in the first separation step or neutralization step. It is precipitated.
  • the first glycerin solution obtained in the first separation step is directly subjected to the second separation step.
  • the first glycerin solution contains fats and oils, fatty acids, and the like that remain unseparated in the first separation step, and these are separated as the second oil in this step.
  • an immobilized enzyme is used, it is separated as a solid content in the second separation step.
  • the second glycerin solution separated in this step contains monohydric alcohol derived from waste glycerin in addition to glycerin, and may contain water and the like. Since the oil and the inorganic salt have low solubility in the second glycerin solution, they are separated from the second glycerin solution.
  • the glycerin solution neutralized glycerin solution when an inorganic acid is used; the first glycerin solution when an enzyme is used
  • the lower liquid can be recovered separately to obtain the second glycerin liquid as the lower liquid, but it is preferable to increase the separation rate by centrifugation or the like.
  • a centrifuge a three-phase separation type centrifuge capable of separating a light liquid (that is, an oil content), a heavy liquid (that is, a second glycerin liquid) and a solid substance can be preferably used.
  • inorganic acid when used in the first separation step, a large amount of inorganic salt is precipitated. Therefore, a certain amount of inorganic salt is separated in advance by a centrifuge capable of solid-liquid separation such as a decanter type, and then the liquid is used. It is also preferable to further separate the phase portion with a three-phase separator.
  • the second oil component obtained in the second separation step can be combined with the first oil component separated in the first separation step and subjected to a catalytic cracking step described later, for example.
  • it is preferable to adjust the pH of the oil content and the specific method is as described above for the first oil content.
  • the second oil content can be used for producing a fatty acid alkyl ester by combining it with the first oil content and subjecting it to a further esterification reaction (second esterification step described later). Such a method will be described in detail in the second embodiment.
  • the inorganic salt When the inorganic salt is recovered in this step, the inorganic salt can be used as a raw material for an inorganic fertilizer or the like through, for example, a washing step or the like.
  • the immobilized enzyme when the immobilized enzyme is recovered in this step, the immobilized enzyme can be reused in the first separation step.
  • the second glycerin solution can be used as an asphalt release agent, a cement release agent, a denitrification agent, a nitrification accelerator (organic carbon source for biological nitrification denitrification treatment), and further purification. It can also be used for cosmetics and the like.
  • the second glycerin is used.
  • the liquid may contain monohydric alcohol. Since such monohydric alcohol can be used as a raw material for the (second) esterification step in the second embodiment, the monohydric alcohol may be further recovered by subjecting it to the alcohol separation step.
  • the alcohol separation step is a step of separating monohydric alcohol from the second glycerin solution obtained in the second separation step.
  • the second glycerin solution may contain a monohydric alcohol derived from waste glycerin and remaining in the first separation step (esterification reaction). Such monohydric alcohol can be used as a raw material for the (second) esterification step described later.
  • a vacuum distillation method is a method in which a glycerin solution is heated (for example, about 60 ° C.) to evaporate the monohydric alcohol or the like, and then the pressure is reduced to separate the monohydric alcohol or the like.
  • the separated monohydric alcohol or the like can be cooled and recovered.
  • the gas-liquid contact method is a method in which a glycerin solution is brought into contact with the gas phase as fine droplets, and a monohydric alcohol having a low boiling point is transferred to the gas phase for separation. Can be adopted.
  • the membrane separation method is a method using a membrane that preferentially permeates a monohydric alcohol.
  • the second glycerin solution may further contain water.
  • water may remain in the glycerin solution, but for example, in a vacuum distillation method, a gas-liquid contact method, or the like, the water can be removed because it moves to the gas phase together with the monohydric alcohol.
  • further purification treatment may be performed using an ion exchange method, activated clay, diatomaceous earth, carbon, zeolite or the like.
  • the separated monohydric alcohol can be purified as it is or, if necessary, by redistillation or the like and reused as a raw material for the transesterification reaction.
  • the glycerin solution obtained in this step preferably has a glycerin purity of 85% by mass or more, more preferably 90% by mass or more, particularly preferably 97% by mass or more, and 99% by mass. % Or more is particularly preferable.
  • the glycerin-containing waste is a raw material, it is a relatively simple method and has a high purity as in the above numerical range.
  • a glycerin solution can be obtained.
  • the purity of glycerin is a value measured by gas chromatography.
  • the first oil and the second oil can be separated from the raw material containing at least one of the free fatty acid and the fatty acid glycerin ester, and these are the raw materials for the catalytic cracking step described later. Can be used as.
  • the second embodiment uses the first oil obtained in the (first) separation step as a raw material, although the steps partially overlap with those of the first embodiment described above.
  • a fatty acid alkyl ester is produced, and the fatty acid alkyl ester is used as a raw material in a catalytic cracking step described later.
  • the second oil component obtained in the second separation step may be further used.
  • the monohydric alcohol recovered in the alcohol separation step may be used as a raw material.
  • the first and second oil components are recovered from the separated oil phases, respectively. Further, in the alcohol separation step described above, the separated monohydric alcohol is recovered. It is conceivable that these are circulated and supplied as raw materials in the production of fatty acid alkyl esters by the alkali catalyst method, but since the purity is not necessarily high, if they are used as raw materials as they are, the fatty acid alkyl esters can be efficiently produced. It can be difficult to do. Further, the first and / or second oils contain oils and fats having a high acid value such as free fatty acids, and in particular, the first oils when an inorganic acid is used in the first separation step are acids.
  • first esterification step which can also be called an esterification reaction using a catalyst, it has an acidic oil content. Therefore, it becomes more difficult to use the first and second oils as they are as a raw material for producing a fatty acid alkyl ester using an alkali catalyst.
  • the present embodiment includes an esterification step of producing a fatty acid alkyl ester by a method other than the alkali catalyst method.
  • the above-mentioned first separation step can be said to be the first esterification step, it may be referred to as a "second esterification step" in comparison with this.
  • the first oil separated in the first separation step is used. Further, it is preferable to use the second oil component separated in the second separation step as a raw material.
  • the monohydric alcohol is recovered in the alcohol separation step, it is also preferable to use the recovered monohydric alcohol as a raw material.
  • the same raw materials (high acid value oil, etc.) as in the first separation step (first esterification step) may be further used in combination.
  • the method that can be adopted in the second esterification step is a method other than the alkali catalyst method, and more specifically, an acid catalyst method, an acid alkali catalyst method, a biocatalyst method, an ion exchange resin method, a supercritical method, and the like.
  • Subcritical methods and solid catalyst methods are exemplified. With these methods, transesterification reactions can be carried out with monohydric alcohols such as methanol, even if they are waste cooking oils and fats and oils having a high acid value, and even fats and oils containing unreacted free fatty acids. ..
  • glycerin is produced as a by-product together with the oil containing the fatty acid alkyl ester.
  • the oil content obtained in the second esterification step and the glycerin solution can be phase-separated by standing, centrifuging or the like.
  • the separated oil can be used as a biodiesel fuel or the like by recovering the fatty acid alkyl ester.
  • the by-produced glycerin can be supplied to the neutralization step together with the first glycerin solution obtained in the first separation step (first esterification step), for example.
  • the glycerin produced as a by-product in the second esterification step can be made into a part of the glycerin solution through the neutralization step, the second separation step, and the like, so that it is more efficient. It can be recycled.
  • the second esterification step it is particularly preferable to adopt the acid catalyst method among the methods other than the alkali catalyst method described above.
  • the acid catalyst method when adopted as the second esterification step, the first oil component and / or the second oil component is used as a raw material.
  • monovalent alcohol recovered in the alcohol separation step can be used, and further, raw materials (high acid value oil, etc.) similar to those in the first separation step (first esterification step) can be used. May be used.
  • the reaction solution obtained in the second esterification step is separated into an oil component containing a fatty acid alkyl ester and a glycerin solution containing a by-produced glycerin, an acid catalyst and a salt thereof. Both the obtained oil and the glycerin solution are acidic, and the acidic glycerin solution can be supplied to the neutralization step or the like.
  • waste glycerin produced as a by-product in the production process of biodiesel fuel is preferably exemplified. Specifically, waste glycerin produced as a by-product in the manufacturing process of biodiesel fuel is dealcoholicized and stored in a tank or the like, and neutralizing oil is added from the lower part of the tank to bring it into contact with waste glycerin. ..
  • the acidic oil is neutralized by the alkali of the waste glycerin, and the water and the monohydric alcohol contained in the oil are absorbed by the waste glycerin solution. Then, the oil charged from the lower part overflows from the upper part due to the difference in specific gravity, so that it can be easily recovered.
  • neutralization, dehydration and dealcoholization can be performed at the same time, and high quality oil can be easily obtained.
  • the waste glycerin solution that has absorbed water and monohydric alcohol can be supplied to the above-mentioned neutralization step, and can be made into a part of the second glycerin solution through the second separation step and the like.
  • a biocatalyst method As a method other than the acid catalyst method, a biocatalyst method, a supercritical method, and a subcritical method can be preferably exemplified.
  • the biocatalytic method is a method of promoting a transesterification reaction by using a lipase or a phospholipase having a catalytic activity for the transesterification reaction.
  • the biocatalytic method has a characteristic that the reaction conditions are mild, but the transesterification reaction can be promoted even for fats and oils having a high acid value, and there are few by-products.
  • the temperature and pressure are adjusted to change the raw material to the supercritical state or the subcritical state, so that the phase state of the substance is changed from two phases of gas and liquid to two phases of liquid and liquid, and further the dielectric constant.
  • the first oil obtained in the first embodiment or the fatty acid alkyl ester obtained in the second embodiment is brought into contact with a catalyst, and a hydrocarbon is used as a main component by a catalytic cracking method. This is the process of obtaining biodiesel fuel.
  • the catalyst used in this step is not particularly limited as long as it is a catalytic cracking catalyst generally used in the catalytic cracking method for producing hydrocarbons.
  • a catalytic cracking catalyst generally used in the catalytic cracking method for producing hydrocarbons.
  • oxides of alkaline earth metals, zeolites, sepiolites, aluminas, silicas, clay minerals and the like can be exemplified, and tungsten zirconia, FCC catalysts and the like may be used.
  • magnesium oxide can be preferably exemplified as an oxide of an alkaline earth metal.
  • the magnesium oxide high-purity magnesium oxide may be used, or a magnesium oxide-containing composition such as blast furnace slag may be used.
  • the catalyst used in this step is particularly suitable when it is supported on a porous carrier because the contact area between the raw material and the catalyst is expanded.
  • the porous carrier include silica gel and the like.
  • the ratio of the catalyst to the porous carrier used is preferably 5 to 20 and more preferably 7 to 15 and 9 to 10 with respect to the catalyst 1 in terms of mass ratio. Especially preferable.
  • the catalytic cracking step it is preferable to send and send an inert gas to the reaction system as a carrier gas for recovering the obtained hydrocarbon.
  • an inert gas nitrogen, argon or the like can be used, and nitrogen is preferable.
  • the flow rate of the carrier gas can be appropriately adjusted according to the decomposition time of the oil content and the fatty acid alkyl ester as raw materials. Specifically, when the flow rate of the carrier gas is increased, the reaction time is shortened and a hydrocarbon having a long carbon chain can be obtained. On the other hand, when the flow rate of the carrier gas is reduced, the reaction time becomes long and a hydrocarbon having a short carbon chain can be obtained.
  • the reactor used in the catalytic cracking method is generally of a type in which the reaction vessel is fixed and the catalytic cracking catalyst is agitated by a propeller or the like having a vertical axis of rotation.
  • a propeller or the like having a vertical axis of rotation.
  • the catalytic cracking catalyst is rotated by the rotation of the drum.
  • the contact between the raw material (first oil or fatty acid alkyl ester) and the catalyst can be sufficiently ensured, the consumption of the catalyst can be suppressed, and the replacement period of the catalyst can be extended.
  • the rotary drum is used, the raw material and the carrier gas are fed from one side of the drum along the rotation axis of the drum. Also, the reaction products hydrocarbons and carrier gas are delivered from the other side of the drum (ie, the side opposite the feed).
  • the temperature inside the reactor is adjusted so that the reaction temperature is 200 to 600 ° C, preferably 300 ° C to 500 ° C.
  • the reaction temperature exceeds 430 ° C., the light content increases, so the reaction temperature may be adjusted from this viewpoint.
  • the reaction temperature can be confirmed by the temperature of the carrier gas sent from the reactor.
  • the reaction temperature is preferably adjusted by electromagnetic induction heating. According to electromagnetic induction heating, it is excellent in terms of energy efficiency.
  • the catalyst is charged into the reactor, and then the temperature inside the reactor is adjusted, and then the raw materials (including the first oil and / or the fatty acid alkyl ester) are charged.
  • the free fatty acid or fatty acid alkyl ester contained in the first oil is decomposed by the catalytic cracking method in the presence of a catalyst to generate a hydrocarbon.
  • the generated hydrocarbon is sent out as a gas from the reactor together with the carrier gas, it is cooled by a condenser or the like and condensed, and the composition containing the hydrocarbon is recovered as a liquid.
  • the flow rate of the carrier gas described above is appropriately adjusted, and the recovered hydrocarbon oil is further distilled or fractionally distilled to obtain a desired chain length. Hydrocarbons can be recovered.
  • the recovered composition contains hydrocarbons as the main component and can be used as a biodiesel fuel with good light oil quality.
  • a hydrocarbon-based biodiesel fuel can be efficiently produced from a raw material containing at least one of free fatty acid and fatty acid glycerin ester, particularly waste containing free fatty acid and fatty acid glycerin ester. Can be done. Therefore, waste containing free fatty acids and fatty acid glycerin esters can be effectively recycled. Further, since the glycerin portion of the fatty acid glycerin ester can be separately recovered as glycerin by a transesterification reaction, the glycerin portion can be effectively recycled without separately providing a recovery facility for lower hydrocarbons.
  • the first oil component obtained in the first embodiment is one in which the transesterification reaction is carried out once by the first separation step (first esterification step).
  • the fatty acid alkyl ester obtained in the second embodiment is one in which the transesterification reaction is carried out twice by the first and second esterification steps. From the viewpoint of recycling the glycerin portion of the fatty acid glycerin ester, it can be said that the second embodiment is more preferable.
  • the second embodiment since the purity of the fatty acid alkyl ester is relatively high and the properties of the raw materials to be subjected to the catalytic cracking step are stable, the accumulation of ash is small in the catalytic cracking step, and the catalytic cracking catalyst is repeated. Even if it is used, reaction inhibition is unlikely to occur. Therefore, it can be said that the second embodiment is more preferable from the viewpoint that the catalytic cracking step can be continuously carried out for a long period of time.
  • a biodiesel fuel was produced by transesterifying waste cooking oil and methanol by an alkaline catalyst method using potassium hydroxide as a catalyst.
  • the by-product containing glycerin produced at this time was recovered as waste glycerin.
  • waste material waste glycerin 20 g of zeolite was added per 1 kg of waste glycerin to remove water.
  • the zeolite-added waste glycerin was passed through a 250 mesh filter to remove zeolite and solid impurities.
  • the composition and physical properties of the waste glycerin as a raw material thus obtained (hereinafter, referred to as “raw material waste glycerin”) are as shown in Table 1.
  • first glycerin solution including the acidic glycerin phase and precipitated potassium sulfate
  • the neutralized glycerin was treated with a decanter type centrifuge (product name: Z18HV, manufactured by Tanabe Wiltec) at 5500 rpm for 180 minutes, and the precipitated potassium sulfate was separated and recovered.
  • the liquid phase was further treated with a three-phase separator (manufactured by Alfa Laval) at 8000 rpm for 180 minutes, and the second oil, the second glycerin solution, and potassium sulfate were separated and recovered, respectively.
  • the first oil obtained in the first separation step and the second oil obtained in the second separation step are mixed and then neutralized to about pH 6 with waste glycerin to recover the separated oil. bottom.
  • the recovered oil was designated as "recycled oil” and subjected to a catalytic cracking step described later.
  • a rotary drum type reactor (volume 200 L) having a rotary drum arranged in a state where the rotary shaft is inclined at about 45 ° with respect to the horizontal plane was used.
  • 1.2.5 kg of silicon dioxide powder (manufactured by Fuji Silysia Chemical Ltd., Carrierct Q-3, particle size: 1.18 to 2.36 mm) and magnesium oxide (manufactured by Tateho Chemical Co., Ltd., purity 99.99% by mass). 25 kg was charged into the reactor and stirring of the reactor was started.
  • the nitrogen flow rate was set to 2070 L / h, and the reactor temperature was maintained at 400 ° C. by an electromagnetic induction heating device (EKOHEAT20 / 10 manufactured by Amelietherm Co., Ltd.).
  • the fatty acid methyl ester was added to the reactor at a flow rate of 130 mL / min. After a while, the exhaust gas was cooled by the condenser connected to the outlet of the reactor and began to accumulate as a liquid in the tank under the condenser, so the drain valve was opened and the sample bottle was collected (Example 1). Further, a condensed liquid was obtained in the same manner as in Example 1 except that a regenerated oil component was added instead of the fatty acid methyl ester (Example 2).
  • FID hydrogen flame ionization detector
  • Example 1 C15 is 17.86% (peak area%, the same applies hereinafter), C14 is 9.02%, C13 is 6.78%, C16 is 4.60%, and C17 is 3. It was .34%, C19 was 4.98%, and so on.
  • Example 2 C15 was 23.62%, C14 was 7.45%, C13 was 3.50%, C17 was 4.01%, C20 was 8.37%, and the like.
  • Example 1 the catalytic cracking catalyst maintained good catalytic activity even when the fatty acid methyl ester was added at 2000 L / day and continuously operated for 180 days or more.
  • Example 2 when the regenerated oil was added at 2000 L / day, ash was accumulated in the reactor, and a decrease in catalytic activity was observed in about 10 days.
  • biodiesel fuel biodiesel containing hydrocarbons as a main component

Abstract

遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料と、無機酸または酵素とを混合し、第一の油分と第一のグリセリン液とを分離する第一の分離工程と;油分または脂肪酸アルキルエステルを、触媒と接触させて炭化水素を得る接触分解工程と;を備え、(a)上記接触分解工程において、上記第一の油分を用いる;または(b)アルカリ触媒法以外の方法により、第一の分離工程で得られた第一の油分と1価のアルコールとを反応させて脂肪酸アルキルエステルを得るエステル化工程をさらに備え、得られた脂肪酸アルキルエステルを、上記接触分解工程における原料として用いる。本発明により、炭化水素を主成分とするバイオディーゼル燃料の製造方法であって、遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料を用いることのできる新たな製造方法が提供される。

Description

バイオディーゼル燃料の製造方法
 本発明は、バイオディーゼル燃料の製造方法に関するものであり、より詳細には、油脂含有廃棄物、廃食油や廃グリセリン等の廃棄物を原料として用いることができる方法に関するものである。
 近年、地球温暖化防止の観点から、二酸化炭素の発生を削減し、資源のリサイクルに繋がるような、従来の化石燃料に替わる燃料の開発が進められており、その一つとして、植物油や廃食油等を原料とするバイオディーゼル燃料が注目されている。バイオディーゼル燃料の合成方法としては、動植物の油脂および1価アルコールを原料とし、水酸化カリウム等のアルカリ性物質を触媒としてエステル交換反応により、脂肪酸アルキルエステルを合成する方法が主流である(例えば、非特許文献1)。ただし、近年、炭化水素を主成分とするバイオディーゼル燃料が、いわゆる「次世代バイオディーゼル燃料」として注目されている。
 このような次世代バイオディーゼル燃料として、特許文献1には、植物油や廃食油等の油脂を原料として、接触分解法により炭化水素を製造する方法が提案されている。かかる方法によれば、脂肪酸グリセリンエステルのうち脂肪酸の炭化水素基に由来する炭化水素、グリセリン部分に由来するプロパン、エステル基に由来する二酸化炭素や一酸化炭素等が生成する。
特許第5234456号公報
日本マリンエンジニアリング学会誌,2012年,第47巻,第1号,第45-50頁
 炭化水素を主成分とする、いわゆる「次世代バイオディーゼル燃料」の製造においては、使用し得る原料が限られており、例えば、脂肪酸アルキルエステルの製造等で副生される廃グリセリン等の脂肪酸グリセリンエステル含有廃棄物や、廃食油の中でも酸価の極めて高い高酸価油等の遊離脂肪酸含有廃棄物などについては、原料として用いることが困難である。近年、このような廃棄物の処理が喫緊の課題となっており、次世代バイオディーゼル燃料の製造においても、これらの廃棄物を原料として利用できる方法の開発が望まれている。
 本発明は、上記問題に鑑みてなされたものであって、炭化水素を主成分とするバイオディーゼル燃料の製造方法であって、遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料を用いることのできる新たな製造方法を提供することを課題とする。
 本発明者は上記課題を解決すべく鋭意研究を行った結果、グリセリンおよび脂肪酸グリセリンエステルの少なくとも1種を含む原料に無機酸または酵素を加えて分離させ、得られた油分を用いるか、当該油分をさらにエステル化反応させて得られる脂肪酸アルキルエステルを用い、上記油分または脂肪酸アルキルエステルを接触分解法に付すことで、炭化水素を主成分とするバイオディーゼル燃料を効率的に製造できることを見出し、本発明を完成させるに至った。
 具体的には、本発明は以下のとおりである。
〔1〕 バイオディーゼル燃料を製造する方法であって、
 遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料と、無機酸または酵素とを混合し、第一の油分と第一のグリセリン液とを分離する第一の分離工程と、
 アルカリ触媒法以外の方法であって、酸触媒法、酸アルカリ触媒法、生体触媒法、イオン交換樹脂法、超臨界法、亜臨界法および固体触媒法からなる群より選択される少なくとも一つの方法により、前記第一の油分と1価のアルコールとを反応させて脂肪酸アルキルエステルを得るエステル化工程と、
 前記脂肪酸アルキルエステルを、触媒と接触させて炭化水素を得る接触分解工程と、
を備えることを特徴とする、製造方法。
〔2〕 前記第一の分離工程において無機酸を用い、得られた前記第一のグリセリン液を、アルカリ性物質により中和する中和工程と、
 前記中和されたグリセリン液から、第二の油分および析出した無機塩を分離する第二の分離工程とを備え、
 前記エステル化工程において、前記第二の油分を前記第一の油分と合わせて反応させる、〔1〕に記載の製造方法。
〔3〕 前記第一の分離工程において無機酸を用い、得られた前記第一のグリセリン液を、アルカリ性物質により中和する中和工程と、
 前記中和されたグリセリン液から、第二の油分および析出した無機塩を分離する第二の分離工程と、
 前記第二の油分および前記無機塩が分離されたグリセリン液から1価のアルコールを分離するアルコール分離工程とを備え、
 前記エステル化工程における前記1価のアルコールとして、前記アルコール分離工程で分離された1価のアルコールを用いる、
〔1〕または〔2〕に記載の製造方法。
〔4〕 バイオディーゼル燃料を製造する方法であって、
 遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料と、無機酸または酵素とを混合し、第一の油分と第一のグリセリン液とを分離する第一の分離工程と、
 前記第一の油分を、触媒と接触させて炭化水素を得る接触分解工程と、
を備えることを特徴とする、製造方法。
〔5〕 前記第一の分離工程において無機酸を用い、得られた前記第一のグリセリン液を、アルカリ性物質により中和する中和工程と、
 前記中和されたグリセリン液から、第二の油分および析出した無機塩を分離する第二の分離工程とを備え、
 前記接触分解工程において、前記第二の油分を前記第一の油分と合わせて前記触媒に接触させる、〔4〕に記載の製造方法。
〔6〕 前記第一の分離工程における前記原料は、酸価10mgKOH/g以上の高酸価油、および脂肪酸アルキルエステルの製造過程で副生される廃グリセリン、の少なくとも1種を含む、〔1〕~〔5〕のいずれか一項に記載の製造方法。
〔7〕 前記第一の分離工程において無機酸を用い、前記無機酸が濃硫酸である、〔1〕~〔6〕のいずれか一項に記載の製造方法。
〔8〕 前記第一の分離工程において無機酸を用い、前記原料と前記無機酸との混合液のpHが3以下である、〔1〕~〔7〕のいずれか一項に記載の製造方法。
〔9〕 前記接触分解工程における触媒が、酸化マグネシウムを含む、〔1〕~〔8〕のいずれか一項に記載の製造方法。
〔10〕 前記接触分解工程において、回転軸が水平面に対して傾斜する状態で配置された回転するドラム内で反応させる、〔1〕~〔9〕のいずれか一項に記載の製造方法。
〔11〕 前記接触分解工程における反応温度が200~600℃である、〔1〕~〔10〕のいずれか一項に記載の製造方法。
〔12〕 電磁誘導加熱により前記反応温度を調整する、〔11〕に記載の製造方法。
 本発明によれば、炭化水素を主成分とするバイオディーゼル燃料の製造方法において、遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料を用いることができるようになり、例えば遊離脂肪酸含有廃棄物や脂肪酸グリセリンエステル含有廃棄物を有効に再資源化することができる。
本発明の第一の実施形態において、第一の油分を得るためのフローを表す図である。 本発明の第二の実施形態において、脂肪酸アルキルエステルを得るためのフローを表す図である。 本発明の一実施形態における接触分解工程のフローを表す図である。
 以下、本発明の実施形態について説明する。
 本発明の一実施形態に係るバイオディーゼル燃料の製造方法は、遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料と、無機酸または酵素とを混合し、第一の油分と第一のグリセリン液とを分離する第一の分離工程と;油分または脂肪酸アルキルエステルを含む原料を、触媒と接触させて炭化水素を得る接触分解工程と;を備える。
 そして:
(a)上記接触分解工程において、上記第一の油分を用いてもよく(以下、「第一の実施形態」という);
(b)アルカリ触媒法以外の方法であって、酸触媒法、酸アルカリ触媒法、生体触媒法、イオン交換樹脂法、超臨界法、亜臨界法および固体触媒法からなる群より選択される少なくとも一つの方法により、第一の分離工程で得られた第一の油分と1価のアルコールとを反応させて脂肪酸アルキルエステルを得るエステル化工程をさらに備え、得られた脂肪酸アルキルエステルを、上記接触分解工程における原料として用いてもよい(以下、「第二の実施形態」という)。
〔第一の実施形態〕
 図1は、第一の実施形態において、第一の油分を得るためのフローを表す図である。図1においては、第一の油分を得るための第一の分離工程(第一の分離工程)の他、任意工程として、中和工程、第二の分離工程、アルコール分離工程が、第一の分離工程の後に実施されるよう図示されている。
 後述するように、遊離脂肪酸や脂肪酸グリセリンエステルを含有する廃棄物には、これら以外の成分が含まれている。そのため、これらをそのままバイオディーゼル燃料の製造反応(接触分解法)に適用しようとすると、接触分解反応を阻害し、あるいは生成物に不純物が多く残る問題が生じる。しかし、本実施形態によれば、(第一の)分離工程により、グリセリンや無機塩等の不純物の含有量が低減されているため、接触分解法に好適に適用することができる。また、脂肪酸アルキルエステルや遊離脂肪酸等の製造方法は多様なものがあり、これに応じて遊離脂肪酸や脂肪酸グリセリンエステルを含有する廃棄物の品質も一定しないという問題があるが、本実施形態によれば、品質が安定化されたバイオディーゼル燃料(炭化水素を主成分とする)を製造することが可能となる。
 さらに、本実施形態においては、無機酸または酵素を用いた(第一の)分離工程を行うことで、遊離脂肪酸含有廃棄物だけでなく、脂肪酸グリセリンエステル含有廃棄物を含む多様な原料を本方法にて処理することができる。
 従来、廃食油をはじめとする、脂肪酸グリセリンエステル含有廃棄物についても、接触分解法により炭化水素を製造する方法が提案されてきた(例えば、前述した特許文献1等)。脂肪酸グリセリンエステルをそのまま接触分解法に供する場合、グリセリン部分に由来するプロパン等の低級炭化水素(炭素数4以下の炭化水素)が生じるが、このような低級炭化水素を回収するためには設備投資が必要となり、コスト高であった。一方で、低級炭化水素の回収設備を設けない場合には、グリセリン部分を再資源化できないという問題が生じていた。
 これに対し、本実施形態によれば、(第一の)分離工程においてエステル交換反応が起こり、グリセリンが生成する。かかるグリセリンは別途回収することができ、多様な用途に適用することが可能である。そのため、本実施形態によれば、低級炭化水素の回収設備を設けない場合であっても、脂肪酸グリセリンエステルのうちグリセリン部分を有効に再資源化することができる。
(1)原料
 本実施形態において用いる原料は、遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含むものであれば、特に限定されない。
 遊離脂肪酸を含む原料としては、例えば、遊離脂肪酸を含有する廃棄物が例示される。また、脂肪酸グリセリンエステルを含む原料は、脂肪酸グリセリンエステルを含有する廃棄物が例示される。
 以下、遊離脂肪酸含有廃棄物および脂肪酸グリセリンエステル含有廃棄物についてやや詳しく説明する。
(1-1)遊離脂肪酸含有廃棄物
 本実施形態において使用し得る遊離脂肪酸含有廃棄物には、バイオディーゼル燃料の製造過程で副生される廃グリセリン、甘水、脂肪酸アルキルエステルの洗浄廃水などが例示される。
 ここで、脂肪酸アルキルエステルの洗浄廃水は、バイオディーゼル燃料をはじめとする脂肪酸アルキルエステルの製造過程において、反応物を洗浄したときに生じる廃水であり、水分の他、未反応の遊離脂肪酸およびその塩が含まれ、さらに脂肪酸アルキルエステルの製造反応において副生されるグリセリン、また未反応の1価アルコール等が含まれる。
 また、甘水は、油脂を鹸化(アルカリ加水分解)して脂肪酸塩を生成させる場合(例えば、石鹸の製造過程など)における副生成物であり、グリセリン、水分、アルカリ等を含む。
 次に、バイオディーゼル燃料の製造過程で副生される廃グリセリンについて、やや詳しく説明する。
 バイオディーゼル燃料となる脂肪酸アルキルエステルは、植物油などの原料油脂に、メタノール等の1価アルコールと、水酸化カリウム等のアルカリ触媒とを加え、エステル交換反応を行うことで得られる。
 バイオディーゼル燃料の原料油脂としては、菜種油、パーム油、オリーブ油、ひまわり油、大豆油、コメ油、大麻油等の植物油;魚油、豚脂、牛豚等の動物油;天ぷら油等の廃食油;などを用いることができる。
 1価アルコールとしては、メタノール、エタノール、1-プロパノール、エチルヘキサノール等を用いることができ、メタノールおよびエタノールが好ましく、メタノールが特に好ましい。
 アルカリ触媒としては、水酸化カリウム、水酸化ナトリウム、酸化カルシウム等を用いることができるが、本実施形態で分離回収される無機塩の析出性や再利用容易性等の観点から、水酸化カリウムが好ましい。
 上記エステル交換反応においては、原料油脂に含まれる脂肪酸グリセリンエステルが1価アルコールと反応し、脂肪酸アルキルエステルおよびグリセリンが生成する。得られる反応液は、脂肪酸アルキルエステル相と、廃グリセリン相とに液々分離し、バイオディーゼル燃料の製造においては、得られた脂肪酸アルキルエステル相を回収して洗浄等を行い、バイオディーゼル燃料とする。
 一方、廃グリセリン相は、グリセリンを高濃度に含む他、未反応の1価アルコール、未反応の油脂、脂肪酸およびその塩、アルカリ触媒、さらには原料油脂に由来する夾雑物などが含まれる。廃グリセリンとしては、液状の廃グリセリンであっても良いし、また、固体状の廃グリセリンであっても良いが、作業性、取り扱い等の観点から、液状の廃グリセリンであることが好ましい。
 廃グリセリンにおけるグリセリン、1価アルコール、油脂ならびに遊離脂肪酸およびその塩の含有量は特に限定されないが、通常、廃グリセリン全体に対して、グリセリンは25質量%以上65質量%以下、1価アルコールは2質量%以上20質量%以下、油脂ならびに遊離脂肪酸およびその塩の合計は30質量%以上50質量%以下となる場合が多い。本実施形態に係るバイオディーゼル燃料の製造方法をより安定的に実施可能とする観点から、廃グリセリン全体に対して、それぞれ、グリセリンは30質量%以上65質量%以下、1価アルコールは3質量%以上15質量%以下、油脂ならびに遊離脂肪酸およびその塩の合計含有量は25質量%以上55質量%以下、であってよい。
 廃グリセリンはアルカリ触媒を多量に含むため、pHは9以上であることが多く、本実施形態においては、9~13であってよい。
 第一の分離工程において無機酸を用いる場合には、廃グリセリンに含まれる未反応の油脂および1価アルコールによる酸触媒エステル化反応を進行させやすくする観点から、廃グリセリンにおける水分の含有量は、5質量%以下であることが好ましく、3質量%以下であることが特に好ましい。廃グリセリンにおける水分含有量は、加熱、減圧、乾燥剤等の使用、精製グリセリン中を透過させることなどにより適宜調整することができる。
 本実施形態においては、後述する第一の分離工程における利用のしやすさの観点から、以上述べた遊離脂肪酸含有廃棄物の中でも、バイオディーゼル燃料の製造過程で副生される廃グリセリンを用いることが特に好ましい。
(1-2)脂肪酸グリセリンエステル含有組成物
 本実施形態においては、脂肪酸グリセリンエステルを含有する組成物も原料として用いることができる。本実施形態においては、無機酸または酵素を用いた(第一の)分離工程にて行うため、脂肪酸グリセリンエステルを含有する組成物を用い、第一の分離工程におけるエステル化反応等が起こる。これにより、遊離脂肪酸を回収することができるとともに、グリセリンを分離することができる。
 脂肪酸グリセリンエステルを含有する組成物としては、例えば、廃食油、動物油(牛脂、豚油、鳥油、バター、廃牛乳、魚油、肝油等)、植物油(菜種油、パーム油、オリーブ油、ひまわり油、大豆油、コメ油、大麻油、マーガリン等)、高酸価油(グリストラップ油、下水油、地溝油、廃液処理再生油、マヨネーズ、ドレッシング等)の脂肪酸グリセリンエステルを主成分とする油脂;油滓、石鹸等の脂肪酸塩を主成分とする組成物;遊離脂肪酸の製造工程で副生される廃液;などが挙げられる。
 なお、本明細書において「主成分とする」とは、当該組成物において含有量が最も多い成分(ただし最も多い成分が水である場合には2番目に含有量が多い成分)であることを意味する。好ましくは含有量が40質量%以上、より好ましくは50質量%以上である。
 ここで、高酸価油は、酸価10mgKOH/g以上の油脂をいい、油脂の主成分である脂肪酸グリセリンエステルの他、遊離脂肪酸等を含む。酸価は20mgKOH/g以上であってよく、さらには50mgKOH/g以上であってもよい。なお、酸価の上限は、通常は200mgKOH/g以下である。
 油滓は、植物油脂の精製における脱酸工程において油脂(原油)から分離される副生成物であり、脂肪酸塩、脂肪酸グリセリンエステル、アルカリ、水分等を含む。
 遊離脂肪酸の製造工程で副生される廃液とは、動植物の油脂を加水分解して遊離脂肪酸を製造する場合に副生される廃棄物である。加水分解による遊離脂肪酸の製造方法としては、高温高圧分解法、酵素分解法等が挙げられる。かかる製造工程で副生される廃液には、未反応の油脂の他、加水分解により生じたグリセリン、部分的に加水分解された油脂等が含まれる。
(2)第一の分離工程
 分離工程(以下、後述する第二の分離工程との対比において、本工程を「第一の分離工程」ということがある。)は、遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料と、無機酸または酵素とを混合し、第一の油分と第一のグリセリン液とを相分離する工程である。
 本工程で分離される油分には、脂肪酸アルキルエステルの他、遊離脂肪酸、脂肪酸グリセリンエステルが含まれる。
 遊離脂肪酸を含む原料を用いる場合、無機酸または酵素を触媒とし、廃グリセリンに含まれる未反応の1価アルコールとのエステル化反応により、脂肪酸アルキルエステルを生成する。
 脂肪酸が塩として存在している場合には、本工程において無機酸を用いると、脂肪酸の塩が、無機酸により遊離脂肪酸に変換され、グリセリンと分離しやすくなるため、好ましい。
 また、原料として脂肪酸グリセリンエステル含有組成物を用いる場合には、1価アルコールとのエステル交換反応により、脂肪酸アルキルエステルとグリセリンとを生成する。かかるグリセリンは、後述するように別途回収することができるため、脂肪酸グリセリンエステルのうちグリセリン部分についても、低級炭化水素の回収設備を設けることなく、有効に再資源化することができる。
 上記エステル交換反応における1価アルコールは、別途添加することができ、例えば、後述するアルコール分離工程において回収した1価アルコールを用いることができる。また、脂肪酸グリセリンエステル含有組成物と同時に廃グリセリンを処理することにより、廃グリセリンに含まれる未反応の1価アルコールを利用してもよい。
 1価アルコールの存在下で第一の分離工程を行う場合、本工程は、エステル化工程ということもできる。なお、後述する第二のエステル化反応との対比において、第一の分離工程を「第一のエステル化工程」という場合がある。
 なお、1価アルコールが含まれない場合であっても、脂肪酸グリセリンエステルは、第一の分離工程において酸の存在下で遊離脂肪酸、グリセリン、部分的に加水分解された脂肪酸グリセリンエステル(モノグリセリド,ジグリセリド)を生成する。また、原料に脂肪酸塩が含まれる場合は、酸により脂肪酸塩が遊離脂肪酸に変換され、グリセリンと分離しやすくなる。
 そのため、原料に1価アルコールが含まれない場合であっても、本実施形態を好適に適用することができる。
 本実施形態においては、無機酸または酵素の存在下で第一の分離工程を行うため、多様な原料を同時に処理することができる。また、第一の分離工程を行うことにより、廃グリセリン、廃食油、高酸価油など、遊離脂肪酸や脂肪酸グリセリンエステルを含有する廃棄物を有効活用できるため、環境負荷の低減にも寄与することができる。
 なかでも高酸価油は、酸価が10mgKOH/g以上と高いことから前述したアルカリ触媒によるエステル交換反応の原料としての利用は困難である。しかし、エステル化反応ともいうべき第一の分離工程においては、高酸価油も原料として好適に用いることができ、特に無機酸を用いる場合に好適である。
 廃グリセリンや脂肪酸グリセリンエステル含有組成物などを原料として用いる場合には、第一の分離工程で生じる脂肪酸アルキルエステルおよび遊離脂肪酸は、第一の油分からなる油相に移行するため、第一のグリセリン液と分離することができる。
 第一の分離工程において使用し得る原料は、水分含有量が10質量%以下であることが好ましく、5質量%以下であることが好ましい。水分含有量が低い原料(例えば、水分含有量の少ない廃グリセリン等)を用いることで、後述する反応液の水分含有量を低くすることが容易となる。なお、原料の水分含有量は、加熱、減圧、乾燥剤等の使用、精製グリセリン中を透過させることなどにより適宜調整することができる。
 第一の分離工程で無機酸を用いる場合、無機酸としては、濃硫酸、リン酸、濃硝酸、塩化水素等が挙げられるが、水分含有量の低い濃硫酸およびリン酸が好ましく、濃硫酸が特に好ましい。
 第一の分離工程においては、上記原料と上記無機酸との混合液(反応液)のpHを3以下にすることが好ましく、1以下にすることが特に好ましい。反応液のpHは、上記無機酸の添加量により調整することができる。
 反応液は、水分含有量を10質量%以下とすることが好ましく、0.5質量%以下とすることが特に好ましい。反応液の水分含有量は、各原料の水分含有量および投入量の調整、反応液への乾燥剤の使用などにより適宜調整することができる。
 反応液のpHおよび水分含有量を上記範囲とすることで、酸触媒エステル化反応の効率を高めることができ、また第一の油分と第一のグリセリン液(酸性グリセリン相、無機塩を含む)とを良好に分離させることができる。
 第一の分離工程における反応液の温度は、30~64℃とすることができ、さらには50~60℃とすることができる。また、反応時間は、0.5~12時間とすることができ、さらには4~12時間とすることができ、さらには8~12時間とすることができる。この間は反応液を攪拌することが好ましい。
 上記反応(あるいは攪拌)が終了したのち、0.2~12時間静置することで、脂肪酸アルキルエステルや未反応の油脂等を含む第一の油分と、酸性グリセリン相や無機塩を含む第一のグリセリン液とが分離する。
 一方、第一の分離工程で酵素を用いる場合、酵素としては、エステル交換反応を触媒することのできる酵素であれば特に制限されず、例えば、リパーゼ、ホスホリパーゼ、アシルトランスフェラーゼ等を用いることができる。中でもリパーゼが特に好ましい。酵素は、担体に固定化されていることが好ましい。
 反応液のpH、反応温度、反応時間等は、用いる酵素に応じて適宜調整することができる。反応後、0.2~12時間静置することで、脂肪酸アルキルエステルや未反応の油脂等を含む第一の油分と、グリセリンおよび酵素を含む第一のグリセリン液とが分離する。
 油相を回収して得られた第一の油分(脂肪酸アルキルエステル,遊離脂肪酸等)は、後述する接触分解工程における原料として用いることができる。
 第一の分離工程において無機酸を用いる場合、得られた第一の油分は、酸触媒エステル化反応によりpHが酸性に傾いているため、中性となるようpHを調整することが好ましく、具体的には、pHが4.0~7.5となるように、さらには4.5~7.0となるように、特に5.0~6.5となるように調整することが好ましい。油分のpHがかかる範囲となるように調整することで、後述する接触分解工程において、炭化水素を主成分とするバイオディーゼル燃料の製造を安定的に実現することができる。
 pHを調整するためには、アルカリ性物質を用いる。かかるアルカリ性物質としては、水酸化カリウム、水酸化ナトリウム等の水酸化物、を用いることができる。また、本実施形態においては、pH調整後に分離して油分を回収することもできるため、アルカリ性物質として多様な物質を用いることができる。
 例えば、上記アルカリ性物質として、遊離脂肪酸を含有するアルカリ性物質を用いることができる。例えば、上記廃グリセリン等、油脂のアルカリ触媒エステル交換反応による副生成物;油滓、アルカリ石鹸等、脂肪酸塩を主成分とする組成物;などが挙げられる。これらは、酸性油分を中和できるのみならず、遊離脂肪酸の収量を高めることができるため、かかる観点からも好ましい。
 以上のようにして得られた第一の油分は、後述する接触分解工程における原料として用いることができる。一方、第一のグリセリン液は、後述する中和工程や第二の分離工程を経ることにより、さらに油分を回収してもよく、アルコール分離工程により、1価アルコールを回収してもよい。
(3)中和工程
 中和工程は、第一の分離工程において無機酸を用いた場合に、得られた第一のグリセリン液を、アルカリ性物質により中和する工程である。なお、図1に示すように、第一の分離工程において酵素を用いた場合には、本工程を省略することができる。
 かかるアルカリ性物質としては、水酸化カリウム、水酸化ナトリウム等の水酸化物、を用いることができる。また、本実施形態においては、中和工程の後に第二の分離工程を行うことから、アルカリ性物質として多様な物質を用いることができる。
 例えば、上記アルカリ性物質として、グリセリンを含有する物質を用いることができる。かかるグリセリン含有アルカリ性物質としては、例えば、上記廃グリセリン等、油脂のアルカリ触媒エステル交換反応による副生成物;などが挙げられる。これらは、酸性グリセリンを中和できるのみならず、グリセリンの収量を高めることができるため、かかる観点からもグリセリン含有アルカリ性物質の使用は好ましい。かかるグリセリン含有アルカリ性物質は、脂肪酸塩や脂肪酸グリセリンエステルを含有するものでもよい。
 上記グリセリン含有アルカリ性物質は、グリセリン含有量が25質量%以上であることが好ましく、50質量%以上であることが特に好ましい。上限は特に限定されないが、例えば99質量%以下であってよく、90質量%以下であってよい。
 また、上記グリセリン含有アルカリ性物質は、pHが9以上であることが好ましく、9~13であることが特に好ましい。
 さらに、上記アルカリ性物質として、脂肪酸塩を主成分とする組成物を用いてもよい。脂肪酸塩を主成分とするアルカリ性物質としては、例えば、油滓、アルカリ石鹸などが挙げられる。
 上記中和工程においては、グリセリン液のpHが4.0~7.5となるように、さらには4.5~7.0となるように、特に5.0~6.5となるように中和することが好ましい。グリセリン液のpHがかかる範囲となるように中和することで、続く第二の分離工程において、油分が分離しやすくなり、また無機塩も析出しやすくなる。グリセリン液のpHは、上記アルカリ性物質の添加量を制御することで適宜調整することが可能である。
 中和工程で得られるグリセリン液は、水分含有量が10質量%以下であることが好ましく、3質量%以下であることが特に好ましい。中和工程においては、水分による反応阻害といった問題は生じないが、続く第二の分離工程において無機塩を十分に析出させて分離効率を高める観点から、水分含有量の上限値を上述のように規定することが好ましい。なお、水分含有量の下限値は特に制限されないが、例えば、0.5質量%以上であってもよい。
 中和工程においては、液性が酸性から中性付近に移行するよう、酸性グリセリン液を撹拌しながら上記アルカリ性物質を添加することが好ましい。前述したとおり、中和に用いるアルカリ性物質として脂肪酸塩を含有する物質を用いてもよいところ、上記のような添加順序とすることで、脂肪酸塩が酸により遊離脂肪酸に変換される。遊離脂肪酸は、グリセリン液から相分離した油相に移行し、グリセリン液のpHが高くなってもグリセリン液に再溶解し難くなる。これにより、続く第二の分離工程における分離がより一層容易となる。なお、脂肪酸塩は、上述した脂肪酸の塩を主成分とする物質のほか、油脂のアルカリ触媒エステル交換反応やアルカリ加水分解による副生成物にも含まれる。
 上記アルカリ性物質により、第一の分離工程で得られた第一のグリセリン液は中和される。中和されたグリセリン液は、続く第二の分離工程に付される。
(4)第二の分離工程
 第二の分離工程は、上記の工程にて得られたグリセリン液から、第二の油分および固形分を分離する工程である。本工程により、第二の油分および固形分を分離して得られるグリセリン液を、第二のグリセリン液ということがある。
 ここで、第一の分離工程において無機酸を用いた場合には、図1に示すように、上述した中和工程を行い、中和されたグリセリン液を、第二の分離工程に付す。
 この場合、分離される第二の油分には、第一の分離工程でも分離されず第一のグリセリン液に残った油脂や脂肪酸の他、中和工程において添加されたアルカリ性物質に由来する油脂や遊離脂肪酸などが含まれる。
 また、第二の分離工程において分離される固形分は、析出した無機塩である。当該無機塩は、第一の分離工程において添加された無機酸(濃硫酸等)と、アルカリ(カリウム、ナトリウム等)との塩であり、好ましくは硫酸カリウムである。上記アルカリは、第一の分離工程に投入される原料(廃グリセリン等)や、中和工程において添加されたアルカリ性物質に含まれるものであり、無機塩は第一の分離工程や中和工程において析出している。
 一方、第一の分離工程において酵素を用いた場合には、図1に示すように、第一の分離工程で得られた第一のグリセリン液を、そのまま第二の分離工程に付す。
 この場合、第一のグリセリン液には、第一の分離工程でも分離されずに残った油脂や脂肪酸等が含まれ、これらが本工程において第二の油分として分離される。また、固定化酵素を用いた場合には、第二の分離工程において固形分として分離される。
 本工程で分離される第二のグリセリン液には、グリセリンの他、廃グリセリンに由来する1価アルコールが含まれ、水分等が含まれる場合もある。かかる第二のグリセリン液に対し、油分や無機塩は溶解度が低いため、第二のグリセリン液と分離する。
 第二の分離工程においては、グリセリン液(無機酸を用いた場合は、中和グリセリン液;酵素を用いた場合は第一のグリセリン液)を3~12時間ほど静置後、上部液(油分)、下部液(第二のグリセリン液)を別々に回収し、下部液となる第二のグリセリン液を得ることができるが、遠心分離等により分離速度を高めることが好ましい。かかる遠心分離においては、軽液(すなわち油分)、重液(すなわち第二のグリセリン液)および固形物を分離することのできる三相分離型の遠心分離機を好適に用いることができる。また、第一の分離工程において無機酸を用いた場合は無機塩が多量に析出するため、デカンタ型等の固液分離が可能な遠心分離機により一定程度の無機塩をあらかじめ分離した後、液相部分をさらに三相分離型遠心分離機により分離することも好ましい。
 第二の分離工程において得られる第二の油分は、例えば、第一の分離工程において分離された第一の油分と合わせ、後述する接触分解工程に付すことができる。この場合、油分のpH調整を行うことが好ましく、具体的な方法は第一の油分において前述したとおりである。
 また、第二の油分は、第一の油分と合わせ、さらなるエステル化反応(後述する第二のエステル化工程)に付すことで、脂肪酸アルキルエステルの生成に用いることができる。かかる方法は第二の実施形態において詳述する。
 本工程で無機塩が回収される場合、無機塩は、例えば、洗浄工程等を経て無機肥料等の原料とすることができる。一方、本工程で固定化酵素が回収される場合、固定化酵素は、第一の分離工程に再利用することができる。
 また、第二のグリセリン液は、アスファルトの剥離剤、セメントの離型剤、脱窒剤や硝化促進剤(生物学的硝化脱窒処理の有機炭素源)などとして用いることができ、さらには精製を行うことにより化粧品等の用途に用いることもできる。
 なお、第一の分離工程において、1価アルコールを含む原料(例えば、バイオディーゼル燃料(脂肪酸アルキルエステル)の製造工程で副生される廃グリセリン等)を用いている場合には、第二のグリセリン液に1価アルコールが含まれる場合がある。かかる1価アルコールは、第二の実施形態における(第二の)エステル化工程の原料として用いることができるため、さらにアルコール分離工程に付して1価アルコールを回収してもよい。
(5)アルコール分離工程
 アルコール分離工程は、第二の分離工程で得られた第二のグリセリン液から1価アルコールを分離する工程である。
 上記第二のグリセリン液には、廃グリセリンに由来し、第一の分離工程(エステル化反応)においても残存した1価アルコールが含まれ得る。かかる1価アルコールは、後述する(第二の)エステル化工程の原料として用いることができる。
 アルコール分離工程においては、減圧蒸留法、気液接触法、膜分離法などを採用することができる。
 減圧蒸留法は、グリセリン液を加温(例えば、60℃程度)して1価アルコール等を蒸発させ、その後減圧することで1価アルコール等を分離する方法である。分離した1価アルコール等は冷却して回収することができる。
 気液接触法は、グリセリン液を微細な液滴として気相と接触させ、沸点の低い1価アルコールを気相に移行させて分離する方法であり、具体的にはスプレードライ法等を好適に採用することができる。
 膜分離法は、1価アルコールを優先的に透過させる膜を用いる方法である。
 なお、第二のグリセリン液には水分がさらに含まれている場合がある。かかる水分はグリセリン液に残存していてもよいが、例えば減圧蒸留法や気液接触法等においては、1価アルコールとともに気相に移行するため水分を除去することもできる。
 また、上記1価アルコールを分離するアルコール分離工程の前または後に、イオン交換法や、活性白土、珪藻土、炭素、ゼオライト等を用い、さらなる精製処理を行ってもよい。
 分離された1価アルコールは、そのまま、あるいは必要に応じて再蒸留等により精製し、エステル交換反応の原料として再利用することができる。
 なお、本工程で得られたグリセリン液は、グリセリンの純度が85質量%以上であることが好ましく、90質量%以上であることがさらに好ましく、97質量%以上であることがとりわけ好ましく、99質量%以上であることが特に好ましい。本実施形態においては、上述した分離工程およびアルコール分離工程を介することにより、グリセリン含有廃棄物が原料であるにも関わらず、比較的簡便な方法でありながら、上記数値範囲のような高純度のグリセリン液を得ることができる。なお、グリセリンの純度はガスクロマトグラフィーにより測定した値とする。
 以上述べた方法によれば、遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料から、第一の油分、さらには第二の油分を分離することができ、これらは後述する接触分解工程の原料として用いることができる。
〔第二の実施形態〕
 第二の実施形態は、上述した第一の実施形態と工程が一部重複するものの、(第一の)分離工程で得られた第一の油分を原料として、
脂肪酸アルキルエステルを製造し、かかる脂肪酸アルキルエステルを、後述する接触分解工程における原料として用いる。
 なお、本実施形態においては、上記第一の油分に加え、上記第二の分離工程で得られた第二の油分をさらに用いてもよい。また、上記アルコール分離工程で回収した1価アルコールを原料として用いてもよい。
 上述した第一および第二の分離工程においては、分離した油相より第一および第二の油分がそれぞれ回収される。また、上述したアルコール分離工程においては、分離した1価アルコールが回収される。これらは、アルカリ触媒法による脂肪酸アルキルエステルの製造における原料として循環供給することも考えられるが、純度が必ずしも高くないため、そのままの状態で原料として用いようとすると、脂肪酸アルキルエステルを効率的に製造することが困難な場合がある。また、第一および/または第二の油分には、遊離脂肪酸等の酸価の高い油脂が含まれており、とりわけ第一の分離工程において無機酸を用いた場合の第一の油分は、酸触媒を用いたエステル化反応ともいうことができる第一の分離工程(第一のエステル化工程)にて分離されたものであるため、酸性の油分となっている。そのため、第一および第二の油分をそのままアルカリ触媒による脂肪酸アルキルエステルの製造の原料として用いることはより一層困難となる。
 しかし、アルカリ触媒法以外の方法であれば、酸価の高い油脂であっても、脂肪酸アルキルエステルを製造することが可能である。そこで、本実施形態においては、アルカリ触媒法以外の方法により脂肪酸アルキルエステルを製造する、エステル化工程を備える。なお、本工程は、前述した第一の分離工程が第一のエステル化工程とも言い得ることから、これとの対比で「第二のエステル化工程」ということがある。
 第二のエステル化工程においては、第一の分離工程で分離された第一の油分を用いる。
 さらに、上記第二の分離工程で分離された第二の油分を原料として用いることが好ましい。また、上記アルコール分離工程で1価のアルコールが回収されている場合には、かかる回収された1価のアルコールを原料として用いることもまた好ましい。
 なお、その他の原料としては、上記第一の分離工程(第一のエステル化工程)と同様の原料(高酸価油等)をさらに併用してもよい。
 これらを原料とすることにより、炭化水素を主成分とするバイオディーゼル燃料の製造において、産業廃棄物をより一層効率的に再資源化することが可能となる。アルカリ触媒法以外の方法であれば、これらの原料であっても好適に用いることができる。
 第二のエステル化工程で採用し得る方法は、アルカリ触媒法以外の方法であり、より具体的には、酸触媒法、酸アルカリ触媒法、生体触媒法、イオン交換樹脂法、超臨界法、亜臨界法および固体触媒法が例示される。これらの方法であれば、酸価の高い廃食油や油脂であっても、さらには未反応の遊離脂肪酸を含む油脂であっても、メタノールなどの1価アルコールとエステル交換反応を行うことができる。
 第二のエステル化工程においては、脂肪酸アルキルエステルを含有する油分とともに、グリセリンが副生される。第二のエステル化工程で得られる油分と、グリセリン液とは、静置、遠心分離等により、相分離させることができる。分離した油分は、脂肪酸アルキルエステルを回収し、バイオディーゼル燃料等とすることができる。一方、副生されたグリセリンは、例えば、上記第一の分離工程(第一のエステル化工程)で得られた第一のグリセリン液とともに中和工程に供給することができる。このように構成すると、第二のエステル化工程で副生されたグリセリンについても、中和工程、第二の分離工程等を経てグリセリン液の一部とすることができるため、より一層効率的に再資源化することができる。
 第二のエステル化工程として、上述したアルカリ触媒法以外の方法の中でも、特に酸触媒法を採用することが好ましい。
 図2に示すように、第二のエステル化工程として酸触媒法を採用する場合には、上記第一の油分および/または第二の油分を原料として用いる。その他の原料としては、アルコール分離工程で回収された1価のアルコールを用いることができ、さらには、第一の分離工程(第一のエステル化工程)と同様の原料(高酸価油等)を用いても良い。
 第二のエステル化工程で得られた反応液は、脂肪酸アルキルエステルを含む油分と、副生したグリセリンや酸触媒およびその塩等を含むグリセリン液とに分離させる。得られる油分およびグリセリン液はいずれも酸性となっており、このうち酸性グリセリン液は上記中和工程などに供給することができる。
 一方、脂肪酸アルキルエステルを含む油分については、中和や脱水等を行うことが好ましい。ここで、中和・脱水の方法としては、バイオディーゼル燃料の製造過程で副生される廃グリセリンを用いる方法が好ましく例示される。具体的には、バイオディーゼル燃料の製造過程で副生される廃グリセリンを脱アルコール化してタンク等に貯留しておき、当該タンクの下部から、中和させる油分を投入して廃グリセリンと接触させる。これにより、酸性の油分は廃グリセリンのアルカリにより中和され、さらに油分に含まれる水および1価アルコールは廃グリセリン液に吸収される。そして、下部から投入された油分は比重差により上部からオーバーフローされるため、容易に回収することができる。このような方法により、中和、脱水および脱アルコールを同時に行うことができ、高品質な油分を簡便に得ることができる。なお、水および1価アルコールを吸収した廃グリセリン液は、上述した中和工程に供給することができ、第二の分離工程等を経て第二のグリセリン液の一部とすることができる。
 なお、第二のエステル化工程において、酸触媒法以外の方法としては、生体触媒法、超臨界法、亜臨界法を好ましく例示することができる。
 生体触媒法は、エステル交換反応の触媒活性を備えたリパーゼやホスホリパーゼを用いて、エステル交換反応を促す方法である。生体触媒法は、反応条件が穏やかであるが、酸価値の高い油脂であってもエステル交換反応を促進でき、副生成物が少ないという特性がある。
 超臨界法や亜臨界法は、温度や圧力を調整して、原材料を超臨界状態または亜臨界状態に変えることで、物質の相状態を気液二相から液液二相、さらに誘電率を下げて一相へと変化させて、本来触媒を用いる必要があった反応系を無触媒系へと変えて、加水分解を促進する方法である。
 このような第二のエステル化工程を行うことにより、産業廃棄物をより一層効率的に再資源化することが可能となる。
〔接触分解工程〕
 本工程は、第一の実施形態で得られた第一の油分、または第二の実施形態で得られた脂肪酸アルキルエステルを、触媒と接触させ、接触分解法により、炭化水素を主成分とするバイオディーゼル燃料を得る工程である。
 本工程で用いる触媒は、炭化水素を生成する接触分解法において一般的に用いられる接触分解触媒であれば、特に限定されず使用することができる。例えば、アルカリ土類金属の酸化物、ゼオライト、セピオライト、アルミナ、シリカ、粘土鉱物等を例示することができ、タングステンジルコニア、FCC触媒等を用いてもよい。
 上記の中でも、アルカリ土類金属の酸化物として、酸化マグネシウムを好適に例示することができる。酸化マグネシウムとしては、高純度の酸化マグネシウムを用いてもよく、高炉スラグ等の酸化マグネシウム含有組成物を用いてもよい。
 また、本工程で用いる触媒は、多孔質の担体に担持されていると、原料と触媒との接触面積が拡大するため、特に好適である。多孔質の担体としては、例えば、シリカゲル等を例示することができる。
 上記触媒と多孔質担体との使用比率は、質量比で触媒1に対し、多孔質担体が5~20であることが好ましく、7~15であることがさらに好ましく、9~10であることが特に好ましい。
 接触分解工程においては、得られる炭化水素を回収するためのキャリアガスとして、不活性ガスを反応系に送入および送出させることが好ましい。かかる不活性ガスとしては、窒素、アルゴン等を用いることができ、窒素が好ましい。なお、キャリアガスの流量は、原料となる油分や脂肪酸アルキルエステルの分解時間に合わせて適宜調整することができる。具体的には、キャリアガスの流量を多くすると、反応時間が短くなって炭素鎖が長い炭化水素を得ることができる。一方、キャリアガスの流量を少なくすると、反応時間が長くなって炭素鎖の短い炭化水素を得ることができる。
 接触分解工程においては、回転軸が水平面に対して傾斜する状態で配置された回転するドラム内で反応させることが好ましい。
 接触分解法で用いられる反応器は、反応槽が固定され、鉛直な回転軸を有するプロペラ等により接触分解触媒を撹拌するタイプが一般的である。しかし、このような反応器を用いる場合、接触分解触媒がプロペラ等との摩擦で摩耗し、接触分解触媒が消耗しやすくなるという問題がある。
 これに対し、回転軸が水平面に対して傾斜する状態で配置された回転するドラムを反応器として用い、当該ドラム内で反応させることで、接触分解触媒はドラムの回転によって転動する。これにより、原料(第一の油分または脂肪酸アルキルエステル)と触媒との接触が十分に確保されるとともに、触媒の消耗を抑制することができ、触媒の交換時期を延長することができる。
 上記回転ドラムを用いる場合、原料およびキャリアガスは、ドラムの回転軸に沿ってドラムの一方の側から送入される。また、反応産物である炭化水素およびキャリアガスは、ドラムの他方の側(すなわち、送入とは反対側)から送出される。このように反応器を構成することで、ドラムが回転している間も原料の送入および反応産物の送出が可能となり、本工程を連続的に実施することが可能となる。
 接触分解工程においては、反応温度が200~600℃、好ましくは300℃~500℃となるように、反応器内部の温度を調整する。なお、反応温度が430℃を超えると軽質分が増えるため、かかる観点から反応温度を調整してもよい。なお、反応温度の確認は、反応器から送出されるキャリアガスの温度で確認することができる。
 上記反応温度は、電磁誘導加熱により調整することが好ましい。電磁誘導加熱によれば、エネルギー効率の観点で優れている。
 接触分解工程においては、反応器に触媒を投入し、ついで反応器内部の温度を調整した後、原料(第一の油分、および/または脂肪酸アルキルエステルを含む)を投入する。これにより、第一の油分に含まれる遊離脂肪酸、あるいは脂肪酸アルキルエステルが、触媒の存在下で接触分解法により分解され、炭化水素が生成する。
 生成した炭化水素は、キャリアガスとともに反応器からガスとして送出されるため、これをコンデンサー等により冷却して凝縮し、炭化水素を含む組成物を液体として回収する。
 なお、特定の鎖長の炭化水素を得ようとする場合は、前述したキャリアガスの流量を適宜調整する他、回収した炭化水素油をさらに蒸留または分画蒸留することにより、所望の鎖長の炭化水素を回収することができる。
 回収された組成物は、炭化水素を主成分として含んでおり、軽油品質の良好な、バイオディーゼル燃料として利用することができる。
 以上の方法によれば、遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料、とりわけ遊離脂肪酸や脂肪酸グリセリンエステルを含む廃棄物から、炭化水素を主成分とするバイオディーゼル燃料を効率良く製造することができる。そのため、遊離脂肪酸や脂肪酸グリセリンエステルを含む廃棄物を有効に再資源化することができる。また、脂肪酸グリセリンエステルのうちグリセリン部分についてはエステル交換反応によりグリセリンとして別途回収できるため、低級炭化水素の回収設備を別途設けることなく、グリセリン部分を有効に再資源化することができる。
 なお、第一の実施形態で得られる第一の油分は、第一の分離工程(第一のエステル化工程)により、エステル交換反応が1回行われたものである。一方、第二の実施形態で得られる脂肪酸アルキルエステルは、第一および第二のエステル化工程により、エステル交換反応が2回行われたものである。脂肪酸グリセリンエステルのうちグリセリン部分を再資源化する観点からは、第二の実施形態がより好ましいということができる。また、第二の実施形態においては、脂肪酸アルキルエステルの純度が比較的高く、接触分解工程に付す原料の性状が安定しているため、接触分解工程において灰分の蓄積が少なく、接触分解触媒を繰り返し利用しても反応阻害が生じにくい。このため、長期間連続的に接触分解工程を実施できるという観点からも、第二の実施形態がより好ましいということができる。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 以下、実施例等を示すことにより本発明をさらに詳細に説明するが、本発明は下記の実施例等に何ら限定されるものではない。
(廃グリセリンの準備)
 水酸化カリウムを触媒とするアルカリ触媒法により、廃食油とメタノールとをエステル交換させてバイオディーゼル燃料を製造した。このとき生成したグリセリンを含む副生成物を廃グリセリンとして回収した。
 この廃グリセリンにゼオライトを廃グリセリン1kgあたり20g添加して水分を除去した。ゼオライトが添加された廃グリセリンは、250メッシュのフィルターを通過させて、ゼオライトおよび固体状の不純物を除去した。
 こうして得られた原料としての廃グリセリン(以下、「原料廃グリセリン」という。)の組成および物性は表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
(第一の分離工程)
 加温冷却機能を有する容量1000Lの反応タンクに、原料廃グリセリン500kg、高酸価油(150mgKOH/g)300kgを投入し、攪拌(120rpm)しながら55℃まで加温した。この状態で、濃硫酸32Lを反応容器中に15分かけて添加した。濃硫酸の添加にあたり、反応容器中の混合物の温度が65℃を超えないように留意した。濃硫酸を全量添加した後の反応液のpHは1であった。濃硫酸の添加終了後、240分間攪拌を継続した。その後10時間静置し、油相(第一の油分)と酸性グリセリン相(第一のグリセリン液)とに分離させ、第一のグリセリン液(酸性グリセリン相,析出した硫酸カリウムを含む)を回収した。以上の操作を繰り返すことにより、第一のグリセリン液5000kgを得た。
(中和工程)
 容量15000Lの反応タンクに、攪拌しながら第一のグリセリン液5000kg、廃グリセリン5000kgを投入した。pHは5.0であった。その後も4時間攪拌を継続し、その後24時間静置した。
(第二の分離工程)
 中和されたグリセリンを、デカンタ型遠心分離機(製品名:Z18H-V,タナベウィルテック社製)にて5500rpm、180分間処理し、析出した硫酸カリウムを分離回収した。液相について、さらに三相分離型遠心分離機(アルファ・ラバル社製)にて8000rpm、180分間処理し、第二の油分、第二のグリセリン液、硫酸カリウムをそれぞれ分離回収した。
(アルコール分離工程)
 三相分離により得られた第二のグリセリン液を蒸留してメタノールおよび水を分離して回収した。なお、メタノールおよび水を分離したグリセリンは、純度99質量%(ガスクロマトグラフィーにて測定)であった。
(再生油分の回収)
 第一の分離工程で得られた第一の油分、および第二の分離工程で得られた第二の油分を混合したのち、廃グリセリンを用いてpH6程度に中和し、分離した油分を回収した。回収した油分を「再生油分」とし、後述する接触分解工程に供した。
((第二の)エステル化工程)
 第一の分離工程で得られた第一の油分、および第二の分離工程で得られた第二の油分を混合し、アルコール分離工程で回収したメタノールを添加し、濃硫酸を反応容器中に添加した。濃硫酸の添加にあたり、反応容器中の混合物の温度が65℃を超えないように留意した。濃硫酸を全量添加した後の反応液のpHは1であった。濃硫酸の添加終了後、240分間攪拌を継続した。その後10時間静置し、油相と酸性グリセリン相とに分離させ、油相を回収した。得られた油相は、脂肪酸メチルエステルを主成分(90質量%以上)とする組成物であった。得られた組成物を中和し、後述する接触分解工程に供した。
(接触分解工程)
 以上のようにして得られた再生油分と、脂肪酸メチルエステルとをそれぞれ用い、接触分解法に付した。なお、原料として用いた脂肪酸メチルエステルおよび再生油分の性状を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 接触分解工程におけるリアクターとしては、回転軸が水平面に対して約45°に傾斜する状態で配置された回転ドラムを有する回転ドラム型リアクター(容積200L)を用いた。
 二酸化ケイ素粉末(富士シリシア社製,キャリアクトQ-3,粒径:1.18~2.36mm)を12.5kgと、酸化マグネシウム(タテホ化学社製,純度99.99質量%)を1.25kgとを、リアクターに投入し、リアクターの攪拌を開始した。窒素流量2070L/hに設定し、電磁誘導加熱装置(アメリサーム社製,EKOHEAT20/10)によりリアクター温度400℃を保持させた。
 排出窒素温度が380℃となったことを確認した後、脂肪酸メチルエステルを毎分130mLの流量でリアクターに投入開始した。
 しばらくすると、リアクター出口に接続したコンデンサーによって排出ガスが冷却され、コンデンサー下のタンクに液体として貯まり始めたので、排出バルブを開きサンプル瓶に回収した(実施例1)。
 また、脂肪酸メチルエステルに代えて再生油分を投入する以外は、実施例1と同様にして、凝縮した液体を得た(実施例2)。
 得られた液体について、ガスクロマトグラフィー(使用カラム:アジレントテクノロジー社製DB1,内径=0.25mm,長さ=30m,膜厚=0.25μm)に供し、水素炎イオン化検出器(FID)にて検出した。
 脂肪酸メチルエステルを原料として用いた実施例1、再生油分を原料として用いた実施例2のいずれにおいても、ペンタデカン(C15)の炭化水素を主成分とし、さらにC14、C13、C19、C17、C16のアルカンを含み、軽油品質として良好な組成物であることが確認された。
 具体的には、実施例1においては、C15が17.86%(ピーク面積%,以下同様)、C14が9.02%、C13が6.78%、C16が4.60%、C17が3.34%、C19が4.98%等であった。
 一方、実施例2においては、C15が23.62%、C14が7.45%、C13が3.50%、C17が4.01%、C20が8.37%等であった。
 なお、実施例1は、脂肪酸メチルエステルを2000L/1日投入して180日以上連続運転した場合であっても、接触分解触媒が良好な触媒活性を保持していた。一方、実施例2は、再生油分を2000L/1日投入すると、リアクター内に灰分が蓄積し、10日程度で触媒活性の低下が認められた。
 本発明によれば、遊離脂肪酸や脂肪酸グリセリンエステルを含有する産業廃棄物を有効に再資源化することができるだけでなく、付加価値の高い次世代バイオディーゼル燃料(炭化水素を主成分とするバイオディーゼル燃料)を製造することができるため、産業上の利用価値は大なるものがある。

Claims (12)

  1.  バイオディーゼル燃料を製造する方法であって、
     遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料と、無機酸または酵素とを混合し、第一の油分と第一のグリセリン液とを分離する第一の分離工程と、
     アルカリ触媒法以外の方法であって、酸触媒法、酸アルカリ触媒法、生体触媒法、イオン交換樹脂法、超臨界法、亜臨界法および固体触媒法からなる群より選択される少なくとも一つの方法により、前記第一の油分と1価のアルコールとを反応させて脂肪酸アルキルエステルを得るエステル化工程と、
     前記脂肪酸アルキルエステルを、触媒と接触させて炭化水素を得る接触分解工程と、
    を備えることを特徴とする、製造方法。
  2.  前記第一の分離工程において無機酸を用い、得られた前記第一のグリセリン液を、アルカリ性物質により中和する中和工程と、
     前記中和されたグリセリン液から、第二の油分および析出した無機塩を分離する第二の分離工程とを備え、
     前記エステル化工程において、前記第二の油分を前記第一の油分と合わせて反応させる、請求項1に記載の製造方法。
  3.  前記第一の分離工程において無機酸を用い、得られた前記第一のグリセリン液を、アルカリ性物質により中和する中和工程と、
     前記中和されたグリセリン液から、第二の油分および析出した無機塩を分離する第二の分離工程と、
     前記第二の油分および前記無機塩が分離されたグリセリン液から1価のアルコールを分離するアルコール分離工程とを備え、
     前記エステル化工程における前記1価のアルコールとして、前記アルコール分離工程で分離された1価のアルコールを用いる、
    請求項1または2に記載の製造方法。
  4.  バイオディーゼル燃料を製造する方法であって、
     遊離脂肪酸および脂肪酸グリセリンエステルの少なくとも1種を含む原料と、無機酸または酵素とを混合し、第一の油分と第一のグリセリン液とを分離する第一の分離工程と、
     前記第一の油分を、触媒と接触させて炭化水素を得る接触分解工程と、
    を備えることを特徴とする、製造方法。
  5.  前記第一の分離工程において無機酸を用い、得られた前記第一のグリセリン液を、アルカリ性物質により中和する中和工程と、
     前記中和されたグリセリン液から、第二の油分および析出した無機塩を分離する第二の分離工程とを備え、
     前記接触分解工程において、前記第二の油分を前記第一の油分と合わせて前記触媒に接触させる、請求項4に記載の製造方法。
  6.  前記第一の分離工程における前記原料は、酸価10mgKOH/g以上の高酸価油、および脂肪酸アルキルエステルの製造過程で副生される廃グリセリン、の少なくとも1種を含む、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記第一の分離工程において無機酸を用い、前記無機酸が濃硫酸である、請求項1~6のいずれか一項に記載の製造方法。
  8.  前記第一の分離工程において無機酸を用い、前記原料と前記無機酸との混合液のpHが3以下である、請求項1~7のいずれか一項に記載の製造方法。
  9.  前記接触分解工程における触媒が、酸化マグネシウムを含む、請求項1~8のいずれか一項に記載の製造方法。
  10.  前記接触分解工程において、回転軸が水平面に対して傾斜する状態で配置された回転するドラム内で反応させる、請求項1~9のいずれか一項に記載の製造方法。
  11.  前記接触分解工程における反応温度が200~600℃である、請求項1~10のいずれか一項に記載の製造方法。
  12.  電磁誘導加熱により前記反応温度を調整する、請求項11に記載の製造方法。
PCT/JP2021/012757 2020-03-25 2021-03-25 バイオディーゼル燃料の製造方法 WO2021193887A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022510712A JP7252588B2 (ja) 2020-03-25 2021-03-25 バイオディーゼル燃料の製造方法
EP21776355.6A EP4130202A4 (en) 2020-03-25 2021-03-25 PROCESS FOR PRODUCING BIODIESEL FUEL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020055203 2020-03-25
JP2020-055203 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021193887A1 true WO2021193887A1 (ja) 2021-09-30

Family

ID=77890336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012757 WO2021193887A1 (ja) 2020-03-25 2021-03-25 バイオディーゼル燃料の製造方法

Country Status (3)

Country Link
EP (1) EP4130202A4 (ja)
JP (1) JP7252588B2 (ja)
WO (1) WO2021193887A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234692A (ja) * 1988-07-22 1990-02-05 Lion Corp メチルエステルの製造方法
JP2005060581A (ja) * 2003-08-18 2005-03-10 Denki Kagaku Kogyo Kk クロロプレン系ゴム組成物
JP2013506031A (ja) * 2009-09-25 2013-02-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー トリグリセリドおよび/または脂肪酸アルキルエステルを含有する原料油からの燃料製造
JP5234456B2 (ja) 2008-03-28 2013-07-10 公益財団法人北九州産業学術推進機構 油脂の接触分解方法
JP2013153134A (ja) * 2011-12-26 2013-08-08 Nichia Chem Ind Ltd 発光装置の製造方法
JP2013241612A (ja) * 2008-10-31 2013-12-05 Kitakyushu Foundation For The Advancement Of Industry Science & Technology バイオディーゼル燃料の製造方法及びその製造装置、その方法に用いる油脂脱炭酸分解触媒
JP2019031916A (ja) * 2017-08-04 2019-02-28 株式会社デンソー 電子制御装置
JP2019515060A (ja) * 2016-03-31 2019-06-06 ソルヴェイ(ソシエテ アノニム) 接触分解によるワックスへのプラスチックの変換方法およびそれによって得られる炭化水素の混合物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB612667A (en) * 1945-05-29 1948-11-16 Unilever Ltd Improvements in or relating to methods of alcoholysis of low grade fatty materials
JP4374219B2 (ja) * 2003-08-18 2009-12-02 ダイキ株式会社 廃油脂のケミカルリサイクル方法
US7767837B2 (en) * 2007-05-04 2010-08-03 Tda Research, Inc. Methods of making alkyl esters
US8389782B2 (en) * 2010-08-31 2013-03-05 Chevron U.S.A. Inc. Biofuel production through catalytic deoxygenation
CN103459607A (zh) * 2011-03-30 2013-12-18 诺维信公司 酯化反应法
JP5986753B2 (ja) 2012-01-31 2016-09-06 関西化学機械製作株式会社 酵素法による連続式バイオディーゼル燃料の生産方法
EP2809753A4 (en) * 2012-02-02 2015-10-28 Revolution Fuels Inc MOBILE PROCESSING SYSTEMS AND METHOD FOR PRODUCING BIODIESEL FUEL FROM OILS
WO2015128879A1 (en) * 2014-02-25 2015-09-03 Council Of Scientific And Industrial Research An improved process for producing renewable diesel fuel
GB2549139B (en) * 2016-04-07 2019-01-30 A & C Freeman Process for recovery of glycerol from biodiesel production streams
JP6951907B2 (ja) * 2017-08-23 2021-10-20 バイオ燃料技研工業株式会社 水処理方法、水処理システム、脱窒剤の製造方法及び脱窒剤の製造装置
WO2019084657A1 (en) * 2017-11-06 2019-05-09 The Saskatchewan Research Council Process for the production of hydrocarbon biofuels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234692A (ja) * 1988-07-22 1990-02-05 Lion Corp メチルエステルの製造方法
JP2005060581A (ja) * 2003-08-18 2005-03-10 Denki Kagaku Kogyo Kk クロロプレン系ゴム組成物
JP5234456B2 (ja) 2008-03-28 2013-07-10 公益財団法人北九州産業学術推進機構 油脂の接触分解方法
JP2013241612A (ja) * 2008-10-31 2013-12-05 Kitakyushu Foundation For The Advancement Of Industry Science & Technology バイオディーゼル燃料の製造方法及びその製造装置、その方法に用いる油脂脱炭酸分解触媒
JP2013506031A (ja) * 2009-09-25 2013-02-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー トリグリセリドおよび/または脂肪酸アルキルエステルを含有する原料油からの燃料製造
JP2013153134A (ja) * 2011-12-26 2013-08-08 Nichia Chem Ind Ltd 発光装置の製造方法
JP2019515060A (ja) * 2016-03-31 2019-06-06 ソルヴェイ(ソシエテ アノニム) 接触分解によるワックスへのプラスチックの変換方法およびそれによって得られる炭化水素の混合物
JP2019031916A (ja) * 2017-08-04 2019-02-28 株式会社デンソー 電子制御装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE JAPAN INSTITUTE OF MARINE ENGINEERING, vol. 47, no. 1, 2012, pages 45 - 50
See also references of EP4130202A4

Also Published As

Publication number Publication date
EP4130202A4 (en) 2024-04-03
JP7252588B2 (ja) 2023-04-05
JPWO2021193887A1 (ja) 2021-09-30
EP4130202A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
US8728177B2 (en) Production of biodiesel and glycerin from high free fatty acid feedstocks
RU2392263C2 (ru) Способы получения сложных алкиловых эфиров
Melero et al. Municipal sewage sludge to biodiesel by simultaneous extraction and conversion of lipids
US7806945B2 (en) Production of biodiesel and glycerin from high free fatty acid feedstocks
JP2008231345A (ja) バイオディーゼル燃料の製造方法
JP2009502812A (ja) カルボン酸アルキルエステルの製造方法
CN106906194A (zh) 一种偏甘油酯脂肪酶及富含pufa的油脂的酶法脱酸方法
JP2005350632A (ja) バイオディーゼル燃料の製造方法
EP2697348A1 (en) A process for autocatalytic esterification of fatty acids
KR20150011306A (ko) 지방을 이용한 지방산알킬에스테르의 제조방법
JP4078383B1 (ja) バイオディーゼル燃料の製造方法
JP5181106B2 (ja) 液化ジメチルエーテルによるメタノール抽出型バイオディーゼル燃料高速製造方法
JPWO2006016492A1 (ja) バイオディーゼル燃料用組成物の製造方法およびバイオディーゼル燃料製造装置
WO2021193887A1 (ja) バイオディーゼル燃料の製造方法
JP3934630B2 (ja) 酸性油脂類および劣化油脂類からのバイオディーゼル燃料製造方法
JP2006036817A (ja) 脂肪酸エステルの製造方法および製造装置
JP2011012254A (ja) バイオディーゼル燃料の製造方法
JP2009161776A (ja) バイオディーゼル燃料の製造方法及び製造装置
JP2009120847A (ja) バイオディーゼル燃料の製造方法
JP6979656B2 (ja) メタン発酵方法、メタン発酵システム、廃棄物再利用方法および廃棄物再利用システム
WO2020059886A1 (ja) 硫酸カリウムの製造方法および製造システム
JP7417271B2 (ja) ポリ乳酸の製造方法
JPWO2020175661A1 (ja) 水処理方法、脱窒剤または硝化促進剤の製造方法および製造システム
CA2998289A1 (en) Glycerol ester production from wastes containing organic oils and/or fats
CN108929785B (zh) 变温-连续法制备生物柴油的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021776355

Country of ref document: EP

Effective date: 20221025