WO2021193770A1 - 光硬化性組成物、硬化体及び硬化体を用いたガスケット並びに防水構造及びガスケットの製造方法 - Google Patents

光硬化性組成物、硬化体及び硬化体を用いたガスケット並びに防水構造及びガスケットの製造方法 Download PDF

Info

Publication number
WO2021193770A1
WO2021193770A1 PCT/JP2021/012404 JP2021012404W WO2021193770A1 WO 2021193770 A1 WO2021193770 A1 WO 2021193770A1 JP 2021012404 W JP2021012404 W JP 2021012404W WO 2021193770 A1 WO2021193770 A1 WO 2021193770A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable composition
fumed silica
monomer
mass
acrylic polymer
Prior art date
Application number
PCT/JP2021/012404
Other languages
English (en)
French (fr)
Inventor
優 花倉
Original Assignee
積水ポリマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水ポリマテック株式会社 filed Critical 積水ポリマテック株式会社
Priority to JP2021540862A priority Critical patent/JP6983453B1/ja
Priority to CN202180006873.1A priority patent/CN114746457B/zh
Priority to US17/791,518 priority patent/US11613645B2/en
Priority to KR1020227025806A priority patent/KR102553298B1/ko
Priority to EP21775809.3A priority patent/EP4130072A4/en
Publication of WO2021193770A1 publication Critical patent/WO2021193770A1/ja
Priority to JP2021186622A priority patent/JP2022024078A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F267/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00
    • C08F267/06Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/08Anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/044Polymers of aromatic monomers as defined in group C08F12/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/14Sealings between relatively-stationary surfaces by means of granular or plastic material, or fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1062UV-curable materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0243Silica-rich compounds, e.g. silicates, cement, glass
    • C09K2200/0247Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0625Polyacrylic esters or derivatives thereof

Definitions

  • the present invention relates to a photocurable composition, a cured product thereof, and a gasket using the cured product.
  • the present invention relates to a waterproof structure and a method for manufacturing a gasket.
  • a photocurable composition that is liquid before coating and photocures after coating to become a cured product can be used as a sealing material, a gasket, or the like if it is sufficiently cured after being applied to a desired site.
  • a type of gasket that photocures a liquid composition containing a rubber oligomer having an acryloyl group consisting of an isoprene skeleton, a butadiene skeleton, a urethane skeleton, etc. as a main component is known. Has been done.
  • Such a technique is described in, for example, Japanese Patent Application Laid-Open No. 2013-49805 (Patent Document 1).
  • One aspect of the present invention is a telechelic acrylic polymer having acryloyl groups at both ends, a polyfunctional acrylic polymer having an acryloyl group, a monofunctional acrylic monomer, and hydrophilic fumed silica or fumed having a polar group. It is characterized by a photocurable composition containing fumed silica containing at least one of the silicas and having a cured Martens hardness of 0.07 to 0.75 N / mm 2.
  • One aspect of the present invention is a telechelic acrylic polymer having acryloyl groups at both ends, a polyfunctional acrylic polymer having an acryloyl group, a monofunctional acrylic monomer, and hydrophilic fumed silica or fumed having a polar group. Since it contains fumed silica containing at least one of the silicas, it is a photocurable composition having heat resistance and excellent flexibility and reworkability.
  • the Martens hardness after curing is 0.07 to 0.75 N / mm 2 , it does not give a large stress to the adherend, and the strain of the adherend caused by the cured body of the photocurable composition is not applied. It can be suppressed.
  • One aspect of the present invention is a fumed containing an acrylic polymer having a double bond equivalent of 10,000 or more, a monofunctional acrylic monomer, and at least one of hydrophilic fumed silica or fumed silica having a polar group. It is a photocurable composition containing silica and having a Martens hardness of 0.07 to 0.75 N / mm 2 after curing.
  • One aspect of the present invention is a fumed silica comprising an acrylic polymer having a double bond equivalent of 10,000 or more, a monofunctional acrylic monomer, and at least one of hydrophilic fumed silica or fumed silica having a polar group. Since it is a photocurable composition having heat resistance and excellent flexibility and reworkability, and has a Martens hardness of 0.07 to 0.75 N / mm 2 after curing. The cured product has heat resistance, is excellent in flexibility and reworkability, does not give a large stress to the adherend, and suppresses distortion of the adherend caused by the cured product of the photocurable composition. Can be done.
  • One aspect of the present invention is a photocurable composition further containing a polyfunctional photocurable monomer. Since one aspect of the present invention further contains a polyfunctional photocurable monomer, ultra-high temperature compression set can be improved.
  • One aspect of the present invention is a photocurable composition containing hydrophilic fumed silica and hydrophobic fumed silica having a polar group in the fumed silica.
  • the fumed silica contains hydrophilic fumed silica and hydrophobic fumed silica having a polar group
  • the blending ratio of fumed silica to the polymer component such as a telechelic acrylic polymer. Since it is possible to enhance the polarity while providing heat resistance even if the amount is small, it is possible to prevent the photocurable composition from spreading before curing when the photocurable composition is applied.
  • the increase in hardness of the cured product due to the blending of fumed silica can be minimized, and a cured product of a highly flexible photocurable composition can be obtained.
  • One aspect of the present invention is a photocurable composition containing amino-treated fumed silica in the fumed silica. Since one aspect of the present invention is a photocurable composition containing amino-treated fumed silica in the fumed silica, even if the blending ratio of fumed silica to the polymer component such as a telechelic acrylic polymer is further reduced. It is possible to enhance the silica property and prevent the photocurable composition from spreading before curing when the photocurable composition is applied.
  • One aspect of the present invention includes the telechelic acrylic polymer 22 to 71% by mass, the polyfunctional acrylic polymer 7 to 54% by mass, the monofunctional acrylic monomer 3 to 27% by mass, and the polyfunctional photocuring. It is a photocurable composition containing 0 to 10% by mass of a sex monomer and 2 to 20% by mass of the fumed silica.
  • One aspect of the present invention is a photocurable composition having a curing force of 0.45 N / mm 2 or less after being compressed at 70 ° C. for 22 hours after curing.
  • the adhesive force to aluminum after curing at 70 ° C. for 22 hours is 0.45 N / mm 2 or less, so that there is little tack and excellent reworkability.
  • One aspect of the present invention is a photocurable composition having a compression set of 40% or less after 100 hours at 120 ° C. according to JIS K6262: 2013 after curing.
  • the photocurable composition has a compression set of 40% or less after 100 hours at 120 ° C. according to JIS K6262: 2013 after curing, and thus has heat resistance.
  • the photocurable composition having a compression set of 30% or less after curing is excellent in heat resistance.
  • One aspect of the present invention is a cured product of any of the above photocurable compositions.
  • it since it is a cured product of any of the above photocurable compositions, it is a cured product having heat resistance and excellent flexibility and reworkability.
  • One aspect of the present invention is a gasket that is a cured product of any of the above photocurable compositions.
  • the gasket since the gasket is a cured product of any of the above photocurable compositions, it is a gasket having heat resistance and excellent flexibility and reworkability.
  • One aspect of the present invention comprises a case having an opening, a lid closing the opening, and a cured body of any of the photocurable compositions provided in at least one of the case or the lid. It is a waterproof structure including a gasket that is compressively deformed by fitting the case and the lid body to seal the opening liquid-tightly. Since it has a waterproof structure including a gasket that is a cured product of any of the above photocurable compositions, it is a gasket that has heat resistance and is excellent in flexibility and reworkability.
  • One aspect of the present invention is a gasket comprising a step of applying any of the above photocurable compositions to an object to be sealed and a step of irradiating the applied photocurable composition with active energy rays. It is a manufacturing method.
  • the gasket manufactured in this way is a gasket having heat resistance and excellent flexibility and reworkability.
  • acrylic monomer is synonymous with (meth) acrylic monomer, and means that it includes not only an acrylic acid ester monomer but also a methacrylic acid ester monomer. I am using it.
  • acrylic polymer is synonymous with (meth) acrylic polymer, and is used in the sense that it includes a methacrylic acid ester polymer in addition to an acrylic acid ester polymer.
  • acryloyl group is synonymous with (meth) acryloyl group, and is used in the sense that it includes a methacryloyl group in addition to the acryloyl group.
  • both the acrylic monomer and the acrylic polymer are compounds having a radically polymerizable group, and those after the radical polymerization reaction are distinguished by notation as "cured product".
  • This photocurable composition can be obtained by subjecting an acrylic monomer and a (meth) acryloyl group of an acrylic polymer to a photocuring reaction to obtain a cured product.
  • a photocurable composition having flexibility when made into a cured product, reworkability, and excellent heat resistance can be obtained.
  • Photocurable composition According to the photocurable composition according to one embodiment, a telechelic acrylic polymer having acryloyl groups at both ends, a polyfunctional acrylic polymer having an acryloyl group, a monofunctional acrylic monomer, fumed silica, and the like. It is a photocurable composition containing 0.07 to 0.75 N / mm 2 in hardness after curing.
  • a telechelic acrylic polymer having acryloyl groups at both ends has a main chain formed by polymerization of a (meth) acrylic monomer, and has a weight average molecular weight (Mw).
  • Mw weight average molecular weight
  • radical polymerization type photocuring can be performed.
  • the polymerization of the (meth) acrylic monomer is not particularly limited, but it is preferably carried out by living polymerization.
  • the cured product of the telechelic acrylic polymer obtained by polymerizing the main chain by living polymerization can form a uniform three-dimensional matrix, and becomes a cured product that is flexible and has excellent heat resistance. Further, among the above-mentioned living polymerizations, it is particularly preferable to use a telechelic acrylic polymer polymerized by a living radical polymerization method from an industrial point of view.
  • the telekeric acrylic polymer preferably has a Mw / Mn ratio between 1 and 2.
  • the main chain of the telechelic acrylic polymer is composed of polymerized (meth) acrylic acid or an ester thereof. Specifically, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, and (meth) acrylic acid.
  • (Meta) acrylic acid alkyl esters such as butyl, -2-ethylhexyl (meth) acrylate, isobutyl (meth) acrylate, lauryl acrylate, isostearyl acrylate, or -2-methoxyethyl (meth) acrylate, ( -2-ethoxyethyl acrylate, -2-methoxyethyl (meth) acrylate, -3-methoxybutyl (meth) acrylate, -2-hydroxyethyl (meth) acrylate, -4 (meth) acrylate -Hydroxybutyl, (meth) acrylic acid-2-hydroxypropyl, (meth) gly
  • the telechelic acrylic polymer can be 18 to 80% by mass in the photocurable composition, more preferably 21 to 75% by mass, still more preferably 22 to 71% by mass.
  • heat resistance, flexibility, and reworkability can be imparted to the cured product of the photocurable composition. If the content of the telechelic acrylic polymer is less than 18% by mass, the compression set may be deteriorated and the predetermined heat resistance may not be obtained. On the other hand, if it exceeds 80% by mass, the tack becomes high and the reworkability may be impaired.
  • the content of the telechelic acrylic polymer is preferably low from the viewpoint of improving reworkability, but is preferably high from the viewpoint of heat resistance.
  • a polyfunctional acrylic polymer having an acryloyl group (hereinafter, also simply referred to as “polyfunctional acrylic polymer”) is a reaction having an acryloyl group having a molecular weight (Mw) of 30,000 to 400,000 with a polymer of (meth) acrylic acid ester as a skeleton.
  • a polyacrylate polymer which is a polymer capable of increasing the cross-linking density of a photocurable composition by cross-linking a plurality of (meth) acryloyl groups.
  • the polyfunctional acrylic polymer in the present specification and claims does not include the above-mentioned telechelic acrylic polymer. This is because the term polyfunctional acrylic polymer is intended to be a polyfunctional acrylic polymer other than the telechelic acrylic polymer.
  • the main chain of the polyfunctional acrylic polymer has a structure in which (meth) acrylic acid or an ester thereof is polymerized. Specifically, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, and (meth) acrylic.
  • (Meta) acrylic acid alkyl esters such as butyl acid, -2-ethylhexyl (meth) acrylate, isobutyl (meth) acrylate, lauryl acrylate, isostearyl acrylate, or -2-methoxyethyl (meth) acrylate,
  • (Meta) Acrylic Acid-2-ethoxyethyl (Meta) Acrylic Acid-2-methoxyethyl, (Meta) Acrylic Acid-3-methoxybutyl, (Meta) Acrylic Acid-2-Hydroxyethyl, (Meta) Acrylic Acid- It is synthesized by using (meth) acrylic acid alkoxyester such as 4-hydroxybutyl, -2-hydroxyprop
  • the polyfunctional acrylic polymer has a plurality of (meth) acryloyl groups, and “polyfunctional” means having two or more (meth) acryloyl groups. Further, it is preferably trifunctional or higher.
  • the polyfunctional acrylic polymer may have a plurality of (meth) acryloyl groups and may have a main chain in which (meth) acrylic acid or an ester thereof is polymerized. For example, the main chain.
  • those containing an amide bond, an ether bond, an ester bond not derived from acrylic acid, or the like may be used.
  • a functional group other than the (meth) acryloyl group a carboxyl group, a hydroxyl group, a glycidyl group or the like may be provided.
  • examples of such commercially available acrylic acrylate products include "Art Cure” (trade name) manufactured by Negami Kogyo Co., Ltd.
  • the polyfunctional acrylic polymer can be 3 to 75% by mass in the photocurable composition, more preferably 5 to 60% by mass, still more preferably 7 to 54% by mass.
  • heat resistance, flexibility, and reworkability can be imparted to the cured product of the photocurable composition. If the content of the polyfunctional acrylic polymer is less than 3% by mass, the tackiness is deteriorated and the reworkability may be impaired. On the other hand, if it exceeds 75% by mass, the viscosity may increase and the tackiness may deteriorate. From the viewpoint of tackiness, it is preferable that the polyfunctional acrylic polymer is neither large nor small, and from the viewpoint of viscosity, it is preferable that the amount is small.
  • the total amount of the telechelic acrylic polymer and the polyfunctional acrylic polymer can be 60 to 90% by mass, more preferably 65 to 85% by mass, and 70 to 80% by mass in the photocurable composition. Is even more preferable. If the total of these is less than 60% by mass, it becomes hard, the compression set may be deteriorated, and the heat resistance may be deteriorated. On the other hand, if it exceeds 90% by mass, the tackiness may be deteriorated and the reworkability may be deteriorated.
  • the double bond equivalent is a value obtained by dividing the molecular weight of the corresponding polymer by the number of ethylenic double bonds per molecule. Since both the telechelic acrylic polymer having an acryloyl group at both ends and the polyfunctional acrylic polymer having an acryloyl group have an ethylenic double bond, both of them can represent a double bond equivalent.
  • the telechelic acrylic polymer having an acryloyl group at both ends and the polyfunctional acrylic polymer having an acryloyl group both preferably have a double bond equivalent of 10,000 or more, preferably 10,000 to 15,000, 10,000 to 20,000, 10,000 to 10,000. 50,000 is a preferred embodiment.
  • the double bond equivalent is less than 10,000, it may be hard and inflexible, and the durability may be inferior. , The compression set at high temperature may worsen. Further, from the viewpoint of reworkability, it is preferable to use one having a double bond equivalent close to 10,000.
  • the monofunctional acrylic monomer is a component that is cured by a photoradical polymerization initiator, and is a low-viscosity liquid before curing.
  • Examples of the monofunctional acrylic monomer include a monofunctional alicyclic (meth) acrylic acid ester monomer, a monofunctional aliphatic (meth) acrylic acid ester monomer, a monofunctional ether type (meth) acrylic acid ester monomer, and a monofunctional imide type (meth). ) Acrylic acid ester monomer and the like can be mentioned.
  • monofunctional alicyclic (meth) acrylic acid ester monomer means to include a monofunctional alicyclic (meth) acrylic acid ester monomer and a monofunctional alicyclic methacrylic acid ester monomer.
  • monofunctional aliphatic (meth) acrylic acid ester monomer means to include a monofunctional aliphatic acrylic acid ester monomer and a monofunctional aliphatic methacrylic acid ester monomer. The same applies to the monofunctional ether-based (meth) acrylic acid ester monomer and the monofunctional imide-based (meth) acrylic acid ester monomer.
  • the "monofunctional high-polarity monomer” that may be included in the present invention means to include a monofunctional acrylic acid ester monomer containing a polar group, a methacrylic acid ester monomer, or a monomer having a monofunctional acrylamide group.
  • the monofunctional alicyclic (meth) acrylic acid ester monomer is a low-viscosity liquid composition and is a component that adjusts the viscosity of the photocurable composition. Further, the cured product can be made tough to increase the Young's modulus, and the adhesive strength can be further increased, and the adhesive residue can be reduced when the cured product is peeled off from the adherend. In addition, increasing the proportion of this component enhances heat resistance and moisture resistance, so that compression set in a high temperature environment can be reduced.
  • monofunctional alicyclic (meth) acrylic acid ester monomer examples include isobornyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, 4-tert-butylcyclohexyl acrylate and the like. Can be mentioned.
  • Monofunctional aliphatic (meth) acrylic acid ester monomer The monofunctional aliphatic (meth) acrylic acid ester monomer is also a low-viscosity liquid composition, and the viscosity of the photocurable composition is adjusted in the same manner as the above-mentioned monofunctional alicyclic (meth) acrylic acid ester monomer. It is an ingredient that can be produced. By blending a monofunctional aliphatic (meth) acrylic acid ester monomer, the Young's modulus of the cured product can be lowered and the flexibility can be increased.
  • the monofunctional aliphatic (meth) acrylic acid ester monomer examples include aliphatic ether-based (meth) acrylic acid ester monomers such as ethoxydiethylene glycol acrylate, 2-ethylhexyl diglycol acrylate, and butoxyethyl acrylate, and butyl acrylate, 2 Examples thereof include aliphatic hydrocarbon-based (meth) acrylic acid ester monomers such as ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, isostearyl acrylate, decyl acrylate, isodecyl acrylate, isononyl acrylate, and n-octyl acrylate.
  • aliphatic ether-based (meth) acrylic acid ester monomers such as ethoxydiethylene glycol acrylate, 2-ethylhexyl diglycol acrylate, and butoxyethyl acrylate, and butyl
  • these monofunctional acrylic monomers are preferably contained in a proportion of 27% by mass or less.
  • Monofunctional imide-based (meth) acrylic acid ester monomer Like other (meth) acrylic acid ester monomers, the monofunctional imide-based (meth) acrylic acid ester monomer is a component capable of adjusting the viscosity of the photocurable composition, and is a monofunctional imide-based (meth) acrylic.
  • the Young's modulus of the cured product can be lowered and the flexibility can be increased.
  • the compression set in a high temperature environment can be reduced.
  • the maleimide compound can be easily mixed uniformly.
  • monofunctional imide-based (meth) acrylic acid ester monomer examples include N-acryloyloxyethyl hexahydrophthalimide, N- (acryloyloxy) succinimide, and 3-phthalimide propionic acid acrylate.
  • the alicyclic acrylic monomer does not increase the heat resistance of the cured product even if an aliphatic acrylic monomer is added, whereas the alicyclic acrylic monomer keeps the cured product flexible and heat resistant. It can enhance the sex. Further, the cured product of the alicyclic acrylic monomer adheres to the electronic element or the substrate and exhibits waterproofness or the like. When used as a sealing material, it is possible to increase the adhesive force and reduce the adhesive residue when the cured product is peeled off from the adherend. It also has the effect of making the cured product tough and increasing Young's modulus. In addition, increasing the proportion of this component can enhance the moisture resistance. In addition, the tackiness of the surface of the cured product can be suppressed.
  • the acrylic ester monomer As for the alicyclic acrylic monomer, it is preferable to use the acrylic ester monomer when comparing the acrylic ester monomer and the methacrylic acid ester monomer. This is because many acrylic acid ester monomers have better photocurability, and in addition to being able to cure with a relatively low integrated amount of light, the cured product tends to be flexible.
  • the monofunctional acrylic monomer such as the alicyclic acrylic monomer can be 2 to 35% by mass in the photocurable composition, more preferably 2 to 28% by mass, further preferably 3 to 27% by mass, 6 ⁇ 23% by mass is particularly preferable.
  • the alicyclic acrylic monomer heat resistance, flexibility, and reworkability can be imparted to the cured product of the photocurable composition.
  • the viscosity of the photocurable composition can be made suitable. If the content of the alicyclic acrylic monomer is less than 5% by mass, the tackiness is deteriorated and the reworkability may be impaired.
  • the content of the alicyclic acrylic monomer is preferably not high or low from the viewpoint of viscosity. It is a preferred embodiment that the alicyclic acrylic monomer is contained in the photocurable composition in an amount of 3 to 27% by mass.
  • polyfunctional photocurable monomer that functions as a cross-linking agent.
  • the polyfunctional photocurable monomer N-acryloyloxyethyl hexahydrophthalimide, tris (2-acryloyloxyethyl) isocyanurate, caprolactone-modified tris- (2-acryloxyethyl) isocyanurate, 2-hydroxy- Polar group-containing polyfunctional photocurable monomer such as 1,3-dimethacryloxypropane, neopentyl glycol diacrylate, dioxane glycol diacrylate, tricyclodecanedimethanol diacrylate, 1,9-nonanediol diacrylate, 1, , 10-decanediol diacrylate, trimethylolpropan triacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dip
  • Examples thereof include a polyfunctional photocurable monomer having an aromatic skeleton of.
  • the "polar group” in the case of “having a polar group” or “containing a polar group” means “a polar group other than a photocurable group", in other words, a photoinitiator. It means a polar group other than the polar group that contributes to the curing reaction. Therefore, the acrylic group and the methacrylic group contained in the monofunctional acrylic monomer and the maleimide group in the maleimide are excluded from the polar groups in this case.
  • the number of photocurable groups is small from the viewpoint of suppressing an increase in hardness. Furthermore, from the viewpoint of suppressing ultra-high temperature compression set to a low level, it is preferable to have an aliphatic skeleton and no polar group, and trimethylolpropane triacrylate or pentaerythritol tetraacrylate is an example. be.
  • the polyfunctional photocurable monomer is not necessarily an essential component, but when it is contained, it can be 0.5 to 10% by mass, preferably 0.7 to 6.0% by mass in the photocurable composition. %, More preferably 1.8 to 4.5% by mass. Further addition of the polyfunctional photocurable monomer improves the ultra-high temperature compression set in the cured product of the photocurable composition. If the content of this polyfunctional photocurable monomer is less than 0.5% by mass, the effect of improving ultra-high temperature compression permanent strain cannot be obtained. On the other hand, if it exceeds 10% by mass, there is a drawback that extensibility and flexibility are deteriorated.
  • a thixotropic agent is added to the photocurable composition. This is because the addition of the thixotropy-imparting agent can enhance the thixotropic property, suppress dripping during coating, and enhance the shape retention (shape retention) of the applied photocurable composition.
  • the thixotropy-imparting agent can enhance the thixotropic property, suppress dripping during coating, and enhance the shape retention (shape retention) of the applied photocurable composition.
  • a photocurable composition when a photocurable composition is applied to a three-dimensional object using a dispenser, it can be cured in the form in which the photocurable composition is applied. Therefore, when the cured product is used as a gasket material or a sealing material. Is suitable for.
  • the thixotropy-imparting agent examples include an inorganic thixotropy-imparting agent composed of inorganic powders such as silica, aluminum oxide, and titanium oxide; and organic thixotropy-imparting agents such as hydrogenated castor oil, amidowax, and carboxymethyl cellulose. Agents and the like can be mentioned, but inorganic powder is preferable, silica is preferable, and fumed silica is more preferable. The reason is that it is easy to control the hydrogen ion index (pH) of the photocurable composition by performing a predetermined surface treatment on the inorganic powder, and it is easy to obtain silica having such a surface treatment among the inorganic powders. Because.
  • inorganic thixotropy-imparting agent composed of inorganic powders such as silica, aluminum oxide, and titanium oxide
  • organic thixotropy-imparting agents such as hydrogenated castor oil, amidowax, and carboxymethyl cellulose. Agents
  • Humed silica includes different fumed silicas such as fumed silica having a polar group, hydrophobic fumed silica having no polar group, and hydrophilic fumed silica, and all of the fumed silicas have a tack reducing effect. There is. However, from the viewpoint of improving reworkability, it is preferable to use either hydrophilic fumed silica or fumed silica having a polar group, or a combination thereof.
  • fumed silica having a polar group include amino-treated fumed silica and (meth) acryloyl silica. The pH of the amino-treated fumed silica is 8.5 to 11.0. On the other hand, (meth) acryloyl silica is excellent in tack reduction effect.
  • fumed silica When fumed silica is used as the thixotropy-imparting agent, it can be less than 20% by mass in the photocurable composition, more preferably 1.0 to 10% by mass, and 2.5 to 5.0% by mass. % Is more preferable.
  • the thixotropy-imparting agent By using the thixotropy-imparting agent, the shape retention of the photocurable composition is enhanced, and the cured product can be imparted with heat resistance and reworkability. If the thixotropy-imparting agent is not contained, the tackiness may be deteriorated and the reworkability may be impaired. On the other hand, if it exceeds 20% by mass, the viscosity may increase and the material may become hard.
  • the amount of thixotropy-imparting agent is preferably large from the viewpoint of improving reworkability, but is preferably small from the viewpoint of viscosity or hardness. It is a preferred embodiment that fumed silica is contained in the photocurable composition in an amount of 2 to 10% by mass.
  • the amount of fumed silica added there is an advantage that the amount of fumed silica added can be reduced when reducing tack by using different types in combination rather than using any one of them.
  • the fumed silicas when hydrophilic fumed silica and amino-treated fumed silica are used in combination, thixotropy can be enhanced by about twice as compared with the case where other silicas are added at the same concentration.
  • Thixotropy can be effectively enhanced at such a ratio.
  • the photoradical polymerization initiator generates radicals and cures a telekeric acrylic polymer having acryloyl groups at both ends, a polyfunctional acrylic polymer having an acryloyl group, and a monofunctional acrylic monomer by a photoradical polymerization reaction. It is something that makes you. Further, for example, when fumed silica has an acryloyl group, the acryloyl group can also undergo a photoradical polymerization reaction.
  • photoradical polymerization initiator examples include benzophenone-based, thioxanthone-based, acetophenone-based, acylphosphine-based, oxime ester-based, alkylphenone-based, and intramolecular hydrogen abstraction-type photoradical polymerization initiators.
  • alkylphenone system 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl-phenylketone, 2-hydroxy-2-methyl-methylpropanol, 1- [4- (2-hydroxyethoxy) -phenyl ] -2-Hydroxy-methylpropanone, 2-hydroxy-1-(4- (4- (2-hydroxy-2-methylpropionyl) benzyl) phenyl) -2-methylpropan-1-one, 2-methyl- 1- [4- (Methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2- (dimethylamino) -4'-morpholinobutylphenone, 2-dimethylamino-2- (4-) Examples thereof include methyl-benzyl) -1- (4-morpholin-4-yl-phenyl) -butane-1-one.
  • acylphosphine type examples include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and the like.
  • intramolecular hydrogen abstraction type examples include a mixture of methyl benzoylate, oxyphenylacetic acid-2-oxo-2-phenylacetoxyethoxyethyl ester and oxyphenylacetic acid-2-hydroxyethoxyethyl ester.
  • photoradical polymerization initiator examples include "Omnirad 184", “Omnirad 907", “Omnirad 369", “Omnirad 1173", “Omnirad 127", “Omnirad TPO", “Omnirad TPO”, “Omnirad”, “Omnirad” "(The above product name),” Irgacure OXE01 ",” Irgacure OXE02 “,” Irgacure OXE03 ",” Irgacure OXE04 "(the above product name), etc. manufactured by BASF.
  • the amount of the photoradical polymerization initiator added is preferably 0.1 to 10 parts by mass and more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the photocurable composition. This is because if it is less than 0.1 part by mass, the polymerization may be insufficient and the curing may not be completed, and even if it is added in excess of 10 parts by mass, the effect of increasing the degree of polymerization does not increase so much.
  • plasticizer it is preferable to add a plasticizer to the photocurable composition if necessary.
  • a plasticizer By adding a plasticizer, high flexibility can be imparted to the cured product, which is suitable when used as a gasket or a sealing material.
  • the plasticizer include paraffin-based oil, olefin-based oil, naphthen-based oil, and ester-based plasticizer.
  • the ester-based plasticizer include phthalic acid ester, adipic acid ester, and trimellitic acid ester. , Polyester, phosphoric acid ester, citric acid ester, epoxidized vegetable oil, sebacic acid ester, azelacinic acid ester, maleic acid ester, benzoic acid ester and the like.
  • the amount of the plasticizer is preferably 30% by mass or less with respect to 100% by mass of the photocurable composition. If it exceeds 30% by mass, the risk of the plasticizer bleeding out from the cured product increases.
  • various additives can be appropriately blended as long as the gist of the present invention is not deviated.
  • plasticizers and thixophilic imparting agents for example, silane coupling agents, polymerization inhibitors, defoamers, light stabilizers, antioxidants, antistatic agents, thermally conductive fillers, and other functional fillers. And so on.
  • the viscosity of the photocurable composition is preferably 5 to 2000 Pa ⁇ s at 25 ° C., more preferably 10 to 1000 Pa ⁇ s, and even more preferably 20 to 300 Pa ⁇ s. If it is less than 5 Pa ⁇ s, dripping is likely to occur when the liquid is applied to an electronic element or the like with a dispenser. On the other hand, if it exceeds 2000 Pa ⁇ s, it may be difficult to apply with a dispenser. Further, if the viscosity of the photocurable composition is in the range of 10 to 1000 Pa ⁇ s, it is suitable for many dispenser devices and the production efficiency can be improved.
  • the viscosity can be a value measured using a B-type rotational viscometer at a rotational speed of 10 rpm and a measurement temperature of 25 ° C.
  • the thixotropy can express how much the shape at the time of application can be maintained between the time when the photocurable composition is applied and the time when the photocurable composition is irradiated with light and cured. It is more convenient to maintain the shape at the time of application than to cause the liquid to drip and spread immediately when the photocurable composition is applied, in order to use it as a sealing material or a gasket.
  • the thixotropy of the photocurable composition is preferably 2 or more at 25 ° C., and more preferably 4 or more.
  • the thixotropy is preferably 2 or more at 25 ° C., and more preferably 4 or more.
  • the thixotropy is a value calculated as a ratio (viscosity (1 rpm) / viscosity (10 rpm)) obtained by measuring viscosity at rotational speeds of 1 rpm and 10 rpm at a measurement temperature of 25 ° C. using a B-type rotational viscometer.
  • the upper limit of the thixotropy ratio is not limited, but is preferably about 20 or less.
  • the photocurable composition can be cured by a photocuring reaction and used for various purposes such as an adhesive, a masking material, a gasket, a sealing material, and a sealing material.
  • a photocurable composition After applying a photocurable composition to an electronic element provided on an electronic substrate or a portion where metal is exposed to cover an adherend, the photocurable composition is photocured by irradiation with active energy rays such as ultraviolet rays. It can be used as a sealing material.
  • the photocurable composition after applying the photocurable composition to the object to be sealed such as a case, cover it with a cover, irradiate the photocurable composition with the active energy ray of an ultraviolet lamp, and seal the case or the like with a cover to form a gasket. You can also do it.
  • energy rays that activate (meth) acryloyl groups such as visible light or electron rays
  • energy rays that generate radicals in a photoradical polymerization initiator can be used.
  • the light source that irradiates ultraviolet rays include a high-pressure mercury lamp, a metal halide lamp, and an ultraviolet LED.
  • the cured product of the photocurable composition of the present invention has heat resistance because it has the above-mentioned predetermined composition. Then, by setting the Martens hardness measured in the nanoindentation test in the range of 0.07 to 0.75 N / mm 2 , it has predetermined flexibility and flexibility, and is more suitable for use as a gasket. .. Specifically, the method for measuring the Martens hardness can be the method described in the examples.
  • a waterproof structure When used as a gasket, a waterproof structure is provided between a case having an opening and a cover (or a lid, a lid) that closes the opening, in which the cured body is provided in at least one of both of them. Therefore, the cured product can be compressed and deformed by fitting the case and the cover. Further, since the opening can be liquid-tightly sealed, a waterproof structure can be suitably formed.
  • a photocurable composition having flexibility when made into a cured product, reworkability, and excellent heat resistance can be obtained.
  • a cured product of a photocurable composition that can be used as a gasket and also can be used for various purposes such as an adhesive, a masking material, a sealing material, and a sealing material can be obtained.
  • a waterproof structure having reworkability and excellent heat resistance can be obtained.
  • the photocurable composition of each sample thus prepared was irradiated with ultraviolet rays (high-pressure mercury lamp) under the conditions of an illuminance of 250 mW / cm 2 and an integrated light amount of 5000 mJ / cm 2 to prepare a cured product of Samples 1 to 48.
  • ultraviolet rays high-pressure mercury lamp
  • the telechelic acrylic polymer is "XMAP” (trade name, manufactured by Kaneka), and the polyfunctional acrylic polymer is "Art Cure RA-341" (trade name, Negami Kogyo Co., Ltd.).
  • Molecular weight Mw 70000
  • "UV3000B” trade name, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • U203 trade name, manufactured by Kuraray Co., Ltd.
  • polyisoprene acrylate and polybutadiene.
  • BAC45 trade name, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • the monofunctional acrylic monomer isobornyl acrylate or cyclohexyl acrylate as the monofunctional alicyclic acrylic monomer, and ethoxydiethylene or glycol acrylate as the monofunctional ether-based acrylic monomer, as the monofunctional aliphatic acrylic monomer.
  • acroylmorpholine was used as the amide monomer.
  • Martens hardness (N / mm 2 ): A nanoindentation test of the cured product of each sample was carried out using a nanoindenter (manufactured by ELIONIX, ENT-2100).
  • the test piece is a 1 mm thick glass plate coated with a photocurable composition so as to have a thickness of 200 ⁇ m, and is exposed to ultraviolet rays under the conditions of an illuminance of 250 mW / cm 2 and an integrated light amount of 5000 mJ / cm 2 using a high-pressure mercury lamp.
  • a cured product prepared by curing by irradiation was used.
  • the Martens hardness of the cured product was measured under the conditions of a maximum pushing load of 0.1 mN and a pushing speed of 0.01 mN / sec. The results are shown in each table.
  • High temperature compression set For each sample, a test piece was prepared under the conditions shown below, and the compression set was measured with a jig and conditions conforming to JIS K6262: 2013. A cured product formed by applying the photocurable composition to a thickness of about 1 mm was prepared. By stacking the cured products, a test piece having a length of 10 mm, a width of 10 mm, and a thickness of 4 mm (initial thickness: t 0 ) was prepared (at this time, four cured products are stacked). Further, the test piece was compressed by 25% with a jig conforming to the JIS standard, placed in a constant temperature bath, and left at an atmospheric temperature of 120 ° C. for 100 hours.
  • the test piece When the test piece was compressed with the jig, no lubricant was used, and a polyethylene terephthalate film (thickness 0.1 mm) with a silicone release layer was interposed between the jig and the test piece.
  • the jig was taken out from the constant temperature bath, the compressed test piece was taken out from the jig, and then left at room temperature (that is, 23 ⁇ 2 ° C.) for 30 minutes, and then the thickness (t) was measured.
  • the thickness (t ) after the test with respect to the initial thickness (t 0 ) was calculated by the formula shown below. The same test was performed three times for each sample, and the arithmetic mean was calculated.
  • the results are listed in the column of high temperature compression permanent strain in each table.
  • the high temperature compression set is preferably small.
  • High temperature compression set (CS (%)) ⁇ (t 0- t) / (0.25 x t 0 ) ⁇ x 100
  • Ultra-high temperature compression permanent strain Among the methods for measuring the high-temperature compression permanent strain, the compression permanent strain was measured by the same conditions and methods except that the condition of being placed in a constant temperature bath and left at an atmospheric temperature of 120 ° C. for 100 hours was changed to 150 ° C., and the results were obtained for each. It is described in the column of ultra-high temperature compression permanent strain in the table. Further, the difference between the value of the high-temperature compression permanent strain and the value of the ultra-high-temperature compression permanent strain is defined as the amount of reduction in the compression permanent strain and is shown in each table. It is preferable that the value of the ultra-high temperature compression permanent strain is small.
  • the difference between the high-temperature compression permanent strain and the ultra-high-temperature compression permanent strain is small, that is, the amount of reduction in the compression permanent strain is small. This is because the smaller the value, the smaller the effect when left at a high temperature of 150 ° C.
  • Adhesion test The adhesive force test was conducted as follows. First, a coating base material imitating the case of an electronic device to be coated with each sample and a compression base material imitating a lid for sealing the case were prepared.
  • the coated base material is a block made of polycarbonate resin having an outer shape of 80 mm ⁇ 80 mm ⁇ 15 mm and a glossy surface
  • the compressed base material has an outer shape of 74 mm ⁇ 74 mm ⁇ 15 mm and serves as a compressed surface.
  • Each block is provided with holes for fixing bolts at four corners, and the coated base material and the compressed base material can be fixed at a predetermined interval by using spacers. Further, in the center of one surface (the surface that does not come into contact with the sample) of the compression base material, a fixing portion that can fix the hook of the load cell for the tensile test is provided.
  • each sample was coated on the coating substrate.
  • an air dispenser manufactured by Musashi Engineering Co., Ltd.
  • the coating was applied in a U shape corresponding to three sides of a square having an outer shape of 40 mm on each side so that the coating width was approximately 4 mm.
  • the cured Each sample by irradiation of ultraviolet light of the integrated quantity of light 5000 mJ / cm 2 at an intensity 250 mW / cm 2 at a high pressure mercury lamp. Then, with respect to the cured sample, spacers were sandwiched and bolted so that each sample was compressed by 25% with the compressed substrate (that is, the interval was 75% of the height of the applied sample).
  • the compressed sample was left in a constant temperature bath at 70 ° C. for 22 hours, and then left at room temperature (25 ° C.) for 1 hour to cool. Then, the bolt was removed to release the compression pressure.
  • the coated base material, the sample, and the compressed base material are integrated.
  • the coated base material was fixed to the test table, the hook of the load cell was fixed to the fixed portion of the compressed base material, and the compressed base material was peeled from the sample under the condition of a peeling speed of 500 mm / min.
  • the maximum stress at this time was recorded and divided by the fixing area to calculate the fixing force (N / mm 2).
  • the sticking area was calculated from the width and length of the sticking trace of the peeled compression jig.
  • the thixotropy ratio was determined for each sample in order to evaluate the thixotropy.
  • the thixotropy is a value calculated as a ratio (viscosity (1 rpm) / viscosity (10 rpm)) obtained by measuring the viscosity at rotation speeds of 1 rpm and 10 rpm at a measurement temperature of 25 ° C. using a B-type rotational viscometer.
  • the upper limit of the thixotropy ratio is not limited, but can be approximately 20 or less, preferably 2 or more, and more preferably 4 or more. The calculation results are shown in each table.
  • test pieces were prepared for each sample and subjected to an IPX7 compliant test specified in JIS C0920. Specifically, a photocurable composition was applied to a polycarbonate plate having a thickness of 1 mm using a dispenser so as to form a frame having a line width of about 2.0 mm and a thickness of about 1.4 mm and an outer shape of 30 ⁇ 30 mm. Then, it was cured by irradiating it with ultraviolet rays to prepare a test piece which became a frame-shaped cured product. Further, for a sample having extremely poor shape retention, it is difficult to form it with a dispenser.
  • a sheet-like cured product of a photocurable composition having a thickness of 1.4 mm is prepared, and a die is used from this sheet.
  • a frame-shaped cured body having a line width of 2.0 mm and a thickness of 1.4 mm and an outer diameter of 30 ⁇ 30 mm was formed and attached to a polycarbonate plate having a thickness of 1 mm.
  • the cured product was compressed by 25% with a polycarbonate plate having a thickness of 1 mm different from the above, and maintained at 70 ° C. for 22 hours.
  • a submersion control sticker (irreversible) (MZ-R, manufactured by AS ONE Corporation) was attached to the frame-shaped cured body, and the cured product was compressed by 15% with a polycarbonate plate having a thickness of 1 mm and tested for each sample. It was a piece. Then, each test piece was immersed in a water depth of 1 m and held for 30 minutes, and then the presence or absence of water in the packing was visually confirmed. The results were evaluated as having no inundation and with, and the results are shown in each table.
  • Heat and waterproof The heat resistance of the cured product of the photocurable composition was evaluated based on the results of a heat resistance and waterproof test. The same test as the test described in the above "waterproofness" was carried out for each sample after the above high temperature compression permanent strain test in which the sample was compressed at 25% and left at 120 ° C. for 100 hours. Then, it was evaluated as follows. The results are shown in each table. A: No inundation B: Inundation
  • Reworkability As an evaluation of reworkability, the conditions of the adhesive force test were partially changed. As a change, first, instead of the compression base material, a cover made of an aluminum sheet having an outer shape of 80 mm ⁇ 80 mm ⁇ 1 mm was used. Then, similarly, the sample was compressed by 25%, left at room temperature (25 ° C.) for 1 week, and then the aluminum sheet was peeled off by hand to evaluate the reworkability. Specifically, the evaluation was made as follows based on the difference in the state when the cover was removed. The results are shown in each table. A: The cover could be removed without resistance. B: The cover can be removed with a light force. C: The cover could be removed while receiving greater resistance than light force. E: The cover could not be removed properly, and the gasket was broken or the cover was broken.
  • Sample 6 is excellent in waterproofness and reworkability, it is inferior in terms of workability because the content of the monofunctional alicyclic acrylic monomer is as low as 3% by mass, which may make it difficult to apply with a slightly high viscosity. .. Therefore, it was found that the content of the monofunctional acrylic monomer is preferably 5% or more. Further, when the content of the alicyclic acrylic monomer is large, the cured product tends to be hard, and when it is 27% by mass or more, there is no problem in waterproofness, but the reworkability tends to be slightly deteriorated.
  • Samples 24 to 27, 29 to include at least one of hydrophilic fumed silica or fumed silica having a polar group, a telechelic acrylic polymer, and a monofunctional acrylic monomer. All of 35 had waterproof property, heat-resistant waterproof property, and rework property. On the other hand, the sample 23 containing no fumed silica and the sample 28 containing only fumed silica having neither hydrophilicity nor polar groups had poor reworkability.
  • the sample 37, the sample 38, and the sample 42 are superior to the other samples in that the value of the ultra-high temperature compression set is 21 to 24. From this, it was found that a polyfunctional photocurable monomer having an aliphatic skeleton and no polar group is preferable from the viewpoint of suppressing the ultra-high temperature compression set to a low level.
  • Samples 45 to 48 when the content of the polyfunctional photocurable monomer as a cross-linking agent was 0.9 to 5.3% in the composition, the numerical value of the amount of reduction in compression set was 4.
  • the sample 47 which is 5%, is most preferable, and the sample 46 and the sample 47 are most preferable at the same level from the numerical value of the high temperature compression set.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

光硬化性組成物を硬化させた硬化物について、柔軟性がある一方で、リワーク性があり、耐熱性にも優れた性質を有する光硬化性組成物を提供すること。両末端にアクリロイル基を有するテレケリックアクリル重合体と、アクリロイル基を有する多官能アクリル重合体と、単官能アクリルモノマーと、親水性ヒュームドシリカ又は極性基を有するヒュームドシリカの少なくも何れか一方を含むヒュームドシリカと、を含み、硬化後のマルテンス硬さが0.07~0.75N/mmである光硬化性組成物とした。

Description

光硬化性組成物、硬化体及び硬化体を用いたガスケット並びに防水構造及びガスケットの製造方法
 本発明は、光硬化性組成物及びその硬化体、並びにその硬化体を用いたガスケットに関する。加えて本発明は、防水構造及びガスケットの製造方法に関する。
 塗布前は液状であり塗布後に光硬化させて硬化体となる光硬化性組成物は、所望部位に塗布した後に十分に硬化させると、封止材やガスケット等として用いることができる。中でもガスケットとするには柔軟性が必要となるため、イソプレン骨格、ブタジエン骨格、又はウレタン骨格等からなりアクリロイル基を有するゴム系オリゴマーを主成分とする液状組成物を光硬化するタイプのガスケットが知られている。こうした技術は例えば、特開2013-49805号公報(特許文献1)等に記載されている。
特開2013-49805号公報
 しかしながら、こうした技術は柔軟な処方にすると表面の粘着性が発現し易く、リワーク性に劣る課題があった。
 本発明の一態様は、両末端にアクリロイル基を有するテレケリックアクリル重合体と、アクリロイル基を有する多官能アクリル重合体と、単官能アクリルモノマーと、親水性ヒュームドシリカ又は極性基を有するヒュームドシリカの少なくも何れか一方を含むヒュームドシリカと、を含み、硬化後のマルテンス硬さが0.07~0.75N/mmである光硬化性組成物を特徴とする。
 本発明の一態様は、両末端にアクリロイル基を有するテレケリックアクリル重合体と、アクリロイル基を有する多官能アクリル重合体と、単官能アクリルモノマーと、親水性ヒュームドシリカ又は極性基を有するヒュームドシリカの少なくも何れか一方を含むヒュームドシリカと、を含むため、耐熱性を備えながら、柔軟性、リワーク性に優れる光硬化性組成物である。
 硬化後のマルテンス硬さが0.07~0.75N/mmであるため、被着体へ大きな応力を与えることがなく、光硬化性組成物の硬化体に起因する被着体の歪みを抑制することができる。
 本発明の一態様は、二重結合当量が1万以上のアクリル重合体と、単官能アクリルモノマーと、親水性ヒュームドシリカ又は極性基を有するヒュームドシリカの少なくも何れか一方を含むヒュームドシリカと、を含み、硬化後のマルテンス硬さが0.07~0.75N/mmである光硬化性組成物である。
 本発明の一態様を、二重結合当量が1万以上のアクリル重合体と、単官能アクリルモノマーと、親水性ヒュームドシリカ又は極性基を有するヒュームドシリカの少なくとも何れか一方を含むヒュームドシリカと、を含むため、耐熱性を備えながら、柔軟性、リワーク性に優れる光硬化性組成物であり、硬化後のマルテンス硬さが0.07~0.75N/mmであることから、その硬化体は耐熱性を備えながら、柔軟性、リワーク性に優れるとともに、被着体へ大きな応力を与えることがなく、光硬化性組成物の硬化体に起因する被着体の歪みを抑制することができる。
 本発明の一態様は、さらに多官能光硬化性モノマーを含む光硬化性組成物である。
 本発明の一態様は、さらに多官能光硬化性モノマーを含むため、超高温圧縮永久歪を改善することができる。
 本発明の一態様は、前記ヒュームドシリカには、親水性ヒュームドシリカと極性基を有する疎水性ヒュームドシリカとを含む光硬化性組成物である。本発明の一態様では、前記ヒュームドシリカに親水性ヒュームドシリカと極性基を有する疎水性ヒュームドシリカとを含むことから、テレケリックアクリル重合体等の重合体成分に対するヒュームドシリカの配合割合が少なくても耐熱性を備えつつ、チキソ性を高めることができることから、光硬化性組成物を塗布した際に光硬化性組成物が硬化前に広がってしまうことを抑制することができる。また、ヒュームドシリカの配合に伴う硬化物の硬度上昇を最小限にとどめることができ、柔軟性の高い光硬化性組成物の硬化体が得られる。
 本発明の一態様は、前記ヒュームドシリカには、アミノ処理ヒュームドシリカを含む光硬化性組成物である。本発明の一態様を、前記ヒュームドシリカにアミノ処理ヒュームドシリカを含む光硬化性組成物としたため、テレケリックアクリル重合体等の重合体成分に対するヒュームドシリカの配合割合をさらに少なくしてもチキソ性を高めることができ、光硬化性組成物を塗布した際に光硬化性組成物が硬化前に広がってしまうことを抑制することができる。
 本発明の一態様は、前記テレケリックアクリル重合体22~71質量%と、前記多官能アクリル重合体7~54質量%と、前記単官能アクリルモノマー3~27質量%と、前記多官能光硬化性モノマー0~10質量%と、前記ヒュームドシリカ2~20質量%と、を含む光硬化性組成物である。本発明の一態様では、前記テレケリックアクリル重合体22~71質量%と、前記多官能アクリル重合体7~54質量%と、前記単官能アクリルモノマー3~27質量%と、前記多官能光硬化性モノマー0~10質量%と、前記ヒュームドシリカ2~20質量%と、を含むものとしたため、耐熱性を備えながら、柔軟性、リワーク性に優れる光硬化性組成物である。
 本発明の一態様は、硬化後の、アルミニウムに対する70℃22時間圧縮後の固着力が0.45N/mm以下である光硬化性組成物である。本発明の一態様では硬化後の、アルミニウムに対する70℃22時間圧縮後の固着力が0.45N/mm以下であるため、タックが少なく、リワーク性に優れている。
 本発明の一態様は、硬化後にJIS K6262:2013に準拠した120℃で100時間経過後の圧縮永久歪が40%以下である光硬化性組成物である。本発明の一態様では、硬化後にJIS K6262:2013に準拠した120℃で100時間経過後の圧縮永久歪が40%以下である光硬化性組成物としたため、耐熱性を有している。さらに、硬化後の前記圧縮永久歪が30%以下である光硬化性組成物としたことで、耐熱性に優れている。
 本発明の一態様は、前記何れかの光硬化性組成物の硬化体である。本発明の一態様では前記何れかの光硬化性組成物の硬化体であるため、耐熱性を備えながら、柔軟性、リワーク性に優れる硬化体である。
 本発明の一態様は、前記何れかの光硬化性組成物の硬化体であるガスケットとした。本発明の一態様では、前記何れかの光硬化性組成物の硬化体であるガスケットとしたため、耐熱性を備えながら、柔軟性、リワーク性に優れるガスケットである。
 本発明の一態様は、開口を有するケースと、前記開口を閉塞する蓋体と、前記ケース又は前記蓋体の少なくとも何れかに設けられる前記何れかの光硬化性組成物の硬化体からなり、前記ケースと前記蓋体との嵌め合わせにより圧縮変形して前記開口を液密に封止するガスケットと、を備える防水構造である。
 前記何れかの光硬化性組成物の硬化体であるガスケットを備える防水構造としたため、耐熱性を備えながら、柔軟性、リワーク性に優れるガスケットである。
 本発明の一態様は、前記何れかの光硬化性組成物を、シール対象物に塗布する工程と、塗布された前記光硬化性組成物に活性エネルギー線を照射する工程と、を含むガスケットの製造方法である。このように製造されたガスケットは、耐熱性を備えながら、柔軟性、リワーク性に優れるガスケットである。
 本明細書、請求の範囲では、アクリルモノマー、アクリル重合体、アクリロイル基について、「アクリルモノマー」は(メタ)アクリルモノマーと同義であり、アクリル酸エステルモノマーだけでなくメタクリル酸エステルモノマーを含む意味で用いている。同様に「アクリル重合体」は、(メタ)アクリル重合体と同義であり、アクリル酸エステル重合体の他にメタクリル酸エステル重合体をも含む意味で用いている。同様に「アクリロイル基」は、(メタ)アクリロイル基と同義であり、アクリロイル基の他にメタクリロイル基をも含む意味で用いている。また、アクリルモノマー及びアクリル重合体の何れについてもラジカル重合性基を備える化合物であり、ラジカル重合反応後のものは「硬化体」と表記することで区別している。この光硬化性組成物は、アクリルモノマー及びアクリル重合体の(メタ)アクリロイル基を光硬化反応させて硬化体とすることができるものである。
 本発明の一態様によれば、硬化物としたときに柔軟性がある一方で、リワーク性があり、耐熱性にも優れた性質を有する光硬化性組成物が得られる。
 <光硬化性組成物>:
 一の実施形態による光硬化性組成物によれば、両末端にアクリロイル基を有するテレケリックアクリル重合体と、アクリロイル基を有する多官能アクリル重合体と、単官能アクリルモノマーと、ヒュームドシリカと、を含み、硬化後のマルテンス硬さが0.07~0.75N/mmである光硬化性組成物である。
 両末端にアクリロイル基を有するテレケリックアクリル重合体(以下単に「テレケリックアクリル重合体」ともいう)は、(メタ)アクリルモノマーの重合で形成された主鎖を有し、重量平均分子量(Mw)が5000~55000のアクリロイル両末端反応型ポリアクリレートオリゴマー又はポリマーであって、高い耐熱性、耐油性、耐薬品性を有し、柔軟なゴム弾性をも有する重合体である。末端にアクリロイル基を有することでラジカル重合型の光硬化をさせることができる。
 ここで、(メタ)アクリルモノマーの重合は特に限定されないが、リビング重合で行うことが好ましい。主鎖をリビング重合により重合したテレケリックアクリル重合体の硬化物は、均一な3次元マトリックスを形成することができ、柔軟で耐熱性に優れる硬化物となる。また、前記リビング重合の中でも、工業的な観点からはリビングラジカル重合法によって重合したテレケリックアクリル重合体を用いることが特に好ましい。前記テレケリックアクリル重合体はMw/Mnの比が1から2までの間であることが好ましい。
 テレケリックアクリル重合体の主鎖は(メタ)アクリル酸又はそのエステルが重合した構成をしており、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸イソブチル、アクリル酸ラウリル、アクリル酸イソステアリル等の(メタ)アクリル酸アルキルエステル、又は(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-2-エトキシエチル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシブチル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-4-ヒドロキシブチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸グリシジル等の(メタ)アクリル酸アルコキシエステル等を構成単位として合成されたものである。なお、前記テレケリックアクリル重合体を構成するモノマーは単一の構成単位又は複数の構成単位で合成されたものであってもよい。テレケリックアクリル重合体としては、カネカ社製の「XMAP」(商品名)を用いることができる。
 テレケリックアクリル重合体は、光硬化性組成物中の18~80質量%とすることができ、21~75質量%がより好ましく、22~71質量%がさらに好ましい。テレケリックアクリル重合体を用いることで光硬化性組成物の硬化物に耐熱性、柔軟性、そしてリワーク性を与えることができる。テレケリックアクリル重合体の含有量が18質量%未満であると圧縮永久歪が悪化し、所定の耐熱性が得られないおそれがある。また、80質量%を超えると、タックが高くなりリワーク性が損なわれるおそれがある。テレケリックアクリル重合体の含有量はリワーク性向上の観点からは少ない方が好ましいが、耐熱性の観点からは多い方が好ましい。
 アクリロイル基を有する多官能アクリル重合体(以下単に「多官能アクリル重合体」ともいう)は、(メタ)アクリル酸エステルの重合体を骨格として、分子量(Mw)30000~400000のアクリロイル基を有する反応性ポリアクリレートポリマーであって、複数の(メタ)アクリロイル基を架橋することで光硬化性組成物の架橋密度を上げることができる重合体である。また、本明細書、請求の範囲における多官能アクリル重合体には上記テレケリックアクリル重合体を含まない。多官能アクリル重合体というときはテレケリックアクリル重合体以外の多官能アクリル重合体を意図したものだからである。
 多官能アクリル重合体の主鎖は、(メタ)アクリル酸又はそのエステルが重合した構成をしており、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸イソブチル、アクリル酸ラウリル、アクリル酸イソステアリル等の(メタ)アクリル酸アルキルエステル、又は(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-2-エトキシエチル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシブチル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-4-ヒドロキシブチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸グリシジル等の(メタ)アクリル酸アルコキシエステル等を構成単位として合成されたものである。なお、前記多官能アクリル重合体を構成するモノマーは単一のものであってもよく、複数のものであってもよい。
 多官能アクリル重合体は、(メタ)アクリロイル基を複数有しているものであり、「多官能」とは、(メタ)アクリロイル基を2つ以上有していることを意味する。また、3官能以上であることが好ましい。
 なお、上記多官能アクリル重合体は、(メタ)アクリロイル基を複数有しており、(メタ)アクリル酸又はそのエステルが重合した構成の主鎖を有するものであればよく、例えば、前記主鎖の他にアミド結合やエーテル結合、アクリル酸に由来しないエステル結合などを含んだものでも良い。また、(メタ)アクリロイル基以外の官能基として、カルボキシル基やヒドロキシル基、グリシジル基などを備えていてもよい。
 こうしたアクリルアクリレートの市販品としては、根上工業社製の「アートキュア」(商品名)が挙げられる。
 多官能アクリル重合体は、光硬化性組成物中の3~75質量%とすることができ、5~60質量%がより好ましく、7~54質量%がさらに好ましい。この多官能アクリル重合体を用いることで光硬化性組成物の硬化物に耐熱性、柔軟性、そしてリワーク性を与えることができる。多官能アクリル重合体の含有量が3質量%未満であるとタック性が悪化し、リワーク性が損なわれるおそれがある。また、75質量%を超えると、粘度が上昇するとともに、タック性が悪化するおそれがある。この多官能アクリル重合体は、タック性の観点からは多くもなく少なくもない方が好ましく、粘度の観点からは少ない方が好ましい。
 そして、テレケリックアクリル重合体と多官能アクリル重合体の合計量は、光硬化性組成物中の60~90質量%とすることができ、65~85質量%がより好ましく、70~80質量%がさらに好ましい。これらの合計が60質量%未満であると硬くなり、圧縮永久歪が悪化し、耐熱性が悪化するおそれがある。また、90質量%を超えると、タック性が悪化し、リワーク性が悪化するおそれがある。
 二重結合当量とは、該当する重合体の分子量を、1分子あたりのエチレン性二重結合の数で除した値である。両末端にアクリロイル基を有するテレケリックアクリル重合体と、アクリロイル基を有する多官能アクリル重合体とはともにエチレン性二重結合を有することから、これら両者ともに二重結合当量を表すことができる。そして、両末端にアクリロイル基を有するテレケリックアクリル重合体、及びアクリロイル基を有する多官能アクリル重合体は、ともに二重結合当量が10000以上であることが好ましく10000~15000、10000~20000、10000~50000は好ましい一態様である。二重結合当量が10000より少なければ、硬く柔軟性が乏しく、耐久性、に劣るおそれがあり、大きすぎると共有結合による架橋密度が低くなるとともに、分子鎖の絡まり合いよる疑似架橋が増えることから、高温における圧縮永久歪が悪化するおそれがある。また、リワーク性の観点からは、二重結合当量が10000に近いものを用いることが好ましい。
 単官能アクリルモノマーは、光ラジカル重合開始剤により硬化する成分であり、硬化前は低粘度の液体である。単官能アクリルモノマーとしては、単官能脂環式(メタ)アクリル酸エステルモノマー、単官能脂肪族(メタ)アクリル酸エステルモノマー、単官能エーテル系(メタ)アクリル酸エステルモノマー、単官能イミド系(メタ)アクリル酸エステルモノマーなどが挙げられる。
 ここで、「単官能脂環式(メタ)アクリル酸エステルモノマー」は、単官能脂環式アクリル酸エステルモノマー及び単官能脂環式メタクリル酸エステルモノマーを含む意味である。「単官能脂肪族(メタ)アクリル酸エステルモノマー」は、単官能脂肪族アクリル酸エステルモノマー及び単官能脂肪族メタクリル酸エステルモノマーを含む意味である。単官能エーテル系(メタ)アクリル酸エステルモノマー及び単官能イミド系(メタ)アクリル酸エステルモノマーについても同様である。さらに、本発明において含んでもよい「単官能高極性モノマー」は、極性基を含む単官能アクリル酸エステルモノマー、メタクリル酸エステルモノマー、又は、単官能のアクリルアミド基を有するモノマーを含む意味である。
 単官能脂環式(メタ)アクリル酸エステルモノマー:
 単官能脂環式(メタ)アクリル酸エステルモノマーは、低粘度の液状組成物であり、光硬化性組成物の粘度を調整する成分である。また、硬化体を強靭にしてヤング率を高めることができ、さらに接着力を高めつつ、被着物に対して硬化体を剥したときに糊残りを少なくすることができる。加えて、この成分の割合を多くすると耐熱性と防湿性を高めることで、高温環境下での圧縮永久歪を小さくすることができる。
 単官能脂環式(メタ)アクリル酸エステルモノマーとして具体的には、イソボルニルアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、4-tert-ブチルシクロヘキシルアクリレート等が挙げられる。
 単官能脂肪族(メタ)アクリル酸エステルモノマー:
 単官能脂肪族(メタ)アクリル酸エステルモノマーもまた低粘度の液状組成物であり、前述の単官能脂環式(メタ)アクリル酸エステルモノマーと同様に光硬化性組成物の粘度を調整することができる成分である。単官能脂肪族(メタ)アクリル酸エステルモノマーを配合することで、硬化体のヤング率を下げ、柔軟性を高めることができる。
 単官能脂肪族(メタ)アクリル酸エステルモノマーとして具体的には、エトキシジエチレングリコールアクリレート、2-エチルヘキシルジグリコールアクリレート、ブトキシエチルアクリレートなどの脂肪族エーテル系(メタ)アクリル酸エステルモノマーや、ブチルアクリレート、2-エチルヘキシルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソステアリルアクリレート、デシルアクリレート、イソデシルアクリレート、イソノニルアクリレート、n-オクチルアクリレート等の脂肪族炭化水素系(メタ)アクリル酸エステルモノマーが挙げられる。脂肪族炭化水素系(メタ)アクリル酸エステルモノマーを使用することで、光硬化性の樹脂組成物の粘度を下げることができ、また硬化体のヤング率を下げることで柔軟性を高めることができる。これらの単官能アクリルモノマーは、リワーク性の観点から27質量%以下の割合で含まれることが好ましい。
 単官能イミド系(メタ)アクリル酸エステルモノマー:
 単官能イミド系(メタ)アクリル酸エステルモノマーも他の(メタ)アクリル酸エステルモノマーと同様に、光硬化性組成物の粘度を調整することができる成分であり、単官能イミド系(メタ)アクリル酸エステルモノマーを配合することで、硬化体のヤング率を下げ、柔軟性を高めることができる。また、高温環境下での圧縮永久歪を小さくすることができる。さらに、多官能光硬化性モノマーの中でも比較的相溶性が悪いマレイミド化合物を併用する場合には、マレイミド化合物を均一に混合しやすくすることができる。
 単官能イミド系(メタ)アクリル酸エステルモノマーとして具体的には、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、N-(アクリロイルオキシ)スクシンイミド、3-フタルイミドプロピオン酸アクリレート等を挙げることができる。
 これらの中でも脂環式アクリルモノマーは、脂肪族アクリルモノマーを添加しても硬化体の耐熱性が上がらないのに対し、脂環式アクリルモノマーを用いることで硬化体の柔軟性を維持しながら耐熱性を高めることができる。また、脂環式アクリルモノマーの硬化体は、電子素子や基板に固着し、防水性等を発現する。シール材として用いる場合には接着力を高めつつ、被着物に対して硬化体を剥したときに糊残りを少なくすることができる。また、硬化体を強靭にしてヤング率を高める効果がある。加えて、この成分の割合を多くすると防湿性を高めることができる。また、硬化体の表面のタック性を抑えることができる。
 脂環式アクリルモノマーについては、アクリル酸エステルモノマーとメタクリル酸エステルモノマーとを比較すると、アクリル酸エステルモノマーを用いることが好ましい。アクリル酸エステルモノマーの方が光硬化性に優れるものが多く、比較的低い積算光量で硬化できることに加えて、硬化体が柔軟になる傾向があるためである。
 脂環式アクリルモノマー等の単官能アクリルモノマーは、光硬化性組成物中の2~35質量%とすることができ、2~28質量%がより好ましく、3~27質量%がさらに好ましく、6~23質量%が特に好ましい。脂環式アクリルモノマーを用いることで光硬化性組成物の硬化物に耐熱性、柔軟性、そしてリワーク性を与えることができる。また、光硬化性組成物の粘度を好適なものとすることができる。脂環式アクリルモノマーの含有量が5質量%未満であるとタック性が悪化し、リワーク性が損なわれるおそれがある。一方、35質量%を超えると、圧縮永久歪が悪化し、耐熱性が悪化するおそれがある。脂環式アクリルモノマーの含有量は粘度の観点からは多くもなく少なくもない方が好ましい。脂環式アクリルモノマーを光硬化性組成物中に3~27質量%含ませることは好ましい一態様である。
 さらには、架橋剤として機能する多官能光硬化性モノマーを含むことができる。多官能光硬化性モノマーとして具体的には、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、トリス(2-アクリロイルオキシエチル)イソシアヌレート、カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、等の極性基含有多官能光硬化性モノマー、ネオペンチルグリコールジアクリレート、ジオキサングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、1,9-ノナンジオールジアクリレート、1,10-デカンジオールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールポリアクリレート、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン等の脂肪族骨格を有する多官能光硬化性モノマー、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンジアクリレート、エトキシ化ビスフェノールAジアクリレート、ビスフェノールAジフェニルエーテルビスマレイミド等の芳香族骨格を有する多官能光硬化性モノマーを挙げることができる。なお、これらの架橋剤の説明で「極性基を有する」又は「極性基含有」という場合の「極性基」は、「光硬化性基以外の極性基」を意味し、換言すれば光開始剤による硬化反応に寄与する極性基以外の極性基を意味する。したがって、単官能アクリルモノマーに含まれるアクリル基やメタクリル基、上記マレイミドにおけるマレイミド基は、この場合の極性基からは除かれる。
 多官能光硬化性モノマーの中でも硬さの上昇を抑える観点からは光硬化性基数は少ないほうが好ましい。さらにまた、超高温圧縮永久歪をも低く抑えるという観点からはこれに加えて脂肪族骨格を有し、極性基を有しないほうが好ましく、トリメチロールプロパントリアクリレート、又はペンタエリスリトールテトラアクリレートはその例である。
 多官能光硬化性モノマーは必ずしも必須の成分ではないが、含有する場合には光硬化性組成物中の0.5~10質量%とすることができ、好ましくは0.7~6.0質量%であり、より好ましくは1.8~4.5質量%である。多官能光硬化性モノマーをさらに加えることで光硬化性組成物の硬化物における超高温圧縮永久歪が改善する。この多官能光硬化性モノマーの含有量が0.5質量%未満であると超高温圧縮永久歪の改善効果が得られない。一方、10質量%を超えると伸長性や柔軟性が悪化するという欠点が生じる。
 光硬化性組成物にはチキソ性付与剤を添加している。チキソ性付与剤の添加により、チキソ性を高め、塗布時の液だれを抑制して、塗布した光硬化性組成物の形状保持性(形状維持性)を高めることができるからである。例えば、ディスペンサを用いて光硬化性組成物を立体物に塗布する場合に、光硬化性組成物を塗布した形状のまま硬化させることができるため、硬化体をガスケット材料又は封止材として用いる場合に好適である。
 チキソ性付与剤の具体例としては、シリカ、酸化アルミニウム、酸化チタンなどの無機粉体からなる無機系のチキソ性付与剤;水添ヒマシ油、アマイドワックス、カルボキシメチルセルロースなどの有機系のチキソ性付与剤などが挙げられるが、無機粉体が好ましく、その中でもシリカが好ましく、ヒュームドシリカがより好ましい。その理由は、無機粉体は所定の表面処理を行うことで光硬化性組成物の水素イオン指数(pH)を制御しやすく、無機粉体の中でもシリカはそうした表面処理済みのものを入手し易いためである。
 ヒュームドシリカには、極性基を有するヒュームドシリカ、極性基を有さない疎水性ヒュームドシリカ、親水性ヒュームドシリカなどの異なるヒュームドシリカがあり、何れのヒュームドシリカもタックの低減効果がある。しかしながら、リワーク性向上の観点から親水性ヒュームドシリカ又は極性基を有するヒュームドシリカの何れか、あるいはこれらの併用とすることが好ましい。また、極性基を有するヒュームドシリカとしては、アミノ処理ヒュームドシリカや(メタ)アクリロイルシリカが挙げられる。アミノ処理ヒュームドシリカのpHは、8.5~11.0である。一方、(メタ)アクリロイルシリカは、タック低減効果に優れる。
 チキソ性付与剤についてヒュームドシリカを用いた場合は、光硬化性組成物中の20質量%未満とすることができ、1.0~10質量%がより好ましく、2.5~5.0質量%がさらに好ましい。チキソ性付与剤を用いることで光硬化性組成物の形状保持性が高まり、硬化物に耐熱性、リワーク性を与えることができる。チキソ性付与剤を含有しないと、タック性が悪化し、リワーク性が損なわれるおそれがある。また、20質量%を超えると、粘度が上昇し、また硬くなるおそれがある。チキソ性付与剤は、リワーク性向上の観点からは多い方が好ましいが、粘度又は硬さの観点からは少ない方が好ましい。ヒュームドシリカを光硬化性組成物中に2~10質量%含むことは好ましい一態様である。
 ヒュームドシリカの添加量は、そのうちの何れか1種を用いるよりも、異なる種類のものを併用することで、タックの低減に際して添加量が少なくて済むという利点がある。また、ヒュームドシリカの中でも親水性ヒュームドシリカとアミノ処理ヒュームドシリカを併用すると、他のシリカを同濃度加える場合と比べてチキソ性を2倍程度高めることができる。また、親水性ヒュームドシリカと極性基を有するヒュームドシリカとを混合して用いる場合の両者の混合比は、親水性ヒュームドシリカ:極性基を有するヒュームドシリカ=4:1~1:4とすることが好ましい。このような比率でチキソ性を効果的に高めることができる。
 光ラジカル重合開始剤は、ラジカルを生じさせて、両末端にアクリロイル基を有するテレケリックアクリル重合体と、アクリロイル基を有する多官能アクリル重合体と、単官能アクリルモノマーとを光ラジカル重合反応で硬化させるものである。また、例えばヒュームドシリカがアクリロイル基を有する場合には、前記アクリロイル基も光ラジカル重合反応させることができるものである。光ラジカル重合開始剤としては、ベンゾフェノン系、チオキサントン系、アセトフェノン系、アシルフォスフィン系、オキシムエステル系、アルキルフェノン系、分子内水素引き抜き型等の光ラジカル重合開始剤を挙げることができる。
 アルキルフェノン系としては、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルーフェニルケトン、2-ヒドロキシ-2-メチル-メチルプロパノン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-メチルプロパノン、2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-(ジメチルアミノ)-4’-モルフォリノブチルフェノン、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン等が挙げられる。
 アシルフォスフィン系(アシルフォスフィンオキサイド系)としては、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド等が挙げられる。
 分子内水素引き抜き型としては、ベンゾイル蟻酸メチル、オキシフェニル酢酸-2-2-オキソ-2-フェニルアセトキシエトキシエチルエステルとオキシフェニル酢酸-2-2-ヒドロキシエトキシエチルエステルの混合物等が挙げられる。
 オキシムエステル系(オキシフェニル酢酸エステル系)としては、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン=2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセトオキシム)等が挙げられる。
 光ラジカル重合開始剤には、例えば、IGM RESINS社製「Omnirad184」、「Omnirad907」、「Omnirad369」、「Omnirad1173」、「Omnirad127」、「Omnirad TPO」、「Omnirad819」、「Omnirad754」、「Omnirad MBF」(以上商品名)、BASF社製「Irgacure OXE01」、「Irgacure OXE02」、「Irgacure OXE03」、「Irgacure OXE04」(以上商品名)等が挙げられる。
 光ラジカル重合開始剤の添加量は、光硬化性組成物100質量部に対して、0.1~10質量部が好ましく、1~8質量部がより好ましい。0.1質量部よりも少ないと重合が不十分で硬化が終了しない場合もあり得るからであり、10質量部を超えて加えても重合度を高める効果がそれほど増加しないからである。
 光硬化性組成物には必要により可塑剤を添加することが好ましい。可塑剤を添加することで硬化体に高い柔軟性を付与することができ、ガスケット又はシール材として用いる場合に好適である。可塑剤の具体例としては、パラフィン系オイル、オレフィン系オイル、ナフテン系オイル、エステル系可塑剤が挙げられ、エステル系可塑剤の具体例としては、フタル酸エステル、アジピン酸エステル、トリメリット酸エステル、ポリエステル、リン酸エステル、クエン酸エステル、エポキシ化植物油、セバシン酸エステル、アゼラシン酸エステル、マレイン酸エステル、安息香酸エステル等が挙げられる。可塑剤は、光硬化性組成物100質量%に対して30質量%以下であることが好ましい。30質量%を超えると硬化体から可塑剤がブリードアウトするおそれが高まる。
 光硬化性組成物は、本発明の趣旨を逸脱しない範囲で各種添加剤を適宜配合することができる。上記可塑剤やチキソ性付与剤の他、例えば、シランカップリング剤、重合禁止剤、消泡剤、光安定剤、酸化防止剤、帯電防止剤、熱伝導性充填剤、その他の機能性充填剤等が挙げられる。
 光硬化性組成物の粘度は、25℃で5~2000Pa・sとすることが好ましく、10~1000Pa・sとすることがより好ましく、20~300Pa・sとすることがさらに好ましい。5Pa・s未満の場合には、電子素子等に対してディスペンサで塗布する際に液だれが生じ易い。一方、2000Pa・sを超えると、ディスペンサによる塗布が困難となるおそれがある。また、光硬化性組成物の粘度が10~1000Pa・sの範囲であれば、多くのディスペンサ装置に適合して、生産効率を高めることができる。また、20Pa・s以上とするとことで塗布してから硬化するまでの間の形状保持性が高まり、200Pa・s以下とすることで、より細いニードルを用いた精細なディスペンスが可能となる。なお、上記粘度はB型回転粘度計を用い、回転速度10rpm、測定温度25℃で測定した値とすることができる。
 光硬化性組成物を塗布した後、光照射して硬化させるまでの間に、塗布したときの形状をどの程度保つことができるかをチキソ比で表すことができる。光硬化性組成物を塗布した際に直ぐに液だれし広がってしまうよりは塗布時の形状を維持した方がシール材又はガスケットとして利用するためには便宜である。
 こうした観点から、光硬化性組成物のチキソ比は、25℃で2以上とすることが好ましく、4以上とすることがより好ましい。チキソ比を2以上とすることで、光硬化性組成物を塗布した際に光硬化性組成物が硬化前に広がってしまうことを抑制することができる。したがって、封止材、シール材又はガスケット等の用途として好ましい。さらにチキソ比を4以上とすることで、特に粘度が低い光硬化性組成物であっても前記広がりを低減でき、より細いニードルを用いた精細な形状を形成可能となる。なお、上記チキソ比はB型回転粘度計を用い、測定温度25℃で回転速度1rpm及び10rpmにおける粘度を測定し、その比(粘度(1rpm)/粘度(10rpm))として算出した値である。なお、チキソ比の上限は限定するものではないが、概ね20以下とすることが好ましい。
 <光硬化性組成物の硬化体>:
 光硬化性組成物は、光硬化反応により硬化させて接着剤、マスキング材、ガスケット、シール材、封止材等の種々の用途に利用することができる。例えば、電子基板等に設けた電子素子や、金属が露出した部分に光硬化性組成物を塗布して被着物を覆った後、紫外線等の活性エネルギー線照射により光硬化性組成物を光硬化させて用いればシール材とすることができる。あるいはケース等のシール対象物に光硬化性組成物を塗布した後、カバーで覆い、光硬化性組成物に紫外線灯の活性エネルギー線を照射してケース等をカバーで封止すればガスケットとすることもできる。なお、紫外線以外にも活性エネルギー線として、可視光線又は電子線等、(メタ)アクリロイル基を活性化するエネルギー線、及び光ラジカル重合開始剤においてラジカルを生成させるエネルギー線を利用できる。紫外線を照射する光源には例えば高圧水銀灯、メタルハライドランプ又は紫外線LED等を挙げることができる。
 また、本発明の光硬化性組成物の硬化体は、上記所定の組成を有することから耐熱性を備えている。そして、ナノインデンテーション試験で測定されるマルテンス硬さを0.07~0.75N/mmの範囲とすることで、所定の可撓性及び柔軟性を備え、ガスケットの用途としてより好適となる。マルテンス硬さの測定方法は、具体的には実施例に記載の方法とすることができる。
 ガスケットとしての利用では、開口を有するケースと、この開口を閉塞するカバー(又は蓋、蓋体)との間で、これらの両者の少なくとも何れかに前記硬化体を設けた防水構造として構成することができるので、ケースとカバーとの嵌め合わせにより前記硬化体を圧縮変形させて用いることができる。また、開口を液密に封止することができるので防水構造を好適に形成することもできる。
 ガスケット用途等として利用すれば、ケースにカバーを着ける作業中に誤ったカバーを装着したり、カバーの装着位置がズレたりするような作業ミスや、内部に挿入されたデバイス等の部品に不具合が見つかった場合の部品の修理、交換等の追加作業が生じる場合に、一旦取り付けたカバーを容易にケースから取り外すことができるというリワーク性に優れるため、こうした作業を容易に行うことができる。
 以上のように本発明の一態様によれば、硬化物としたときに柔軟性がある一方で、リワーク性があり、耐熱性にも優れた性質を有する光硬化性組成物が得られる。また本発明の一態様によれば、ガスケットとして利用できる他、接着剤、マスキング材、シール材、封止材等の種々の用途に利用できる光硬化性組成物の硬化体が得られる。さらにまた本発明の一態様によれば、リワーク性があり、耐熱性にも優れた性質を有する防水構造が得られる。
 上記実施形態は本発明の例示であり、本発明の趣旨を逸脱しない範囲で、実施形態の変更又は公知技術の付加や、組合せ等を行い得るものであり、それらの技術もまた本発明の範囲に含まれるものである。
 次に実施例(比較例)に基づいて本発明をさらに詳しく説明する。以下の各表に示す組成からなる光硬化性組成物、及びそれらの光硬化性組成物を硬化させた硬化体を作製し、試料1~試料35とした。そしてこれらの試料について各種の試験を行った。
<試料1~試料48の作製>:
 両末端にアクリロイル基を有するテレケリックアクリル重合体と、アクリロイル基を有する多官能アクリル重合体と、アクリルモノマーと、ヒュームドシリカ等の各原材料を、各試料に応じた組成となるように混合し、これらが十分に混ぜ合わされた後に光ラジカル重合開始剤を混合して試料1~試料48の光硬化性組成物を作製した。各試料に用いた原材料の種類及び重量(%)、若しくは組成は以下の各表に示した。こうして作製した各試料の光硬化性組成物は、照度250mW/cm、積算光量5000mJ/cmの条件で紫外線(高圧水銀灯)を照射して試料1~試料48の硬化体とした。
 以下に示す各表中、テレケリックアクリル重合体としては、「XMAP」(商品名、カネカ社製)を、多官能アクリル重合体としては、「アートキュアRA-341」(商品名、根上工業社製、分子量Mw=70000)を、ポリウレタンアクリレートとしては、「UV3000B」(商品名、日本合成化学工業社製)を、ポリイソプレンアクリレートとしては、「UC203」(商品名、クラレ社製)を、ポリブタジエンアクリレートとしては、「BAC45」(商品名、大阪有機化学工業社製)をそれぞれ用いた。また、単官能アクリルモノマーとして、単官能脂環式アクリルモノマーとしては、イソボルニルアクリレート又はシクロヘキシルアクリレートを、単官能エーテル系アクリルモノマーとしては、エトキシジエチレン又はグリコールアクリレートを、単官能脂肪族アクリルモノマーとしては、ラウリルアクリレートを、単官能イミド系アクリルモノマーとして、N-アクリロイルオキシエチルヘキサヒドロフタルイミドを、それぞれ用いた。あるいはまた、アミドモノマーとして、アクロイルモルフォリンを用いた。
 また、各表中、チキソ性付与剤としては、親水性ヒュームドシリカである「アエロジル200」、極性基を有さない疎水性ヒュームドシリカである「アエロジルRX200」、(メタ)アクリロイル処理ヒュームドシリカである「アエロジルR7200」、そしてアミノ処理ヒュームドシリカである「アエロジルRA200H」、(何れも商品名、日本アエロジル社製)を用いた。また、重合開始剤としては、光ラジカル重合開始剤の「Omnirad1173」又は「Omnirad127」を、それぞれ用いた。多官能光硬化性モノマーを用いる場合には表中に示した物質をそれぞれ用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 <各種試験と評価>:
 上記各試料について、以下に説明する各種の試験を行い光硬化性組成物及びその硬化体の特性を評価した。
 マルテンス硬さ(N/mm):
 ナノインデンター(ELIONIX製、ENT-2100)を用いて、各試料の硬化体のナノインデンテーション試験を実施した。試験片は、厚み1mmのガラス板に、厚み200μmになるように光硬化性組成物を塗布し、高圧水銀灯を使用して、照度250mW/cm、積算光量5000mJ/cmの条件で紫外線を照射することで硬化させて作製した硬化体を用いた。そして、前記ナノインデンターで、押し込み最大荷重0.1mN、押し込み速度0.01mN/秒の条件で硬化体のマルテンス硬さを測定した。その結果を各表に示した。
 高温圧縮永久歪:
 各試料について、それぞれ以下に示す条件で試験片を作製してJIS K6262:2013に準拠する治具及び条件で圧縮永久歪を測定した。
 光硬化性組成物を厚み約1mmになるように塗布して形成した硬化物を準備した。この硬化物を重ねて、縦10mm×横10mm×厚み4mm(初期厚み:t)の試験片を作製した(このとき、硬化物は4枚重ねとなる)。さらに、上記試験片を上記JIS規格に準じる治具で25%圧縮し、恒温槽に入れて120℃の雰囲気温度で100時間放置した。なお、治具で試験片を圧縮する際には潤滑剤は用いず、治具と試験片の間にはシリコーン離型層付きのポリエチレンテレフタレートフィルム(厚み0.1mm)を介在させた。次いで、治具を恒温槽から取り出し、圧縮後の試験片を治具から取り出した後に、室温(即ち23±2℃)雰囲気下で30分間放置した後に厚み(t)を測定した。初期厚み(t)に対する試験後の厚み(t)を以下に示す式により算出した。各試料について同様の上記試験を3回行い、その相加平均を算出した。結果を各表の高温圧縮永久歪の欄に記載した。なお、高温圧縮永久歪は、小さい方が好ましい。
 高温圧縮永久歪(CS(%))={(t-t)/(0.25×t)}×100
 超高温圧縮永久歪:
 前記高温圧縮永久歪の測定方法のうち、恒温槽に入れて120℃の雰囲気温度で100時間放置した条件を150℃に代えた以外は同じ条件、方法で圧縮永久歪を測定し、結果を各表の超高温圧縮永久歪の欄に記載した。また、前記高温圧縮永久歪の値と、超高温圧縮永久歪の値の差を圧縮永久歪低下量とし、各表に記載した。なお、超高温圧縮永久歪もその値は小さい方が好ましい。また、高温圧縮永久歪と超高温圧縮永久歪の差が小さいこと、即ち圧縮永久歪低下量が小さい方が好ましい。数値が小さい方が150℃という高温に放置されたときの影響が小さいからである。
 固着力試験:
 固着力試験を次のとおり行った。最初に、各試料の塗布対象となる電子機器のケースを模した塗布基材と、ケースを密閉する蓋を模した圧縮基材とを準備した。ここで、塗布基材は、外形が80mm×80mm×15mmの、表面が光沢面であるポリカーボネート樹脂製のブロックであり、圧縮基材は、外形が74mm×74mm×15mmであり、圧縮面となる表面の表面粗さが、▽▽(表面仕上げが並仕上げ)であるアルミニウム製のブロックである。そして、それぞれのブロックには4隅にボルト固定用の孔が設けてあり、スペーサを用いることで塗布基材と圧縮基材とを所定の間隔に固定することができるようになっている。また、圧縮基材の一方面(試料と接触させない面)の中央には、引張り試験用のロードセルのフックを固定できる固定部が設けてある。
 続いて、上記塗布基材に各試料を塗布した。塗布方法としては、エアー式ディスペンサ(武蔵エンジニアリング製)を用い、外形が1辺40mmの正方形の3辺に相当するコ字状に、塗布幅が概ね4mmになるように塗布した。そして、高圧水銀灯で照度250mW/cmで積算光量5000mJ/cmの紫外線を照射することで各試料を硬化した。
 そして上記硬化した試料について、圧縮基材で各試料が25%圧縮される間隔(すなわち塗布された試料の高さの75%となる間隔)となるようにスペーサを挟みボルト固定した。
 次に、上記圧縮状態の試料を、70℃の恒温槽で22時間放置し、その後に室温(25℃)で1時間放置して冷却した。そして、ボルトを外して圧縮圧力を解放した。なお、このとき圧縮基材と試料が固着しているため、塗布基材と試料と圧縮基材とが一体となっている。そして上記塗布基材を試験台へ固定し、圧縮基材の固定部へロードセルのフックを固定して、引剥し速度500mm/minの条件で、試料から圧縮基材を引剥した。このときの最大応力を記録し、固着面積で除することで固着力(N/mm)を算出した。なお、固着面積は剥離した圧縮治具の固着跡の幅と長さから算出した。
 チキソ性:
 チキソ性に対する評価を行うため各試料についてチキソ比を求めた。チキソ比はB型回転粘度計を用い、測定温度25℃で回転速度1rpm及び10rpmにおける粘度を測定し、その比(粘度(1rpm)/粘度(10rpm))として算出した値である。チキソ比の上限は限定するものではないが、概ね20以下とすることができ、2以上であることが好ましく、4以上であることがより好ましい。算出結果を各表に示した。
 防水性:
 各試料について、次に示す試験片を作製して、JIS C0920に規定されているIPX7準拠の試験を行った。具体的には、厚み1mmのポリカーボネート板に線幅約2.0mm、厚み約1.4mmで、外形30×30mmの枠状になるように、ディスペンサを用いて光硬化性組成物を塗布し、次いで紫外線を照射して硬化することで、枠状の硬化体となる試験片を作製した。また、形状保持性が極めて悪い試料については、ディスペンサによる形成が難しいため、試験片として、厚みが1.4mmとなる光硬化性組成物のシート状硬化体を作製し、このシートから抜型を用いて線幅2.0mm、厚み1.4mmで、外形30×30mmの枠状の硬化体を形成して、これを厚み1mmのポリカーボネート板に貼着した。続いて、上記とは別の厚み1mmのポリカーボネート板で前記硬化体を25%圧縮して70℃、22時間維持した。その後、枠状の硬化体内に水没管理シール(不可逆性)(アズワン株式会社製、MZ-R)を貼り付け、再度厚み1mmのポリカーボネート板で前記硬化体を15%圧縮したものを各試料の試験片とした。そして、各試験片について、水深1mに浸漬して、30分保持した後に、目視にてパッキン内への浸水の有無を確認した。結果を浸水なしと、ありと評価し、その結果を各表に示した。
 A:浸水無し
 B:浸水有り
 耐熱防水性:
 光硬化性組成物の硬化体の耐熱性は、耐熱防水性の試験を行いその結果をもって評価した。上記「防水性」で説明した試験と同様の試験を、25%圧縮、120℃、100hr放置した上記高温圧縮永久歪試験を行った後の各試料について行った。そして、以下のように評価した。その結果を各表に示した。
 A:浸水無し
 B:浸水有り
 リワーク性:
 リワーク性の評価として、固着力試験の条件を一部変更して評価を行った。変更点は、まず、圧縮基材の替わりに、外形が80mm×80mm×1mmのアルミニウムシート製のカバーを用いた。そして、同様に試料を25%圧縮した状態として、室温(25℃)で1週間放置し、その後前記アルミニウムシートを手で剥したときの様子により、リワーク性を評価した。具体的には、カバーを外す際の状態の相違から以下のように評価した。その結果を各表に示した。
 A:抵抗なくカバーを外すことができたもの。
 B:軽い力でカバーを外すことができたもの。
 C:軽い力よりは大きな抵抗を受けながらカバーを外すことができたもの。
 E:カバーを適切に外すことができず、ガスケットの材破又はカバーの破壊があったもの。
 <試験結果の分析>:
 多官能アクリル重合体及びヒュームドシリカを含まない試料17は、リワーク性が悪い結果となった。一方、多官能アクリル重合体、及びテレケリックアクリル重合体、単官能アクリルモノマー、ヒュームドシリカを含む試料1~14は何れも防水性、耐熱防水性(耐熱性)、リワーク性を備えることがわかった。
 試料6は防水性やリワーク性に優れるものの、単官能脂環式アクリルモノマーの含有量が3質量%と少ないため、やや高粘度で塗布し難くなるおそれがあり、作業性の点で劣っていた。そのため、単官能アクリルモノマーの含有量は5%以上とすることが好ましいことがわかった。また、脂環式アクリルモノマーの含有量が多くなると、硬化物が硬くなる傾向があり、27質量%以上になると防水性は問題ないが、リワーク性はやや悪化する傾向があった。
 試料11~15を比較すると、単官能アクリルモノマーを含む試料11~14は何れも防水性、耐熱防水性、リワーク性に優れていた。一方、アクリルモノマーを含まない試料15は耐熱防水性の結果が劣っていた。
 試料16、18、19、20から、テレケリックアクリル重合体を含まない場合には、防水性と耐熱防水性の少なくとも一方が悪化することがわかった。特に、テレケリックアクリル重合体をアクリル重合体ではない光硬化型ポリマーに変更した試料18~試料20では防水性で劣り、このうち試料18及び試料20ではマルテンス硬さの数値が高く柔軟性に乏しく、試料19及び試料20は耐熱防水性の点でも懸念があることがわかった。なお、試料20は、高温圧縮永久歪試験の際に試料が割れてしまい、歪の測定ができなかったため結果が空欄となっている。そうした一方で、試料17から、多官能アクリル重合体とヒュームドシリカの双方を含まない場合には、リワーク性が悪いことがわかった。
 試料21と試料22の比較により、光ラジカル重合開始剤を変えても防水性、耐熱防水性、リワーク性を備えていることがわかった。
 試料23~試料35からシリカについて考察すると、親水性ヒュームドシリカ又は極性基を有するヒュームドシリカの少なくも何れか一方及びテレケリックアクリル重合体、単官能アクリルモノマーを含む試料24~27、29~35は、何れも防水性、耐熱防水性、リワーク性を備えていた。一方、ヒュームドシリカを含まない試料23及び親水性でもなく極性基も有さないヒュームドシリカのみを含む試料28はリワーク性が悪い結果だった。親水性ヒュームドシリカ又は極性基を有するヒュームドシリカを用いる場合にはヒュームドシリカの配合量が増えるほどリワーク性に優れることがわかったが、一方でやや硬くなる傾向や、耐熱性がやや低下する傾向、増粘傾向があることがわかった。特に作業性を考慮すると、これらのヒュームドシリカの含有量は概ね5質量%以下であることが特に好ましい。また、試料26~31を比較すると、10rpmにおける粘度はそれほど変化がないものの、親水性ヒュームドシリカとアミノ処理ヒュームドシリカとを併用した場合には、リワーク性を損なうことなくチキソ性を高めることができることがわかった。
 試料36~試料48から架橋剤の添加について考察すると、テレケリックアクリル重合体、多官能アクリル重合体、単官能アクリルモノマー、親水性ヒュームドシリカ及び極性基を有するヒュームドシリカを含む組成に加えて、多官能光硬化性モノマーからなる架橋剤を加えると、120℃雰囲気下での高温圧縮永久歪のみならず150℃雰囲気下での超高温圧縮永久歪も少なく、超高温でも性能を保ち易いという効果が得られることがわかった。
 また、試料37、試料38、試料42は、超高温圧縮永久歪の値が21~24と、他の試料よりも小さく、優れていることがわかる。このことから超高温圧縮永久歪をも低く抑える観点からは脂肪族骨格を有し、極性基を有しない多官能光硬化性モノマーが好ましいことがわかった。
 試料45~試料48によれば、架橋剤である多官能光硬化性モノマーの含有量を組成物中に0.9~5.3%とした中では、圧縮永久歪低下量の数値から4.5%である試料47が最も好ましく、高温圧縮永久歪の数値から試料46及び試料47が同程度で最も好ましい。これらの結果、及び試料36~試料48の多官能光硬化性モノマーの含有量を総合的に見れば、多官能光硬化性モノマーの含有量は組成物中に1.8~4.5%であることがより好ましいことがわかった。

Claims (12)

  1. 両末端にアクリロイル基を有するテレケリックアクリル重合体と、
    アクリロイル基を有する多官能アクリル重合体と、
    単官能アクリルモノマーと、
    親水性ヒュームドシリカ又は極性基を有するヒュームドシリカの少なくも何れか一方を含むヒュームドシリカと、を含み、
    硬化後のマルテンス硬さが0.07~0.75N/mmである光硬化性組成物。
  2. 二重結合当量が1万以上のアクリル重合体と、
    単官能アクリルモノマーと、
    親水性ヒュームドシリカ又は極性基を有するヒュームドシリカの少なくも何れか一方を含むヒュームドシリカと、を含み、
    硬化後のマルテンス硬さが0.07~0.75N/mmである光硬化性組成物。
  3. さらに多官能光硬化性モノマーを含む請求項1又は請求項2記載の光硬化性組成物。
  4. 前記ヒュームドシリカには、親水性ヒュームドシリカと極性基を有する疎水性ヒュームドシリカとを含む請求項1~請求項3何れか1項記載の光硬化性組成物。
  5. 前記極性基を有するヒュームドシリカには、アミノ処理ヒュームドシリカを含む請求項1~請求項4何れか1項記載の光硬化性組成物。
  6. 前記テレケリックアクリル重合体22~71質量%と、
    前記多官能アクリル重合体7~54質量%と、
    前記単官能アクリルモノマー3~27質量%と、
    前記多官能光硬化性モノマー0~10質量%と、
    前記ヒュームドシリカ2~20質量%と、を含む請求項1~請求項5何れか1項記載の光硬化性組成物。
  7. 硬化後の、アルミニウムに対する70℃22時間圧縮後の固着力が0.45N/mm以下である請求項1~請求項6何れか1項記載の光硬化性組成物。
  8. 硬化後にJIS K6262:2013に準拠した120℃で100時間経過後の圧縮永久歪が40%以下である請求項1~請求項7何れか1項記載の光硬化性組成物。
  9. 請求項1~請求項8何れか1項記載の光硬化性組成物の硬化体。
  10. 請求項1~請求項8何れか1項記載の光硬化性組成物の硬化体であるガスケット。
  11. 開口を有するケースと、
    前記開口を閉塞する蓋体と、
    前記ケース又は前記蓋体の少なくとも何れかに設けられる請求項1~請求項8何れか1項記載の光硬化性組成物の硬化体からなり、前記ケースと前記蓋体との嵌め合わせにより圧縮変形して前記開口を液密に封止するガスケットと、
    を備える防水構造。
  12. 請求項1~請求項8何れか1項記載の光硬化性組成物を、シール対象物に塗布する工程と、
    塗布された前記光硬化性組成物に活性エネルギー線を照射する工程と、
    を含むガスケットの製造方法。
PCT/JP2021/012404 2020-03-27 2021-03-24 光硬化性組成物、硬化体及び硬化体を用いたガスケット並びに防水構造及びガスケットの製造方法 WO2021193770A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021540862A JP6983453B1 (ja) 2020-03-27 2021-03-24 光硬化性組成物、硬化体及び硬化体を用いたガスケット並びに防水構造及びガスケットの製造方法
CN202180006873.1A CN114746457B (zh) 2020-03-27 2021-03-24 光固化性组合物、固化体、使用固化体的垫片、防水结构以及垫片的制造方法
US17/791,518 US11613645B2 (en) 2020-03-27 2021-03-24 Photocurable composition, cured body, gasket in which cured body is used, watertight structure, and method for manufacturing gasket
KR1020227025806A KR102553298B1 (ko) 2020-03-27 2021-03-24 광경화성 조성물, 경화체 및 경화체를 사용한 개스킷 및 방수 구조 및 개스킷의 제조 방법
EP21775809.3A EP4130072A4 (en) 2020-03-27 2021-03-24 PHOTOCURABLE COMPOSITION, HARDENED BODY, SEAL USING HARDENED BODY, AND PRODUCTION METHOD FOR WATERPROOF STRUCTURE AND SEAL
JP2021186622A JP2022024078A (ja) 2020-03-27 2021-11-16 光硬化性組成物、硬化体及び硬化体を用いたガスケット並びに防水構造及びガスケットの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-057493 2020-03-27
JP2020057493 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193770A1 true WO2021193770A1 (ja) 2021-09-30

Family

ID=77890663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012404 WO2021193770A1 (ja) 2020-03-27 2021-03-24 光硬化性組成物、硬化体及び硬化体を用いたガスケット並びに防水構造及びガスケットの製造方法

Country Status (6)

Country Link
US (1) US11613645B2 (ja)
EP (1) EP4130072A4 (ja)
JP (2) JP6983453B1 (ja)
KR (1) KR102553298B1 (ja)
CN (1) CN114746457B (ja)
WO (1) WO2021193770A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020018710A1 (en) * 2018-07-17 2020-01-23 Viaderm Llc Indwelling hyper-dimensional cardiac physiologic data logging and transmission system and method of doing business

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087890A1 (ja) * 2004-03-11 2005-09-22 Kaneka Corporation 活性エネルギー硬化型現場成形ガスケット用組成物および現場成形ガスケット
WO2007004584A1 (ja) * 2005-06-30 2007-01-11 Three Bond Co., Ltd. 硬化性組成物およびシール方法
JP2011527722A (ja) * 2008-07-11 2011-11-04 ヘンケル コーポレイション モールド・イン・プレース型ガスケット用、改善されたシール特性を有する組成物
JP2012229338A (ja) * 2011-04-26 2012-11-22 Three Bond Co Ltd 光硬化性組成物
JP2013049805A (ja) 2011-08-31 2013-03-14 Bridgestone Corp ガスケット用材料、ガスケット及びハードディスク装置、並びにガスケットの製造方法
JP2014526585A (ja) * 2011-09-19 2014-10-06 ヘンケル ユーエス アイピー エルエルシー 狭い二峰性分子量分布を有する(メタ)アクリレート官能性ポリアクリレート樹脂
WO2016051915A1 (ja) * 2014-09-29 2016-04-07 株式会社スリーボンド 硬化性樹脂組成物
JP2017122139A (ja) * 2016-01-05 2017-07-13 セメダイン株式会社 光硬化性組成物
JP2018154775A (ja) * 2017-03-21 2018-10-04 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型組成物プライマー、硬化物、収容容器、2次元又は3次元の像形成装置、及び2次元又は3次元の像形成方法
JP2019026748A (ja) * 2017-07-31 2019-02-21 株式会社リコー 紫外線硬化型組成物、2次元又は3次元の像の形成方法、硬化物、及び組成物収容容器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2660139T3 (es) * 2006-01-17 2018-03-21 Henkel IP & Holding GmbH Sellantes curables por UV para celdas de combustible y celdas de combustible formadas con los mismos
DE102006046368A1 (de) * 2006-09-29 2008-04-03 Construction Research & Technology Gmbh Funktionalisiertes Polyurethanharz, Verfahren zu seiner Herstellung sowie dessen Verwendung
US8043787B2 (en) * 2008-03-14 2011-10-25 Eastman Kodak Company Negative-working imageable elements with improved abrasion resistance

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087890A1 (ja) * 2004-03-11 2005-09-22 Kaneka Corporation 活性エネルギー硬化型現場成形ガスケット用組成物および現場成形ガスケット
WO2007004584A1 (ja) * 2005-06-30 2007-01-11 Three Bond Co., Ltd. 硬化性組成物およびシール方法
JP2011527722A (ja) * 2008-07-11 2011-11-04 ヘンケル コーポレイション モールド・イン・プレース型ガスケット用、改善されたシール特性を有する組成物
JP2012229338A (ja) * 2011-04-26 2012-11-22 Three Bond Co Ltd 光硬化性組成物
JP2013049805A (ja) 2011-08-31 2013-03-14 Bridgestone Corp ガスケット用材料、ガスケット及びハードディスク装置、並びにガスケットの製造方法
JP2014526585A (ja) * 2011-09-19 2014-10-06 ヘンケル ユーエス アイピー エルエルシー 狭い二峰性分子量分布を有する(メタ)アクリレート官能性ポリアクリレート樹脂
WO2016051915A1 (ja) * 2014-09-29 2016-04-07 株式会社スリーボンド 硬化性樹脂組成物
JP2017122139A (ja) * 2016-01-05 2017-07-13 セメダイン株式会社 光硬化性組成物
JP2018154775A (ja) * 2017-03-21 2018-10-04 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型組成物プライマー、硬化物、収容容器、2次元又は3次元の像形成装置、及び2次元又は3次元の像形成方法
JP2019026748A (ja) * 2017-07-31 2019-02-21 株式会社リコー 紫外線硬化型組成物、2次元又は3次元の像の形成方法、硬化物、及び組成物収容容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130072A4

Also Published As

Publication number Publication date
JP6983453B1 (ja) 2021-12-17
CN114746457B (zh) 2023-07-07
US20230040225A1 (en) 2023-02-09
US11613645B2 (en) 2023-03-28
KR102553298B1 (ko) 2023-07-06
JP2022024078A (ja) 2022-02-08
CN114746457A (zh) 2022-07-12
KR20220113824A (ko) 2022-08-16
EP4130072A1 (en) 2023-02-08
JPWO2021193770A1 (ja) 2021-09-30
EP4130072A4 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US8273827B2 (en) Adhesive composition and adhesion method
US10774166B2 (en) Curable resin composition
JP5738795B2 (ja) 光硬化型粘着剤組成物およびこれを用いた粘着シート
US10954413B2 (en) Optically clear pressure sensitive adhesive article
WO2014119340A1 (ja) 光硬化性エラストマー組成物、シール材、ハードディスクドライブ用ガスケット、ハードディスクドライブおよび装置
JP2008101151A (ja) 硬化性組成物
JP2006342222A (ja) 光硬化性樹脂組成物
JP2010144000A (ja) 光硬化性樹脂組成物、電子ペーパー用の光硬化性防湿シール材、電子ペーパー及びその製造方法
WO2018008580A1 (ja) 硬化性組成物、及び製品
JP2008291114A (ja) 光硬化性樹脂組成物、実装回路板用の光硬化性防湿絶縁塗料、電子部品及びその製造方法
JP2018172565A (ja) アクリル系硬化性樹脂組成物
JP6983453B1 (ja) 光硬化性組成物、硬化体及び硬化体を用いたガスケット並びに防水構造及びガスケットの製造方法
JP6962745B2 (ja) Led硬化型防湿絶縁コート剤組成物
JP2014148650A (ja) 光硬化性エラストマー組成物、シール材、ハードディスクドライブ用ガスケットおよび装置
JP6919886B2 (ja) 封止材組成物および封止材
JP6865792B2 (ja) 光硬化型ガスケット樹脂組成物
JP5695102B2 (ja) 光硬化性エラストマー組成物、ハードディスクドライブ用ガスケットおよびハードディスクドライブ
JP6857013B2 (ja) Led硬化型防湿絶縁コート剤
WO2021039537A1 (ja) 燃料電池用ラジカル硬化性シール部材
JP5675862B2 (ja) 光硬化性エラストマー組成物、ハードディスクドライブ用ガスケットおよびハードディスクドライブ
WO2021039320A1 (ja) 光硬化性組成物及びその硬化体、シール材、保護材、防水構造並びに硬化体の製造方法
WO2022070486A1 (ja) 燃料電池用部材およびその製造方法
JP5876659B2 (ja) ガスケット用材料、ガスケット及びハードディスク装置
JP2020158672A (ja) 光硬化性樹脂組成物
KR20220094195A (ko) 수지 조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021540862

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227025806

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021775809

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021775809

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE