WO2021193661A1 - 電極用触媒の製造システムおよび製造方法 - Google Patents

電極用触媒の製造システムおよび製造方法 Download PDF

Info

Publication number
WO2021193661A1
WO2021193661A1 PCT/JP2021/012058 JP2021012058W WO2021193661A1 WO 2021193661 A1 WO2021193661 A1 WO 2021193661A1 JP 2021012058 W JP2021012058 W JP 2021012058W WO 2021193661 A1 WO2021193661 A1 WO 2021193661A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
electrode
catalyst precursor
electrode catalyst
cake
Prior art date
Application number
PCT/JP2021/012058
Other languages
English (en)
French (fr)
Inventor
安宏 関
明伸 竹野谷
誠 西別当
聖崇 永森
五十嵐 寛
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to CN202180012164.4A priority Critical patent/CN115039260A/zh
Priority to US17/796,489 priority patent/US20230216063A1/en
Priority to KR1020227032397A priority patent/KR20220150912A/ko
Priority to EP21775311.0A priority patent/EP4085983A1/en
Priority to JP2022510562A priority patent/JPWO2021193661A1/ja
Publication of WO2021193661A1 publication Critical patent/WO2021193661A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a manufacturing system and a manufacturing method of a catalyst for electrodes.
  • PEFC Polymer Electrolyte Fuel Cell
  • an electrode catalyst for PEFC for example, an electrode catalyst in which a platinum (Pt) or a platinum (Pt) alloy, which is a catalyst component for an electrode, is supported on carbon as a carrier is known.
  • a platinum (Pt) or a platinum (Pt) alloy which is a catalyst component for an electrode, is supported on carbon as a carrier.
  • the electrode catalyst contains a large amount of impurities derived from the raw material and impurities mixed from the manufacturing equipment thereof. This may not be possible, or the catalyst layer may corrode, shortening the life of the fuel cell. Therefore, it is preferable to keep the content of impurities in the electrode catalyst low.
  • the impurities include chemical species belonging to halogen (ions and salts thereof), organic substances (organic acids, salts thereof, condensates of organic acids) and the like.
  • a step of removing chlorine after manufacturing the electrode catalyst precursor, which is a raw material of the electrode catalyst may be performed.
  • a second catalyst metal precursor solution is mixed with a first catalyst metal precursor mixture and a carbon-based carrier mixture, pH adjustment, heating and cooling processes are repeated, and the obtained catalyst is centrifuged. It is disclosed that it is washed with a separator 3 to 4 times and dried with a freeze dryer.
  • Patent Documents 2 and 3 as a wet dechlorination method for ultrafine titanium dioxide that can be used as a catalyst for a fuel cell, titanium dioxide is suspended in water and chlorine transferred to the liquid phase is removed from the system by a filter press. The method of separation is mentioned.
  • JP-A-2007-214130 Japanese Unexamined Patent Publication No. 2006-265094 Japanese Unexamined Patent Publication No. 2011-57552
  • Patent Documents 2 and 3 a filter press is used for dechlorination of the fuel cell catalyst, but the conditions of the cleaning and filtration steps such as the specific configuration and process of the device for performing the filter press are specifically described. There is no.
  • the present invention has been made in view of such circumstances, and by eliminating the work of scraping the catalyst precursor for electrodes by an operator and shortening the cleaning time of the catalyst precursor for electrodes, the present invention is used for electrodes.
  • a catalyst manufacturing system and a manufacturing method for an electrode which can significantly reduce the labor and time for manufacturing the catalyst.
  • an electrode catalyst precursor manufacturing apparatus for producing an electrode catalyst precursor which is a raw material of an electrode catalyst containing a conductive carrier and catalyst particles supported on the conductive carrier, and an electrode catalyst precursor manufacturing apparatus.
  • a cleaning device that cleans the catalyst precursor for electrodes with a filter press
  • a manufacturing system for manufacturing an electrode catalyst which comprises a drying device for drying the electrode catalyst precursor after cleaning, which has been cleaned by the cleaning device.
  • the cleaning device The plate closing process of tightening the filter plate to form a filter chamber, A press-fitting step in which a liquid containing the catalyst precursor for an electrode is press-fitted into the filter chamber from a stock solution supply pipe, filtered, and the filtrate is discharged from a filtrate discharge port.
  • a normal cleaning step in which washing water is supplied from the stock solution supply pipe to the filter chamber, passed through a cake containing the catalyst precursor for electrodes, and then discharged from the filtrate discharge port.
  • a filtrate different from the filtrate discharge port for supplying the washing water after the washing water is supplied from the filtrate discharge port to the filter chamber and passed through the cake containing the catalyst precursor for the electrode.
  • the reverse cleaning process that discharges from the discharge port and The plate opening step of opening the filter plate forming the filter chamber, and A means for executing a cake peeling step of lowering the filter cloth to peel and drop the cake containing the electrode catalyst precursor is provided.
  • the cake is formed so as to have a thickness range experimentally determined in advance in consideration of the degree of cleaning and the cleaning time required for the catalyst precursor for the electrode to be used.
  • Provided is a manufacturing system of a catalyst for an electrode.
  • the thickness of the cake containing the electrode catalyst precursor at the time of the press-fitting step may be 5 to 10 mm.
  • the electrode catalyst manufacturing system may further include means for the cleaning device to perform a filter cloth cleaning step of cleaning the filter cloth with cleaning water after the cake peeling step.
  • the cleaning time of the back cleaning step may be as long as the cleaning time of the normal cleaning step.
  • an electrode catalyst precursor production step for producing an electrode catalyst precursor which is a raw material of an electrode catalyst containing a conductive carrier and catalyst particles supported on the conductive carrier, and a step of producing an electrode catalyst precursor.
  • a cleaning step of cleaning the electrode catalyst precursor with a filter press, and A production method for producing an electrode catalyst which comprises a drying step of drying the electrode catalyst precursor after cleaning, which has been washed in the cleaning step.
  • the cleaning step The plate closing process of tightening the filter plate to form a filter chamber, A press-fitting step in which a liquid containing the catalyst precursor for an electrode is press-fitted into the filter chamber from a stock solution supply pipe, filtered, and the filtrate is discharged from a filtrate discharge port.
  • a normal cleaning step in which washing water is supplied from the stock solution supply pipe to the filter chamber, passed through a cake containing the catalyst precursor for electrodes, and then discharged from the filtrate discharge port.
  • a filtrate different from the filtrate discharge port for supplying the washing water after the washing water is supplied from the filtrate discharge port to the filter chamber and passed through the cake containing the catalyst precursor for the electrode.
  • the reverse cleaning process that discharges from the discharge port and The plate opening step of opening the filter plate forming the filter chamber, and It includes a cake peeling step of lowering the filter cloth to peel and drop the cake containing the catalyst precursor for the electrode.
  • the cake is formed so as to have a thickness range experimentally set in advance in consideration of the degree of cleaning and the cleaning time required for the catalyst precursor for the electrode to be used.
  • the thickness of the cake containing the electrode catalyst precursor at the time of the press-fitting step may be 5 to 10 mm.
  • the washing step may further include a filter cloth washing step of washing the filter cloth with washing water after the cake peeling step.
  • the cleaning time in the back cleaning step may be as long as the cleaning time in the normal cleaning step.
  • the halogen content is eliminated by eliminating the work of scraping the electrode catalyst precursor by the operator and shortening the cleaning time of the electrode catalyst precursor.
  • the labor and time required to manufacture an electrode catalyst having a low chlorine content can be significantly reduced.
  • FIG. 1 is a block diagram showing an outline of the electrode catalyst manufacturing system 10 according to the present embodiment.
  • the electrode catalyst manufacturing system 10 comprises an electrode catalyst precursor manufacturing apparatus 12 for manufacturing an electrode catalyst precursor, which is a raw material for the electrode catalyst 1 (see FIG. 11), and an electrode catalyst precursor by a filter press. It has a cleaning device 13 for cleaning and a drying device 14 for drying the electrode catalyst precursor 41 (see FIG. 15) after cleaning that has been cleaned by the cleaning device 13.
  • the electrode catalyst precursor manufacturing apparatus 12 manufactures an electrode catalyst precursor which is a raw material of the electrode catalyst 1.
  • the electrode catalyst precursor manufacturing apparatus 12 includes a reaction step execution means 21 for executing a reaction step for manufacturing the electrode catalyst precursor.
  • the electrode catalyst precursor which is the raw material of the electrode catalyst 1
  • the carrier 2 (FIG. 11). reference).
  • the method for producing the catalyst precursor for the electrode is not particularly limited as long as the catalyst component of the catalyst 1 for the electrode can be supported on the carrier 2.
  • an impregnation method in which a solution containing the catalyst component of the electrode catalyst 1 is brought into contact with the carrier 2 to impregnate the carrier 2 with the catalyst component, or a reducing agent is added to the solution containing the catalyst component of the electrode catalyst 1.
  • Liquid phase reduction method electrochemical precipitation method such as underpotential precipitation (UPD) method, chemical reduction method, reduction precipitation method using adsorbed hydrogen, surface leaching method of alloy catalyst, substitution plating method, sputtering method, vacuum deposition method, etc.
  • the adopted manufacturing method can be exemplified.
  • the cleaning device 13 cleans the electrode catalyst precursor manufactured by the electrode precursor manufacturing device 12 described above by a filter press. In the cleaning device 13, filtration and dehydration are performed as well as cleaning of the catalyst precursor for electrodes.
  • FIG. 2 shows an example of a cleaning device 13 that performs a filter press.
  • a plurality of dehydrating devices 104 are arranged in parallel in the horizontal direction on a guide rail 103 bridged between the front frame 101 and the rear frame 102. These dehydrators 104 are supported so that they can move horizontally on the guide rail 103.
  • an electric cylinder 105 is supported on the rear frame 102, and the dehydrator 104 is tightened by a pressing member 106 that reciprocates by the driving force of the electric cylinder 105.
  • Such a filter press cleaning device 13 is conventionally known, and for example, the one described in Japanese Patent No. 5950207 is known.
  • the dehydrator 104 those described in Japanese Patent No. 5327,000 are known, for example.
  • the outline of the cleaning flow by the filter press will be described (see FIGS. 3 to 10).
  • the undiluted solution 30 passes through the filter cloth 113 and is filtered, and the filtrate 42 is discharged to the outside.
  • the solid matter captured by the filter cloth 113 is dehydrated while forming a cake layer.
  • the electric cylinder 105 is contracted to open the plurality of filter plates 111 and 111'at the same time, and at the same time, the dehydrated cake 40 is discharged while the filter cloth 113 is moved downward.
  • the cleaning device 13 includes a plate closing process, a press-fitting process, a normal cleaning process, a reverse cleaning process, a plate opening process, a cake peeling process, and a filter cloth cleaning process, respectively.
  • the filter cloth cleaning process execution means 37 The configurations of the steps S21 to S27 also shown in the flow chart of the method for manufacturing the electrode catalyst 1 of FIG. 16 to be described later will be described below.
  • the plate closing step S21 is a step of tightening the filter plates 111 and 111'to form the filter chamber 112, and is executed by the plate closing process executing means 31.
  • FIG. 3 is a view obtained by extracting one dehydrating device 104 in the cleaning device 13 of FIG. 2, and shows a preferred embodiment of the operating state in the plate closing step S21.
  • the plate closing process executing means 31 drives the electric cylinder 105 to move the pressing member 106 toward the front frame 101, thereby bringing the two filter plates 111 and 111'of the dehydrator 104 closer to each other and tightening the filter chamber.
  • the press-fitting step S22 is a step of press-fitting the liquid (stock solution) 30 containing the catalyst precursor for the electrode into the filter chamber 112 from the stock solution supply pipe 114, filtering the liquid, and discharging the filtrate 42 from the filtrate discharge ports 115 and 115'. Yes, it is executed by the press-fitting process execution means 32.
  • FIG. 4 is a view obtained by extracting one dehydrating device 104 in the cleaning device 13 of FIG. 2, and shows a preferred embodiment of the operating state in the press-fitting step S22.
  • the water content of the liquid 30 containing the electrode catalyst precursor is filtered through the filter cloth 113. It oozes out to 116 and is discharged to the outside from the filtrate discharge ports 115 and 115'.
  • the liquid 30 containing the catalyst precursor for the electrode press-fitted into the filter chamber 112 is filtered. That is, the solid component in the liquid 30 containing the catalyst precursor for the electrode remains in the filter chamber 112 as the cake 40 containing the catalyst precursor for the electrode, and the water content of the liquid 30 containing the catalyst precursor for the electrode remains as the filtrate 42 to the outside. It is discharged.
  • the cake 40 containing the catalyst precursor for the electrode is formed so as to have a thickness range experimentally determined in advance.
  • the thickness of the cake 40 is determined experimentally in advance in consideration of the degree of cleaning and the cleaning time required for the catalyst precursor for the electrode to be used.
  • the thickness T of the cake 40 at the time of the press-fitting step S22 is adjusted to 5 to 10 mm.
  • the thickness T of the cake 40 is 10 mm or less, a sufficient cleaning effect can be obtained relatively easily by adjusting the cleaning time of the normal cleaning step and / or the back cleaning step described later.
  • the thickness T of the cake 40 exceeds 10 mm, there is a large tendency that a sufficient cleaning effect cannot be obtained even if the cleaning time of the normal cleaning step and / or the back cleaning step described later is lengthened.
  • the thickness T of the cake 40 is 5 mm or more, cracks are less likely to be formed in the cake, and the washing water does not pass through the cake from the upstream side surface of the cake to the downstream side surface of the cake. There is a greater tendency to prevent the formation of circulating paths.
  • FIG. 5 is a diagram in which one dehydrator 104 in the cleaning device 13 of FIG. 2 is extracted, and shows a preferred embodiment of the operating state in the normal cleaning step S23.
  • the cleaning water 43 is flowed from the stock solution supply pipe 114 toward the filtrate discharge ports 115 and 115'by the normal cleaning step execution means 33, and the cake 40 containing the catalyst precursor for the electrode remaining in the filter chamber 112 is washed in the press-fitting step S22. do.
  • the electric conductivity ⁇ of the filtrate measured by the JIS standard test method JIS K0522
  • the halogen content particularly the chlorine content of the catalyst precursor for the electrode can be reduced.
  • the washing water 43 can be switched from room temperature water (for example, 23 ° C.) to warm water (for example, 70 ° C.) when the electric conductivity ⁇ of the filtrate becomes equal to or less than a predetermined value.
  • the predetermined value of the electrical conductivity ⁇ of the filtrate is preferably a value selected from the range of 20 to 40 ⁇ S / cm.
  • the temperature of room temperature water is preferably 20 to 25 ° C.
  • the temperature of the warm water is preferably 60 to 80 ° C.
  • FIG. 6 is a diagram in which one dehydrator 104 in the cleaning device 13 of FIG. 2 is extracted, and shows a preferred embodiment of the operating state in the reverse cleaning step S24.
  • the dehydrator 104 includes, for example, at least two filtrate outlets 115, 115'.
  • the cleaning water 43 is flowed from the filtrate discharge port 115 toward the filter chamber 112 by the reverse cleaning step execution means 34, so that the electrode catalyst precursor remaining in the filter chamber 112 is included. Wash cake 40.
  • the filtrate 42 is discharged from, for example, another filtrate discharge port 115'which is different from the filtrate discharge port 115 for supplying the washing water 43.
  • the electric conductivity ⁇ of the filtrate can be further lowered, and the halogen content, particularly the chlorine content, of the catalyst precursor for the electrode can be further reduced.
  • cleaning may be performed with normal temperature water (for example, 23 ° C.), but since the electrical conductivity ⁇ of the filtrate has decreased to some extent at the end of the normal cleaning step S23, warm water (for example, 23 ° C.) is used from the beginning. For example, it is preferable to perform cleaning at 70 ° C.).
  • the temperature of the warm water is preferably 60 to 80 ° C.
  • the plate opening step S25 is a step of opening the filter plates 111, 111'forming the filter chamber 112, and is executed by the plate opening process executing means 35.
  • FIG. 7 is a view obtained by extracting one dehydrating device 104 in the cleaning device 13 of FIG. 2, and shows a preferred embodiment of the operating state in the plate opening step S25.
  • the plate opening process executing means 35 drives the electric cylinder 105 to move the pressing member 106 toward the rear frame 102, thereby releasing the tightening of the dehydrating device 104. In this way, the two filter plates 111 and 111'of the dehydrator 104 are separated from each other, and the filter chamber 112 is opened.
  • the cake peeling step S26 is a step of lowering the filter cloth to peel and drop the cake 40 containing the dehydrated electrode catalyst precursor, and is executed by the cake peeling step executing means 36.
  • FIG. 8 is a diagram in which one dehydrator 104 in the cleaning device 13 of FIG. 2 is extracted, and shows a preferred embodiment of the operating state in the cake peeling step S26.
  • the water content (moisture content) of the cake 40 is a value obtained by dividing the weight of the water content in the cake 40 by the weight of the catalyst powder contained in the cake 40 + the weight of the water content, and the water content of the cake 40 at this time.
  • the water content is preferably 60 to 80 wt%.
  • the filter cloth washing step S27 is a step of washing the filter cloth 113 with the washing water 43 after the cake peeling step S26, and is executed by the filter cloth washing step executing means 37.
  • FIG. 9 is a diagram in which one dehydrator 104 in the cleaning device 13 of FIG. 2 is extracted, and shows a preferred embodiment of the operating state in the filter cloth cleaning step S27. After the cake 40 containing the catalyst precursor for the electrode is peeled off from the filter cloth 113, the filter cloth 113 runs upward and returns to the original position.
  • the cleaning water 43 is supplied from the cleaning water pipe 117 provided below the dehydrator 104 by a filter cloth cleaning pump (not shown) while the filter cloth 113 is traveling upward by the filter cloth cleaning process executing means 37. NS.
  • the filter cloth 113 By spraying the washing water 43 onto the filter cloth 113, the filter cloth 113 is washed, clogging of the filter cloth 113 is prevented, and the catalyst precursor for the electrode and the like adhering to the filter cloth 113 are reliably recovered. That is, since the wastewater during cleaning the filter cloth contains the catalyst precursor for the electrode, it is preferable to collect all of the wastewater. By flowing and recovering the electrode catalyst precursor adhering to the filter cloth 113 in this way, the yield of the electrode catalyst precursor can be increased. Further, for example, the amount of the catalyst precursor for the electrode can be further increased by washing the filter cloth 113 while repeatedly running it up and down.
  • the pressing step may be performed after the normal washing step S23 and / or after the back washing step S24.
  • the squeezing step is a step of further squeezing and dehydrating the cake 40 containing the catalyst precursor for the electrode, and is executed by a squeezing step executing means (not shown).
  • FIG. 10 is an extracted view of one dehydrating device 104 in the cleaning device 13 of FIG. 2, and shows a preferred embodiment of an operating state in the squeezing step.
  • the solid content concentration of the cake 40 containing the catalyst precursor for the electrode is increased, and the cake 40 containing the catalyst precursor for the electrode having an extremely low water content is produced.
  • the pressurized water 119 is drained from the diaphragm 118 after the completion of the pressing step, the pressing by the diaphragm 118 is eliminated, and the filter cloth 113 pressed by the diaphragm 118 is easily peeled off from the cake 40, which is preferable.
  • the other filter plate 111 may also have a diaphragm (not shown).
  • pressurized water is also injected into a diaphragm (not shown) provided on the side of the filter plate 111, so that the cake 40 containing the catalyst precursor for the electrode can be squeezed and dehydrated.
  • the pressurized water is drained from the diaphragm after the pressing step is completed, the pressing by the diaphragm (not shown) is eliminated, so that the filter cloth 113 pressed by the diaphragm (not shown) is released from the cake 40. It is preferable because it is easily peeled off.
  • all the dehydrators 104 can perform the same operation, so that the amount processed by one apparatus at one time can be determined. This can be increased, and the production efficiency of the electrode catalyst is improved. Further, since the dehydrator 104 has a large filtration area and a high pressure resistance structure, the processing speed can be improved. Further, since the processing from the introduction of the undiluted solution to the discharge of the cake to the cleaning of the apparatus can be performed fully automatically, the labor and time of the processing in the cleaning process can be reduced. Further, since a resin, a lining material, or the like can be selected as the material of the device, it is possible to improve the corrosion resistance of the device.
  • the electrical conductivity ⁇ measured by the JIS standard test method (JIS K0522) of the filtrate obtained after the normal cleaning step S23 and / or the back cleaning step S24 is equal to or less than a preset set value. Therefore, the processing conditions such as the normal cleaning time in the normal cleaning step S23 and the back cleaning time in the back cleaning step S24 are adjusted. For example, if the cleaning time of the back cleaning step is lengthened to the same level as the cleaning time of the normal cleaning step, the cleaning effect is increased. The same degree means a difference of 0 to 15 minutes (absolute value of the difference between the cleaning time in the normal cleaning process and the cleaning time in the back cleaning process). Further, the filtrate is a liquid that is drained from the filtrate discharge port after cleaning, and it is preferable to use the whole filtrate discharged in the step.
  • the set value of the electrical conductivity ⁇ of the filtrate obtained after the normal cleaning step S23 is preferably a value selected from the range of 20 ⁇ S / cm or less.
  • the set value of the electrical conductivity ⁇ of the filtrate obtained after the backwashing step S24 is preferably a value selected from the range of 10 ⁇ S / cm or less.
  • the cleaning water 43 used in the cleaning device 13 may be pure water such as ultrapure water, but may not be pure water.
  • pH 6 ⁇ 8 JIS standard test method (JIS K0522) electrical conductivity is measured by [rho i uses an ion-exchange water or the like of less than 10 [mu] S / cm.
  • the drying device 14 dries the catalyst precursor 41 for the electrode after cleaning, which has been cleaned by the cleaning device 13.
  • the drying device 14 includes a drying step execution means 51 that executes a drying step for drying the catalyst precursor 41 for the electrode after cleaning that has been washed by the cleaning device 13.
  • a drying method in the drying step in addition to a drying method using a shelf-stage vacuum dryer (not shown) in which crushed electrode catalyst precursors are arranged on a shelf and vacuum-dried as in the conventional case, ribocorn (not shown) is used.
  • a drying method using a vacuum mixer (not shown) or a PV mixer (not shown) can be adopted.
  • the structure of the electrode catalyst produced in the present embodiment is not particularly limited, and the carrier of the conductive carrier (conductive carbon carrier, conductive metal oxide carrier, etc.) may have a structure in which the noble metal catalyst particles are supported. Just do it.
  • the carrier of the conductive carrier may have a structure in which the noble metal catalyst particles are supported. Just do it.
  • it may be a so-called Pt catalyst, a Pt alloy catalyst (PtCo catalyst, PtNi catalyst, etc.) and a so-called core-shell catalyst having a core-shell structure.
  • a core-shell catalyst in which palladium is used as a constituent element of the core portion 4 and platinum is used as a constituent element of the shell portion 5 is chlorine such as a chloride salt of platinum (Pt) and a chloride salt of palladium (Pd).
  • Materials containing (Cl) seeds are often used as raw materials. According to the electrode catalyst manufacturing system and manufacturing method according to the present embodiment, it is possible to manufacture an electrode catalyst in which the content of these chlorine (Cl) species is reduced.
  • the electrode catalyst 1 having a core-shell structure includes a carrier 2 and a catalyst supported on the carrier 2. Includes particles 3.
  • the catalyst particle 3 includes a core portion 4 and a shell portion 5 formed so as to cover at least a part of the core portion 4.
  • the catalyst particles 3 have a so-called core-shell structure including a core portion 4 and a shell portion 5 formed on the core portion 4.
  • the electrode catalyst 1 has catalyst particles 3 supported on a carrier 2, and the catalyst particles 3 have a core portion 4 as a core and a shell portion 5 as a shell. It has a structure that covers the surface of the particle. Further, the constituent elements (chemical composition) of the core portion 4 and the constituent elements (chemical composition) of the shell portion 5 have different configurations.
  • the electrode catalyst 1A covers the core portion 4, a part of the surface of the core portion 4, the shell portion 5a, and the other surfaces of the core portion 4. It has catalyst particles 3a composed of a shell portion 5b that partially covers the shell portion 5b.
  • the electrode catalyst 1B has a core portion 4 and catalyst particles 3 composed of a shell portion 5 that covers substantially the entire surface of the core portion 4, and the shell portion 5 is the first shell portion 6. It is a two-layer structure including a second shell portion 7 and a second shell portion 7. Further, in FIG.
  • the electrode catalyst 1C is composed of a core portion 4, a shell portion 5a that covers a part of the surface of the core portion 4, and a shell portion 5b that covers a part of the other surface of the core portion 4.
  • the shell portion 5a has a two-layer structure including the first shell portion 6a and the second shell portion 7a, and the shell portion 5b has the first shell portion 6b and the second shell portion 7b. It is a two-layer structure equipped with.
  • the chlorine (Cl) species refers to a chemical species containing chlorine as a constituent element.
  • the chemical species containing chlorine include chlorine atom (Cl), chlorine molecule (Cl 2 ), chlorinated ion (Cl ⁇ ), chlorine radical (Cl ⁇ ), polyatomic chlorine ion, and chlorine compound (X). -Cl, etc., where X is a counter ion) is included.
  • the bromine (Br) species refers to a chemical species containing bromine as a constituent element.
  • chemical species containing bromine include bromine atom (Br), bromine molecule (Br 2 ), bromide ion (Br ⁇ ), bromine radical (Br ⁇ ), polyatomic bromine ion, and bromine compound (X). -Br etc., where X is a counter ion) is included.
  • the method for producing an electrode catalyst according to the present embodiment includes an electrode catalyst precursor production step S1 for producing an electrode catalyst precursor which is a raw material for an electrode catalyst, and an electrode catalyst precursor.
  • Each step S1, S2, S3 can be executed by the electrode catalyst precursor manufacturing apparatus 12, the cleaning apparatus 13, and the drying apparatus 14 of the electrode catalyst manufacturing system 10 described above, respectively.
  • the cleaning step S2 includes a plate closing step S21, a press-fitting step S22, a normal cleaning step S23, a reverse cleaning step S24, a plate opening step S25, a cake peeling step S26, and a filter cloth cleaning step. Includes S27.
  • the electrode catalyst precursor 41 after cleaning can be obtained by cleaning, filtering and dehydrating the liquid 30 containing the electrode catalyst precursor produced in the electrode catalyst precursor production step S1. ..
  • the squeezing step may be performed after the normal washing step S23 and / or after the back washing step S24.
  • the configurations of each step S21 to S27 and the pressing step are as described in the above-mentioned ⁇ Electrode catalyst manufacturing system> (cleaning apparatus).
  • ⁇ Manufacturing of catalyst precursor for electrodes (reaction step, step of producing catalyst precursor for electrodes)> (Manufacturing Example 1)
  • a precursor of a catalyst precursor for an electrode a precursor of a Pt particle-supported carbon catalyst (hereinafter referred to as "Pt / C catalyst”; manufactured by NECHEMCAT, Pt-supporting ratio of 50 wt%, trade name: "SA50BK”) Manufactured.
  • a catalyst precursor for an electrode to be used in the present embodiment was prepared by adding a water-soluble reducing agent to water containing this carrier and a water-soluble Pt salt and advancing the reduction reaction of the Pt component at a predetermined temperature.
  • Example 1 ⁇ Manufacturing of catalysts for electrodes> (Example 1) [Treatment by cleaning device (cleaning step)]
  • the liquid containing the catalyst precursor for electrodes obtained in Production Example 1 was introduced into a cleaning apparatus and subjected to cleaning treatment.
  • Table 1 shows the processing time of each step in the cleaning device. First, a press-fitting step was performed in 20 minutes. The thickness of the cake containing the catalyst precursor for the electrode in the press-fitting step was 5 to 10 mm.
  • the thickness of this cake is in the range of the thickness determined in advance by the preliminary experiment in consideration of the degree of cleaning and the cleaning time required for the catalyst precursor for the electrode to be used.
  • a normal cleaning process was performed.
  • the normal washing step first treat with washing water at room temperature (23 ° C.) for 24 minutes, switch to warming water (70 ° C.) when the electrical conductivity ⁇ of the filtrate becomes 40 ⁇ S / cm or less, and use warming water 50. The treatment was carried out for a minute. After the normal washing step, the squeezing step was performed for 5 minutes. Then, a backwashing step was carried out, and in the backwashing step, the treatment was carried out with washing water of warm water (70 ° C.) for 73 minutes. A total of about 2.9 hours of cleaning treatment was performed.
  • Ion-exchanged water was used as the washing water.
  • the electrical conductivity ⁇ i of the ion-exchanged water used at room temperature (23 ° C.) is 7.70 ⁇ S / cm, and the electrical conductivity ⁇ i at heating (70 ° C.) is 4.6 ⁇ S / cm.
  • the thickness of this cake is in a range outside the range of the thickness determined in advance by the preliminary experiment in consideration of the degree of cleaning and the cleaning time required for the catalyst precursor for the electrode to be used.
  • a normal cleaning process was performed.
  • the normal washing step first treat with washing water at room temperature (23 ° C.) for 33 minutes, switch to warming water (70 ° C.) when the electrical conductivity ⁇ of the filtrate becomes 40 ⁇ S / cm or less, and use warming water for 60.
  • the treatment was carried out for a minute.
  • the pressing step was performed for 5 minutes, and then the backwashing step was performed.
  • the conductivity ⁇ of the filtrate did not change from the electrical conductivity ⁇ of the filtrate at the end of the normal cleaning step.
  • the backwashing step was performed for 36 minutes, that is, after a total of about 2.9 hours of washing treatment, the treatment was interrupted.
  • Ion-exchanged water was used as the washing water.
  • the electrical conductivity ⁇ i of the ion-exchanged water used at room temperature (23 ° C.) is 7.70 ⁇ S / cm, and the electrical conductivity ⁇ i at heating (70 ° C.) is 4.6 ⁇ S / cm.
  • Example 1 the electric conductivity ⁇ of the filtrate at the end of the normal washing step was 15.9 ⁇ S / cm, whereas the electric conductivity of the filtrate at the end of the backwashing step was 15.9 ⁇ S / cm. ⁇ decreased to 9.7 ⁇ S / cm. With a cleaning treatment time of less than 3 hours, the electrical conductivity ⁇ of the filtrate could be reduced to 10 ⁇ S / cm or less. On the other hand, in Comparative Example 1, the electric conductivity ⁇ of the filtrate at the end of the normal cleaning step decreased to 19.3 ⁇ S / cm, but even if the reverse cleaning step was performed thereafter, it did not decrease at all from 19.3 ⁇ S / cm. rice field.
  • Comparative Example 2 which was washed using a centrifuge as in the conventional case, it took 15 to 19 hours as a result of three times to reduce the electric conductivity ⁇ of the filtrate to 10 ⁇ S / cm or less. bottom.
  • Table 2 shows a comparison of the processing times of Example 1 and Comparative Example 2.
  • Table 2 shows the processing time from the raw material feed to the solid-liquid separation and the time required for cake washing and dehydration separately.
  • the time required for the treatment by the cleaning device is reduced to 1/5 or less as compared with the treatment using the conventional centrifuge. It can be shortened significantly. Further, in the cleaning apparatus according to the present embodiment, the cake containing the catalyst precursor for the electrode is automatically peeled off, so that the operator can eliminate the work of scraping the catalyst precursor for the electrode, and the labor is greatly reduced. can do.
  • the present invention has been described above based on the embodiments and examples, the present invention can be modified in various ways.
  • the electrode catalyst precursor manufacturing apparatus 12 reaction step, electrode catalyst precursor manufacturing apparatus step S1 and the drying apparatus 14 (drying step S3) are not particularly limited, and various modifications are adopted. be able to.
  • the structure of the cleaning device 13 is not limited to that shown in FIG. 2, and the structure of the filter chamber 112 is not limited to that shown in FIGS. 3 to 10, and the cleaning step according to the present embodiment is not limited to that shown in FIGS.
  • Various modified examples can be adopted as long as the structure is such that the same action and effect can be obtained in each of the steps S21 to S27 of S2 and the pressing step.
  • Electrode catalyst 2 Carrier 3 Catalyst particles 4 Core part 5 Shell part 10
  • Electrode catalyst production system 12
  • Electrode catalyst precursor production equipment 13
  • Cleaning equipment 14
  • Drying equipment 30
  • Liquid containing electrode catalyst precursor (stock solution) 40
  • Cake containing catalyst precursor for electrodes 41
  • Catalyst precursor for electrodes after cleaning 42
  • Filtration 43
  • Washing water 111, 111'Filter plate 112
  • Filter chamber 113 Filter cloth 114 Undiluted solution supply pipe 115, 115' Filtration outlet 116 Filtration Floor T Thickness of cake containing catalyst precursor for electrode
  • S1 Catalyst precursor for electrode manufacturing step S2
  • Cleaning step S3 Drying step S21 Plate closing process S22 Press-fitting process S23 Normal cleaning process S24 Reverse cleaning process S25
  • the halogen content is eliminated by eliminating the work of scraping the electrode catalyst precursor by the operator and shortening the cleaning time of the electrode catalyst precursor.
  • the labor and time required to manufacture an electrode catalyst having a low chlorine content can be significantly reduced.
  • the present invention is a manufacturing system and manufacturing method for electrode catalysts that can be applied not only to the electrical equipment industry such as fuel cells, fuel cell automobiles, and mobile mobiles, but also to ENE-FARM, cogeneration systems, and the like, and energy. Contribute to the development of industry and environmental technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

作業者による電極用触媒前駆体の掻き取り作業をなくし、且つ、電極用触媒前駆体の洗浄時間を短縮することができる電極用触媒の製造システムおよび製造方法を提供する。電極用触媒の製造システム10が、電極用触媒前駆体製造装置12と、洗浄装置13と、乾燥装置14とを有し、洗浄装置13が、閉板工程S21および圧入工程S22の実行後に、洗浄水43を原液供給管114からろ室112に供給して電極用触媒前駆体を含むケーキ40の中を通過させた後にろ液排出口115,115'から排出させる正洗浄工程S23と、洗浄水43をろ液排出口115からろ室112に供給して電極用触媒前駆体を含むケーキ40の中を通過させた後に、洗浄水43を供給するろ液排出口115とは異なるろ液排出口115'から排出する逆洗浄工程S24とを実行し、さらに開板工程S25およびケーキ剥離工程S26を実行する手段を備え、圧入工程S22時の電極用触媒前駆体を含むケーキの厚さを予め実験的に設定された範囲に調節する構成とした。

Description

電極用触媒の製造システムおよび製造方法
 本発明は、電極用触媒の製造システムおよび製造方法に関する。
 いわゆる固体高分子形燃料電池(Polymer Electrolyte Fuel Cell:以下、必要に応じて「PEFC」という)は、作動温度が室温から80℃程度である。また、PEFCは、燃料電池本体を構成する部材に安価な汎用プラスチック等を採用することができるので、軽量化が可能となる。さらに、PEFCは、固体高分子電解質膜の薄膜化が可能であり、電気抵抗を小さくすることができ、発電ロスを比較的容易に少なくすることができる。このようにPEFCは、多くの利点を有しているので、燃料電池自動車、家庭用コジェネレーションシステム等への応用が可能となっている。
 PEFC用の電極用触媒として、例えば担体であるカーボンに電極用触媒成分である白金(Pt)または白金(Pt)合金が担持された電極用触媒が知られている。こうした電極用触媒を燃料電池用の電極用触媒として使用する場合、電極用触媒に、その原料に由来する不純物やその製造設備から混入する不純物の含有量が多いと、十分な触媒活性を得ることができなかったり、触媒層の腐食が発生し、燃料電池の寿命が短縮してしまったりする。そのため、電極用触媒の不純物の含有量を低く抑えることが好ましい。ここで、不純物としては、ハロゲンに属する化学種(イオンやその塩など)、有機物(有機酸、その塩、有機酸の縮合物)などが挙げられる。
 例えば、電極用触媒のハロゲン含有量、特に塩素含有量を低く抑える目的で、電極用触媒の原料である電極用触媒前駆体を製造後に塩素を除去する工程が行われる場合がある。例えば特許文献1では、第1触媒金属前駆体混合物とカーボン系担体混合物とに第2触媒金属前駆体溶液を混合し、pH調節、加熱および冷却過程を繰り返して実施し、得られた触媒を遠心分離機で3~4回洗浄して、凍結乾燥器で乾燥することが開示されている。また、特許文献2および3では、燃料電池用触媒に利用できる超微粒子状二酸化チタンの湿式脱塩素方法として、二酸化チタンを水に懸濁させ、液相に移行した塩素をフィルタープレスによって系外に分離する方法が挙げられている。
特開2007-214130号公報 特開2006-265094号公報 特開2011-57552号公報
 特許文献1のように電極用触媒前駆体を遠心分離機で洗浄する場合、電極用触媒前駆体が遠心力により遠心分離器のチャンバーの内壁にこびり付いてしまい、こびり付いた電極用触媒を作業者が人手で掻き取る必要がある。
 また、例えば電極用触媒前駆体に含まれる塩素成分を十分に除去するには、水による洗浄とろ過を繰り返す必要があり、例えば、触媒10~50kgを遠心機1台で洗浄・ろ過するために少なくとも2~4日要する場合がある。このように、遠心分離器による洗浄は、手間と時間がかかり、効率が悪いという問題がある。
 また、特許文献2および3では、燃料電池用触媒の脱塩素にフィルタープレスを用いているが、フィルタープレスを行う装置の具体的な構成や工程等、洗浄およびろ過工程の条件について具体的な記載がない。
 本発明は、このような事情に鑑みてなされたものであり、作業者による電極用触媒前駆体の掻き取り作業をなくし、且つ、電極用触媒前駆体の洗浄時間を短縮することで、電極用触媒を製造するための手間と時間を大幅に低減することができる電極用触媒の製造システムおよび製造方法を提供する。
 本発明はかかる課題を解決するため、
 導電性担体と当該導電性担体に担持された触媒粒子とを含む電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造装置と、
 前記電極用触媒前駆体をフィルタープレスにより洗浄する洗浄装置と、
 前記洗浄装置により洗浄された洗浄後の前記電極用触媒前駆体を乾燥する乾燥装置とを有する、電極用触媒を製造するための製造システムであって、
 前記洗浄装置は、
 ろ板を締め付けてろ室を形成する閉板工程と、
 前記電極用触媒前駆体を含む液を原液供給管から前記ろ室に圧入してろ過し、ろ液をろ液排出口から排出する圧入工程と、
 洗浄水を前記原液供給管から前記ろ室に供給して前記電極用触媒前駆体を含むケーキの中を通過させた後に前記ろ液排出口から排出させる正洗浄工程と、
 洗浄水を前記ろ液排出口から前記ろ室に供給して前記電極用触媒前駆体を含む前記ケーキの中を通過させた後に、前記洗浄水を供給する前記ろ液排出口とは異なるろ液排出口から排出する逆洗浄工程と、
 前記ろ室を形成する前記ろ板を開く開板工程と、
 ろ布を下降させて前記電極用触媒前駆体を含む前記ケーキを剥離落下させるケーキ剥離工程とを実行する手段を備えており、
 前記圧入工程において、使用する前記電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予め実験的に決定された厚さの範囲となるように前記ケーキを形成する、
電極用触媒の製造システムを提供する。
 前記電極用触媒の製造システムは、前記導電性担体が導電性カーボンである場合、前記圧入工程時の前記電極用触媒前駆体を含む前記ケーキの厚さが5~10mmである場合がある。
 前記電極用触媒の製造システムは、前記洗浄装置が、前記ケーキ剥離工程後に、洗浄水で前記ろ布を洗浄するろ布洗浄工程を実行する手段をさらに備える場合がある。
 前記電極用触媒の製造システムは、前記逆洗浄工程の洗浄時間が、前記正洗浄工程の洗浄時間と同程度の長さである場合がある。
 また、本発明は、
 導電性担体と当該導電性担体に担持された触媒粒子とを含む電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造ステップと、
 前記電極用触媒前駆体をフィルタープレスにより洗浄する洗浄ステップと、
 前記洗浄ステップで洗浄された洗浄後の前記電極用触媒前駆体を乾燥する乾燥ステップとを含む、電極用触媒を製造するための製造方法であって、
 前記洗浄ステップは、
 ろ板を締め付けてろ室を形成する閉板工程と、
 前記電極用触媒前駆体を含む液を原液供給管から前記ろ室に圧入してろ過し、ろ液をろ液排出口から排出する圧入工程と、
 洗浄水を前記原液供給管から前記ろ室に供給して前記電極用触媒前駆体を含むケーキの中を通過させた後に前記ろ液排出口から排出させる正洗浄工程と、
 洗浄水を前記ろ液排出口から前記ろ室に供給して前記電極用触媒前駆体を含む前記ケーキの中を通過させた後に、前記洗浄水を供給する前記ろ液排出口とは異なるろ液排出口から排出する逆洗浄工程と、
 前記ろ室を形成する前記ろ板を開く開板工程と、
 ろ布を下降させて前記電極用触媒前駆体を含む前記ケーキを剥離落下させるケーキ剥離工程とを含んでおり、
 前記圧入工程において、使用する前記電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予め実験的に設定された厚さの範囲となるように前記ケーキを形成する、
電極用触媒の製造方法を提供する。
 前記電極用触媒の製造方法において、前記導電性担体が導電性カーボンである場合、前記圧入工程時の前記電極用触媒前駆体を含む前記ケーキの厚さが5~10mmである場合がある。
 前記電極用触媒の製造方法において、前記洗浄ステップが、前記ケーキ剥離工程後に、洗浄水で前記ろ布を洗浄するろ布洗浄工程をさらに含む場合がある。
 前記電極用触媒の製造方法において、前記逆洗浄工程の洗浄時間が、前記正洗浄工程の洗浄時間と同程度の長さである場合がある。
 本発明の電極用触媒の製造システムおよび製造方法によれば、作業者による電極用触媒前駆体の掻き取り作業をなくし、且つ、電極用触媒前駆体の洗浄時間を短縮することで、ハロゲン含有量、特に塩素含有量を低く抑えた電極用触媒を製造するための手間と時間を大幅に低減することができる。
本発明の電極用触媒の製造システムの好適な一実施形態を示すブロック図である。 本発明の電極用触媒の製造システムおよび製造方法の洗浄装置の好適な一実施形態を示す側面図である。 本発明の電極用触媒の製造システムおよび製造方法の閉板工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の圧入工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の正洗浄工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の逆洗浄工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の開板工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法のケーキ剥離工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法のろ布洗浄工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法の圧搾工程における脱水装置の動作状態の好適な一実施形態を示す斜視図である。 本発明の電極用触媒の製造システムおよび製造方法で製造できる電極用触媒(コア・シェル触媒)の構造の一例を示す模式断面図である。 本発明の電極用触媒の製造システムおよび製造方法で製造できる電極用触媒(コア・シェル触媒)の構造の別の一例を示す模式断面図である。 本発明の電極用触媒の製造システムおよび製造方法で製造できる電極用触媒(コア・シェル触媒)の構造の別の一例を示す模式断面図である。 本発明の電極用触媒の製造システムおよび製造方法で製造できる電極用触媒(コア・シェル触媒)の構造の別の一例を示す模式断面図である。 本発明の電極用触媒の製造方法の流れの好適な一実施形態を示すフロー図である。 本発明の電極用触媒の製造方法の洗浄ステップの流れの好適な一実施形態を示すフロー図である。
 以下、図面を参照して、本発明の電極用触媒の製造システムおよび製造方法の好適な実施形態について説明する。
<電極用触媒の製造システム>
 図1は、本実施形態に係る電極用触媒の製造システム10の概略を示すブロック図である。電極用触媒の製造システム10は、電極用触媒1(図11を参照)の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造装置12と、電極用触媒前駆体をフィルタープレスにより洗浄する洗浄装置13と、洗浄装置13により洗浄された洗浄後の電極用触媒前駆体41(図15を参照)を乾燥する乾燥装置14とを有する。
(電極用触媒前駆体製造装置)
 電極用触媒前駆体製造装置12は、電極用触媒1の原料である電極用触媒前駆体を製造する。電極用触媒前駆体製造装置12は、電極用触媒前駆体を製造するための反応工程を実行する反応工程実行手段21を含む。反応工程では、電極用触媒1の原料である電極用触媒前駆体が、電極用触媒1の触媒成分(コア部4、シェル部5)を担体2に担持させることにより製造される(図11を参照)。電極用触媒前駆体の製造方法は、担体2に電極用触媒1の触媒成分を担持させることができる方法であれば、特に制限されるものではない。例えば、担体2に電極用触媒1の触媒成分を含有する溶液を接触させ、担体2に触媒成分を含浸させる含浸法、電極用触媒1の触媒成分を含有する溶液に還元剤を投入して行う液相還元法、アンダーポテンシャル析出(UPD)法等の電気化学的析出法、化学還元法、吸着水素による還元析出法、合金触媒の表面浸出法、置換めっき法、スパッタリング法、真空蒸着法等を採用した製造方法を例示することができる。
(洗浄装置)
 洗浄装置13は、上記の電極用前駆体製造装置12で製造された電極用触媒前駆体をフィルタープレスにより洗浄する。当該洗浄装置13では、電極用触媒前駆体の洗浄とともにろ過および脱水も行われる。
 図2は、フィルタープレスを行う洗浄装置13の一例を示すものである。同図に示す洗浄装置13は、フロントフレーム101とリアフレーム102に橋架したガイドレール103上に、複数の脱水装置104が水平方向に並列に配置されている。これらの脱水装置104は、ガイドレール103上を水平方向に移動し得るように支持される。リアフレーム102には例えば電動シリンダ105が支架し、電動シリンダ105の駆動力で往復移動する押圧部材106により脱水装置104が締め付けられる。このようなフィルタープレスの洗浄装置13は従来公知であり、例えば特許第5950207号公報に記載されたものが知られている。特に脱水装置104については、例えば特許第5327000号公報に記載されたものが知られている。
 フィルタープレスによる洗浄の流れの概略を説明する(図3~図10を参照)。まず閉板したろ板111,111’間のろ室112に原液30を供給すると、原液30がろ布113を通過してろ過され、ろ液42が外部に排出される。ろ布113で捕捉された固形物はケーキ層を形成しながら脱水される。脱水終了後、電動シリンダ105を収縮して複数のろ板111,111’を一斉に開板すると同時に、ろ布113を下降走行させながら、脱水されたケーキ40を排出する。
 洗浄装置13は、図1のブロック図に示すように、閉板工程と、圧入工程と、正洗浄工程と、逆洗浄工程と、開板工程と、ケーキ剥離工程と、ろ布洗浄工程とをそれぞれ実行する手段である、閉板工程実行手段31と、圧入工程実行手段32と、正洗浄工程実行手段33と、逆洗浄工程実行手段34と、開板工程実行手段35と、ケーキ剥離工程実行手段36と、ろ布洗浄工程実行手段37とを備える。後述する図16の電極用触媒1の製造方法のフロー図にも示す各工程S21~S27の構成について以下に説明する。
[閉板工程]
 閉板工程S21は、ろ板111,111’を締め付けてろ室112を形成する工程であり、閉板工程実行手段31により実行される。図3は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、閉板工程S21における動作状態の好適な一実施形態を示す。閉板工程実行手段31は、電動シリンダ105を駆動して押圧部材106をフロントフレーム101側に移動させることにより、脱水装置104の2枚のろ板111,111’を接近させて締め付け、ろ室112を形成する。
[圧入工程]
 圧入工程S22は、電極用触媒前駆体を含む液(原液)30を原液供給管114からろ室112に圧入してろ過し、ろ液42をろ液排出口115,115’から排出する工程であり、圧入工程実行手段32により実行される。図4は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、圧入工程S22における動作状態の好適な一実施形態を示す。圧入工程実行手段32により、電極用触媒前駆体を含む液30を原液供給管114からろ室112に圧入すると、電極用触媒前駆体を含む液30の水分は、ろ布113を介してろ過床116にしみだし、ろ液排出口115,115’から外部に排出される。これにより、ろ室112に圧入された電極用触媒前駆体を含む液30はろ過される。すなわち、電極用触媒前駆体を含む液30中の固形成分は電極用触媒前駆体を含むケーキ40としてろ室112に残留し、電極用触媒前駆体を含む液30の水分はろ液42として外部に排出される。
 また、この圧入工程S22においては、電極用触媒前駆体を含むケーキ40について、予め実験的に決定された厚さの範囲となるように形成する。ケーキ40の厚さは、使用する電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予め実験的に決定される。
 ここで、使用する電極触媒が、担体として導電性カーボンを使用する場合、圧入工程S22時のケーキ40の厚さTは5~10mmに調整されていることが好ましい。ケーキ40の厚さTが10mm以下であると後述する正洗浄工程および/または逆洗浄工程の洗浄時間を調節することにより比較的容易に十分な洗浄効果を得ることができる。ケーキ40の厚さTが10mmを超えると、後述する正洗浄工程および/または逆洗浄工程の洗浄時間を長くしても、十分な洗浄効果が得られない傾向が大きくなる。
 また、ケーキ40の厚さTが5mm以上とするとケーキに亀裂が形成されにくくでき、洗浄水がケーキの上流の側の面からケーキの下流側の面に向けて当該ケーキ内を通過せずに流通してしまうパスが形成されることを防止できる傾向が大きくなる。
[正洗浄工程]
 正洗浄工程S23は、洗浄水43を原液供給管114からろ室112に供給して電極用触媒前駆体を含むケーキ40の中を通過させた後にろ液排出口115,115’から排出させる工程であり、正洗浄工程実行手段33により実行される。図5は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、正洗浄工程S23における動作状態の好適な一実施形態を示す。正洗浄工程実行手段33により、原液供給管114からろ液排出口115,115’に向けて洗浄水43を流し、圧入工程S22でろ室112に残留した電極用触媒前駆体を含むケーキ40を洗浄する。これにより、JIS規格試験法(JIS K0522)により測定されるろ液の電気伝導率ρを下げ、電極用触媒前駆体のハロゲン含有量、特に塩素含有量を低減することができる。
 正洗浄工程S23では、洗浄中に、ろ液の電気伝導率ρが所定の値以下になった時点で、洗浄水43の温度を切り替えることが好ましい。例えば、ろ液の電気伝導率ρが所定の値以下になった時点で洗浄水43を常温水(例えば23℃)から加温水(例えば70℃)に切り替えることができる。前記ろ液の電気伝導率ρの所定の値は、20~40μS/cmの範囲から選択される値とすることが好ましい。常温水の温度は、20~25℃とすることが好ましい。加温水の温度は60~80℃とすることが好ましい。
[逆洗浄工程]
 逆洗浄工程S24は、洗浄水43をろ液排出口115からろ室112に供給して電極用触媒前駆体を含むケーキ40の中を通過させた後に、洗浄水43を供給するろ液排出口115とは異なる別のろ液排出口115’から排出する工程であり、逆洗浄工程実行手段34により実行される。図6は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、逆洗浄工程S24における動作状態の好適な一実施形態を示す。脱水装置104は例えば少なくとも2つのろ液排出口115,115’を備える。正洗浄工程S23とは逆に、逆洗浄工程実行手段34により、ろ液排出口115からろ室112に向けて洗浄水43を流すことで、ろ室112に残留した電極用触媒前駆体を含むケーキ40を洗浄する。ろ液42は、例えば、洗浄水43を供給するろ液排出口115とは異なる別のろ液排出口115’から排出される。逆洗浄工程S24を行うことで、ろ液の電気伝導率ρをさらに下げ、電極用触媒前駆体のハロゲン含有量、特に塩素含有量をより低減することができる。
 逆洗浄工程S24では、常温水(例えば23℃)での洗浄を行ってもよいが、正洗浄工程S23の終了時点でろ液の電気伝導率ρがある程度低下しているので、初めから加温水(例えば70℃)での洗浄を行うことが好ましい。加温水の温度は60~80℃とすることが好ましい。
[開板工程]
 開板工程S25は、ろ室112を形成するろ板111,111’を開く工程であり、開板工程実行手段35により実行される。図7は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、開板工程S25における動作状態の好適な一実施形態を示す。開板工程実行手段35は、電動シリンダ105を駆動して、押圧部材106をリアフレーム102側に移動させることにより、脱水装置104の締め付けを解除する。こうして脱水装置104の2枚のろ板111,111’が引き離され、ろ室112が開かれる。
[ケーキ剥離工程]
 ケーキ剥離工程S26は、ろ布を下降させて脱水された電極用触媒前駆体を含むケーキ40を剥離落下させる工程であり、ケーキ剥離工程実行手段36により実行される。図8は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、ケーキ剥離工程S26における動作状態の好適な一実施形態を示す。ケーキ剥離工程実行手段36により、脱水装置104の2枚のろ板111,111’が所定の距離まで引き離されると、電極用触媒前駆体を含むケーキ40を保持していたろ布113が下方へ走行する。こうして電極用触媒前駆体を含むケーキ40はろ布113から自動的に剥離される。ここでケーキ40の含水量(水分量)は、ケーキ40に含まれる水分の重量を、ケーキ40に含まれる触媒粉体の重量+水分の重量で割った値であり、このときのケーキ40の含水率が60~80wt%とすることが好ましい。
[ろ布洗浄工程]
 ろ布洗浄工程S27は、ケーキ剥離工程S26後に、洗浄水43でろ布113を洗浄する工程であり、ろ布洗浄工程実行手段37により実行される。図9は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、ろ布洗浄工程S27における動作状態の好適な一実施形態を示す。電極用触媒前駆体を含むケーキ40がろ布113から剥離された後、ろ布113は上方に走行し、元の位置まで戻る。ろ布洗浄工程実行手段37により、ろ布113が上方に走行中に、ろ布洗浄用のポンプ(図示せず)で脱水装置104の下方に設けられた洗浄水管117から洗浄水43が供給される。この洗浄水43をろ布113に噴射することによりろ布113を洗浄し、ろ布113の目詰まりを防止するとともに、ろ布113に付着した電極用触媒前駆体等を確実に回収する。すなわち、ろ布洗浄時の排水は、電極用触媒前駆体を含むため、全て回収することが好ましい。このようにして、ろ布113に付着した電極用触媒前駆体を流して回収することで、電極用触媒前駆体の収率を高めることができる。また、例えばろ布113を上下に繰り返し走行させながら洗浄することで、電極用触媒前駆体の回収量をさらに高めることもできる。
[圧搾工程]
 尚、正洗浄工程S23の後、および/または、逆洗浄工程S24の後に、圧搾工程を行ってもよい。圧搾工程は、電極用触媒前駆体を含むケーキ40をさらに圧搾脱水する工程であり、圧搾工程実行手段(図示せず)により実行される。図10は、図2の洗浄装置13における1つの脱水装置104を抜き出した図であり、圧搾工程における動作状態の好適な一実施形態を示す。圧搾工程実行手段により、一方のろ板111’に設けられたダイアフラム118の中に加圧水119を注入することで、電極用触媒前駆体を含むケーキ40をさらに圧搾脱水する。圧搾工程により、電極用触媒前駆体を含むケーキ40の固形分濃度が高められ、含水率の極めて低い電極用触媒前駆体を含むケーキ40が生成される。
 ここで、圧搾工程の終了後にダイアフラム118から加圧水119を抜くように構成すると、ダイアフラム118による押圧がなくなるため、ダイアフラム118により押圧されていたろ布113がケーキ40から剥離されやすくなるので好ましい。
 なお、この圧搾工程においては、他方のろ板111にもダイアフラム(図示せず)を具備する構成を有していてもよい。この場合、ろ板111の側に設けられたダイアフラム(図示せず)の中にも加圧水を注入し、電極用触媒前駆体を含むケーキ40を圧搾脱水できるようになる。この場合にも、圧搾工程の終了後、ダイアフラムから加圧水を抜くように構成すると、ダイアフラム(図示せず)による押圧がなくなるため、ダイアフラム(図示せず)により押圧されていたろ布113がケーキ40から剥離されやすくなるので好ましい。
 上記では1つの脱水装置104について説明したが、図2のような洗浄装置13によれば、全ての脱水装置104が同じ動作をすることができるので、一台の装置で一度に処理する量を増大させることができ、電極用触媒の生産効率が向上する。また上記脱水装置104は、ろ過面積が大きく、高耐圧構造であるので、処理速度を向上することができる。また、原液の導入からケーキの排出を経て装置の洗浄まで全自動で処理することができるので、洗浄工程における処理の手間と時間を低減することができる。さらに、装置の材料として樹脂やライニング材等を選定することができるので、装置の高耐食化が可能である。
[ろ液の電気伝導率ρ]
 正洗浄工程S23を経た後、および/または、逆洗浄工程S24を経た後に得られるろ液のJIS規格試験法(JIS K0522)により測定される電気伝導率ρが、予め設定された設定値以下となるように、正洗浄工程S23の正洗浄時間や、逆洗浄工程S24の逆洗浄時間等の処理条件を調整する。例えば、逆洗浄工程の洗浄時間を、正洗浄工程の洗浄時間と同程度に長くすると洗浄効果が増大する。同程度とは、0~15分の違い(正洗浄工程の洗浄時間と逆洗浄工程の洗浄時間との差の絶対値)であることを意味する。また、ろ液は、洗浄後にろ液排出口から排水される液であり、その工程で排出される全ろ液を使用することが好ましい。
 正洗浄工程S23を経た後に得られるろ液の電気伝導率ρの設定値は、20μS/cm以下の範囲から選択される値とすることが好ましい。逆洗浄工程S24を経た後に得られるろ液の電気伝導率ρの設定値は、10μS/cm以下の範囲から選択される値とすることが好ましい。ろ液の電気伝導率ρが10μS/cm以下であれば、燃料電池用の電極用触媒として実用できる程度に電極用触媒前駆体に含まれる塩素(Cl)種や臭素(Br)種の濃度が低減されている。
 洗浄装置13で使用する洗浄水43は、超純水等の純水を使用することもできるが、純水でなくてもよい。例えばpH6~8、JIS規格試験法(JIS K0522)により測定される電気伝導率ρが10μS/cm未満のイオン交換水等を使用することができる。
(乾燥装置)
 乾燥装置14は、上記の洗浄装置13で洗浄された洗浄後の電極用触媒前駆体41を乾燥する。乾燥装置14は、洗浄装置13で洗浄された洗浄後の電極用触媒前駆体41を乾燥するための乾燥工程を実行する乾燥工程実行手段51を含む。乾燥工程における乾燥方法としては、従来のように解砕した電極用触媒前駆体を棚に並べて真空乾燥させる棚段真空乾燥機(図示せず)等を使用した乾燥方法の他、リボコーン(図示せず)やPVミキサー(図示せず)を使用した乾燥方法を採用することができる。
<電極用触媒>
 本実施形態で製造する電極用触媒の構造は特に限定されず、導電性担体(導電性カーボン担体、導電性金属酸化物担体など)の担体に貴金属触媒粒子が担持された構造を有していればよい。例えば、いわゆるPt触媒、Pt合金触媒(PtCo触媒、PtNi触媒など)及びコア・シェル構造を有するいわゆるコア・シェル触媒であってもよい。
 例えば、コア部4の構成元素としてパラジウム、シェル部5の構成元素として白金を採用した構成のコア・シェル触媒は、白金(Pt)の塩化物塩、パラジウム(Pd)の塩化物塩などの塩素(Cl)種を含む材料が原料として使用される場合が多い。本実施形態に係る電極用触媒の製造システムおよび製造方法によれば、これらの塩素(Cl)種の含有量を低減した電極用触媒を製造することができる。
 電極用触媒の構造の一例について図を参照してより詳しく説明すると、コア・シェル構造を有する電極用触媒1は、図11に示すように、担体2と、当該担体2上に担持された触媒粒子3とを含む。触媒粒子3は、コア部4と、コア部4の少なくとも一部を被覆するように形成されたシェル部5とを備える。触媒粒子3はコア部4とコア部4上に形成されるシェル部5とを含むいわゆるコア・シェル構造を有する。
 すなわち、電極用触媒1は、担体2に担持された触媒粒子3を有しており、この触媒粒子3は、コア部4を核(コア)とし、シェル部5がシェルとなってコア部4の表面を被覆する構造を備える。また、コア部4の構成元素(化学組成)と、シェル部5の構成元素(化学組成)は異なる構成となっている。
 コア・シェル構造の具体例をさらに例示すると、図12では、電極用触媒1Aが、コア部4と、コア部4の表面の一部を被覆するシェル部5aおよびコア部4の他の表面の一部を被覆するシェル部5bから構成される触媒粒子3aを有する。また図13では、電極用触媒1Bが、コア部4と、コア部4の表面の略全域を被覆するシェル部5から構成される触媒粒子3を有し、シェル部5が第1シェル部6と第2シェル部7とを備えた二層構造である。さらに図14では、電極用触媒1Cが、コア部4と、コア部4の表面の一部を被覆するシェル部5a、およびコア部4の他の表面の一部を被覆するシェル部5bから構成される触媒粒子3aを有し、シェル部5aが第1シェル部6aと第2シェル部7aとを備えた二層構造であり、シェル部5bが第1シェル部6bと第2シェル部7bとを備えた二層構造である。
 本実施形態において、塩素(Cl)種とは、構成成分元素として塩素を含む化学種をいう。具体的には、塩素を含む化学種には、塩素原子(Cl)、塩素分子(Cl)、塩素化物イオン(Cl)、塩素ラジカル(Cl・)、多原子塩素イオン、塩素化合物(X-Cl等、ここで、Xは対イオン)が含まれる。
 本実施形態において、臭素(Br)種とは、構成成分元素として臭素を含む化学種をいう。具体的には、臭素を含む化学種には、臭素原子(Br)、臭素分子(Br)、臭素化物イオン(Br)、臭素ラジカル(Br・)、多原子臭素イオン、臭素化合物(X-Br等、ここで、Xは対イオン)が含まれる。
<電極用触媒の製造方法>
 図15に示すように、本実施形態に係る電極用触媒の製造方法は、電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造ステップS1と、電極用触媒前駆体製造ステップS1で製造された電極用触媒前駆体を含む液30をフィルタープレスにより洗浄する洗浄ステップS2と、洗浄ステップS2で洗浄された洗浄後の電極用触媒前駆体41を乾燥する乾燥ステップS3とを含む。各ステップS1,S2,S3は、上述の電極用触媒の製造システム10の電極用触媒前駆体製造装置12、洗浄装置13、および、乾燥装置14でそれぞれ実行されることができる。
 洗浄ステップS2は、図16に示すように、閉板工程S21と、圧入工程S22と、正洗浄工程S23と、逆洗浄工程S24と、開板工程S25と、ケーキ剥離工程S26と、ろ布洗浄工程S27とを含む。洗浄ステップS2では、電極用触媒前駆体製造ステップS1で製造された電極用触媒前駆体を含む液30を洗浄、ろ過および脱水することにより、洗浄後の電極用触媒前駆体41を得ることができる。また、正洗浄工程S23の後、および/または、逆洗浄工程S24の後に、圧搾工程を実行してもよい。各工程S21~S27および圧搾工程の構成は上述の<電極用触媒の製造システム>(洗浄装置)で説明した通りである。
 ここに記述される実施例は本発明の実施形態を例示するものであり、本発明の範囲を限定するものとして解釈されるべきではない。
<電極用触媒前駆体の製造(反応工程、電極用触媒前駆体製造ステップ)>
(製造例1)
 電極用触媒前駆体の前駆体として、Pt粒子担持カーボン触媒(以下、「Pt/C触媒」という。N.E.CHEMCAT社製、Pt担持率50wt%、商品名:「SA50BK」)の前駆体を製造した。
 この前駆体の担体には、市販の導電性中空カーボン担体{ライオン株式会社製、商品名「カーボンECP」(登録商標)(ケッチェンブラックEC300J)、比表面積750~800m/g}を使用した。この担体と水溶性Pt塩とを含む水に、水溶性還元剤を添加し所定の温度でPt成分の還元反応を進行させることにより、本実施形態で使用する電極用触媒前駆体を調製した。
[電極用触媒前駆体を含む液(原液)の調製]
 上述のようにして得られた電極用触媒前駆体を含む液を乾燥させずにケトルに分散させて、洗浄装置で処理する原液として使用した。
<電極用触媒の製造>
(実施例1)
[洗浄装置による処理(洗浄ステップ)]
 製造例1で得られた電極用触媒前駆体を含む液を洗浄装置に導入し、洗浄処理を行った。洗浄装置における各工程の処理時間を表1に示す。まず、20分間で圧入工程を行った。圧入工程における電極用触媒前駆体を含むケーキの厚さは5~10mmとした。
 このケーキの厚さは、使用する電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予備実験により予め決定された厚さの範囲である。
 次に、正洗浄工程を行った。正洗浄工程では、まず常温(23℃)の洗浄水で24分間処理し、ろ液の電気伝導率ρが40μS/cm以下になった時点で加温水(70℃)に切り替え、加温水で50分間処理を行った。正洗浄工程の後、5分間で圧搾工程を行った。その後、逆洗浄工程を行い、当該逆洗浄工程では、加温水(70℃)の洗浄水で73分間処理を行った。合計で約2.9時間の洗浄処理を行った。
 洗浄水はイオン交換水を使用した。使用したイオン交換水の常温(23℃)時の電気伝導率ρは7.70μS/cm、加温(70℃)時の電気伝導率ρは4.6μS/cmである。
[乾燥装置による処理(乾燥ステップ)]
 洗浄装置による処理後に得られた電極用触媒前駆体を含むケーキを乾燥装置で、温度70℃、空気中、24時間の条件下で乾燥し、電極用触媒を得た。
(比較例1)
[洗浄装置による処理(洗浄ステップ)]
 製造例1で得られた電極用触媒前駆体を含む液を洗浄装置に導入し、洗浄処理を行った。洗浄装置における各工程の処理時間を表1に示す。まず、40分間で圧入工程を行った。圧入工程における電極用触媒前駆体を含むケーキの厚さは11~15mmとした。
 このケーキの厚さは、使用する電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予備実験により予め決定された厚さの範囲から外れた範囲にある。
 次に、正洗浄工程を行った。正洗浄工程では、まず常温(23℃)の洗浄水で33分間処理し、ろ液の電気伝導率ρが40μS/cm以下になった時点で加温水(70℃)に切り替え、加温水で60分間処理を行った。正洗浄工程の後、圧搾工程を5分間行い、続いて、逆洗浄工程を行ったが、ろ液の伝導率ρが、正洗浄工程終了時のろ液の電気伝導率ρから変化がなかったため、逆洗浄工程を36分間行った後、すなわち合計約2.9時間の洗浄処理後、処理を中断した。
 洗浄水はイオン交換水を使用した。使用したイオン交換水の常温(23℃)時の電気伝導率ρは7.70μS/cm、加温(70℃)時の電気伝導率ρは4.6μS/cmである。
[乾燥装置による処理(乾燥ステップ)]
 洗浄装置による処理後に得られた電極用触媒前駆体を含むケーキを乾燥装置で、温度70℃、空気中、24時間の条件下で乾燥し、電極用触媒を得た。
Figure JPOXMLDOC01-appb-T000001
(比較例2)
 製造例1で得られた電極用触媒前駆体を含む液を遠心分離機に導入し、洗浄処理を行った。JIS規格試験法(JIS K0522)により測定されるろ液の電気伝導率ρが10μS/cm以下になるまで洗浄を繰り返し、得られた電極用触媒前駆体を超純水に分散させて分散液を調製し、当該分散液をろ過した。ろ過により得られたろ物を乾燥装置で、温度70℃、空気中、24時間の条件下で乾燥し、電極用触媒を得た。
<評価結果>
 表1に示すように、実施例1では、正洗浄工程終了時のろ液の電気伝導率ρが15.9μS/cmであったのに対し、逆洗浄工程終了時のろ液の電気伝導率ρは9.7μS/cmまで低下した。3時間未満の洗浄処理時間で、ろ液の電気伝導率ρを10μS/cm以下まで低下させることができた。一方、比較例1では、正洗浄工程終了時のろ液の電気伝導率ρは19.3μS/cmまで低下したが、その後、逆洗浄工程を行っても、19.3μS/cmから全く下がらなかった。また、従来のように遠心分離機を使用して洗浄した比較例2では、ろ液の電気伝導率ρを10μS/cm以下まで低下させるには、3回実施した結果、15~19時間を要した。表2に、実施例1および比較例2の処理時間を比較して示す。表2では、原料フィード~固液分離までの処理時間と、ケーキ洗浄および脱水に要する時間とを分けて示している。
Figure JPOXMLDOC01-appb-T000002
 したがって、本実施形態の電極用触媒の製造システムおよび製造方法によれば、洗浄装置による処理(洗浄ステップ)に要する時間を、従来の遠心分離機を使用した処理に比べて、1/5以下に大幅に短縮することができる。さらに、本実施形態に係る洗浄装置では、電極用触媒前駆体を含むケーキが自動で剥離されるので、作業者が電極用触媒前駆体を掻き取る作業をなくすことができ、手間も大幅に低減することができる。
 以上、本発明を実施形態および実施例に基づいて説明したが、本発明は種々の変形実施をすることができる。特に、電極用触媒前駆体製造装置12(反応工程、電極用触媒前駆体製造装置ステップS1)、および、乾燥装置14(乾燥ステップS3)については、特に限定されず、種々の変形例を採用することができる。また、洗浄装置13においても、その構造は図2に示すものに限定されず、ろ室112の構造も図3~図10に示すものに限定されるものではなく、本実施形態に係る洗浄ステップS2の各工程S21~S27および圧搾工程において同様の作用効果を得られる構造のものであれば、種々の変形例を採用することができる。
 1 電極用触媒
 2 担体
 3 触媒粒子
 4 コア部
 5 シェル部
 10 電極用触媒の製造システム
 12 電極用触媒前駆体製造装置
 13 洗浄装置
 14 乾燥装置
 30 電極用触媒前駆体を含む液(原液)
 40 電極用触媒前駆体を含むケーキ
 41 洗浄後の電極用触媒前駆体
 42 ろ液
 43 洗浄水
 111,111’ ろ板
 112 ろ室
 113 ろ布
 114 原液供給管
 115,115’ ろ液排出口
 116 ろ過床
 T 電極用触媒前駆体を含むケーキの厚さ
 S1 電極用触媒前駆体製造ステップ
 S2 洗浄ステップ
 S3 乾燥ステップ
 S21 閉板工程
 S22 圧入工程
 S23 正洗浄工程
 S24 逆洗浄工程
 S25 開板工程
 S26 ケーキ剥離工程
 S27 ろ布洗浄工程
 ρ ろ液の電気伝導率
 ρ イオン交換水の電気伝導率
 本発明の電極用触媒の製造システムおよび製造方法によれば、作業者による電極用触媒前駆体の掻き取り作業をなくし、且つ、電極用触媒前駆体の洗浄時間を短縮することで、ハロゲン含有量、特に塩素含有量を低く抑えた電極用触媒を製造するための手間と時間を大幅に低減することができる。
 したがって、本発明は、燃料電池や燃料電池自動車、携帯モバイル等の電機機器産業のみならず、エネファームやコジェネレーションシステム等に適用することができる電極用触媒の製造システムおよび製造方法であり、エネルギー産業や環境技術関連の発達に寄与する。

 

Claims (10)

  1.  導電性担体と当該導電性担体に担持された触媒粒子とを含む電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造装置と、
     前記電極用触媒前駆体をフィルタープレスにより洗浄する洗浄装置と、
     前記洗浄装置により洗浄された洗浄後の前記電極用触媒前駆体を乾燥する乾燥装置とを有する、電極用触媒を製造するための製造システムであって、
     前記洗浄装置は、
     ろ板を締め付けてろ室を形成する閉板工程と、
     前記電極用触媒前駆体を含む液を原液供給管から前記ろ室に圧入してろ過し、ろ液をろ液排出口から排出する圧入工程と、
     洗浄水を前記原液供給管から前記ろ室に供給して前記電極用触媒前駆体を含むケーキの中を通過させた後に前記ろ液排出口から排出させる正洗浄工程と、
     洗浄水を前記ろ液排出口から前記ろ室に供給して前記電極用触媒前駆体を含む前記ケーキの中を通過させた後に、前記洗浄水を供給する前記ろ液排出口とは異なるろ液排出口から排出する逆洗浄工程と、
     前記ろ室を形成する前記ろ板を開く開板工程と、
     ろ布を下降させて前記電極用触媒前駆体を含む前記ケーキを剥離落下させるケーキ剥離工程とを実行する手段を備えており、
     前記圧入工程において、使用する前記電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予め実験的に決定された厚さの範囲となるように前記ケーキを形成する、
    電極用触媒の製造システム。
  2.  前記導電性担体が導電性カーボンである場合、
     前記圧入工程時の前記電極用触媒前駆体を含む前記ケーキの厚さが5~10mmである請求項1に記載の電極用触媒の製造システム。
  3.  前記洗浄装置が、前記ケーキ剥離工程後に、洗浄水で前記ろ布を洗浄するろ布洗浄工程を実行する手段をさらに備える請求項1または2に記載の電極用触媒の製造システム。
  4.  前記逆洗浄工程の洗浄時間が、前記正洗浄工程の洗浄時間と同程度の長さである請求項1~3のいずれか1項に記載の電極用触媒の製造システム。
  5.  前記ケーキ剥離工程で剥離落下させた前記ケーキの含水率が60~80wt%である請求項1~4のいずれか1項に記載の電極用触媒の製造システム。
  6.  導電性担体と当該導電性担体に担持された触媒粒子とを含む電極用触媒の原料である電極用触媒前駆体を製造する電極用触媒前駆体製造ステップと、
     前記電極用触媒前駆体をフィルタープレスにより洗浄する洗浄ステップと、
     前記洗浄ステップで洗浄された洗浄後の前記電極用触媒前駆体を乾燥する乾燥ステップとを含む、電極用触媒を製造するための製造方法であって、
     前記洗浄ステップは、
     ろ板を締め付けてろ室を形成する閉板工程と、
     前記電極用触媒前駆体を含む液を原液供給管から前記ろ室に圧入してろ過し、ろ液をろ液排出口から排出する圧入工程と、
     洗浄水を前記原液供給管から前記ろ室に供給して前記電極用触媒前駆体を含むケーキの中を通過させた後に前記ろ液排出口から排出させる正洗浄工程と、
     洗浄水を前記ろ液排出口から前記ろ室に供給して前記電極用触媒前駆体を含む前記ケーキの中を通過させた後に、前記洗浄水を供給する前記ろ液排出口とは異なるろ液排出口から排出する逆洗浄工程と、
     前記ろ室を形成する前記ろ板を開く開板工程と、
     ろ布を下降させて前記電極用触媒前駆体を含む前記ケーキを剥離落下させるケーキ剥離工程とを含んでおり、
     前記圧入工程において、使用する前記電極用触媒前駆体に対して要求される洗浄度合と洗浄時間とを考慮して予め実験的に設定された厚さの範囲となるように前記ケーキを形成する、
    電極用触媒の製造方法。
  7.  前記導電性担体が導電性カーボンである場合、
     前記圧入工程時の前記電極用触媒前駆体を含む前記ケーキの厚さが5~10mmである請求項6に記載の電極用触媒の製造方法。
  8.  前記洗浄ステップが、前記ケーキ剥離工程後に、洗浄水で前記ろ布を洗浄するろ布洗浄工程をさらに含む請求項6または7に記載の電極用触媒の製造方法。
  9.  前記逆洗浄工程の洗浄時間が、前記正洗浄工程の洗浄時間と同程度の長さである請求項6~8のいずれか1項に記載の電極用触媒の製造方法。
  10.  前記ケーキ剥離工程で剥離落下させた前記ケーキの含水率が60~80wt%である請求項6~9のいずれか1項に記載の電極用触媒の製造方法。

     
PCT/JP2021/012058 2020-03-23 2021-03-23 電極用触媒の製造システムおよび製造方法 WO2021193661A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180012164.4A CN115039260A (zh) 2020-03-23 2021-03-23 电极用催化剂的制造系统和制造方法
US17/796,489 US20230216063A1 (en) 2020-03-23 2021-03-23 Electrode catalyst production system and production method
KR1020227032397A KR20220150912A (ko) 2020-03-23 2021-03-23 전극용 촉매의 제조 시스템 및 제조 방법
EP21775311.0A EP4085983A1 (en) 2020-03-23 2021-03-23 Electrode-catalyst manufacturing system and manufacturing method
JP2022510562A JPWO2021193661A1 (ja) 2020-03-23 2021-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-050941 2020-03-23
JP2020050941 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193661A1 true WO2021193661A1 (ja) 2021-09-30

Family

ID=77892204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012058 WO2021193661A1 (ja) 2020-03-23 2021-03-23 電極用触媒の製造システムおよび製造方法

Country Status (6)

Country Link
US (1) US20230216063A1 (ja)
EP (1) EP4085983A1 (ja)
JP (1) JPWO2021193661A1 (ja)
KR (1) KR20220150912A (ja)
CN (1) CN115039260A (ja)
WO (1) WO2021193661A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102634957B1 (ko) * 2023-09-19 2024-02-07 씨아이테크 주식회사 버티컬 필터 프레스 2차 전지용 전구체 세척 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265094A (ja) 2005-02-28 2006-10-05 Showa Denko Kk 微粒子二酸化チタンおよびその製造方法ならびにその用途
JP2007075679A (ja) * 2005-09-12 2007-03-29 Fuji Xerox Co Ltd 固液分離方法および静電潜像現像用トナーの製造方法
JP2007214130A (ja) 2006-02-07 2007-08-23 Samsung Sdi Co Ltd 燃料電池用担持触媒とその製造方法、該担持触媒を含む燃料電池用電極、及び該電極を備える燃料電池
JP5327000B2 (ja) 2009-11-04 2013-10-30 株式会社石垣 加圧脱水装置および加圧脱水方法
JP5950207B2 (ja) 2012-12-25 2016-07-13 株式会社石垣 フィルタープレス
JP2019520974A (ja) * 2016-06-13 2019-07-25 ビーエーエスエフ コーポレーション Pgm及びoscの組合せを含む触媒物品
JP2020082028A (ja) * 2018-11-30 2020-06-04 株式会社石垣 フィルタープレスの脱水ケーキ洗浄方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101520504B1 (ko) 2009-11-24 2015-05-14 엘지디스플레이 주식회사 유기발광다이오드 표시장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265094A (ja) 2005-02-28 2006-10-05 Showa Denko Kk 微粒子二酸化チタンおよびその製造方法ならびにその用途
JP2011057552A (ja) 2005-02-28 2011-03-24 Showa Denko Kk 微粒子二酸化チタンおよびその製造方法ならびにその用途
JP2007075679A (ja) * 2005-09-12 2007-03-29 Fuji Xerox Co Ltd 固液分離方法および静電潜像現像用トナーの製造方法
JP2007214130A (ja) 2006-02-07 2007-08-23 Samsung Sdi Co Ltd 燃料電池用担持触媒とその製造方法、該担持触媒を含む燃料電池用電極、及び該電極を備える燃料電池
JP5327000B2 (ja) 2009-11-04 2013-10-30 株式会社石垣 加圧脱水装置および加圧脱水方法
JP5950207B2 (ja) 2012-12-25 2016-07-13 株式会社石垣 フィルタープレス
JP2019520974A (ja) * 2016-06-13 2019-07-25 ビーエーエスエフ コーポレーション Pgm及びoscの組合せを含む触媒物品
JP2020082028A (ja) * 2018-11-30 2020-06-04 株式会社石垣 フィルタープレスの脱水ケーキ洗浄方法

Also Published As

Publication number Publication date
CN115039260A (zh) 2022-09-09
EP4085983A1 (en) 2022-11-09
KR20220150912A (ko) 2022-11-11
US20230216063A1 (en) 2023-07-06
JPWO2021193661A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
US4331525A (en) Electrolytic-ultrafiltration apparatus and process for recovering solids from a liquid medium
WO2021193661A1 (ja) 電極用触媒の製造システムおよび製造方法
KR20070046953A (ko) 전기탈이온 공정을 이용한 미립자 물질의 이온제거 방법 및그 장치
WO2009065023A1 (en) Multifunctional filtration and water purification systems
WO2007097046A1 (ja) シリコン粒子の処理方法及び装置
US20220056595A1 (en) Electrochemical reactor and its cleaning or regeneration
CN113149143A (zh) 基于层级疏水/亲水电极同步除盐和有机物的方法、装置
JP2006510481A (ja) 廃水中の金属イオンの電解除去回収方法および装置
CN106512973B (zh) 一种低炭损的活性炭的再生方法
JP5617240B2 (ja) 電気浸透脱水処理方法及び装置
CA1150186A (en) Continuous process for preparing metal alkoxides
WO2021193664A1 (ja) 電極用触媒の製造システムおよび製造方法
CN109748360B (zh) 一种多功能杂化超滤膜、制备方法及应用
CN111547882A (zh) 一种污水处理过程中回收重金属的方法
US11753730B2 (en) Leucodye (such as leucoindigo) as dispersing aid
US3969215A (en) Process and apparatus for removing metallic ions from an electrolytic solution
US11629418B2 (en) By-products (impurity) removal
RU2182033C2 (ru) Устройство регенерируемое и установка для очистки жидких сред
CN107445337A (zh) 一种利用芬顿试剂和活性炭净化污水的方法
JP2779321B2 (ja) 下水処理汚泥等の加圧濾過脱水用濾布及びその濾布を用いたフィルタープレス
CN108786918B (zh) 负载型茂金属催化剂及其制备方法和应用和丙烯酸甲酯的制备方法
JP4148628B2 (ja) 液体の精製処理方法
JPS61274711A (ja) 固形物の懸濁液から水を除去するための脱水方法および装置
KR102526373B1 (ko) 니켈 도금 폐수의 처리방법
CN209974462U (zh) 一种薄膜太阳能电池废水除镉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021775311

Country of ref document: EP

Effective date: 20220801

ENP Entry into the national phase

Ref document number: 2022510562

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227032397

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE