WO2021193512A1 - 薄膜コンデンサ及びこれを備える電子回路モジュール - Google Patents

薄膜コンデンサ及びこれを備える電子回路モジュール Download PDF

Info

Publication number
WO2021193512A1
WO2021193512A1 PCT/JP2021/011668 JP2021011668W WO2021193512A1 WO 2021193512 A1 WO2021193512 A1 WO 2021193512A1 JP 2021011668 W JP2021011668 W JP 2021011668W WO 2021193512 A1 WO2021193512 A1 WO 2021193512A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film capacitor
internal electrode
via conductor
electrode layers
Prior art date
Application number
PCT/JP2021/011668
Other languages
English (en)
French (fr)
Inventor
大基 石井
英子 若田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US17/777,515 priority Critical patent/US20220406530A1/en
Priority to JP2022510467A priority patent/JPWO2021193512A1/ja
Publication of WO2021193512A1 publication Critical patent/WO2021193512A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a thin film capacitor and an electronic circuit module including the thin film capacitor.
  • the thin film capacitor has a structure in which a plurality of internal electrode layers and a plurality of dielectric layers are alternately laminated.
  • the odd-numbered internal electrode layer is commonly connected to the first external terminal via the first wiring pattern included in the rewiring layer, and the even-numbered internal electrode layer is located.
  • the layer is commonly connected to the second external terminal via a second wiring pattern included in the rewiring layer.
  • the thin film capacitor according to the present invention includes a capacitor layer having a structure in which a plurality of internal electrode layers and a plurality of dielectric layers are alternately laminated, a rewiring layer laminated on the capacitor layer, and first and second external terminals.
  • the plurality of internal electrode layers are located at an odd number position, and the plurality of odd electrode layers including at least the first and third internal electrode layers and at least the second and fourth internal electrode layers are located at an even number position. It is composed of a plurality of even electrode layers including an electrode layer, the first, second, third and fourth internal electrode layers are laminated in this order via a plurality of dielectric layers, and the rewiring layer is a first.
  • the first and third internal electrode layers include a first wiring pattern for connecting the external terminal and the odd electrode layer and a second wiring pattern for connecting the second external terminal and the even electrode layer, respectively.
  • the first and third via conductors are connected to the first wiring pattern
  • the second and fourth internal electrode layers are connected to the second wiring pattern via the second and fourth via conductors, respectively.
  • the distance between the first via conductor and the second via conductor is shorter than the distance between the second via conductor and the third via conductor, and is smaller than the distance between the first via conductor and the fourth via conductor. It is characterized by being short.
  • FIG. 1 is a schematic cross-sectional view of a thin film capacitor according to the first embodiment.
  • FIG. 2 is an equivalent circuit diagram of the thin film capacitor shown in FIG.
  • FIG. 3 is a circuit diagram of an electronic circuit module including the thin film capacitor shown in FIG.
  • FIG. 4A is a schematic cross-sectional view of the thin film capacitor according to the second embodiment.
  • FIG. 4B is a schematic cross-sectional view of the thin film capacitor according to the first modification of the second embodiment.
  • FIG. 4C is a schematic cross-sectional view of a thin film capacitor according to a second modification of the second embodiment.
  • FIG. 5A is a schematic cross-sectional view of the thin film capacitor according to the third embodiment.
  • FIG. 5B is a schematic cross-sectional view of the thin film capacitor according to the first modification of the third embodiment.
  • FIG. 5C is a schematic cross-sectional view of the thin film capacitor according to the second modification of the third embodiment.
  • FIG. 6 is a schematic cross-sectional view of the thin film capacitor according to the fourth embodiment.
  • FIG. 7 is a schematic cross-sectional view of the thin film capacitor according to the fifth embodiment.
  • FIG. 8 is a schematic cross-sectional view of the thin film capacitor according to the sixth embodiment.
  • FIG. 9 is a schematic cross-sectional view of the thin film capacitor according to the seventh embodiment.
  • FIG. 10 is a schematic cross-sectional view of the thin film capacitor according to the eighth embodiment.
  • FIG. 11 is a schematic perspective view of the thin film capacitor according to the ninth embodiment.
  • FIG. 12 is a table showing the simulation results of the examples.
  • FIG. 1 is a schematic cross-sectional view of a thin film capacitor according to the first embodiment.
  • the thin film capacitors shown in FIG. 1 include a capacitor layer 4 having a structure in which internal electrode layers 11 to 18 and dielectric layers 21 to 27 are alternately laminated on a substrate 2, and a rewiring layer 40 laminated on the capacitor layer 4. And external terminals 51 and 52.
  • the rewiring layer 40 has wiring patterns 41 and 42.
  • the odd-numbered internal electrode layers 11, 13, 15, and 17 are connected to the wiring pattern 41 via the via conductors 31, 33, 35, and 37, respectively.
  • the even-numbered internal electrode layers 12, 14, 16 and 18 are connected to the wiring pattern 42 via the via conductors 32, 34, 36 and 38, respectively.
  • the wiring patterns 41 and 42 are connected to the external terminals 51 and 52 via the via conductors 61 and 62, respectively.
  • the distance between the via conductor 31 and the via conductors 32, 34, 36, 38 is W1, W4, W6, W8, respectively, and the distance between the via conductor 32 and the via conductors 31, 33, 35, 37 is W1, W3, W5, W7, respectively. If, W1 ⁇ W3, W4 ⁇ W5, W6 ⁇ W7, W8 Meet. Further, when the distances between the via conductor 61 and the via conductors 31, 33, 35, and 37 are W11, W13, W15, and W17, respectively, W11 ⁇ W13 ⁇ W15 ⁇ W17 Meet.
  • FIG. 2 is an equivalent circuit diagram of the thin film capacitor shown in FIG.
  • the capacitors composed of a pair of internal electrode layers sandwiching the dielectric layers 21 to 27 are C1 to C7
  • the capacitors C1 to C7 are connected in parallel between the external terminals 51 and 52.
  • Parasitic resistors R1 to R7 and parasitic inductances L1 to L7 are added in series to the capacitors C1 to C7, respectively.
  • FIG. 3 is a circuit diagram of an electronic circuit module including the thin film capacitor shown in FIG.
  • the external terminal 51 is connected to the power supply line 71, and the external terminal 52 is connected to the ground line 72.
  • a power supply potential V is given to the power supply line 71 from the power supply circuit 73.
  • a ground potential GND is given to the ground line 72.
  • the power supply line 71 is connected to the CPU 74.
  • the power supply line 71 and the ground line 72 are connected to the internal electrode layers 11 and 12 constituting the capacitor C1 via the via conductors 31 and 32, respectively.
  • the parasitic inductance L1 added to the capacitor C1 is smaller than the other parasitic inductances L2 to L7. .. Therefore, the capacitor C1 has a high self-resonant frequency.
  • the parasitic inductances L2 to L7 added to the other capacitors C2 to C7 are larger than the parasitic inductance L1. Therefore, the capacitors C2 to C7 have a self-resonant frequency lower than that of the capacitor C1.
  • the thin film capacitor according to the second embodiment shown in FIG. 4A is characterized in that the diameters of the via conductors 31 and 32 are larger than the diameters of the other via conductors 33 to 38. As a result, the parasitic inductance L1 is further lowered, so that the self-resonant frequency SRF1 of the capacitor C1 is higher.
  • the thin film capacitor shown in FIG. 4B is characterized in that the diameter of the via conductor 31 is larger than the diameter of the other via conductors 32 to 38.
  • the thin film capacitor shown in FIG. 4C is characterized in that the diameter of the via conductor 32 is larger than the diameter of the other via conductors 31, 33 to 38. In this way, in order to reduce the parasitic inductance L1, the diameter of only one of the via conductors 31 and 32 may be increased.
  • the thin film capacitor according to the third embodiment shown in FIG. 5A is characterized in that the number of via conductors 31 and 32 is two each, and the number of other via conductors 33 to 38 is one each. As a result, the parasitic inductance L1 is further lowered, so that the self-resonant frequency SRF1 of the capacitor C1 is higher. As shown in FIG. 5A, when a plurality of via conductors 31 and 32 are provided, the distance W1 between the via conductor 31 and the via conductor 32 is defined by the distance between the closest via conductors 31 and 32.
  • the thin film capacitor shown in FIG. 5B is characterized in that the number of via conductors 31 is two and the number of other via conductors 32 to 38 is one.
  • 5C is characterized in that the number of via conductors 32 is two and the number of other via conductors 31, 33 to 38 is one. In this way, in order to reduce the parasitic inductance L1, the number of only one of the via conductors 31 and 32 may be increased.
  • the thin film capacitor according to the fourth embodiment shown in FIG. 6 is characterized in that the dielectric constant of the dielectric layer 21 is lower than that of the other dielectric layers 22 to 27. As a result, the capacitance of the capacitor C1 is reduced, so that the self-resonant frequency SRF1 of the capacitor C1 becomes higher.
  • the thin film capacitor according to the fifth embodiment shown in FIG. 7 is characterized in that the external size of the internal electrode layer 11 is smaller than the external size of the other internal electrode layers 12 to 18. As a result, the capacitance of the capacitor C1 is reduced, so that the self-resonant frequency SRF1 of the capacitor C1 becomes higher.
  • the thin film capacitor according to the sixth embodiment shown in FIG. 8 is characterized in that the internal electrode layer 11 is divided into a plurality of regions and the via conductor 31 is assigned to each of the plurality of regions. As a result, the capacitor C1 is divided into a plurality of capacitors connected in parallel, so that the self-resonant frequency SRF1 of the capacitor C1 becomes higher.
  • the thin film capacitor according to the seventh embodiment shown in FIG. 9 is characterized in that the positions of the via conductor 31 and the via conductor 35 are exchanged, and the positions of the via conductor 32 and the via conductor 36 are exchanged. As a result, the parasitic inductance L4 is further lowered due to the magnetic field canceling effect, so that the self-resonant frequency SRF4 of the capacitor C4 is higher.
  • the wiring pattern 42 is separated into two wiring patterns 42A and 42B, and external terminals 52A and 52B are assigned to the wiring patterns 42A and 42B, respectively. In this way, a plurality of external terminals to which the same potential is given may be provided.
  • connection portion connected to the via conductor 31 and the connection portion connected to the via conductors 33, 35, 37 are connected to each other at the shortest distance. It is not connected via a detour.
  • connection portion connected to the via conductor 32 and the connection portion connected to the via conductors 34, 36, 38 are not connected to each other at the shortest distance, but are connected via a bypass portion. ..
  • the detour portion may have a mianda shape.
  • the parasitic inductances L2 to L7 are further increased, so that the self-resonant frequencies SRF2 to SRF7 of the capacitors C2 to C7 are lower.
  • a plurality of via conductors 31 and 32 are provided.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the plane size of the thin film capacitor is 1 mm ⁇ 0.5 mm.
  • the dielectric constant ⁇ of the dielectric layers 21 to 27 is 1000.
  • the diameters of the via conductors 31 to 38 are 30 ⁇ m, the distance W1 is 100 ⁇ m, the distances W3 and W4 are 141.42 ⁇ m, the distances W5 and W6 are 223.61 ⁇ m, and the distances W7 and W8 are 316.23 ⁇ m. Yes, the distances W11 to W18 are 100 ⁇ m.
  • the distance between the external terminals 51 and 52 is 30 ⁇ m.
  • the capacitance of the thin film capacitor of Example 1 was 136.8 nF
  • the ESL was 5.7 pH
  • the self-resonant frequency was 180 MHz.
  • Example 1 a simulation was performed assuming a thin film capacitor according to a comparative example having the same conditions as in Example 1 except that the distance W1 was 141.42 ⁇ m, the distance W4 was 316.23 ⁇ m, and the distances W7 and W8 were 100 ⁇ m. rice field.
  • the capacitance of the thin film capacitor according to the comparative example was 136.1 nF
  • the ESL was 6.4 pH
  • the self-resonant frequency was 171 MHz.
  • the thin film capacitor of Example 1 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of the comparative example.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the parameters are the same as those of the thin film capacitor of Example 1 except that the diameter of the via conductor 31 is expanded.
  • the diameter of the via conductor 31 is 60 ⁇ m.
  • the capacitance of the thin film capacitor of Example 2 was 136.4 nF
  • the ESL was 4.6 pH
  • the self-resonant frequency was 201.4 MHz.
  • the thin film capacitor of Example 2 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of Example 1.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the parameters are the same as those of the thin film capacitor of Example 1 except that the diameter of the via conductor 32 is expanded.
  • the diameter of the via conductor 32 is 60 ⁇ m.
  • the capacitance of the thin film capacitor of Example 3 was 135.8 nF
  • the ESL was 4.2 pH
  • the self-resonant frequency was 210 MHz.
  • the thin film capacitor of Example 3 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of Example 1.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the parameters are the same as those of the thin film capacitor of Example 1 except that the diameters of the via conductors 31 and 32 are expanded.
  • the diameters of the via conductors 31 and 32 are 60 ⁇ m.
  • the capacitance of the thin film capacitor of Example 4 was 134.1 nF
  • the ESL was 3.8 pH
  • the self-resonant frequency was 224 MHz.
  • the thin film capacitor of Example 4 had a smaller ESL and a higher self-resonant frequency than the thin film capacitors of Examples 2 and 3.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the parameters are the same as those of the thin film capacitor of Example 1 except that the number of via conductors 31 is two.
  • the capacitance of the thin film capacitor of Example 5 was 136.4 nF
  • the ESL was 5.3 pH
  • the self-resonant frequency was 189.7 MHz.
  • the thin film capacitor of Example 5 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of Example 1.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the parameters are the same as those of the thin film capacitor of Example 1 except that the number of via conductors 32 is two.
  • the capacitance of the thin film capacitor of Example 6 was 136.2 nF
  • the ESL was 5.2 pH
  • the self-resonant frequency was 191.2 MHz.
  • the thin film capacitor of Example 6 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of Example 1.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the parameters are the same as those of the thin film capacitor of Example 1 except that the number of via conductors 31 and 32 is two.
  • the capacitance of the thin film capacitor of Example 7 was 136 nF
  • the ESL was 4.7 pH
  • the self-resonant frequency was 199.5 MHz.
  • the thin film capacitor of Example 7 had a smaller ESL and a higher self-resonant frequency than the thin film capacitors of Examples 5 and 6.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation. Other than that, the parameters are the same as those of the thin film capacitor of Example 1. As shown in FIG. 12, the capacitance of the thin film capacitor of Example 8 was 137.7 nF, the ESL was 4 pH, and the self-resonant frequency was 215 MHz. As described above, the thin film capacitor of Example 8 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of Example 7.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation. Other than that, the parameters are the same as those of the thin film capacitor of Example 1. As shown in FIG. 12, the capacitance of the thin film capacitor of Example 9 was 134.8 nF, the ESL was 3.1 pH, and the self-resonant frequency was 245 MHz. As described above, the thin film capacitor of Example 9 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of Example 8.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the parameters are the same as those of the thin film capacitor of Example 1 except that the internal electrode layer 11 is divided into two parts. One area of two divided internal electrode layers 11 is 0.275 mm 2, the other area is 0.01 mm 2.
  • the capacitance of the thin film capacitor of Example 10 was 135.3 nF
  • the ESL was 4.7 pH
  • the self-resonant frequency was 252 MHz.
  • the thin film capacitor of Example 10 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of Example 1.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the parameters are the same as those of the thin film capacitor of Example 1 except that a material having a dielectric constant ⁇ of 500 is used as the material of the dielectric layer 21.
  • the capacitance of the thin film capacitor of Example 11 was 127 nF
  • the ESL was 5.7 pH
  • the self-resonant frequency was 240 MHz.
  • the thin film capacitor of Example 11 had a higher self-resonant frequency than the thin film capacitor of Example 1.
  • the capacitance, ESL and self-resonant frequency were calculated by simulation.
  • the parameters are the same as those of the thin film capacitor of Example 1 except that the distances W11 and W12 are zero, the distances W15 and W16 are 200 ⁇ m, and the distances W17 and W18 are 300 ⁇ m.
  • the capacitance of the thin film capacitor of Example 12 was 136.8 nF
  • the ESL was 4 pH
  • the self-resonant frequency was 210 MHz.
  • the thin film capacitor of Example 12 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of Example 1.
  • the number of via conductors 31 and 32 is 7, the distances W3 and W4 are 264.76 ⁇ m, the distances W5 to W8 are 389.49 ⁇ m, the distances W13 and W14 are 150 ⁇ m, and the distances W15 to W15 to Assuming the thin film capacitor of Example 13 in which W18 is 275 ⁇ m, the capacitance, ESL and self-resonant frequency were calculated by simulation. Other than that, the parameters are the same as those of the thin film capacitor of Example 1. As shown in FIG. 12, the capacitance of the thin film capacitor of Example 13 was 150 nF, the ESL was 1.8 pH, and the self-resonant frequency was 310 MHz. As described above, the thin film capacitor of Example 13 had a smaller ESL and a higher self-resonant frequency than the thin film capacitor of Example 1.
  • the capacitance, ESL, and self-resonant frequency were calculated by simulation assuming the thin film capacitor of Example 14 having the same structure as that of Example 13 except that the internal electrode layer 11 is divided into two. One area of two divided internal electrode layers 11 is 0.275 mm 2, the other area is 0.01 mm 2. As shown in FIG. 12, the capacitance of the thin film capacitor of Example 14 was 146.1 nF, the ESL was 1.8 pH, and the self-resonant frequency was 314 MHz. As described above, the thin film capacitor of Example 14 had a higher self-resonant frequency than the thin film capacitor of Example 13.
  • the thin film capacitor of Example 15 having the same structure as that of Example 14 is assumed except that a part of the wiring patterns 41 and 42 is bypassed in a meander shape, and the capacitance, ESL, and self are assumed.
  • the resonance frequency was calculated by simulation.
  • the maximum detour distance of the detour portion is 1160 ⁇ m.
  • the capacitance of the thin film capacitor of Example 15 was 144.3 nF
  • the ESL was 0.1 pH
  • the self-resonant frequency was 1340 MHz.
  • the thin film capacitor of Example 15 had a significantly smaller ESL and a significantly higher self-resonant frequency than the thin film capacitor of Example 14.
  • Substrate 4 Capacitor layer 11-18 Internal electrode layer 21-27 Dielectric layer 31-38 Via conductor 40 Rewiring layer 41, 42, 42A, 42B Wiring pattern 51, 52, 52A, 52B External terminal 61, 62 Via conductor 71 Power line 72 Ground line 73 Power circuit 74 CPU C1 to C7 Capacitors L1 to L7 Parasitic inductance R1 to R7 Parasitic resistance V Power supply potential

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】広い周波数帯域において低いインピーダンスを得ることが可能な薄膜コンデンサを提供する。 【解決手段】薄膜コンデンサは、内部電極層11~18と誘電体層21~27が交互に積層された構造を有するキャパシタ層4と、キャパシタ層4に積層された再配線層40と、外部端子51,52とを備える。再配線層40は、外部端子51と内部電極層11,13,15,17を接続する配線パターン41と、外部端子52と内部電極層12,14,16,18を接続する配線パターン42とを含む。ビア導体31,32の距離W1は、ビア導体32,33の距離W3よりも短く、且つ、ビア導体31,34の距離W4よりも短い。

Description

薄膜コンデンサ及びこれを備える電子回路モジュール
 本発明は薄膜コンデンサ及びこれを備える電子回路モジュールに関する。
 薄膜コンデンサは、複数の内部電極層と複数の誘電体層が交互に積層された構造を有している。複数の内部電極層のうち、奇数番目に位置する内部電極層は、再配線層に含まれる第1の配線パターンを介して第1の外部端子に共通に接続され、偶数番目に位置する内部電極層は、再配線層に含まれる第2の配線パターンを介して第2の外部端子に共通に接続される。これにより、第1及び第2の外部端子間に複数の単位キャパシタが並列に接続された構成が得られる。
特開2018-206839号公報
 しかしながら、従来の薄膜コンデンサは、広い周波数帯域において低いインピーダンスを実現することが困難であった。
 したがって、本発明は、改良された薄膜コンデンサを提供することを目的とする。
 本発明による薄膜コンデンサは、複数の内部電極層と複数の誘電体層が交互に積層された構造を有するキャパシタ層と、キャパシタ層に積層された再配線層と、第1及び第2の外部端子とを備え、複数の内部電極層は、奇数番目に位置し、少なくとも第1及び第3の内部電極層を含む複数の奇数電極層と、偶数番目に位置し、少なくとも第2及び第4の内部電極層を含む複数の偶数電極層からなり、第1、第2、第3及び第4の内部電極層は、複数の誘電体層を介してこの順に積層され、再配線層は、第1の外部端子と奇数電極層を接続する第1の配線パターンと、第2の外部端子と偶数電極層を接続する第2の配線パターンとを含み、第1及び第3の内部電極層は、それぞれ第1及び第3のビア導体を介して第1の配線パターンに接続され、第2及び第4の内部電極層は、それぞれ第2及び第4のビア導体を介して第2の配線パターンに接続され、第1のビア導体と第2のビア導体の距離は、第2のビア導体と第3のビア導体の距離よりも短く、且つ、第1のビア導体と第4のビア導体の距離よりも短いことを特徴とする。
 本発明によれば、自己共振周波数の異なる複数のキャパシタが並列に接続されることから、広い周波数帯域において低いインピーダンスを得ることが可能となる。
図1は、第1の実施形態による薄膜コンデンサの模式的な断面図である。 図2は、図1に示す薄膜コンデンサの等価回路図である。 図3は、図1に示す薄膜コンデンサを備える電子回路モジュールの回路図である。 図4Aは、第2の実施形態による薄膜コンデンサの模式的な断面図である。 図4Bは、第2の実施形態の第1の変形例による薄膜コンデンサの模式的な断面図である。 図4Cは、第2の実施形態の第2の変形例による薄膜コンデンサの模式的な断面図である。 図5Aは、第3の実施形態による薄膜コンデンサの模式的な断面図である。 図5Bは、第3の実施形態の第1の変形例による薄膜コンデンサの模式的な断面図である。 図5Cは、第3の実施形態の第2の変形例による薄膜コンデンサの模式的な断面図である。 図6は、第4の実施形態による薄膜コンデンサの模式的な断面図である。 図7は、第5の実施形態による薄膜コンデンサの模式的な断面図である。 図8は、第6の実施形態による薄膜コンデンサの模式的な断面図である。 図9は、第7の実施形態による薄膜コンデンサの模式的な断面図である。 図10は、第8の実施形態による薄膜コンデンサの模式的な断面図である。 図11は、第9の実施形態による薄膜コンデンサの模式的な斜視図である。 図12は、実施例のシミュレーション結果を示す表である。
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。さらに、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。さらに、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。
 図1は、第1の実施形態による薄膜コンデンサの模式的な断面図である。図1に示す薄膜コンデンサは、内部電極層11~18と誘電体層21~27が基板2上に交互に積層された構造を有するキャパシタ層4と、キャパシタ層4に積層された再配線層40と、外部端子51,52とを備える。再配線層40は、配線パターン41,42を有する。奇数番目に位置する内部電極層11,13,15,17は、それぞれビア導体31,33,35,37を介して配線パターン41に接続される。偶数番目に位置する内部電極層12,14,16,18は、それぞれビア導体32,34,36,38を介して配線パターン42に接続される。配線パターン41,42は、それぞれビア導体61,62を介して外部端子51,52に接続される。
 ビア導体31とビア導体32,34,36,38の距離をそれぞれW1,W4,W6,W8とし、ビア導体32とビア導体31,33,35,37の距離をそれぞれW1,W3,W5,W7とした場合、
 W1<W3,W4<W5,W6<W7,W8
を満たす。また、ビア導体61とビア導体31,33,35,37の距離をそれぞれW11,W13,W15,W17とした場合、
 W11<W13<W15<W17
を満たす。また、ビア導体62とビア導体32,34,36,38の距離をそれぞれW12,W14,W16,W18とした場合、
 W12<W14<W16<W18
を満たす。図1に示す例では、W11及びW12はゼロである。
 図2は、図1に示す薄膜コンデンサの等価回路図である。それぞれ誘電体層21~27を挟む一対の内部電極層によって構成されるキャパシタをC1~C7とした場合、キャパシタC1~C7は、外部端子51,52間に並列に接続される。キャパシタC1~C7には、それぞれ寄生抵抗R1~R7と、寄生インダクタンスL1~L7が直列に付加される。
 図3は、図1に示す薄膜コンデンサを備える電子回路モジュールの回路図である。図3に示すように、外部端子51は電源ライン71に接続され、外部端子52はグランドライン72に接続される。電源ライン71には、電源回路73から電源電位Vが与えられる。グランドライン72にはグランド電位GNDが与えられる。電源ライン71は、CPU74に接続される。
 電源ライン71及びグランドライン72は、ビア導体31,32を介して、キャパシタC1を構成する内部電極層11,12にそれぞれ接続される。ここで、ビア導体31,32間の距離W1は、他のビア導体間の距離W3~W8よりも短いため、キャパシタC1に付加される寄生インダクタンスL1は、他の寄生インダクタンスL2~L7よりも小さい。このため、キャパシタC1は高い自己共振周波数を有する。これに対し、他のキャパシタC2~C7に付加される寄生インダクタンスL2~L7は、寄生インダクタンスL1よりも大きい。このため、キャパシタC2~C7は、キャパシタC1よりも低い自己共振周波数を有する。キャパシタC1~C7の自己共振周波数をそれぞれSRF1~SRF7とした場合、
 SRF1>SRF2>SRF3>SRF4>SRF5>SRF6>SRF7
を満たす。
 このように、本実施形態においては、自己共振周波数の異なる複数のキャパシタC1~C7が並列に接続されるため、広い周波数帯域において低いインピーダンスを得ることが可能となる。一般的な回路モジュールにおいては、自己共振周波数の異なる複数のコンデンサを並列接続することによって、広い周波数帯域において低いインピーダンスを得る必要があるが、本実施形態においては、1個の薄膜コンデンサによってこれを実現することが可能となる。
 図4Aに示す第2の実施形態による薄膜コンデンサは、ビア導体31,32の径が他のビア導体33~38の径よりも大きいことを特徴とする。これにより、寄生インダクタンスL1がより低下するため、キャパシタC1の自己共振周波数SRF1がより高くなる。図4Bに示す薄膜コンデンサは、ビア導体31の径が他のビア導体32~38の径よりも大きいことを特徴とする。図4Cに示す薄膜コンデンサは、ビア導体32の径が他のビア導体31,33~38の径よりも大きいことを特徴とする。このように、寄生インダクタンスL1を低下させるために、ビア導体31,32の一方のみの径を拡大しても構わない。
 図5Aに示す第3の実施形態による薄膜コンデンサは、ビア導体31,32の数がそれぞれ2個であり、他のビア導体33~38の数がそれぞれ1個であることを特徴とする。これにより、寄生インダクタンスL1がより低下するため、キャパシタC1の自己共振周波数SRF1がより高くなる。図5Aに示すように、ビア導体31,32がそれぞれ複数個設けられている場合、ビア導体31とビア導体32の距離W1は、最も近接するビア導体31,32間の距離によって定義される。図5Bに示す薄膜コンデンサは、ビア導体31の数がそれぞれ2個であり、他のビア導体32~38の数がそれぞれ1個であることを特徴とする。図5Cに示す薄膜コンデンサは、ビア導体32の数がそれぞれ2個であり、他のビア導体31,33~38の数がそれぞれ1個であることを特徴とする。このように、寄生インダクタンスL1を低下させるために、ビア導体31,32の一方のみの数を増やしても構わない。
 図6に示す第4の実施形態による薄膜コンデンサは、誘電体層21の誘電率が他の誘電体層22~27の誘電率よりも低いことを特徴とする。これにより、キャパシタC1のキャパシタンスが低下するため、キャパシタC1の自己共振周波数SRF1がより高くなる。
 図7に示す第5の実施形態による薄膜コンデンサは、内部電極層11の外形サイズが他の内部電極層12~18の外形サイズよりも小さいことを特徴とする。これにより、キャパシタC1のキャパシタンスが低下するため、キャパシタC1の自己共振周波数SRF1がより高くなる。
 図8に示す第6の実施形態による薄膜コンデンサは、内部電極層11が複数の領域に分割されており、ビア導体31が複数の領域のそれぞれに割り当てられていることを特徴とする。これにより、キャパシタC1が並列接続された複数のキャパシタに分割されるため、キャパシタC1の自己共振周波数SRF1がより高くなる。
 図9に示す第7の実施形態による薄膜コンデンサは、ビア導体31とビア導体35の位置が入れ替えられ、ビア導体32とビア導体36の位置が入れ替えられていることを特徴とする。これにより、磁界相殺効果によって寄生インダクタンスL4がより低下するため、キャパシタC4の自己共振周波数SRF4がより高くなる。
 図10に示す第8の実施形態による薄膜コンデンサにおいては、配線パターン42が2つの配線パターン42A,42Bに分離され、配線パターン42A,42Bにそれぞれ外部端子52A,52Bが割り当てられている。このように、同じ電位が与えられる外部端子を複数設けても構わない。
 図11に示す第9の実施形態による薄膜コンデンサにおいては、配線パターン41のうち、ビア導体31に接続される接続部とビア導体33,35,37に接続される接続部が互いに最短距離で接続されず、迂回部を介して接続されている。同様に、配線パターン42のうち、ビア導体32に接続される接続部とビア導体34,36,38に接続される接続部が互いに最短距離で接続されず、迂回部を介して接続されている。迂回部は、ミアンダ形状を有していても構わない。これにより、寄生インダクタンスL2~L7がより増加するため、キャパシタC2~C7の自己共振周波数SRF2~SRF7がより低くなる。図11に示す例では、ビア導体31,32が複数個設けられている。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 図1に示す構造を有する実施例1の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。薄膜コンデンサの平面サイズは1mm×0.5mmである。内部電極層11~18の面積はそれぞれ0.334mm、0.347mm、0.360mm、0.373mm、0.386mm、0.400mm、0.414mm、0.428mmである。誘電体層21~27の誘電率εは1000である。ビア導体31~38の径は30μmであり、距離W1は100μmであり、距離W3,W4は141.42μmであり、距離W5,W6は223.61μmであり、距離W7,W8は316.23μmであり、距離W11~W18は100μmである。また、外部端子51,52間の距離は30μmである。図12に示すように、実施例1の薄膜コンデンサのキャパシタンスは136.8nF、ESLは5.7pH、自己共振周波数は180MHzであった。
 次に、距離W1を141.42μmとし、距離W4を316.23μmとし、距離W7,W8を100μmとした他は、実施例1と同じ条件を有する比較例による薄膜コンデンサを想定し、シミュレーションを行った。その結果、図12に示すように、比較例による薄膜コンデンサのキャパシタンスは136.1nF、ESLは6.4pH、自己共振周波数は171MHzであった。このように、実施例1の薄膜コンデンサは、比較例の薄膜コンデンサと比べ、ESLが小さく、且つ、自己共振周波数が高いことが確認された。
 図4Bに示す構造を有する実施例2の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。ビア導体31の径が拡大されている他は、実施例1の薄膜コンデンサとパラメータは同じである。ビア導体31の径は60μmである。図12に示すように、実施例2の薄膜コンデンサのキャパシタンスは136.4nF、ESLは4.6pH、自己共振周波数は201.4MHzであった。このように、実施例2の薄膜コンデンサは、実施例1の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 図4Cに示す構造を有する実施例3の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。ビア導体32の径が拡大されている他は、実施例1の薄膜コンデンサとパラメータは同じである。ビア導体32の径は60μmである。図12に示すように、実施例3の薄膜コンデンサのキャパシタンスは135.8nF、ESLは4.2pH、自己共振周波数は210MHzであった。このように、実施例3の薄膜コンデンサは、実施例1の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 図4Aに示す構造を有する実施例4の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。ビア導体31,32の径が拡大されている他は、実施例1の薄膜コンデンサとパラメータは同じである。ビア導体31,32の径は60μmである。図12に示すように、実施例4の薄膜コンデンサのキャパシタンスは134.1nF、ESLは3.8pH、自己共振周波数は224MHzであった。このように、実施例4の薄膜コンデンサは、実施例2,3の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 図5Bに示す構造を有する実施例5の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。ビア導体31の数が2個である他は、実施例1の薄膜コンデンサとパラメータは同じである。図12に示すように、実施例5の薄膜コンデンサのキャパシタンスは136.4nF、ESLは5.3pH、自己共振周波数は189.7MHzであった。このように、実施例5の薄膜コンデンサは、実施例1の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 図5Cに示す構造を有する実施例6の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。ビア導体32の数が2個である他は、実施例1の薄膜コンデンサとパラメータは同じである。図12に示すように、実施例6の薄膜コンデンサのキャパシタンスは136.2nF、ESLは5.2pH、自己共振周波数は191.2MHzであった。このように、実施例6の薄膜コンデンサは、実施例1の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 図5Aに示す構造を有する実施例7の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。ビア導体31,32の数がいずれも2個である他は、実施例1の薄膜コンデンサとパラメータは同じである。図12に示すように、実施例7の薄膜コンデンサのキャパシタンスは136nF、ESLは4.7pH、自己共振周波数は199.5MHzであった。このように、実施例7の薄膜コンデンサは、実施例5,6の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 ビア導体31,32の数がいずれも3個である実施例8の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。その他、実施例1の薄膜コンデンサとパラメータは同じである。図12に示すように、実施例8の薄膜コンデンサのキャパシタンスは137.7nF、ESLは4pH、自己共振周波数は215MHzであった。このように、実施例8の薄膜コンデンサは、実施例7の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 ビア導体31,32の数がいずれも4個である実施例9の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。その他、実施例1の薄膜コンデンサとパラメータは同じである。図12に示すように、実施例9の薄膜コンデンサのキャパシタンスは134.8nF、ESLは3.1pH、自己共振周波数は245MHzであった。このように、実施例9の薄膜コンデンサは、実施例8の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 図8に示す構造を有する実施例10の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。内部電極層11が2分割されている他は、実施例1の薄膜コンデンサとパラメータは同じである。2分割された内部電極層11の一方の面積は0.275mmであり、他方の面積は0.01mmである。図12に示すように、実施例10の薄膜コンデンサのキャパシタンスは135.3nF、ESLは4.7pH、自己共振周波数は252MHzであった。このように、実施例10の薄膜コンデンサは、実施例1の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 図6に示す構造を有する実施例11の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。誘電体層21の材料として誘電率εが500である材料を用いた他は、実施例1の薄膜コンデンサとパラメータは同じである。図12に示すように、実施例11の薄膜コンデンサのキャパシタンスは127nF、ESLは5.7pH、自己共振周波数は240MHzであった。このように、実施例11の薄膜コンデンサは、実施例1の薄膜コンデンサよりも、自己共振周波数がさらに高かった。
 図9に示す構造を有する実施例12の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。距離W11,W12がゼロであり、距離W15,W16が200μmであり、距離W17,W18が300μmである他は、実施例1の薄膜コンデンサとパラメータは同じである。図12に示すように、実施例12の薄膜コンデンサのキャパシタンスは136.8nF、ESLは4pH、自己共振周波数は210MHzであった。このように、実施例12の薄膜コンデンサは、実施例1の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 ビア導体31,32の数がいずれも7個であるとともに、距離W3,W4が264.76μmであり、距離W5~W8が389.49μmであり、距離W13,W14が150μmであり、距離W15~W18が275μmである実施例13の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。その他、実施例1の薄膜コンデンサとパラメータは同じである。図12に示すように、実施例13の薄膜コンデンサのキャパシタンスは150nF、ESLは1.8pH、自己共振周波数は310MHzであった。このように、実施例13の薄膜コンデンサは、実施例1の薄膜コンデンサよりも、ESLがさらに小さく、且つ、自己共振周波数がさらに高かった。
 内部電極層11が2分割されている他は、実施例13と同じ構造を有する実施例14の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。2分割された内部電極層11の一方の面積は0.275mmであり、他方の面積は0.01mmである。図12に示すように、実施例14の薄膜コンデンサのキャパシタンスは146.1nF、ESLは1.8pH、自己共振周波数は314MHzであった。このように、実施例14の薄膜コンデンサは、実施例13の薄膜コンデンサよりも、自己共振周波数がさらに高かった。
 図11に示したように、配線パターン41,42の一部をミアンダ状に迂回部させた他は、実施例14と同じ構造を有する実施例15の薄膜コンデンサを想定し、キャパシタンス、ESL及び自己共振周波数をシミュレーションによって算出した。迂回部の最大迂回距離は1160μmである。図12に示すように、実施例15の薄膜コンデンサのキャパシタンスは144.3nF、ESLは0.1pH、自己共振周波数は1340MHzであった。このように、実施例15の薄膜コンデンサは、実施例14の薄膜コンデンサよりも、ESLが著しく小さく、且つ、自己共振周波数が著しく高かった。
2  基板
4  キャパシタ層
11~18  内部電極層
21~27  誘電体層
31~38  ビア導体
40  再配線層
41,42,42A,42B  配線パターン
51,52,52A,52B  外部端子
61,62  ビア導体
71  電源ライン
72  グランドライン
73  電源回路
74  CPU
C1~C7  キャパシタ
L1~L7  寄生インダクタンス
R1~R7  寄生抵抗
V  電源電位

Claims (12)

  1.  複数の内部電極層と複数の誘電体層が交互に積層された構造を有するキャパシタ層と、
     前記キャパシタ層に積層された再配線層と、
     第1及び第2の外部端子と、を備え、
     前記複数の内部電極層は、奇数番目に位置し、少なくとも第1及び第3の内部電極層を含む複数の奇数電極層と、偶数番目に位置し、少なくとも第2及び第4の内部電極層を含む複数の偶数電極層からなり、
     前記第1、第2、第3及び第4の内部電極層は、前記複数の誘電体層を介してこの順に積層され、
     前記再配線層は、前記第1の外部端子と前記奇数電極層を接続する第1の配線パターンと、前記第2の外部端子と前記偶数電極層を接続する第2の配線パターンとを含み、
     前記第1及び第3の内部電極層は、それぞれ第1及び第3のビア導体を介して前記第1の配線パターンに接続され、
     前記第2及び第4の内部電極層は、それぞれ第2及び第4のビア導体を介して前記第2の配線パターンに接続され、
     前記第1のビア導体と前記第2のビア導体の距離は、前記第2のビア導体と前記第3のビア導体の距離よりも短く、且つ、前記第1のビア導体と前記第4のビア導体の距離よりも短いことを特徴とする薄膜コンデンサ。
  2.  前記第1及び第2のビア導体の少なくとも一方の径は、前記第3及び第4のビア導体の径よりも大きいことを特徴とする請求項1に記載の薄膜コンデンサ。
  3.  前記第1及び第2のビア導体の少なくとも一方の数は、前記第3及び第4のビア導体の数よりも多いことを特徴とする請求項1又は2に記載の薄膜コンデンサ。
  4.  前記第1の内部電極層の外形サイズは、前記第2乃至4の内部電極層の外形サイズよりも小さいことを特徴とする請求項1乃至3のいずれか一項に記載の薄膜コンデンサ。
  5.  前記第1の内部電極層は複数の領域に分割されており、前記第1のビア導体は前記複数の領域のそれぞれに割り当てられていることを特徴とする請求項1乃至4のいずれか一項に記載の薄膜コンデンサ。
  6.  前記複数の誘電体層のうち、前記第1及び第2の内部電極層間に位置する誘電体層は、前記第2及び第3の内部電極層間に位置する誘電体層、並びに、前記第3及び第4の内部電極層間に位置する誘電体層よりも誘電率が低いことを特徴とする請求項1乃至5のいずれか一項に記載の薄膜コンデンサ。
  7.  前記第1及び第2の配線パターンは、それぞれ第5及び第6のビア導体を介して前記第1及び第2の外部端子に接続され、
     前記第1のビア導体と前記第5のビア導体の距離は、前記第3のビア導体と前記第5のビア導体の距離よりも短く、
     前記第2のビア導体と前記第6のビア導体の距離は、前記第4のビア導体と前記第6のビア導体の距離よりも短いことを特徴とする請求項1乃至6のいずれか一項に記載の薄膜コンデンサ。
  8.  前記複数の奇数電極層は、第5の内部電極層をさらに含み、
     前記複数の偶数電極層は、第6の内部電極層をさらに含み、
     前記第5、第6、第1、第2、第3及び第4の内部電極層は、前記複数の誘電体層を介してこの順に積層され、
     前記第5の内部電極層は、第5のビア導体を介して前記第1の配線パターンに接続され、
     前記第6の内部電極層は、第6のビア導体を介して前記第2の配線パターンに接続されることを特徴とする請求項1乃至7のいずれか一項に記載の薄膜コンデンサ。
  9.  前記第1及び第2の外部端子の一方は単一の端子であり、前記第1及び第2の外部端子の他方は複数の端子に分割されていることを特徴とする請求項1乃至8のいずれか一項に記載の薄膜コンデンサ。
  10.  前記第1の配線パターンは、前記第1のビア導体に接続される第1の接続部と、前記第3のビア導体に接続される第3の接続部と、前記第1の接続部と前記第3の接続部を非最短距離で接続する第1の迂回部とを有し、
     前記第2の配線パターンは、前記第2のビア導体に接続される第2の接続部と、前記第4のビア導体に接続される第4の接続部と、前記第2の接続部と前記第4の接続部を非最短距離で接続する第2の迂回部とを有することを特徴とする請求項1乃至9のいずれか一項に記載の薄膜コンデンサ。
  11.  前記第1及び第2の迂回部の少なくとも一方は、ミアンダ形状を有していることを特徴とする請求項10に記載の薄膜コンデンサ。
  12.  回路基板と、前記回路基板に搭載された請求項1乃至11のいずれか一項に記載の薄膜コンデンサとを備える電子回路モジュール。
PCT/JP2021/011668 2020-03-23 2021-03-22 薄膜コンデンサ及びこれを備える電子回路モジュール WO2021193512A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/777,515 US20220406530A1 (en) 2020-03-23 2021-03-22 Thin film capacitor and electronic circuit module having the same
JP2022510467A JPWO2021193512A1 (ja) 2020-03-23 2021-03-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062993338P 2020-03-23 2020-03-23
US62/993,338 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193512A1 true WO2021193512A1 (ja) 2021-09-30

Family

ID=77892163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011668 WO2021193512A1 (ja) 2020-03-23 2021-03-22 薄膜コンデンサ及びこれを備える電子回路モジュール

Country Status (3)

Country Link
US (1) US20220406530A1 (ja)
JP (1) JPWO2021193512A1 (ja)
WO (1) WO2021193512A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514243A (ja) * 1996-06-27 2000-10-24 ジェナム コーポレーション 多層膜キャパシタ構造及び方法
WO2009078225A1 (ja) * 2007-12-14 2009-06-25 Murata Manufacturing Co., Ltd. 薄膜積層キャパシタの製造方法
JP2009224565A (ja) * 2008-03-17 2009-10-01 Toshiba Corp 不揮発性半導体記憶装置
JP2018063980A (ja) * 2016-10-11 2018-04-19 Tdk株式会社 薄膜コンデンサ
JP2018074132A (ja) * 2016-10-28 2018-05-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. 多層薄膜キャパシタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090141426A1 (en) * 2007-11-29 2009-06-04 Cheol-Seong Hwang Thin film multi-layered ceramic capacitor and method of fabricating the same
JP5051166B2 (ja) * 2009-03-27 2012-10-17 Tdk株式会社 薄膜デバイス
JP5407775B2 (ja) * 2009-03-31 2014-02-05 Tdk株式会社 薄膜コンデンサの製造方法及び薄膜コンデンサ
KR101792414B1 (ko) * 2016-05-19 2017-11-01 삼성전기주식회사 박막 커패시터 및 그 제조방법
US10468187B2 (en) * 2016-08-05 2019-11-05 Samsung Electro-Mechanics Co., Ltd. Thin-film ceramic capacitor having capacitance forming portions separated by separation slit
KR101853195B1 (ko) * 2016-09-01 2018-04-27 삼성전기주식회사 박막 커패시터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514243A (ja) * 1996-06-27 2000-10-24 ジェナム コーポレーション 多層膜キャパシタ構造及び方法
WO2009078225A1 (ja) * 2007-12-14 2009-06-25 Murata Manufacturing Co., Ltd. 薄膜積層キャパシタの製造方法
JP2009224565A (ja) * 2008-03-17 2009-10-01 Toshiba Corp 不揮発性半導体記憶装置
JP2018063980A (ja) * 2016-10-11 2018-04-19 Tdk株式会社 薄膜コンデンサ
JP2018074132A (ja) * 2016-10-28 2018-05-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. 多層薄膜キャパシタ

Also Published As

Publication number Publication date
JPWO2021193512A1 (ja) 2021-09-30
US20220406530A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US7974072B2 (en) Multilayer capacitor array
CN1747086B (zh) 多层芯片电容器
US11290078B2 (en) Filter element
JP6461437B2 (ja) ノイズフィルタ回路
TWI224798B (en) Transformer formed between two layout layers
JPWO2008090995A1 (ja) インダクタ
JPWO2015129597A1 (ja) 積層型コイル素子、アンテナモジュール、および、無線通信モジュール
WO2018150881A1 (ja) コモンモードチョークコイル、モジュール部品および電子機器
US9147513B2 (en) Series inductor array implemented as a single winding and filter including the same
EP2269199B1 (en) Planar inductive unit and an electronic device comprising a planar inductive unit
US11108369B2 (en) Band pass filter
WO2021193512A1 (ja) 薄膜コンデンサ及びこれを備える電子回路モジュール
US20040263308A1 (en) Inductor formed between two layout layers
JPH0389548A (ja) 半導体集積回路
US20200098500A1 (en) Point-symmetric on-chip inductor
JP2000182891A (ja) 積層コンデンサ
KR100218676B1 (ko) 스피럴 인덕터의 구조
US11524349B2 (en) Substrate
WO2021193513A1 (ja) コンデンサ部品及びこれを備える電子回路モジュール
JP5408187B2 (ja) アンテナ装置及びこれを用いた無線通信機器
JPWO2017110179A1 (ja) 回路基板、フィルタ回路およびキャパシタンス素子
JPH0685593A (ja) 高周波整合用回路装置
US20210304968A1 (en) Multilayer capacitor
JP4471281B2 (ja) 積層型高周波回路基板
US12108527B2 (en) Filter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774656

Country of ref document: EP

Kind code of ref document: A1