WO2021193043A1 - 有底筒状体の製造方法 - Google Patents

有底筒状体の製造方法 Download PDF

Info

Publication number
WO2021193043A1
WO2021193043A1 PCT/JP2021/009418 JP2021009418W WO2021193043A1 WO 2021193043 A1 WO2021193043 A1 WO 2021193043A1 JP 2021009418 W JP2021009418 W JP 2021009418W WO 2021193043 A1 WO2021193043 A1 WO 2021193043A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
ironing
lubricant
cleaning
tubular body
Prior art date
Application number
PCT/JP2021/009418
Other languages
English (en)
French (fr)
Inventor
亮蔵 城石
尚也 松本
真広 島村
拓甫 熊谷
智裕 小川
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020058150A external-priority patent/JP7472590B2/ja
Priority claimed from JP2020058158A external-priority patent/JP2021154355A/ja
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to BR112022019348A priority Critical patent/BR112022019348A2/pt
Priority to US17/907,484 priority patent/US20230122197A1/en
Priority to CN202180024790.5A priority patent/CN115427168A/zh
Priority to EP21776639.3A priority patent/EP4129516A4/en
Publication of WO2021193043A1 publication Critical patent/WO2021193043A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • B21D22/286Deep-drawing of cylindrical articles using consecutive dies with lubricating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/16Additional equipment in association with the tools, e.g. for shearing, for trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • B21D35/007Layered blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/18Lubricating, e.g. lubricating tool and workpiece simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2669Transforming the shape of formed can bodies; Forming can bodies from flattened tubular blanks; Flattening can bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals
    • C23G1/125Light metals aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/22Light metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Definitions

  • the present invention relates to a method for manufacturing a bottomed tubular body, and more particularly to a method for manufacturing a metal bottomed tubular body by squeezing and ironing.
  • a metal bottomed cylindrical body for example, a so-called seamless can body, is manufactured by squeezing and ironing using a press die.
  • a cleaning step of cleaning the processing oil, lubricant, coolant, etc. adhering to the can body with a cleaning agent or chemical after the can manufacturing process is indispensable.
  • the method for manufacturing a bottomed tubular body in one embodiment of the present invention is as follows: (1) A metal plate is drawn by using a molding member having a processed surface hardness of more than Hv1500 to 12000.
  • the coolant is water-soluble, including a drawing step and a squeezing step of ironing the member to be processed through a coolant to form a bottomed tubular body using a molded member having a carbon film on the processed surface. It is characterized by being a coolant and / or a coolant having a boiling point of less than 300 ° C.
  • the bottomed tubular body is a seamless can body.
  • the metal plate is an aluminum alloy.
  • (4) the carbon film is a diamond film.
  • a water-soluble lubricant and / or lubrication having a boiling point of less than 300 ° C. is applied to the metal plate. It is preferable that the hardness of the processed surface of the molded member in the drawing step is Hv1500 to 12000, including the lubricant applying step of applying the agent.
  • the coolant contains a preservative and / or a rust preventive.
  • the lubricant and / or the coolant adhering to the surface of the bottomed tubular body is the method for producing the bottomed tubular body according to the embodiment of the present invention. It is preferable to further include a cleaning step of removing the above.
  • the method for producing a bottomed tubular body according to an embodiment of the present invention is, in any of the above (1) to (7), (8) purification for purifying the waste water discharged in the ironing step and / or the cleaning step. It is preferable to include further steps.
  • the method for producing a bottomed tubular body in another embodiment of the present invention uses (9) a drawing die having a processed surface hardness of more than Hv1500 to 12000 and a drawing punch of Hv1000 to 12000.
  • the coolant satisfies at least one of (a) a concentration of oil contained in less than 4.0% by volume, (b) a water-soluble coolant, or (c) a boiling point of less than 300 ° C. It is characterized by that.
  • the bottomed tubular body is preferably a seamless can body.
  • the metal plate (11) is an aluminum alloy.
  • a carbon film is formed on the processed surface of the molded member in the drawing step and / or on the processed surface of the molded member in the ironing step. preferable.
  • a lubricant application step of applying a lubricant to the surface of the metal plate is included before the drawing step, and the processed surface of the drawing die in the drawing step is included.
  • the hardness is preferably Hv1000 to 12000.
  • a step of ironing using a molding processing member for example, a punch and a die having a carbon film on the processing surface is included.
  • a step of drawing using a molded member for example, a punch and a die having a hardness of a processed surface equal to or higher than a predetermined value is included. Therefore, it is possible to omit the lubricant application step of applying the lubricant to the surface of the metal plate (flat plate) before drawing.
  • a water-soluble lubricant or coolant and a lubricant or coolant having a boiling point of less than 300 ° C. are used in the drawing step and the ironing step, no cleaning agent is used in the cleaning step.
  • a step of drawing and ironing using a molded member for example, a punch and a die having a hardness of a processed surface equal to or higher than a predetermined value is included. .. Therefore, in the ironing step, a coolant having at least one of (a) a concentration of oil contained in less than 4.0% by volume, (b) a water-soluble coolant, or (c) a boiling point of less than 300 ° C. was used. In some cases, it is possible to obtain a bottomed tubular body having a squeezing rate similar to or higher than that of the conventional one.
  • the present embodiment it is possible to omit the step of applying the processing oil or the lubricant to the surface of the metal plate (flat plate) before the drawing process.
  • the coolant used in the ironing step either (a) the concentration of oil contained is less than 4.0% by volume, (b) the water-soluble coolant, or (c) the boiling point is less than 300 ° C., whichever is less than F. It is possible to use a coolant that meets the requirements. Therefore, it is possible to wash with water or hot water without using a cleaning agent in the washing step. Alternatively, it is also possible to remove the lubricating component, coolant, etc. adhering to the can body by drying it after the can making process without providing a cleaning step. Therefore, it is possible to reduce the environmental load and the cost in the cleaning process.
  • Applicants of the present invention have found a method for producing a seamless can body as disclosed in Japanese Patent Application No. 2018-204896 and Japanese Patent Application No. 2018-204823. That is, when a die having a diamond film or the like having high slip characteristics formed on the processed surface is used and the oil content in the coolant is reduced to a predetermined amount or less and press working is performed, strict processing such as ironing is performed. Also found that a degree of processing (for example, limit ironing rate) equal to or higher than that of a pressed product manufactured by using a conventional amount of lubricant can be obtained. Furthermore, this time, the present inventors have found a method for producing a bottomed cylindrical body related to the above-mentioned method for producing a seamless can body.
  • the method for manufacturing the bottomed tubular body of the present invention will be specifically described with reference to the drawings as appropriate.
  • the following embodiment shows an example of the present invention and describes the content thereof, and does not intentionally limit the present invention.
  • a seamless can body will be described as an example of the bottomed tubular body, but the present invention is not intentionally limited.
  • FIG. 1 is a schematic view showing a drawing step in the method for manufacturing a bottomed tubular body according to the first embodiment.
  • FIG. 2 is a schematic view showing a squeezing process in the method for manufacturing a bottomed tubular body according to the first embodiment.
  • FIG. 3 is a schematic view showing a flow of a method for manufacturing a bottomed tubular body according to the first embodiment.
  • the metal plate as the work material in the present embodiment is not particularly limited as long as it is used for general metal stamping.
  • metal stamping for example, not only aluminum, copper, iron, steel, titanium, and pure metals, but also various known metal plates such as alloys thereof can be applied.
  • an aluminum alloy plate is particularly suitable for molding a seamless can body.
  • the thickness of the metal plate in this embodiment is not particularly limited, and a normal thickness at the time of manufacturing a seamless can body can be applied.
  • the original plate thickness thickness of the original plate in the case of making a can using an aluminum alloy plate
  • the original plate thickness thickness of the original plate is 0.1 mm to 0.5 mm.
  • the method for producing a bottomed tubular body of the present embodiment may include a lubricant application step of applying a lubricant to the surface of a metal plate.
  • a lubricant application step of applying a lubricant to the surface of a metal plate.
  • the metal plate is not damaged or broken even if it is subjected to severe drawing and ironing processing in the subsequent drawing process and ironing process, and the bottomed cylinder is not damaged. It is possible to process the shape into a desired shape.
  • the lubricant application step is not an essential step and can be omitted as appropriate.
  • the type of lubricant in this embodiment it is preferable to use a water-soluble lubricant and / or a lubricant having a boiling point of less than 300 ° C.
  • the water-soluble lubricant in the present embodiment is defined as a water-soluble lubricant. It is preferable to use a water-soluble lubricant because it is possible to remove the lubricant component adhering after can manufacturing without using a chemical (acid, alkali, surfactant, etc.). In the present embodiment, for example, when cleaning is performed with water in the cleaning process described later, the lubricant component and the coolant component are removed to the extent that defects such as paint unevenness and repelling do not occur in printing in the subsequent process. Is preferable.
  • the "water-soluble lubricant and / or the lubricant having a boiling point of less than 300 ° C.” includes either a “water-soluble lubricant” or a “lubricant having a boiling point of less than 300 ° C.” It means that it may be included or both may be included. Furthermore, certain lubricants having either “water-soluble” or “boiling point less than 300 ° C.” properties may be used, or both "water-soluble” and "boiling point less than 300 ° C.” It also means that those having both properties may be used.
  • the reason why the lubricant having a boiling point of less than 300 ° C. is preferable in the present embodiment is that the adhered lubricant component can be vaporized and removed at a relatively low temperature after the can making step. From the viewpoint of equipment cost, energy cost, etc., it is more preferable that the boiling point of the lubricant is less than 250 ° C.
  • the lubricant in the present embodiment it is possible to apply a non-cleaning oil commercially available as a volatile lubricating oil.
  • the amount and method of applying the lubricant a known amount and a known method can be applied.
  • the drawing process in this embodiment will be described.
  • the processed surface of the molding member (for example, drawing die or drawing punch) in the drawing step has a predetermined hardness or more.
  • the hardness of the processed surface needs to be more than Hv1500 to 12000 in Vickers hardness.
  • the lower limit of the hardness of the processed surface of the molded member in the drawing step can be set to Hv1500. The reason is as follows.
  • the lubricant applied in the lubricant application step as described above is a water-soluble lubricant and / or a lubricant having a boiling point of less than 300 ° C. Is preferable. At that time, in order to prevent the metal plate from being scratched or broken by the molded member, it is necessary to impart higher hardness or slipperiness to the mold.
  • the hardness of the processed surface of the molded member is set to Hv1500 or more to 12000 in Vickers hardness, severe drawing processing is performed. It was also found that there is no problem in terms of durability, wear resistance, scratches on the metal plate, and the like.
  • the molding member (die) in the drawing step may be manufactured of a base material made of a known material as long as the processed surface has the above-mentioned hardness, or the processing of such a base material may be performed. It may be formed by forming a surface treatment film L (see FIG. 1) on the surface.
  • the material of the base material is specifically a cemented carbide obtained by sintering a mixture of tungsten carbide (WC) and a metal binder such as cobalt; a metal carbide such as titanium carbide (TiC). Cermet obtained by sintering a mixture of a titanium compound such as titanium carbide (TiNC) and a metal binder such as nickel or cobalt; cermet;
  • the surface treatment film L formed on the base material for example, a carbon film, a ceramic film, or the like can be preferably used.
  • Examples of the carbon film include a diamond film and a DLC film.
  • the method for forming these carbon films is not particularly limited, and for example, a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD) method, or the like can be applied.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the ceramic film examples include silicon carbide (SiC), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), titanium nitride (TiN), titanium carbide (TiC), and nitride.
  • Hard ceramics such as chromium (CrN) and the like can be mentioned.
  • both the drawing die and the drawing punch may be made of cemented carbide, or one of the drawing die or the drawing punch may be made of cemented carbide.
  • a carbon film may be formed on the processed surfaces of both the drawing die and the drawing punch, or a carbon film may be formed on one of the processing surfaces of the drawing die or the drawing punch.
  • one of the surface-treated films of the drawing die and the drawing punch is a diamond film
  • the other is a surface-treated film other than the diamond film, which enables dimensional control between dies and between dies. It is preferable from the viewpoint of suppressing damage damage.
  • the ironing die D I of the diamond film 20 is formed on the processed surface, with ironing punch P I of the surface treatment film 30 differ are formed on the work surface and the diamond film, with the coolant C is interposed, for ironing the shallow-drawn cup M by processing the surface of the die D I and the punch P I Including the process.
  • the coolant C is required to be a water-soluble coolant and / or a coolant having a boiling point of less than 300 ° C.
  • the hardness and slipperiness It is required that a combined carbon film is formed.
  • the carbon film include a diamond film and a DLC film. The method for forming these carbon films is not particularly limited, and for example, a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD) method, or the like can be applied.
  • the "water-soluble coolant and / or the coolant having a boiling point of less than 300 ° C.” may include either “water-soluble coolant” or “coolant having a boiling point of less than 300 ° C.”, or both. Means that it may contain. Furthermore, a coolant having either “water-soluble” or “boiling point less than 300 ° C.” may be used, or both "water-soluble” and “boiling point less than 300 ° C.” properties. It also means that one that also has the above may be used.
  • a diamond film having a Vickers hardness of about Hv8000 to 12000 is formed on the processed surface of either the male or female mold in the ironing process.
  • a high diamond film 20 hardness is formed in the working surface of the ironing die D I, surface treatment film 30 different from the diamond film to the processing surface of the punch P I ironing formation It may be, or vice versa, although not shown.
  • the ironing die is subject to a harsher processing load than the ironing punch, so it is particularly preferable that the diamond film 20 is formed on the processed surface of the ironing die.
  • the thickness of the diamond film 20 is preferably 5 ⁇ m to 30 ⁇ m. If the thickness is less than 5 ⁇ m, the obtained diamond film is easily cracked and easily peeled off, which is not preferable. On the other hand, when the thickness exceeds 30 ⁇ m, the internal stress of the diamond film increases and the diamond film is easily peeled off, which is not preferable.
  • the surface roughness Ra (JIS B-0601-1994) of the diamond film 20 is preferably 0.12 ⁇ m or less from the viewpoint of imparting high sliding characteristics to the mold. Further, when Ra is 0.08 ⁇ m or less, the appearance of the workpiece (for example, a can body) can be a mirror surface or a smooth surface close to a mirror surface, which is more preferable. In this case, the friction coefficient ⁇ between the diamond film 20 and the material to be processed during press working is preferably lower than 0.1.
  • the coolant used in the ironing process of the present embodiment may contain oil in its components, but it can be easily washed in a subsequent washing step, or it is removed by drying even when the washing step is not provided. It is preferable to be able to do it. Therefore, the coolant in this embodiment is required to be a water-soluble coolant and / or a coolant having a boiling point of less than 300 ° C.
  • the above-mentioned water-soluble coolant is defined as a coolant that is soluble in water. It is preferable to use a water-soluble coolant because it is possible to remove the coolant component adhering after can manufacturing without using a chemical (acid, alkali, surfactant, etc.). In the present embodiment, for example, when cleaning is performed with water in the cleaning process described later, the lubricant component and the coolant component are removed to the extent that defects such as paint unevenness and repelling do not occur in printing in the subsequent process. Is preferable.
  • the reason why the coolant having a boiling point of less than 300 ° C. is preferable is that the adhered coolant component can be vaporized and removed at a relatively low temperature after the can making step.
  • the boiling point of the coolant is more preferably less than 250 ° C. from the viewpoint of equipment cost, energy cost and the like.
  • the coolant in the present embodiment it is possible to apply a non-cleaning oil commercially available as a volatile lubricating oil.
  • the coolant in the present embodiment may contain additives as long as the characteristics of water solubility and / or boiling point of less than 300 ° C. are not impaired.
  • it appropriately contains water, a surfactant, an anticorrosive agent, an extreme pressure additive, a coupling agent, a non-ferrous metal anticorrosive agent, an antiseptic, a rust preventive, an antifoaming agent, a chelating agent, a coloring agent, a fragrance, etc. You may.
  • the coolant of the present embodiment preferably contains a preservative and / or a rust preventive.
  • a preservative and / or a rust preventive is due to the following reasons. That is, in the case of a water-soluble coolant, a large amount of substances that serve as nutrient sources for microorganisms such as bacteria and molds are contained. Therefore, there is a problem that the coolant after dilution is liable to spoil, and rust is liable to occur at a portion of the processing equipment that comes into contact with the coolant.
  • the "preservative and / or rust preventive” means that either the “preservative” or the “rust preventive” may be contained, or both may be contained. .. Furthermore, a substance having either “antiseptic” or “rustproofing” properties may be used, or a substance having both "antiseptic” and “rustproofing” properties may be used. Also means.
  • known substances can be appropriately used as long as the coolant is water-soluble and / or has a boiling point of less than 300 ° C.
  • a formaldehyde-releasing type, a phenol-based substance, or an amine-based substance may be appropriately added.
  • the water-soluble coolant and / or the coolant having a boiling point of less than 300 ° C. is used as described above, it is possible to wash with a chemical or water having a low environmental load in the washing step described later.
  • the cleaning step itself can be omitted, the burden on the environment can be reduced.
  • the wastewater treatment after cleaning becomes easy, when the wastewater is recycled and circulated, the recycling rate can be improved, and the cost and the burden on the environment can be reduced.
  • the ironing process of the present embodiment preferably includes an ironing process of ironing the metal material to form a can body portion so that the ironing rate (plate thickness reduction rate) is 10% or more.
  • the ironing process may be included a plurality of times, and the ironing rate may be changed each time.
  • the ironing rate of the initial ironing process may be 10% or more
  • the ironing rate of the final ironing process may be 30% or more.
  • the ironing ratio in this embodiment is expressed by the following formula when the plate thickness before ironing is t0 and the plate thickness after processing (60 mm from the bottom of the can) is t1.
  • Ironing rate (%) 100 ⁇ (t0-t1) / t0
  • the cleaning process in this embodiment will be described.
  • the cleaning agent is brought into contact with the bottomed tubular body obtained in the above-mentioned drawing step and ironing step, and the lubricant adheres to the inner surface and the outer surface of the bottomed tubular body. And / or a step of removing the coolant.
  • the cleaning step is not an essential step and can be omitted as appropriate.
  • the bottomed tubular body may be immersed in the cleaning agent, or the cleaning agent may be sprayed by a spray or a shower.
  • water can be used in addition to known alkaline cleaning agents, acid cleaning agents and neutral cleaning agents.
  • alkaline cleaning agent include an aqueous solution of an inorganic compound such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, sodium hydroxide, and potassium hydroxide.
  • examples of the acid cleaning agent include aqueous solutions of inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid.
  • a surfactant or the like can be used as the neutral detergent.
  • the concentration of the cleaning component of the cleaning agent is preferably 3.0% by volume or less from the viewpoint of suppressing cost and environmental load.
  • the temperature of the cleaning agent used is preferably less than 70 ° C. That is, in the present embodiment, since both the lubricant in the drawing step and the coolant in the ironing step have a water solubility and / or a boiling point of less than 300 ° C., even if the temperature of the cleaning agent is less than 70 ° C. It is possible to sufficiently remove the oil content on the inner surface and the outer surface of the tubular body.
  • the lower limit of the temperature of the cleaning agent is preferably room temperature (for example, 20 ° C.).
  • room temperature for example, 20 ° C.
  • a cleaning agent is heated and used in order to improve detergency.
  • a reasonable amount of energy resources are consumed to heat the cleaning agent. Therefore, in the present embodiment, from the viewpoint of cost reduction and reduction of environmental load, when the cleaning agent is used, it can be used at room temperature as long as the cleaning property is not deteriorated.
  • the cleaning time in the cleaning step is preferably 45 seconds or less. That is, in the present embodiment, since both the lubricant in the drawing step and the coolant in the ironing step have a water solubility and / or a boiling point of less than 300 ° C., even if the cleaning time is 45 seconds or less, the bottomed cylinder is formed. It is possible to thoroughly clean the inner and outer surfaces of the body. Although there is no particular lower limit on the cleaning time, it is preferable that the lower limit of the cleaning time is, for example, more than 10 seconds, which enables cleaning without any problem in practical use and does not cause a problem in wastewater treatment. When the cleaning agent is sprayed by spraying or showering as a cleaning method, the amount of the cleaning agent ejected per can is preferably 60 to 70 ml / sec.
  • the lubricant and the coolant adhering to the inner surface and the outer surface of the bottomed tubular body are removed by the cleaning agent. Therefore, the weight of the bottomed cylindrical body before and after washing changes, but the weight change is preferably less than 100 mg / m 2.
  • both the lubricant in the drawing step and the coolant in the ironing step have a water solubility and / or a boiling point of less than 300 ° C.
  • the can making step squeezeezing step and ironing step. It has become possible to reduce the amount of lubricant and coolant adhering to the inner and outer surfaces of the bottomed tubular body after the above process.
  • the cleaning step can be omitted as appropriate.
  • a lubricant in the drawing step and a coolant in the ironing work both of which are water-soluble and / or have a boiling point of less than 300 ° C. Therefore, after the can making step (squeezing step and ironing step), it is possible to remove the lubricant and the coolant adhering to the inner surface and the outer surface by the drying step without providing the cleaning step.
  • the lubricant adhering to the inner surface and the outer surface of the bottomed tubular body by heating in a drying oven at about 150 to 300 ° C. for 30 to 180 seconds, for example. And it is possible to remove the coolant.
  • the "drainage discharged in the ironing process and / or the cleaning process” may be either “drainage discharged in the ironing process” or “drainage discharged in the cleaning process”. , Means that it may be both.
  • the ironing process is performed through the coolant in the ironing process.
  • the cleaning step in addition to performing the main cleaning to remove the lubricant and coolant adhering to the surface of the bottomed tubular body using a cleaning agent, pre-cleaning with water and the cleaning agent with water after the main cleaning are performed. Rinse to remove. Therefore, a large amount of wastewater is generated in the cleaning process.
  • the method for producing the bottomed tubular body in the present embodiment may further include a purification step for purifying the wastewater.
  • a purification step for purifying the wastewater it is preferable that the wastewater purified as described above is reused (recycled) as purified water in the ironing process and the cleaning process.
  • the lubricant applied in the lubricant applying step has a water solubility and / or a boiling point of less than 300 ° C.
  • the coolant used in the ironing step also has a water-soluble coolant and / or a boiling point of less than 300 ° C. Therefore, the oil content in the wastewater discharged in the ironing process and the cleaning process is also less than the predetermined value.
  • the wastewater generated in the ironing process and / or the cleaning process can be purified by a relatively simple method. Then, by going through the above purification process, it becomes possible to further reduce the environmental load and the cost.
  • a known method can be appropriately used. That is, it is possible to perform purification by appropriately combining methods such as filtration, neutralization, boiling, precipitation, levitation, biological treatment, and UV sterilization. Further, a flocculant, a disinfectant, a disinfectant and the like may be appropriately mixed.
  • the coolant used in the ironing process can be water-soluble and / or have a boiling point of less than 300 ° C.
  • B Since the hardness of the processed surface of the molded member in the drawing step is set to a predetermined value or more, it is possible to omit the lubricant applying step of applying the lubricant to the surface of the metal plate (flat plate) before drawing.
  • C As a result of the above, heating of the cleaning agent in the cleaning step can be suppressed and / or the cleaning time can be shortened. It is also possible not to provide a cleaning process.
  • D As a result, it becomes possible to reduce the environmental load and the cost.
  • FIG. 1 The schematic diagram showing the drawing process shown in FIG. 1 is also applicable to the second embodiment.
  • the schematic diagram showing the ironing process shown in FIG. 2 is also applicable to the second embodiment.
  • FIG. 4 is a schematic view showing a flow of a method for manufacturing a bottomed tubular body according to the second embodiment.
  • the metal plate as the work material in the present embodiment is not particularly limited as long as it is used for general metal stamping.
  • metal stamping for example, not only aluminum, copper, iron, steel, titanium, and pure metals, but also various known metal plates such as alloys thereof can be applied.
  • an aluminum alloy plate is particularly suitable for molding a seamless can body.
  • the thickness of the metal plate in this embodiment is not particularly limited, and a normal thickness at the time of manufacturing a seamless can body can be applied.
  • the original plate thickness thickness of the original plate in the case of making a can using an aluminum alloy plate
  • the original plate thickness thickness of the original plate is 0.1 mm to 0.5 mm.
  • the method for producing a bottomed tubular body of the present embodiment may include a lubricant application step of applying a lubricant to the surface of a metal plate (flat plate) before drawing.
  • the lubricant also includes an oil component generally referred to as "metalworking oil” or "metal cutting oil”.
  • metalworking oil or metal cutting oil
  • this step is not an essential step for the reason described later.
  • Examples of the type of lubricant in this embodiment include the following.
  • mineral oils composed of fatty acid esters, fatty acid alcohols, fatty acids and the like can be used.
  • the water-soluble lubricant in the present embodiment is defined as a water-soluble lubricant. It is preferable to use a water-soluble lubricant because it is possible to remove the lubricant component adhering after can manufacturing without using a chemical (acid, alkali, surfactant, etc.). In the present embodiment, for example, when cleaning is performed with water in the cleaning process described later, the lubricant component and the coolant component are removed to the extent that defects such as paint unevenness and repelling do not occur in printing in the subsequent process. Is preferable.
  • a lubricant having a boiling point of less than 300 ° C. specifically, a non-cleaning oil commercially available as a volatile lubricating oil can be applied.
  • the reason why a lubricant having a boiling point of less than 300 ° C. is preferable is that it is possible to vaporize and remove the adhered lubricant component at a relatively low temperature after the can manufacturing process. From the viewpoint of equipment cost, energy cost, etc., it is more preferable that the boiling point of the lubricant is less than 250 ° C.
  • a known amount and a known method can be applied to the amount and method of applying the lubricant.
  • the viscosity of the lubricant is preferably less than 200 mPa ⁇ s from the viewpoint of reducing the environmental load and cost in the cleaning process which is the object of the present invention. If the viscosity of the lubricant is 200 mPa ⁇ s or more, it may not be possible to sufficiently clean or remove the lubricant in the subsequent cleaning step or drying step, which is not preferable.
  • the viscosity of the lubricant is more preferably less than 100 mPa ⁇ s.
  • the processed surface of the molding member (for example, drawing die or drawing punch) in the drawing step has a predetermined hardness or more.
  • the hardness of the processed surface needs to be Hv1000 to 12000 in Vickers hardness.
  • the hardness of the processed surface of the drawing die is more than Hv1500 to 12000, and the hardness of the processed surface of the drawing punch is Hv1000 to 12000. It is a feature. The reason is as follows.
  • the present embodiment in order to reduce the environmental load and cost in the cleaning process, it is possible to omit the step of applying the processing oil or the lubricant to the surface of the metal plate (flat plate) before the drawing process. At that time, in order to prevent the metal plate from being scratched or broken by the molded member, it is necessary to impart higher hardness or slipperiness to the mold.
  • the hardness of the processed surface of the molded member in the drawing process is as high as the hardness of the processed surface of the drawing die in the Vickers hardness of more than Hv1500 to 12000.
  • the molding member (die) in the drawing step may be manufactured of a base material made of a known material as long as the processed surface has the above-mentioned hardness, or the base material of such a base material may be used.
  • a surface treatment film L (see FIG. 2) may be formed on the processed surface.
  • the material of the base material is specifically a cemented carbide obtained by sintering a mixture of tungsten carbide (WC) and a metal binder such as cobalt; a metal carbide such as titanium carbide (TiC). Cermet obtained by sintering a mixture of a titanium compound such as titanium carbide (TiNC) and a metal binder such as nickel or cobalt; and the like.
  • the surface treatment film L formed on the base material for example, a carbon film, a ceramic film, a fluororesin film, or the like can be preferably used.
  • Examples of the carbon film include a diamond film having a Vickers hardness of about Hv8000 to 12000, a DLC film having a Vickers hardness of about Hv3000 to 7000, and the like.
  • the method for forming these carbon films is not particularly limited, and for example, a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD) method, or the like can be applied.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the ceramic film examples include hard ceramics such as silicon carbide (SiC), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2).
  • hard ceramics such as silicon carbide (SiC), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2).
  • the same material or surface treatment film L may be used for both the drawing die and the drawing punch, or different materials or surface treatment films may be used.
  • L may be used.
  • both the drawing die and the drawing punch may be made of cemented carbide, or one of the drawing die or the drawing punch may be made of cemented carbide.
  • a carbon film may be formed on the processed surfaces of both the drawing die and the drawing punch, or a carbon film may be formed on one of the processing surfaces of the drawing die or the drawing punch. That has been drawn die D surface treatment film L on the work surface of D is formed in FIG. 2, the surface treatment film L in the processing surface of the drawing punch P D is not formed, the present invention is to It is not limited.
  • a carbon film is formed on at least one processed surface of the male mold and the female mold at the time of drawing.
  • a drawing die is used as the female mold and a drawing punch is used as the male mold, it is preferable that a carbon film is formed on at least one of the processed surfaces.
  • a DLC film may be formed on the processed surfaces of both the drawing die and the drawing punch, or a diamond film is formed on one of the drawing die and the drawing punch and the DLC film on the other. May be formed.
  • one of the surface treatment films of the drawing die and the drawing punch is a diamond film
  • the other is other than the diamond film.
  • the surface-treated film is more preferable.
  • the diamond film is formed on the drawing die, which is subject to a higher processing load.
  • the diamond film may be formed at least on the above-mentioned processed surface of the die portion, but may be formed on other portions.
  • the thickness of the diamond film is preferably 5 ⁇ m to 30 ⁇ m. If the thickness is less than 5 ⁇ m, the obtained diamond film is easily cracked and easily peeled off, which is not preferable. On the other hand, when the thickness exceeds 30 ⁇ m, the internal stress of the diamond film increases and the diamond film is easily peeled off, which is not preferable.
  • the thickness of the surface-treated film formed on the other is preferably about 0.1 to 10 ⁇ m, and particularly the thickness of the diamond film. It is preferable that it is set to be thinner than the above. This is due to the following reasons. That is, for example, when the thickness of the surface-treated film formed on the drawing punch is made thinner than the thickness of the diamond film formed on the drawing die, the dimensional error due to the film formation can be reduced in the first place because it is a thin film.
  • the Vickers hardness of the surface treatment film is softer than that of the diamond film, it is possible to easily polish by using known diamond abrasive grains, and not only the processing cost can be reduced, but also the desired purpose. Mold dimensions can be finished with high precision.
  • the ironing process in this embodiment is characterized in that the hardness of the processed surface of the molded member (for example, ironing die or ironing punch) in the ironing process is Hv1500 to 12000.
  • the ironing die D I of the diamond film 20 is formed on the processed surface, with ironing punch P I of the surface treatment film 30 differ are formed on the work surface and the diamond film, with the coolant C is interposed, for ironing the shallow-drawn cup M by processing the surface of the die D I and the punch P I Including the process.
  • the concentration of the oil contained in the coolant C needs to be less than 4.0% by volume, or the coolant C needs to be a water-soluble coolant or a coolant having a boiling point of less than 300 ° C. Will be done. Therefore, it reasons such as to avoid scratching or breaking of the workpiece (metal plate 10 and shallow drawn cup M), which ironing hardness of the work surface of the die D I and ironing punch P I is to Hv1500 ⁇ 12000 Is required.
  • carbon film is formed in any of the work surface of the ironing die D I and ironing punch P I.
  • the carbon film include a diamond film having a Vickers hardness of about Hv8000 to 12000 and a DLC film having a Vickers hardness of about Hv3000 to 7000.
  • the method for forming these carbon films is not particularly limited, and for example, a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD) method, or the like can be applied.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the diamond film is formed on the processed surface of either the male mold or the female mold of the mold. That is, as shown in FIG. 2, a high diamond film 20 hardness is formed in the working surface of the ironing die D I, surface treatment film 30 different from the diamond film to the processing surface of the punch P I ironing formation It may be, or vice versa, although not shown.
  • the ironing die is subject to a harsher processing load than the ironing punch, so it is particularly preferable that the diamond film 20 is formed on the processed surface of the ironing die.
  • the thickness of the diamond film 20 is preferably 5 ⁇ m to 30 ⁇ m. If the thickness is less than 5 ⁇ m, the obtained diamond film is easily cracked and easily peeled off, which is not preferable. On the other hand, when the thickness exceeds 30 ⁇ m, the internal stress of the diamond film increases and the diamond film is easily peeled off, which is not preferable.
  • the thickness of the surface-treated film 30 different from the diamond film 20 is preferably about 0.1 to 10 ⁇ m, and is particularly preferably set to be thinner than the thickness of the diamond film 20. This is due to the following reasons. That is, for example, when the thickness of the surface treatment film 30 is made thinner than the thickness of the diamond film 20, the dimensional error due to the film formation can be reduced in the first place because it is a thin film.
  • the surface roughness Ra (JIS B-0601-1994) of the diamond film 20 is preferably 0.12 ⁇ m or less from the viewpoint of imparting high sliding characteristics to the mold. Further, when Ra is 0.08 ⁇ m or less, the appearance of the workpiece (for example, a can body) can be a mirror surface or a smooth surface close to a mirror surface, which is more preferable. In this case, the friction coefficient ⁇ between the diamond film 20 and the material to be processed during press working is preferably lower than 0.1.
  • the coolant used in the ironing process of the present embodiment may contain oil in its components, but it can be easily washed in a subsequent washing step, or it is removed by drying even when the washing step is not provided. It is preferable to be able to do it. Therefore, the coolant in the present embodiment shall be (a) an oil content of less than 4.0% by volume, (b) a water-soluble coolant, or (c) a coolant having a boiling point of less than 300 ° C. It is preferable that at least one of the above is satisfied.
  • the oil content includes the oil content contained in a general water-soluble metalworking oil composition.
  • the oil component may be a natural oil component or a synthetic oil component.
  • Examples of the natural oil content include paraffin-based, naphthenic-based, aromatic-based and other mineral oils.
  • fatty acid glyceride can also be mentioned as a natural oil component.
  • Examples of the synthetic oil include hydrocarbons such as polyolefins, ester-based fatty acid esters, ether-based polyalkylene glycols, fluorine-containing systems such as perfluorocarbon, phosphorus-containing systems such as phosphoric acid esters, and silicic acid esters. Silicon-containing type, etc. can be mentioned.
  • oils listed above they may be used alone or in combination of two or more.
  • A1 type (emulsion type) or A2 type (solvable type) water-soluble metal processing oil specified in JIS K 2241 can be mentioned.
  • a so-called synthetic type (metalworking oil which does not contain mineral oil and contains chemically synthesized oil), which is a water-soluble metalworking oil can also be mentioned.
  • the concentration of the oil in the coolant is preferably less than 4.0% by volume.
  • Coolants of less than 4.0% by volume may be prepared. That is, the concentration of the oil in the coolant may be less than 4.0% by volume in the state of use.
  • the water-soluble coolant is defined as a coolant that is soluble in water. It is preferable to use a water-soluble coolant because it is possible to remove the coolant component adhering after can manufacturing without using a chemical (acid, alkali, surfactant, etc.). In the present embodiment, for example, when cleaning is performed with water in the cleaning process described later, the lubricant component and the coolant component are removed to the extent that defects such as paint unevenness and repelling do not occur in printing in the subsequent process. Is preferable.
  • a non-cleaning oil commercially available as a coolant having a boiling point of less than 300 ° C., specifically as a volatile lubricating oil can be applied.
  • a coolant having a boiling point of less than 300 ° C. is preferable is that the adhered coolant component can be vaporized and removed at a relatively low temperature after the can manufacturing process.
  • the boiling point of the coolant is more preferably less than 250 ° C. from the viewpoint of equipment cost, energy cost and the like.
  • the above-mentioned coolants (a), (b) and (c) may be mixed and used. Further, a coolant having a plurality of properties among (a), (b) and (c) may be used.
  • the coolant in the present embodiment as long as the characteristics of (a) the oil content of less than 4.0% by volume, (b) water solubility, and (c) the boiling point of less than 300 ° C. are not impaired, at least one of them is not impaired.
  • It may contain additives.
  • it appropriately contains water, a surfactant, an anticorrosive agent, an extreme pressure additive, a coupling agent, a non-ferrous metal anticorrosive agent, a preservative, a rust inhibitor, an antifoaming agent, a chelating agent, a coloring agent, a fragrance, etc. You may.
  • the coolant of the present embodiment preferably contains a preservative and / or a rust preventive.
  • a preservative and / or a rust preventive means that either the "preservative” or the "rust preventive” may be contained, or both may be contained. ..
  • a substance having either "antiseptic” or “rustproofing” properties may be used, or a substance having both "antiseptic” and “rustproofing” properties may be used. Also means.
  • the coolant characteristics of (a) containing less than 4.0% by volume of oil, (b) water-soluble, and (c) boiling point of less than 300 ° C. are impaired.
  • known substances can be used as appropriate. For example, a formaldehyde-releasing type, a phenol-based substance, or an amine-based substance may be appropriately added.
  • the coolant at the time of ironing is (a) less than 4.0% by volume of oil contained, (b) water-soluble coolant, or (c) boiling point of 300.
  • it is at least one of the coolants having a temperature lower than ° C., it is possible to suppress molding defects during can manufacturing, and as a result, it is possible to improve molding stability.
  • the above-mentioned coolant is used in this embodiment, it is possible to wash with a chemical or water having a low environmental load in the washing step described later.
  • the cleaning step itself can be omitted, the burden on the environment can be reduced.
  • the wastewater treatment after cleaning becomes easy, when the wastewater is recycled and circulated, the recycling rate can be improved, and the cost and the burden on the environment can be reduced.
  • the ironing process of the present embodiment preferably includes an ironing process of ironing the metal material to form a can body portion so that the ironing rate (plate thickness reduction rate) is 10% or more.
  • the ironing process may be included a plurality of times, and the ironing rate may be changed each time.
  • the ironing rate of the initial ironing process may be 10% or more
  • the ironing rate of the final ironing process may be 30% or more.
  • the ironing ratio in this embodiment is expressed by the following formula when the plate thickness before ironing is t0 and the plate thickness after processing (60 mm from the bottom of the can) is t1.
  • Ironing rate (%) 100 ⁇ (t0-t1) / t0
  • the cleaning process in this embodiment will be described.
  • the cleaning agent is brought into contact with the bottomed tubular body obtained in the above-mentioned drawing step and ironing step, and the lubricant adheres to the inner surface and the outer surface of the bottomed tubular body.
  • the step of removing the coolant is not an essential step and can be omitted as appropriate.
  • the bottomed tubular body may be immersed in the cleaning agent, or the cleaning agent may be sprayed by a spray or a shower.
  • cleaning agent used in the present embodiment known alkaline cleaning agents, acid cleaning agents, neutral cleaning agents can be used, or water can be used.
  • alkaline cleaning agent examples include an aqueous solution of an inorganic compound such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, sodium hydroxide, and potassium hydroxide.
  • acid cleaning agent examples include aqueous solutions of inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid.
  • the cleaning treatment is performed with water, and then air blow or hot air is used. It is preferable to remove the moisture on the surface of the metal plate by a method such as drying.
  • the concentration of the cleaning component of the cleaning agent is 2.0 to 5.0% by weight, which reduces the cost and environmental load while maintaining the cleaning property. It is preferable from the viewpoint of suppressing.
  • the temperature of the cleaning agent used is preferably less than 70 ° C. That is, in the present embodiment, it is possible to omit the step of applying the processing oil or the lubricant to the surface of the metal plate (flat plate) before the drawing process, and the oil content (a) contained as the coolant in the ironing process can be omitted. At least one of less than 4.0% by volume, (b) water-soluble coolant, or (c) coolant with a boiling point of less than 300 ° C. is used. Therefore, even if the temperature of the cleaning agent is less than 70 ° C., it is possible to sufficiently remove the oil content on the inner surface and the outer surface of the bottomed cylindrical body.
  • the lower limit of the temperature of the cleaning agent is preferably room temperature (for example, 20 ° C.).
  • room temperature for example, 20 ° C.
  • a cleaning agent is heated and used in order to improve detergency.
  • a reasonable amount of energy resources are consumed to heat the cleaning agent. Therefore, in the present embodiment, from the viewpoint of cost reduction and reduction of environmental load, when the cleaning agent is used, it can be used at room temperature as long as the cleaning property is not deteriorated.
  • the cleaning time in the cleaning step is preferably 45 seconds or less. That is, in the present embodiment, since both the lubricant in the drawing step and the coolant in the ironing step have a water solubility and / or a boiling point of less than 300 ° C., even if the cleaning time is 45 seconds or less, the bottomed cylinder is formed. It is possible to thoroughly clean the inner and outer surfaces of the body. Although there is no particular lower limit on the cleaning time, it is preferable that the lower limit of the cleaning time is, for example, more than 10 seconds, which enables cleaning without any problem in practical use and does not cause a problem in wastewater treatment. When the cleaning agent is sprayed by spraying or showering as a cleaning method, the amount of the cleaning agent ejected per can is preferably 60 to 70 ml / sec.
  • the lubricant and the coolant adhering to the inner surface and the outer surface of the bottomed tubular body are removed by the cleaning agent. Therefore, the weight of the bottomed cylindrical body before and after washing changes, but the weight change is preferably less than 100 mg / m 2.
  • the cleaning step can be omitted as appropriate. In that case, it is preferable to provide a drying step in order to remove the lubricant and the coolant adhering to the inner surface and the outer surface of the bottomed cylindrical body.
  • the oil content (a) contained as the coolant in the ironing process can be omitted.
  • At least one of less than 4.0% by volume, (b) water-soluble coolant, or (c) coolant with a boiling point of less than 300 ° C. is used.
  • the cleaning step is not provided after the can-making step (squeezing step and ironing step), it is possible to remove the lubricant and coolant adhering to the inner surface and the outer surface of the bottomed tubular body by the drying step.
  • the lubricant adhering to the inner surface and the outer surface of the bottomed tubular body by heating in a drying oven at about 150 to 300 ° C. for 30 to 180 seconds, for example. And it is possible to remove the coolant.
  • the method for producing a bottomed tubular body in the present embodiment may include a purification step of purifying the waste water discharged in the above-mentioned ironing step and / or cleaning step.
  • the ironing process is performed through the coolant in the ironing process. Further, in the cleaning step, a cleaning agent is used to remove the coolant component adhering to the surface of the bottomed cylindrical body. Therefore, a large amount of wastewater is generated in both processes.
  • the method for producing the bottomed tubular body in the present embodiment may further include a purification step for purifying the wastewater.
  • a purification step for purifying the wastewater it is preferable that the wastewater purified as described above is reused (recycled) as purified water in the ironing process and the cleaning process.
  • the method for manufacturing a bottomed tubular body in the present embodiment it is possible to omit the step of applying the processing oil or the lubricant to the surface of the metal plate (flat plate) before drawing. Further, at least one of (a) less than 4.0% by volume of oil, (b) water-soluble coolant, and (c) coolant having a boiling point of less than 300 ° C. may be used as the coolant in the ironing process. As described above.
  • the wastewater generated in the ironing process and / or the cleaning process can be purified by a relatively simple method. Then, by going through the above purification process, it becomes possible to further reduce the environmental load and the cost.
  • a known method can be appropriately used. That is, it is possible to perform purification by appropriately combining methods such as filtration, neutralization, boiling, precipitation, levitation, biological treatment, and UV sterilization. Further, a flocculant, a disinfectant, a disinfectant and the like may be appropriately mixed.
  • the following effects can be obtained.
  • Example 1 A squeezed iron can (DI can) having an internal volume of 350 mL was produced by the method shown below. First, an aluminum alloy plate (JIS H 4000 3104 material, 0.28 mm) was prepared. Next, 1.0 to 1.3 g / m 2 of a water-soluble lubricant was applied to both surfaces of the aluminum alloy plate as a lubricant during drawing.
  • JIS H 4000 3104 material JIS H 4000 3104 material, 0.28 mm
  • the aluminum alloy plate was punched into a disk shape having a diameter of 160 mm with a drawing machine, and then immediately drawn to form a cup body having a diameter of 90 mm.
  • the processed surface hardness of the molded member during drawing was set to Hv1500.
  • the obtained cup body is transported to a body maker (can body maker), re-drawn to have a shape of 66 mm in diameter, and then using coolant to form a shape having a diameter of 66 mm and a height of 130 mm. Ironing was performed.
  • the ironing die As the ironing die at this time, a die having a diamond film having an average thickness of about 10 ⁇ m formed on the surface thereof was used. The surface hardness of the diamond film was Hv10000. As the ironing punch used, a diamond-like carbon film having a thickness of 0.5 ⁇ m was formed on the surface thereof. The surface hardness of the diamond-like carbon film was Hv3000.
  • the ironing rate during ironing was as shown in Table 1.
  • a water-soluble coolant was used during the ironing process.
  • Known surfactants, rust preventives, extreme pressure additives, and preservatives were added to the coolant.
  • the obtained DI can was washed to remove the lubricant and coolant components adhering to the inner and outer surfaces.
  • Sulfuric acid (concentration: 3.0% by volume) was used as the cleaning agent used in the cleaning.
  • the temperature of the cleaning agent during cleaning was 20 ° C., and the cleaning time was 30 seconds.
  • Example 2 The same procedure as in Example 1 was carried out except that a lubricant having a boiling point shown in Table 1 was used as the lubricant during drawing. The results are shown in Table 1.
  • Example 3 The same procedure as in Example 1 was carried out except that the processed surface hardness of the molded member during drawing was as shown in Table 1. The results are shown in Table 1.
  • Example 4 The same procedure as in Example 1 was carried out except that the processed surface hardness of the drawing die during drawing was as shown in Table 1. The results are shown in Table 1.
  • Example 5 The same procedure as in Example 1 was carried out except that the surface hardness of the drawing punch during drawing was as shown in Table 1. The results are shown in Table 1.
  • Example 6 As the ironing die at the time of ironing, a diamond-like carbon film having an average thickness of 0.5 ⁇ m was formed on the surface thereof. The surface hardness of the diamond-like carbon film was Hv3000. Other than that, it was carried out in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 As the ironing punch at the time of ironing, a diamond film having an average thickness of about 10 ⁇ m was formed on the surface thereof. The surface hardness of the diamond film was Hv10000. Other than that, it was carried out in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 The coolant used during the ironing process was assumed to have the boiling point shown in Table 1. Other than that, it was carried out in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 The cleaning was carried out in the same manner as in Example 1 except that pure water was used as the cleaning agent used in the cleaning. The results are shown in Table 1.
  • Example 10 The process was carried out in the same manner as in Example 1 except that the process of washing after the squeezing process was performed and drying (300 ° C. for 30 seconds) was performed. The results are shown in Table 1.
  • Example 11 The coolant used during the ironing process was assumed to have the boiling point shown in Table 1. Other than that, it was carried out in the same manner as in Example 2. The results are shown in Table 1.
  • Example 12 The cleaning was carried out in the same manner as in Example 2 except that pure water was used as the cleaning agent used in the cleaning. The results are shown in Table 1.
  • Example 13 The process was carried out in the same manner as in Example 2 except that the process of washing after the squeezing process was performed and drying (300 ° C. for 30 seconds) was performed. The results are shown in Table 1.
  • Example 14 The cleaning was carried out in the same manner as in Example 8 except that pure water was used as the cleaning agent used in the cleaning. The results are shown in Table 1.
  • Example 15 The process was carried out in the same manner as in Example 8 except that the process of washing after the squeezing process was performed and drying (300 ° C. for 30 seconds) was performed. The results are shown in Table 1.
  • Example 16 The cleaning was carried out in the same manner as in Example 11 except that pure water was used as the cleaning agent used in the cleaning. The results are shown in Table 1.
  • Example 17 The process was carried out in the same manner as in Example 11 except that the process of washing after the squeezing process was performed and drying (300 ° C. for 30 seconds) was performed. The results are shown in Table 1.
  • Example 18 After the washing step after the squeezing process, further drying (300 ° C. for 30 seconds) was performed. Other than that, it was carried out in the same manner as in Example 14. The results are shown in Table 1.
  • Example 19 After the washing step after the squeezing process, further drying (300 ° C. for 30 seconds) was performed. Other than that, the same procedure as in Example 12 was carried out. The results are shown in Table 1.
  • Example 20 The same procedure as in Example 3 was carried out except that the lubricant was not applied during the drawing process and the ironing rate during the ironing process was set to the value shown in Table 1. The results are shown in Table 1.
  • Example 1 The same procedure as in Example 1 was carried out except that a water-insoluble lubricant was applied as a lubricant during drawing. The results are shown in Table 1.
  • Example 2 The same procedure as in Example 1 was carried out except that a lubricant having a boiling point shown in Table 1 was used as the lubricant during drawing. The results are shown in Table 1.
  • Example 3 The same procedure as in Example 1 was carried out except that the processed surface hardness of the drawing die during drawing was as shown in Table 1, but the barrel was broken in the drawing step. The results are shown in Table 1.
  • Example 5 The same procedure as in Example 1 was carried out except that the coolant used during the ironing process was a water-insoluble coolant. The results are shown in Table 1.
  • Example 6 The coolant used during the ironing process shall have the boiling point shown in Table 1, and shall be carried out in the same manner as in Example 1 except that drying (300 ° C. for 30 seconds) was performed instead of the washing step after the drawing process. rice field. The results are shown in Table 1.
  • Example 7 The coolant used during the ironing process was a water-insoluble coolant, and the same procedure as in Example 1 was carried out except that drying (300 ° C. for 30 seconds) was performed instead of the washing step after the squeezing and ironing process. The results are shown in Table 1.
  • Example 8 The same procedure as in Example 1 was carried out except that the lubricant was not applied during the drawing process, but the barrel was broken in the drawing step. The results are shown in Table 1.
  • Example 21 A squeezed iron can (DI can) having an internal volume of 350 mL was produced by the method shown below. First, an aluminum alloy plate (JIS H 4000 3104 material, 0.28 mm) was prepared. No lubricant was applied to both sides of the aluminum alloy plate.
  • JIS H 4000 3104 material JIS H 4000 3104 material, 0.28 mm
  • the aluminum alloy plate was punched into a disk shape having a diameter of 160 mm with a drawing machine, and then immediately drawn to form a cup body having a diameter of 90 mm.
  • the processed surface hardness of the molded member during drawing was as shown in Table 1.
  • the obtained cup body is transported to a body maker (can body maker), re-drawn to have a shape of 66 mm in diameter, and then using coolant to form a shape having a diameter of 66 mm and a height of 130 mm. Ironing was performed.
  • a die having a diamond film having an average thickness of about 10 ⁇ m formed on the surface thereof was used.
  • the surface hardness of the diamond film was as shown in Table 1.
  • As the ironing punch used a diamond-like carbon film having a thickness of 0.5 ⁇ m was formed on the surface thereof.
  • the surface hardness of the diamond-like carbon film was as shown in Table 1.
  • the ironing rate during ironing was as shown in Table 1.
  • the oil content in the coolant is as shown in Table 1.
  • Known surfactants, rust preventives, extreme pressure additives, and preservatives were added to the coolant.
  • the obtained DI can was washed to remove the lubricant and coolant components adhering to the inner and outer surfaces.
  • Sulfuric acid (concentration: 3.0%) was used as the cleaning agent used in the cleaning.
  • the temperature of the cleaning agent during cleaning was 50 ° C., and the cleaning time was 30 seconds.
  • Example 22 The same procedure as in Example 21 was carried out except that the processed surface hardness of the ironing die during ironing was as shown in Table 2. The results are shown in Table 2.
  • Example 23 The same procedure as in Example 21 was carried out except that the processed surface hardness of the ironing die during ironing was as shown in Table 2. The results are shown in Table 2.
  • Example 24 The same procedure as in Example 21 was carried out except that the processed surface hardness of the ironing punch during the ironing process was as shown in Table 2. The results are shown in Table 2.
  • Example 25 The oil content of the coolant used during the ironing process is shown in Table 2. Other than that, the same procedure as in Example 21 was carried out. The results are shown in Table 2.
  • Example 26 The coolant used during the ironing process was assumed to have the boiling point shown in Table 2. Other than that, the same procedure as in Example 21 was carried out. The results are shown in Table 2.
  • Example 27 The cleaning was carried out in the same manner as in Example 21 except that pure water was used as the cleaning agent used in the cleaning. The results are shown in Table 2.
  • Example 28 The coolant used during the ironing process shall have the boiling point shown in Table 2, and shall be carried out in the same manner as in Example 21 except that drying (300 ° C. for 30 seconds) was performed instead of the washing step after the drawing process. rice field. The results are shown in Table 2.
  • Example 29 The same procedure as in Example 27 was carried out except that the processed surface hardness of the punch and die in the drawing process and the ironing process was as shown in Table 2. The results are shown in Table 2.
  • Example 30 The same procedure as in Example 27 was carried out except that the processed surface hardness of the punch and die in the drawing process and the ironing process was as shown in Table 2. The results are shown in Table 2.
  • Example 31 The same procedure as in Example 28 was carried out except that the processed surface hardness of the punch and die in the drawing process and the ironing process was as shown in Table 2. The results are shown in Table 2.
  • Example 32 The same procedure as in Example 21 was carried out except that the processed surface hardness of the punch and die in the drawing process and the ironing process was as shown in Table 2. The results are shown in Table 2.
  • Example 33 The same procedure as in Example 27 was carried out except that the water-soluble lubricating oil was applied before the drawing process and the processing surface hardness of the drawing punch and the drawing die in the drawing process was as shown in Table 2. The results are shown in Table 2.
  • Example 34 The same procedure as in Example 21 was carried out except that the processed surface hardness of the drawing punch in the drawing step was as shown in Table 2. The results are shown in Table 2.
  • Example 35 The procedure was the same as in Example 34 except that the water-soluble lubricating oil was applied before the drawing step. The results are shown in Table 2.
  • Example 36 The same procedure as in Example 21 was carried out except that the processing surface hardness of the punches in the drawing process and the ironing process was as shown in Table 2. The results are shown in Table 2.
  • Example 37 The same procedure as in Example 34 was carried out except that the processed surface hardness of the punch in the ironing process was as shown in Table 2. The results are shown in Table 2.
  • Example 9 The same procedure as in Example 21 was carried out except that the processed surface hardness of the drawing die during drawing was as shown in Table 2, but the barrel was broken in the drawing step. The results are shown in Table 2.
  • Example 10 (Comparative Example 10) The same procedure as in Example 21 was carried out except that the surface hardness of the drawing die and the drawing punch during drawing was as shown in Table 2, but the barrel was broken in the drawing step. The results are shown in Table 2.
  • Example 11 The same procedure as in Example 21 was carried out except that the surface hardness of the ironing die and the ironing punch at the time of ironing was as shown in Table 2. The results are shown in Table 2.
  • Comparative Example 12 The procedure was the same as in Comparative Example 11 except that the water-soluble lubricating oil was applied before the drawing step. The results are shown in Table 2.
  • Example 13 The process was the same as in Example 21 except that the process of washing after the squeezing process was performed and drying (300 ° C. for 30 seconds) was performed. The results are shown in Table 2.
  • Comparative Example 16 The procedure was the same as in Comparative Example 13 except that the water-soluble lubricating oil was applied before the drawing step. The results are shown in Table 2.
  • the coolant used in the ironing step is water-soluble and / or even when the boiling point is less than 300 ° C., it is the same as or higher than the conventional one. It has become possible to obtain a bottomed tubular body with a squeezing rate. Further, according to the first embodiment, it is possible to further provide a lubricant application step of applying a lubricant to the surface of the metal plate (flat plate) before drawing, and the lubricant is water-soluble and / or Even when the boiling point is less than 300 ° C., it is possible to obtain the same or better processability as before.
  • the cleaning step since a water-soluble lubricant or coolant and a lubricant or coolant having a boiling point of less than 300 ° C. are used in the drawing step and the ironing step, no cleaning agent is used in the cleaning step.
  • the wastewater generated in the ironing process and the cleaning process can be reused (recycled) in the ironing process and the cleaning process after the purification process for purifying the wastewater.
  • the coolant used in the ironing step has (a) a concentration of less than 4.0% by volume of oil and (b) a water-soluble coolant. , Or (c) even when the boiling point is less than 300 ° C., it is possible to obtain a bottomed cylindrical body having a squeezing rate similar to or higher than that of the conventional one.
  • the coolant since the above-mentioned coolant is used, it may be possible to wash with water or hot water without using a detergent in the washing step. Alternatively, it can be removed by drying the lubricant, coolant, etc. adhering to the can body after the can making process without providing a cleaning step. Further, it is clear that the wastewater generated in the ironing process and the cleaning process can be reused (recycled) in the ironing process and the cleaning process after the purification process for purifying the wastewater.
  • the present invention can be suitably used in the field of metal stamping, which is environmentally friendly while maintaining processability and molding stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

従来の絞り加工・しごき加工等の厳しい製缶加工と、洗浄工程におけるコスト削減や環境負荷軽減とを両立し得る有底筒状体の製造方法を提供する。 有底筒状体の製造方法であって、加工表面の硬さがHv1500~12000の成形加工部材を用いて金属板を絞り加工する絞り工程と、加工表面に炭素膜を有する成形加工部材を用いて、クーラントを介して被加工部材をしごき加工して有底筒状体とするしごき工程と、を含み、前記クーラントが、水溶性クーラント、又は、沸点が300℃未満のクーラントであることを特徴とする、有底筒状体の製造方法。又は、有底筒状体の製造方法であって、加工表面の硬さがHv1500超~12000の絞りダイ及びHv1000~12000の絞りパンチを用いて金属板を絞り加工する絞り工程と、加工表面の硬さがHv1500~12000の成形加工部材を用いて、クーラントを介して被加工部材をしごき加工して有底筒状体とするしごき工程と、を含み、前記クーラントが、(a)含有される油分の濃度が4.0体積%未満、(b)水溶性クーラント、又は、(c)沸点が300℃未満、の少なくともいずれかを満たす、ことを特徴とする、有底筒状体の製造方法。

Description

有底筒状体の製造方法
 本発明は、有底筒状体の製造方法に関し、より詳細には、絞りしごき加工により金属製の有底筒状体を製造する方法に関する。
 金属製の有底筒状体、例えば、いわゆるシームレス缶体は、プレス加工用金型を用いて絞りしごき加工によって製造される。
 上記絞りしごき加工において使用されるパンチ部及びダイ部は、一般的に過酷な環境下に置かれることから、例えば特許文献2~5に示されるような金型が提案されている。すなわち、加工表面にダイヤモンド膜やDLC(ダイヤモンドライクカーボン)膜などの炭素膜を被覆して、金型の耐久性を向上させることが提案されている。
 一方で従来、例えばアルミニウム合金材を用いてシームレス缶体を製造する場合には、潤滑剤や冷却剤(クーラント)を使用してウェット環境で成形を行うことが一般的である。この場合、製缶加工後に、缶体に付着した加工油・潤滑剤・クーラント等を、洗浄剤や薬剤で洗浄する洗浄工程(ウォッシャ工程)が不可欠である。
特許第6012804号公報 特開平10-137861号公報 特開平11-277160公報 特開2013-163187号公報 国際公開WO2017/033791号公報
 しかしながら、上記従来のシームレス缶体の製造方法においては、洗浄工程に大量のエネルギーやコストが必要とされる問題や、環境負荷が大きいという問題があった。
 例えば、洗浄工程に使用される多量の水に関するコストや環境負荷の軽減、洗浄工程で使用される薬剤が与える環境負荷の軽減、また、洗浄工程において洗浄剤を加温する際に必要とされるエネルギーの減少、などが求められていた。
 さらに今回本発明者らが鋭意検討を重ねた結果、特定の条件下でクーラントを使用して有底筒状体を製造した場合には、従来の絞り加工・しごき加工等の厳しい加工と、洗浄工程におけるコスト削減や環境負荷軽減とを両立し得ることを見出し、本発明に至ったものである。
 上記目的を達成するため、本発明の一実施形態における有底筒状体の製造方法は、(1)加工表面の硬さがHv1500超~12000の成形加工部材を用いて金属板を絞り加工する絞り工程と、加工表面に炭素膜を有する成形加工部材を用いて、クーラントを介して被加工部材をしごき加工して有底筒状体とするしごき工程と、を含み、前記クーラントが、水溶性クーラント、及び/又は、沸点が300℃未満のクーラントであることを特徴とする。
 上記(1)において、(2)前記有底筒状体がシームレス缶体であることが好ましい。
 また上記(1)又は(2)において、(3)前記金属板がアルミニウム合金であることが好ましい。
 さらに上記(1)~(3)のいずれかにおいて(4)前記炭素膜がダイヤモンド膜であることが好ましい。
 上記(1)~(4)のいずれかにおいて、(5)前記金属板を絞り加工する絞り工程の前に、前記金属板に、水溶性潤滑剤、及び/又は、沸点が300℃未満の潤滑剤を塗布する潤滑剤塗布工程を含み、前記絞り工程における成形加工部材の加工表面の硬さがHv1500~12000である、ことが好ましい。
 上記(1)~(5)のいずれかにおいて、(6)前記クーラントが防腐剤及び/又は防錆剤を含有することが好ましい。
 本発明の一実施形態における有底筒状体の製造方法は、上記(1)~(6)のいずれかにおいて、(7)前記有底筒状体の表面に付着した潤滑剤及び/又はクーラントを除去する洗浄工程をさらに含むことが好ましい。
 本発明の一実施形態における有底筒状体の製造方法は、上記(1)~(7)のいずれかにおいて、(8)前記しごき工程及び/又は洗浄工程において排出された排水を浄化する浄化工程をさらに含むことが好ましい。
 上記目的を達成するため、本発明の他の実施形態における有底筒状体の製造方法は、(9)加工表面の硬さがHv1500超~12000の絞りダイ及びHv1000~12000の絞りパンチを用いて金属板を絞り加工する絞り工程と、加工表面の硬さがHv1500~12000の成形加工部材を用いて、クーラントを介して被加工部材をしごき加工して有底筒状体とするしごき工程と、を含み、前記クーラントが、(a)含有される油分の濃度が4.0体積%未満、(b)水溶性クーラント、又は、(c)沸点が300℃未満、の少なくともいずれかを満たす、ことを特徴とする。
 上記(9)において、(10)前記有底筒状体はシームレス缶体であることが好ましい。
 また上記(9)又は(10)において、(11)前記金属板がアルミニウム合金であることが好ましい。
 上記(9)~(11)のいずれかにおいて、(12)前記絞り工程における成形加工部材の加工表面、及び/又は前記しごき工程における成形加工部材の加工表面に炭素膜が形成されていることが好ましい。
 上記(9)~(12)のいずれかにおいて、(13)前記絞り工程前に、前記金属板の表面に潤滑剤を塗布する潤滑剤塗布工程を含み、前記絞り工程における絞りダイの加工表面の硬さがHv1000~12000であることが好ましい。
 上記(9)~(13)のいずれかにおいて、(14)前記しごき工程、又は前記しごき工程後の洗浄工程において排出された排水を浄化する洗浄工程をさらに含むことが好ましい。
 本発明の有底筒状体の製造方法によれば、加工表面に炭素膜を有する成形加工部材(例えばパンチ及びダイ)を用いてしごき加工をする工程を含む。
 そのためしごき工程において使用されるクーラントについて、水溶性クーラント、及び/又は、沸点が300℃未満のクーラントを使用した場合でも、従来と同様又はそれ以上のしごき率の有底筒状体を得ることが可能となる。
 また本発明の有底筒状体の製造方法によれば、加工表面の硬さが所定の値以上の成形加工部材(例えばパンチ及びダイ)を用いて絞り加工をする工程を含む。そのため、絞り加工前の金属板(平板)表面に塗布する潤滑剤塗布工程を省略することが可能である。
 また本発明においては、絞り加工前に、金属板(平板)表面に水溶性潤滑剤、及び/又は、沸点が300℃未満の潤滑剤を塗布する工程を有していてもよい。その場合、絞り工程における成形加工部材の加工表面の硬さの下限値を低くしても、従来と同様又はそれ以上の加工性を得ることが可能となる。
 また本実施形態によれば、絞り工程およびしごき工程において水溶性の潤滑剤やクーラント、及び、沸点が300℃未満の潤滑剤やクーラントを使用しているため、洗浄工程において洗浄剤を使用せずに、水または湯を用いて洗浄することが可能となる。あるいは、洗浄剤における洗浄成分の濃度を低くすることが可能となる。
 あるいは、洗浄工程を設けずに、製缶加工後に、缶体に付着した潤滑剤・クーラント等を乾燥させることにより除去することも可能となる。
 そのため、洗浄工程における環境負荷の軽減やコスト削減を図ることが可能となる。
 また、本発明の有底筒状体の製造方法によれば、加工表面の硬さが所定の値以上の成形加工部材(例えばパンチ及びダイ)を用いて絞り加工及びしごき加工をする工程を含む。
 そのためしごき工程において、(a)含有される油分の濃度が4.0体積%未満、(b)水溶性クーラント、又は、(c)沸点が300℃未満、の少なくともいずれかを満たすクーラントを使用した場合において、従来と同様又はそれ以上のしごき率の有底筒状体を得ることが可能となる。
 また本実施形態によれば、絞り加工前における金属板(平板)表面への加工油や潤滑剤の塗布工程を省略することが可能となる。また、しごき工程において使用するクーラントについて(a)含有される油分の濃度が4.0体積%未満、(b)水溶性クーラント、又は、(c)沸点が300℃未満、の少なくFともいずれかを満たすクーラントを使用することが可能となる。そのため、洗浄工程において洗浄剤を使用せずに、水または湯を用いて洗浄することが可能となる。あるいは、洗浄工程を設けずに、製缶加工後に、缶体に付着した潤滑成分・クーラント等を乾燥させることにより除去することも可能となる。
 そのため、洗浄工程における環境負荷の軽減やコスト削減を図ることが可能となる。
本発明の一実施形態における有底筒状体の製造方法のうち、絞り工程を示す模式図である。 本発明の一実施形態における有底筒状体の製造方法のうち、しごき工程を示す模式図である。 本発明の一実施形態における有底筒状体の製造方法の流れを示す模式図である。 本発明の他の実施形態における有底筒状体の製造方法の流れを示す模式図である。
[有底筒状体の製造方法]
 本発明の出願人らは、特願2018-204896号明細書及び特願2018-204823号明細書に開示するようなシームレス缶体の製造方法を見出した。すなわち、高い滑り特性を持つダイヤモンド膜等を加工表面に形成した金型を使用しつつ、クーラント中の油分を所定の量以下としてプレス加工をした場合には、しごき加工等の厳しい加工を行っても、従来の量の潤滑剤を使用して製造したプレス加工品と同等以上の加工度合い(例えば限界しごき率)を得ることを見出した。
 さらに今回、本発明者らは上記シームレス缶体の製造方法に関連する有底筒状体の製造方法を見出したものである。
 以下、適宜図面を参照しつつ、本発明の有底筒状体の製造方法について具体的に説明する。なお、以下の実施形態は本発明の一例を示してその内容について説明するものであり、本発明を意図的に限定するものではない。また、下記実施形態においては、有底筒状体の例としてシームレス缶体を挙げて説明するが、本発明を意図的に限定するものではない。
(第1の実施形態)
 まず、第1の実施形態による有底筒状体の製造方法について説明する。図1は、第1の実施形態による有底筒状体の製造方法のうち、絞り工程を示す模式図である。また図2は、第1の実施形態による有底筒状体の製造方法のうち、しごき工程を示す模式図である。さらに図3は、第1の実施形態による有底筒状体の製造方法の流れを示す模式図である。
<金属板>
 本実施形態における被加工材としての金属板は、一般的な金属プレス加工に供されるものであれば特に制限はない。例えば、アルミニウム、銅、鉄、鋼、チタン、さらに純金属だけでなく、それらの合金など公知の種々の金属板が適用できる。このうち、シームレス缶体を成形する場合には、アルミニウム合金板が特に好適である。
 本実施形態における金属板の厚みとしては、特に制限はなく、シームレス缶体製造時における通常の厚みを適用することができる。例えばアルミニウム合金板を用いて製缶加工をする場合の金属板の厚みの一例として、元板厚(原板の厚み)が0.1mm~0.5mmである。
<潤滑剤塗布工程>
 本実施形態の有底筒状体の製造方法においては、金属板の表面に潤滑剤を塗布する潤滑剤塗布工程を含んでいてもよい。一般的に知られているように、潤滑剤を塗布することにより、後の絞り工程やしごき工程において厳しい絞りしごき加工を施しても、金属板が傷ついたり破断したりすることなく、有底筒状体等の所望の形状に加工することが可能となる。なお、本実施形態において潤滑剤塗布工程は必須の工程ではなく、適宜省略することも可能である。
 本実施形態における潤滑剤の種類としては、水溶性潤滑剤、及び/又は、沸点が300℃未満の潤滑剤を用いることが好ましい。
 本実施形態における水溶性潤滑剤としては、水に可溶である潤滑剤と定義される。水溶性潤滑剤を用いることにより、薬剤(酸、アルカリ、界面活性剤等)を用いずに製缶後に付着した潤滑剤成分を除去することが可能となるため好ましい。なお、本実施形態においては、例えば後述する洗浄工程において水で洗浄を行った場合、後工程の印刷において塗料のムラ、はじき等の不良が発生しない程度に潤滑剤成分やクーラント成分が除去されることが好ましい。
 なお本実施形態において「水溶性潤滑剤、及び/又は、沸点が300℃未満の潤滑剤」とは、「水溶性潤滑剤」と「沸点が300℃未満の潤滑剤」のいずれかを含んでいてもよいし、両方を含んでいてもよいことを意味する。さらには、ある潤滑剤において「水溶性」と「沸点が300℃未満」のいずれかの性質を有するものを使用してもよいし、「水溶性」と「沸点が300℃未満」の両方の性質を兼ね備えるものを使用してもよいことをも意味する。
 また、本実施形態において沸点が300℃未満の潤滑剤が好ましい理由としては、製缶工程後に、付着した潤滑剤成分を比較的低温で気化させて除去することが可能となるためである。なお、設備コストやエネルギーコスト等の観点から、潤滑剤の沸点は250℃未満であることがさらに好ましい。
 本実施形態における潤滑剤は具体的には、揮発性潤滑油として市販されている無洗浄油を適用することが可能である。
 なお潤滑剤の塗布量及び塗布方法については、公知の量及び公知の方法を適用することが可能である。
<絞り工程>
 次に、本実施形態における絞り工程について説明する。
 本実施形態における絞り工程においては、絞り工程における成形加工部材(例えば、絞り加工ダイや絞り加工パンチ)の加工表面が、所定の硬さ以上であることが好ましい。具体的には、前記加工表面の硬さがビッカース硬度においてHv1500超~12000であることが必要である。また、上述した絞り工程の前に潤滑剤塗布工程が設けられる場合には、絞り工程における成形加工部材の加工表面の硬さの下限を、Hv1500とすることが可能となる。
 その理由としては以下のとおりである。
 すなわち、金属板の絞り工程の例を図1を用いて説明すると、絞り加工ダイDと絞り加工パンチPとの間に金属板10が介在した状態で、絞り加工パンチPによって絞り加工が施され、浅絞りカップMが製造される。その際、当該絞り加工ダイDと絞り加工パンチPには強い衝撃荷重が作用するため、量産化に耐え得る程度の高い耐久性や耐摩耗性が必要とされる。
 また本実施形態では、洗浄工程における環境負荷やコスト低減を図るため、上述のように潤滑剤塗布工程において塗布する潤滑剤は、水溶性潤滑剤及び/又は沸点が300℃未満の潤滑剤であるものが好ましい。その際、成形加工部材による金属板の傷付きや破断を回避するため、金型により高い硬度またはすべり性を付与する必要がある。
 上記観点より本発明者らが試行錯誤した結果、本実施形態においては、成形加工部材の加工表面の硬さを、ビッカース硬度においてHv1500超~12000とした場合、過酷な絞り加工が施される場合においても、耐久性や耐摩耗性、金属板の傷付き等の観点において、問題がないことを見出したものである。
 本実施形態において、絞り工程における成形加工部材(金型)は、加工表面が上記の硬さである限りにおいて、公知の素材からなる基材で製造されていてもよいし、かかる基材の加工表面に表面処理膜L(図1参照)を形成してなるものであってもよい。
 上記金型において基材の素材としては、具体的には、タングステンカーバイド(WC)とコバルト等の金属バインダーとの混合物を焼結して得られる超硬合金;炭化チタン(TiC)等の金属炭化物や炭窒化チタン(TiNC)等のチタン化合物とニッケルやコバルト等の金属バインダーとの混合物を焼結して得られるサーメット;、セラミック等を挙げることができる。
 また、上記基材の上に形成する前記表面処理膜Lとしては、例えば炭素膜、セラミック膜、等を好ましく用いることができる。
 前記炭素膜としては、ダイヤモンド膜やDLC膜等を挙げることができる。これら炭素膜の形成方法には特に制限はなく、例えば化学蒸着(CVD)法や物理蒸着(PVD)法等を適用することが可能である。
 また前記セラミック膜としては例えば、炭化ケイ素(SiC)や窒化ケイ素(Si)、アルミナ(Al)、ジルコニア(ZrO)、窒化チタン(TiN)、炭化チタン(TiC)、窒化クロム(CrN)といった硬質セラミック等を挙げることができる。
 本実施形態において、絞り工程に用いる成形加工部材の種類の組み合わせとしては、絞り加工ダイと絞り加工パンチの両方に同じ素材又は表面処理膜が使用されてもよいし、異なる素材又は表面処理膜が使用されてもよい。例えば、絞り加工ダイと絞り加工パンチの両方が超硬合金製であってもよいし、絞り加工ダイ又は絞り加工パンチの一方が超硬合金製であってもよい。あるいは、絞り加工ダイと絞り加工パンチの両方の加工表面に炭素膜が形成されていてもよいし、絞り加工ダイ又は絞り加工パンチの一方の加工表面に炭素膜が形成されていてもよい。
 なお、絞り加工ダイと絞り加工パンチの一方の表面処理膜がダイヤモンド膜である場合には、他方はダイヤモンド膜以外の表面処理膜であることが、金型間の寸法管理や、金型間の破損被害の抑制の観点からは好ましい。
<しごき工程>
 次に、本実施形態におけるしごき工程について説明する。
 本実施形態におけるしごき工程としては、しごき工程における成形加工部材(例えばしごきダイやしごきパンチ)の加工表面に、炭素膜が形成されていることが好ましい。
 図面を用いて本実施形態のしごき工程をより具体的に説明すると、図2(a)、(b)に示すように、例えば、ダイヤモンド膜20が加工表面に形成されたしごきダイDと、ダイヤモンド膜とは異なる表面処理膜30が加工表面に形成されたしごきパンチPを用い、クーラントCが介在した状態で、ダイD及びパンチPの加工表面で浅絞りカップMをしごき加工する工程を含む。
 その際、上記しごきダイDとしごきパンチPには、量産化に耐え得る程度の高い耐久性や耐摩耗性が必要とされる。また本実施形態においては、上記クーラントCは、水溶性クーラント及び/又は沸点が300℃未満のクーラントであることが必要とされる。それゆえ、被加工部材(金属板10や浅絞りカップM)の傷つきや破断を避けるため等の理由で、しごきダイDとしごきパンチPの加工表面のいずれかに、硬度と滑り性を兼ね備えた炭素膜が形成されていることが必要とされる。炭素膜としては、ダイヤモンド膜やDLC膜等を挙げることができる。これら炭素膜の形成方法には特に制限はなく、例えば化学蒸着(CVD)法や物理蒸着(PVD)法等を適用することが可能である。
 なお本実施形態において「水溶性クーラント及び/又は沸点が300℃未満のクーラント」とは、「水溶性クーラント」と「沸点が300℃未満のクーラント」のいずれかを含んでいてもよいし、両方を含んでいてもよいことを意味する。さらには、あるクーラントにおいて「水溶性」と「沸点が300℃未満」のいずれかの性質を有するものを使用してもよいし、「水溶性」と「沸点が300℃未満」の両方の性質を兼ね備えるものを使用してもよいことをも意味する。
 なお、本実施形態においては特に、しごき工程においてビッカース硬度Hv8000~12000程度のダイヤモンド膜が、金型の雄型と雌型のいずれかの加工表面に形成されていることが好ましい。
 すなわち、図2において示されるように、硬度の高いダイヤモンド膜20が、しごきダイDの加工表面に形成されており、しごきパンチPの加工表面にダイヤモンド膜とは異なる表面処理膜30が形成されていてもよいし、図示はしないがその逆でもよい。
 なお、一般的にはしごきダイの方がしごきパンチよりも過酷な加工負荷を受けることが多いので、特にしごきダイの加工表面にダイヤモンド膜20が形成されることが好ましい。
 上記ダイヤモンド膜20の厚みとしては、5μm~30μmであることが好ましい。厚みが5μm未満の場合には、得られたダイヤモンド膜にクラックが入りやすく剥離しやすくなるため、好ましくない。一方で、厚みが30μmを超える場合にはダイヤモンド膜の内部応力が高まり剥離しやすくなるため、好ましくない。
 また、本実施形態においてダイヤモンド膜20の表面粗さRa(JIS B-0601-1994)は、0.12μm以下であることが、金型に高い滑り特性を付与できる観点から好ましい。さらに、Raを0.08μm以下とした場合、被加工物(例えば缶体)の外観を鏡面或いは鏡面に近い平滑面とすることができ、より好ましい。
 この場合、プレス加工時におけるダイヤモンド膜20と被加工材との間の摩擦係数μは0.1よりも低いことが好ましい。
 次に、本実施形態のしごき工程において用いられるクーラントについて説明する。
 本実施形態において用いられるクーラントとしては、その成分中に油分を含有してもよいが、後の洗浄工程で容易に洗浄可能であること、あるいは、洗浄工程を設けない場合にも、乾燥により除去できることが好ましい。従って、本実施形態におけるクーラントは、水溶性クーラント及び/又は沸点が300℃未満のクーラントであることが必要とされる。
 なお上記した水溶性クーラントとしては、水に可溶であるクーラントと定義される。水溶性クーラントを用いることにより、薬剤(酸、アルカリ、界面活性剤等)を用いずに製缶後に付着したクーラント成分を除去することが可能となるため好ましい。なお、本実施形態においては、例えば後述する洗浄工程において水で洗浄を行った場合、後工程の印刷において塗料のムラ、はじき等の不良が発生しない程度に潤滑剤成分やクーラント成分が除去されることが好ましい。
 また、沸点が300℃未満のクーラントが好ましい理由としては、製缶工程後に、付着したクーラント成分を比較的低温で気化させて除去することが可能となるためである。なお、設備コストやエネルギーコスト等の観点から、クーラントの沸点は250℃未満であることがさらに好ましい。
 本実施形態におけるクーラントは具体的には、揮発性潤滑油として市販されている無洗浄油を適用することが可能である。
 また本実施形態におけるクーラント中には、水溶性及び/又は沸点が300℃未満であるという特徴を損なわない限りにおいて、添加物を含んでいてもよい。例えば、水、界面活性剤、さび止め剤、極圧添加剤、カップリング剤、非鉄金属防食剤、防腐剤、防錆剤、消泡剤、キレート剤、着色料、香料、等を適宜含んでいてもよい。
 特に本実施形態のクーラントは、防腐剤及び/又は防錆剤を含んでいることが好ましい。これは以下の理由によるものである。
 すなわち、水溶性のクーラントの場合、細菌やカビ等の微生物の栄養源となる物質が多く含有されている。そのため、希釈後のクーラントが腐敗しやすい、また、加工の設備のうちクーラントと接触する箇所に錆が発生しやすいという問題がある。
 なお本実施形態において「防腐剤及び/又は防錆剤」とは、「防腐剤」と「防錆剤」のいずれかを含んでいてもよいし、両方を含んでいてもよいことを意味する。さらには、「防腐」と「防錆」のいずれかの性質を有する物質を使用してもよいし、「防腐」と「防錆」の両方の性質を兼ね備える物質を使用してもよいことをも意味する。
 クーラントの腐敗が進行すると、クーラントの機能である潤滑機能や冷却機能が低下するばかりでなく、腐敗による悪臭も問題となる。また錆が発生した場合には、加工装置の寿命の著しい低下や被加工物に対する傷つき等の問題が発生する。
 また腐敗や錆の発生によってクーラント交換の頻度が高くなることによるコスト面の問題も発生する。さらに、カビや錆が発生した場合、ポンプ等の循環系統においてパイプ詰まりの原因にもなる。
 防腐剤と防錆剤としては、クーラントが水溶性及び/又は沸点が300℃未満である限りにおいて、公知の物質を適宜使用することが可能である。例えば、ホルムアルデヒド放出型やフェノール系の物質、あるいは、アミン系の物質を適宜添加してもよい。
 このように本実施形態の製造方法においては、水溶性クーラント及び/又は沸点が300℃未満のクーラントを使用した場合でも、製缶時の成形不良等を抑制することができ、結果的に成形安定性を向上させることが可能である。
 また本実施形態においては上述のように水溶性クーラント及び/又は沸点が300℃未満のクーラントを使用するため、後述の洗浄工程において、環境負荷の低い薬剤や水での洗浄が可能となる。あるいは、洗浄工程そのものを省略することも可能となるため、環境への負荷を軽減することが可能となる。
 また、洗浄後の排水処理が容易となったことにより、排水をリサイクルして循環させる場合、リサイクル率を向上させることが可能となり、コストや環境への負荷を軽減することが可能となる。
 なお、本実施形態のしごき工程においては、しごき率(板厚減少率)が10%以上となるように前記金属材をしごいて缶胴部を形成するしごき加工の工程を含むことが好ましい。なお、しごき加工の工程は複数回含まれていてもよく、各回のしごき率を変化させてもよい。例えば、初期のしごき工程のしごき率を10%以上とし、最終のしごき工程のしごき率を30%以上としてもよい。
 なお本実施形態におけるしごき率は、しごき加工前の板厚t0、加工後の板厚(缶底から60mm部分)をt1としたとき、下記式で表される。
   しごき率(%)=100×(t0-t1)/t0
<洗浄工程>
 次に、本実施形態における洗浄工程について説明する。
 本実施形態における洗浄工程は、上述の絞り工程及びしごき工程において得られた有底筒状体に対して洗浄剤を接触させ、前記有底筒状体の内側表面及び外側表面に付着する潤滑剤及び/又はクーラントを除去する工程である。なお、本実施形態においては洗浄工程は必須の工程ではなく、適宜省略することも可能である。
 洗浄剤を有底筒状体に接触させる方法としては、公知の方法を適宜用いることができる。例えば、洗浄剤中に有底筒状体を浸漬してもよいし、スプレーやシャワーにより洗浄剤を吹き付けてもよい。
 本実施形態において使用される洗浄剤としては、公知のアルカリ洗浄剤や酸洗浄剤や中性洗浄剤の他、水を用いることができる。
 アルカリ洗浄剤としては例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム等の無機化合物の水溶液が挙げられる。また、上記酸洗浄剤としては例えば、硫酸、硝酸、塩酸、フッ化水素酸、等の無機酸等の水溶液を挙げることができる。中性洗浄剤としては界面活性剤等を使用することができる。
 なおアルカリ洗浄剤や酸洗浄剤や中性洗浄剤を用いて洗浄処理を行った後は、公知のように、金属板表面に残存する洗浄剤を除去するために、水洗処理を行なった後、エアーブロー若しくは熱空気乾燥等の方法にて、金属板表面の水分を除去することが好ましい。
 なお、アルカリ洗浄剤や酸洗浄剤等を使用する場合の洗浄剤の洗浄成分の濃度としては、3.0体積%以下であることが、コストや環境負荷を抑制する観点からは好ましい。
 本実施形態における洗浄工程においては、使用される洗浄剤の温度が70℃未満であることが好ましい。すなわち本実施形態においては、絞り工程における潤滑剤、及び、しごき工程におけるクーラントが共に水溶性及び/又は沸点が300℃未満であるため、洗浄剤の温度が70℃未満であっても、有底筒状体の内側表面及び外側表面の油分を充分に除去することが可能となる。
 一方で、洗浄剤の温度の下限としては、室温(例えば20℃)であることが好ましい。
一般的に金属プレス加工において加工油等を洗浄する際には、洗浄性を高めるために洗浄剤が加熱して使用される。しかしながら、洗浄剤を加熱するためには相応のエネルギー資源が消費される。そのため本実施形態においては、コスト抑制や環境負荷軽減の観点では、洗浄剤を使用する際には、洗浄性が低下しない限りにおいて、室温で使用することが可能である。
 さらに本実施形態においては、コスト抑制や環境負荷軽減の観点から、洗浄工程における洗浄時間が45秒以下であることが好ましい。すなわち本実施形態においては、絞り工程における潤滑剤、及び、しごき工程におけるクーラントが共に水溶性及び/又は沸点が300℃未満であるため、洗浄時間が45秒以下であっても、有底筒状体の内側表面及び外側表面を充分に洗浄することが可能である。
 なお、洗浄時間の下限は特にないが、実用上問題無く洗浄ができ、且つ排水処理性に問題のない洗浄時間の下限としては例えば10秒超であることが好ましい。また、洗浄の方法としてスプレーやシャワーにより洗浄剤を吹き付ける場合には、一缶当たり、洗浄剤噴出量は60~70ml/秒であることが好ましい。
 本実施形態の洗浄工程においては、洗浄剤により有底筒状体の内側表面及び外側表面に付着した潤滑剤及びクーラントを除去する。そのため、洗浄前後の有底筒状体の重量には変化が生じるが、当該重量変化は100mg/m未満であることが好ましい。
 すなわち本実施形態においては、上述のように、絞り工程における潤滑剤、及び、しごき工程におけるクーラントが共に水溶性及び/又は沸点が300℃未満であるため、製缶工程(絞り工程及びしごき工程)を経た後で有底筒状体の内側表面および外側表面に付着する潤滑剤やクーラントの量を少なくすることが可能となった。
 よって、洗浄前後の有底筒状体の重量変化を100mg/m未満とすることで、洗浄工程において発生する排水中に含まれる潤滑剤及びクーラントの量をも減少することが可能となり、環境負荷を軽減することが可能となった。
<乾燥工程>
 本実施形態において、洗浄工程は適宜省略することが可能であることは上述したとおりである。その場合、有底筒状体の内側表面及び外側表面に付着した潤滑剤及びクーラントを除去するために、乾燥工程を設けることが好ましい。
 すなわち、本実施形態においては絞り工程における潤滑剤、及び、しごき工におけるクーラントに関して、共に水溶性及び/又は沸点300℃未満のものを使用することが好ましい。そのため、製缶工程(絞り工程及びしごき工程)後には、洗浄工程を設けることなく乾燥工程により内側表面及び外側表面に付着した潤滑剤及びクーラントを除去することが可能である。
 本実施形態の乾燥工程においては、具体的には、例えば乾燥オーブン中で約150~300℃、30~180秒間加熱することにより、有底筒状体の内側表面及び外側表面に付着した潤滑剤及びクーラントを除去することが可能である。
<浄化工程>
 次に、本実施形態における、上述した有底筒状体の製造方法におけるしごき工程及び/又は洗浄工程において排出された排水を浄化する浄化工程について説明する。
 なお本実施形態において「しごき工程及び/又は洗浄工程において排出された排水」とは、「しごき工程において排出された排水」と「洗浄工程において排出された排水」のいずれかであってもよいし、その両方であってもよいことを意味する。
 すなわち上述したように、本実施形態の有底筒状体の製造方法において、しごき工程においてはクーラントを介してしごき加工が行われる。また、洗浄工程においては洗浄剤を用いて有底筒状体の表面に付着した潤滑剤及びクーラントを除去する本洗浄を行うことに加え、水による予洗浄や、本洗浄の後に水により洗浄剤を除去するすすぎなどを行う。そのため、洗浄工程においては大量の排水が発生する。
 従って本実施形態における有底筒状体の製造方法においては、図3に示すように、上記排水を浄化する浄化工程をさらに含んでいてもよい。このとき、後述する理由から、上記のように浄化された排水は、浄化水として再度しごき工程や洗浄工程に再利用(リサイクル)されることが好ましい。
 すなわち、本実施形態における有底筒状体の製造方法では、潤滑剤塗布工程において塗布される潤滑剤は水溶性及び/又は沸点が300℃未満であることは上述したとおりである。また、しごき工程において使用されるクーラントについても、水溶性クーラント及び/又は沸点が300℃未満であることは上述したとおりである。したがって、しごき工程及び洗浄工程において排出される排水に含まれる油分についても、所定の値未満となる。
 そのため、しごき工程及び/又は洗浄工程において発生する排水は、比較的簡易な方法で浄化することが可能である。そして上記浄化工程を経ることにより、さらなる環境負荷の低減やコスト削減を図ることが可能となる。
 上記浄化工程における排水の浄化方法としては、公知の方法を適宜用いることができる。すなわち、濾過、中和、煮沸、沈殿、浮上、生物処理、UV殺菌等の方法を適宜組み合わせて浄化を行うことが可能である。また、凝集剤、消毒薬、殺菌剤等を適宜混入してもよい。
 以上、本実施形態の有底筒状体の製造方法によれば、以下の効果を奏することができる。
(A)しごき工程における成形加工部材の加工表面に炭素膜を有するため、しごき工程において使用するクーラントを水溶性及び/又は沸点が300℃未満とすることができる。
(B)絞り工程における成形加工部材の加工表面の硬さを所定の値以上とするため、絞り加工前の金属板(平板)表面に塗布する潤滑剤塗布工程を省略することが可能である。
(C)上記の結果、洗浄工程における洗浄剤の加熱を抑制し、及び/又は洗浄時間を短くすることができる。また、洗浄工程を設けないことも可能となる。
(D)結果的に、環境負荷の軽減やコスト削減を図ることが可能となる。
 また、本実施形態において上記浄化工程をさらに実行すれば、以下の効果をさらに奏することができる。
(E)しごき工程及び/又は洗浄工程において排出される排水の浄化処理が容易とすることができる。
(F)排水を浄化して再利用(リサイクル)することが可能となり、コストや環境への負荷を軽減することが可能となる。
(第2の実施形態)
 次に、第2の実施形態による有底筒状体の製造方法について説明する。図1に示す絞り工程を示す模式図は、第2の実施形態においても適用可能である。また図2に示すしごき工程を示す模式図は、第2の実施形態においても適用可能である。さらに図4は、第2の実施形態による有底筒状体の製造方法の流れを示す模式図である。
<金属板>
 本実施形態における被加工材としての金属板は、一般的な金属プレス加工に供されるものであれば特に制限はない。例えば、アルミニウム、銅、鉄、鋼、チタン、さらに純金属だけでなく、それらの合金など公知の種々の金属板が適用できる。このうち、シームレス缶体を成形する場合には、アルミニウム合金板が特に好適である。
 本実施形態における金属板の厚みとしては、特に制限はなく、シームレス缶体製造時における通常の厚みを適用することができる。例えばアルミニウム合金板を用いて製缶加工をする場合の金属板の厚みの一例として、元板厚(原板の厚み)が0.1mm~0.5mmである。
<潤滑剤塗布工程>
 本実施形態の有底筒状体の製造方法においては、絞り加工前の金属板(平板)の表面に、潤滑剤を塗布する潤滑剤塗布工程を含んでいてもよい。なお、本実施形態において前記潤滑剤とは一般的に「金属加工油」又は「金属切削油」と称される油分をも含むものとする。
 一般的に知られているように、絞り加工前に公知の加工油や潤滑剤を塗布することにより、後の絞り工程やしごき工程において厳しい絞りしごき加工を施しても、金属板が傷ついたり破断したりすることなく、有底筒状体等の所望の形状に加工することが可能となる。しかしながら本実施形態においては、後述する理由によりこの工程は必須の工程ではない。
 本実施形態における潤滑剤の種類としては、以下のようなものを挙げることができる。
 例えば、脂肪酸エステル、脂肪酸アルコール又は脂肪酸等からなる鉱物油等を使用することができる。
 あるいは、水溶性潤滑剤、又は、沸点が300℃未満の潤滑剤を用いることも可能である。
 本実施形態における水溶性潤滑剤としては、水に可溶である潤滑剤と定義される。水溶性潤滑剤を用いることにより、薬剤(酸、アルカリ、界面活性剤等)を用いずに製缶後に付着した潤滑剤成分を除去することが可能となるため好ましい。なお、本実施形態においては、例えば後述する洗浄工程において水で洗浄を行った場合、後工程の印刷において塗料のムラ、はじき等の不良が発生しない程度に潤滑剤成分やクーラント成分が除去されることが好ましい。
 沸点が300℃未満の潤滑剤としては、具体的には、揮発性潤滑油として市販されている無洗浄油を適用することが可能である。沸点が300℃未満の潤滑剤が好ましい理由としては、製缶工程後に、付着した潤滑剤成分を比較的低温で気化させて除去することが可能となるためである。なお、設備コストやエネルギーコスト等の観点から、潤滑剤の沸点は250℃未満であることがさらに好ましい。
 なお、本工程において、潤滑剤の塗布量及び塗布方法については、公知の量及び公知の方法を適用することが可能である。
 本実施形態において、前記潤滑剤の粘度としては200mPa・s未満であることが、本発明の目的とする洗浄工程における環境負荷やコストの低減の観点からは好ましい。潤滑剤の粘度が200mPa・s以上であった場合、後の洗浄工程や乾燥工程において、潤滑剤の十分な洗浄や除去が行えない可能性があり、好ましくない。なお潤滑剤の粘度は、100mPa・s未満であることがさらに好ましい。
<絞り工程>
 次に、本実施形態における絞り工程について説明する。
 本実施形態における絞り工程においては、絞り工程における成形加工部材(例えば、絞り加工ダイや絞り加工パンチ)の加工表面が、所定の硬さ以上であることが好ましい。具体的には、前記加工表面の硬さがビッカース硬度においてHv1000~12000であることが必要である。具体的には本実施形態における有底筒状体の製造方法は、絞りダイの加工表面の硬さがHv1500超~12000であり、絞りパンチの加工表面の硬さがHv1000~12000であることを特徴とする。
その理由としては以下のとおりである。
 すなわち、図1を用いて金属板の絞り工程の例を説明すると、絞り加工ダイDと絞り加工パンチPとの間に金属板10が介在した状態で、絞り加工パンチPによって絞り加工が施され、浅絞りカップMが製造される。その際、当該絞り加工ダイDと絞り加工パンチPには強い衝撃荷重が作用するため、量産化に耐え得る程度の高い耐久性や耐摩耗性が必要とされる。
 また本実施形態では、洗浄工程における環境負荷やコスト低減を図るため、絞り加工前における金属板(平板)表面への加工油や潤滑剤の塗布工程を省略することが可能となる。その際、成形加工部材による金属板の傷付きや破断を回避するため、金型により高い硬度またはすべり性を付与する必要がある。
 上記観点より本発明者らが試行錯誤した結果、本実施形態においては、絞り加工における成形加工部材の加工表面の硬さを、ビッカース硬度において絞りダイの加工表面の硬さがHv1500超~12000であり、絞りパンチの加工表面の硬さがHv1000~12000とした場合、過酷な絞り加工・しごき加工が施される場合においても、耐久性や耐摩耗性、金属板の傷付き等の観点において、問題がないことを見出したものである。
 なお本実施形態において、絞り工程における成形加工部材(金型)は、加工表面が上記の硬さである限りにおいて、公知の素材からなる基材で製造されていてもよいし、かかる基材の加工表面に表面処理膜L(図2参照)を形成してなるものであってもよい。
 上記金型において基材の素材としては、具体的には、タングステンカーバイド(WC)とコバルト等の金属バインダーとの混合物を焼結して得られる超硬合金;炭化チタン(TiC)等の金属炭化物や炭窒化チタン(TiNC)等のチタン化合物とニッケルやコバルト等の金属バインダーとの混合物を焼結して得られるサーメット;等を挙げることができる。
 また、上記基材の上に形成する前記表面処理膜Lとしては、例えば炭素膜、セラミック膜、フッ素樹脂膜、等を好ましく用いることができる。
 前記炭素膜としては、ビッカース硬度においてHv8000~12000程度のダイヤモンド膜やビッカース硬度においてHv3000~7000程度のDLC膜等を挙げることができる。これら炭素膜の形成方法には特に制限はなく、例えば化学蒸着(CVD)法や物理蒸着(PVD)法等を適用することが可能である。
 また前記セラミック膜としては例えば、炭化ケイ素(SiC)や窒化ケイ素(Si)、アルミナ(Al)、ジルコニア(ZrO)といった硬質セラミック等を挙げることができる。
 本実施形態において、絞り工程に用いる成形加工部材の種類の組み合わせとしては、絞り加工ダイと絞り加工パンチの両方に同じ素材又は表面処理膜Lが使用されてもよいし、異なる素材又は表面処理膜Lが使用されてもよい。例えば、絞り加工ダイと絞り加工パンチの両方が超硬合金製であってもよいし、絞り加工ダイ又は絞り加工パンチの一方が超硬合金製であってもよい。あるいは、絞り加工ダイと絞り加工パンチの両方の加工表面に炭素膜が形成されていてもよいし、絞り加工ダイ又は絞り加工パンチの一方の加工表面に炭素膜が形成されていてもよい。すなわち、図2においては絞り加工ダイDの加工表面に表面処理膜Lが形成されており、絞り加工パンチPの加工表面に表面処理膜Lは形成されていないが、本発明はこれに限られるものではない。
 なお本実施形態においては、絞り加工時における雄型と雌型の少なくとも一方の加工表面に炭素膜が形成されていることが好ましい。例えば、雌型として絞り加工ダイ、雄型として絞り加工パンチを使用する場合、少なくともそれらの一方の加工表面に炭素膜が形成されていることが好ましい。
 さらに具体的には、絞り加工ダイと絞り加工パンチの両方の加工表面にDLC膜が形成されていてもよいし、絞り加工ダイと絞り加工パンチの一方にダイヤモンド膜が形成され、他方にDLC膜が形成されていてもよい。
 特に、金型間の寸法管理や、金型間の破損被害の抑制の観点からは、絞り加工ダイと絞り加工パンチの一方の表面処理膜がダイヤモンド膜である場合には、他方はダイヤモンド膜以外の表面処理膜であることがより好ましい。その場合特に、より高い加工負荷がかかる絞り加工ダイにダイヤモンド膜が形成されることがより好ましい。なおダイヤモンド膜は少なくともダイ部の上記した加工表面に形成されていればよいが、他の部分に形成されていてもよい。
 上記ダイヤモンド膜の厚みとしては、5μm~30μmであることが好ましい。厚みが5μm未満の場合には、得られたダイヤモンド膜にクラックが入りやすく剥離しやすくなるため、好ましくない。一方で、厚みが30μmを超える場合にはダイヤモンド膜の内部応力が高まり剥離しやすくなるため、好ましくない。
 一方で、絞り加工ダイと絞り加工パンチの一方の表面処理膜がダイヤモンド膜である場合、他方に形成される表面処理膜の厚みについては、0.1~10μm程度が好ましく、特にダイヤモンド膜の厚みよりも薄くなるように設定されることが好ましい。
 これは以下の理由によるものである。すなわち、例えば絞り加工パンチに形成された表面処理膜の厚みを、絞り加工ダイに形成したダイヤモンド膜の厚みより薄くした場合、薄膜であるために成膜による寸法誤差をそもそも小さくすることができる。これに加えて、表面処理膜のビッカース硬さがダイヤモンド膜に比べて軟質であるため、公知のダイヤモンド砥粒を用いることで容易に研磨が可能であり加工コストを低減できるばかりでなく、目的の金型寸法を高精度に仕上げることができる。
<しごき工程>
 次に、本実施形態におけるしごき工程について説明する。
 本実施形態におけるしごき工程としては、しごき工程における成形加工部材(例えばしごきダイやしごきパンチ)の加工表面の硬さがHv1500~12000であることを特徴とする。
 図面を用いて本実施形態のしごき工程をより具体的に説明すると、図2(a)、(b)に示すように、例えば、ダイヤモンド膜20が加工表面に形成されたしごきダイDと、ダイヤモンド膜とは異なる表面処理膜30が加工表面に形成されたしごきパンチPを用い、クーラントCが介在した状態で、ダイD及びパンチPの加工表面で浅絞りカップMをしごき加工する工程を含む。
 その際、上記しごきダイDとしごきパンチPには、量産化に耐え得る程度の高い耐久性や耐摩耗性が必要とされる。また本実施形態においては後述のように、クーラントC中に含まれる油分の濃度は4.0体積%未満、あるいは上記クーラントCが水溶性クーラント又は沸点が300℃未満のクーラントであることが必要とされる。それゆえ、被加工部材(金属板10や浅絞りカップM)の傷つきや破断を避けるため等の理由で、しごきダイDとしごきパンチPの加工表面の硬さがHv1500~12000とすることが必要とされる。
 上記において特に、しごきダイDとしごきパンチPの加工表面のいずれかに、炭素膜が形成されていることが好ましい。炭素膜としては例えば、ビッカース硬度においてHv8000~12000程度のダイヤモンド膜やビッカース硬度においてHv3000~7000程度のDLC膜等を挙げることができる。これら炭素膜の形成方法には特に制限はなく、例えば化学蒸着(CVD)法や物理蒸着(PVD)法等を適用することが可能である。
 なお、本実施形態においては特に、ダイヤモンド膜が、金型の雄型と雌型のいずれかの加工表面に形成されていることが好ましい。すなわち、図2において示されるように、硬度の高いダイヤモンド膜20が、しごきダイDの加工表面に形成されており、しごきパンチPの加工表面にダイヤモンド膜とは異なる表面処理膜30が形成されていてもよいし、図示はしないがその逆でもよい。
 なお、一般的にはしごきダイの方がしごきパンチよりも過酷な加工負荷を受けることが多いので、特にしごきダイの加工表面にダイヤモンド膜20が形成されることが好ましい。
 上記ダイヤモンド膜20の厚みとしては、5μm~30μmであることが好ましい。厚みが5μm未満の場合には、得られたダイヤモンド膜にクラックが入りやすく剥離しやすくなるため、好ましくない。一方で、厚みが30μmを超える場合にはダイヤモンド膜の内部応力が高まり剥離しやすくなるため、好ましくない。
 一方で、上記ダイヤモンド膜20とは異なる表面処理膜30の厚みとしては、0.1~10μm程度が好ましく、特にダイヤモンド膜20の厚みよりも薄くなるように設定されることが好ましい。
 これは以下の理由によるものである。すなわち、例えば表面処理膜30の厚みをダイヤモンド膜20の厚みより薄くした場合、薄膜であるために成膜による寸法誤差をそもそも小さくすることができる。
 本実施形態においてダイヤモンド膜20の表面粗さRa(JIS B-0601-1994)は、0.12μm以下であることが、金型に高い滑り特性を付与できる観点から好ましい。さらに、Raを0.08μm以下とした場合、被加工物(例えば缶体)の外観を鏡面或いは鏡面に近い平滑面とすることができ、より好ましい。
 この場合、プレス加工時におけるダイヤモンド膜20と被加工材との間の摩擦係数μは0.1よりも低いことが好ましい。
 次に、本実施形態のしごき工程において用いられるクーラントについて説明する。
 本実施形態において用いられるクーラントとしては、その成分中に油分を含有してもよいが、後の洗浄工程で容易に洗浄可能であること、あるいは、洗浄工程を設けない場合にも、乾燥により除去できることが好ましい。従って、本実施形態におけるクーラントは、(a)含まれる油分が4.0体積%未満であること、(b)水溶性クーラントであること、又は(c)沸点が300℃未満のクーラントであること、の少なくともいずれかを満たすものであることが好ましい。
 (a)含まれる油分が4.0体積%未満のクーラントである場合において、油分としては一般的な水溶性金属加工油剤組成物に含まれる油分が挙げられる。当該油分は、天然油分であってもよいし、合成油分であってもよい。
 天然油分としては例えば、パラフィン系、ナフテン系、芳香族系等の鉱物油が挙げられる。また、脂肪酸グリセライドも天然油分として挙げることができる。
 合成油分としては例えば、ポリオレフィン等の炭化水素系、脂肪酸エステル等のエステル系、ポリアルキレングリコール等のエーテル系、パーフルオロカーボン等の含フッ素系、リン酸エステル等の含リン系、ケイ酸エステル等の含ケイ素系、等を挙げることができる。
 上記に挙げた油分としては、単独で使用してもよいし、2種類以上を混合して使用してもよい。
 具体的には例えば、JIS K 2241に規定されるA1種(エマルション型)又はA2種(ソリュブル型)の水溶性金属加工油剤等を挙げることができる。また、JIS規格においては規定されていないが、いわゆるシンセティックタイプ(鉱物油を含まず、化学合成された油分を含む金属加工油剤)と呼ばれる水溶性金属加工油剤を挙げることもできる。
 本実施形態において、上記油分のクーラント中における濃度としては、4.0体積%未満であることが好ましい。
 この場合、まず4.0体積%以上の含有量の油分を含む原液を調製して、これを使用時まで保管し、使用する際にこの原液を水等の溶媒で希釈して油分の濃度が4.0体積%未満であるクーラントを調製してもよい。すなわち、油分のクーラント中における濃度は、使用状態において4.0体積%未満であればよい。
 次に本実施形態において使用されるクーラントにおいて(b)水溶性クーラントは、水に可溶であるクーラントと定義される。水溶性クーラントを用いることにより、薬剤(酸、アルカリ、界面活性剤等)を用いずに製缶後に付着したクーラント成分を除去することが可能となるため好ましい。なお、本実施形態においては、例えば後述する洗浄工程において水で洗浄を行った場合、後工程の印刷において塗料のムラ、はじき等の不良が発生しない程度に潤滑剤成分やクーラント成分が除去されることが好ましい。
 また本実施形態において(c)沸点が300℃未満のクーラントとして、具体的には揮発性潤滑油として市販されている無洗浄油を適用することが可能である。沸点が300℃未満のクーラントが好ましい理由としては、製缶工程後に、付着したクーラント成分を比較的低温で気化させて除去することが可能となるためである。なお、設備コストやエネルギーコスト等の観点から、クーラントの沸点は250℃未満であることがさらに好ましい。
 なお本実施形態のクーラントとしては、上記した(a)、(b)、(c)のクーラントを混合して使用してもよい。また、(a)、(b)、(c)のうち複数の性質を兼ね備えたクーラントを使用してもよい。
 また本実施形態におけるクーラント中は、(a)含まれる油分が4.0体積%未満、(b)水溶性、(c)沸点が300℃未満、の少なくともいずれかという特徴を損なわない限りにおいて、添加物を含んでいてもよい。例えば、水、界面活性剤、さび止め剤、極圧添加剤、カップリング剤、非鉄金属防食剤、防腐剤、防錆剤、消泡剤、キレート剤、着色料、香料、等を適宜含んでいてもよい。
 特に本実施形態のクーラントは、防腐剤及び/又は防錆剤を含んでいることが好ましい。これは以下の理由によるものである。
 すなわち、水溶性のクーラントの場合、細菌やカビ等の微生物の栄養源となる物質が多く含有されている。そのため、希釈後のクーラントが腐敗しやすい、また、加工の設備のうちクーラントと接触する箇所に錆が発生しやすいという問題がある。
 なお本実施形態において「防腐剤及び/又は防錆剤」とは、「防腐剤」と「防錆剤」のいずれかを含んでいてもよいし、両方を含んでいてもよいことを意味する。さらには、「防腐」と「防錆」のいずれかの性質を有する物質を使用してもよいし、「防腐」と「防錆」の両方の性質を兼ね備える物質を使用してもよいことをも意味する。
 クーラントの腐敗が進行すると、クーラントの機能である潤滑機能や冷却機能が低下するばかりでなく、腐敗による悪臭も問題となる。また錆が発生した場合には、被加工物に対する傷つき等の問題が発生する。
 また腐敗や錆の発生によってクーラント交換の頻度が高くなることによるコスト面の問題も発生する。さらに、カビや錆が発生した場合、ポンプ等の循環系統においてパイプ詰まりの原因にもなる。
 防腐剤及び/又は防錆剤としては、(a)含まれる油分が4.0体積%未満、(b)水溶性、(c)沸点が300℃未満、の少なくともいずれかというクーラントの特徴を損なわない限りにおいて、公知の物質を適宜使用することが可能である。例えば、ホルムアルデヒド放出型やフェノール系の物質、あるいは、アミン系の物質を適宜添加してもよい。
 以上、上述したように本実施形態の製造方法においては、しごき加工時におけるクーラントが、(a)含まれる油分が4.0体積%未満、(b)水溶性クーラント、又は(c)沸点が300℃未満のクーラント、の少なくともいずれかである場合、製缶時の成形不良等を抑制することができ、結果的に成形安定性を向上させることが可能である。
 また本実施形態においては上述のようなクーラントを使用するため、後述の洗浄工程において、環境負荷の低い薬剤や水での洗浄が可能となる。あるいは、洗浄工程そのものを省略することも可能となるため、環境への負荷を軽減することが可能となる。
 また、洗浄後の排水処理が容易となったことにより、排水をリサイクルして循環させる場合、リサイクル率を向上させることが可能となり、コストや環境への負荷を軽減することが可能となる。
 なお、本実施形態のしごき工程においては、しごき率(板厚減少率)が10%以上となるように前記金属材をしごいて缶胴部を形成するしごき加工の工程を含むことが好ましい。なお、しごき加工の工程は複数回含まれていてもよく、各回のしごき率を変化させてもよい。例えば、初期のしごき工程のしごき率を10%以上とし、最終のしごき工程のしごき率を30%以上としてもよい。
 なお本実施形態におけるしごき率は、しごき加工前の板厚t0、加工後の板厚(缶底から60mm部分)をt1としたとき、下記式で表される。
   しごき率(%)=100×(t0-t1)/t0
<洗浄工程>
 次に、本実施形態における洗浄工程について説明する。
 本実施形態における洗浄工程は、上述の絞り工程及びしごき工程において得られた有底筒状体に対して洗浄剤を接触させ、前記有底筒状体の内側表面及び外側表面に付着する潤滑剤及びクーラントを除去する工程である。なお、本実施形態において洗浄工程は必須の工程ではなく、適宜省略することも可能である。
 洗浄剤を有底筒状体に接触させる方法としては、公知の方法を適宜用いることができる。例えば、洗浄剤中に有底筒状体を浸漬してもよいし、スプレーやシャワーにより洗浄剤を吹き付けてもよい。
 本実施形態において使用される洗浄剤としては、公知のアルカリ洗浄剤、酸洗浄剤、中性洗浄剤を使用することもできるし、水を使用することもできる。
 アルカリ洗浄剤としては例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム等の無機化合物の水溶液が挙げられる。
 また、上記酸洗浄剤としては例えば、硫酸、硝酸、塩酸、フッ化水素酸、等の無機酸等の水溶液を挙げることができる。
 なおアルカリ洗浄剤や酸洗浄剤を用いて洗浄処理を行った後は、公知のように、金属板表面に残存する洗浄剤を除去するために、水洗処理を行なった後、エアーブロー若しくは熱空気乾燥等の方法にて、金属板表面の水分を除去することが好ましい。
 なお、アルカリ洗浄剤や酸洗浄剤等を使用する場合の洗浄剤の洗浄成分の濃度としては、2.0~5.0重量%であることが、洗浄性を保ちつつ、コストや環境負荷を抑制する観点からは好ましい。
 本実施形態における洗浄工程においては、使用される洗浄剤の温度が70℃未満であることが好ましい。すなわち本実施形態においては、絞り加工前における金属板(平板)表面への加工油や潤滑剤の塗布工程を省略することが可能であり、また、しごき工程におけるクーラントとして(a)含まれる油分が4.0体積%未満、(b)水溶性クーラント、又は(c)沸点が300℃未満のクーラント、の少なくともいずれかが使用される。そのため、洗浄剤の温度が70℃未満であっても、有底筒状体の内側表面及び外側表面の油分を充分に除去することが可能となる。
 一方で、洗浄剤の温度の下限としては、室温(例えば20℃)であることが好ましい。一般的に金属プレス加工において加工油等を洗浄する際には、洗浄性を高めるために洗浄剤が加熱して使用される。しかしながら、洗浄剤を加熱するためには相応のエネルギー資源が消費される。そのため本実施形態においては、コスト抑制や環境負荷軽減の観点では、洗浄剤を使用する際には、洗浄性が低下しない限りにおいて、室温で使用することが可能である。
 さらに本実施形態においては、コスト抑制や環境負荷軽減の観点から、洗浄工程における洗浄時間が45秒以下であることが好ましい。すなわち本実施形態においては、絞り工程における潤滑剤、及び、しごき工程におけるクーラントが共に水溶性及び/又は沸点が300℃未満であるため、洗浄時間が45秒以下であっても、有底筒状体の内側表面及び外側表面を充分に洗浄することが可能である。
 なお、洗浄時間の下限は特にないが、実用上問題無く洗浄ができ、且つ排水処理性に問題のない洗浄時間の下限としては例えば10秒超であることが好ましい。また、洗浄の方法としてスプレーやシャワーにより洗浄剤を吹き付ける場合には、一缶当たり、洗浄剤噴出量は60~70ml/秒であることが好ましい。
 本実施形態の洗浄工程においては、洗浄剤により有底筒状体の内側表面及び外側表面に付着した潤滑剤及びクーラントを除去する。そのため、洗浄前後の有底筒状体の重量には変化が生じるが、当該重量変化は100mg/m未満であることが好ましい。
 すなわち本実施形態においては、製缶工程(絞り工程及びしごき工程)を経た後で有底筒状体の内側表面および外側表面に付着する潤滑剤やクーラントの量を少なくすることが可能となる。
 よって、洗浄前後の有底筒状体の重量変化を100mg/m未満とすることで、洗浄工程において発生する排水中に含まれる潤滑剤及びクーラントの量をも減少することが可能となり、環境負荷を軽減することが可能となった。
<乾燥工程>
 本実施形態において、洗浄工程は適宜省略することが可能であることは上述したとおりである。その場合、有底筒状体の内側表面及び外側表面に付着した潤滑剤及びクーラントを除去するために、乾燥工程を設けることが好ましい。
 すなわち本実施形態においては、絞り加工前における金属板(平板)表面への加工油や潤滑剤の塗布工程を省略することが可能であり、また、しごき工程におけるクーラントとして(a)含まれる油分が4.0体積%未満、(b)水溶性クーラント、又は(c)沸点が300℃未満のクーラント、の少なくともいずれかが使用される。
 このうち、絞り加工前における金属板(平板)表面への加工油や潤滑剤の塗布を行わず、且つ、しごき工程におけるクーラントとして(c)沸点が300℃未満のクーラントを用いた場合には、製缶工程(絞り工程及びしごき工程)後に洗浄工程を設けない場合でも、乾燥工程により有底筒状体の内側表面及び外側表面に付着した潤滑剤及びクーラントを除去することが可能である。
 本実施形態の乾燥工程においては、具体的には、例えば乾燥オーブン中で約150~300℃、30~180秒間加熱することにより、有底筒状体の内側表面及び外側表面に付着した潤滑剤及びクーラントを除去することが可能である。
<浄化工程>
 次に、本実施形態における浄化工程について説明する。本実施形態における有底筒状体の製造方法は、図3に示すように、上述したしごき工程及び/又は洗浄工程において排出された排水を浄化する浄化工程を含んでいてもよい。
 すなわち上述したように、本実施形態の有底筒状体の製造方法において、しごき工程においてはクーラントを介してしごき加工が行われる。また、洗浄工程においては洗浄剤を用いて有底筒状体の表面に付着したクーラント成分を除去する。そのため、両工程においては大量の排水が発生する。
 従って本実施形態における有底筒状体の製造方法においては、図3に示すように、上記排水を浄化する浄化工程をさらに含んでいてもよい。このとき、後述する理由から、上記のように浄化された排水は、浄化水として再度しごき工程や洗浄工程に再利用(リサイクル)されることが好ましい。
 本実施形態における有底筒状体の製造方法では、絞り加工前における金属板(平板)表面への加工油や潤滑剤の塗布工程を省略することが可能であることは上述したとおりである。また、しごき工程におけるクーラントとして(a)含まれる油分が4.0体積%未満、(b)水溶性クーラント、又は(c)沸点が300℃未満のクーラント、の少なくともいずれかが使用されることは上述したとおりである。
 そのため、しごき工程及び/又は洗浄工程において発生する排水は、比較的簡易な方法で浄化することが可能である。そして上記の浄化工程を経ることにより、さらなる環境負荷の低減やコスト削減を図ることが可能となる。
 上記浄化工程における排水の浄化方法としては、公知の方法を適宜用いることができる。すなわち、濾過、中和、煮沸、沈殿、浮上、生物処理、UV殺菌等の方法を適宜組み合わせて浄化を行うことが可能である。また、凝集剤、消毒薬、殺菌剤等を適宜混入してもよい。
 以上、本実施形態の有底筒状体の製造方法によれば、以下の効果を奏することができる。
(A)絞り工程における成形加工部材の加工表面の硬さを所定の値以上とするため、絞り加工前における金属板(平板)表面への潤滑剤塗布工程を省略することができる。
(B)しごき工程における成形加工部材の加工表面の硬さを所定の値以上とするため、しごき工程におけるクーラントとして(a)含まれる油分が4.0体積%未満、(b)水溶性クーラント、又は(c)沸点が300℃未満のクーラント、の少なくともいずれかを満たすクーラントを使用することができる。
(C)上記の結果、洗浄工程における洗浄剤における洗浄成分の濃度を低くし、洗浄剤の加熱を抑制し、及び/又は洗浄時間を短くすることができる。また、洗浄工程を省略することも可能となる。
(D)結果的に、環境負荷の軽減やコスト削減を図ることが可能となる。
 また、本実施形態において上記浄化工程をさらに実行すれば、以下の効果をさらに奏することができる。
(E)しごき工程及び/又は洗浄工程において排出される排水の浄化処理が容易とすることができる。
(F)排水を浄化して再利用(リサイクル)することが可能となり、コストや環境への負荷を軽減することが可能となる。
 以下、本発明を実施例を用いてさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 以下に示す方法により、内容積350mLの絞りしごき缶(DI缶)を製造した。
 まず、アルミニウム合金板(JIS H 4000 3104材、0.28mm)を用意した。次いで、上記アルミニウム合金板の両面に、絞り加工時の潤滑剤として、水溶性潤滑剤を1.0~1.3g/m塗布した。
 次いで、上記アルミニウム合金板を絞り成形機で、直径160mmの円盤状に打ち抜いた後、直ちに直径90mmのカップ体となるように絞り成形を行った。なお、絞り加工時の成形加工部材の加工表面硬さは、Hv1500とした。
 得られたカップ体をボディーメーカ(缶体製造機)に搬送し、直径66mmの形状になるように再絞り成形を行った後、クーラントを用いて、直径66mm、高さ130mmの形状となるようにしごき加工を行った。
 この際のしごきダイとしては、その表面に平均厚さ約10μmのダイヤモンド膜が形成されたものを使用した。ダイヤモンド膜の表面硬さは、Hv10000とした。
 また、使用したしごきパンチとしては、その表面に厚さ0.5μmのダイヤモンドライクカーボン膜が形成されたものを使用した。ダイヤモンドライクカーボン膜の表面硬さは、Hv3000とした。
 しごき加工の際のしごき率は表1に示すとおりとした。しごき加工中に水溶性クーラントを使用した。クーラント中には、公知の界面活性剤、さび止め剤、極圧添加剤、防腐剤を添加した。
 得られたDI缶に対し、内側表面及び外側表面に付着する潤滑剤及びクーラント成分を除去するための洗浄を行った。洗浄の際に使用した洗浄剤としては、硫酸(濃度:3.0体積%)を使用した。また、洗浄の際の洗浄剤の温度は20℃とし、洗浄時間は30秒とした。
(実施例2)
 絞り加工時の潤滑剤として、表1に示す沸点を有する潤滑剤を使用した以外は、実施例1と同様に行った。結果を表1に示す。
(実施例3)
 絞り加工時の成形加工部材の加工表面硬さを表1に示すとおりとした以外は、実施例1と同様に行った。結果を表1に示す。
(実施例4)
 絞り加工時の絞りダイの加工表面硬さを表1に示すとおりとした以外は、実施例1と同様に行った。結果を表1に示す。
(実施例5)
 絞り加工時の絞りパンチの加工表面硬さを表1に示すとおりとした以外は、実施例1と同様に行った。結果を表1に示す。
(実施例6)
 しごき加工時のしごきダイとしては、その表面に平均厚さ0.5μmのダイヤモンドライクカーボン膜が形成されたものを使用した。ダイヤモンドライクカーボン膜の表面硬さは、Hv3000とした。それ以外は実施例1と同様に行った。結果を表1に示す。
(実施例7)
 しごき加工時のしごきパンチは、その表面に平均厚さ約10μmのダイヤモンド膜が形成されたものを使用した。ダイヤモンド膜の表面硬さは、Hv10000とした。それ以外は実施例1と同様に行った。結果を表1に示す。
(実施例8)
 しごき加工中に使用したクーラントは、表1に示す沸点を有するものとした。それ以外は実施例1と同様に行った。結果を表1に示す。
(実施例9)
 洗浄の際に使用した洗浄剤としては純水を用いた以外は実施例1と同様に行った。結果を表1に示す。
(実施例10)
 絞りしごき加工後の洗浄の工程に替えて、乾燥(300℃30秒)を行った以外は実施例1と同様に行った。結果を表1に示す。
(実施例11)
 しごき加工中に使用したクーラントは、表1に示す沸点を有するものとした。それ以外は実施例2と同様に行った。結果を表1に示す。
(実施例12)
 洗浄の際に使用した洗浄剤としては純水を用いた以外は実施例2と同様に行った。結果を表1に示す。
(実施例13)
 絞りしごき加工後の洗浄の工程に替えて、乾燥(300℃30秒)を行った以外は実施例2と同様に行った。結果を表1に示す。
(実施例14)
 洗浄の際に使用した洗浄剤としては純水を用いた以外は実施例8と同様に行った。結果を表1に示す。
(実施例15)
 絞りしごき加工後の洗浄の工程に替えて、乾燥(300℃30秒)を行った以外は実施例8と同様に行った。結果を表1に示す。
(実施例16)
 洗浄の際に使用した洗浄剤としては純水を用いた以外は実施例11と同様に行った。結果を表1に示す。
(実施例17)
 絞りしごき加工後の洗浄の工程に替えて、乾燥(300℃30秒)を行った以外は実施例11と同様に行った。結果を表1に示す。
(実施例18)
 絞りしごき加工後の洗浄の工程後に、さらに乾燥(300℃30秒)を行った。それ以外は実施例14と同様に行った。結果を表1に示す。
(実施例19)
 絞りしごき加工後の洗浄の工程後に、さらに乾燥(300℃30秒)を行った。それ以外は実施例12と同様に行った。結果を表1に示す。
(実施例20)
  絞り加工時の潤滑剤を行わなかった点、及びしごき加工時のしごき率を表1に示す値とした点以外は、実施例3と同様に行った。結果を表1に示す。
(比較例1)
 絞り加工時の潤滑剤として、水不溶性潤滑剤を塗布した以外は、実施例1と同様に行った。結果を表1に示す。
(比較例2)
 絞り加工時の潤滑剤として、表1に示す沸点を有する潤滑剤を使用した以外は、実施例1と同様に行った。結果を表1に示す。
(比較例3)
 絞り加工時の絞りダイの加工表面硬さを表1に示すとおりとした以外は実施例1と同様に行ったが、絞り工程において破胴した。結果を表1に示す。
(比較例4)
 しごき加工時のしごきダイ及びしごきパンチは、超硬合金製(Hv1000)のものを使用した。それ以外は実施例1と同様に行った。結果を表1に示す。
(比較例5)
 しごき加工中に使用したクーラントを水不溶性クーラントとした以外は実施例1と同様に行った。結果を表1に示す。
(比較例6)
 しごき加工中に使用したクーラントは表1に示す沸点を有するものとし、絞りしごき加工後の洗浄の工程に替えて、乾燥(300℃30秒)を行った以外は、実施例1と同様に行った。結果を表1に示す。
(比較例7)
 しごき加工中に使用したクーラントを水不溶性クーラントとし、絞りしごき加工後の洗浄の工程に替えて、乾燥(300℃30秒)を行った以外は、実施例1と同様に行った。
結果を表1に示す。
(比較例8)
 絞り加工時の潤滑剤を行わなかった点以外は、実施例1と同様に行ったが、絞り工程において破胴した。結果を表1に示す。
[評価]
 上記方法により得られたDI缶について、以下の方法により評価を行った。結果を表1に示す。
[しごき加工性]
 (i)しごき加工時における破断の有無、(ii)得られたDI缶の開口部におけるブリードスルー(黒すじ)や缶胴部内外面の変色、(iii)缶胴部外面の傷、の3項目について目視で観察した。上記3項目のいずれにも問題がなく優れているものを◎、いずれかに問題は発生するが実用に耐えられるものを○、いずれかに問題があり実用に耐えられないものを×とした。
[印刷適性]
 得られたDI缶に対して洗浄を行った後の缶表面に水性塗料を塗布した後、公知の方法により焼き付けを行い、塗料のムラを評価した。目視により塗料のムラがないものを○、塗料のはじき等によりムラが発生したものを×とした。なお、塗料のムラが発生した場合、絞り工程又はしごき工程において使用した潤滑剤及び/又はクーラントが残存していると評価できる。
[排水処理性]
 上記洗浄液を用いてDI缶に対しスプレー洗浄し水洗した後の排水をビーカーに収容して、公知の方法により化学的酸素要求量(COD)を測定した。CODが200ppm未満であれば○(排水処理性が良い)、200ppm以上であれば×(排水処理性が悪い)と判断した。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
(実施例21)
 以下に示す方法により、内容積350mLの絞りしごき缶(DI缶)を製造した。
 まず、アルミニウム合金板(JIS H 4000 3104材、0.28mm)を用意した。上記アルミニウム合金板の両面への潤滑剤の塗布は行わなかった。
 次いで、上記アルミニウム合金板を絞り成形機で、直径160mmの円盤状に打ち抜いた後、直ちに直径90mmのカップ体となるように絞り成形を行った。なお、絞り加工時の成形加工部材の加工表面硬さは、表1に示すとおりとした。
 得られたカップ体をボディーメーカ(缶体製造機)に搬送し、直径66mmの形状になるように再絞り成形を行った後、クーラントを用いて、直径66mm、高さ130mmの形状となるようにしごき加工を行った。
 この際のしごきダイとしては、その表面に平均厚さ約10μmのダイヤモンド膜が形成されたものを使用した。ダイヤモンド膜の表面硬さは、表1に示すとおりとした。
 また、使用したしごきパンチとしては、その表面に厚さ0.5μmのダイヤモンドライクカーボン膜が形成されたものを使用した。ダイヤモンドライクカーボン膜の表面硬さは、表1に示すとおりとした。
 しごき加工の際のしごき率は表1に示すとおりとした。クーラント中における油分の含有量は表1のとおりとした。クーラント中には、公知の界面活性剤、さび止め剤、極圧添加剤、防腐剤を添加した。
 得られたDI缶に対し、内側表面及び外側表面に付着する潤滑剤及びクーラント成分を除去するための洗浄を行った。洗浄の際に使用した洗浄剤としては、硫酸(濃度:3.0%)を使用した。また、洗浄の際の洗浄剤の温度は50℃とし、洗浄時間は30秒とした。
(実施例22)
 しごき加工時のしごきダイの加工表面硬さを表2に示すとおりとした以外は、実施例21と同様に行った。結果を表2に示す。
(実施例23)
 しごき加工時のしごきダイの加工表面硬さを表2に示すとおりとした以外は、実施例21と同様に行った。結果を表2に示す。
(実施例24)
 しごき加工時のしごきパンチの加工表面硬さを表2に示すとおりとした以外は、実施例21と同様に行った。結果を表2に示す。
(実施例25)
 しごき加工中に使用したクーラントの油分の含有量は表2に示すものとした。それ以外は実施例21と同様に行った。結果を表2に示す。
(実施例26)
 しごき加工中に使用したクーラントは、表2に示す沸点を有するものとした。それ以外は実施例21と同様に行った。結果を表2に示す。
(実施例27)
 洗浄の際に使用した洗浄剤としては純水を用いた以外は実施例21と同様に行った。結果を表2に示す。
(実施例28)
 しごき加工中に使用したクーラントは、表2に示す沸点を有するものとし、絞りしごき加工後の洗浄の工程に替えて、乾燥(300℃30秒)を行った以外は実施例21と同様に行った。結果を表2に示す。
(実施例29)
 絞り加工工程及びしごき加工工程におけるパンチとダイの加工表面硬さを表2に示すとおりとした以外は、実施例27と同様に行った。結果を表2に示す。
(実施例30)
 絞り加工工程及びしごき加工工程におけるパンチとダイの加工表面硬さを表2に示すとおりとした以外は、実施例27と同様に行った。結果を表2に示す。
(実施例31)
 絞り加工工程及びしごき加工工程におけるパンチとダイの加工表面硬さを表2に示すとおりとした以外は、実施例28と同様に行った。結果を表2に示す。
(実施例32)
 絞り加工工程及びしごき加工工程におけるパンチとダイの加工表面硬さを表2に示すとおりとした以外は、実施例21と同様に行った。結果を表2に示す。
(実施例33)
 絞り加工工程の前に水溶性潤滑油を塗布した点、絞り加工工程における絞りパンチと絞りダイの加工表面硬さを表2に示すとおりとした点、以外は実施例27と同様に行った。結果を表2に示す。
(実施例34)
 絞り加工工程における絞りパンチの加工表面硬さを表2に示すとおりとした点以外は実施例21と同様に行った。結果を表2に示す。
(実施例35)
 絞り加工工程の前に水溶性潤滑油を塗布した点以外は実施例34と同様に行った。結果を表2に示す。
(実施例36)
 絞り加工工程及びしごき加工工程におけるパンチの加工表面硬さを表2に示すとおりとした以外は、実施例21と同様に行った。結果を表2に示す。
(実施例37)
 しごき加工工程におけるパンチの加工表面硬さを表2に示すとおりとした以外は、実施例34と同様に行った。結果を表2に示す。
(比較例9)
 絞り加工時の絞りダイの加工表面硬さを表2に示すとおりとした以外は実施例21と同様に行ったが、絞り工程において破胴した。結果を表2に示す。
(比較例10)
 絞り加工時の絞りダイと絞りパンチの加工表面硬さを表2に示すとおりとした以外は実施例21と同様に行ったが、絞り工程において破胴した。結果を表2に示す。
(比較例11)
 しごき加工時のしごきダイとしごきパンチの加工表面硬さを表2に示すとおりとした以外は実施例21と同様に行った。結果を表2に示す。
(比較例12)
 絞り加工工程の前に水溶性潤滑油を塗布した点以外は比較例11と同様に行った。結果を表2に示す。
(比較例13)
 絞りしごき加工後の洗浄の工程に替えて、乾燥(300℃30秒)を行った以外は実施例21と同様に行った。結果を表2に示す。
(比較例14)
 絞り加工工程及びしごき加工工程におけるパンチとダイの加工表面硬さを表2に示すとおりとし、しごき加工中に使用したクーラントの油分の含有量は表2に示すものとした。それ以外は実施例27と同様に行った。結果を表2に示す。
(比較例15)
 しごき加工中に使用したクーラントの油分の含有量は表2に示すものとした。それ以外は実施例21と同様に行った。結果を表2に示す。
(比較例16)
 絞り加工工程の前に水溶性潤滑油を塗布した点以外は比較例13と同様に行った。結果を表2に示す。
[評価]
 上記方法により得られたDI缶について、以下の方法により評価を行った。結果を表1に示す。
[しごき加工性]
 (i)しごき加工時における破断の有無、(ii)得られたDI缶の開口部におけるブリードスルー(黒すじ)、(iii)缶胴部外面の傷、の3項目について目視で観察した。上記4項目のいずれにも問題がなく缶表面が鏡面であるものを◎、いずれにも問題がなく優れているものを○、いずれかに問題は発生するが実用に耐えられるものを△、いずれかに問題があり実用に耐えられないものを×とした。
[印刷適性]
 得られたDI缶に対して洗浄を行った後の缶表面に水性塗料を塗布した後、公知の方法により焼き付けを行い、塗料のムラを評価した。目視により塗料のムラがないものを○、塗料のはじき等によりムラが発生したものを×とした。なお、塗料のムラが発生した場合、絞り工程又はしごき工程において使用した潤滑剤及び/又はクーラントが残存していると評価できる。
[排水処理性]
 上記洗浄液を用いてDI缶に対しスプレー洗浄し水洗した後の排水をビーカーに収容して、公知の方法により化学的酸素要求量(COD)を測定した。CODが200ppm未満であれば○(排水処理性が良い)、200ppm以上であれば×(排水処理性が悪い)と判断した。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 第1の実施形態の有底筒状体の製造方法によれば、しごき工程において使用されるクーラントについて、水溶性、及び/又は、沸点300℃未満とした場合においても、従来と同様又はそれ以上のしごき率の有底筒状体を得ることが可能となった。
 また第1の実施形態によれば、絞り加工前の金属板(平板)表面に潤滑剤を塗布する潤滑剤塗布工程をさらに設けることが可能であり、当該潤滑剤を水溶性、及び/又は、沸点300℃未満とした場合においても、従来と同様又はそれ以上の加工性を得ることが可能となった。
 第1の実施形態においては、絞り工程およびしごき工程において水溶性の潤滑剤やクーラント、及び、沸点が300℃未満の潤滑剤やクーラントを使用しているため、洗浄工程において洗浄剤を使用せずに、水または湯を用いて洗浄することが可能となり得るものである。
 あるいは、洗浄工程を設けずに、製缶加工後に、缶体に付着した潤滑剤・クーラント等を乾燥させることにより除去し得るものである。
 また、しごき工程及び洗浄工程において生じた排水を浄化する浄化工程を経て、再度しごき工程や洗浄工程に再利用(リサイクル)できることが明らかである。
 第2の実施形態の有底筒状体の製造方法によれば、しごき工程において使用されるクーラントについて、(a)含有される油分の濃度が4.0体積%未満、(b)水溶性クーラント、又は、(c)沸点が300℃未満、の少なくともいずれかを満たすものである場合においても、従来と同様又はそれ以上のしごき率の有底筒状体を得ることが可能となった。
 第2の実施形態においては、上記のクーラントを使用しているため、洗浄工程において洗浄剤を使用せずに、水または湯を用いて洗浄することが可能となり得るものである。
 あるいは、洗浄工程を設けずに、製缶加工後に、缶体に付着した潤滑剤・クーラント等を乾燥させることにより除去し得るものである。
 また、しごき工程及び洗浄工程において生じた排水を浄化する浄化工程を経て、再度しごき工程や洗浄工程に再利用(リサイクル)できることが明らかである。
 本発明は、加工性や成形安定性を維持しつつ環境に配慮する金属プレス加工の分野において、好適に利用することが可能である。
  絞り加工ダイ
  絞り加工パンチ
  しごきダイ
  しごきパンチ
C  クーラント
M  浅絞りカップ
10  金属板
20  ダイヤモンド膜
30  表面処理膜
 

Claims (14)

  1.  有底筒状体の製造方法であって、
     加工表面の硬さがHv1500超~12000の成形加工部材を用いて金属板を絞り加工する絞り工程と、
     加工表面に炭素膜を有する成形加工部材を用いて、クーラントを介して被加工部材をしごき加工して有底筒状体とするしごき工程と、を含み、
     前記クーラントが、水溶性クーラント、及び/又は、沸点が300℃未満のクーラントである、
     ことを特徴とする、有底筒状体の製造方法。
  2.  前記有底筒状体がシームレス缶体である、請求項1に記載の有底筒状体の製造方法。
  3.  前記金属板がアルミニウム合金である、請求項1又は2に記載の有底筒状体の製造方法。
  4.  前記炭素膜がダイヤモンド膜である、請求項1~3のいずれか一項に記載の有底筒状体の製造方法。
  5.  前記金属板を絞り加工する絞り工程の前に、前記金属板に、水溶性潤滑剤、及び/又は、沸点が300℃未満の潤滑剤を塗布する潤滑剤塗布工程を含み、
     前記絞り工程における成形加工部材の加工表面の硬さがHv1500~12000である、
     請求項1~4のいずれか一項に記載の有底筒状体の製造方法。
  6.  前記クーラントが防腐剤及び/又は防錆剤を有する、請求項1~5のいずれか一項に記載の有底筒状体の製造方法。
  7.  前記有底筒状体の表面に付着した潤滑剤及び/又はクーラントを除去する洗浄工程をさらに含む、請求項1~6のいずれか一項に記載の有底筒状体の製造方法。
  8.  前記しごき工程及び/又は洗浄工程において排出された排水を浄化する浄化工程をさらに含む、請求項1~7のいずれか一項に記載の有底筒状体の製造方法。
  9.  有底筒状体の製造方法であって、
     加工表面の硬さがHv1500超~12000の絞りダイ及びHv1000~12000の絞りパンチを用いて金属板を絞り加工する絞り工程と、
     加工表面の硬さがHv1500~12000の成形加工部材を用いて、クーラントを介して被加工部材をしごき加工して有底筒状体とするしごき工程と、を含み、
     前記クーラントが、(a)含有される油分の濃度が4.0体積%未満、(b)水溶性クーラント、又は、(c)沸点が300℃未満、の少なくともいずれかを満たす、
     ことを特徴とする、有底筒状体の製造方法。
  10.  前記有底筒状体がシームレス缶体である、請求項9に記載の有底筒状体の製造方法。
  11.  前記金属板がアルミニウム合金である、請求項9又は10に記載の有底筒状体の製造方法。
  12.  前記絞り工程における成形加工部材の加工表面、及び/又は前記しごき工程における成形加工部材の加工表面に炭素膜が形成されている、請求項9~11のいずれか一項に記載の有底筒状体の製造方法。
  13.  前記絞り工程前に、前記金属板の表面に潤滑剤を塗布する潤滑剤塗布工程を含み、
     前記絞り工程における絞りダイの加工表面の硬さがHv1000~12000である、
     請求項9~12のいずれか一項に記載の有底筒状体の製造方法。
  14.  前記しごき工程、又は前記しごき工程後の洗浄工程において排出された排水を浄化する浄化工程をさらに含む、請求項9~13のいずれか一項に記載の有底筒状体の製造方法。
PCT/JP2021/009418 2020-03-27 2021-03-10 有底筒状体の製造方法 WO2021193043A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112022019348A BR112022019348A2 (pt) 2020-03-27 2021-03-10 Método de fabricação de um corpo cilíndrico com fundo
US17/907,484 US20230122197A1 (en) 2020-03-27 2021-03-10 Method for manufacturing bottomed cylindrical body
CN202180024790.5A CN115427168A (zh) 2020-03-27 2021-03-10 有底筒状体的制造方法
EP21776639.3A EP4129516A4 (en) 2020-03-27 2021-03-10 METHOD FOR MANUFACTURING A CYLINDRICAL BODY PROVIDED WITH A BOTTOM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020058150A JP7472590B2 (ja) 2020-03-27 2020-03-27 有底筒状体の製造方法
JP2020-058150 2020-03-27
JP2020-058158 2020-03-27
JP2020058158A JP2021154355A (ja) 2020-03-27 2020-03-27 有底筒状体の製造方法

Publications (1)

Publication Number Publication Date
WO2021193043A1 true WO2021193043A1 (ja) 2021-09-30

Family

ID=77891451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009418 WO2021193043A1 (ja) 2020-03-27 2021-03-10 有底筒状体の製造方法

Country Status (6)

Country Link
US (1) US20230122197A1 (ja)
EP (1) EP4129516A4 (ja)
CN (1) CN115427168A (ja)
BR (1) BR112022019348A2 (ja)
TW (1) TW202140164A (ja)
WO (1) WO2021193043A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028497A (ja) * 1983-07-27 1985-02-13 Toyo Seikan Kaisha Ltd 絞り−しごき缶成形用水溶性ク−ラント
JPH09287044A (ja) * 1996-04-18 1997-11-04 Toyo Kohan Co Ltd 絞りしごき缶用樹脂被覆アルミニウム合金板
JPH09285826A (ja) * 1996-04-23 1997-11-04 Sky Alum Co Ltd 絞りしごき缶の製造方法
JPH10137861A (ja) * 1996-11-05 1998-05-26 Sky Alum Co Ltd 絞りしごき加工法
JP2013163187A (ja) * 2012-02-09 2013-08-22 Mitsubishi Materials Corp プレス加工用金型
JP2018204823A (ja) 2017-05-31 2018-12-27 ダイキン工業株式会社 換気システム
JP2018204896A (ja) 2017-06-07 2018-12-27 三菱重工サーマルシステムズ株式会社 マルチ型空気調和機の制御装置、マルチ型空気調和機、マルチ型空気調和機の制御方法及びマルチ型空気調和機の制御プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088178A (ja) * 1996-09-18 1998-04-07 Yushiro Chem Ind Co Ltd 水溶性しごき成形用潤滑剤原液組成物
TW400378B (en) * 1996-09-18 2000-08-01 Nippon Mitsubishi Oil Corp Water soluble ironing lubricant composition
JP2002327190A (ja) * 2001-05-07 2002-11-15 Nippon Oil Corp 金型塗布油及びこれを用いた塑性加工方法
JP4102145B2 (ja) * 2002-09-17 2008-06-18 新日本製鐵株式会社 乾式絞りしごき加工缶用樹脂被覆鋼板およびシームレス缶体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028497A (ja) * 1983-07-27 1985-02-13 Toyo Seikan Kaisha Ltd 絞り−しごき缶成形用水溶性ク−ラント
JPH09287044A (ja) * 1996-04-18 1997-11-04 Toyo Kohan Co Ltd 絞りしごき缶用樹脂被覆アルミニウム合金板
JPH09285826A (ja) * 1996-04-23 1997-11-04 Sky Alum Co Ltd 絞りしごき缶の製造方法
JPH10137861A (ja) * 1996-11-05 1998-05-26 Sky Alum Co Ltd 絞りしごき加工法
JP2013163187A (ja) * 2012-02-09 2013-08-22 Mitsubishi Materials Corp プレス加工用金型
JP2018204823A (ja) 2017-05-31 2018-12-27 ダイキン工業株式会社 換気システム
JP2018204896A (ja) 2017-06-07 2018-12-27 三菱重工サーマルシステムズ株式会社 マルチ型空気調和機の制御装置、マルチ型空気調和機、マルチ型空気調和機の制御方法及びマルチ型空気調和機の制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129516A4

Also Published As

Publication number Publication date
EP4129516A4 (en) 2024-04-10
CN115427168A (zh) 2022-12-02
EP4129516A1 (en) 2023-02-08
US20230122197A1 (en) 2023-04-20
BR112022019348A2 (pt) 2022-11-16
TW202140164A (zh) 2021-11-01

Similar Documents

Publication Publication Date Title
KR100434573B1 (ko) 금속재료의 냉간 소성 가공용 수계 윤활제
JP4271573B2 (ja) ヘッダー加工用金属線材の製造方法
JP2006143988A (ja) 塑性加工用潤滑被膜、塑性加工用潤滑被膜形成用組成物、塑性加工用素材、塑性加工品の製造方法並びに金属管、金属線又は金属棒の製造方法
JP3984158B2 (ja) 金属材料塑性加工用水系潤滑剤および潤滑皮膜の処理方法
JP5355583B2 (ja) 乾燥膜状耐食性冷間成形潤滑剤
JP5232691B2 (ja) 熱交換器用アルミニウムフィン材及びそれを用いたフィンプレス方法
JP2021154355A (ja) 有底筒状体の製造方法
WO2021193043A1 (ja) 有底筒状体の製造方法
JP2006051801A (ja) 成形加工用マグネシウム合金板、マグネシウム合金容器およびマグネシウム合金容器の製造方法
WO2021193003A1 (ja) 有底筒状体の製造方法
JP7472590B2 (ja) 有底筒状体の製造方法
JP7415319B2 (ja) シームレス缶体の製造方法
JP2002264252A (ja) 傾斜型2層潤滑皮膜を有する塑性加工用金属材料およびその製造方法
KR20180044997A (ko) 내식성 및 가공 후의 외관이 우수한 강선재
JP5237525B2 (ja) マグネシウム合金板の成形加工性向上用処理液、それを用いたマグネシウム合金板の製造方法及び温間加工方法
JP7363023B2 (ja) プレス加工用金型およびプレス加工方法
JP2007136511A (ja) 冷間加工方法
US10308892B2 (en) Compositions and use thereof for metal shaping
JP5458396B2 (ja) 金属材料塑性加工用水系潤滑皮膜剤および塑性加工性に優れた金属材料
TWI826557B (zh) 機械加工用治具及機械加工方法、以及無縫罐體的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776639

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022019348

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021776639

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021776639

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022019348

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220926