WO2021192781A1 - 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ - Google Patents

超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ Download PDF

Info

Publication number
WO2021192781A1
WO2021192781A1 PCT/JP2021/006658 JP2021006658W WO2021192781A1 WO 2021192781 A1 WO2021192781 A1 WO 2021192781A1 JP 2021006658 W JP2021006658 W JP 2021006658W WO 2021192781 A1 WO2021192781 A1 WO 2021192781A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
frame
image
rescanning
bladder
Prior art date
Application number
PCT/JP2021/006658
Other languages
English (en)
French (fr)
Inventor
徹郎 江畑
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180022797.3A priority Critical patent/CN115297786A/zh
Priority to EP21775380.5A priority patent/EP4129198A4/en
Priority to JP2022509428A priority patent/JP7288550B2/ja
Publication of WO2021192781A1 publication Critical patent/WO2021192781A1/ja
Priority to US17/819,357 priority patent/US20220378397A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus that measures the amount of urine in the bladder of a subject, a control method of the ultrasonic diagnostic apparatus, and a processor for the ultrasonic diagnostic apparatus.
  • the ultrasonic diagnostic apparatus of Patent Document 1 is acquired by the user when the user presses a trigger button provided on the ultrasonic diagnostic apparatus in a state where the ultrasonic image of a plurality of frames including the bladder of the subject is acquired. Based on the ultrasonic images of a plurality of frames, the ultrasonic image of the frame judged to be appropriate for the urine volume measurement is automatically selected, and the urine volume is measured based on the ultrasonic image of the selected frame.
  • the ultrasonic probe separates from the body surface of the subject during the scanning, and the like.
  • An ultrasonic image of a frame in which the bladder region is not normally captured may be generated, an ultrasonic image of a frame suitable for urine volume measurement may not be generated, and scanning of the ultrasonic beam may fail.
  • the ultrasonic diagnostic apparatus disclosed in Patent Document 1 even if the user fails to scan the ultrasonic beam, the ultrasonic image of the frame used for urine volume measurement is automatically selected. The urine volume is measured based on the ultrasonic image of the frame which is not suitable for the urine volume measurement, and as a result, there is a problem that the accuracy of the urine volume measurement is lowered.
  • the present invention has been made to solve such a conventional problem, and is an ultrasonic diagnostic apparatus, a control method of the ultrasonic diagnostic apparatus, and an ultrasonic diagnostic apparatus capable of improving the accuracy of urine volume measurement.
  • the purpose is to provide a processor for use.
  • the ultrasonic diagnostic apparatus is an image memory that holds a plurality of frames of ultrasonic images acquired by scanning an ultrasonic beam on a subject using an ultrasonic probe. And, the bladder extraction part that extracts the bladder region from each of the ultrasonic images of multiple frames, and the feature amount calculation that calculates the feature amount about the bladder region extracted by the bladder extraction part for each of the ultrasonic images of multiple frames.
  • a failure frame determination unit that determines whether or not the scanning of the ultrasonic beam on the subject has failed for each of the unit and the ultrasonic image of a plurality of frames, and the feature amount calculated by the feature amount calculation unit.
  • Rescan to determine whether rescanning of the ultrasonic beam is necessary based on the time-series change and the time-series position of the ultrasonic image of the frame determined to be the failure frame by the failure frame determination unit.
  • the rescanning recommendation unit and the rescanning determination unit recommend the user to rescan the ultrasonic beam when the determination unit and the rescanning determination unit determine that the ultrasonic beam needs to be rescanned.
  • the ultrasonic image of the measurement frame to be measured is selected from the ultrasonic images of multiple frames based on the feature amount calculated by the feature amount calculation unit. It is characterized by including a measurement frame selection unit for selection and a urine volume measurement unit for measuring urine volume by analyzing an ultrasonic image of the measurement frame selected by the measurement frame selection unit.
  • the ultrasonic diagnostic apparatus includes an input device for the user to perform an input operation, and an ultrasonic beam according to an input operation via the input device by the user when rescanning of the ultrasonic beam is recommended by the rescanning recommendation unit.
  • the rescanning execution receiving unit that accepts the selection of whether or not to execute the rescanning of the ultrasonic beam is further provided, and in this case, the measurement frame selection unit determines that the rescanning of the ultrasonic beam is unnecessary by the rescanning determination unit.
  • the ultrasonic image of multiple frames based on the feature amount calculated by the feature amount calculation unit, when the rescanning execution reception unit accepts the selection not to execute the rescanning of the ultrasonic beam.
  • the ultrasonic image of the measurement frame to be measured can be selected from.
  • the failure frame determination unit performs image analysis on the ultrasonic image, and based on the brightness profile in the depth direction of the ultrasonic image, the failure region where the ultrasonic probe is not adhered to the subject is an ultrasonic image. If it is confirmed inside, it can be determined that it is a failure frame. Alternatively, the failure frame determination unit performs image analysis on the ultrasonic image, so that the ultrasonic probe is not sufficiently pushed into the subject based on the edge clarity of the bladder region in the ultrasonic image. When the region is confirmed in the ultrasonic image, it can be determined as a failure frame.
  • the rescanning determination unit rescans the ultrasonic beam when the failure frame determination unit confirms the failure area in the ultrasonic image but the bladder area extracted by the bladder extraction unit does not overlap the failure area. Can be determined to be unnecessary.
  • the ultrasonic diagnostic apparatus may further include an ultrasonic probe and a pressure sensor attached to the ultrasonic probe and detecting the contact pressure of the ultrasonic probe with respect to the subject. Based on the contact pressure of the ultrasonic probe detected by the pressure sensor, it is possible to determine whether or not the frame is a failure.
  • the failure frame determination unit can notify the user of a portion of the ultrasonic probe that is not adhered to the subject or a portion that is insufficiently pushed into the subject.
  • the ultrasonic diagnostic apparatus may further include a warning unit that issues a warning to the user when the failure frame determination unit determines that the frame is a failure.
  • the control method of the ultrasonic diagnostic apparatus holds a plurality of frames of ultrasonic images acquired by scanning an ultrasonic beam on a subject using an ultrasonic probe, and holds a plurality of frames of ultrasonic images.
  • the bladder region is extracted from each of the above, the feature amount related to the extracted bladder region is calculated for each of the ultrasonic images of multiple frames, and the scanning of the ultrasonic beam on the subject is performed for each of the ultrasonic images of multiple frames. It is determined whether or not it is a failed frame, and the ultrasonic beam of the ultrasonic beam is based on the time-series change of the feature amount and the time-series position of the ultrasonic image of the frame determined to be the failed frame.
  • the ultrasonic image of the measurement frame to be measured is selected from the ultrasonic images of a plurality of frames based on the feature amount, and the ultrasonic image of the measurement frame is analyzed to obtain the urine volume. It is characterized by measuring.
  • the processor for an ultrasonic diagnostic apparatus holds a plurality of frames of ultrasonic images acquired by scanning an ultrasonic beam on a subject using an ultrasonic probe, and holds a plurality of frames of ultrasonic images.
  • the bladder region is extracted from each, the feature amount related to the extracted bladder region is calculated for each of the ultrasonic images of multiple frames, and the scanning of the ultrasonic beam for the subject fails for each of the ultrasonic images of multiple frames. It is determined whether or not the frame is a failed frame, and the ultrasonic beam is regenerated based on the time-series change of the feature amount and the time-series position of the ultrasonic image of the frame determined to be the failed frame.
  • the ultrasonic image of the measurement frame to be measured is selected from the ultrasonic images of multiple frames based on the feature amount, and the urine volume is measured by analyzing the ultrasonic image of the measurement frame. It is characterized by measuring.
  • the ultrasonic diagnostic apparatus extracts a bladder region from each of a plurality of frames of ultrasonic images, and a bladder extracted by the bladder extraction unit for each of a plurality of frames of ultrasonic images.
  • a feature amount calculation unit that calculates a feature amount related to a region
  • a failure frame determination unit that determines whether or not the scanning of the ultrasonic beam on the subject has failed for each of the ultrasonic images of a plurality of frames
  • a feature Rescanning of the ultrasonic beam based on the time-series change of the feature amount calculated by the quantity calculation unit and the time-series position of the ultrasonic image of the frame determined to be the failure frame by the failure frame determination unit.
  • the rescanning determination unit that determines whether or not the ultrasonic beam is necessary, and the rescanning determination unit that recommends the user to rescan the ultrasonic beam when the rescanning determination unit determines that the ultrasonic beam needs to be rescanned. Since it is provided with a scanning recommendation unit, the accuracy of urine volume measurement can be improved.
  • Embodiment 1 of this invention It is a block diagram which shows the structure of the ultrasonic diagnostic apparatus which concerns on Embodiment 1 of this invention. It is a block diagram which shows the internal structure of the transmission / reception circuit in Embodiment 1 of this invention. It is a block diagram which shows the internal structure of the image generation part in Embodiment 1 of this invention. It is a figure which shows typically the example of the ultrasonic image including the bladder region in Embodiment 1 of this invention. It is a figure which shows typically the example of the ultrasonic image of the failure frame. It is a figure which shows typically how the bladder is scanned by the swing method. It is a figure which shows the example of the temporal change of the area of the bladder region.
  • FIG. 5 is a diagram schematically showing an example in which a graph showing a time-series change in the area of the bladder region and an ultrasonic image of a plurality of frames are displayed on a monitor in the first embodiment of the present invention. It is a flowchart which shows the operation of the ultrasonic diagnostic apparatus which concerns on Embodiment 1 of this invention.
  • FIG. 1 It is a figure which shows typically the example in which the urine volume in the bladder of a subject is displayed on the monitor in Embodiment 1 of this invention. It is a figure which shows typically how the bladder is scanned by the slide method. It is a figure which shows the example of the time-series change of the area of the bladder region in a plurality of scans of an ultrasonic beam. It is a block diagram which shows the internal structure of the rescanning determination part in Embodiment 2 of this invention. It is a flowchart which shows the operation of the ultrasonic diagnostic apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 1 shows typically the example in which the urine volume in the bladder of a subject is displayed on the monitor in Embodiment 1 of this invention. It is a figure which shows typically how the bladder is scanned by the slide method. It is a figure which shows the example of the time-series change of the area of the bladder region in a plurality of scans of an ultrasonic beam. It is a
  • FIG. 5 is a diagram schematically showing an example in which a portion of the third embodiment of the present invention in which the ultrasonic probe is not adhered to the body surface of the subject is displayed on the monitor. It is a block diagram which shows the structure of the ultrasonic diagnostic apparatus which concerns on Embodiment 5 of this invention. It is a block diagram which shows the structure of the ultrasonic diagnostic apparatus which concerns on Embodiment 6 of this invention.
  • FIG. 1 shows the configuration of the ultrasonic diagnostic apparatus 1 according to the first embodiment of the present invention.
  • the ultrasonic diagnostic apparatus 1 includes an oscillator array 2, and a transmission / reception circuit 3, an image generation unit 4, a display control unit 5, and a monitor 6 are sequentially connected to the oscillator array 2. Further, the vibrator array 2 and the transmission / reception circuit 3 are included in the ultrasonic probe 21.
  • An image memory 7 is connected to the image generation unit 4. Further, the bladder extraction unit 9 and the failure frame determination unit 16 are connected to the image memory 7.
  • the feature amount calculation unit 10 is connected to the bladder extraction unit 9. Further, the rescanning determination unit 17 is connected to the feature amount calculation unit 10 and the failure frame determination unit 16.
  • a warning unit 18 is connected to the failure frame determination unit 16. Further, the rescanning recommendation unit 19 and the rescanning execution receiving unit 20 are connected to the rescanning determination unit 17. Further, the measurement frame selection unit 12 is selected for the feature amount calculation unit 10, the rescanning determination unit 17, and the rescanning execution reception unit 20. The urine volume measuring unit 13 is connected to the measuring frame selection unit 12. Further, the measurement frame selection unit 12, the urine volume measurement unit 13, the warning unit 18, and the rescanning recommendation unit 19 are each connected to the display control unit 5.
  • the device control unit 14 is connected to the warning unit 18, the rescanning recommendation unit 19, and the rescanning execution receiving unit 20. Further, the input device 15 is connected to the device control unit 14.
  • a processor 22 for the ultrasonic diagnostic apparatus 1 is composed of 17, a warning unit 18, a rescanning recommendation unit 19, and a rescanning execution receiving unit 20.
  • the vibrator array 2 of the ultrasonic probe 21 shown in FIG. 1 has a plurality of vibrators arranged one-dimensionally or two-dimensionally. Each of these vibrators transmits ultrasonic waves according to a drive signal supplied from the transmission / reception circuit 3, receives an ultrasonic echo from a subject, and outputs a signal based on the ultrasonic echo.
  • Each transducer includes, for example, a piezoelectric ceramic represented by PZT (Lead Zirconate Titanate), a polymer piezoelectric element represented by PVDF (Poly Vinylidene Di Fluoride), and a PMN-PT (PMN-PT).
  • It is configured by forming electrodes at both ends of a piezoelectric material made of a piezoelectric single crystal or the like represented by Lead Magnesium Niobate-Lead Titanate (lead magnesium niobate-lead titanate solid solution).
  • the transmission / reception circuit 3 transmits ultrasonic waves from the vibrator array 2 and generates a sound line signal based on the received signal acquired by the vibrator array 2 under the control of the device control unit 14. As shown in FIG. 2, the transmission / reception circuit 3 includes a pulsar 23 connected to the vibrator array 2, an amplification unit 24 connected in series from the vibrator array 2, an AD (Analog Digital) conversion unit 25, and a beam former. Has 26.
  • the pulsar 23 includes, for example, a plurality of pulse generators, and is transmitted from the plurality of vibrators of the vibrator array 2 based on a transmission delay pattern selected according to a control signal from the device control unit 14.
  • Each drive signal is supplied to a plurality of vibrators by adjusting the delay amount so that the ultrasonic waves form an ultrasonic beam.
  • a pulsed or continuous wave voltage is applied to the electrodes of the vibrator of the vibrator array 2
  • the piezoelectric body expands and contracts, and pulsed or continuous wave ultrasonic waves are generated from each vibrator.
  • An ultrasonic beam is formed from the combined waves of those ultrasonic waves.
  • the transmitted ultrasonic beam is reflected by, for example, a target such as a site of a subject, and propagates toward the vibrator array 2 of the ultrasonic probe 21.
  • the ultrasonic echo propagating toward the vibrator array 2 in this way is received by each of the vibrators constituting the vibrator array 2.
  • each of the vibrators constituting the vibrator array 2 expands and contracts by receiving the propagating ultrasonic echo to generate a received signal which is an electric signal, and these received signals are transmitted to the amplification unit 24. Output.
  • the amplification unit 24 amplifies the signal input from each of the vibrators constituting the vibrator array 2, and transmits the amplified signal to the AD conversion unit 25.
  • the AD conversion unit 25 converts the signal transmitted from the amplification unit 24 into digital reception data, and transmits these reception data to the beam former 26.
  • the beam former 26 follows the sound velocity or sound velocity distribution set based on the reception delay pattern selected according to the control signal from the device control unit 14, and is used for each received data converted by the AD conversion unit 25, respectively. By giving a delay of and adding, so-called reception focus processing is performed. By this reception focus processing, each received data converted by the AD conversion unit 25 is phase-aligned and added, and a sound line signal in which the focus of the ultrasonic echo is narrowed down is acquired.
  • the image generation unit 4 has a configuration in which a signal processing unit 27, a DSC (Digital Scan Converter) 28, and an image processing unit 29 are sequentially connected in series.
  • the signal processing unit 27 corrects the attenuation due to the distance according to the depth of the reflection position of the ultrasonic wave to the sound line signal generated by the beam former 26 of the transmission / reception circuit 3, and then performs the envelope detection process.
  • Generates a B-mode image signal which is tomographic image information about the tissue in the subject.
  • the DSC 28 converts the B-mode image signal generated by the signal processing unit 27 into an image signal according to a normal television signal scanning method (raster conversion).
  • the image processing unit 29 performs various necessary image processing such as gradation processing on the B mode image signal input from the DSC 28, and then outputs the B mode image signal to the display control unit 5 and the image memory 7.
  • the B-mode image signal that has been image-processed by the image processing unit 29 is simply referred to as an ultrasonic image.
  • the image memory 7 is a memory that holds a series of a series of plurality of frames of ultrasonic images generated for each diagnosis by the image generation unit 4.
  • the image memory 7 includes a flash memory, an HDD (Hard Disc Drive), an SSD (Solid State Drive), an FD (Flexible Disc), and an MO disk (Magneto-Optical disc). ), MT (Magnetic Tape), RAM (Random Access Memory), CD (Compact Disc), DVD (Digital Versatile Disc), SD card (Secure Digital card)
  • a recording medium such as a digital card), a USB memory (Universal Serial Bus memory), a server, or the like can be used.
  • the bladder extraction unit 9 extracts the bladder region BR from the ultrasonic image U, for example, as shown in FIG.
  • the bladder extraction unit 9 is described in, for example, Krizhevsk et al .: ImageNet Classification with Deep Convolutional Neural Networks, Advances in Neural Information Processing Systems 25, pp.1106-1114 (2012). ) Can be used to extract the bladder region BR in the ultrasonic image U.
  • the bladder extraction unit 9 uses a graph cut (Y.Boykov and V.Kolmogorov, ”An experimental comparison of min-cut / max-flow algorithm for energy minimization in” as another method for extracting the bladder region BR.
  • the feature amount calculation unit 10 calculates the feature amount related to the extracted bladder region BR in the ultrasonic image U in which the bladder region BR is extracted by the bladder extraction unit 9.
  • the feature amount calculation unit 10 can calculate, for example, the area of the bladder region BR extracted by image analysis as the feature amount. Further, the feature amount calculation unit 10 can calculate, for example, the maximum diameter of the bladder region BR in three directions orthogonal to each other, which is used for measuring the volume of the bladder described later by image analysis, as the feature amount. In addition, the feature amount calculation unit 10 can calculate, for example, the maximum diameter in an arbitrary direction from the extracted bladder region BR, the circumference length of the bladder region BR, and the like as feature amounts by image analysis.
  • the failure frame determination unit 16 determines whether or not the ultrasonic images of the plurality of frames held in the image memory 7 are the ultrasonic images of the failure frames, respectively.
  • the ultrasonic image of the failed frame is an ultrasonic image of the frame in which the scanning of the ultrasonic beam on the subject fails due to the presence of a portion where the ultrasonic probe 21 does not adhere to the body surface of the subject. Is.
  • the failure frame determination unit 16 has, for example, a constant brightness threshold value with respect to the brightness value of the ultrasonic image, and for each of the ultrasonic images of a plurality of frames held in the image memory 7. , The brightness profile along the depth direction is analyzed, and the area having the brightness value smaller than the brightness threshold is determined to be the failure area FR in which the ultrasonic probe 21 is not adhered to the body surface of the subject, and fails. It is determined that the ultrasonic image of the frame including the region FR is the ultrasonic image of the failed frame.
  • the warning unit 18 warns the user when the failure frame determination unit 16 determines that any of the ultrasonic images of the plurality of frames held in the image memory 7 is the ultrasonic image of the failure frame. Emit.
  • the warning unit 18 can display, for example, a message indicating a warning to the user on the monitor 6.
  • the image generation unit 4 when the image generation unit 4 generates an ultrasonic image of a frame including the bladder region BR of the subject, the user usually has the ultrasonic probe 21 adhered to the body surface of the subject.
  • the bladder is scanned while changing the position or angle of the ultrasonic probe 21.
  • the user can scan the bladder by using, for example, a swing method in which the ultrasonic probe 21 is tilted on the body surface of the subject while keeping the position of the ultrasonic probe 21 constant.
  • the ultrasonic probe 21 is tilted on the body surface S of the subject so as to reciprocate between the tilt angle at which PS1 is imaged and the tilt angle at which the scanning cross section PS2 passing through the other end of the bladder B is photographed. ..
  • the value of the area of the bladder region BR included in the ultrasonic image of the frame continuously generated by the image generation unit 4 has a maximum value and a minimum value alternately as shown in FIG. 7, for example. It changes in time series.
  • the relationship between the area of the bladder region BR and the time when the ultrasonic image of the frame in which the area of the bladder region BR is calculated is generated is shown, and the value of the area of the bladder region BR is 1. It changes in time series so as to have one maximum value M1 and two minimum values N1 and N2.
  • the time-series change of the value of the area of the bladder region BR is shown, but the maximum diameter of the bladder region BR also changes with time series as shown in FIG. ..
  • the urine volume in the bladder B is calculated by regarding the bladder B as an ellipsoid and calculating the volume of the bladder B. It is measured.
  • the ellipsoid E has a shape symmetrical with respect to the XY plane, the YZ plane, and the XZ plane, and the maximum diameter of the ellipsoid E in the X direction is defined as the maximum diameter in the LX and Y directions.
  • the volume of the ellipsoid E is calculated by (LX ⁇ LY ⁇ LZ) ⁇ ⁇ / 6, where LZ is the maximum diameter in the LY and Z directions and ⁇ is the circumference ratio. Therefore, when calculating the volume of the bladder B using the ultrasonic image, it is desirable to measure the ultrasonic images of two frames corresponding to the scanning cross sections that pass through the center of the bladder B and are orthogonal to each other.
  • the ultrasonic image of the frame corresponding to the scanning cross section passing through the center of the bladder B includes, for example, the area and maximum diameter of the bladder region BR when the ultrasonic beam is scanned with respect to the bladder B by the swing method.
  • This is an ultrasonic image of a frame in which the feature amount of is maximized in a time-series change.
  • the rescanning determination unit 17 acquires information representing a time-series change in the feature amount of the bladder region BR calculated by the feature amount calculation unit 10, and analyzes this information to determine a frame determined to be a failure frame. At the time when the ultrasonic image of the above is generated, it is estimated whether or not the original time-series change of the feature amount is maximized, and based on the estimation result, whether or not the ultrasonic beam needs to be rescanned. To judge.
  • FIG. 9 shows a graph showing a time-series change in the area of the bladder area BR as an example of information showing a time-series change in the feature amount of the bladder area BR, and is a section between times T1 and T2. An ultrasonic image of the failed frame is generated in.
  • the rescanning determination unit 17 acquires, for example, information representing a change in the graph in a certain section before and after the section between times T1 and T2 by analyzing a graph showing the time change of the feature amount, and uses the acquired information as the information. Based on this, it is possible to determine whether or not the feature amount is maximized at the time when the ultrasonic image of the failed frame is generated.
  • the rescanning determination unit 17 is, for example, when the graph monotonically increases in a certain section immediately before the section between times T1 and T2 and decreases monotonically in a certain section immediately after the section between times T1 and T2. , It can be estimated that the feature amount becomes maximum in the section of time T1 to T2, and in other cases, the feature amount does not become maximum in the section of time T1 to T2.
  • the graph increases monotonically in a certain section immediately before the section of time T1 to T2 when the ultrasonic image of the failure frame is generated, and the graph monotonically increases in a certain section immediately after the section of time T1 to T2. Therefore, the rescanning determination unit 17 estimates that the area of the bladder region BR becomes maximum in the section from time T1 to T2.
  • the rescanning determination unit 17 when it is estimated that the feature amount becomes maximum at the time when the ultrasonic image of the failed frame is generated, the rescanning determination unit 17 generates the ultrasonic image of the frame suitable for urine volume measurement. It is determined that the ultrasonic beam does not need to be rescanned.
  • the area of the bladder region BR has a maximum value M1 at a time earlier than the section of times T3 to T4 in which the ultrasonic image of the failed frame was generated.
  • the rescanning determination unit 17 fails because the graphs are monotonically decreasing in the fixed section immediately before the section of time T3 to T4 and the fixed section immediately after the section of time T3 to T4, respectively. It is estimated that the area of the bladder region BR does not reach the maximum at the time when the ultrasonic image of the frame is generated.
  • the rescanning determination unit 17 uses the ultrasonic wave of the frame suitable for urine volume measurement. It is determined that the image has been generated, and it is determined that the rescanning of the ultrasonic beam is unnecessary.
  • the input device 15 is for the user to perform an input operation, and can be configured to include a keyboard, a mouse, a trackball, a touch pad, a touch panel, and the like.
  • the rescanning recommendation unit 19 recommends the user to rescan the ultrasonic beam when the rescanning determination unit 17 determines that the ultrasonic beam needs to be rescanned.
  • the rescanning recommendation unit 19 can display, for example, a message on the monitor 6 for recommending the rescanning of the ultrasonic beam.
  • the rescanning recommendation unit 19 provides the monitor 6 with a message, a radio button, or the like for prompting the user to select, for example, whether or not to perform rescanning of the ultrasonic beam by an input operation via the input device 15. indicate.
  • the rescanning recommendation unit 19 has a plurality of frames of the ultrasonic image U2 and a plurality of frames so that the user can easily determine whether or not to rescan the ultrasonic beam, for example, as shown in FIG.
  • a graph G1 showing a time-series change in the feature amount of the bladder region BR corresponding to the ultrasonic image U2 can be displayed on the monitor 6.
  • a plurality of frames of ultrasonic images U2 are scrolled and displayed at the bottom of the monitor 6, and among the plurality of frames of ultrasonic images U2, the ultrasonic waves of the frame corresponding to the marker MP arranged in the graph G1.
  • the image U3 is selected by the user, and the ultrasonic image U4, which is an enlargement of the ultrasonic image U3 of this frame, is enlarged and displayed in the upper right part of the monitor 6.
  • the rescanning execution receiving unit 20 rescans the ultrasonic beam according to an input operation via the input device 15 by the user. Accepts the choice of whether to execute.
  • the measurement frame selection unit 12 accepts the selection not to execute the ultrasonic beam rescanning by the rescanning execution receiving unit 20. However, when the rescanning determination unit 17 determines that the rescanning of the ultrasonic beam is unnecessary, the ultrasonic beam is stored in the image memory 7 based on the feature amount calculated by the feature amount calculation unit 10. The ultrasonic image of the measurement frame to be measured is selected from the ultrasonic images of the plurality of frames.
  • the measurement frame selection unit 12 is characterized by, for example, a plurality of frames of ultrasonic images held in the image memory 7.
  • the maximum feature amount among the feature amounts calculated by the quantity calculation unit 10 can be acquired, and the ultrasonic image of the frame having the maximum feature amount can be selected as the ultrasonic image of the measurement frame.
  • the measurement frame selecting unit 12 may, for example, obtain a plurality of frames of ultrasonic images held in the image memory 7. Excluding the ultrasonic image of the frame determined by the failure frame determination unit 16 to be the ultrasonic image of the failure frame, the maximum feature amount among the feature amounts in the ultrasonic image of the remaining frame is acquired, and the feature amount is obtained. The ultrasonic image of the frame having the maximum amount can be selected as the ultrasonic image of the measurement frame.
  • the urine volume measuring unit 13 measures the urine volume in the bladder B by calculating the volume of the bladder B of the subject based on the ultrasonic image of the measuring frame selected by the measuring frame selecting unit 12.
  • the urine volume measuring unit 13 receives, for example, two measurement frames when the measurement frame selection unit 12 selects ultrasonic images of two measurement frames that correspond to scanning cross sections that pass through the center of the bladder B and are orthogonal to each other.
  • the measurement frame selection unit 12 selects ultrasonic images of two measurement frames that correspond to scanning cross sections that pass through the center of the bladder B and are orthogonal to each other.
  • the display control unit 5 includes an ultrasonic image of the frame held in the image memory 7, information indicating a warning to the user by the warning unit 18, and an ultrasonic beam by the rescanning recommendation unit 19.
  • the information representing the message recommending rescanning and the information representing the value of the urine volume in the bladder B of the subject measured by the urine volume measuring unit 13 are subjected to predetermined processing, and they are subjected to predetermined processing. Is displayed on the monitor 6.
  • the monitor 6 performs various displays under the control of the display control unit 5.
  • the monitor 6 includes, for example, a display device such as an LCD (Liquid Crystal Display) and an organic EL display (Organic Electroluminescence Display).
  • the device control unit 14 controls each part of the ultrasonic diagnostic device 1 based on a control program or the like stored in advance.
  • the processor 22 having 17, the warning unit 18, the rescanning recommendation unit 19, and the rescanning execution receiving unit 20 is derived from a CPU (Central Processing Unit) and a control program for causing the CPU to perform various processes.
  • CPU Central Processing Unit
  • FPGA Field Programmable Gate Array: Feed Programmable Gate Array
  • DSP Digital Signal Processor: Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • GPU Graphic
  • FPGA Field Programmable Gate Array: Feed Programmable Gate Array
  • DSP Digital Signal Processor: Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • GPU Graphic
  • It may be configured by using a processing unit) or another IC (Integrated Circuit), or may be configured by combining them.
  • the image generation unit 4, the display control unit 5, the bladder extraction unit 9, the feature amount calculation unit 10, the measurement frame selection unit 12, the urine volume measurement unit 13, the device control unit 14, the failure frame determination unit 16, and the processor 22 are regenerated.
  • the scanning determination unit 17, the warning unit 18, the rescanning recommendation unit 19, and the rescanning execution receiving unit 20 may be partially or wholly integrated into one CPU or the like.
  • step S1 an ultrasonic image is generated with the ultrasonic probe 21 adhered on the body surface S of the subject by the user, and the generated ultrasonic image is displayed on the monitor 6.
  • an ultrasonic beam is transmitted into the subject from a plurality of vibrators of the vibrator array 2 according to a drive signal from the pulsar 23 of the transmission / reception circuit 3, and each vibrator receiving the ultrasonic echo from the subject receives the ultrasonic echo.
  • a received signal is generated, and the received signal is output to the amplification unit 24 of the transmission / reception circuit 3.
  • the received signal is amplified by the amplification unit 24, AD-converted by the AD conversion unit 25, and then phase-adjusted and added by the beam former 26 to generate a sound line signal.
  • This sound line signal becomes a B-mode image signal when the signal processing unit 27 performs the envelope detection process in the image generation unit 4, and is output to the display control unit 5 via the DSC 28 and the image processing unit 29. As shown in 4, the ultrasonic image U is displayed on the monitor 6 under the control of the display control unit 5.
  • the user checks the position and inclination of the ultrasonic probe 21 so that the bladder region BR of the subject is visualized in the ultrasonic image U while checking the ultrasonic image U displayed on the monitor 6. adjust.
  • step S2 it is determined whether or not the measurement mode for measuring the urine volume in the bladder B of the subject has been activated. For example, when the user gives an instruction to start the measurement mode via the input device 15, it is determined that the measurement mode has been started, and when the user has not instructed to start the measurement mode, the measurement mode is set. It is determined that it has not been started. If it is determined that the measurement mode has not been activated, the process returns to step S1 to generate and display an ultrasonic image. When the user finishes adjusting the position of the ultrasonic probe 21 and gives an instruction to activate the measurement mode, and it is determined that the measurement mode has been activated, the process proceeds to step S3.
  • step S2 When it is determined that the measurement mode is activated in step S2, an ultrasonic image is generated in step S3 in the same manner as in step S1, and the generated ultrasonic image is held in the image memory 7.
  • the user scans the bladder B with an ultrasonic beam by, for example, a swing method in which the bladder B of a subject is imaged while changing the inclination of the ultrasonic probe 21.
  • step S4 it is determined whether or not the scanning of the ultrasonic beam on the bladder B is completed. For example, when the user gives an instruction to end the scanning of the ultrasonic beam via the input device 15, it is determined that the scanning of the ultrasonic beam is completed, and the user does not give an instruction to end the scanning of the ultrasonic beam. If not, it is determined that the scanning of the ultrasonic beam is ongoing. If it is determined that the scanning of the ultrasonic beam is continuing, the process returns to step S3 to generate and hold the ultrasonic image. In this way, steps S3 and S4 are repeated as long as the scanning of the ultrasonic beam continues. As a result, a series of plurality of frames of ultrasonic images are held in the image memory 7. If it is determined that the scanning of the ultrasonic beam is completed, the process proceeds to step S5.
  • step S3 when the ultrasonic image is generated in step S3, if there is a portion where the ultrasonic probe 21 is not adhered to the body surface S of the subject, for example, the region surrounded by the dotted line in FIG. As shown by, the failure to obtain a signal having a certain intensity or higher causes a black-filled failure region FR in the ultrasonic image U1.
  • step S5 it is determined whether or not the ultrasonic image of the failed frame is included in the series of ultrasonic images of the plurality of frames held in the image memory 7.
  • the failure frame determination unit 16 acquires a brightness profile along the depth direction for each of the plurality of frames of the ultrasonic image held in the image memory 7, and analyzes the acquired brightness profile.
  • the region having a brightness value smaller than a certain brightness threshold value in the ultrasonic image is recognized as the failure region FR, and the ultrasonic image of the frame including the failure region FR is determined to be the ultrasonic image of the failure frame. do.
  • step S6 the warning unit 18 warns the user that the ultrasonic image of the plurality of frames held in the image memory 7 includes the ultrasonic image of the failed frame.
  • the warning unit 18 displays, for example, a warning to the user on the monitor 6.
  • the user is made aware that the ultrasonic image of the failed frame has been generated, and the ultrasonic probe 21 is sufficiently adhered to the body surface S of the subject when the ultrasonic beam is rescanned. It is possible to call attention to the user.
  • step S6 proceeds to step S7.
  • step S5 If it is determined in step S5 that the ultrasonic image of the plurality of frames held in the image memory 7 does not include the ultrasonic image of the failed frame, step S6 is omitted and step S7. Proceed to.
  • step S7 the bladder extraction unit 9 performs image analysis on the ultrasonic images of a plurality of frames held in the image memory 7 to extract the bladder region BR representing the bladder B of the subject.
  • the extracted bladder region BR information and the ultrasonic images of a plurality of frames are transmitted to the feature amount calculation unit 10.
  • step S8 the feature amount calculation unit 10 calculates the area of the bladder area BR as the feature amount related to the bladder area BR based on the bladder area BR extracted in step S7 for each of the ultrasonic images of the plurality of frames. do. Since the user scanned the ultrasonic beam by the swing method in step S3, the area of the bladder region BR calculated in step S6 changes in time series as shown in FIG. 7, for example. Here, the calculated information on the area of the bladder region BR and the ultrasonic images of a plurality of frames are transmitted to the rescanning determination unit 17 and the measurement frame selection unit 12.
  • step S9 the rescanning determination unit 17 determines the time-series position of the ultrasonic image of the frame determined to be the ultrasonic image of the failed frame in step S5, and the area of the bladder region BR calculated in step S8. It is determined whether or not the ultrasonic beam needs to be rescanned based on the time-series change of. At this time, the rescanning determination unit 17 remains, for example, removing the ultrasonic image of the frame determined to be the failure frame in step S5 from the series of ultrasonic images of the plurality of frames held in the image memory 7. Obtain a graph showing the time-series changes in the area of the bladder region BR in the ultrasound image of the frame.
  • the center of the bladder B is used as an ultrasonic image of the frame used for the urine volume measurement. It is desirable to use an ultrasound image of the frame corresponding to the scanning cross section through.
  • the ultrasonic image of such a frame is an ultrasonic image of a frame in which the area of the bladder region BR is maximized in a time-series change as shown in FIG.
  • the rescanning determination unit 17 analyzes the graph showing the time-series change in the area of the bladder region BR, and in the time-series section in which the ultrasonic image of the failure frame is generated, the original bladder region BR By estimating whether or not the area has a maximum value, it is possible to determine whether or not rescanning of the ultrasonic beam is necessary.
  • the rescanning determination unit 17 determines the graph in a certain section before and after the section of time T1 to T2.
  • Information representing the change can be acquired, and based on the acquired information, it can be estimated whether or not the area of the original bladder region BR has a maximum value in the interval of time T1 to T2.
  • the graph monotonically increases in a certain section immediately before the section of time T1 to T2, and decreases monotonically in a certain section immediately after the section of time T1 to T2. Therefore, the rescanning determination unit 17 estimates that the area of the original bladder region BR is maximized in the section from time T1 to T2, and determines that the ultrasonic image of the frame suitable for urine volume measurement is not generated. , Determines that the ultrasonic beam needs to be rescanned.
  • the rescanning determination unit 17 monotonically increases the graph in a certain section immediately before the section in which the ultrasonic image of the failure frame is generated in the graph showing the time-series change in the area of the bladder region BR, and , The area of the original bladder region BR in the section where the failed frame ultrasound image was generated, except when the graph monotonously decreases in a certain section immediately after the section where the failed frame ultrasound image was generated. Is not maximized, and it is determined that an ultrasonic image of a frame suitable for urine volume measurement is generated, and it is determined that rescanning of the ultrasonic beam is unnecessary.
  • the ultrasonic image of the failure frame is generated in the section of time T3 to T4 not including the maximum value M1, and the fixed section immediately before the section of time T3 to T4 and the section of time T3 to T4. Since the graphs of the fixed section immediately after the above are all monotonically decreasing, the rescanning determination unit 17 estimates that the area of the original bladder region BR does not become the maximum in the section from time T3 to T4.
  • step S9 in this way, the rescanning determination unit 17 determines whether or not the ultrasonic beam needs to be rescanned, but when it is determined that the ultrasonic beam needs to be rescanned. To step S10.
  • the rescanning recommendation unit 19 recommends the user to rescan the ultrasonic beam by displaying a message on the monitor 6 for recommending the rescanning of the ultrasonic beam.
  • the rescanning recommendation unit 19 monitors, for example, a message, a radio button, or the like for allowing the user to select whether or not to perform rescanning of the ultrasonic beam by an input operation via the input device 15. Display on.
  • the rescanning recommendation unit 19 has a plurality of frames of the ultrasonic image U2 and a plurality of frames so that the user can easily determine whether or not to rescan the ultrasonic beam, for example, as shown in FIG.
  • a graph G1 showing a time-series change in the feature amount of the bladder region BR corresponding to the ultrasonic image U2 can be displayed on the monitor 6.
  • a plurality of frames of ultrasonic images U2 are scrolled and displayed at the bottom of the monitor 6, and among the plurality of frames of ultrasonic images U2, the ultrasonic waves of the frame corresponding to the marker MP arranged in the graph G1.
  • the image U3 is selected by the user, and the ultrasonic image U4, which is an enlargement of the ultrasonic image U3 of this frame, is enlarged and displayed in the upper right part of the monitor 6.
  • the reception unit 20 receives a selection as to whether or not to perform rescanning of the ultrasonic beam according to an input operation by the user via the input device 15. For example, when an instruction to perform rescanning of the ultrasonic beam is input by the user via the input device 15, the rescanning execution receiving unit 20 accepts a choice to perform rescanning of the ultrasonic beam. Further, when the user inputs an instruction not to execute the rescanning of the ultrasonic beam via the input device 15, the rescanning execution receiving unit 20 accepts a selection not to execute the rescanning of the ultrasonic beam.
  • step S11 When the selection to execute the rescanning of the ultrasonic beam is made in step S11, the process returns to step S3 and the rescanning of the ultrasonic beam is started. In this way, as long as it is determined in step S9 that the ultrasonic beam needs to be rescanned and the step S11 selects to perform the ultrasonic beam rescanning, the processes of steps S3 to S11 are repeated. ..
  • step S9 it is automatically determined in step S9 whether or not the ultrasonic beam needs to be rescanned, and when it is determined in step S10 that the ultrasonic beam needs to be rescanned, the user is notified in step S10.
  • Rescanning of the ultrasonic beam is recommended, and in step S11, whether or not to rescan the ultrasonic beam according to the input operation of the user is selected.
  • Ultrasound images can be easily acquired, and the accuracy of urine volume measurement can be improved.
  • step S11 whether or not to perform rescanning of the ultrasonic beam according to the input operation of the user is selected, so that the ultrasonic probe 21 is transmitted from the body surface S of the subject due to the body shape of the subject and the like. Urine volume can be measured even if the urine is partially separated.
  • step S11 If it is selected in step S11 not to perform the rescanning of the ultrasonic beam, the process proceeds to step S12. If it is determined in step S9 that the rescanning of the ultrasonic beam is unnecessary, steps S10 and S11 are omitted, and the process proceeds to step S12.
  • step S12 the measurement frame selection unit 12 selects the measurement frame to be measured from among the ultrasonic images of the plurality of frames held in the image memory 7 based on the area of the bladder region BR calculated in step S8. Select an ultrasound image.
  • the measurement frame selection unit 12 acquires the maximum area of the bladder region BR calculated in step S8 and bladder.
  • the ultrasonic image of the frame that maximizes the area of the region BR is selected as the ultrasonic image of the measurement frame.
  • the measurement frame selection unit 12 performs the image.
  • the area of the bladder region BR calculated with respect to the ultrasonic images of the remaining frames, excluding the ultrasonic images of the frames determined to be failed frames in step S5 from the ultrasonic images of the plurality of frames held in the memory 7.
  • the largest area is acquired, and the ultrasonic image of the frame that maximizes the area of the bladder region BR is selected as the ultrasonic image of the measurement frame. In this way, when the ultrasonic image of the measurement frame is selected in step S12, the process proceeds to step S13.
  • step S13 whether or not ultrasonic images of two measurement frames corresponding to two scanning cross sections orthogonal to each other of the bladder B of the subject were selected in step S12 in order to measure the amount of urine in the bladder B. Is determined.
  • step S12 which has already been completed, only the ultrasonic image of the measurement frame corresponding to one of the two scanning sections of the bladder B orthogonal to each other is obtained. Therefore, it is determined that the ultrasonic images of the two measurement frames corresponding to the two scanning cross sections of the bladder B of the subject are not selected, and the process returns to step S3, and the scanning of the ultrasonic beam is restarted. .. At this time, the user rotates the direction of the ultrasonic probe 21 by 90 degrees to scan the ultrasonic beam.
  • steps S3 and S4 unless the user gives an instruction to end the scanning of the ultrasonic beam, the generation and retention of the ultrasonic image are repeated, and in step S4, the user gives an instruction to end the scanning of the ultrasonic beam. Then, the process proceeds to step S5. Since the subsequent processes of steps S5 to S12 are the same as those already described, the description thereof will be omitted.
  • step S12 When the ultrasonic image of the measurement frame is selected in step S12, the process proceeds to step S13.
  • step S13 it is determined whether or not the ultrasonic images of the two measurement frames corresponding to the two scanning cross sections of the bladder B of the subject orthogonal to each other are selected in step S12. Since the ultrasonic images of the second measurement frame are selected in the second step S12, the ultrasonic images of the two measurement frames corresponding to the two scanning cross sections of the bladder B of the subject are selected. It is determined that this has been done, and the process proceeds to step S14.
  • the urine volume measuring unit 13 extracts the bladder region BR from the ultrasonic images of the two measurement frames selected by the user in the two steps S12, respectively, and based on the diameter of the extracted bladder region BR.
  • the amount of urine in the bladder B is measured by calculating the volume of the bladder B of the subject. For example, as shown in FIG. 8, the urine volume measuring unit 13 regards the bladder B as an ellipsoid E, and considers the ellipsoid E as the maximum diameter LX in the X direction, the maximum diameter LY in the Y direction, and the maximum diameter LZ in the Z direction.
  • the urine volume measuring unit 13 displays the measured urine volume J in the bladder B on the monitor 6.
  • the ultrasonic image UD of the measurement frame selected by the user in the second step S12 and the urine volume J in the bladder B are displayed together on the monitor 6.
  • the ultrasonic diagnostic apparatus 1 it is automatically determined in step S5 whether or not there is an ultrasonic image of a failed frame among the ultrasonic images of a plurality of frames. Based on this determination result and the feature amount of the bladder region BR calculated in step S8, it is determined in step S9 whether or not the ultrasonic beam needs to be rescanned, and the ultrasonic beam needs to be rescanned.
  • the user is recommended to rescan the ultrasonic beam. Therefore, by rescanning the ultrasonic beam, it is easy to acquire an ultrasonic image of a measurement frame suitable for urine volume measurement, and the urine volume is determined. The accuracy of measurement can be improved.
  • the beam former 26 that performs so-called reception focus processing is included in the transmission / reception circuit 3, but can also be included in the image generation unit 4, for example. Even in this case, the image generation unit 4 generates an ultrasonic image as in the case where the beam former 26 is included in the transmission / reception circuit 3. Further, although the image generation unit 4 is included in the processor 22, it may be included in the ultrasonic probe 21.
  • step S4 when the user gives an instruction to end the scanning of the ultrasonic beam, it is determined that the scanning of the ultrasonic beam is completed. For example, in step S2, the measurement mode is activated and the step. It can also be determined that the scanning of the ultrasonic beam is completed when a certain time such as 15 seconds elapses from the time when the generation and holding of the ultrasonic image is started in S3. In this case, it is possible to save the user the trouble of giving an instruction to end the scanning of the ultrasonic beam.
  • the ultrasonic probe 21 it is possible to determine whether or not the ultrasonic probe 21 is adhered to the body surface S of the subject, and control the start and end of scanning of the ultrasonic beam according to the determination result.
  • an ultrasonic image of a frame corresponding to the scanning cross section in the subject is generated, but the ultrasonic probe 21 is the subject.
  • an ultrasound image is usually produced that is entirely blackened. Therefore, for example, by analyzing the generated ultrasonic image, it is possible to determine whether or not the ultrasonic probe 21 is adhered to the body surface S of the subject.
  • the ultrasonic probe 21 when it is determined that the ultrasonic probe 21 is adhered to the body surface S of the subject, scanning of the ultrasonic beam is started, and the ultrasonic probe 21 is separated from the body surface S of the subject. If determined, the scanning of the ultrasonic beam can be terminated. Also in this case, it is possible to save the user the trouble of giving an instruction to end the scanning of the ultrasonic beam.
  • the plurality of determination methods for starting and ending the scanning of the ultrasonic beam described above can be combined with each other as appropriate.
  • the scanning of the ultrasonic beam is performed by the ultrasonic probe while keeping the inclination angle of the ultrasonic probe 21 constant on the body surface S of the subject.
  • a slide method of moving 21 in parallel can also be used.
  • the user sets the direction in which the ultrasonic probe 21 is translated on the body surface S of the subject as the slide direction DS, and the ultrasonic probe is used. 21 reciprocates between the position where the scanning cross section PS3 passing through one end of the bladder B in the sliding direction DS is imaged and the position where the scanning cross section PS4 passing through the other end of the bladder B in the sliding direction DS is imaged. To move.
  • the feature quantities such as the area of the bladder region BR in the ultrasonic image of the generated frame are the position of the ultrasonic probe 21 in which the scanning cross section PS3 is photographed and the ultrasonic probe in which the scanning cross section PS4 is photographed. Since the minimum value is reached at the position of 21 and the maximum value is reached at the position of the ultrasonic probe 21 in which the scanning cross section passing through the center of the bladder B is photographed, the feature amount of the bladder region BR is determined by scanning the ultrasonic beam by the swing method. As in the case where it is done, it changes in chronological order as shown in FIG.
  • the rescanning determination unit 17 determines whether or not the rescanning of the ultrasonic beam is necessary, so that the urine volume can be measured. It is easy to acquire an ultrasonic image of a suitable measurement frame, and the accuracy of urine volume measurement can be improved.
  • the rescanning determination unit 17 acquires a graph showing the time-series change of the feature amount with respect to the bladder region BR, and applies a so-called smoothing filter, low-pass filter, etc. to the curve of the acquired graph.
  • a graph consisting of smooth curves can be obtained by performing the filtering process according to.
  • the rescanning determination unit 17 analyzes the graph in which the influence of noise and the like is reduced by the filtering process, and whether or not the original feature amount becomes the maximum value at the time when the ultrasonic image of the failed frame is generated. Can be estimated accurately.
  • the rescanning recommendation unit 19 includes a plurality of frames of ultrasonic images U2 and a plurality of ultrasonic images U2 as shown in FIG. 11 so that the user can easily determine whether or not to rescan the ultrasonic beam.
  • the graph G1 showing the time-series change of the feature amount corresponding to the ultrasonic image U2 of the frame can be displayed on the monitor 6.
  • the ultrasonic image of the failed frame is displayed in a red frame or a thick frame.
  • the ultrasonic image of the failed frame can be displayed on the monitor 6 in a display mode different from the display mode of the ultrasonic image of the normal frame.
  • the user can more clearly grasp the ultrasonic image of the failed frame from the ultrasonic images of the plurality of frames displayed on the monitor 6 and select whether or not to rescan the ultrasonic beam. be able to.
  • step S13 when it is determined in step S13 that the ultrasonic images of the two measurement frames corresponding to the two scanning cross sections of the bladder B of the subject are not selected, the operation of the ultrasonic diagnostic apparatus 1 is a step.
  • a message to rotate the direction of the ultrasonic probe 21 by 90 degrees may be displayed on the monitor 6. In this way, by instructing the user regarding the operation of the ultrasonic probe 21, the user can proceed with the procedure of urine volume measurement more smoothly.
  • the feature amount of the bladder region BR is a plurality of maximum values and a plurality of maximum values while alternately repeating the maximum value and the minimum value. It changes over time so that it has a local minimum of.
  • the area of the bladder region BR changes in time series so as to originally have two maximum values M2 and M3, and the two maximum values M2 and M3
  • the ultrasonic image of the failure frame is generated in the interval of time T5 to T6 including the maximum value M2 of one of them.
  • the ultrasonic image of the frame having the other maximum value M3 of the two maximum values M2 and M3 is normally generated, the ultrasonic image of this frame is used as the ultrasonic image UD of the measurement frame. Can be selected as.
  • the rescanning determination unit 17 performs a process of detecting the maximum value of the feature amount in, for example, a time-series change of the feature amount of the bladder region BR, and determines whether or not the maximum value of the feature amount is detected. , It is possible to determine whether or not rescanning of the ultrasonic beam is necessary. For example, the rescanning determination unit 17 acquires a graph showing the time-series changes in the feature amount of the bladder region BR, analyzes the graph, performs a process of detecting the maximum value of the feature amount, and maximizes the feature amount. If no value is detected, it is determined that the ultrasonic beam needs to be rescanned, and if even one maximum feature value is detected, it is determined that the ultrasonic beam does not need to be rescanned. Can be done.
  • the ultrasonic image UD of the measurement frame may be an ultrasonic image of a frame corresponding to a scanning cross section passing near the center of the bladder B, that is, an ultrasonic image of a frame in which the feature amount of the bladder region BR is maximized. Therefore, when the feature amount changes so as to have a plurality of maximum values in time series, it is desirable to select from a plurality of frames of ultrasonic images corresponding to the maximum value of the feature amount. Therefore, the measurement frame selection unit 12 analyzes, for example, a graph showing changes in the feature amount over time, extracts all the maximum values of the feature amount, and acquires the maximum value of the extracted maximum values. Then, the ultrasonic image of the frame corresponding to the acquired maximum value can be selected as the ultrasonic image UD of the measurement frame.
  • the measurement frame selection unit 12 extracts, for example, ultrasonic images of all frames whose feature quantities are maximized in time series as ultrasonic images of candidate frames as measurement candidates, and the extracted candidate frames.
  • the ultrasound image can also be displayed on the monitor 6 for the user to select via the input device 15.
  • the measurement frame selection unit 12 selects, for example, the ultrasonic image of the frame selected by the user from the ultrasonic images of the candidate frames displayed on the monitor 6 as the ultrasonic image UD of the measurement frame. Can be done.
  • the ultrasonic image UD of the measurement frame by selecting the ultrasonic image UD of the measurement frame from the ultrasonic images of the frame in which the feature amount of the bladder region BR is maximized, the ultrasonic image UD of the measurement frame suitable for urine volume measurement can be obtained. It becomes easier to select, and the accuracy of urine volume measurement can be improved.
  • the rescanning determination unit 17 determines that the ultrasonic image of the frame determined to be the failure frame by the failure frame determination unit 16 does not correctly calculate the feature amount related to the bladder region BR, and superimposes it. It is determined whether or not rescanning of the sound wave beam is necessary, but even if the ultrasonic image of the frame is determined to be a failure frame, if the feature amount is calculated correctly, the ultrasonic image of this frame It is possible to determine whether or not rescanning of the ultrasonic beam is necessary in consideration of.
  • the ultrasonic diagnostic apparatus includes the rescanning determination unit 17A shown in FIG. 16 in place of the rescanning determination unit 17 in the ultrasonic diagnostic apparatus 1 of the first embodiment shown in FIG. Is.
  • the rescanning determination unit 17 includes an overlap determination unit 31.
  • the overlap determination unit 31 refers to the bladder region BR extracted by the bladder extraction unit 9 and the failure region recognized by the failure frame determination unit 16 with respect to the ultrasonic image of the frame determined to be the failure frame by the failure frame determination unit 16. It is determined whether or not the FRs overlap with each other. In the example of the ultrasonic image U1 shown in FIG. 5, the bladder region BR, the bladder region BR, and the failure region FR overlap each other.
  • the original bladder region BR is specified by the existence of the overlapping portion between the bladder region BR and the failure region FR. It is difficult to correctly calculate the feature amount of the bladder region BR.
  • the bladder region BR is specified because there is no overlapping portion between the bladder region BR and the failure region FR. , The feature amount of the bladder region BR can be calculated correctly.
  • the rescanning determination unit 17A determines that the bladder region BR and the failure region FR overlap each other by the overlap determination unit 31 among the ultrasonic images of the frames determined to be the failure frame by the failure frame determination unit 16.
  • the ultrasonic image of the frame is judged to be the ultrasonic image of the frame in which the feature amount of the bladder region BR is not calculated correctly, and the value of the feature amount corresponding to the ultrasonic image of this frame is set in time series of the feature amount. Exclude from the graph showing the changes.
  • the rescanning determination unit 17A determines that the ultrasonic image of the frame in which the bladder region BR and the failure region FR are arranged apart from each other is the ultrasonic image of the frame in which the feature amount of the bladder region BR is correctly calculated. Then, the value of the feature amount corresponding to the ultrasonic image of this frame is included in the graph showing the time-series change of the feature amount in the same manner as the value of the feature amount corresponding to the ultrasonic image of the normal frame.
  • the rescanning determination unit 17A determines whether or not rescanning of the ultrasonic beam is necessary by analyzing the graph representing the time-series change of the feature amount of the bladder region BR acquired in this way. ..
  • the bladder region BR and the failure region FR are arranged apart from each other even if the ultrasonic image of the frame having the maximum feature amount is the ultrasonic image of the frame determined to be the failure frame. If it is an ultrasonic image of a frame, it is determined that rescanning of the ultrasonic beam is unnecessary.
  • the measurement frame selection unit 12 has, for example, among the feature quantities corresponding to the ultrasonic image of the failure frame in which the bladder region BR and the failure region FR are arranged apart from each other and the ultrasonic image of the normal frame. , The maximum feature amount is acquired, and the ultrasonic image of the frame having the maximum feature amount is selected as the ultrasonic image UD of the measurement frame.
  • the ultrasonic diagnostic apparatus even if the failure region FR is confirmed in the ultrasonic image by the failure frame determination unit 16, the bladder region BR extracted by the bladder extraction unit 9 fails.
  • the rescanning determination unit 17A determines that the rescanning of the ultrasonic beam is unnecessary, so that the ultrasonic beam may be unnecessarily rescanned. And the user can proceed with the urine volume measurement procedure more quickly.
  • the measurement frame selection unit 12 selects the ultrasonic image UD of the measurement frame from the ultrasonic image of the failure frame in which the bladder region BR and the failure region FR are arranged apart from each other and the ultrasonic image of the normal frame. Therefore, it becomes easy to select an ultrasonic image of a frame suitable for urine volume measurement, and the accuracy of urine volume measurement can be improved.
  • Embodiment 3 In the first embodiment, after it is determined in step S4 that the scanning of the ultrasonic beam is completed, whether or not each of the plurality of frames of the ultrasonic image held in the image memory 7 is a failure frame in step S5. However, every time an ultrasonic image is generated and held, a failure frame is determined, and a warning to the user can be given according to the determination result.
  • the ultrasonic diagnostic apparatus according to the third embodiment is the same as the ultrasonic diagnostic apparatus 1 of the first embodiment shown in FIG. 1, but operates according to the flowchart shown in FIG.
  • the flowchart of FIG. 17 is a flowchart of the first embodiment shown in FIG. 12, in which steps S5 and S6 are moved between steps S3 and S4.
  • step S5 the failure frame determination unit 16 analyzes the ultrasonic image of the latest frame held in the image memory 7 in step S5, and determines whether or not the ultrasonic image of this frame is a failure frame. .. If it is determined that the ultrasonic image of this frame is the ultrasonic image of the failed frame, the process proceeds to step S6. In step S6, the warning unit 18 warns the user that the ultrasonic image of the failed frame has been determined in step S5.
  • the ultrasonic diagnostic apparatus every time the ultrasonic image is generated and held in step S3, the failure frame of step S5 is determined, and the frame is superposed.
  • a warning is given to the user in step S6, so that the user immediately reflects the warning and attaches the ultrasonic probe 21 to the body of the subject.
  • the warning unit 18 warns the user in step S6
  • information indicating a portion where the ultrasonic probe 21 is not adhered to the body surface S of the subject may be displayed on the monitor 6.
  • the ultrasonic probe 21 adheres the shallowest part of the ultrasonic image located on the shallow side of the failure region FR in the depth direction of the ultrasonic image to the body surface S of the subject.
  • the user can be notified by displaying on the monitor 6 the portion where the ultrasonic probe 21 does not adhere to the body surface S of the subject, as shown in FIG. In the example of FIG.
  • the marker W1 representing the portion where the ultrasonic probe 21 is not adhered to the body surface S of the subject and the portion indicated by the marker W1 "Please adhere the ultrasonic probe here" are shown.
  • a message W2 for instructing the user to adhere to the body surface S of the subject is displayed on the monitor 6.
  • the user can specifically grasp the portion where the ultrasonic probe 21 is not adhered to the body surface S of the subject, and can adhere the ultrasonic probe 21 to the body surface S of the subject.
  • step S5 or step S6 the processes of steps S7 and S8 can also be performed.
  • the bladder region BR is sequentially extracted and the feature amount is calculated for the ultrasonic image of the latest frame generated in step S3 and held in the image memory 7. Therefore, in the first embodiment, as compared with the case where the bladder region BR is extracted and the feature amount is calculated for the ultrasonic image of a plurality of frames held in the image memory 7 after the step S4, the bladder region BR is performed.
  • the waiting time for extracting and calculating the feature amount can be shortened, and the urine volume can be measured more quickly.
  • the aspect of the third embodiment is applied to the ultrasonic diagnostic apparatus 1 of the first embodiment, it is also applied to the ultrasonic diagnostic apparatus of the second embodiment in the same manner. Can be done.
  • the failure frame determination unit 16 determines the failure frame by recognizing the failure region FR based on the brightness profile in the depth direction of the ultrasonic image. Is not limited to this.
  • the ultrasonic image of the failed frame can be determined based on the edge clarity of the bladder region BR.
  • the edge clarity of the bladder region BR is an index value having a larger value as the contour of the bladder region BR is clearer and a smaller value as the contour of the bladder region BR is unclear.
  • the ultrasonic diagnostic apparatus is the same as the ultrasonic diagnostic apparatus 1 according to the first embodiment shown in FIG.
  • the failure frame determination unit 16 in the fourth embodiment has, for example, a predetermined edge clarity threshold value with respect to the edge clarity of the bladder region BR, and is a frame held in the image memory 7.
  • the edge clarity of the bladder region BR is calculated by image analysis of the ultrasonic image, and when the calculated edge clarity is smaller than the defined edge clarity threshold, the subject's body surface S is applied. It is determined that the failure region FR in which the ultrasonic probe 21 is insufficiently pushed is confirmed in the ultrasonic image, and the ultrasonic image of the frame is determined to be the ultrasonic image of the failure frame.
  • the failure frame determination unit 16 insufficiently pushes the ultrasonic probe 21 into the body surface S of the subject. It is determined that the failed region FR is not present in the ultrasonic image, and the ultrasonic image of that frame is determined to be an ultrasonic image of a normal frame.
  • the determination result by the failed frame determination unit 16 is the same as in the ultrasonic diagnostic apparatus 1 of the first embodiment. Whether or not the ultrasonic beam needs to be rescanned is determined based on the feature amount of the bladder region BR, and when it is determined that the ultrasonic beam needs to be rescanned, the ultrasonic beam is sent to the user. Since the rescanning of the ultrasonic beam is recommended, the ultrasonic image UD of the measurement frame suitable for the urine volume measurement can be easily acquired by the rescanning of the ultrasonic beam, and the accuracy of the urine volume measurement can be improved.
  • the warning unit 18 has, for example, an edge clarity warning threshold value larger than the edge clarity threshold value of the failure frame determination unit 16 with respect to the edge clarity value of the bladder region BR.
  • the edge intelligibility of the bladder region BR is smaller than the edge intelligibility warning threshold value, a warning to strengthen the pushing of the ultrasonic probe 21 into the body surface S of the subject may be displayed on the monitor 6.
  • the user can push the ultrasonic probe 21 toward the body surface S of the subject while referring to the warning displayed on the monitor 6 to obtain an ultrasonic image of the frame in which the bladder region BR is clearly captured. can.
  • the ultrasonic image of the failed frame is determined based on the edge clarity of the bladder region BR.
  • the ultrasonic probe 21 when the ultrasonic probe 21 is pressed against the body surface S of the subject It is also possible to determine the failure frame based on the contact pressure of.
  • the ultrasonic diagnostic apparatus 1B is the ultrasonic diagnostic apparatus 1 of the first embodiment shown in FIG. 1 in which a pressure sensor 32 is attached to the ultrasonic probe 21 to control the apparatus.
  • the device control unit 14B is provided instead of the unit 14
  • the failure frame determination unit 16B is provided instead of the failure frame determination unit 16
  • the processor 22B is provided instead of the processor 22.
  • the pressure sensor 32 is attached to the ultrasonic probe 21 and is connected to the image memory 7.
  • the pressure sensor 32 receives the pressure that the ultrasonic probe 21 receives from the body surface S of the subject when the ultrasonic probe 21 is pressed against the body surface S of the subject, that is, the ultrasonic probe 21 with respect to the body surface S of the subject. Measure the contact pressure of.
  • the contact pressure information measured by the pressure sensor 32 is sent to the image memory 7, and is held in the image memory 7 together with the ultrasonic image of the frame generated by the image generation unit 4 at the same time.
  • the failure frame determination unit 16B has a predetermined contact pressure threshold value with respect to the contact pressure of the ultrasonic probe 21, and the contact pressure measured by the pressure sensor 32 is larger than the predetermined contact pressure threshold value. If it is also low, it is determined that the failure region FR in which the ultrasonic probe 21 is insufficiently pushed into the body surface S of the subject is confirmed in the ultrasonic image of the frame corresponding to the contact pressure, and it is determined that the failure region FR of the frame is confirmed. The ultrasonic image is determined to be the ultrasonic image of the failed frame.
  • the failure frame determination unit 16B displays the body surface S of the subject in the ultrasonic image of the frame corresponding to the contact pressure. It is determined that there is no failure region FR in which the ultrasonic probe 21 is insufficiently pushed into the frame, and the ultrasonic image of that frame is determined to be an ultrasonic image of a normal frame.
  • the failed frame is the same as in the ultrasonic diagnostic apparatus 1 of the first embodiment. It is determined whether or not the ultrasonic beam needs to be rescanned based on the determination result by the determination unit 16B and the feature amount of the bladder region BR, and when it is determined that the ultrasonic beam needs to be rescanned, the user On the other hand, since rescanning of the ultrasonic beam is recommended, rescanning of the ultrasonic beam makes it easier to acquire an ultrasonic image UD of a measurement frame suitable for urine volume measurement, and improves the accuracy of urine volume measurement. be able to.
  • the warning unit 18 sets a contact pressure warning threshold value larger than the contact pressure threshold value of the failure frame determination unit 16B with respect to the contact pressure of the ultrasonic probe 21 with respect to the body surface S of the subject, for example.
  • Monitor 6 warns that when the contact pressure measured by the pressure sensor 32 is smaller than the contact pressure warning threshold value, the ultrasonic probe 21 is strongly pushed into the body surface S of the subject. Can be displayed on. As a result, the user can push the ultrasonic probe 21 toward the body surface S of the subject while referring to the warning displayed on the monitor 6 to obtain an ultrasonic image of the frame in which the bladder region BR is clearly captured. can.
  • the ultrasonic diagnostic apparatus 1 has a configuration in which the monitor 6, the input device 15, and the ultrasonic probe 21 are directly connected to the processor 22, and the monitor 6, the input device 15, and the input device 15 are, for example.
  • the ultrasonic probe 21 and the processor 22 can also be indirectly connected via a network.
  • the monitor 6, the input device 15, and the ultrasonic probe 21 are connected to the ultrasonic diagnostic apparatus main body 41 via the network NW.
  • the ultrasonic diagnostic apparatus main body 41 is the ultrasonic diagnostic apparatus 1 of the first embodiment shown in FIG. 1, excluding the monitor 6, the input device 15, and the ultrasonic probe 21, and is composed of an image memory 7 and a processor 22C. Has been done.
  • the ultrasonic diagnostic apparatus 1C has such a configuration, it is based on the determination result by the failure frame determination unit 16 and the feature amount of the bladder region BR, similarly to the ultrasonic diagnostic apparatus 1 of the first embodiment. It is determined whether or not the ultrasonic beam needs to be rescanned, and when it is determined that the ultrasonic beam needs to be rescanned, the user is recommended to rescan the ultrasonic beam. By rescanning the ultrasonic beam, it is easy to acquire an ultrasonic image UD of a measurement frame suitable for urine volume measurement, and the accuracy of urine volume measurement can be improved.
  • the ultrasonic diagnostic device main body 41 can be used as a so-called remote server.
  • the user can diagnose the subject by preparing the monitor 6, the input device 15, and the ultrasonic probe 21 at the user's hand, which improves convenience in ultrasonic diagnosis. Can be made to.
  • a portable thin computer called a so-called tablet is used as the monitor 6 and the input device 15, the user can more easily measure the urine volume, and the convenience of the urine volume measurement can be improved. It can be further improved.
  • the monitor 6, the input device 15, and the ultrasonic probe 21 are connected to the ultrasonic diagnostic device main body 41 via the network NW. At this time, the monitor 6, the input device 15, and the ultrasonic probe 21 are connected to the network. It may be connected to the NW by wire or wirelessly. Further, although it is explained that the aspect of the sixth embodiment is applied to the first embodiment, the same applies to the second to fifth embodiments.
  • 1,1B, 1C ultrasonic diagnostic equipment 2 oscillator array, 3 transmission / reception circuit, 4 image generation unit, 5 display control unit, 6 monitor, 7 image memory, 9 bladder extraction unit, 10 feature amount calculation unit, 12 measurement frame Selection unit, 13 urine volume measurement unit, 14, 14B device control unit, 15 input device, 16, 16B failure frame determination unit, 17, 17A rescan determination unit, 18 warning unit, 19 rescan recommendation unit, 20 rescan execution Reception unit, 21 ultrasonic probe, 22, 22B, 22C processor, 23 pulsar, 24 amplification unit, 25 AD conversion unit, 26 beam former, 27 signal processing unit, 28 DSC, 29 image processing unit, 31 overlap judgment unit, 32 Pressure sensor, 41 Ultrasound diagnostic device body, B bladder, BR bladder area, C contour line, DS slide direction, E ellipse, FR failure area, G1 graph, J urine volume, LX, LY, LZ maximum diameter, M1 ⁇ M3 maximum value, MP, W1 marker, N1, N2 minimum value, PS1, PS2,

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波診断装置(1)は、超音波画像から膀胱領域を抽出する膀胱抽出部(9)と、膀胱領域の特徴量を算出する特徴量算出部(10)と、超音波画像が、超音波ビームの走査が失敗した失敗フレームか否かを判定する失敗フレーム判定部(16)と、特徴量の時系列的な変化と失敗フレームの時系列的な位置に基づいて超音波ビームの再走査が必要か否かを判定する再走査判定部(17)と、超音波ビームの再走査が必要と判定された場合に、ユーザに超音波ビームの再走査を推奨する再走査推奨部(19)と、特徴量に基づいて計測フレームの超音波画像を選択する計測フレーム選択部(12)と、計測フレームの超音波画像を解析して尿量を計測する尿量計測部(13)とを備える。

Description

超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
 本発明は、被検体の膀胱内の尿量を計測する超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサに関する。
 従来から、超音波診断装置を用いて被検体の膀胱を観察し、観察された膀胱内の尿量を計測することが行われている。一般的に、被検体の膀胱内の尿量は、被検体の膀胱の体積に概ね等しいため、尿量として、被検体の膀胱の体積が計測される。このような尿量計測を容易に行うために、例えば、特許文献1の超音波診断装置が開発されている。特許文献1の超音波診断装置は、ユーザが被検体の膀胱を含む複数フレームの超音波画像を取得した状態で、超音波診断装置に備えられているトリガボタンを押すと、ユーザにより取得された複数フレームの超音波画像に基づいて、尿量計測に適切と判断されるフレームの超音波画像を自動的に選択し、選択されたフレームの超音波画像に基づいて尿量を計測する。
特開2017-109074号公報
 ところで、ユーザが被検体の体表面上に超音波プローブを接着させながら被検体の膀胱の走査を行う際に、走査の途中で超音波プローブが被検体の体表面から離れてしまうこと等により、膀胱領域が正常に写っていないフレームの超音波画像が生成されて、尿量計測に適したフレームの超音波画像が生成されず、超音波ビームの走査に失敗してしまう場合がある。特許文献1に開示される超音波診断装置では、ユーザが超音波ビームの走査に失敗してしまった場合でも、尿量計測に使用されるフレームの超音波画像が自動的に選択されるため、尿量計測に適さないフレームの超音波画像に基づいて尿量計測が行われ、その結果、尿量計測の精度が低下してしまうという問題があった。
 本発明は、このような従来の問題点を解決するためになされたものであり、尿量計測の精度を向上することができる超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサを提供することを目的とする。
 上記目的を達成するために、本発明に係る超音波診断装置は、超音波プローブを用いて被検体に対する超音波ビームの走査を行うことにより取得された複数フレームの超音波画像を保持する画像メモリと、複数フレームの超音波画像のそれぞれから膀胱領域を抽出する膀胱抽出部と、複数フレームの超音波画像のそれぞれに対して膀胱抽出部により抽出された膀胱領域に関する特徴量を算出する特徴量算出部と、複数フレームの超音波画像のそれぞれについて被検体に対する超音波ビームの走査が失敗した失敗フレームであるか否かを判定する失敗フレーム判定部と、特徴量算出部により算出された特徴量の時系列的な変化と失敗フレーム判定部により失敗フレームであると判定されたフレームの超音波画像の時系列的な位置とに基づいて超音波ビームの再走査が必要か否かを判定する再走査判定部と、再走査判定部により超音波ビームの再走査が必要であると判定された場合に、ユーザに対して超音波ビームの再走査を推奨する再走査推奨部と、再走査判定部により超音波ビームの再走査が不要であると判定された場合に、特徴量算出部により算出された特徴量に基づいて複数フレームの超音波画像の中から計測対象となる計測フレームの超音波画像を選択する計測フレーム選択部と、計測フレーム選択部により選択された計測フレームの超音波画像を解析することにより尿量を計測する尿量計測部とを備えることを特徴とする。
 超音波診断装置は、ユーザが入力操作を行うための入力装置と、再走査推奨部により超音波ビームの再走査が推奨された場合に、ユーザによる入力装置を介した入力操作に従って、超音波ビームの再走査を実行するか否かの選択を受け付ける再走査実行受付部とをさらに備え、この場合に、計測フレーム選択部は、再走査判定部により超音波ビームの再走査が不要であると判定された場合、または、再走査実行受付部により超音波ビームの再走査を実行しない選択が受け付けられた場合に、特徴量算出部により算出された特徴量に基づいて複数フレームの超音波画像の中から計測対象となる計測フレームの超音波画像を選択することができる。
 失敗フレーム判定部は、超音波画像に対して画像解析を行うことにより、超音波画像の深さ方向の輝度プロファイルに基づいて、被検体に超音波プローブが接着していない失敗領域が超音波画像中に確認された場合に、失敗フレームであると判定することができる。
 もしくは、失敗フレーム判定部は、超音波画像に対して画像解析を行うことにより、超音波画像における膀胱領域のエッジ明瞭度に基づいて、被検体への超音波プローブの押し込みが不足している失敗領域が超音波画像中に確認された場合に、失敗フレームであると判定することもできる。
 再走査判定部は、失敗フレーム判定部により、失敗領域が超音波画像中に確認されても、膀胱抽出部により抽出された膀胱領域が失敗領域に重ならない場合には、超音波ビームの再走査が不要であると判定することができる。
 超音波診断装置は、超音波プローブと、超音波プローブに取り付けられ且つ被検体に対する超音波プローブの接触圧を検出する圧力センサとをさらに備えることもでき、この際に、失敗フレーム判定部は、圧力センサにより検出された超音波プローブの接触圧に基づいて、失敗フレームであるか否かを判定することができる。
 失敗フレーム判定部は、超音波プローブのうち、被検体に接着していない部分、または、被検体への押し込み不足となっている部分をユーザに通知することができる。
 超音波診断装置は、失敗フレーム判定部により失敗フレームであると判定された場合に、ユーザに対して警告を発する警告部をさらに備えることができる。
 本発明に係る超音波診断装置の制御方法は、超音波プローブを用いて被検体に対する超音波ビームの走査を行うことにより取得された複数フレームの超音波画像を保持し、複数フレームの超音波画像のそれぞれから膀胱領域を抽出し、複数フレームの超音波画像のそれぞれに対して抽出された膀胱領域に関する特徴量を算出し、複数フレームの超音波画像のそれぞれについて被検体に対する超音波ビームの走査が失敗した失敗フレームであるか否かを判定し、特徴量の時系列的な変化と、失敗フレームであると判定されたフレームの超音波画像の時系列的な位置とに基づいて超音波ビームの再走査が必要か否かを判定し、超音波ビームの再走査が必要であると判定された場合に、ユーザに対して超音波ビームの再走査を推奨し、超音波ビームの再走査が不要であると判定された場合に、特徴量に基づいて複数フレームの超音波画像の中から計測対象となる計測フレームの超音波画像を選択し、計測フレームの超音波画像を解析することにより尿量を計測することを特徴とする。
 本発明に係る超音波診断装置用プロセッサは、超音波プローブを用いて被検体に対する超音波ビームの走査を行うことにより取得された複数フレームの超音波画像を保持し、複数フレームの超音波画像のそれぞれから膀胱領域を抽出し、複数フレームの超音波画像のそれぞれに対して抽出された膀胱領域に関する特徴量を算出し、複数フレームの超音波画像のそれぞれについて被検体に対する超音波ビームの走査が失敗した失敗フレームであるか否かを判定し、特徴量の時系列的な変化と、失敗フレームであると判定されたフレームの超音波画像の時系列的な位置とに基づいて超音波ビームの再走査が必要か否かを判定し、超音波ビームの再走査が必要であると判定された場合に、ユーザに対して超音波ビームの再走査を推奨し、超音波ビームの再走査が不要であると判定された場合に、特徴量に基づいて複数フレームの超音波画像の中から計測対象となる計測フレームの超音波画像を選択し、計測フレームの超音波画像を解析することにより尿量を計測することを特徴とする。
 本発明によれば、超音波診断装置が、複数フレームの超音波画像のそれぞれから膀胱領域を抽出する膀胱抽出部と、複数フレームの超音波画像のそれぞれに対して膀胱抽出部により抽出された膀胱領域に関する特徴量を算出する特徴量算出部と、複数フレームの超音波画像のそれぞれについて被検体に対する超音波ビームの走査が失敗した失敗フレームであるか否かを判定する失敗フレーム判定部と、特徴量算出部により算出された特徴量の時系列的な変化と失敗フレーム判定部により失敗フレームであると判定されたフレームの超音波画像の時系列的な位置とに基づいて超音波ビームの再走査が必要か否かを判定する再走査判定部と、再走査判定部により超音波ビームの再走査が必要であると判定された場合に、ユーザに対して超音波ビームの再走査を推奨する再走査推奨部とを備えているため、尿量計測の精度を向上することができる。
本発明の実施の形態1に係る超音波診断装置の構成を示すブロック図である。 本発明の実施の形態1における送受信回路の内部構成を示すブロック図である。 本発明の実施の形態1における画像生成部の内部構成を示すブロック図である。 本発明の実施の形態1において膀胱領域を含む超音波画像の例を模式的に示す図である。 失敗フレームの超音波画像の例を模式的に示す図である。 スウィング法により膀胱がスキャンされる様子を模式的に示す図である。 膀胱領域の面積の時間的な変化の例を示す図である。 楕円体の例を示す図である。 膀胱領域の面積の時間変化が、失敗フレームの超音波画像が生成された区間において極大となる例を示す図である。 膀胱領域の面積の時間変化が、失敗フレームの超音波画像が生成された区間において極大とはならない例を示す図である。 本発明の実施の形態1において膀胱領域の面積の時系列的な変化を表すグラフと複数フレームの超音波画像がモニタに表示される例を模式的に示す図である。 本発明の実施の形態1に係る超音波診断装置の動作を示すフローチャートである。 本発明の実施の形態1において被検体の膀胱内の尿量がモニタに表示される例を模式的に示す図である。 スライド法により膀胱がスキャンされる様子を模式的に示す図である。 超音波ビームの複数回の走査における膀胱領域の面積の時系列的な変化の例を示す図である。 本発明の実施の形態2における再走査判定部の内部構成を示すブロック図である。 本発明の実施の形態3に係る超音波診断装置の動作を示すフローチャートである。 本発明の実施の形態3において、超音波プローブが被検体の体表面に接着していない部分がモニタに表示される例を模式的に示す図である。 本発明の実施の形態5に係る超音波診断装置の構成を示すブロック図である。 本発明の実施の形態6に係る超音波診断装置の構成を示すブロック図である。
 以下、この発明の実施の形態を添付図面に基づいて説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「同一」、「同じ」は、技術分野で一般的に許容される誤差範囲を含むものとする。
実施の形態1
 図1に、本発明の実施の形態1に係る超音波診断装置1の構成を示す。超音波診断装置1は、振動子アレイ2を備えており、振動子アレイ2に、送受信回路3、画像生成部4、表示制御部5およびモニタ6が順次接続されている。また、振動子アレイ2と送受信回路3は、超音波プローブ21に含まれている。画像生成部4に、画像メモリ7が接続されている。また、画像メモリ7に、膀胱抽出部9と失敗フレーム判定部16が接続されている。膀胱抽出部9に、特徴量算出部10が接続されている。また、特徴量算出部10と失敗フレーム判定部16に、再走査判定部17が接続されている。また、失敗フレーム判定部16に、警告部18が接続されている。また、再走査判定部17に、再走査推奨部19と再走査実行受付部20が接続されている。また、特徴量算出部10、再走査判定部17および再走査実行受付部20に、計測フレーム選択部12が選択されている。計測フレーム選択部12に、尿量計測部13が接続されている。また、計測フレーム選択部12、尿量計測部13、警告部18および再走査推奨部19は、それぞれ、表示制御部5に接続されている。
 また、送受信回路3、画像生成部4、表示制御部5、膀胱抽出部9、特徴量算出部10、計測フレーム選択部12、尿量計測部13、失敗フレーム判定部16、再走査判定部17、警告部18、再走査推奨部19および再走査実行受付部20に、装置制御部14が接続されている。また、装置制御部14に、入力装置15が接続されている。
 また、画像生成部4、表示制御部5、膀胱抽出部9、特徴量算出部10、計測フレーム選択部12、尿量計測部13、装置制御部14、失敗フレーム判定部16、再走査判定部17、警告部18、再走査推奨部19および再走査実行受付部20により、超音波診断装置1用のプロセッサ22が構成されている。
 図1に示す超音波プローブ21の振動子アレイ2は、1次元または2次元に配列された複数の振動子を有している。これらの振動子は、それぞれ送受信回路3から供給される駆動信号に従って超音波を送信すると共に、被検体からの超音波エコーを受信して、超音波エコーに基づく信号を出力する。各振動子は、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子およびPMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成することにより構成される。
 送受信回路3は、装置制御部14による制御の下で、振動子アレイ2から超音波を送信し且つ振動子アレイ2により取得された受信信号に基づいて音線信号を生成する。送受信回路3は、図2に示すように、振動子アレイ2に接続されるパルサ23と、振動子アレイ2から順次直列に接続される増幅部24、AD(Analog Digital)変換部25、ビームフォーマ26を有している。
 パルサ23は、例えば、複数のパルス発生器を含んでおり、装置制御部14からの制御信号に応じて選択された送信遅延パターンに基づいて、振動子アレイ2の複数の振動子から送信される超音波が超音波ビームを形成するようにそれぞれの駆動信号を、遅延量を調節して複数の振動子に供給する。このように、振動子アレイ2の振動子の電極にパルス状または連続波状の電圧が印加されると、圧電体が伸縮し、それぞれの振動子からパルス状または連続波状の超音波が発生して、それらの超音波の合成波から、超音波ビームが形成される。
 送信された超音波ビームは、例えば、被検体の部位等の対象において反射され、超音波プローブ21の振動子アレイ2に向かって伝搬する。このように振動子アレイ2に向かって伝搬する超音波エコーは、振動子アレイ2を構成するそれぞれの振動子により受信される。この際に、振動子アレイ2を構成するそれぞれの振動子は、伝搬する超音波エコーを受信することにより伸縮して、電気信号である受信信号を発生させ、これらの受信信号を増幅部24に出力する。
 増幅部24は、振動子アレイ2を構成するそれぞれの振動子から入力された信号を増幅し、増幅した信号をAD変換部25に送信する。AD変換部25は、増幅部24から送信された信号をデジタルの受信データに変換し、これらの受信データをビームフォーマ26に送信する。ビームフォーマ26は、装置制御部14からの制御信号に応じて選択された受信遅延パターンに基づいて設定される音速または音速の分布に従い、AD変換部25により変換された各受信データに対してそれぞれの遅延を与えて加算することにより、いわゆる受信フォーカス処理を行う。この受信フォーカス処理により、AD変換部25で変換された各受信データが整相加算され且つ超音波エコーの焦点が絞り込まれた音線信号が取得される。
 画像生成部4は、図3に示されるように、信号処理部27、DSC(Digital Scan Converter:デジタルスキャンコンバータ)28および画像処理部29が順次直列に接続された構成を有している。
 信号処理部27は、送受信回路3のビームフォーマ26により生成された音線信号に対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像信号を生成する。
 DSC28は、信号処理部27で生成されたBモード画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)する。
 画像処理部29は、DSC28から入力されるBモード画像信号に階調処理等の各種の必要な画像処理を施した後、Bモード画像信号を表示制御部5および画像メモリ7に出力する。以降は、画像処理部29により画像処理が施されたBモード画像信号を、単に、超音波画像と呼ぶ。
 画像メモリ7は、画像生成部4により診断毎に生成された一連の複数フレームの超音波画像を保持するメモリである。画像メモリ7としては、フラッシュメモリ、HDD(Hard Disc Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、FD(Flexible Disc:フレキシブルディスク)、MOディスク(Magneto-Optical disc:光磁気ディスク)、MT(Magnetic Tape:磁気テープ)、RAM(Random Access Memory:ランダムアクセスメモリ)、CD(Compact Disc:コンパクトディスク)、DVD(Digital Versatile Disc:デジタルバーサタイルディスク)、SDカード(Secure Digital card:セキュアデジタルカード)、USBメモリ(Universal Serial Bus memory:ユニバーサルシリアルバスメモリ)等の記録メディア、またはサーバ等を用いることができる。
 膀胱抽出部9は、例えば図4に示すように、超音波画像Uから膀胱領域BRを抽出する。膀胱抽出部9は、例えば、Krizhevsk et al.: ImageNet Classification with Deep Convolutional Neural Networks, Advances in Neural Information Processing Systems 25, pp.1106-1114 (2012)に記載されているディープラーニング(Deep leaning:深層学習)を用いた手法を用いて超音波画像U内の膀胱領域BRを抽出することができる。また、膀胱抽出部9は、膀胱領域BRを抽出するために、その他の手法として、グラフカット(Y.Boykov and V.Kolmogorov, ”An experimental comparison of min-cut/max-flow algorithm for energy minimization in vision”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 9, pp.1123-1137, 2004.)、Snakes(A.W.Michael Kass and D.Terzopoulos: “Snakes: Active contour models”, Int.J.Computer Vision,1,4, pp.321-331, 1988.)、LevelSets(M.Sussman, P.Smereka and S.Osher: “A level set approach for computing solutions to incompressible two-phase flow”, J.Comput.Phys,114,1, pp.146-159, 1994)等の公知の技術を用いることができる。
 特徴量算出部10は、膀胱抽出部9により膀胱領域BRが抽出された超音波画像Uにおいて、抽出された膀胱領域BRに関する特徴量を算出する。特徴量算出部10は、例えば、画像解析により、抽出された膀胱領域BRの面積を特徴量として算出することができる。また、特徴量算出部10は、例えば、画像解析により、後述する膀胱の体積を計測するために用いられる、互いに直交する3方向における膀胱領域BRの最大径を特徴量として算出することができる。また、特徴量算出部10は、例えば、画像解析により、抽出された膀胱領域BRから任意の方向における最大径、膀胱領域BRの周の長さ等を特徴量として算出することができる。
 失敗フレーム判定部16は、画像メモリ7に保持された複数フレームの超音波画像が、それぞれ、失敗フレームの超音波画像であるか否かを判定する。ここで、失敗フレームの超音波画像とは、超音波プローブ21が被検体の体表面に接着していない部分が存在すること等によって被検体に対する超音波ビームの走査が失敗したフレームの超音波画像である。
 ここで、超音波プローブ21が被検体の体表面に接着していない部分が存在する場合には、一定以上の強度を有する信号が得られないことにより、図5において点線で囲まれた領域で示されるように、超音波画像U1内において黒く塗りつぶされた失敗領域FRが生じる。
 そのため、失敗フレーム判定部16は、例えば、超音波画像の輝度値に対して一定の輝度しきい値を有しており、画像メモリ7に保持された複数フレームの超音波画像のそれぞれに対して、深さ方向に沿った輝度プロファイルを解析し、輝度しきい値よりも小さい輝度値を有する領域を、被検体の体表面に超音波プローブ21が接着していない失敗領域FRと判断し、失敗領域FRを含むフレームの超音波画像を失敗フレームの超音波画像であると判定する。
 警告部18は、失敗フレーム判定部16により、画像メモリ7に保持された複数フレームの超音波画像のいずれかが失敗フレームの超音波画像であると判定された場合に、ユーザに対して警告を発する。警告部18は、例えば、ユーザへの警告を表すメッセージ等をモニタ6に表示することができる。
 ところで、画像生成部4により被検体の膀胱領域BRを含むフレームの超音波画像が生成される際に、通常、ユーザは、被検体の体表面上に超音波プローブ21を接着させた状態で、超音波プローブ21の位置または角度を変化させながら、膀胱の走査を行う。この際に、ユーザは、例えば、超音波プローブ21の位置を一定にしたまま被検体の体表面上で超音波プローブ21を傾けるスウィング法を用いて、膀胱の走査を行うことができる。
 ユーザは、スウィング法により膀胱を走査する場合に、例えば、図6に示すように、振動子アレイ2の配列方向に対して平行な回転軸Rを中心として、膀胱Bの一端部を通る走査断面PS1が撮影される傾き角度と、膀胱Bの他端部を通る走査断面PS2が撮影される傾き角度との間を往復するように、超音波プローブ21を被検体の体表面S上で傾斜させる。
 この際に、画像生成部4により連続的に生成されるフレームの超音波画像に含まれる膀胱領域BRの面積の値は、例えば図7に示すように、極大値と極小値を交互に有するように時系列的に変化する。図7の例では、膀胱領域BRの面積と、膀胱領域BRの面積が算出されたフレームの超音波画像が生成された時刻との関係を示しており、膀胱領域BRの面積の値は、1つの極大値M1と、2つの極小値N1、N2を有するように、時系列的に変化している。また、図7の例では、膀胱領域BRの面積の値の時系列的な変化が示されているが、膀胱領域BRの最大径についても、図7に示すような時系列的な変化をする。
 ここで、通常、被検体の膀胱Bは、一般的に概ね楕円体形状をしているため、膀胱B内の尿量は、膀胱Bを楕円体とみなして膀胱Bの体積を計算することにより計測される。図8に示すように、楕円体Eが、XY面、YZ面およびXZ面に対して対称な形状を有しており、楕円体EのX方向における最大径をLX、Y方向における最大径をLY、Z方向における最大径をLZ、円周率をπとして、楕円体Eの体積は、(LX×LY×LZ)×π/6により算出されることが知られている。そのため、超音波画像を用いて膀胱Bの体積を算出する場合には、膀胱Bの中心を通り且つ互いに直交する走査断面に相当する2つのフレームの超音波画像を計測することが望ましい。
 このように、膀胱Bの中心を通る走査断面に相当するフレームの超音波画像は、例えばスウィング法により膀胱Bに対する超音波ビームの走査が行われる場合には、膀胱領域BRの面積および最大径等の特徴量が時系列的な変化において極大となるフレームの超音波画像である。
 再走査判定部17は、特徴量算出部10により算出された膀胱領域BRの特徴量の時系列的な変化を表す情報を取得し、この情報を解析することにより、失敗フレームと判定されたフレームの超音波画像が生成された時刻において、特徴量の本来の時系列的な変化が極大となるか否かを推定し、その推定結果に基づいて、超音波ビームの再走査が必要か否かを判定する。図9には、膀胱領域BRの特徴量の時系列的な変化を表す情報の例として、膀胱領域BRの面積の時系列的な変化を表すグラフが示されており、時刻T1~T2の区間において失敗フレームの超音波画像が生成されている。
 再走査判定部17は、例えば、特徴量の時間変化を表すグラフを解析することにより、時刻T1~T2の区間の前後の一定区間におけるグラフの変化を表す情報を取得し、取得された情報に基づいて、失敗フレームの超音波画像が生成された時刻において特徴量が極大となるか否かを判定することができる。再走査判定部17は、例えば、時刻T1~T2の区間の直前の一定区間においてグラフが単調に増加し、時刻T1~T2の区間の直後の一定区間においてグラフが単調に減少している場合に、時刻T1~T2の区間において特徴量が極大となると推定し、それ以外の場合に、時刻T1~T2の区間において特徴量が極大とはならないと推定することができる。
 図9の例では、失敗フレームの超音波画像が生成された時刻T1~T2の区間の直前の一定区間においてグラフが単調に増加し、時刻T1~T2の区間の直後の一定区間においてグラフが単調に減少しているため、再走査判定部17は、時刻T1~T2の区間において膀胱領域BRの面積が極大となると推定する。
 このようにして、失敗フレームの超音波画像が生成された時刻において特徴量が極大となると推定された場合に、再走査判定部17は、尿量計測に適するフレームの超音波画像が生成されていないと判断して、超音波ビームの再走査が必要であると判定する。
 また、例えば図10に示す例では、失敗フレームの超音波画像が生成された、時刻T3~T4の区間よりも過去の時刻において、膀胱領域BRの面積が極大値M1を有している。この場合に、時刻T3~T4の区間の直前の一定区間と、時刻T3~T4の区間の直後の一定区間において、それぞれ、グラフが単調に減少しているため、再走査判定部17は、失敗フレームの超音波画像が生成された時刻において膀胱領域BRの面積が極大とはならないと推定する。
 このようにして、失敗フレームの超音波画像が生成された時刻において膀胱領域BRの面積が極大とはならないと推定された場合に、再走査判定部17は、尿量計測に適するフレームの超音波画像が生成されていると判断して、超音波ビームの再走査が不要であると判定する。
 入力装置15は、ユーザが入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパッドおよびタッチパネル等を備えて構成することができる。
 再走査推奨部19は、再走査判定部17により超音波ビームの再走査が必要であると判定された場合に、ユーザに対して超音波ビームの再走査を推奨する。再走査推奨部19は、例えば、超音波ビームの再走査を推奨するためのメッセージをモニタ6に表示することができる。
 再走査推奨部19は、例えば、超音波ビームの再走査を実行するか否かを、入力装置15を介した入力操作により選択することをユーザに促すためのメッセージ、ラジオボタン等をモニタ6に表示する。この際に、再走査推奨部19は、超音波ビームの再走査をするか否かをユーザが判断しやすいように、例えば図11に示すように、複数フレームの超音波画像U2と、複数フレームの超音波画像U2に対応する膀胱領域BRの特徴量の時系列的な変化を表すグラフG1をモニタ6に表示することができる。図11の例では、モニタ6の下部に複数フレームの超音波画像U2がスクロール表示されており、複数フレームの超音波画像U2のうち、グラフG1に配置されたマーカMPに対応するフレームの超音波画像U3がユーザにより選択され、このフレームの超音波画像U3を拡大した超音波画像U4が、モニタ6の右上部に拡大して表示されている。
 再走査実行受付部20は、再走査判定部17により超音波ビームの再走査が必要であると判定された場合に、ユーザによる入力装置15を介した入力操作に従って、超音波ビームの再走査を実行するか否かの選択を受け付ける。
 計測フレーム選択部12は、再走査判定部17により、超音波ビームの再走査が必要であると判定された後に、再走査実行受付部20により、超音波ビームの再走査を実行しない選択が受け付けられた場合、または、再走査判定部17により、超音波ビームの再走査が不要であると判定された場合に、特徴量算出部10により算出された特徴量に基づいて、画像メモリ7に保持された複数フレームの超音波画像の中から、計測対象となる計測フレームの超音波画像を選択する。
 再走査判定部17により、超音波ビームの再走査が不要であると判定された場合に、計測フレーム選択部12は、例えば、画像メモリ7に保持された複数フレームの超音波画像に対して特徴量算出部10により算出された特徴量のうち最大の特徴量を取得し、特徴量が最大となるフレームの超音波画像を計測フレームの超音波画像として選択することができる。
 また、再走査実行受付部20により、超音波ビームの再走査を実行しない選択が受け付けられた場合に、計測フレーム選択部12は、例えば、画像メモリ7に保持された複数フレームの超音波画像の中から、失敗フレーム判定部16により失敗フレームの超音波画像であると判定されたフレームの超音波画像を除き、残ったフレームの超音波画像における特徴量のうち最大の特徴量を取得し、特徴量が最大となるフレームの超音波画像を計測フレームの超音波画像として選択することができる。
 尿量計測部13は、計測フレーム選択部12により選択された計測フレームの超音波画像に基づいて、被検体の膀胱Bの体積を算出することにより、膀胱B内の尿量を計測する。尿量計測部13は、例えば、計測フレーム選択部12により、膀胱Bの中心を通り且つ互いに直交する走査断面に相当する2つの計測フレームの超音波画像が選択された場合に、2つの計測フレームの超音波画像において膀胱領域BRにおける長さを計測して、互いに直交する3方向の最大径LX、LYおよびLZを取得し、(LX×LY×LZ)×π/6を計算することにより、被検体の膀胱Bの体積を算出することができる。
 表示制御部5は、装置制御部14の制御の下、画像メモリ7に保持されているフレームの超音波画像、警告部18によるユーザへの警告を表す情報、再走査推奨部19による超音波ビームの再走査を推奨するメッセージを表す情報、および、尿量計測部13により計測された被検体の膀胱B内の尿量の値等を表す情報等に対して、所定の処理を施して、それらをモニタ6に表示する。
 モニタ6は、表示制御部5による制御の下、種々の表示を行う。モニタ6は、例えば、LCD(Liquid Crystal Display:液晶ディスプレイ)、有機ELディスプレイ(Organic Electroluminescence Display)等のディスプレイ装置を含む。
 装置制御部14は、予め記憶している制御プログラム等に基づいて、超音波診断装置1の各部の制御を行う。
 なお、画像生成部4、表示制御部5、膀胱抽出部9、特徴量算出部10、計測フレーム選択部12、尿量計測部13、装置制御部14、失敗フレーム判定部16、再走査判定部17、警告部18、再走査推奨部19および再走査実行受付部20を有するプロセッサ22は、CPU(Central Processing Unit:中央処理装置)、および、CPUに各種の処理を行わせるための制御プログラムから構成されるが、FPGA(Field Programmable Gate Array:フィードプログラマブルゲートアレイ)、DSP(Digital Signal Processor:デジタルシグナルプロセッサ)、ASIC(Application Specific Integrated Circuit:アプリケーションスペシフィックインテグレイテッドサーキット)、GPU(Graphics Processing Unit:グラフィックスプロセッシングユニット)、その他のIC(Integrated Circuit:集積回路)を用いて構成されてもよく、もしくはそれらを組み合わせて構成されてもよい。
 また、プロセッサ22の画像生成部4、表示制御部5、膀胱抽出部9、特徴量算出部10、計測フレーム選択部12、尿量計測部13、装置制御部14、失敗フレーム判定部16、再走査判定部17、警告部18、再走査推奨部19および再走査実行受付部20は、部分的にあるいは全体的に1つのCPU等に統合させて構成されることもできる。
 以下では、図12に示すフローチャートを用いて、実施の形態1の超音波診断装置1の動作を詳細に説明する。
 まず、ステップS1において、ユーザにより被検体の体表面S上に超音波プローブ21が接着された状態で、超音波画像が生成され、生成された超音波画像がモニタ6に表示される。この際に、送受信回路3のパルサ23からの駆動信号に従って振動子アレイ2の複数の振動子から被検体内に超音波ビームが送信され、被検体からの超音波エコーを受信した各振動子により受信信号が生成され、その受信信号が送受信回路3の増幅部24に出力される。受信信号は、増幅部24で増幅され、AD変換部25でAD変換された後、ビームフォーマ26で整相加算されて、音線信号が生成される。この音線信号は、画像生成部4において、信号処理部27で包絡線検波処理が施されることでBモード画像信号となり、DSC28および画像処理部29を経て表示制御部5に出力され、図4に示すように、表示制御部5の制御の下で超音波画像Uがモニタ6に表示される。
 この際に、ユーザは、モニタ6に表示される超音波画像Uを確認しながら、超音波画像U内に被検体の膀胱領域BRが描出されるように、超音波プローブ21の位置と傾きを調整する。
 次に、ステップS2において、被検体の膀胱B内の尿量を計測するための計測モードが起動されたか否かの判定がなされる。例えば、入力装置15を介してユーザにより、計測モードを起動する指示がなされた場合に、計測モードが起動されたと判定され、ユーザにより計測モードを起動する指示がなされていない場合に、計測モードが起動されていないと判定される。計測モードが起動されていないと判定された場合には、ステップS1に戻り、超音波画像の生成と表示がなされる。ユーザが超音波プローブ21の位置の調整を終えて、計測モードを起動する指示を行うことにより、計測モードが起動されたと判定された場合には、ステップS3に進む。
 ステップS2で計測モードが起動されたと判定されると、ステップS3において、ステップS1と同様にして超音波画像が生成され、生成された超音波画像が画像メモリ7に保持される。ユーザは、例えば、超音波プローブ21の傾きを変えながら被検体の膀胱Bを撮像するスウィング法により、膀胱Bに対して超音波ビームの走査を行う。
 続くステップS4において、膀胱Bに対する超音波ビームの走査が終了したか否かが判定される。例えば、入力装置15を介してユーザにより超音波ビームの走査を終了する指示がなされた場合に、超音波ビームの走査が終了したと判定され、ユーザにより超音波ビームの走査を終了する指示がなされない場合に、超音波ビームの走査が続行中であると判定される。超音波ビームの走査が続行中であると判定された場合には、ステップS3に戻って、超音波画像の生成と保持が行われる。このようにして、超音波ビームの走査が続行している限り、ステップS3とステップS4が繰り返される。これにより、画像メモリ7に、一連の複数フレームの超音波画像が保持される。超音波ビームの走査が終了したと判定された場合には、ステップS5に進む。
 ここで、ステップS3で超音波画像が生成される際に、超音波プローブ21が被検体の体表面Sに接着していない部分が存在する場合には、例えば図5において点線で囲まれた領域で示されるように、一定以上の強度を有する信号が得られないことによって超音波画像U1内において黒く塗りつぶされた失敗領域FRが生じる。
 そのため、ステップS5において、画像メモリ7に保持されている一連の複数フレームの超音波画像の中に失敗フレームの超音波画像が含まれているか否かを判定する。この際に、失敗フレーム判定部16は、画像メモリ7に保持された複数フレームの超音波画像のそれぞれに対して、深さ方向に沿った輝度プロファイルを取得し、取得された輝度プロファイルを解析することにより、超音波画像において一定の輝度しきい値よりも小さい輝度値を有する領域を失敗領域FRとして認識し、失敗領域FRを含むフレームの超音波画像を失敗フレームの超音波画像であると判定する。画像メモリ7に保持されている複数フレームの超音波画像の中に失敗フレームの超音波画像が含まれていると判定された場合に、ステップS6に進む。
 ステップS6において、警告部18は、画像メモリ7に保持されている複数フレームの超音波画像の中に失敗フレームの超音波画像が含まれていることを、ユーザに警告する。警告部18は、例えば、ユーザへの警告をモニタ6に表示する。これにより、失敗フレームの超音波画像が生成されたことをユーザに把握させ、超音波ビームの再走査が行われる場合に、超音波プローブ21が被検体の体表面Sに十分に接着するようにユーザに対して注意を促すことができる。
 このようにしてステップS6の処理が完了すると、ステップS7に進む。
 また、ステップS5において、画像メモリ7に保持されている複数フレームの超音波画像の中に失敗フレームの超音波画像が含まれていないと判定された場合には、ステップS6を省略してステップS7に進む。
 ステップS7において、膀胱抽出部9は、画像メモリ7に保持された複数フレームの超音波画像に対して画像解析を行って、被検体の膀胱Bを表す膀胱領域BRを抽出する。抽出された膀胱領域BRの情報と、複数フレームの超音波画像は、特徴量算出部10に送出される。
 ステップS8において、特徴量算出部10は、複数フレームの超音波画像のそれぞれに対してステップS7で抽出された膀胱領域BRに基づいて、膀胱領域BRに関する特徴量として、膀胱領域BRの面積を算出する。ユーザは、ステップS3でスウィング法により超音波ビームの走査を行ったため、ステップS6で算出される膀胱領域BRの面積は、例えば図7に示すように時系列的に変化する。ここで、算出された膀胱領域BRの面積の情報と、複数フレームの超音波画像は、再走査判定部17と計測フレーム選択部12に送出される。
 ステップS9において、再走査判定部17は、ステップS5で失敗フレームの超音波画像であると判定されたフレームの超音波画像の時系列的な位置と、ステップS8で算出された膀胱領域BRの面積の時系列的な変化とに基づいて、超音波ビームの再走査が必要か否かを判定する。
 この際に、再走査判定部17は、例えば、画像メモリ7に保持されている一連の複数フレームの超音波画像から、ステップS5で失敗フレームと判定されたフレームの超音波画像を除き、残ったフレームの超音波画像における膀胱領域BRの面積の時系列的な変化を表すグラフを取得する。
 ここで、膀胱B内の尿量は、膀胱Bを楕円体Eとみなし、その体積を計算することによって計測されるため、尿量計測に使用されるフレームの超音波画像として、膀胱Bの中心を通る走査断面に相当するフレームの超音波画像を使用することが望ましい。このようなフレームの超音波画像は、膀胱領域BRの面積が、図7に示すような時系列的な変化において極大となるフレームの超音波画像である。
 そのため、再走査判定部17は、膀胱領域BRの面積の時系列的な変化を表すグラフを解析し、失敗フレームの超音波画像が生成された時系列的な区間において、本来の膀胱領域BRの面積が極大値を有するか否かを推定することにより、超音波ビームの再走査が必要か否かを判定することができる。
 例えば図9に示すように、時刻T1~T2の区間において失敗フレームの超音波画像が生成されている場合に、再走査判定部17は、時刻T1~T2の区間の前後の一定区間におけるグラフの変化を表す情報を取得し、取得された情報に基づいて、時刻T1~T2の区間において本来の膀胱領域BRの面積が極大値を有するか否かを推定することができる。
 図9の例では、時刻T1~T2の区間の直前の一定区間においてグラフが単調に増加し、時刻T1~T2の区間の直後の一定区間においてグラフが単調に減少している。そのため、再走査判定部17は、時刻T1~T2の区間において、本来の膀胱領域BRの面積が極大となると推定し、尿量計測に適するフレームの超音波画像が生成されていないと判断して、超音波ビームの再走査が必要であると判定する。
 また、再走査判定部17は、膀胱領域BRの面積の時系列的な変化を表すグラフにおいて、失敗フレームの超音波画像が生成された区間の直前の一定区間においてグラフが単調に増加し、且つ、失敗フレームの超音波画像が生成された区間の直後の一定区間においてグラフが単調に減少する場合以外の場合に、失敗フレームの超音波画像が生成された区間において、本来の膀胱領域BRの面積が極大とはならないと推定し、尿量計測に適するフレームの超音波画像が生成されていると判断して、超音波ビームの再走査が不要であると判定する。
 図10の例では、極大値M1を含まない時刻T3~T4の区間において失敗フレームの超音波画像が生成されており、時刻T3~T4の区間の直前の一定区間と、時刻T3~T4の区間の直後の一定区間のグラフは、いずれも単調に減少しているため、再走査判定部17は、時刻T3~T4の区間において、本来の膀胱領域BRの面積が極大とはならないと推定する。
 ステップS9では、このようにして、再走査判定部17により、超音波ビームの再走査が必要であるか否かが判定されるが、超音波ビームの再走査が必要であると判定された場合には、ステップS10に進む。
 ステップS10において、再走査推奨部19は、超音波ビームの再走査を推奨するためのメッセージをモニタ6に表示する等により、ユーザに対して超音波ビームの再走査を推奨する。再走査推奨部19は、図示しないが、例えば、超音波ビームの再走査を実行するか否かを、入力装置15を介した入力操作によりユーザに選択させるためのメッセージ、ラジオボタン等をモニタ6に表示する。
 この際に、再走査推奨部19は、超音波ビームの再走査をするか否かをユーザが判断しやすいように、例えば図11に示すように、複数フレームの超音波画像U2と、複数フレームの超音波画像U2に対応する膀胱領域BRの特徴量の時系列的な変化を表すグラフG1をモニタ6に表示することができる。図11の例では、モニタ6の下部に複数フレームの超音波画像U2がスクロール表示されており、複数フレームの超音波画像U2のうち、グラフG1に配置されたマーカMPに対応するフレームの超音波画像U3がユーザにより選択され、このフレームの超音波画像U3を拡大した超音波画像U4が、モニタ6の右上部に拡大して表示されている。
 ユーザが、ステップS10でモニタ6に表示されたメッセージおよびラジオボタン等を確認し、超音波ビームの再走査をするか否かを、入力装置15を介して入力すると、ステップS11において、再走査実行受付部20は、ユーザによる入力装置15を介した入力操作に従って、超音波ビームの再走査を実行するか否かの選択を受け付ける。例えば、ユーザにより、超音波ビームの再走査を実行する指示が入力装置15を介して入力されると、再走査実行受付部20は、超音波ビームの再走査を実行する選択を受け付ける。また、ユーザにより、超音波ビームの再走査を実行しない指示が入力装置15を介して入力されると、再走査実行受付部20は、超音波ビームの再走査を実行しない選択を受け付ける。
 ステップS11において、超音波ビームの再走査を実行する選択がなされると、ステップS3に戻り、超音波ビームの再走査が開始される。このようにして、ステップS9で超音波ビームの再走査が必要であると判定され且つステップS11で超音波ビームの再走査を実行する選択がなされる限り、ステップS3~ステップS11の処理が繰り返される。
 このようにして、ステップS9で超音波ビームの再走査が必要か否かが自動的に判定され、超音波ビームの再走査が必要であると判定された場合に、ステップS10でユーザに対して超音波ビームの再走査が推奨され、ステップS11でユーザの入力操作に従って超音波ビームを再走査するか否かが選択されるため、超音波ビームの再走査により、尿量計測に適したフレームの超音波画像が取得されやすく、尿量計測の精度を向上することができる。
 また、ステップS11でユーザの入力操作に従って超音波ビームの再走査を実行するか否かが選択されることにより、被検体の体型等に起因して、被検体の体表面Sから超音波プローブ21がどうしても部分的に離れてしまう場合でも、尿量計測を行うことができる。
 ステップS11において、超音波ビームの再走査を実行しない選択がなされると、ステップS12に進む。
 また、ステップS9において、超音波ビームの再走査が不要であると判定された場合には、ステップS10およびステップS11が省略されて、ステップS12に進む。
 ステップS12において、計測フレーム選択部12は、ステップS8で算出された膀胱領域BRの面積に基づいて、画像メモリ7に保持された複数フレームの超音波画像の中から、計測対象となる計測フレームの超音波画像を選択する。
 例えば、ステップS9で超音波ビームの再走査が不要であると判定された場合に、計測フレーム選択部12は、ステップS8で算出された膀胱領域BRの面積のうち最大の面積を取得し、膀胱領域BRの面積が最大となるフレームの超音波画像を計測フレームの超音波画像として選択する。
 また、例えば、ステップS9で超音波ビームの再走査が必要であると判定され、且つ、ステップS11で超音波ビームの再走査を実行しない選択がなされた場合に、計測フレーム選択部12は、画像メモリ7に保持された複数フレームの超音波画像の中からステップS5で失敗フレームと判定されたフレームの超音波画像を除き、残ったフレームの超音波画像に対して算出された膀胱領域BRの面積のうち最大の面積を取得し、膀胱領域BRの面積が最大となるフレームの超音波画像を計測フレームの超音波画像として選択する。
 このようにして、ステップS12で計測フレームの超音波画像が選択されると、ステップS13に進む。
 ステップS13において、膀胱B内の尿量を計測するために、被検体の膀胱Bの互いに直交する2つの走査断面に相当する2つの計測フレームの超音波画像が、ステップS12で選択されたか否かが判定される。既に完了したステップS12では、膀胱Bの互いに直交する2つの走査断面のうち一方の走査断面に相当する計測フレームの超音波画像のみが得られている。そのため、被検体の膀胱Bの互いに直交する2つの走査断面に相当する2つの計測フレームの超音波画像が選択されていないと判定されて、ステップS3に戻り、超音波ビームの走査が再開される。この際に、ユーザは、超音波プローブ21の向きを90度回転させて、超音波ビームの走査を行う。
 ステップS3およびステップS4において、超音波ビームの走査を終了する指示がユーザによりなされない限り、超音波画像の生成と保持が繰り返され、ステップS4においてユーザにより超音波ビームの走査を終了する指示がなされると、ステップS5に進む。続くステップS5~ステップS12の処理については、既に説明している内容と同一であるため、説明を省略する。
 ステップS12で計測フレームの超音波画像が選択されると、ステップS13に進む。
 ステップS13において、被検体の膀胱Bの互いに直交する2つの走査断面に相当する2つの計測フレームの超音波画像がステップS12で選択されたか否かが判定される。2回目のステップS12において、2つ目の計測フレームの超音波画像が選択されているため、被検体の膀胱Bの互いに直交する2つの走査断面に相当する2つの計測フレームの超音波画像が選択されたと判定されて、ステップS14に進む。
 ステップS14において、尿量計測部13は、2回のステップS12でユーザにより選択された2つの計測フレームの超音波画像からそれぞれ膀胱領域BRを抽出し、抽出された膀胱領域BRの径に基づいて被検体の膀胱Bの体積を算出することにより、膀胱B内の尿量を計測する。例えば、尿量計測部13は、図8に示すように、膀胱Bを楕円体Eとみなして、楕円体EのX方向における最大径LX、Y方向における最大径LYおよびZ方向における最大径LZを、ステップS12で選択された2つの計測フレームの超音波画像から計測し、(LX×LY×LZ)×π/6を計算することにより、楕円体Eの体積を、膀胱Bの体積として算出することができる。尿量計測部13は、例えば図13に示すように、計測した膀胱B内の尿量Jを、モニタ6に表示する。図13の例では、2回目のステップS12でユーザにより選択された計測フレームの超音波画像UDと膀胱B内の尿量Jとがモニタ6に一緒に表示されている。
 このようにして被検体の膀胱B内の尿量が計測されることにより、図12のフローチャートに示す超音波診断装置1の動作が終了する。
 以上から、本発明の実施の形態1に係る超音波診断装置1によれば、ステップS5で複数フレームの超音波画像の中に失敗フレームの超音波画像があるか否かが自動的に判定され、この判定結果とステップS8で算出された膀胱領域BRの特徴量とに基づいてステップS9で超音波ビームの再走査が必要か否かが判定され、超音波ビームの再走査が必要であると判定された場合に、ユーザに対して、超音波ビームの再走査が推奨されるため、超音波ビームの再走査により、尿量計測に適した計測フレームの超音波画像が取得されやすく、尿量計測の精度を向上することができる。
 なお、いわゆる受信フォーカス処理を行うビームフォーマ26は、送受信回路3に含まれているが、例えば、画像生成部4に含まれることもできる。この場合であっても、ビームフォーマ26が送受信回路3に含まれる場合と同様に、画像生成部4により超音波画像が生成される。
 また、画像生成部4は、プロセッサ22に含まれているが、超音波プローブ21に含まれていてもよい。
 また、ステップS4において、超音波ビームの走査を終了する指示がユーザからなされた場合に、超音波ビームの走査が終了されたと判定されているが、例えば、ステップS2で計測モードが起動され、ステップS3で超音波画像の生成と保持が開始された時点から、例えば15秒等の一定時間が経過した場合に、超音波ビームの走査が終了されたと判定されることもできる。この場合には、超音波ビームの走査を終了する指示をユーザが行う手間を省くことができる。
 また、例えば、超音波プローブ21が被検体の体表面Sに接着しているか否かを判定し、その判定結果に応じて、超音波ビームの走査の開始と終了を制御することもできる。ここで、超音波プローブ21が被検体の体表面Sに接着している場合には、被検体内の走査断面に相当するフレームの超音波画像が生成されるが、超音波プローブ21が被検体から離れて、いわゆる空中放射状態となった場合には、通常、全体が黒く塗りつぶされた超音波画像が生成される。そのため、例えば、生成された超音波画像が解析されることにより、超音波プローブ21が被検体の体表面Sに接着しているか否かの判定が可能である。そこで、例えば、超音波プローブ21が被検体の体表面Sに接着していると判定された場合に、超音波ビームの走査を開始し、超音波プローブ21が被検体の体表面Sから離れたと判定された場合に、超音波ビームの走査を終了することができる。この場合にも、超音波ビームの走査を終了する指示をユーザが行う手間を省くことができる。
 以上のようにして説明される、超音波ビームの走査の開始および終了の複数の判定方法は、適宜、互いに組み合わされることができる。
 また、ユーザがスウィング法により膀胱Bを走査する例が説明されているが、超音波ビームの走査は、被検体の体表面S上で超音波プローブ21の傾き角度を一定としたまま超音波プローブ21を平行移動させるスライド法が使用されることもできる。
 ユーザは、スライド法により膀胱Bを走査する場合に、例えば、図14に示すように、超音波プローブ21が被検体の体表面S上で平行移動される方向をスライド方向DSとして、超音波プローブ21を、スライド方向DSにおける膀胱Bの一端部を通る走査断面PS3が撮影される位置と、スライド方向DSにおける膀胱Bの他端部を通る走査断面PS4が撮影される位置との間を往復するように移動する。
 この場合に、生成されたフレームの超音波画像における、膀胱領域BRの面積等の特徴量は、走査断面PS3が撮影される超音波プローブ21の位置と、走査断面PS4が撮影される超音波プローブ21の位置において極小値となり、膀胱Bの中心を通る走査断面が撮影される超音波プローブ21の位置において極大値となるため、膀胱領域BRの特徴量は、スウィング法により超音波ビームの走査がなされる場合と同様に、図7に示すように時系列的に変化する。
 したがって、スライド法により膀胱Bが走査される場合でも、スウィング法により膀胱Bが走査される場合と同様に、特徴量算出部10により算出される膀胱領域BRの特徴量と、失敗フレーム判定部16により失敗フレームと判定されたフレームの超音波画像の時系列的な位置とに基づいて、超音波ビームの再走査が必要か否かが再走査判定部17により判定されるため、尿量計測に適した計測フレームの超音波画像が取得されやすく、尿量計測の精度を向上することができる。
 また、ステップS9において、再走査判定部17は、膀胱領域BRに関する特徴量の時系列的な変化を表すグラフを取得し、取得されたグラフの曲線に対して、いわゆる平滑化フィルタ、ローパスフィルタ等によるフィルタリング処理を施すことにより、滑らかな曲線からなるグラフを取得することができる。これにより、再走査判定部17は、フィルタリング処理によりノイズ等の影響が低減されたグラフを解析して、失敗フレームの超音波画像が生成された時刻において本来の特徴量が極大値となるか否かを精度よく推定することができる。
 また、ステップS10において、再走査推奨部19は、超音波ビームの再走査をするか否かをユーザが判断しやすいように、図11に示すように、複数フレームの超音波画像U2と、複数フレームの超音波画像U2に対応する特徴量の時系列的な変化を表すグラフG1をモニタ6に表示できるが、この際に、例えば、失敗フレームの超音波画像を赤枠または太枠で表示する等、失敗フレームの超音波画像を正常なフレームの超音波画像の表示態様とは異なる表示態様によりモニタ6に表示することもできる。これにより、ユーザは、モニタ6に表示されている複数フレームの超音波画像のうち、失敗フレームの超音波画像をより明確に把握して、超音波ビームを再走査するか否かの選択をすることができる。
 また、被検体の膀胱Bの互いに直交する2つの走査断面に相当する2つの計測フレームの超音波画像が選択されていないとステップS13で判定された場合に、超音波診断装置1の動作がステップS3に戻るが、例えば、ステップS13の直後において、超音波プローブ21の向きを90度回転させる旨のメッセージがモニタ6に表示されてもよい。このようにして、超音波プローブ21の操作に関する指示をユーザに対して行うことにより、ユーザは、より円滑に尿量計測の手順を進めることができる。
 また、スウィング法またはスライド法により、膀胱Bの複数回のスキャンが行われた場合には、膀胱領域BRの特徴量は、極大値と極小値とを交互に繰り返しながら、複数の極大値と複数の極小値を有するように、時系列的に変化する。ここで、例えば、図15に示すように、膀胱領域BRの面積が、本来であれば2つの極大値M2、M3を有するように時系列的に変化しており、2つの極大値M2、M3のうちの一方の極大値M2を含む時刻T5~T6の区間で失敗フレームの超音波画像が生成された場合を考える。この場合には、2つの極大値M2、M3のうちの他方の極大値M3を有するフレームの超音波画像が正常に生成されているため、このフレームの超音波画像を計測フレームの超音波画像UDとして選択することができる。
 そのため、再走査判定部17は、例えば、膀胱領域BRの特徴量の時系列的な変化において、特徴量の極大値を検出する処理を行い、特徴量の極大値が検出されるか否かにより、超音波ビームの再走査が必要か否かを判定することができる。例えば、再走査判定部17は、膀胱領域BRの特徴量の時系列的な変化を表すグラフを取得し、そのグラフを解析して特徴量の極大値を検出する処理を行い、特徴量の極大値が1つも検出されない場合に超音波ビームの再走査が必要であると判定し、特徴量の極大値が1つでも検出された場合に超音波ビームの再走査が不要であると判定することができる。
 また、計測フレームの超音波画像UDは、膀胱Bの中心付近を通る走査断面に相当するフレームの超音波画像、すなわち、膀胱領域BRの特徴量が極大となるフレームの超音波画像であることが望ましいため、特徴量が時系列的に複数の極大値を有するように変化する場合には、特徴量の極大値に対応する複数フレームの超音波画像の中から選択されることが望ましい。そのため、計測フレーム選択部12は、例えば、特徴量の時系列的な変化を表すグラフを解析して、特徴量の全ての極大値を抽出し、抽出された極大値のうちの最大値を取得し、取得された最大値に対応するフレームの超音波画像を計測フレームの超音波画像UDとして選択することができる。
 また、計測フレーム選択部12は、例えば、特徴量が時系列的に極大となる全てのフレームの超音波画像を、計測候補となる候補フレームの超音波画像として抽出し、抽出された候補フレームの超音波画像を、入力装置15を介してユーザに選択させるためにモニタ6に表示することもできる。この場合に、計測フレーム選択部12は、例えば、モニタ6に表示された候補フレームの超音波画像の中からユーザにより選択されたフレームの超音波画像を計測フレームの超音波画像UDとして選択することができる。
 このように、膀胱領域BRの特徴量が極大となるフレームの超音波画像の中から計測フレームの超音波画像UDが選択されることにより、尿量計測に適した計測フレームの超音波画像UDが選択されやすくなり、尿量計測の精度を向上することができる。
実施の形態2
 実施の形態1において、再走査判定部17は、失敗フレーム判定部16により失敗フレームであると判定されたフレームの超音波画像では、膀胱領域BRに関する特徴量が正しく算出されないと判断して、超音波ビームの再走査が必要か否かを判定しているが、失敗フレームと判定されたフレームの超音波画像であっても、特徴量が正しく算出される場合には、このフレームの超音波画像を加味して超音波ビームの再走査が必要か否かの判定をすることができる。
 実施の形態2に係る超音波診断装置は、図1に示す実施の形態1の超音波診断装置1において、再走査判定部17の代わりに、図16に示す再走査判定部17Aを備えたものである。再走査判定部17は、重なり判定部31を含んでいる。
 重なり判定部31は、失敗フレーム判定部16により失敗フレームと判定されたフレームの超音波画像に対して、膀胱抽出部9により抽出された膀胱領域BRと失敗フレーム判定部16により認識された失敗領域FRとが互いに重なっているか否かを判定する。図5に示す超音波画像U1の例では、膀胱領域BRと膀胱領域BRと失敗領域FRとが互いに重なっている。
 このように、膀胱領域BRと失敗領域FRとが互いに重なっているフレームの超音波画像U1では、膀胱領域BRと失敗領域FRとの重なり部分が存在することにより、本来の膀胱領域BRを特定することが困難であり、膀胱領域BRの特徴量を正しく算出することが困難である。一方で、膀胱領域BRと失敗領域FRとが互いに離れて配置されているフレームの超音波画像では、膀胱領域BRと失敗領域FRとの重なり部分が存在しないため、膀胱領域BRが特定されており、膀胱領域BRの特徴量を正しく算出することができる。
 そのため、再走査判定部17Aは、失敗フレーム判定部16により失敗フレームと判定されたフレームの超音波画像のうち、重なり判定部31により、膀胱領域BRと失敗領域FRとが互いに重なっていると判定されたフレームの超音波画像を、膀胱領域BRの特徴量が正しく算出されないフレームの超音波画像と判断して、このフレームの超音波画像に対応する特徴量の値を、特徴量の時系列的な変化を表すグラフから除く。また、再走査判定部17Aは、膀胱領域BRと失敗領域FRとが互いに離れて配置されているフレームの超音波画像を、膀胱領域BRの特徴量が正しく算出されるフレームの超音波画像と判断して、このフレームの超音波画像に対応する特徴量の値を、正常なフレームの超音波画像に対応する特徴量の値と同様に、特徴量の時系列的な変化を表すグラフに含める。
 再走査判定部17Aは、このようにして取得された、膀胱領域BRの特徴量の時系列的な変化を表すグラフを解析することにより、超音波ビームの再走査が必要か否かを判定する。再走査判定部17Aは、特徴量が極大となるフレームの超音波画像が失敗フレームと判定されたフレームの超音波画像であっても、膀胱領域BRと失敗領域FRとが互いに離れて配置されているフレームの超音波画像であれば、超音波ビームの再走査が不要であると判定する。
 この場合に、計測フレーム選択部12は、例えば、膀胱領域BRと失敗領域FRが互いに離れて配置されている失敗フレームの超音波画像と正常なフレームの超音波画像とに対応する特徴量のうち、最大の特徴量を取得し、特徴量が最大となるフレームの超音波画像を計測フレームの超音波画像UDとして選択する。
 以上から、実施の形態2に係る超音波診断装置によれば、失敗フレーム判定部16により失敗領域FRが超音波画像中に確認されても、膀胱抽出部9により抽出された膀胱領域BRが失敗領域FRに対して離れて配置される場合には、再走査判定部17Aにより、超音波ビームの再走査が不要であると判定されるため、超音波ビームの不要な再走査が行われる可能性が減り、ユーザがより迅速に尿量計測の手順を進めることができる。
 また、計測フレーム選択部12により、膀胱領域BRと失敗領域FRが互いに離れて配置されている失敗フレームの超音波画像と正常なフレームの超音波画像の中から計測フレームの超音波画像UDが選択されるため、尿量計測に適したフレームの超音波画像が選択されやすくなり、尿量計測の精度を向上することができる。
実施の形態3
 実施の形態1では、ステップS4で超音波ビームの走査が終了したと判定された後に、画像メモリ7に保持されている複数フレームの超音波画像のそれぞれについてステップS5で失敗フレームであるか否かの判定がなされているが、超音波画像の生成と保持が行われる毎に失敗フレームの判定が行われ、その判定結果に応じてユーザへの警告が行われることもできる。
 実施の形態3に係る超音波診断装置は、図1に示す実施の形態1の超音波診断装置1と同一であるが、図17に示すフローチャートに従って動作する。図17のフローチャートは、図12に示す実施の形態1におけるフローチャートにおいて、ステップS5とステップS6が、ステップS3とステップS4との間に移動したものである。
 実施の形態3において、ステップS3で超音波画像の生成と保持が行われると、ステップS5に進む。
 ステップS5において、失敗フレーム判定部16は、ステップS5で画像メモリ7に保持された最新のフレームの超音波画像を解析して、このフレームの超音波画像が失敗フレームであるか否かを判定する。このフレームの超音波画像が失敗フレームの超音波画像であると判定されると、ステップS6に進む。
 ステップS6において、警告部18は、ステップS5で失敗フレームの超音波画像が判定されたことをユーザに警告する。
 以上のように、本発明の実施の形態3の超音波診断装置によれば、ステップS3で超音波画像の生成と保持が行われる毎にステップS5の失敗フレームの判定がなされ、そのフレームの超音波画像が失敗フレームの超音波画像であると判定された場合に、ステップS6でユーザへの警告が行われるため、ユーザは、警告を即座に反映させながら、超音波プローブ21を被検体の体表面Sに接触させるように注意して超音波ビームの走査を行うことにより、超音波プローブ21が被検体の体表面Sに接着した正常なフレームの超音波画像をより多く取得できる。そのため、尿量計測に適した計測フレームの超音波画像UDが選択されやすく、尿量計測の精度を向上することができる。
 なお、ステップS6で警告部18によりユーザへの警告が行われる際に、超音波プローブ21が被検体の体表面Sに接着していない部分を示す情報が、モニタ6に表示されてもよい。例えば、失敗フレーム判定部16は、超音波画像の深さ方向において失敗領域FRの浅部側に位置する超音波画像の最浅部を、超音波プローブ21が被検体の体表面Sに接着していない部分と判断し、図18に示すように、超音波プローブ21が被検体の体表面Sに接着していない部分を、モニタ6に表示することにより、ユーザに通知することができる。図18の例では、超音波プローブ21が被検体の体表面Sに接着していない部分を表すマーカW1と、「超音波プローブをここに接着させてください」という、マーカW1により示される部分を被検体の体表面Sに接着させることをユーザに指示するためのメッセージW2がモニタ6に表示されている。
 これにより、ユーザは、超音波プローブ21が被検体の体表面Sに接着していない部分を具体的に把握して、超音波プローブ21を被検体の体表面Sに接着させることができる。
 また、ステップS5またはステップS6に続いて、ステップS7とステップS8の処理を行うこともできる。これにより、ステップS3で生成され、画像メモリ7に保持された最新のフレームの超音波画像に対して、順次、膀胱領域BRの抽出と特徴量の算出が行われる。そのため、実施の形態1において、ステップS4の後に、画像メモリ7に保持された複数フレームの超音波画像に対して膀胱領域BRの抽出と特徴量の算出が行われる場合と比べて、膀胱領域BRの抽出と特徴量の算出が行われる際の待ち時間を短縮して、より迅速に尿量計測を行うことができる。
 なお、実施の形態3の態様は、実施の形態1の超音波診断装置1に適用されることが記載されているが、実施の形態2の超音波診断装置にも同様にして適用されることができる。
実施の形態4
 実施の形態1において、失敗フレーム判定部16は、超音波画像の深さ方向の輝度プロファイルに基づいて失敗領域FRを認識することにより、失敗フレームの判定を行っているが、失敗フレームの判定方法は、これに限定されない。
 ここで、被検体の腹部にガスが溜まっている場合に、被検体の体表面Sへの超音波プローブ21の押し込みが不足していると、膀胱領域BRが不明瞭に写った失敗フレームの超音波画像が生成されてしまう場合がある。このような場合には、超音波プローブ21を被検体の体表面Sに向かってさらに押し込むことにより、被検体内のガスが移動して、膀胱領域BRが明瞭に写った超音波画像が得られる。
 そのため、例えば、超音波画像の深さ方向の輝度プロファイルを用いる代わりに、膀胱領域BRのエッジ明瞭度に基づいて失敗フレームの超音波画像が判定されることができる。ここで、膀胱領域BRのエッジ明瞭度とは、膀胱領域BRの輪郭が明瞭であるほど大きい値を有し、膀胱領域BRの輪郭が不明瞭であるほど小さい値を有する指標値である。
 実施の形態4に係る超音波診断装置は、図1に示す実施の形態1の超音波診断装置1と同一である。
 実施の形態4における失敗フレーム判定部16は、例えば、膀胱領域BRのエッジ明瞭度に対して、定められたエッジ明瞭度しきい値を有しており、画像メモリ7に保持されているフレームの超音波画像を画像解析して膀胱領域BRのエッジ明瞭度を算出し、算出されたエッジ明瞭度が、定められたエッジ明瞭度しきい値よりも小さい場合に、被検体の体表面Sへの超音波プローブ21の押し込みが不足している失敗領域FRが超音波画像中に確認されたと判断し、そのフレームの超音波画像を失敗フレームの超音波画像と判定する。
 また、失敗フレーム判定部16は、算出されたエッジ明瞭度が、定められたエッジ明瞭度しきい値以上である場合に、被検体の体表面Sへの超音波プローブ21の押し込みが不足している失敗領域FRが超音波画像中に無いと判断し、そのフレームの超音波画像を正常なフレームの超音波画像と判定する。
 このように、膀胱領域BRのエッジ明瞭度に基づいて失敗フレームの超音波画像が判定される場合でも、実施の形態1の超音波診断装置1と同様に、失敗フレーム判定部16による判定結果と膀胱領域BRの特徴量とに基づいて超音波ビームの再走査が必要か否かが判定され、超音波ビームの再走査が必要であると判定された場合に、ユーザに対して、超音波ビームの再走査が推奨されるため、超音波ビームの再走査により、尿量計測に適した計測フレームの超音波画像UDが取得されやすく、尿量計測の精度を向上することができる。
 なお、実施の形態4に対して、実施の形態3の態様を組み合わせることもできる。この場合に、警告部18は、例えば、膀胱領域BRのエッジ明瞭度に対して、失敗フレーム判定部16が有するエッジ明瞭度しきい値よりも大きいエッジ明瞭度警告しきい値を有しており、膀胱領域BRのエッジ明瞭度がエッジ明瞭度警告しきい値よりも小さい場合に、被検体の体表面Sへの超音波プローブ21の押し込みを強くする旨の警告をモニタ6に表示することができる。これにより、ユーザは、モニタ6に表示された警告を参考にしながら超音波プローブ21を被検体の体表面Sに向かって押し込んで、膀胱領域BRが明瞭に写るフレームの超音波画像を得ることができる。
実施の形態5
 実施の形態4では、膀胱領域BRのエッジ明瞭度に基づいて失敗フレームの超音波画像を判定しているが、例えば、超音波プローブ21を被検体の体表面Sに押し付ける際の超音波プローブ21の接触圧に基づいて失敗フレームの判定を行うこともできる。
 図19に示すように、実施の形態5に係る超音波診断装置1Bは、図1に示す実施の形態1の超音波診断装置1において、超音波プローブ21に圧力センサ32が取り付けられ、装置制御部14の代わりに装置制御部14Bが、失敗フレーム判定部16の代わりに失敗フレーム判定部16Bが、プロセッサ22の代わりにプロセッサ22Bが、それぞれ、備えられたものである。
 圧力センサ32は、超音波プローブ21に取り付けられており、画像メモリ7に接続されている。圧力センサ32は、超音波プローブ21が被検体の体表面Sに押し付けられる際に、超音波プローブ21が被検体の体表面Sから受ける圧力、すなわち、被検体の体表面Sに対する超音波プローブ21の接触圧を計測する。圧力センサ32により計測された接触圧の情報は、画像メモリ7に送出され、同時刻において画像生成部4により生成されたフレームの超音波画像と一緒に画像メモリ7に保持される。
 失敗フレーム判定部16Bは、超音波プローブ21の接触圧に対して、定められた接触圧しきい値を有しており、圧力センサ32により計測された接触圧が、定められた接触圧しきい値よりも低い場合に、その接触圧に対応するフレームの超音波画像中に被検体の体表面Sへの超音波プローブ21の押し込みが不足している失敗領域FRが確認されたと判断し、そのフレームの超音波画像を失敗フレームの超音波画像と判定する。
 また、失敗フレーム判定部16Bは、圧力センサ32により計測された接触圧が、定められた接触圧以上である場合に、その接触圧に対応するフレームの超音波画像中に被検体の体表面Sへの超音波プローブ21の押し込みが不足している失敗領域FRが存在しないと判断し、そのフレームの超音波画像を正常なフレームの超音波画像と判定する。
 このように、被検体の体表面Sに対する超音波プローブ21の接触圧に基づいて失敗フレームの超音波画像が判定される場合でも、実施の形態1の超音波診断装置1と同様に、失敗フレーム判定部16Bによる判定結果と膀胱領域BRの特徴量とに基づいて超音波ビームの再走査が必要か否かが判定され、超音波ビームの再走査が必要であると判定された場合に、ユーザに対して、超音波ビームの再走査が推奨されるため、超音波ビームの再走査により、尿量計測に適した計測フレームの超音波画像UDが取得されやすく、尿量計測の精度を向上することができる。
 なお、実施の形態5に対して、実施の形態3の態様を組み合わせることもできる。この場合に、警告部18は、例えば、被検体の体表面Sに対する超音波プローブ21の接触圧に対して、失敗フレーム判定部16Bが有する接触圧しきい値よりも大きい接触圧警告しきい値を有しており、圧力センサ32により計測された接触圧が接触圧警告しきい値よりも小さい場合に、被検体の体表面Sへの超音波プローブ21の押し込みを強くする旨の警告をモニタ6に表示することができる。これにより、ユーザは、モニタ6に表示された警告を参考にしながら超音波プローブ21を被検体の体表面Sに向かって押し込んで、膀胱領域BRが明瞭に写るフレームの超音波画像を得ることができる。
実施の形態6
 実施の形態1に係る超音波診断装置1は、モニタ6、入力装置15および超音波プローブ21がプロセッサ22に直接的に接続される構成を有しているが、例えば、モニタ6、入力装置15、超音波プローブ21およびプロセッサ22がネットワークを介して間接的に接続されることもできる。
 図20に示すように、実施の形態6における超音波診断装置1Cは、モニタ6、入力装置15および超音波プローブ21がネットワークNWを介して超音波診断装置本体41に接続されたものである。超音波診断装置本体41は、図1に示す実施の形態1の超音波診断装置1において、モニタ6、入力装置15および超音波プローブ21を除いたものであり、画像メモリ7およびプロセッサ22Cにより構成されている。
 超音波診断装置1Cがこのような構成を有している場合でも、実施の形態1の超音波診断装置1と同様に、失敗フレーム判定部16による判定結果と膀胱領域BRの特徴量とに基づいて超音波ビームの再走査が必要か否かが判定され、超音波ビームの再走査が必要であると判定された場合に、ユーザに対して、超音波ビームの再走査が推奨されるため、超音波ビームの再走査により、尿量計測に適した計測フレームの超音波画像UDが取得されやすく、尿量計測の精度を向上することができる。
 また、モニタ6、入力装置15および超音波プローブ21がネットワークNWを介して超音波診断装置本体41と接続されているため、超音波診断装置本体41を、いわゆる遠隔サーバとして使用することができる。これにより、例えば、ユーザは、モニタ6、入力装置15および超音波プローブ21をユーザの手元に用意することにより、被検体の診断を行うことができるため、超音波診断の際の利便性を向上させることができる。
 また、例えば、いわゆるタブレットと呼ばれる携帯型の薄型コンピュータがモニタ6および入力装置15として使用される場合には、ユーザは、より容易に尿量計測を行うことができ、尿量計測の利便性をさらに向上させることができる。
 なお、モニタ6、入力装置15および超音波プローブ21がネットワークNWを介して超音波診断装置本体41に接続されているが、この際に、モニタ6、入力装置15および超音波プローブ21は、ネットワークNWに有線接続されていてもよく、無線接続されていてもよい。
 また、実施の形態6の態様は、実施の形態1に適用されることが説明されているが、実施の形態2~5にも、同様に適用される。
1,1B、1C 超音波診断装置、2 振動子アレイ、3 送受信回路、4 画像生成部、5 表示制御部、6 モニタ、7 画像メモリ、9 膀胱抽出部、10 特徴量算出部、12 計測フレーム選択部、13 尿量計測部、14,14B 装置制御部、15 入力装置、16,16B 失敗フレーム判定部、17,17A 再走査判定部、18 警告部、19 再走査推奨部、20 再走査実行受付部、21 超音波プローブ、22,22B、22C プロセッサ、23 パルサ、24 増幅部、25 AD変換部、26 ビームフォーマ、27 信号処理部、28 DSC、29 画像処理部、31 重なり判定部、32 圧力センサ、41 超音波診断装置本体、B 膀胱、BR 膀胱領域、C 輪郭線、DS スライド方向、E 楕円体、FR 失敗領域、G1 グラフ、J 尿量、LX,LY,LZ 最大径、M1~M3 極大値、MP,W1 マーカ、N1,N2 極小値、PS1,PS2,PS3,PS4 走査断面、R 回転軸、S 体表面、T1~T6 時刻、U,U1~U4,UD 超音波画像、W2 メッセージ。

Claims (10)

  1.  超音波プローブを用いて被検体に対する超音波ビームの走査を行うことにより取得された複数フレームの超音波画像を保持する画像メモリと、
     前記複数フレームの超音波画像のそれぞれから膀胱領域を抽出する膀胱抽出部と、
     前記複数フレームの超音波画像のそれぞれに対して前記膀胱抽出部により抽出された前記膀胱領域に関する特徴量を算出する特徴量算出部と、
     前記複数フレームの超音波画像のそれぞれについて前記被検体に対する超音波ビームの走査が失敗した失敗フレームであるか否かを判定する失敗フレーム判定部と、
     前記特徴量算出部により算出された前記特徴量の時系列的な変化と前記失敗フレーム判定部により失敗フレームであると判定されたフレームの超音波画像の時系列的な位置とに基づいて超音波ビームの再走査が必要か否かを判定する再走査判定部と、
     前記再走査判定部により超音波ビームの再走査が必要であると判定された場合に、ユーザに対して超音波ビームの再走査を推奨する再走査推奨部と、
     前記再走査判定部により超音波ビームの再走査が不要であると判定された場合に、前記特徴量算出部により算出された前記特徴量に基づいて前記複数フレームの超音波画像の中から計測対象となる計測フレームの超音波画像を選択する計測フレーム選択部と、
     前記計測フレーム選択部により選択された前記計測フレームの超音波画像を解析することにより尿量を計測する尿量計測部と
     を備える超音波診断装置。
  2.  ユーザが入力操作を行うための入力装置と、
     前記再走査推奨部により超音波ビームの再走査が推奨された場合に、前記ユーザによる前記入力装置を介した入力操作に従って、超音波ビームの再走査を実行するか否かの選択を受け付ける再走査実行受付部と
     をさらに備え、
     計測フレーム選択部は、前記再走査判定部により超音波ビームの再走査が不要であると判定された場合、または、前記再走査実行受付部により超音波ビームの再走査を実行しない選択が受け付けられた場合に、前記特徴量算出部により算出された前記特徴量に基づいて前記複数フレームの超音波画像の中から計測対象となる計測フレームの超音波画像を選択する請求項1に記載の超音波診断装置。
  3.  前記失敗フレーム判定部は、前記超音波画像に対して画像解析を行うことにより、前記超音波画像の深さ方向の輝度プロファイルに基づいて、前記被検体に前記超音波プローブが接着していない失敗領域が前記超音波画像中に確認された場合に、失敗フレームであると判定する請求項1または2に記載の超音波診断装置。
  4.  前記失敗フレーム判定部は、前記超音波画像に対して画像解析を行うことにより、前記超音波画像における前記膀胱領域のエッジ明瞭度に基づいて、前記被検体への前記超音波プローブの押し込みが不足している失敗領域が前記超音波画像中に確認された場合に、失敗フレームであると判定する請求項1または2に記載の超音波診断装置。
  5.  前記再走査判定部は、前記失敗フレーム判定部により、前記失敗領域が前記超音波画像中に確認されても、前記膀胱抽出部により抽出された前記膀胱領域が前記失敗領域に重ならない場合には、超音波ビームの再走査が不要であると判定する請求項3または4に記載の超音波診断装置。
  6.  前記超音波プローブと、
     前記超音波プローブに取り付けられ且つ前記被検体に対する前記超音波プローブの接触圧を検出する圧力センサと
     をさらに備え、
     前記失敗フレーム判定部は、前記圧力センサにより検出された前記超音波プローブの接触圧に基づいて、失敗フレームであるか否かを判定する請求項1または2に記載の超音波診断装置。
  7.  前記失敗フレーム判定部は、前記超音波プローブのうち、前記被検体に接着していない部分、または、前記被検体への押し込み不足となっている部分を前記ユーザに通知する請求項1~6のいずれか一項に記載の超音波診断装置。
  8.  前記失敗フレーム判定部により失敗フレームであると判定された場合に、前記ユーザに対して警告を発する警告部をさらに備えた請求項1~7のいずれか一項に記載の超音波診断装置。
  9.  超音波プローブを用いて被検体に対する超音波ビームの走査を行うことにより取得された複数フレームの超音波画像を保持し、
     前記複数フレームの超音波画像のそれぞれから膀胱領域を抽出し、
     前記複数フレームの超音波画像のそれぞれに対して抽出された前記膀胱領域に関する特徴量を算出し、
     前記複数フレームの超音波画像のそれぞれについて前記被検体に対する超音波ビームの走査が失敗した失敗フレームであるか否かを判定し、
     前記特徴量の時系列的な変化と、失敗フレームであると判定されたフレームの超音波画像の時系列的な位置とに基づいて超音波ビームの再走査が必要か否かを判定し、
     超音波ビームの再走査が必要であると判定された場合に、ユーザに対して超音波ビームの再走査を推奨し、
     超音波ビームの再走査が不要であると判定された場合に、前記特徴量に基づいて前記複数フレームの超音波画像の中から計測対象となる計測フレームの超音波画像を選択し、
     前記計測フレームの超音波画像を解析することにより尿量を計測する超音波診断装置の制御方法。
  10.  超音波プローブを用いて被検体に対する超音波ビームの走査を行うことにより取得された複数フレームの超音波画像を保持し、
     前記複数フレームの超音波画像のそれぞれから膀胱領域を抽出し、
     前記複数フレームの超音波画像のそれぞれに対して抽出された前記膀胱領域に関する特徴量を算出し、
     前記複数フレームの超音波画像のそれぞれについて前記被検体に対する超音波ビームの走査が失敗した失敗フレームであるか否かを判定し、
     前記特徴量の時系列的な変化と、失敗フレームであると判定されたフレームの超音波画像の時系列的な位置とに基づいて超音波ビームの再走査が必要か否かを判定し、
     超音波ビームの再走査が必要であると判定された場合に、ユーザに対して超音波ビームの再走査を推奨し、
     超音波ビームの再走査が不要であると判定された場合に、前記特徴量に基づいて前記複数フレームの超音波画像の中から計測対象となる計測フレームの超音波画像を選択し、
     前記計測フレームの超音波画像を解析することにより尿量を計測する超音波診断装置用プロセッサ。
PCT/JP2021/006658 2020-03-24 2021-02-22 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ WO2021192781A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180022797.3A CN115297786A (zh) 2020-03-24 2021-02-22 超声波诊断装置、超声波诊断装置的控制方法及超声波诊断装置用处理器
EP21775380.5A EP4129198A4 (en) 2020-03-24 2021-02-22 ULTRASONIC DIAGNOSTIC APPARATUS, CONTROL METHOD FOR ULTRASONIC DIAGNOSTIC APPARATUS, AND PROCESSOR FOR ULTRASONIC DIAGNOSTIC APPARATUS
JP2022509428A JP7288550B2 (ja) 2020-03-24 2021-02-22 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
US17/819,357 US20220378397A1 (en) 2020-03-24 2022-08-12 Ultrasound diagnostic apparatus, method for controlling ultrasound diagnostic apparatus, and processor for ultrasound diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-052260 2020-03-24
JP2020052260 2020-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/819,357 Continuation US20220378397A1 (en) 2020-03-24 2022-08-12 Ultrasound diagnostic apparatus, method for controlling ultrasound diagnostic apparatus, and processor for ultrasound diagnostic apparatus

Publications (1)

Publication Number Publication Date
WO2021192781A1 true WO2021192781A1 (ja) 2021-09-30

Family

ID=77891200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006658 WO2021192781A1 (ja) 2020-03-24 2021-02-22 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ

Country Status (5)

Country Link
US (1) US20220378397A1 (ja)
EP (1) EP4129198A4 (ja)
JP (1) JP7288550B2 (ja)
CN (1) CN115297786A (ja)
WO (1) WO2021192781A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331696A1 (en) * 2006-01-09 2010-12-30 Mcube Technology Co., Ltd. Apparatus and method for automatically measuring the volume of urine in a bladder using ultrasound signals
JP2017109074A (ja) 2015-12-15 2017-06-22 コニカミノルタ株式会社 超音波画像診断装置
JP2018102891A (ja) * 2016-12-26 2018-07-05 ゼネラル・エレクトリック・カンパニイ 超音波画像表示装置及びその制御プログラム
JP2019076298A (ja) * 2017-10-23 2019-05-23 フクダ電子株式会社 超音波プローブ、超音波診断装置およびその制御方法
WO2019163225A1 (ja) * 2018-02-23 2019-08-29 富士フイルム株式会社 超音波診断装置および超音波診断装置の制御方法
JP2020028680A (ja) * 2018-08-24 2020-02-27 富士通株式会社 検査支援プログラム、検査支援方法および検査支援装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170296148A1 (en) * 2016-04-15 2017-10-19 Signostics Limited Medical imaging system and method
US11464490B2 (en) * 2017-11-14 2022-10-11 Verathon Inc. Real-time feedback and semantic-rich guidance on quality ultrasound image acquisition
CA3085619C (en) * 2017-12-20 2023-07-04 Verathon Inc. Echo window artifact classification and visual indicators for an ultrasound system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331696A1 (en) * 2006-01-09 2010-12-30 Mcube Technology Co., Ltd. Apparatus and method for automatically measuring the volume of urine in a bladder using ultrasound signals
JP2017109074A (ja) 2015-12-15 2017-06-22 コニカミノルタ株式会社 超音波画像診断装置
JP2018102891A (ja) * 2016-12-26 2018-07-05 ゼネラル・エレクトリック・カンパニイ 超音波画像表示装置及びその制御プログラム
JP2019076298A (ja) * 2017-10-23 2019-05-23 フクダ電子株式会社 超音波プローブ、超音波診断装置およびその制御方法
WO2019163225A1 (ja) * 2018-02-23 2019-08-29 富士フイルム株式会社 超音波診断装置および超音波診断装置の制御方法
JP2020028680A (ja) * 2018-08-24 2020-02-27 富士通株式会社 検査支援プログラム、検査支援方法および検査支援装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. W. MICHAEL KASSD. TERZOPOULOS: "Snakes: Active contour models", INT. J. COMPUTER VISION, vol. 1, no. 4, 1988, pages 321 - 331
KRIZHEVSK ET AL.: "ImageNet Classification with Deep Convolutional Neural Networks", ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, vol. 25, 2012, pages 1106 - 1114
M. SUSSMANP. SMEREKAS. OSHER: "A level set approach for computing solutions to incompressible two-phase flow", J. COMPUT. PHYS, vol. 114, no. 1, 1994, pages 146 - 159, XP024748468, DOI: 10.1006/jcph.1994.1155
Y. BOYKOVV. KOLMOGOROV: "An experimental comparison of min-cut/max-flow algorithm for energy minimization in vision", IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 26, no. 9, 2004, pages 1123 - 1137, XP011115612, DOI: 10.1109/TPAMI.2004.60

Also Published As

Publication number Publication date
EP4129198A1 (en) 2023-02-08
CN115297786A (zh) 2022-11-04
JPWO2021192781A1 (ja) 2021-09-30
JP7288550B2 (ja) 2023-06-07
EP4129198A4 (en) 2023-08-23
US20220378397A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP7217798B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP5230106B2 (ja) 超音波診断装置、imt計測方法及びimt計測プログラム
JP6875541B2 (ja) 音響波診断装置および音響波診断装置の制御方法
US9538988B2 (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
US20220401064A1 (en) Ultrasound diagnostic apparatus, method for controlling ultrasound diagnostic apparatus, and processor for ultrasound diagnostic apparatus
JP7235868B2 (ja) 超音波診断装置および超音波診断装置の制御方法
WO2020075609A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP7074871B2 (ja) 超音波診断装置および超音波診断装置の制御方法
CN112367920A (zh) 声波诊断装置及声波诊断装置的控制方法
WO2020217815A1 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
JP7313446B2 (ja) 超音波診断装置および超音波診断装置の制御方法
US20220409183A1 (en) Ultrasound diagnostic apparatus, method for controlling ultrasound diagnostic apparatus, and processor for ultrasound diagnostic apparatus
JP6856816B2 (ja) 超音波診断装置および超音波診断装置の制御方法
WO2021192781A1 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
WO2020110500A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP7199556B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP6876869B2 (ja) 超音波診断装置および超音波診断装置の制御方法
EP4360565A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
WO2022196095A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2024025865A (ja) 超音波診断装置の制御方法および超音波診断装置
JP2024039872A (ja) 超音波診断装置の制御方法および超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509428

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021775380

Country of ref document: EP

Effective date: 20221024