WO2021192556A1 - 報告書執筆支援システム、報告書執筆支援方法 - Google Patents

報告書執筆支援システム、報告書執筆支援方法 Download PDF

Info

Publication number
WO2021192556A1
WO2021192556A1 PCT/JP2021/001922 JP2021001922W WO2021192556A1 WO 2021192556 A1 WO2021192556 A1 WO 2021192556A1 JP 2021001922 W JP2021001922 W JP 2021001922W WO 2021192556 A1 WO2021192556 A1 WO 2021192556A1
Authority
WO
WIPO (PCT)
Prior art keywords
question
answer
draft
user
model
Prior art date
Application number
PCT/JP2021/001922
Other languages
English (en)
French (fr)
Inventor
彰規 淺原
拓也 金澤
秀和 森田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP21776129.5A priority Critical patent/EP4131129A4/en
Priority to CN202180008950.7A priority patent/CN114930377A/zh
Priority to US17/909,007 priority patent/US11914950B2/en
Publication of WO2021192556A1 publication Critical patent/WO2021192556A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/166Editing, e.g. inserting or deleting
    • G06F40/186Templates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0203Market surveys; Market polls

Definitions

  • the present invention relates to a report writing support system that supports report writing and a report writing support method.
  • Another problem is the labor required for writing. Generally, it is difficult and time-consuming to write an essay from a blank slate. Therefore, in many cases, a report template is prepared in advance and the writing work is performed according to the template. However, this method allows less templates to be used. This is because if there are too many templates, the user cannot decide which template to choose from them. Therefore, it is common to prepare several templates for each field. For example, a template for an experiment report may be prepared, but it is not possible to take detailed measures such as using different templates depending on the content and results of the experiment. If you just select a specific template from a large number of templates, you can apply methods such as document retrieval, but for that you have a good grasp of the templates prepared by the user and which template you use yourself. You have to be able to decide what to do, which is very difficult.
  • Patent Document 1 discloses a technique for generating a report by applying a hiyari hat case to a template by inputting it into a form.
  • this method it is not possible to select and use an appropriate template from many types of templates, and it cannot be used unless the content to be reported is clarified.
  • Patent Document 2 discloses a technique that makes it easy to prepare answer data for a question by searching the question text by a conceptual keyword. This method allows you to conceptually search for templates, but it's not easy because you still have to identify which templates to use.
  • the present invention has been made in consideration of such a situation, and is a report writing support system and a report writing that can easily reflect information that is only in the user's memory in a document without much trouble.
  • One purpose is to provide a support method.
  • the report writing support system determines a document model that stores a template of a draft to be presented to the user based on an answer to a multiple-choice question and a question determination model that determines a further question to the answer.
  • a descriptive question for asking what is missing in the template of the draft stored in the document model based on the determined document model determination unit and the determined document model and the answer or the answer to the further question.
  • a template fitting unit that applies the answer to the descriptive question to the template of the draft
  • a presentation processing unit that presents the template of the draft to which the answer to the descriptive question is applied as the draft to be presented to the user. It is configured as a report writing support system characterized by having.
  • Example of schematic configuration of Example 1 Example of configuration of physical implementation of Example 1
  • Example of usage procedure of Example 1 Example of initial screen of Example 1
  • Example of initial question-and-answer flow of Example 1 Example of user input data passed from the user of Example 1
  • Example of user data of user information DB of Example 1 Example of question generation request of Example 1
  • Example of selective question data of selective question DB of Example 1 Example of question determination model of question and answer phase determination model of Example 1
  • Schematic diagram of question-and-answer phase determination of Example 1 Example of question text data of Example 1
  • Example of question screen regarding the multiple-choice question of Example 1
  • Example of response data of Example 1 Example of response history data of Example 1
  • Example of document model data of the document model DB of the first embodiment Example of document model data of Example 1
  • Example of question generation process of Example 1 Example of descriptive question data of descriptive question DB of Example 1
  • FIG. 1 shows the configuration of Example 1 of the report writing support system and the document creation support device which is an example of the report writing support method according to the present invention.
  • the document creation support device (101) of this embodiment is a device that accepts the operation of the user (102), the input / output reception unit (110) that accepts the input of the user, and the use that records the usage status of the user.
  • a draft generation unit that generates a draft by combining the information of the document model DB (114), the answer record DB (113), and the document model DB (114) that manages the information related to the type in association with the draft template of the document.
  • a question-and-answer phase determination model (116) that holds information for identifying a document model and assessing its degree of identification
  • a multiple-choice question generator (117) that generates multiple-choice questions to identify a question-and-answer phase.
  • the practical arrow indicates the processing flow, and the broken line arrow indicates the data flow.
  • FIG. 2 shows an example of the configuration of the physical implementation of the first embodiment.
  • the document creation support device (101) can be implemented using a general computer. That is, a processor (201) having computing performance, a DRAM (202) which is a volatile temporary storage area capable of reading and writing at high speed, and a storage device (203) which is a permanent storage area using an HDD, a flash memory, or the like.
  • An input device such as a mouse or keyboard for operation (204), a monitor (205) for showing the operation to the user, and an interface (206) such as a serial port for communicating with an external computer or device. It is a device including.
  • the input / output reception unit (110), question control unit (112), draft generation unit (115), selective question generation unit (117), and descriptive question generation unit (119) were recorded in the storage device (203). This can be achieved by the processor (201) executing the program.
  • the user information DB (111), answer record DB (113), document model DB (114), question-and-answer phase determination model (116), multiple-choice question DB (118), and descriptive question DB (120) accumulate data.
  • the processor (201) executing a program that performs the above in the storage device (213).
  • each part of the report writing support system is provided in the document creation support device (101), which is a general computer as hardware, but all or part of them may be one or a cloud-like one or a part of them. Similar functions may be realized by being distributed to a plurality of computers and communicating with each other.
  • FIG. 3 schematically shows the operation procedure of this embodiment.
  • the document creation support device (101) When the document creation support device (101) is activated, it presents an initial screen (301) and waits for access by the user (102).
  • the document creation support device (101) executes the initial question-and-answer process (303) and uses it. Start asking and answering questions. This initial procedure is called the initial phase.
  • the document creation support device (101) enters the document information collection phase in which information on the document to be created is collected while asking and answering the user.
  • the question to be asked next in the question-and-answer process (305) executed by the document creation support device (101) is determined and presented to the user (102) as a question screen (304).
  • the question-and-answer process (305) is executed again and the next question is generated.
  • the operation of the document creation support device (101) enters the draft viewing phase of presenting the draft to the user.
  • the result returned by the document creation support device (101) executes the draft presentation process (307) including the created draft, and what is presented to the user is the draft display in which the draft is displayed in an easy-to-read manner. It becomes (308).
  • the user can passively create a document draft in response to the question of the document creation support device (101), so that the time and effort required for document creation can be reduced from a blank slate.
  • FIG. 4 shows an example of the initial screen (301) generated when the document creation support device (101) is started.
  • the initial screen (301) is a screen for specifying user information.
  • HTML data that can be formed by a known Web browser (401) or the like is sent as an initial screen.
  • This screen includes a text box (402) for acquiring the user's name and a send button (403) for completing the input and suggesting the start of use, and the user (102) can use his / her own name or You can freely use your nickname.
  • the initial screen (301) may be any output format that can be handled by the user (102), and may be in the form of voice dialogue using, for example, a speaker or a microphone.
  • FIG. 5 shows an example of the flow of the initial question-and-answer process (303).
  • the input / output reception unit (110) first receives the user input data (302) and executes a process of reflecting it in the user information DB (111) (S501).
  • FIG. 6 shows an example of the contents of the user input data (302).
  • the user input data (302) includes a user ID (601), which is an ID for identifying the user, and a user name (602), which indicates the display name of the user.
  • the user ID (601) may be blank if it is undecided, or information that can identify the user specified separately (for example, an employee number) may be used.
  • the user name (602) is obtained from the text box on the initial screen (301).
  • the user input data (302) is added to the user data (503) of the user DB (111). Details of this example of user data (503) are shown in FIG.
  • the user data (503) includes a user ID (701) and a user name (702) that store information held by the user input data (302), and question-and-answer phase data (703) indicating which phase the user is currently in.
  • the user (102) has a document model ID (704) indicating the estimation result of the type of the document to be written.
  • the input / output reception unit (110) is a user of the existing user data (503) when the user ID (601) of the user input data (302) is blank. Issue a number that is not in ID (701). For example, the maximum value of the user ID (701) plus 1 can be used.
  • the question-and-answer phase (703) becomes the document model identification phase, and the corresponding values are stored.
  • the question control unit (112) When the user DB (111) is updated, the question control unit (112) generates a question generation request (505) (S504).
  • FIG. 8 shows the data items of the question generation request (505).
  • the question generation request (505) includes a user ID (601) included in the user data (503) of the user DB (111), a user ID (801) for storing the user name (602), and a user name.
  • answer history data 803 which is historical data of what kind of answer the user has made so far.
  • this answer history data (803) is blank, but if there is an answer obtained in another form, it may be added here.
  • the question control unit (112) acquires the question determination model (507) from the question / answer phase determination model (116) (S506) and sends it to the selective question generation unit (117) together with the user data (503). .. Then, the multiple-choice question generator (117) determines the important question, which is the next question to be asked, with reference to the question determination model (507) (S508), and responds to the important question from the multiple-choice question DB (118). Acquires the multiple-choice question data (510) and generates the question text data (511) (S509).
  • FIG. 9 first shows the items included in the selective question data (510) of the selective question DB (118).
  • the selective question data (510) includes a question ID (901) which is an identifier of the question data, a question sentence (902) which is a sentence to be presented to the user (102), a list of choices, and a choice code which is a code value thereof.
  • the choice list (903), which is a list of, is stored in association with.
  • Fig. 10 shows an example of the question determination model (507).
  • the question determination model (507) in the first embodiment has a structure similar to a known decision tree, and is a combination of a plurality of branching (1001) (1002) and result (1003) items.
  • Each branch has a branch ID (1004), which is a branch identifier, a question ID (1005) of the question corresponding to the branch, and a destination (1006) for each answer indicating the next branch for each answer to the question.
  • This one branch corresponds to one record of the selective question data (510), and it is associated by comparing the question ID (1005) of the branch with the question ID (901) of the selective question data (510). Can be done.
  • the result item has a branch ID (907) that has the same system as that of the branch, and a document model ID (908) that indicates the estimation result of the document type.
  • This structure is a decision tree formed by stacking each branch, and the result reached at the end of tracing the branch of the decision tree from branch 1 (901) is the document model ID of the document model to be used.
  • Fig. 11 schematically shows the principle of specifying the document model using this question determination model (507).
  • the upper table in the figure is the data on which this question determination model (507) is based.
  • This table is a collection of answers corresponding to the multiple-choice question data (510). Each row in this table corresponds to each collected document.
  • the question ID column (1101) corresponds to the question ID (901) of the multiple choice question data (510), and the numbers entered in each column are in the choice list (903) of the multiple choice question data (510).
  • the value of a choice code is included in the document model ID column (1102) is a document model identifier indicating which document model each document is suitable for use.
  • the question determination model (507) can be generated by applying a machine learning algorithm in which the question ID column (1101) is set as the explanatory variable and the document model ID column (1102) is set as the objective variable to this table. can.
  • the tree-shaped structure at the bottom of the figure is arranged so that the data of the question determination model (705) can be easily seen.
  • This structure is equivalent to the structure of a known decision tree, and it is known that it can be constructed by learning the above table so that the sequence of document model IDs (1102) can be sorted most effectively.
  • the top item (1103) means the question ID of the question to be confirmed first, and if you answer it with one option, the left question (1104), if it is 2, the right question (1105) It will be in the form of proceeding to.
  • the document model ID: 1 (1106) is specified as the document model data to be used. If the document model can be reached by following this question determination model (507), it can be determined that it can be identified, and if not, it can be determined that it cannot be identified.
  • the question determination model (507) is not a decision tree, it can be used as long as it is a discriminant analysis model that predicts the classification of the objective variable from the explanatory variables.
  • a model that can be discriminated even in a situation where the objective variable is only partially obtained such as a decision tree
  • a known Gaussian process method can be used to identify the document model without answering all the questions.
  • the multiple choice question generator (117) estimates and estimates the answer to the multiple choice question using the Gaussian process method.
  • the most reliable and next choice question to be asked may be selected from the choice question DB (118) to reach the document model corresponding to the answer to the selected question.
  • the multiple-choice question generator (117) uses the question-decision model (507) to determine the next-choice question to be asked. Specifically, the branch that can be traced deepest in the question determination model (507) is searched for, and the question corresponding to the question ID of that branch is set as an important question. In the example of FIG. 11, when the question with question ID: 1 is answered with 2, the important question is question ID: 4. Even when a model that is not a decision tree is used, it is possible to determine and determine which question should be answered next to make it easier to identify the document model. For example, when a model in which the accuracy of discrimination can be evaluated is used, the conditions can be examined while giving answers to the next question in a pseudo manner, and the question with the highest accuracy can be set as an important question.
  • FIG. 12 shows the elements of the question text data (511) generated from the selective question data (510).
  • the question text data (511) is presented to the user ID (1201) of the user, the question ID (1202) which is the identifier of the question, the question type (1203) indicating the type of question, and the user (102). It contains a question text (1204) and answer information (1205) indicating the items that the user (102) should answer.
  • the selective question generation unit (117) uses the user ID included in the user data (503) as the user ID (1201) for each element of the question text data (511).
  • (601) is the question ID (1202)
  • the question type (1203) is the code value indicating the selective question
  • the question text (1204) is the selective question.
  • the question text (902) of the data (510) is stored, and the option list (903) is stored in the answer information (1205).
  • the input / output reception unit (110) generates a question screen (304) based on this question text data (511) and presents it to the user (102) (S512).
  • FIG. 13 shows an example of this question screen (304).
  • the text of the question (1301), the radio button input (1302) that allows you to selectively enter the answer, and the answer button (1303) that sends the answer result are displayed.
  • the user (102) can send the answer by selecting the answer with the radio button input (1302) and pressing the answer button (1303).
  • the user name (802) may be displayed on this screen (in this example, the user name "Ozawa" is used).
  • the initial phase is completed, and thereafter, the document information collection phase in which the draft of the document is created by the interaction between the user (102) and the document creation support device (101) is entered.
  • the document information collection and creation phase when the user (102) responds to the question screen (304), the document creation support device (101) executes the question and answer process (305) and displays the next question screen (304). It will be in the form of repeating the process of generating.
  • FIG. 14 shows an example of the flow of question-and-answer processing (305).
  • the question-and-answer process (305) is a process of receiving information from the user (102) and returning a question or the like to the information as in the initial question-and-answer process (303).
  • the input / output reception unit (110) acquires the answer data (1402) in which the user (102) responds to the question screen (304) (S1401).
  • FIG. 15 shows an example of the elements of the answer data (1402).
  • the answer data (1402) is used in the same way as the user ID (1201), question ID (1202), and question type (1203) of the question text data (511) used to generate the question screen (304).
  • Person ID (1501), question ID (1502), question type (1503) are included, and the answer content (1504), which is the answer entered by the user (102) through the question screen (304), is also included. Is done.
  • the answer content (1504) in the case of an answer to a multiple-choice question as shown in FIG. 13, the choice code of the choice selected through radio button input (1302) or the like is entered (if it is not a multiple-choice question, it will be described later). ).
  • the input / output reception unit (110) uses the user ID (1501) of the response data (1402) to change the user data (503) of the user information DB (111) to the user ID (701). Search for matching user ID (1501) in answer data (1402) (S1403). As a result, the record of the user data (503) corresponding to the user (102) can be acquired.
  • the input / output reception unit (110) sends the information of the answer data (1402) to the answer record DB (113) and adds it as the answer history data (1405).
  • the answer history data (1405) is data in which a large number of answer data (1402) are stored, and as shown in FIG. 16, the components of the data may be the same as the answer data (1402), and the user ID (1601).
  • Question ID (1602), question type (1603), and answer content (1604) correspond to user ID (1501), question ID (1502), question type (1503), and answer content (1504), respectively.
  • the input / output reception unit (110) sends the information of the user data (503) to the question control unit (112).
  • the question control unit (112) refers to the user ID (901) included in the user data (503), and among the answer history data (1405), the answer history data (1601) whose user ID (1601) matches and the answer history data ( Acquires a group of 1405) and executes the draft creation status identification process (S1406), which is a process of determining the current draft creation status. Then, based on the result, it is determined whether or not the draft can be created (S1407).
  • the question control unit (112) determines that it is impossible (S1407; No)
  • the question generation request (505) is generated (S1408) and the question generation process (S1409) is executed.
  • This question generation request (505) is the same as that shown in FIG. 8, and the user ID (801) and the user name (802) are the user ID (701) of the user data (503). )
  • the user name (702) can be generated by storing a group of the above-mentioned answer data (1405) as the answer history data (803).
  • the question control unit (112) determines that it is possible to create a draft (S1407; Yes)
  • it generates a draft generation request (1411) (S1410) and sends it to the draft generation unit (115).
  • the draft generation process (S1412), which is the process of generating the draft, is executed.
  • the input / output reception unit (110) receives the question text data (511) obtained as a result of the question generation process (S1409) or the draft generation process (S1412), and updates the contents of the user information DB (111). After (S1413), it is presented to the user (102) (S1414).
  • FIG 17 shows an example of the detailed flow of the draft generation status identification process (S1406).
  • the question control unit (112) proceeds with processing using the user data (503) and the answer history data (1405) acquired from the answer history DB (114) (S1701).
  • the question control unit (112) first checks the question-and-answer phase (703) entered in the user data (503), and determines whether or not the "draft browsing phase" indicating the state in which the draft can be created is set. (S1702). When the question control unit (112) determines that the "draft reading phase" is set (S1702; Yes), it determines that the draft can be created.
  • the question control unit (112) determines that the "draft reading phase" is not set (S1702; No), and whether the question-and-answer phase (703) is set as the "document model identification phase”. Is determined (S1703). If the question control unit (112) determines that the "document model identification phase" has been set (S1703; Yes), it indicates that it has not yet been possible to identify which template to use, so the draft is created. Judge that it is impossible (S1703). If the question control unit (112) determines that the "document model identification phase” is not set (S1703; No), it indicates that this process is in the "document information collection phase". At this time, the value of the user data (503) should be stored in the document model ID (702). Therefore, the question control unit (112) acquires the corresponding document model data (1705) from the document model DB (114) by using this, and further advances the determination by it (S1704).
  • FIG. 18 shows the data items for one record of the document model data (1705) stored in the document model DB (114).
  • the document model data (1705) includes a document model ID (1801) which is an identifier of the record, a draft template (1802) which indicates a template of the document corresponding to the document model, and a keyword required to complete the template as a document. It has a descriptive question list (1803) that has a list of question IDs for obtaining.
  • the question ID of this descriptive question list (1803) corresponds to the identifier used to identify the question in the multiple choice question DB (118) and the descriptive question DB (120). It also corresponds to the question ID (1202) of the sentence data (511) and the question ID (1502) of the answer data (1302).
  • the document model ID (1801) corresponds to the document model ID (704) of the user data (503) and the document model ID (908) of the question determination model (507).
  • FIG. 19 shows a specific example of the document model data (1705) used here.
  • the document model ID (1901) is a serial number of integer values
  • the draft template (1902) has a part described in curly braces ( ⁇ ).
  • An integer value is also written in curly braces, and this integer value corresponds to the question ID.
  • the descriptive question list (1903) stores a list of question IDs in curly braces that appear in this draft template (1902).
  • the question control unit (112) compares the document model ID (704) of the user data (503) with the document model ID (1801) of the document model data (1705), identifies matching records, and asks a descriptive question. Get the matter list (1803).
  • the answer history data (1405) also includes the answered question ID (1602).
  • the question control unit (112) compares the two to see if there is a question ID that is included in the descriptive question list (1803) and has no answer recorded in the answer history data (1405). , Determine whether all the questions contained in the descriptive question list (1803) have been answered (S1705).
  • FIG. 20 shows an example of a detailed processing flow of the question generation process (S1409) executed in the question / answer process (305).
  • the question generation process (S1409) is a process for generating a question that specifies the type of the document that the user (102) is trying to write, and a question that asks the items necessary to complete the template of that type.
  • the question control unit (112) collates the answer history data (1405) with the question determination model (507) of the question / answer phase determination model (116), and the document model data (1705) that is presumed to be used at present. (S2001). This process is performed according to the principle of the question determination model (507) shown in FIG. That is, the result reached at the end of tracing the branch of the decision tree from branch 1 (901) matches the document model ID (1801) of the document model data (1705) to be used.
  • the question control unit (112) can determine that the document model can be specified when the document model ID can be reached by following the question determination model (507), and cannot be specified otherwise.
  • the question control unit (112) determines whether or not the document model can be specified, and if the document model cannot be specified (S2002; No), the selection type question determination unit (118) should be asked next. Let the formula question be decided. On the other hand, when the question control unit (112) determines that the document model can be identified (S2002; Yes), the question control unit (112) obtains information insufficient for creating a draft in the descriptive question determination unit (120). Generate a question sentence.
  • the selective question generation unit (117) compares the answer history data (1405) with the question determination model (507) and asks the next question. Determine important questions (S2003). This process can be executed in the same manner as the important question specific process (S508) in the initial question / answer process (303). Next, the selective question generation unit (117) generates question text data (511). This is also the same as the processing (S509) in the initial question-and-answer processing (303), and the selection-type question data (510) of the important question is acquired from the selection-type question DB (118), and the question sentence data (511) is generated ( S2004).
  • the descriptive question generation unit (119) compares the answer history data (1405) with the document model data (1705) to determine the next question to be asked. Specifically, the descriptive question generation unit (119) uses the list of question IDs in the descriptive question list (1803) of the document model data (1705) as the question ID (1602) of the answer history data (1405). Check the question ID that is not included in the answer history data (1405) but is included in the descriptive question list (1803). The descriptive question generation unit (119) arranges such question IDs in a predetermined order, for example, in ascending order of question IDs, and sets the smallest question as the next important question to be asked (S2005).
  • the descriptive question generation unit (119) acquires the descriptive question data (2007) corresponding to the question ID of the important question from the descriptive question DB (120) (S2006).
  • FIG. 21 shows the data included in this descriptive question data (2007).
  • the descriptive question data (2007) includes a question ID (2101), which is an identifier of the question data, a question text (2102), which is a sentence presented to the user (102), and an answer item name, which is the name of the item for which an answer is requested. (2103), and are held in association with each other.
  • the descriptive question generation unit (119) acquires the descriptive question data (2007) corresponding to the question ID of the important question and generates the question sentence data (511).
  • the descriptive question generation unit (119) describes the user ID (701) included in the user data (503) as the user ID (1201) of the question text data (511) and the question ID (1202).
  • the answer item name (2103) is stored in the answer information (1205). As a result, question text data (511) can be generated.
  • the question control unit (112) adds the question text data (511) and, if the document model is specified, the document model ID, to the input / output reception unit. It ends by returning to (110) (S2008). Then, in (S1413) shown in FIG. 14, the input / output reception unit (110) performs the question-and-answer phase (703) of the user data (503) if the descriptive question generation unit (119) operates. In the document information collection phase, the document model ID (704) is updated to be the resulting document model ID. If the draft generation unit (115) operates, the input / output reception unit (110) sets the question-and-answer phase (703) as the draft reading phase.
  • the input / output reception unit (110) presents the text to the user (102).
  • the question screen (304) as shown in FIG. 13 is displayed.
  • the question screen (304) as shown in FIG. 22 is displayed.
  • a text box (2202) that corresponds to the question text (2201) and the answer item name (2103) and allows you to enter an answer, and an answer button (2203) for sending the answer result are displayed.
  • the user (102) can send the answer by inputting the answer in the text box (2202) and pressing the answer button (2203).
  • the user name (602) may be displayed on this screen.
  • the draft creation status identification process (S1406) in FIG. 14 can eventually create a draft.
  • the draft creation request (1411) is sent to the draft generation unit (115), and the draft generation process (S1412) is executed.
  • the state in which this draft generation process (S1412) is performed is the draft viewing phase.
  • the information contained in the draft draft request (1411) is shown in FIG.
  • the draft generation request (1411) is based on the user ID (2301) based on the user ID (701) of the user data (503) and the user name (702) of the user data (503). It has the data of the document ID (2303) specified in the user name (2302) and question / answer processing (305).
  • FIG. 24 shows an example of the flow of the draft generation process (S1412).
  • the draft generation unit (115) generates a draft based on the response history data (1405) and the document model data (1705). Therefore, the draft generation unit (115) selects and obtains the one with the same user ID (1601) from the response history data (1405) of the response record DB (113) based on the user ID (2301). Then, the document model data (1705) whose document model ID (1801) matches the document ID (2303) of the draft generation request (1411) is acquired from the document model DB (114) (S2401).
  • the draft generation unit (115) uses the document template (1802) of the acquired document model data (1705) to answer the answer history data (1405) to the part corresponding to the question ID in the parentheses of the template. Insert the content (1604) (S2402). Finally, the copywriting generation unit (115) generates the copywriting data (2404) by adding information such as the user name to the extent necessary (S2403).
  • FIG. 25 shows the information contained in the draft data (2404) generated.
  • the draft data (2404) is the user ID (2501) based on the user ID (2301) of the draft generation request (1411), and the user name (2502) based on the user name (2302) as well. ), Has the draft text (2503) generated in the process of completing the template (S2403).
  • the draft data (2404) is passed to the input / output reception unit (110) after the draft generation process (S1412) is completed, and is used to generate the draft display (308).
  • An example of information presentation by this draft display (308) is shown in FIG.
  • the generated draft (2602) and the completion button (2603) to end the display are displayed.
  • the displayed draft is obtained by filling in the necessary items in the template selected according to the user's answer, and it is considered that it is quite close to the report text that the user should write. ..
  • this completion button (2603) is pressed, the input / output reception unit (110) ends the screen display and generates a text file in which the draft is entered. Moreover, you may make it possible to copy and paste this draft by a known method.
  • a draft template presented to the user eg, draft template (1902)
  • a question-determining model eg, question-determining model (507)
  • a document model determination unit for example, selective question generation unit 117, question control unit 112, S2001 in FIG. 20
  • determines a document model for example, document model data (1705)
  • a descriptive question is asked to ask the missing content in the template of the above draft stored in the above document model, and the answer to the descriptive question is given to the above draft.
  • the template fitting unit (for example, descriptive question generation unit 119, question control unit 112, (S2002, S2005, S2006, S2008, S1705 of FIG. 17) in FIG. 20) and the answer to the above descriptive question are applied. Since it has a presentation processing unit (for example, question control unit 112, input / output reception unit 110, S1412 and S1414 in FIG. 14) that presents the template of the draft as a draft to be presented to the user, the user's memory. It becomes easier to reflect unique information in a document without much effort. As a result, reports can be created frequently, and knowledge that is only in the memory of workers and tends to be dissipated can be left as a document and reused.
  • a presentation processing unit for example, question control unit 112, input / output reception unit 110, S1412 and S1414 in FIG. 14
  • the document model determination unit repeats further questions to the answers and answers from the user to the questions until the document model is determined, it is possible to accurately determine a document model suitable for the user.
  • the template fitting section repeats the above-mentioned descriptive question and the answer from the user to the descriptive question until the template of the above-mentioned draft has no insufficient contents, it is possible to create a highly complete draft. ..
  • the document model determination unit uses the question determination model (for example, the decision tree shown in FIG. 10) composed of branches for selecting the multiple choice question according to the answer and the answer to the further question. Since the document model corresponding to the answer to the deepest selective question of the branch is determined as the document model storing the template of the draft, the document model to be specified can be efficiently determined.
  • the question determination model for example, the decision tree shown in FIG. 10
  • the document model determination unit estimates the answer to the multiple-choice question using the Gaussian process method, and uses the most reliable next-choice question to be asked from the estimated answers, and uses the above-mentioned draft. Since the document model that stores the template of is determined, even if there is a question for which an answer cannot be obtained, the next question for determining the document model can be determined and the document model can be determined.
  • FIG. 27 shows the configuration of Example 2 of the document creation support device, which is another example of the report writing support system according to the present invention.
  • the document creation support device (101) according to the second embodiment is different from the configuration of the first embodiment in that it has a function of updating the question-and-answer phase determination model (116) and has a phase determination model update unit (2701).
  • the question determination model (507) of the question / answer phase specific model (116) can be updated by the phase determination model update unit (2701).
  • FIG. 28 shows an example of the data structure of the question determination model (507). This structure is different from that of Example 1 in the structure of the result and the content of the result 1 (903) in the figure.
  • one document model ID is not associated with the result, but a plurality of document model IDs are associated with each other, and a plurality of document ID tables (2901) including question IDs are stored.
  • a count table (2902) for counting the document model ID is stored.
  • the count table (2902) stores a set in which the question ID, the document model ID, and the count indicating the number of times the document model is selected are associated with each other. In these, each element corresponds to one question.
  • FIG. 29 shows a schematic diagram of the question-and-answer phase determination of Example 2.
  • the document ID table (2901) constituting the end of the tree has a count table (2902) in which the corresponding question ID and the count of the number of selections are associated with each document ID. It will be in the corresponding form.
  • This count (2803) is also used in the learning of known decision trees, but the document creation support device (101) traces the decision tree for the data (2903) on which the question decision model (507) is based. For each end of the tree that arrives, the number of cases for each document model ID of the data (2903) can be aggregated and generated.
  • This question ID is associated with a question that confirms the validity of each document model. If there is no data corresponding to the answer history data (1405) for any of the questions, the question ID with the largest count (2803) is selected as the important question, and the input / output reception unit (110) selects the important question. A question screen based on the question will be displayed. FIG. 30 shows an example of such a question screen (304).
  • the "regular report of site visit" in the question text (3001) in the figure is the wording corresponding to the document model ID, and it is required to answer yes / no (3002).
  • the answer to this question ID (2801) will be recorded in the answer history data (1405) as in Example 1.
  • the answer history data (1405) is added to the main count table (2902). )
  • the answer is "yes”
  • the sentence model is identified by the document model ID. If the document creation support device (101) has only "No”, the question ID with the highest count among the unanswered question IDs is set as the next important question.
  • the document model can be specified even when the question-and-answer phase identification model (116) cannot correctly specify the document model.
  • FIG. 31 shows the processing flow of the question-and-answer processing (305) of the second embodiment.
  • the question-and-answer phase determination model can be updated (S3101) by the phase determination model update unit (2701) after the question control unit (112) generates a question.
  • the phase determination model update unit (2701) counts the question IDs for which "Yes" is selected for the count table (2902), which is the end of the tree reached by following the decision tree. By increasing it, you can ask questions in a more appropriate order.
  • the phase determination model update unit (2701) can improve the identification accuracy of the question-and-answer phase by reconstructing the decision tree by adding the answer of the present user to the table (2903) of the original data.
  • the document model determination unit is a candidate for a plurality of document models (for example, a count table) determined for an answer to the multiple-choice question or an answer to the further question. (2902))), present the user with a question to confirm the validity of the document model (for example, the question text (3001) shown in FIG. 30), and based on the answer to the question presented to the user. , Determine the document model that stores the template of the above draft. Therefore, even when there are a plurality of document model candidates, the document model to be presented can be reliably specified.
  • a plurality of document models for example, a count table
  • the document model determined by the document model determination unit has a question determination model update unit (for example, a phase determination model update unit (2701)) associated with the question determination model, the specified document model is updated. Can be held at.
  • a question determination model update unit for example, a phase determination model update unit (2701)
  • the question determination model update unit determines the number of times a document model is selected from a plurality of document model candidates determined for an answer to the multiple-choice question or an answer to the further question (for example, a count table (for example, a count table (for example)). Since the document model associated with the question determination model is determined according to the count value stored in 2902), the document model to be presented can be specified according to the number of times selected, that is, the frequency. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Finance (AREA)
  • Human Resources & Organizations (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Primary Health Care (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

選択式質問に対する回答と回答に対するさらなる質問を決定する質問決定モデルとに基づいて、ユーザに提示する文案のテンプレートを格納した文書モデルを決定する文書モデル決定部と、決定された文書モデルと回答またはさらなる回答とに基づいて、文書モデルに格納された文案のテンプレートに不足する内容を質問するための記述式質問を行い、当該記述式質問に対する回答を文案のテンプレートにあてはめるテンプレートあてはめ部と、記述式質問に対する回答があてはめられた文案のテンプレートを、ユーザに提示する文案として提示する提示処理部と、を有する。

Description

報告書執筆支援システム、報告書執筆支援方法
 本発明は、報告書執筆を支援する報告書執筆支援システム、報告書執筆支援方法に関する。
 様々な研究開発や調査においては、従事者が確認した事実や経験則を得ることができる。これらの暗黙知は、当該従事者を雇用する雇用主にとっては極めて価値の高い情報であり、当該従事者に限定することなく多くの従業員に共有することが望まれる。その目的では報告書等を作成して共有する方策が採られることが多い。しかしながら、報告書の執筆においては執筆者の作文技能による情報伝達の質のばらつきが発生してしまう。すなわち、読者に過不足なく情報を伝える作文技能の習得は容易ではなく、伝達の漏れや誤解の発生を招いてしまう。
 また別の問題として作文にかかる労力の問題もある。一般的に白紙の状態から作文をするのは難易度が高く、時間を要する。そのため、あらかじめ報告書のテンプレートを準備しておき、それに従う形で執筆作業を行うことが多い。しかしながら、この方法では少ないパターンしかテンプレートが利用できない。というのも、テンプレートがあまりに多いと、その中からどのテンプレートを選ぶべきか、利用者には判断ができないためである。それゆえ、分野ごといくつかのテンプレートを用意するのが一般的である。例えば実験の報告書のテンプレートが準備されていることはあるが、実験の内容や結果によって異なるテンプレートを用いるなどきめ細やかな対応はできない。多数のテンプレートの中から特定のテンプレートを選択するだけであれば文書検索等の方法適用できるが、それには利用者が準備されているテンプレートを十分把握していてかつ利用者自身でどのテンプレートを使用するかを判断できなければならず、それは非常に困難である。
特開2008-262432号公報 特開2004-102818号公報
 特許文献1には、ヒヤリハット事例をフォームに入力することでテンプレートにあてはめて報告書を生成する技術が開示されている。しかし、この方法では多種類のテンプレートから適切なものを選定して用いることができず、報告すべき内容が明確化できていないと使用できない。
 特許文献2には、概念的なキーワードによって質問文を検索することで、質問に対する回答データを整備しやすくする技術が開示されている。この方法によれば概念的にテンプレートを検索できるが、利用者は依然として自ら使用すべきテンプレートを特定しなければならないため、それは容易ではない。
 本発明は、かかる状況を勘案してなされたものであり、利用者の記憶にしかない情報を多くの手間をかけることなく文書に反映しやすくすることが可能な報告書執筆支援システム、報告書執筆支援方法を提供することをひとつの目的とする。
 本発明の一態様にかかる報告書執筆支援システムは、選択式質問に対する回答と前記回答に対するさらなる質問を決定する質問決定モデルとに基づいて、ユーザに提示する文案のテンプレートを格納した文書モデルを決定する文書モデル決定部と、決定された前記文書モデルと前記回答または前記さらなる質問に対する回答とに基づいて、前記文書モデルに格納された前記文案のテンプレートに不足する内容を質問するための記述式質問を行い、当該記述式質問に対する回答を前記文案のテンプレートにあてはめるテンプレートあてはめ部と、前記記述式質問に対する回答があてはめられた文案のテンプレートを、前記ユーザに提示する文案として提示する提示処理部と、を有することを特徴とする報告書執筆支援システムとして構成される。
 本発明の一態様によれば、利用者の記憶にしかない情報を多くの手間をかけることなく文書に反映しやすくなる。
実施例1の構成概略の例 実施例1の物理的実装の構成の例 実施例1の利用手順の例 実施例1の初期画面の例 実施例1の初期問答フローの例 実施例1の利用者から受け渡される利用者入力データの例 実施例1の利用者情報DBの利用者データの例 実施例1の質問生成要求の例 実施例1の選択式質問DBの選択式質問データの例 実施例1の問答フェーズ決定モデルの質問決定モデルの例 実施例1の問答フェーズ決定の模式図 実施例1の質問文データの例 実施例1の選択式質問に関する質問画面の例 実施例1の問答処理のフローの例 実施例1の回答データの例 実施例1の回答履歴データの例 実施例1の質問制御部の文案作成状況特定処理の例 実施例1の文書モデルDBの文書モデルデータの例 実施例1の文書モデルデータの例 実施例1の質問生成処理の例 実施例1の記述式質問DBの記述式質問データの例 実施例1の選択式質問に関する質問画面の例 実施例1の文案生成要求の例 実施例1の文案生成処理の例 実施例1の文案データの例 実施例1の文案表示の例 実施例2の構成概略の例 実施例2の質問決定モデルの例 実施例2の問答決定フェーズ模式図 実施例2の文書モデル確定の選択式質問に関する質問画面の例 実施例2の問答処理の例
 本発明にかかる報告書執筆支援システム、報告書執筆支援方法の一例である文書作成支援装置の実施例1の構成を図1に示す。本実施例の文書作成支援装置(101)は、利用者(102)の操作を受け付ける装置であって、利用者の入力を受け付ける入出力受付部(110)、利用者の利用状況を記録する利用者情報DB(111)、文案生成の全体の流れを制御する質問制御部(112)、文案生成の過程で利用者から得た回答を保存する回答記録DB(113)、生成されるべき文書の種別に関する情報とその文書の文案テンプレートとを対応付けて管理する文書モデルDB(114)、回答記録DB(113)と文書モデルDB(114)の情報を組み合わせることで文案を生成する文案生成部(115)、文書モデルの特定とその特定の度合いを評価するための情報を保持する問答フェーズ決定モデル(116)、問答フェーズを特定するための選択式の質問を生成する選択式質問生成部(117)、選択式質問のテンプレートを保持する選択式質問DB(118)、記述式の質問を生成する記述式質問生成部(119)、記述式質問生成部(119)が生成すべき記述式質問のテンプレートを保持する記述式質問DB(120)、を含むシステムである。なお、図中、実践矢印は処理の流れを、破線矢印はデータの流れを示している。
 図2に実施例1の物理的実装の構成の一例を示す。文書作成支援装置(101)は、一般的なコンピュータを用いて実装できる。すなわち、演算性能を持ったプロセッサ(201)、高速に読み書きが可能な揮発性一時記憶領域であるDRAM(202)、HDDやフラッシュメモリなどを利用した永続的な記憶領域である記憶装置(203)、操作を行うためのマウスやキーボード等の入力装置(204)、動作を使用者に示すためのモニタ(205)、外部のコンピュータや機器と通信を行うためのシリアルポート等のインタフェース(206)を含む装置である。入出力受付部(110)、質問制御部(112)、文案生成部(115)、選択式質問生成部(117)、記述式質問生成部(119)は、記憶装置(203)に記録されたプログラムをプロセッサ(201)が実行することによって実現できる。利用者情報DB(111)、回答記録DB(113)、文書モデルDB(114)、問答フェーズ決定モデル(116)、選択式質問DB(118)、記述式質問DB(120)は、データの蓄積を記憶装置(213)に行うようなプログラムをプロセッサ(201)が実行することで実装できる。以下では、報告書執筆支援システムの各部が、ハードウェアとしては一般的なコンピュータである文書作成支援装置(101)に設けられているが、これらの全部または一部が、クラウドのような1または複数のコンピュータに分散して設けられ、互いに通信することにより同様の機能を実現してもよい。
 図3に本実施例の動作手順について模式的に示す。文書作成支援装置(101)は起動すると、初期画面(301)を提示して利用者(102)のアクセスを待つ。利用者(102)が文書作成支援装置(101)に入力を行い、利用者入力データ(302)を受け渡すと、文書作成支援装置(101)は初期問答処理(303)を実行して、利用者との問答を始める。この初期の手順を初期フェーズとよぶ。
 初期フェーズが終了すると、文書作成支援装置(101)は利用者と問答しながら作成すべき文書の情報を収集する文書情報収集フェーズに入る。このフェーズでは、文書作成支援装置(101)が実行する問答処理(305)において次に行うべき質問が決定され、質問画面(304)として利用者(102)に提示される。利用者(102)がそれに回答する形で回答情報(306)を入力して送付すると、ふたたび問答処理(305)が実行されて次の質問が生成される。この繰り返しにより利用者(102)が作成すべき文書が徐々に明確化していく。
 利用者が書くべき文書の素案が十分に生成可能な状況になったら、文書作成支援装置(101)の動作は文案を利用者に提示する文案閲覧フェーズに入る。文案閲覧フェーズに入ると、文書作成支援装置(101)の返す結果は作成された文案を含む文案提示処理(307)を実行し、利用者に提示されるのはその文案を見やすく表示した文案表示(308)となる。この手順を経ることで利用者は文書作成支援装置(101)の問いかけに対して受動的に文書の文案を作成できるため、白紙の状態から文書作成にかかる手間を削減できる。以降では、このそれぞれについて詳細に説明する。
 文書作成支援装置(101)が起動時に生成される初期画面(301)の例を図4に示す。初期画面(301)は利用者の情報を特定する画面である。本例では、公知のWebブラウザ(401)等で成形可能なHTMLデータが初期画面として送付されている。本画面は、利用者の名前を取得するためのテキストボックス(402)とその入力を完了して利用開始を示唆する送信ボタン(403)を含んでおり、利用者(102)は自身の氏名やニックネーム等を自由に用いることができる。なお、この初期画面(301)は利用者(102)の応対が可能な出力形式であれば何でもよく、例えばスピーカーやマイクを用いて音声での対話の形としてもよい。
 この初期画面(301)に対して利用者(102)が操作を行い、送信ボタン(403)を押下すると、利用者入力データ(302)が文書作成支援装置(101)に送付され、文書作成支援装置(101)は初期問答処理(303)を実行する。図5に初期問答処理(303)のフローの例を示す。初期問答処理(303)では、まず入出力受付部(110)が利用者入力データ(302)を受け取り、利用者情報DB(111)に反映する処理を実行する(S501)。
 利用者入力データ(302)の内容の例を図6に示す。利用者入力データ(302)には、利用者を識別するIDである利用者ID(601)、利用者の表示名称を示す利用者名(602)が含まれている。ここで、利用者ID(601)は未定の場合は空白でもよいし、別途指定された利用者の識別ができる情報(例えば従業員番号など)を用いることとしてもよい。利用者名(602)は初期画面(301)のテキストボックスから取得される。
 この利用者入力データ(302)は利用者DB(111)の利用者データ(503)に追加される。この利用者データ(503)の例について詳細を図7に示す。利用者データ(503)は、利用者入力データ(302)のもつ情報を格納した利用者ID(701)、利用者名(702)と、現在どのフェーズにいるかを示す問答フェーズのデータ(703)、利用者(102)の執筆しようとしている文書の種別の推定結果を示す文書モデルID(704)をもつようになっている。入出力受付部(110)は、利用者ID(701)については、利用者入力データ(302)の利用者ID(601)が空白の場合には、既存の利用者データ(503)の利用者ID(701)にない番号を発番する。例えば、利用者ID(701)の最大値に1を加算したものを用いることができる。また、初期問答処理(303)では、問答フェーズ(703)は文書モデル特定フェーズとなり、それに対応する値が格納される。
 利用者DB(111)が更新されたら、質問制御部(112)は質問生成要求(505)を生成する(S504)。図8に質問生成要求(505)のもつデータ項目を示す。質問生成要求(505)は、利用者DB(111)の利用者データ(503)に含まれる利用者ID(601)、利用者名(602)を格納する利用者ID(801)、利用者名(802)に加えて、当該利用者がこれまでどのような回答をしてきたかの履歴データである回答履歴データ(803)をもつ。初期問答処理(303)ではこの回答履歴データ(803)は空白になるが、もし別の形で得られた回答がある場合にはここにそれを加えてもよい。
 次に質問制御部(112)は問答フェーズ決定モデル(116)から質問決定モデル(507)を取得(S506)し、利用者データ(503)とあわせて選択式質問生成部(117)に送付する。すると選択式質問生成部(117)は、質問決定モデル(507)を参照して次に行うべき質問である重要質問を決定し(S508)、選択式質問DB(118)から重要質問に対応する選択式質問データ(510)を取得し、質問文データ(511)を生成する(S509)。
 この処理について詳しく説明するため、まず図9に選択式質問DB(118)の選択式質問データ(510)に含まれる項目を示す。選択式質問データ(510)は、質問データの識別子である質問ID(901)と、利用者(102)に提示する文章である質問文(902)、選択肢の一覧およびそのコード値である選択肢コードのリストである選択肢リスト(903)、とを対応付けて保持している。
 次に図10に質問決定モデル(507)の例を示す。実施例1における質問決定モデル(507)は公知の決定木に類する構造を持っており、複数の分岐(1001)(1002)や結果(1003)の項目の組み合わせとなっている。各分岐は分岐の識別子である分岐ID(1004)、その分岐に対応づく質問の質問ID(1005)、当該質問への回答ごとに次の分岐を示す回答別行先(1006)の要素を持っている。この分岐一つが選択式質問データ(510)の1レコードに対応しており、分岐の質問ID(1005)と選択式質問データ(510)の質問ID(901)を照らし合わせることで対応付けすることができる。また、結果の項目については分岐のものと同じ体系を持つ分岐ID(907)、文書の種別の推定結果を示す文書モデルID(908)をもつ。この構造は各分岐が積み重なってできる決定木となっており、分岐1(901)から決定木の分岐をたどった最後に到達する結果が使用すべき文書モデルの文書モデルIDとなる。
 この質問決定モデル(507)をもちいた文書モデル特定の原理について図11に模式的に示した。図中上側の表は、この質問決定モデル(507)の元になるデータである。質問決定モデル(507)を作るためには、事前に、文書作成支援装置(101)が対応すべき文書の事例を多数収集し、その各文書について選択式質問DB(118)に格納されている選択式質問データ(510)に対応する回答を集めたものがこの表である。この表の各行は収集された文書それぞれに対応している。質問IDの列(1101)は、選択式質問データ(510)の質問ID(901)に対応しており、各列に記入された数字は選択式質問データ(510)の選択肢リスト(903)にある選択肢コードの値である。また、文書モデルIDの列(1102)は各文書がどの文書モデルを用いるのに適するかを示した文書モデルの識別子である。
 質問決定モデル(507)はこの表に対し、質問IDの列(1101)を説明変数、文書モデルIDの列(1102)を目的変数として設定した機械学習のアルゴリズムを適用することによって生成することができる。図中下部の樹形図状の構造は、質問決定モデル(705)のデータを見やすく配置したものである。この構造は公知の決定木の構造と同等であり、上記の表に対して最も文書モデルIDの列(1102)をうまく仕分けられるように学習することで構築できることが知られている。一番上の項目(1103)が最初に確認する質問の質問IDを意味しており、それに1の選択肢で回答した場合は左の質問(1104)に、2の場合は右の質問(1105)に進む形になる。したがって、質問ID:1の質問に1と回答し、質問ID:3の質問に2と回答したケースでは、文書モデルID:1(1106)が使用すべき文書モデルデータとして特定される。この質問決定モデル(507)をたどって文書モデルに到達可能な時には特定可能、そうでないときには特定不能と判断できることとなる。
 なお、この質問決定モデル(507)としては決定木でないモデルであっても、説明変数から目的変数の分類を予測する判別分析のモデルであれば利用できる。なお、決定木のように、目的変数が部分的にしか得られていない状況でも判別できるモデル、例えば公知のガウシアンプロセス法を用いることで、すべての質問に答えなくても文書モデルが特定でき、結果的に質問の回数を低減することができるという利点がある。例えば、質問決定モデル(507)として、選択式質問に対する回答が得られなかった場合でも、選択式質問生成部(117)は、ガウシアンプロセス法を用いて選択式質問に対する回答を推定し、推定した回答の中から最も信頼度が高い次に行うべき選択式質問を選択式質問DB(118)から選択し、当該選択された質問に対する回答に対応する文書モデルに到達してもよい。
 選択式質問生成部(117)は質問決定モデル(507)を用いて次に問いかけるべき選択式質問を決定する。具体的には、質問決定モデル(507)のうち最も深くたどれる分岐を探し、その分岐の質問IDに対応する質問を重要質問とする。図11の例であれば、質問ID:1の質問に2と回答された場合に重要質問は質問ID:4ということになる。なお、決定木でないモデルを用いた場合にも、次にどの質問の回答が得られれば文書モデルの特定がしやすくなるかを判定して決定することができる。例えば、判別の精度が評価可能なモデルを用いた場合、疑似的に次の質問の回答を与えながら条件を調べ、最も精度が上がる質問を重要質問と設定できる。
 図12に、選択式質問データ(510)から生成される質問文データ(511)のもつ要素を示す。質問文データ(511)は利用者の利用者ID(1201)、質問の識別子である質問ID(1202)、質問の種類を示す質問種別(1203)、利用者(102)に対して提示される質問文(1204)、利用者(102)が回答するべき項目を示す回答情報(1205)が含まれている。
 初期問答処理(303)では、選択式質問生成部(117)は、質問文データ(511)の要素それぞれについては、利用者ID(1201)としては利用者データ(503)に含まれる利用者ID(601)を、質問ID(1202)としては質問データ(510)の質問ID(901)を、質問種別(1203)は選択式質問を示すコード値を、質問文(1204)としては選択式質問データ(510)の質問文(902)を、回答情報(1205)には選択肢リスト(903)を、それぞれ格納する。
 しかるのち、入出力受付部(110)はこの質問文データ(511)をもとにして、質問画面(304)を生成して利用者(102)に提示する(S512)。図13にこの質問画面(304)の一例を示す。この画面には、質問の文(1301)、回答を選択的に入力できるラジオボタン入力(1302)、回答結果を送信する回答ボタン(1303)が表示されている。この例では、利用者(102)がラジオボタン入力(1302)で回答を選択して回答ボタン(1303)を押下することで回答を送信できる。この際、画面に表示されない利用者ID(1201)や質問ID(1202)についても保持が必要である点に注意を要する。なお、この画面にて利用者名(802)を表示するなどしてもよい(本例では、利用者名「オザワ」が使用されている)。
 以上により、初期フェーズは終了し、以降、利用者(102)と文書作成支援装置(101)とのやりとりによって文書の文案作成が行われる文書情報収集フェーズに入る。文書情報収集作成フェーズにおいては、質問画面(304)に対して利用者(102)が応答すると、文書作成支援装置(101)が問答処理(305)を実行して次の質問画面(304)を生成する、という繰り返しが実行される形となる。
 図14に問答処理(305)のフローの例を示す。問答処理(305)は初期問答処理(303)と同様に利用者(102)からの情報を受け付けそれに対してさらに質問等を返す処理である。最初に、入出力受付部(110)は、利用者(102)が質問画面(304)に応えた回答データ(1402)を取得する(S1401)。図15にこの回答データ(1402)のもつ要素の例を示す。回答データ(1402)には、質問画面(304)を生成するのに用いられた質問文データ(511)の利用者ID(1201)、質問ID(1202)、質問種別(1203)と同様の利用者ID(1501)、質問ID(1502)、質問種別(1503)が含まれており、それ以外に利用者(102)が質問画面(304)を通じて入力した回答である回答内容(1504)が含まれる。回答内容(1504)は図13のような選択式質問に対する回答の場合にはラジオボタン入力(1302)などを通じて選択された選択肢の選択肢コードが記入される(選択式の質問でない場合については後述する)。 次に、入出力受付部(110)はこの回答データ(1402)の利用者ID(1501)を用いて、利用者情報DB(111)の利用者データ(503)から利用者ID(701)と回答データ(1402)の利用者ID(1501)が一致するものを検索する(S1403)。これにより、本利用者(102)に対応する利用者データ(503)のレコードを取得できる。
 次に、入出力受付部(110)は回答データ(1402)の情報を回答記録DB(113)に送付し回答履歴データ(1405)として追記する。回答履歴データ(1405)は回答データ(1402)が多数格納されているデータであり、図16に示すように、データの構成要素は回答データ(1402)と同一でよく、利用者ID(1601)、質問ID(1602)、質問種別(1603)、回答内容(1604)はそれぞれ利用者ID(1501)、質問ID(1502)、質問種別(1503)、回答内容(1504)と対応する。
 回答履歴データ(1104)への追記が完了すると、入出力受付部(110)は利用者データ(503)の情報を質問制御部(112)へ送付する。質問制御部(112)は利用者データ(503)に含まれる利用者ID(901)を参照して、回答履歴データ(1405)のうち利用者ID(1601)がとそれと一致する回答履歴データ(1405)の一群を取得し、現在の文案の作成状況を判定する処理である文案作成状況特定処理(S1406)を実行する。そしてその結果にもとづき、文案作成が可能であるかを判定する(S1407)。質問制御部(112)は、もし不可能であると判定した場合は(S1407;No)、質問生成要求(505)を生成(S1408)して質問生成処理(S1409)を実行する。この質問生成要求(505)は図8にてその要素を示したものと同様であり、利用者ID(801)および利用者名(802)については利用者データ(503)の利用者ID(701)および利用者名(702)を、回答履歴データ(803)としては前記の回答データ(1405)の一群を格納することで生成できる。一方、質問制御部(112)は、もし文案作成が可能であると判定した場合には(S1407;Yes)、文案生成要求(1411)を生成し(S1410)、文案生成部(115)に送付することで文案を生成する処理である文案生成処理(S1412)を実行させる。最後に、入出力受付部(110)は、質問生成処理(S1409)もしくは文案生成処理(S1412)の結果として得られる質問文データ(511)を受け取り、利用者情報DB(111)の内容を更新(S1413)したのち、利用者(102)に提示する(S1414)。
 図17に文案生成状況特定処理(S1406)の詳細なフローの例を示す。このフローでは、質問制御部(112)は、利用者データ(503)、および、回答履歴DB(114)から取得された回答履歴データ(1405)を用いて処理を進める(S1701)。質問制御部(112)は、まず利用者データ(503)に記入されている問答フェーズ(703)を確認し、文案が作成できる状態を示す「文案閲覧フェーズ」が設定されているか否かを判定する(S1702)。質問制御部(112)は、「文案閲覧フェーズ」が設定されていると判定した場合には(S1702;Yes)、文案作成が可能であると判断する。質問制御部(112)は、「文案閲覧フェーズ」が設定されていないと判定した場合には(S1702;No)、さらに、問答フェーズ(703)が「文書モデル特定フェーズ」と設定されているか否かを判定する(S1703)。質問制御部(112)は、もし「文書モデル特定フェーズ」が設定されていると判定した場合(S1703;Yes)、まだどのテンプレートを用いるべきかを特定できていないことを示すため、文案作成が不可能であると判断する(S1703)。質問制御部(112)は、もし「文書モデル特定フェーズ」が設定されていないと判定した場合(S1703;No)、本処理は「文書情報収集フェーズ」にあることを示す。このとき、利用者データ(503)は文書モデルID(702)に値が格納されているはずである。そこで、質問制御部(112)は、これを用いて文書モデルDB(114)から対応する文書モデルデータ(1705)を取得し、それによってさらに判定を進める(S1704)。
 図18に文書モデルDB(114)に格納されている文書モデルデータ(1705)の1レコード分のデータ項目を示す。文書モデルデータ(1705)は、当該レコードの識別子である文書モデルID(1801)、その文書モデルと対応する文書のテンプレートを示す文案テンプレート(1802)、当該テンプレートを文書として完成させるために必要なキーワードを得るための質問IDをリストとしてもつ記述式質問事項リスト(1803)をもつ。なお、この記述式質問事項リスト(1803)のもつ質問IDは選択式質問DB(118)および記述式質問DB(120)において質問を特定するために用いられる識別子と対応しており、また、質問文データ(511)のもつ質問ID(1202)、ひいては回答データ(1302)の持つ質問ID(1502)とも対応している。また、文書モデルID(1801)は、利用者データ(503)のもつ文書モデルID(704)、質問決定モデル(507)のもつ文書モデルID(908)と対応する。
 図19にここで用いる文書モデルデータの(1705)の具体的な例を示した。この例では、文書モデルID(1901)は整数値の連番であり、文案テンプレート(1902)には中かっこ({})で記述された部分がある。中かっこ内にも整数値が書かれており、この整数値は質問IDに対応している。記述式質問事項リスト(1903)はこの文案テンプレート(1902)に登場する中かっこ内の質問IDをリストアップしたものが格納される。
 質問制御部(112)は利用者データ(503)のもつ文書モデルID(704)と文書モデルデータ(1705)のもつ文書モデルID(1801)を比較して一致するレコードを特定し、記述式質問事項リスト(1803)を取得する。一方、回答履歴データ(1405)にも回答済みの質問ID(1602)が含まれている。質問制御部(112)は、両者の比較によって、記述式質問事項リスト(1803)には含まれていて、かつ、回答履歴データ(1405)に回答の記録がない質問IDがあるかどうか、すなわち、記述式質問事項リスト(1803)に含まれる全ての質問が回答済みか否かを判定する(S1705)。質問制御部(112)は、記述式質問事項リスト(1803)に含まれる全ての質問が回答済みであると判定した場合(S1705;Yes)、文案作成可能と判断し、その旨出力する(S1706)。一方、質問制御部(112)は、記述式質問事項リスト(1803)に含まれる全ての質問が回答済みでないと判定した場合(S1705;No)、未回答の質問があるため文案作成は不可能と判断し、その旨出力する(S1707)。
 図20には、問答処理(305)において実行される質問生成処理(S1409)の詳細な処理フローの例を示した。質問生成処理(S1409)は利用者(102)が書こうとしている文書の種別を特定する質問や、その種別のテンプレートを完成させるのに必要な項目を問いかける質問を生成する処理である。
 まず、質問制御部(112)は、回答履歴データ(1405)と問答フェーズ決定モデル(116)のもつ質問決定モデル(507)を照合して現在使用すべきと推定される文書モデルデータ(1705)をもとめようとする(S2001)。この処理は図11で示した質問決定モデル(507)の原理に沿って行われる。すなわち、分岐1(901)から決定木の分岐をたどった最後に到達する結果は使用すべき文書モデルデータ(1705)の文書モデルID(1801)と一致する。質問制御部(112)は、この質問決定モデル(507)をたどって文書モデルIDに到達可能な時には文書モデルが特定可能、そうでないときには特定不可能と判断できる。
 質問制御部(112)は、文書モデルが特定可能であるか否かを判定し、文書モデルが特定不可能な場合(S2002;No)、選択式質問決定部(118)に次に問いかけるべき選択式質問を決定させる。一方、質問制御部(112)は、文書モデルが特定可能であると判定した場合(S2002;Yes)、記述式質問決定部(120)に文案を作成するのに不足する情報を取得するための質問文を生成させる。
 選択式質問生成部(117)に処理が移ったときには、選択式質問生成部(117)は、回答履歴データ(1405)を質問決定モデル(507)と照らし合わせて、次に行うべき質問である重要質問を決定する(S2003)。この処理は初期問答処理(303)における重要質問特定の処理(S508)と同様に実行できる。次に、選択式質問生成部(117)は、質問文データ(511)を生成する。これも、初期問答処理(303)における処理(S509)と同様で、重要質問の選択式質問データ(510)を選択式質問DB(118)から取得し、質問文データ(511)を生成する(S2004)。
 他方、文書モデルが特定可能と判断され、記述式質問生成部(119)に処理が移った場合について説明する。まず、記述式質問生成部(119)は、回答履歴データ(1405)を文書モデルデータ(1705)と照らし合わせて、次に行うべき質問を決定する。具体的には、記述式質問生成部(119)は、文書モデルデータ(1705)の記述式質問事項リスト(1803)にある質問IDのリストを、回答履歴データ(1405)の質問ID(1602)と比較し、回答履歴データ(1405)には含まれていないが記述式質問事項リスト(1803)には含まれている、という質問IDを調べる。記述式質問生成部(119)は、そのような質問IDについて所定の順番、例えば質問IDの昇順などで並べて、最も小さいものを次に行うべき重要質問とする(S2005)。
 次に、記述式質問生成部(119)は、重要質問の質問IDに対応する記述式質問データ(2007)を記述式質問DB(120)から取得する(S2006)。図21にこの記述式質問データ(2007)のもつデータを示す。記述式質問データ(2007)は、質問データの識別子である質問ID(2101)と、利用者(102)に提示する文章である質問文(2102)、回答を求める項目の名称である回答項目名(2103)、とを対応付けて保持している。記述式質問生成部(119)は重要質問の質問IDと対応する記述式質問データ(2007)を取得し、質問文データ(511)を生成する。記述式質問生成部(119)は、質問文データ(511)の利用者ID(1201)としては利用者データ(503)に含まれる利用者ID(701)を、質問ID(1202)としては記述式質問データ(2007)の質問ID(2101)を、質問種別(1203)は記述式質問を示すコード値を、質問文(1204)としては記述式質問データ(2007)の質問文(2102)を、回答情報(1205)には回答項目名(2103)を、それぞれ格納する。これにより質問文データ(511)が生成できる。
 質問生成処理(S505)の最後には、質問制御部(112)は、質問文データ(511)と、もし文書モデルが特定されている場合にはその文書モデルIDも加えて、入出力受付部(110)に返すことで終了する(S2008)。そして、図14に示した(S1413)において、入出力受付部(110)は、もし記述式質問生成部(119)が動作した場合には、利用者データ(503)の問答フェーズ(703)を文書情報収集フェーズとし、文書モデルID(704)にはその結果の文書モデルIDとするように更新する。なお、入出力受付部(110)は、もし文案生成部(115)が動作した場合には、問答フェーズ(703)を文案閲覧フェーズとする。
 その後、入出力受付部(110)は利用者(102)に文章を提示する。もし質問文データ(511)の質問種別(1203)が選択式質問の場合は、図13のような質問画面(304)が表示されることになる。質問種別(1203)が記述式質問の場合、図22に示すような質問画面(304)が表示される。この画面には、質問の文(2201)、回答項目名(2103)と対応しており回答を入力できるテキストボックス(2202)、回答結果を送信する回答ボタン(2203)が表示されている。この例では、利用者(102)がテキストボックス(2202)に回答を入力して回答ボタン(2203)を押下することで回答を送信できる。この際、画面に表示されない利用者ID(601)や質問ID(602)についても保持が必要である点に注意を要する。なお、この画面にて利用者名(602)を表示するなどしてもよい。
 前述の通り、文書情報収集フェーズの問答処理(305)が繰り返し実行されると、いずれは図14の文案作成状況特定処理(S1406)が文案作成可能という結果を出すことになる。その時は文案作成要求(1411)が文案生成部(115)に送付されて文案生成処理(S1412)が実行される。この文案生成処理(S1412)が行われるようになった状態が文案閲覧フェーズである。文案作成要求(1411)のもつ情報を図23に示す。文案生成要求(1411)は利用者データ(503)の利用者ID(701)をもとにした利用者ID(2301)、利用者データ(503)の利用者名(702)をもとにした利用名(2302)、問答処理(305)において特定された文書ID(2303)のデータをもつ。
 図24に文案生成処理(S1412)のフローの例を示す。文案生成処理(S1412)では、文案生成部(115)が、回答履歴データ(1405)と文書モデルデータ(1705)をもとにして文案を生成する。そのため、文案生成部(115)は、利用者ID(2301)をもとにして回答記録DB(113)の回答履歴データ(1405)から利用者ID(1601)が一致するものを選択して取得し、文書モデルDB(114)から文書モデルID(1801)が文案生成要求(1411)の文書ID(2303)と一致する文書モデルデータ(1705)を取得する(S2401)。次に、文案生成部(115)は、取得した文書モデルデータ(1705)の文書テンプレート(1802)を用いて、テンプレートの中かっこ内の質問IDに対応する部分に回答履歴データ(1405)の回答内容(1604)を挿入する(S2402)。最後に、文案生成部(115)は、必要な範囲で利用者名などの情報を加えて文案データ(2404)を生成する(S2403)。図25に生成される文案データ(2404)のもつ情報を示す。文案データ(2404)は、文案生成要求(1411)の利用者ID(2301)をもとにした利用者ID(2501)、同様に利用者名(2302)をもとにした利用者名(2502)、テンプレートを完成させる処理(S2403)で生成された文案テキスト(2503)をもつ。
 文案データ(2404)は文案生成処理(S1412)が終了したのち、入出力受付部(110)に渡されて、文案表示(308)の生成に用いられる。この文案表示(308)による情報提示の例を図26に示す。この画面(2601)には、生成された文案(2602)、表示を終了する完了ボタン(2603)が表示されている。表示されている文案は利用者の回答に応じて選択されたテンプレートに、必要な項目を埋めて得られたものであり、利用者が書くべき報告文とかなり近いものになっていると考えられる。この完了ボタン(2603)が押下されると、入出力受付部(110)は、画面表示が終了するとともに当該文案を記入したテキストファイルを生成する。また、この文案を公知の方法でコピーアンドペーストできるようにするなどしてもよい。
 以上の実施例により、実験調査などの報告を文書化する際に、どのような文書を書くべきかを迷うことなく短時間で執筆することができる。この文案は必ずしも完全なものではないが、補正を加える程度で十分用を満たす報告書が作成できる。このため、業務の従事者は時間を浪費することなく頻繁に報告書を書くことができるようになり、経験的な知見の喪失を抑止することができる。
 例えば、選択式質問に対する回答とその回答に対するさらなる質問を決定する質問決定モデル(例えば、質問決定モデル(507))とに基づいて、ユーザに提示する文案のテンプレート(例えば、文案テンプレート(1902))を格納した文書モデル(例えば、文書モデルデータ(1705))を決定する文書モデル決定部(例えば、選択式質問生成部117、質問制御部112、図20のS2001))と、決定された上記文書モデルと上記回答または上記さらなる質問に対する回答とに基づいて、上記文書モデルに格納された上記文案のテンプレートに不足する内容を質問するための記述式質問を行い、当該記述式質問に対する回答を上記文案のテンプレートにあてはめるテンプレートあてはめ部(例えば、記述式質問生成部119、質問制御部112、(図20のS2002、S2005、S2006、S2008、図17のS1705))と、上記記述式質問に対する回答があてはめられた文案のテンプレートを、ユーザに提示する文案として提示する提示処理部(例えば、質問制御部112、入出力受け付け部110、図14のS1412、S1414))と、を有するので、利用者の記憶にしかない情報を多くの手間をかけることなく文書に反映しやすくなる。その結果、頻繁に報告書が作成可能となり、従事者の記憶にしかなく散逸しがちな知見を文書として残し、再利用していくことが可能となる。
 また、上記文書モデル決定部は、上記文書モデルが決定するまで、上記回答に対するさらなる質問と当該質問に対するユーザからの回答とを繰り返すので、ユーザに適した文書モデルを精度よく決定することができる。
 また、上記テンプレートあてはめ部は、上記文案のテンプレートに不足する内容がなくなるまで、上記記述式質問と当該記述式質問に対するユーザからの回答とを繰り返すので、完成度の高い文案を作成することができる。
 また、上記文書モデル決定部は、上記回答および上記さらなる質問に対する回答に応じて上記選択式質問を選択するための分岐により構成された上記質問決定モデル(例えば、図10に示した決定木)を用いて、上記分岐の最も深い選択式質問に対する回答に対応する文書モデルを、上記文案のテンプレートを格納した文書モデルとして決定するので、特定すべき文書モデルを効率よく決定することができる。
 また、上記文書モデル決定部は、ガウシアンプロセス法を用いて、上記選択式質問に対する回答を推定し、推定した回答の中から最も信頼度が高い次に行うべき選択式質問を用いて、上記文案のテンプレートを格納した文書モデルを決定するので、回答が得られない質問がある場合でも、文書モデルを決定するための次の質問を決定し、文書モデルを決定することができる。
 このように、本システムでは、(1)知見モデルを特定するための選択式質問を行い、決定木に沿ってクローズクエスチョンを投げかけることで、どんな知見をアウトプットしようとしているかを特定するフェーズと、(2)文書化するための詳細質問として記述式質問を行い、特定された知見モデルに沿って、アウトプットすべき知見の詳細部分の質問を問いかける(主にオープンクエスチョン)、という2つのフェーズに分けて問いかけを実行し、事前に決定木を学習で定めておくことで、少ない質問回数で精度よく効率的に知見パターンが特定でき、ユーザの負荷を減らすことができる。
 本発明にかかる報告書執筆支援システムの他の一例である文書作成支援装置の実施例2の構成を図27に示す。実施例2にかかる文書作成支援装置(101)は、問答フェーズ決定モデル(116)を更新する機能を持ち、フェーズ決定モデル更新部(2701)を持つ点が実施例1の構成と異なる。また、問答フェーズ特定モデル(116)の質問決定モデル(507)がフェーズ決定モデル更新部(2701)による更新が可能なようになっている。
 図28に質問決定モデル(507)のデータ構造の一例を示す。この構造は、実施例1とは結果の構造、図中では結果1(903)の内容が異なっている。図28では、結果に一つの文書モデルIDが紐づくのではなく、複数の文書モデルIDに対応づくようになっており、複数個の、質問IDを含む文書ID表(2901)が記憶され、当該文書ID表(2901)には、文書モデルIDをカウントするためのカウント表(2902)が記憶される。カウント表(2902)には、質問IDと、文書モデルIDと、当該文書モデルを選択した回数を示すカウントとを対応付けた組が格納されている。これらは、各要素が一つの質問に対応している。
 図29に実施例2の問答フェーズ決定の模式図を示す。実施例2の問答フェーズ決定のための決定木では、木の末尾を構成する文書ID表(2901)に文書IDごとに対応する質問IDと選択回数のカウントを対応付けたカウント表(2902)が対応する形になる。このカウント(2803)は公知の決定木の学習においてにも用いられているが、文書作成支援装置(101)が、質問決定モデル(507)の元になったデータ(2903)について決定木をたどって到着する木の末尾ごとに、データ(2903)のもつ文書モデルIDごとの件数を集計して生成できる。この質問IDには、各文書モデルに対する妥当性を確認する質問が紐づいている。もし、いずれの質問についても回答履歴データ(1405)に対応するデータがない場合には、カウント(2803)が最も大きい質問IDが重要質問として選択され、入出力受付部(110)により、当該重要質問にもとづく質問画面が表示されることになる。図30にそのような質問画面(304)の例を示す。図中の質問文(3001)にある「現地視察の定例報告」は文書モデルIDに対応する文言であり、これにはい/いいえ(3002)の回答をすることが求められる。
 この質問ID(2801)に対する回答は実施例1と同様に回答履歴データ(1405)にその情報が記録されることになる。文書作成支援装置(101)は、これ以降の問答フェーズ決定の処理では、実施例1と同様の過程を経てカウント表(2902)に到達した際、回答履歴データ(1405)に本カウント表(2902)に対応するものがないかを確認したのち、「はい」という回答があったならばその文書モデルIDをもって文章モデルを特定した結果とする。文書作成支援装置(101)は、もし「いいえ」にしかなければ、未回答の質問IDのうちカウントが最も大きいものを次の重要質問とする。この実装により、問答フェーズ特定モデル(116)が正しく文書モデルを特定できないような場合でも文書モデルを特定することができる。
 前記の実装を前提として、問答フェーズ特定モデル(116)を更新することができる。図31に実施例2の問答処理(305)の処理フローを示す。実施例1と異なるのは、質問制御部(112)が質問を生成したのち、フェーズ決定モデル更新部(2701)による問答フェーズ決定モデルの更新(S3101)が行える点にある。この更新処理としては、フェーズ決定モデル更新部(2701)が、決定木をたどって到達した木の末尾であるカウント表(2902)に対して、「はい」が選択された質問IDのカウントを1増加させることで、より適切な順番で質問を行うことができる。また、フェーズ決定モデル更新部(2701)が、元データの表(2903)に本利用者の回答を追加して決定木を再構築することで問答フェーズの特定精度を高めることができる。
 ただし、この更新に際しては、すべての回答があるとは限らない点から、データに欠損がある場合でも機能する公知のアルゴリズムを用いる必要がある点に注意を要する。実施例2の実施形態をとることで、問答フェーズの特定のプロセスの精度を高め、より適切にテンプレートを特定することができる。
 このように、実施例2にかかるシステムによれば、上記文書モデル決定部は、上記選択式質問に対する回答または上記さらなる質問に対する回答に対して決定される複数の文書モデルの候補(例えば、カウント表(2902))がある場合に、文書モデルの妥当性を確認するための質問(例えば、図30に示す質問文(3001))をユーザに提示し、当該ユーザに提示した質問に対する回答に基づいて、上記文案のテンプレートを格納した文書モデルを決定する。したがって、文書モデルの候補が複数ある場合でも、提示すべき文書モデルを確実に特定することができる。
 また、上記文書モデル決定部が決定した上記文書モデルを、上記質問決定モデルに対応付ける質問決定モデル更新部(例えば、フェーズ決定モデル更新部(2701))を有するので、特定した文書モデルを更新した状態で保持することができる。
 また、上記質問決定モデル更新部は、上記選択式質問に対する回答または前記さらなる質問に対する回答に対して決定される複数の文書モデルの候補の中から文書モデルが選択された回数(例えば、カウント表(2902)に記憶されているカウントの値)に応じて、上記質問決定モデルに対応付ける文書モデルを決定するので、選択された回数、すなわち頻度に応じて、提示すべき文書モデルを特定することができる。
101 文書作成支援装置
110 入出力受付部
111 利用者情報DB
112 質問制御部
113 回答記録DB
114 文書モデルDB
115 文案生成部
116 問答フェーズ決定モデル
117 選択式質問生成部
118 選択式質問DB
119 記述式質問生成部
120 記述式質問DB
507 テンプレート決定に用いる質問決定モデル
701 利用者の識別子を示す利用者ID

Claims (9)

  1.  選択式質問に対する回答と前記回答に対するさらなる質問を決定する質問決定モデルとに基づいて、ユーザに提示する文案のテンプレートを格納した文書モデルを決定する文書モデル決定部と、
     決定された前記文書モデルと前記回答または前記さらなる質問に対する回答とに基づいて、前記文書モデルに格納された前記文案のテンプレートに不足する内容を質問するための記述式質問を行い、当該記述式質問に対する回答を前記文案のテンプレートにあてはめるテンプレートあてはめ部と、
     前記記述式質問に対する回答があてはめられた文案のテンプレートを、前記ユーザに提示する文案として提示する提示処理部と、
     を有することを特徴とする報告書執筆支援システム。
  2.  前記文書モデル決定部は、前記文書モデルが決定するまで、前記回答に対するさらなる質問と当該質問に対するユーザからの回答とを繰り返す、
     ことを特徴とする請求項1に記載の報告書執筆支援システム。
  3.  前記テンプレートあてはめ部は、前記文案のテンプレートに不足する内容がなくなるまで、前記記述式質問と当該記述式質問に対するユーザからの回答とを繰り返す、
     ことを特徴とする請求項1に記載の報告書執筆支援システム。
  4.  前記文書モデル決定部は、前記回答および前記さらなる質問に対する回答に応じて前記選択式質問を選択するための分岐により構成された前記質問決定モデルを用いて、前記分岐の最も深い選択式質問に対する回答に対応する文書モデルを、前記文案のテンプレートを格納した文書モデルとして決定する、
     ことを特徴とする請求項1に記載の報告書執筆支援システム。
  5.  前記文書モデル決定部は、ガウシアンプロセス法を用いて、前記選択式質問に対する回答を推定し、推定した回答の中から最も信頼度が高い次に行うべき選択式質問を用いて、前記文案のテンプレートを格納した文書モデルを決定する、
     ことを特徴とする請求項1に記載の報告書執筆支援システム。
  6.  前記文書モデル決定部は、前記選択式質問に対する回答または前記さらなる質問に対する回答に対して決定される複数の文書モデルの候補がある場合に、文書モデルの妥当性を確認するための質問をユーザに提示し、当該ユーザに提示した質問に対する回答に基づいて、前記文案のテンプレートを格納した文書モデルを決定する、
     ことを特徴とする請求項1に記載の報告書執筆支援システム。
  7.  前記文書モデル決定部が決定した前記文書モデルを、前記質問決定モデルに対応付ける質問決定モデル更新部、
     を有することを特徴とする請求項1に記載の報告書執筆支援システム。
  8.  前記質問決定モデル更新部は、前記選択式質問に対する回答または前記さらなる質問に対する回答に対して決定される複数の文書モデルの候補の中から文書モデルが選択された回数に応じて、前記質問決定モデルに対応付ける文書モデルを決定する、
     ことを特徴とする請求項7に記載の報告書執筆支援システム。
  9.  文書モデル決定部が、選択式質問に対する回答と前記回答に対するさらなる質問を決定する質問決定モデルとに基づいて、ユーザに提示する文案のテンプレートを格納した文書モデルを決定し、
     テンプレートあてはめ部が、決定された前記文書モデルと前記回答または前記さらなる質問に対する回答とに基づいて、前記文書モデルに格納された前記文案のテンプレートに不足する内容を質問するための記述式質問を行い、当該記述式質問に対する回答を前記文案のテンプレートにあてはめ、
     提示処理部が、前記記述式質問に対する回答があてはめられた文案のテンプレートを、前記ユーザに提示する文案として提示する、
     ことを特徴とする報告書執筆支援方法。
PCT/JP2021/001922 2020-03-25 2021-01-20 報告書執筆支援システム、報告書執筆支援方法 WO2021192556A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21776129.5A EP4131129A4 (en) 2020-03-25 2021-01-20 SYSTEM AND PROCEDURES TO SUPPORT REPORT WRITING
CN202180008950.7A CN114930377A (zh) 2020-03-25 2021-01-20 报告书执笔辅助系统、报告书执笔辅助方法
US17/909,007 US11914950B2 (en) 2020-03-25 2021-01-20 Report writing support system and report writing support method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-053666 2020-03-25
JP2020053666A JP7321959B2 (ja) 2020-03-25 2020-03-25 報告書執筆支援システム、報告書執筆支援方法

Publications (1)

Publication Number Publication Date
WO2021192556A1 true WO2021192556A1 (ja) 2021-09-30

Family

ID=77886690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001922 WO2021192556A1 (ja) 2020-03-25 2021-01-20 報告書執筆支援システム、報告書執筆支援方法

Country Status (5)

Country Link
US (1) US11914950B2 (ja)
EP (1) EP4131129A4 (ja)
JP (1) JP7321959B2 (ja)
CN (1) CN114930377A (ja)
WO (1) WO2021192556A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240242037A1 (en) * 2023-01-13 2024-07-18 Casetext, Inc. Generative text model interface system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050278623A1 (en) * 2004-05-17 2005-12-15 Dehlinger Peter J Code, system, and method for generating documents
JP2008257569A (ja) * 2007-04-06 2008-10-23 Konica Minolta Medical & Graphic Inc 情報処理システム
JP2008269041A (ja) * 2007-04-17 2008-11-06 Konica Minolta Medical & Graphic Inc データベースシステムおよびプログラム
US20190042554A1 (en) * 2016-02-03 2019-02-07 Global Software Innovation Pty Ltd Systems and Methods for Generating Electronic Document Templates and Electronic Documents
JP2020021302A (ja) * 2018-08-01 2020-02-06 Nttテクノクロス株式会社 資料作成装置、資料作成システム、資料作成方法及びプログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006954A1 (en) * 2000-07-17 2002-01-24 Morgan Stanley Dean Witter & Co. Object-oriented document assembly system
US7340675B1 (en) * 2001-05-10 2008-03-04 Microsoft Corporation System and method for creating web pages with word processing templates
US7861161B1 (en) * 2001-06-19 2010-12-28 Microstrategy, Inc. Report system and method using prompt objects
US20160321583A1 (en) * 2002-08-01 2016-11-03 Elizabeth C. Jones Change navigation toolkit
JP3908634B2 (ja) 2002-09-11 2007-04-25 株式会社東芝 検索支援方法および検索支援装置
US20060287966A1 (en) * 2004-12-21 2006-12-21 Oracle International Corporation Methods and systems for authoring customized contracts using contract templates that include user-configured rules and questions
US20060282396A1 (en) * 2005-06-09 2006-12-14 Civil Foundation, Llc Multi-jurisdictional electronic-commerce legal products, methods of production and methods of conducting business therewith
US7475062B2 (en) 2006-02-28 2009-01-06 Business Objects Software Ltd. Apparatus and method for selecting a subset of report templates based on specified criteria
JP2008262432A (ja) 2007-04-13 2008-10-30 Toyo Eng Corp データ処理装置、データ処理システム、コンピュータプログラム
WO2017002164A1 (ja) * 2015-06-29 2017-01-05 楽天株式会社 情報処理装置、情報処理方法、プログラム、記憶媒体
US10095682B2 (en) * 2015-07-29 2018-10-09 Mark43, Inc. Determining incident codes using a decision tree
JP6535974B1 (ja) * 2018-08-29 2019-07-03 Gva Tech株式会社 法律文書作成支援システム、法律文書作成支援方法及びプログラム
US11294555B2 (en) * 2019-04-24 2022-04-05 Appian Corporation Intelligent manipulation of dynamic declarative interfaces
KR102305181B1 (ko) * 2019-07-04 2021-09-27 주식회사 포시에스 챗봇을 통한 전자문서 제공 방법, 챗봇을 통한 전자문서 작성 방법 및 장치
AU2020326435B2 (en) * 2019-08-05 2023-09-28 Ai21 Labs Systems and methods of controllable natural language generation
KR102315109B1 (ko) * 2019-11-22 2021-10-21 주식회사 포시에스 대화형 및 문서형 전자문서 작성 장치 및 방법과 대화형으로 작성 가능한 전자문서 제공 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050278623A1 (en) * 2004-05-17 2005-12-15 Dehlinger Peter J Code, system, and method for generating documents
JP2008257569A (ja) * 2007-04-06 2008-10-23 Konica Minolta Medical & Graphic Inc 情報処理システム
JP2008269041A (ja) * 2007-04-17 2008-11-06 Konica Minolta Medical & Graphic Inc データベースシステムおよびプログラム
US20190042554A1 (en) * 2016-02-03 2019-02-07 Global Software Innovation Pty Ltd Systems and Methods for Generating Electronic Document Templates and Electronic Documents
JP2020021302A (ja) * 2018-08-01 2020-02-06 Nttテクノクロス株式会社 資料作成装置、資料作成システム、資料作成方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131129A4 *

Also Published As

Publication number Publication date
JP2021152837A (ja) 2021-09-30
US20230066125A1 (en) 2023-03-02
US11914950B2 (en) 2024-02-27
EP4131129A1 (en) 2023-02-08
EP4131129A4 (en) 2024-04-10
CN114930377A (zh) 2022-08-19
JP7321959B2 (ja) 2023-08-07

Similar Documents

Publication Publication Date Title
US11663253B2 (en) Leveraging concepts with information retrieval techniques and knowledge bases
Starzyńska et al. Excellence toolbox: Decision support system for quality tools and techniques selection and application
US20180336528A1 (en) Methods and apparatus for screening job candidates using a server with dynamic real-time context
CN109817046A (zh) 一种基于家教设备的学习辅助方法及家教设备
CN109360550A (zh) 语音交互系统的测试方法、装置、设备和存储介质
WO2021192556A1 (ja) 報告書執筆支援システム、報告書執筆支援方法
KR20200124836A (ko) 콘텐츠 분석 기반의 인공지능 책쓰기 가이딩 시스템
JP2018097569A (ja) 人工知能システム及び記憶装置
Wells Introduction to data catalogs
Murtaza et al. Structured Language Requirement Elicitation Using Case Base Reasoning
Sykamiotis et al. Extraction and presentation of access and usage data from an e-learning platform (moodle): Design and development of a software application
CN112651863A (zh) 基于大数据的实践组织方法、装置、设备及可读存储介质
US20230394227A1 (en) Apparatus for generating draft document and method therefor
Funck et al. Handbook for Systematic Literature Reviews and Document Studies in the Social Sciences
Widyantoro et al. System development for research map visualisation
Adler et al. User-Centered Design of Digital Tools for Sociolinguistic Studies in Under-Resourced Languages
McGranaghan Guidelines on writing a research proposal
CN111966990B (zh) 验证码的处理方法及装置、电子设备、存储介质
US20220058430A1 (en) Pattern model assembly
JP2000076071A (ja) 問診型問題解決支援システムおよび方法ならびにその記録媒体
JP2023545094A (ja) データ分析用の事前構築クエリの推奨
Kemell From literature to relationship network: Automated relationship extraction with a natural language processing pipeline for Resource constrained computers.
CN111897515A (zh) 审辩性思维测评工具制作平台
Jansson Designing to Optimise Usability of API Documentation Interfaces: Applying a User-Centric Approach to Enhance Developer Experience
US10769190B2 (en) Group analysis using content data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021776129

Country of ref document: EP

Effective date: 20221025