WO2021192544A1 - 角形二次電池及びその製造方法 - Google Patents

角形二次電池及びその製造方法 Download PDF

Info

Publication number
WO2021192544A1
WO2021192544A1 PCT/JP2021/001687 JP2021001687W WO2021192544A1 WO 2021192544 A1 WO2021192544 A1 WO 2021192544A1 JP 2021001687 W JP2021001687 W JP 2021001687W WO 2021192544 A1 WO2021192544 A1 WO 2021192544A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing plate
discharge valve
gas discharge
thin
secondary battery
Prior art date
Application number
PCT/JP2021/001687
Other languages
English (en)
French (fr)
Inventor
前園 寛志
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP21777133.6A priority Critical patent/EP4131590A4/en
Priority to JP2022509314A priority patent/JPWO2021192544A1/ja
Priority to CN202180018243.6A priority patent/CN115210941A/zh
Publication of WO2021192544A1 publication Critical patent/WO2021192544A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to a square secondary battery and a method for manufacturing the same.
  • a secondary battery such as a lithium ion secondary battery has a structure in which an electrode body provided with a positive electrode plate and a negative electrode plate is housed in a battery case together with an electrolytic solution.
  • Patent Document 1 discloses a square secondary battery in which a wound electrode body is housed in a square battery case.
  • the positive electrode plate and the end sides (electrode foil) of the negative electrode plate extending to both ends in the winding axis direction of the electrode body are each connected to external terminals fixed to the sealing plate via a current collector.
  • a gas discharge valve is provided on the sealing plate, and when the gas pressure exceeds a predetermined value, the gas discharge valve breaks and the gas generated in the battery is discharged to the outside of the battery.
  • Ultrasonic welding is performed by applying ultrasonic vibration energy to a bonding surface while sandwiching the ends of the positive electrode plate and the negative electrode plate and the current collector with a horn and an anvil.
  • the current collector When the thickness of the current collector is increased, it is necessary to increase the vibration energy when the ends of the positive electrode plate and the negative electrode plate and the current collector are joined by ultrasonic welding.
  • the current collector is connected to an external terminal fixed to the sealing plate. Therefore, the ultrasonic vibration applied to the current collector propagates to the gas discharge valve provided on the sealing plate via the external terminal and the sealing plate. As a result, when the vibration energy at the time of ultrasonic welding becomes large, the gas discharge valve may be broken by the ultrasonic vibration propagated to the gas discharge valve via the current collector.
  • the square secondary battery according to the present disclosure includes an electrode body having a positive electrode plate and a negative electrode plate, a square battery case having an opening and accommodating the electrode body, a sealing plate with the opening sealed, and a sealing plate.
  • a current collector joined by ultrasonic welding to the edge of the positive electrode plate or the negative electrode plate extending toward the end side in the longitudinal direction of the battery, and an external terminal provided on the outside of the sealing plate and connected to the current collector.
  • the sealing plate is a thin portion between the gas discharge valve that breaks when the gas pressure in the battery case exceeds a predetermined value and the external terminal and the gas discharge valve, and is thicker than the gas discharge valve. And have.
  • the method for manufacturing a square secondary battery according to the present disclosure is a method for manufacturing a square secondary battery in which an electrode body provided with a positive electrode plate and a negative electrode plate is housed in a square battery case, and an opening of the battery case is formed.
  • the step of joining the electric bodies by ultrasonic welding and the step of accommodating the electrode body in the battery case and sealing the opening of the battery case with a sealing plate are included. It has a gas discharge valve that breaks when the value exceeds a predetermined value, and a thin portion between the external terminal and the gas discharge valve that is thicker than the gas discharge valve.
  • the square rechargeable battery when the ends of the positive electrode plate and the negative electrode plate are bonded to the current collector by ultrasonic welding, the square rechargeable battery can absorb the vibration propagated to the gas discharge valve via the current collector.
  • the next battery can be provided.
  • FIG. 1A and 1B are views schematically showing the configuration of a square secondary battery according to an embodiment of the present disclosure.
  • FIG. 1A is a plan view
  • FIG. 1B is a plan view
  • FIG. 1 (c) is a cross-sectional view taken along the line Ic-Ic of FIG. 1 (b).
  • FIG. 2 is a diagram showing the result of analyzing the amount of deformation of the sealing plate when ultrasonic vibration propagates through the sealing plate by simulation.
  • 3A and 3B are diagrams showing the results of simulation analysis of the amount of deformation of the sealing plate when ultrasonic vibration propagates through the sealing plate.
  • FIG. 4 is a graph showing the relationship between the displacement of the sealing plate in the thickness direction when ultrasonic vibration is applied to the negative electrode current collector and the distance from the central portion of the sealing plate.
  • 5A and 5B are views showing the configuration of the thin-walled portion
  • FIG. 5A is a plan view
  • FIG. 5B is a cross-sectional view taken along the line Vb-Vb of FIG. 5A.
  • FIG. 6 is a plan view showing the configuration of the thin-walled portion.
  • FIG. 7 is a diagram showing the results obtained by simulation of the change in the maximum stress applied to the gas discharge valve when the position of the thin portion provided between the external terminal and the gas discharge valve is changed.
  • FIG. 8 is a diagram illustrating a method for manufacturing a square secondary battery according to the present embodiment.
  • FIG. 1A and 1B are views schematically showing the configuration of a square secondary battery according to an embodiment of the present disclosure.
  • FIG. 1A is a plan view
  • FIG. 1B is a plan view
  • FIG. 1 (c) is a cross-sectional view taken along the line Ic-Ic of FIG. 1 (b).
  • the electrode body 11 which is a power generation element is housed in the square battery case 20 together with the electrolytic solution. ..
  • the opening of the battery case 20 is sealed with a sealing plate 21.
  • the electrode body 11 has a structure in which a positive electrode plate and a negative electrode plate are laminated or wound via a separator.
  • the positive electrode plate is provided with a positive electrode active material layer on the surface of the positive electrode core body.
  • the negative electrode plate is provided with a negative electrode active material layer on the surface of the negative electrode core body.
  • the positive electrode plate and the negative electrode plate each have end sides 12 and 13 on which an active material layer is not formed at the longitudinal end of the sealing plate 21.
  • the positive electrode plate and the end sides 12 and 13 of the negative electrode plate are bonded to the positive and negative current collectors 16 and 17 by ultrasonic welding in a bundled state.
  • the materials of the positive and negative current collectors 16 and 17 are not particularly limited, but it is preferable that the positive electrode core body and the negative electrode core body are each made of the same material. As a result, ultrasonic welding of the end sides 12 and 13 of the positive electrode plate and the negative electrode plate and the current collectors 16 and 17 can be easily performed.
  • the positive electrode current collector 16 is made of aluminum or an aluminum alloy
  • the negative electrode current collector 17 is made of copper or a copper alloy.
  • the positive and negative current collectors 16 and 17 are connected to positive and negative external terminals 14 and 15 provided on the outside of the sealing plate 21, respectively.
  • the external terminals 14 and 15 are insulated from the sealing plate 21 by the insulating members 18 and 19, respectively.
  • the sealing plate 21 is provided with a gas discharge valve 22.
  • the gas discharge valve 22 breaks when the gas pressure in the battery case 20 rises above a predetermined value, and releases the gas in the battery.
  • the gas discharge valve 22 is composed of a thin portion having a thickness thinner than other portions of the sealing plate 21.
  • the sealing plate 21 has thin portions 23 and 24 thicker than the gas discharge valve 22 between the positive and negative external terminals 14 and 15 and the gas discharge valve 22.
  • the thickness of the thin portions 23 and 24 is set to a size that does not break before the gas discharge valve 22 when the gas pressure in the battery case 20 rises above a predetermined value.
  • the current collectors 16 and 17, which are the current paths from the positive electrode plate and the negative electrode plate to the external terminals 14 and 15, also need to be thickened in order to reduce the resistance.
  • the thickness of the current collectors 16 and 17 is increased, the vibration energy when the end sides 12 and 13 of the positive electrode plate and the negative electrode plate and the current collectors 16 and 17 are ultrasonically welded increases.
  • the ultrasonic vibration applied to the current collectors 16 and 17 is applied to the external terminals 14 and 15 and the external terminals 14 and 15. It propagates to the gas discharge valve 22 provided on the sealing plate 21 via the sealing plate 21.
  • the gas discharge valve 22 may be broken by the ultrasonic vibration propagated to the gas discharge valve 22 via the current collectors 16 and 17.
  • the external terminals 14 and 15 propagate to the gas discharge valve 22 via the sealing plate 21.
  • the ultrasonic vibrations to be generated are absorbed by the thin-walled portions 23 and 24.
  • FIGS 2 and 3 are diagrams showing the results of simulation analysis of the amount of deformation of the sealing plate 21 when ultrasonic vibration propagates through the sealing plate 21.
  • FIG. 2A is a view when the sealing plate 21 is not provided with a thin portion
  • FIG. 2B is a displacement in the thickness direction of the sealing plate 21 when ultrasonic vibration is applied to the negative electrode current collector 17. Is displayed two-dimensionally by dividing it into shades of color.
  • FIG. 3A is a view when thin-walled portions 23 and 24 are provided on the sealing plate 21, and FIG. 3B is a thickness of the sealing plate 21 when ultrasonic vibration is applied to the negative electrode current collector 17.
  • the displacement in the direction is divided into shades of color and displayed two-dimensionally.
  • the thin-walled portions 23 and 24 are arranged at substantially intermediate points between the gas discharge valve 22 and the external terminals 14 and 15.
  • the simulation was performed using the analysis model of the finite element method solver (ANSYS) and the full method frequency response analysis.
  • the sealing plate 21 was made of aluminum (A1050), and had a thickness of 1.4 mm, a width of 11.7 mm, and a length of 119 mm.
  • the thin-walled portion 24 has an oval shape, a thickness of 0.1 mm, a width of 5.58 mm, and a length of 9 mm.
  • the frequency of the ultrasonic vibration applied to the negative electrode current collector 17 was 20 kHz, and the amplitude was 0.03 mm.
  • FIG. 4 is a graph showing the relationship between the displacement of the sealing plate 21 in the thickness direction and the distance from the central portion of the sealing plate 21 when ultrasonic vibration is applied to the negative electrode current collector 17.
  • the displacement in the thickness direction indicates the displacement of the sealing plate 21 along the center line J.
  • the curve indicated by the arrow P is a graph when the thin-walled portion 24 is not provided
  • the curve indicated by the arrow Q is a graph when the thin-walled portion 24 is provided.
  • the effect of absorbing ultrasonic vibrations by the thin-walled portions 23 and 24 depends on the degree of decrease in the bending rigidity of the sealing plate 21. Therefore, in order to obtain a sufficient absorption effect, when the thickness of the sealing plate 21 is T and the thickness of the thin portions 23 and 24 is t, it is preferable that at least t ⁇ 0.8 T, and t ⁇ 0. It is more preferable to set it to 5T.
  • the thickness t of the thin portions 23 and 24 is preferably 0.2 T ⁇ t. Since the thickness of the gas discharge valve 22 is usually set to 1/10 or less of the thickness of the sealing plate 21, the thickness t of the thin portion 23 and 24 is temporarily set to 0.2T. However, the thin-walled portions 23 and 24 do not break before the gas discharge valve 22.
  • the thickness of the thinnest part is defined as the thickness of the thin parts 23 and 24.
  • the thickness of the thinnest portion is defined as the thickness of the gas discharge valve 22.
  • the shapes of the thin-walled portions 23 and 24 are not particularly limited. 5A and 5B are views showing an example of thin-walled portions 23 and 24, FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along the line Vb-Vb of FIG. 5A. ..
  • the thin portion 23, 24 is an oval extending in the width direction of the sealing plate 21.
  • the thin-walled portions 23 and 24 having such a shape can be formed by, for example, pressing.
  • the thin-walled portions 23 and 24 may be provided separately in the width direction of the sealing plate 21. Further, a plurality of thin-walled portions 23 and 24 may be provided between the external terminals 14 and 15 and the gas discharge valve 22.
  • the length W of the thin-walled portion 24 (here, only the thin-walled portion on the negative electrode side is shown) in the width direction of the sealing plate 21 is the length W in the width direction of the sealing plate 21 of the gas discharge valve 22. It is preferably longer than the length L.
  • the thin-walled portion 24 serves as a breakwater for ultrasonic vibration propagating to the gas discharge valve 22. As a result, the ultrasonic vibration propagating to the gas discharge valve 22 can be attenuated more effectively.
  • FIG. 7A is a diagram showing the arrangement position of the thin-walled portion 24, in which the distance between the end of the gas discharge valve 22 and the end of the insulating member 19 is H', and the end of the gas discharge valve 22 and the thin-walled portion 22 are shown. The distance from 24 is h.
  • the thin-walled portion 24 is arranged between the end portion of the gas discharge valve 22 and the end portion of the insulating member 19.
  • FIG. 7B is a graph showing the change in the maximum stress applied to the gas discharge valve 22 when h / H'is changed.
  • the conditions of the simulation were the same as those shown in FIGS. 2 and 3.
  • the line indicated by the arrow S indicates the maximum stress value when the thin portion 24 is not provided.
  • the maximum stress value applied to the gas discharge valve 22 is smaller than the maximum stress value when the thin portion 24 is not provided within the range where h / H ⁇ 0.2 is satisfied. You can see that there is.
  • the gas discharge valve 22 having originally low bending rigidity is provided as a portion intentionally having low bending rigidity. Since the thin-walled portion 24 is assimilated as a portion having low flexural rigidity, it is considered that the effect of providing the thin-walled portion 24 has diminished.
  • the thin parts 23 and 24 have h / H' ⁇ . It is preferable to arrange it at a position satisfying 0.2. Further, from the viewpoint of moldability of the thin-walled portions 23 and 24, h / H' ⁇ 0.8 is preferable.
  • the external terminals 14 and 15 and the current collectors 16 and 17 connected to the external terminals 14 and 15 are attached to the sealing plate 21 that seals the opening of the battery case 20. Install.
  • a gas discharge valve 22 and thin-walled portions 23 and 24 are formed in advance on the sealing plate 21.
  • the electrode body 11 is arranged at a position where the end sides 12 and 13 of the positive electrode plate and the negative electrode plate overlap with the current collectors 16 and 17, and the positive electrode plate and the negative electrode plate are arranged.
  • the ends 12 and 13 and the current collectors 16 and 17 are ultrasonically welded at the welds 40 and 41 by a usual method.
  • the sealing plate 21 is provided with the thin-walled portions 23 and 24, the current collectors 16 and 17 propagate to the gas discharge valve 22 via the external terminals 14 and 15 and the sealing plate 21.
  • the ultrasonic vibration is absorbed by the thin-walled portions 23 and 24.
  • the type of the square secondary battery in the present embodiment is not particularly limited, but can be applied to, for example, a lithium ion secondary battery, a nickel hydrogen secondary battery, and the like.

Abstract

角形二次電池は、電極体と、電極体を収容した角形の電池ケースと、封口板と、封口板の長手方向端部側に延出する、正極板または負極板の端辺に、超音波溶接により接合された集電体と、封口板の外側に設けられ、集電体に接続された外部端子とを備え、封口板は、電池ケース内のガス圧が所定値以上になったとき破断するガス排出弁と、外部端子とガス排出弁との間にあって、厚みがガス排出弁よりも厚い薄肉部とを有している。

Description

角形二次電池及びその製造方法
 本開示は、角形二次電池及びその製造方法に関する。
 リチウムイオン二次電池等の二次電池は、正極板及び負極板を備えた電極体が、電解液とともに電池ケース内に収容された構造を有している。
 特許文献1には、巻回された電極体が、角形の電池ケース内に収容された角形二次電池が開示されている。電極体の巻回軸方向両端部に延出した正極板及び負極板の端辺(電極箔)は、それぞれ、集電体を介して封口板に固定された外部端子に接続されている。封口板には、ガス排出弁が設けられており、電池内で発生したガスは、ガス圧が所定の値を超えたとき、ガス排出弁が破断して、電池外に放出される。
特開2013-54821号公報
 正極板及び負極板の端辺と集電体とを接合する方法として、超音波溶接により接合する方法が知られている。超音波溶接は、正極板及び負極板の端辺と集電体とを、ホーン及びアンビルで挟み込みながら、超音波による振動エネルギーを接合面に加えることによって行われる。
 高出力化された電池では、十分な出力特性を得るために、電池の内部抵抗を低減する必要がある。そのため、正極板及び負極板から外部端子への電流経路となる集電体も、低抵抗化を図る必要がある。そのためには、集電体の厚みを厚くする必要がある。
 集電体の厚みを厚くすると、正極板及び負極板の端辺と集電体とを超音波溶接により接合する場合、振動エネルギーを大きくする必要がある。一方、集電体は、封口板に固定された外部端子に接続されている。そのため、集電体に印加された超音波振動は、外部端子及び封口板を経由して、封口板に設けられたガス排出弁に伝搬する。その結果、超音波溶接する際の振動エネルギーが大きくなると、集電体を経由してガス排出弁に伝播した超音波振動によって、ガス排出弁が破断するおそれがある。
 本開示に係る角形二次電池は、正極板及び負極板を備えた電極体と、開口部を有し、電極体を収容した角形の電池ケースと、開口部を封口した封口板と、封口板の長手方向端部側に延出する、正極板または負極板の端辺に、超音波溶接により接合された集電体と、封口板の外側に設けられ、集電体に接続された外部端子とを備え、封口板は、電池ケース内のガス圧が所定値以上になったとき破断するガス排出弁と、外部端子とガス排出弁との間にあって、厚みがガス排出弁よりも厚い薄肉部とを有している。
 本開示に係る角形二次電池の製造方法は、正極板及び負極板を備えた電極体が、角形の電池ケースに収容された角形二次電池の製造方法であって、電池ケースの開口部を封口する封口板に、外部端子と、該外部端子に接続された集電体とを取り付ける工程と、封口板の長手方向端部側に延出する、正極板または負極板の端辺に、集電体を超音波溶接により接合する工程と、電極体を電池ケースに収容して、電池ケースの開口部を、封口板で封口する工程とを含み、封口板は、電池ケース内のガス圧が所定値以上になったとき破断するガス排出弁と、外部端子とガス排出弁との間にあって、厚みがガス排出弁よりも厚い薄肉部とを有している。
 本開示によれば、正極板及び負極板の端辺と集電体とを超音波溶接により接合する際、集電体を経由してガス排出弁に伝播する振動を吸収することができる角形二次電池を提供することができる。
図1は、本開示の一実施形態における角形二次電池の構成を模式的に示した図で、図1(a)は平面図、図1(b)は、図1(a)のIb-Ib線に沿った断面図、図1(c)は、図1(b)のIc-Ic線に沿った断面図である。 図2は、封口板を超音波振動が伝搬する際の封口板の変形量を、シミュレーションにより解析した結果を示した図である。 図3(a)、図3(b)は、封口板を超音波振動が伝搬する際の封口板の変形量を、シミュレーションにより解析した結果を示した図である。 図4は、負極集電体に超音波振動を印加したときの封口板の厚み方向の変位と、封口板の中央部からの距離との関係を示したグラフである。 図5は、薄肉部の構成を示した図で、図5(a)は平面図、図5(b)は、図5(a)のVb-Vb線に沿った断面図である。 図6は、薄肉部の構成を示した平面図である。 図7は、外部端子とガス排出弁との間に設けた薄肉部の位置を変えたときの、ガス排出弁に加わる応力最大値の変化を、シミュレーションにより求めた結果を示した図である。 図8は、本実施形態に角形二次電池の製造方法を説明した図である。
 以下、本開示の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本開示の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。
 図1は、本開示の一実施形態における角形二次電池の構成を模式的に示した図で、図1(a)は平面図、図1(b)は、図1(a)のIb-Ib線に沿った断面図、図1(c)は、図1(b)のIc-Ic線に沿った断面図である。
 図1(a)~図1(c)に示すように、本実施形態における角形二次電池10は、発電要素である電極体11が、電解液とともに、角形の電池ケース20に収容されている。電池ケース20の開口部は、封口板21で封口されている。
 電極体11は、正極板及び負極板がセパレータを介して積層または巻回された構造をなす。正極板は、正極芯体の表面に、正極活物質層が設けられている。負極板は、負極芯体の表面に負極活物質層が設けられている。
 正極板及び負極板は、それぞれ、封口板21の長手方向端部において、活物質層が形成されていない端辺12、13を有している。正極板及び負極板の端辺12、13は、束ねられた状態で、正負の集電体16、17に、超音波溶接により接合されている。
 正負の集電体16、17の材料は特に限定されないが、正極芯体及び負極芯体と、それぞれ、同じ材料で構成されていることが好ましい。これにより、正極板及び負極板の端辺12、13と、集電体16、17との超音波溶接を容易に行うことができる。例えば、リチウムイオン二次電池の場合、正極集電体16は、アルミニウム又はアルミニウム合金で構成され、負極集電体17は、銅又は銅合金で構成されていることが好ましい。
 正負の集電体16、17は、それぞれ、封口板21の外側に設けられた正負の外部端子14、15に接続されている。外部端子14、15は、それぞれ、絶縁部材18、19により、封口板21と絶縁されている。
 封口板21には、ガス排出弁22が設けられている。ガス排出弁22は、電池ケース20内のガス圧が所定値以上に上昇したときに破断して、電池内のガスを放出する。ガス排出弁22は、封口板21の他の部分よりも厚みの薄い薄肉部で構成されている。
 本実施形態において、封口板21は、正負の外部端子14、15と、ガス排出弁22との間に、厚みがガス排出弁22よりも厚い薄肉部23、24を有している。薄肉部23、24の厚みは、電池ケース20内のガス圧が所定値以上に上昇したとき、ガス排出弁22よりも先に破断しない大きさに設定されている。
 上述したように、高出力化された電池では、十分な出力特性を得るために、電池の内部抵抗を低減する必要がある。そのため、正極板及び負極板から外部端子14、15への電流経路となる集電体16、17も、低抵抗化を図るために、厚みを厚くする必要がある。その結果、集電体16、17の厚みを厚くするに伴い、正極板及び負極板の端辺12、13と、集電体16、17とを超音波溶接する際の振動エネルギーが大きくなる。
 一方、正極板及び負極板の端辺12、13と、集電体16、17とを超音波溶接する際、集電体16、17に印加された超音波振動は、外部端子14、15及び封口板21を経由して、封口板21に設けられたガス排出弁22に伝搬する。その結果、超音波溶接する際の振動エネルギーが大きくなると、集電体16、17を経由してガス排出弁22に伝播した超音波振動によって、ガス排出弁22が破断する恐れがある。
 本実施形態では、外部端子14、15とガス排出弁22との間に、薄肉部23、24を設けることによって、外部端子14、15から、封口板21を経由してガス排出弁22に伝播する超音波振動を、薄肉部23、24で吸収するようにしたものである。
 集電体16、17から外部端子14、15に伝搬した超音波振動は、封口板21を経由して、ガス排出弁22に伝搬する。封口板21に設けられた薄肉部23、24は、封口板21の他の部分よりも厚みが薄いため、薄肉部23、24は、封口板21の他の部分よりも曲げ剛性が低くなっている。超音波振動の横波は、ねじれ波であるため、封口板21を伝搬する途中で、曲げ剛性の低い部位、すなわち、薄肉部23、24で減衰する。その結果、ガス排出弁22には、減衰した超音波振動が伝搬するため、ガス排出弁22には、超音波振動による過剰な応力が印加されない。その結果、集電体16、17を経由してガス排出弁22に伝播した超音波振動によって、ガス排出弁22が破断するのを防止することができる。
 図2及び図3は、封口板21を超音波振動が伝搬する際の封口板21の変形量を、シミュレーションにより解析した結果を示した図である。
 図2(a)は、封口板21に薄肉部を設けない場合の図で、図2(b)は、負極集電体17に超音波振動を印加したときの封口板21の厚み方向の変位を、色の濃淡に分けして二次元的に表示している。
 図3(a)は、封口板21に薄肉部23、24を設けた場合の図で、図3(b)は、負極集電体17に超音波振動を印加したときの封口板21の厚み方向の変位を、色の濃淡に分けして二次元的に表示している。なお、薄肉部23、24は、ガス排出弁22と外部端子14、15との略中間点に配置した。
 シミュレーションは、有限要素法ソルバー(ANSYS)の解析モデルを使い、フル法周波数応答解析を用いて行った。封口板21は、アルミニウム(A1050)製とし、厚さを1.4mm、幅を11.7mm、長さを119mmとした。
 薄肉部24は、形状を長円とし、厚さを0.1mm、幅を5.58mm、長さを9mmとした。負極集電体17に印加した超音波振動の周波数を20kHz、振幅を0.03mmとした。
 図4は、負極集電体17に超音波振動を印加したときの、封口板21の厚み方向の変位と、封口板21の中央部からの距離との関係を示したグラフである。ここで、厚み方向の変位は、封口板21の中心線Jに沿った変位を示す。
 図4で、矢印Pで示した曲線が、薄肉部24を設けなかった場合のグラフで、矢印Qで示した曲線が、薄肉部24を設けた場合のグラフを示す。
 図4に示すように、封口板21の中央部と薄肉部24との間に領域Aにおいて、薄肉部24を設けた場合(曲線Q)の方が、薄肉部24を設けない場合(曲線P)よりも、封口板21の厚み方向の変位が大きく減少しているのが分かる。すなわち、封口板21に薄肉部24を設けることによって、外部端子15から、封口板21を経由してガス排出弁22に伝播する超音波振動を、薄肉部24で吸収できることが分かる。
 本実施形態において、薄肉部23、24による超音波振動の吸収効果は、封口板21の曲げ剛性の低下度合いに依存する。そのため、十分な吸収効果を得るためには、封口板21の厚みをT、薄肉部23、24の厚みをtとしたとき、少なくとも、t≦0.8Tとすることが好ましく、t≦0.5Tとすることがより好ましい。
 また、薄肉部23、24の厚みを薄くしすぎると、電池内のガス圧が上昇したとき、封口板21が薄肉部23、24で歪み、その結果、電池ケース20が変形する恐れがある。そのため、薄肉部23、24の厚みtは、0.2T≦tであることが好ましい。なお、通常、ガス排出弁22の厚みは、封口板21の厚みに対して、1/10以下に設定されているため、仮に、薄肉部23、24の厚みtを、0.2Tに設定しても、薄肉部23、24が、ガス排出弁22よりも先に破断することはない。
 なお、薄肉部23、24の厚みが均一でない場合、最も薄い部分の厚みを、薄肉部23、24の厚みと定義する。また、ガス排出弁22の厚みが均一でない場合、最も薄い部分の厚みを、ガス排出弁22の厚みと定義する。
 本実施形態において、薄肉部23、24の形状は、特に限定されない。図5は、薄肉部23、24の一例を示した図で、図5(a)は平面図、図5(b)は、図5(a)のVb-Vb線に沿った断面図である。薄肉部23、24は、封口板21の幅方向に延びた長円になっている。このような形状の薄肉部23、24は、例えば、プレス加工により形成することができる。薄肉部23、24は、封口板21の幅方向に、分割されて設けられていてもよい。また、薄肉部23、24は、外部端子14、15とガス排出弁22との間に、複数設けられていてもよい。
 また、図6に示すように、薄肉部24(ここでは、負極側の薄肉部だけを示している)の封口板21幅方向における長さWは、ガス排出弁22の封口板21幅方向における長さLよりも長いことが好ましい。ガス排出弁22の手前に、ガス排出弁22よりも幅広の薄肉部24を設けることによって、薄肉部24が、ガス排出弁22に伝搬する超音波振動の防波堤の役目をなす。これにより、ガス排出弁22へ伝搬する超音波振動をより効果的に減衰させることができる。
 図7は、外部端子14、15とガス排出弁22との間に設けた薄肉部23、24の位置を変えたときの、ガス排出弁22に加わる応力最大値の変化を、シミュレーションにより求めた結果を示したグラフである。
 図7(a)は、薄肉部24の配置位置を示した図で、ガス排出弁22の端部と絶縁部材19の端部との距離をH’、ガス排出弁22の端部と薄肉部24との距離をhとしている。ここで、薄肉部24は、ガス排出弁22の端部と絶縁部材19の端部との間に配置される。
 図7(b)は、h/H’を変えたときの、ガス排出弁22に加わる応力最大値の変化を示したグラフである。なお、シミュレーションの条件は、図2及び図3で示した条件と同じにした。また、矢印Sで示した線は、薄肉部24を設けなかった場合の応力最大値を示す。
 図7(b)に示すように、h/H≧0.2を満たす範囲で、ガス排出弁22に加わる応力最大値が、薄肉部24を設けなかった場合の応力最大値よりも減少しているのが分かる。
 一方、薄肉部24の位置が、ガス排出弁22に接近しすぎると(h/H<0.2)、もともと曲げ剛性の低いガス排出弁22と、意図的に曲げ剛性の低い部位として設けた薄肉部24とが、曲げ剛性の低い部位として同化してしまうため、薄肉部24を設けることによる効果が薄れてしまったものと考えられる。
 また、薄肉部24の位置が、絶縁部材19に接近しすぎると(h/H’>0.8)、封口板21に、例えば、プレス加工により薄肉部24を形成するのが難しくなる。
 従って、ガス排出弁22と絶縁部材18、19との距離をH’、ガス排出弁22と薄肉部23、24との距離をhとしたとき、薄肉部23、24は、h/H’≧0.2を満たす位置に配置することが好ましい。また、薄肉部23,24の成形性の観点で、h/H’≦0.8であることが好ましい。
 なお、上記シミュレーションは、ガス排出弁22の端部と絶縁部材19の端部との距離をH’として行ったが、図7(a)に示すように、ガス排出弁22の端部と外部端子15の端部との距離をHとしても、図7(b)と同様の結果を得た。
 次に、図8を参照しながら、本実施形態に角形二次電池の製造方法を説明する。
 まず、図8(a)に示すように、電池ケース20の開口部を封口する封口板21に、外部端子14、15と、外部端子14、15に接続された集電体16、17とを取り付ける。封口板21には、ガス排出弁22、及び薄肉部23、24が予め形成されている。
 次に、図8(b)に示すように、電極体11を、正極板及び負極板の端辺12、13が、集電体16、17と重なる位置に配置し、正極板及び負極板の端辺12、13と、集電体16、17とを、溶接箇所40、41において、通常の方法により超音波溶接する。このとき、封口板21には、薄肉部23、24が設けられているため、集電体16、17から、外部端子14、15及び封口板21を経由して、ガス排出弁22に伝播する超音波振動は、薄肉部23、24で吸収される。その結果、正極板及び負極板の端辺12、13と、集電体16、17とを超音波溶接する際、ガス排出弁22が破断するのを防止することができる。
 最後に、図8(c)に示すように、封口板21に取り付けられた電極体11を、角形の電池ケース20に収容した後、封口板21を、電池ケース20の開口周縁で溶接して、角形二次電池を完成させる。
 以上、本開示を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。
 本実施形態における角形二次電池は、その種類は特に限定されないが、例えば、リチウムイオン二次電池、ニッケル水素二次電池等に適用することができる。
10  角形二次電池
11  電極体
12  封口板
12,13  正極板及び負極板の端辺
14,15  外部端子
16,17  集電体
18,19  絶縁部材
20  電池ケース
21  封口板
22  ガス排出弁
23,24  薄肉部

Claims (5)

  1.  正極板及び負極板を備えた電極体と、
     開口部を有し、前記電極体を収容した角形の電池ケースと、
     前記開口部を封口した封口板と、
     前記封口板の長手方向端部側に延出する、前記正極板または前記負極板の端辺に、超音波溶接により接合された集電体と、
     前記封口板の外側に設けられ、前記集電体に接続された外部端子と、
    を備えた角形二次電池であって、
     前記封口板は、
      前記電池ケース内のガス圧が所定値以上になったとき破断するガス排出弁と、
      前記外部端子と前記ガス排出弁との間にあって、厚みが前記ガス排出弁よりも厚い薄肉部と
    を有している、角形二次電池。
  2.  前記封口板の厚みをT、前記薄肉部の厚みをtとしたとき、0.2T≦t≦0.8Tを満たす、請求項1に記載の角形二次電池。
  3.  前記ガス排出弁の端部と前記外部端子の端部との距離をH、前記ガス排出弁の端部と前記薄肉部の端部との距離をhとしたとき、h/H≧0.2を満たす、請求項1に記載の角形二次電池。
  4.  前記薄肉部の前記封口板幅方向における長さは、前記ガス排出弁の前記封口板幅方向における長さよりも長い、請求項1に記載の角形二次電池。
  5.  正極板及び負極板を備えた電極体が、角形の電池ケースに収容された角形二次電池の製造方法であって、
     前記電池ケースの開口部を封口する封口板に、外部端子と、該外部端子に接続された集電体とを取り付ける工程と、
     前記封口板の長手方向端部側に延出する、前記正極板または前記負極板の端辺に、前記集電体を超音波溶接により接合する工程と、
     前記電極体を前記電池ケースに収容して、前記電池ケースの開口部を、前記封口板で封口する工程と
    を含み、
     前記封口板は、
      前記電池ケース内のガス圧が所定値以上になったとき破断するガス排出弁と、
      前記外部端子と前記ガス排出弁との間にあって、厚みが前記ガス排出弁よりも厚い薄肉部と
    を有している、角形二次電池の製造方法。
PCT/JP2021/001687 2020-03-27 2021-01-19 角形二次電池及びその製造方法 WO2021192544A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21777133.6A EP4131590A4 (en) 2020-03-27 2021-01-19 SQUARE SECONDARY BATTERY AND METHOD FOR PRODUCING THEREOF
JP2022509314A JPWO2021192544A1 (ja) 2020-03-27 2021-01-19
CN202180018243.6A CN115210941A (zh) 2020-03-27 2021-01-19 方形二次电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058248 2020-03-27
JP2020-058248 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021192544A1 true WO2021192544A1 (ja) 2021-09-30

Family

ID=77891321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001687 WO2021192544A1 (ja) 2020-03-27 2021-01-19 角形二次電池及びその製造方法

Country Status (4)

Country Link
EP (1) EP4131590A4 (ja)
JP (1) JPWO2021192544A1 (ja)
CN (1) CN115210941A (ja)
WO (1) WO2021192544A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179793A (ja) * 2005-12-27 2007-07-12 Denso Corp 密閉型電池用蓋体
JP2010282851A (ja) * 2009-06-04 2010-12-16 Toyota Motor Corp 密閉型電池
JP2012221943A (ja) * 2011-04-07 2012-11-12 Sb Limotive Co Ltd 二次電池
WO2013021463A1 (ja) * 2011-08-09 2013-02-14 トヨタ自動車株式会社 電池及び電池の製造方法
JP2013055038A (ja) * 2011-08-09 2013-03-21 Nisshin Steel Co Ltd 電池ケース用の蓋体
JP2013054821A (ja) 2011-08-31 2013-03-21 Sanyo Electric Co Ltd 角形二次電池
WO2014069575A1 (ja) * 2012-11-02 2014-05-08 株式会社 豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP2014182949A (ja) * 2013-03-19 2014-09-29 Lithium Energy Japan:Kk 蓄電素子
JP2018125110A (ja) * 2017-01-31 2018-08-09 日立オートモティブシステムズ株式会社 二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297292A (ja) * 1998-04-08 1999-10-29 Alps Electric Co Ltd 安全弁付密閉装置
US6562508B1 (en) * 1998-09-03 2003-05-13 Sanyo Electric Co., Ltd Secondary cell
KR20140101228A (ko) * 2013-02-08 2014-08-19 삼성에스디아이 주식회사 전지 모듈

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179793A (ja) * 2005-12-27 2007-07-12 Denso Corp 密閉型電池用蓋体
JP2010282851A (ja) * 2009-06-04 2010-12-16 Toyota Motor Corp 密閉型電池
JP2012221943A (ja) * 2011-04-07 2012-11-12 Sb Limotive Co Ltd 二次電池
WO2013021463A1 (ja) * 2011-08-09 2013-02-14 トヨタ自動車株式会社 電池及び電池の製造方法
JP2013055038A (ja) * 2011-08-09 2013-03-21 Nisshin Steel Co Ltd 電池ケース用の蓋体
JP2013054821A (ja) 2011-08-31 2013-03-21 Sanyo Electric Co Ltd 角形二次電池
WO2014069575A1 (ja) * 2012-11-02 2014-05-08 株式会社 豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP2014182949A (ja) * 2013-03-19 2014-09-29 Lithium Energy Japan:Kk 蓄電素子
JP2018125110A (ja) * 2017-01-31 2018-08-09 日立オートモティブシステムズ株式会社 二次電池

Also Published As

Publication number Publication date
EP4131590A4 (en) 2023-10-11
EP4131590A1 (en) 2023-02-08
CN115210941A (zh) 2022-10-18
JPWO2021192544A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
EP3800718B1 (en) Secondary battery, device, and manufacturing method for secondary battery
EP3910724B1 (en) Secondary battery, battery module, and device for using secondary battery as power source
JP5214692B2 (ja) 電池
JP5592481B2 (ja) 単セルおよび該単セルを備えるパワーバッテリパック
JP6599129B2 (ja) 角形二次電池及びそれを用いた組電池、並びにその製造方法
JP6582443B2 (ja) 二次電池及びその製造方法
WO2014024802A1 (ja) 蓄電装置の製造方法、超音波溶接用の補助板及び蓄電装置
JP5594901B2 (ja) 二次電池
JP2016189247A (ja) 角形二次電池及びそれを用いた組電池
KR20130098135A (ko) 집전 부재를 구비하는 축전 소자 및 집전 부재의 제조 방법
JP6273204B2 (ja) 蓄電素子、及び蓄電素子の製造方法
US10644296B2 (en) Energy storage device
JP7314389B2 (ja) 二次電池
JP2016189246A (ja) 角形二次電池
WO2020203101A1 (ja) 蓄電モジュール
JP2002231300A (ja) 角形密閉式電池及びその製造方法
US20200395582A1 (en) Energy storage device and energy storage apparatus
WO2014034385A1 (ja) 蓄電装置の製造方法及び蓄電装置
US20230238564A1 (en) Secondary battery
WO2021192544A1 (ja) 角形二次電池及びその製造方法
US11469443B2 (en) Electricity storage element including stacked metal foils joined to lead by second joint within first joint, method of manufacturing electricity storage element, joining method, and joint assembly
JP7453307B2 (ja) 角形二次電池及びそれを用いた組電池
JP6641842B2 (ja) 角形二次電池
JP2023108022A (ja) 二次電池
JP5586722B2 (ja) 電池及び電池の超音波接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509314

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021777133

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021777133

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE