WO2021192017A1 - Light filtering device, optical microscope, and defect observation apparatus - Google Patents

Light filtering device, optical microscope, and defect observation apparatus Download PDF

Info

Publication number
WO2021192017A1
WO2021192017A1 PCT/JP2020/012940 JP2020012940W WO2021192017A1 WO 2021192017 A1 WO2021192017 A1 WO 2021192017A1 JP 2020012940 W JP2020012940 W JP 2020012940W WO 2021192017 A1 WO2021192017 A1 WO 2021192017A1
Authority
WO
WIPO (PCT)
Prior art keywords
shutter
filtering device
opening
rack
optical filtering
Prior art date
Application number
PCT/JP2020/012940
Other languages
French (fr)
Japanese (ja)
Inventor
吉村 保廣
青野 宇紀
祐子 大谷
哲 高田
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2020/012940 priority Critical patent/WO2021192017A1/en
Priority to JP2022509817A priority patent/JP7385003B2/en
Priority to KR1020227030668A priority patent/KR20220136419A/en
Priority to TW110107649A priority patent/TW202204883A/en
Publication of WO2021192017A1 publication Critical patent/WO2021192017A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to an optical filtering device, an optical microscope and a defect observation device.
  • Defect observation devices include scanning electron microscopes (SEMs) that review and classify various defects, foreign substances, etc. (hereinafter referred to as “defects, etc.”) that occur on the surface of wafers that are semiconductor substrates in semiconductor manufacturing lines, etc. It has.
  • SEMs scanning electron microscopes
  • the defect observation device is further equipped with an optical microscope.
  • the defect observation device has a function of controlling an optical microscope, efficiently and automatically detecting defects on the wafer surface, and performing coordinate alignment. By controlling the SEM, the shape of minute defects detected by an optical microscope can be observed in detail and the components can be analyzed. It is desirable that the optical microscope can be used as a dark field optical microscope (DFOM: Dark Field Optical Microscope).
  • the defect observation device has a function of automatically outputting SEM images, classification data such as defects, elemental analysis data, etc., and can also create a defect map from the output data. Further, the defect observation device can also observe, classify, and analyze defects and the like based on the created defect map. For this reason, the defect observation device is also called a review SEM. It is also called a defect review SEM (Defect Review-SEM) or a wafer inspection SEM.
  • the optical microscope and the SEM have a common stage, and the wafer placed on this stage is observed with an optical microscope, the position of the detected defect or the like is specified, and the defect or the like is identified. It can be observed by SEM. For example, according to a defect map having an accuracy of several tens of ⁇ m, a defect or the like can be searched for in a range of several hundred nm using a dark field microscope of a defect observation device, and the position of the defect or the like can be identified with an accuracy of several ⁇ m or less. can.
  • Patent Document 1 in a defect observation device including a first imaging unit (optical microscope) and a second imaging unit (SEM), the next imaging of the first imaging unit from among a plurality of imaging means of the first imaging unit is described. Defects detected by the first imaging unit by setting the imaging conditions of the means or the second imaging unit, setting the integrated frame number, acceleration voltage, probe current, imaging magnification or imaging field as the imaging conditions of the second imaging unit. A coordinate correction formula is calculated based on the position information of the above and the information obtained by image acquisition by the first imaging unit, and a defect is imaged using the second imaging unit based on the corrected position information. There is.
  • Patent Document 2 describes holes that are arranged two-dimensionally on an SOI wafer, a shutter pattern that is an optically opaque thin film that covers the holes and is arranged two-dimensionally on an SOI wafer, and is formed on an SOI wafer.
  • An optical filtering device comprising a shutter array with an insulator is disclosed.
  • SOI is an abbreviation for Silicon on Insulator
  • the SOI wafer has a structure in which an oxide insulating film (BOX layer: Burid Oxide layer) and a surface Si film (SOI portion) are formed on a Si substrate. It is a thing.
  • a pupil filter according to the type of defect or the like is required, and a minute shutter having a dimension of 1 mm or less corresponding to various types of defects or the like is required. It is considered that various spatial filters can be formed by opening and closing such a shutter.
  • defects and wafer roughness which is detection noise, are discriminated by utilizing the spatial characteristics and polarization characteristics of various defect scattered lights on the pupil surface.
  • the possibilities were increased by spatial filters and polarizing filters.
  • the shape of the spatial filter that is advantageous for detection differs depending on the type of defect, etc.
  • multiple types of spatial filter and filter switching mechanism are required to improve the detection sensitivity of multiple types of defects. This is because the opening / closing location of the shutter can be selected by using the filter switching mechanism, and a plurality of types of spatial filters can be configured.
  • An object of the present invention is to prevent fatigue destruction of the shutter of a shutter array device (optical filtering device) used in an optical microscope, which is a component of a defect observation device, and to prolong the life of the shutter array device.
  • the optical filtering device of the present invention includes a shutter having a shaft portion and a structure that can be opened and closed, and a substrate having a shutter opening, and has a configuration in which a voltage is applied between the shutter and the substrate.
  • a shutter having a shaft portion and a structure that can be opened and closed
  • a substrate having a shutter opening
  • the present invention it is possible to prevent fatigue destruction of the shutter of the optical filtering device used in the optical microscope, which is a component of the defect observation device, and extend the life of the shutter array device.
  • FIG. 3A is a schematic enlarged view showing a state in which the shutters constituting the shutter array device of FIG. 3A are closed except for a part.
  • FIG. 3 is a schematic enlarged view showing a state in which all the shutters constituting the shutter array device of FIG. 3A are closed.
  • It is a figure which shows the spatial filter corresponding to the state of the shutter array device of FIG. 3A.
  • FIG. 4A is a cross-sectional view taken along the line BB of FIG. 4A.
  • FIG. 4A is a cross-sectional view taken along the line AA of FIG. 4A. It is a top view of the rack of FIG. 4A.
  • FIG. It is a top view which shows the shutter array of Example 4.
  • FIG. It is sectional drawing which shows the shutter array of Example 5.
  • FIG. 1 is a schematic configuration diagram showing a defect observation device.
  • the defect observation device 10 includes a scanning electron microscope 1002 (SEM), an optical microscope 1003 (defect detection unit), a control unit 1006, a terminal 1007, a recording device 1008, and a network 1009. ing.
  • the scanning electron microscope 1002 is installed in the vacuum chamber 1005 together with the stage 1004. Wafer 1001 is placed on the stage 1004. Wafer 1001 can be moved with a stage 1004 that is movable about the X and Y axes. This makes it possible to observe an arbitrary surface of the wafer 1001 with a scanning electron microscope 1002 and an optical microscope 1003.
  • the optical microscope 1003 includes a laser light source 1010, an objective lens 1013, an imaging lens 1015, and an imaging element 1016.
  • the objective lens 1013 is installed in the vacuum chamber 1005. Therefore, the vacuum sealing window 1014 is provided so that the light that has passed through the objective lens 1013 reaches the image sensor 1016.
  • a microlens array 1103, a shutter array device 1101 and a microlens array 1102 are installed between the vacuum sealing window 1014 and the imaging lens 1015 in this order from the vacuum sealing window 1014 side.
  • the light beam emitted from the laser light source 1010 passes through the vacuum sealing window 1011 and is configured to irradiate the upper surface of the wafer 1001 through the mirror 1012.
  • the light reflected on the upper surface of the wafer 1001 passes through the objective lens 1013 and the vacuum sealing window 1014 in order, passes through the microlens array 1103, the shutter array device 1101 and the microlens array 1102 in order, and is imaged by the imaging lens 1015. Then, it is detected by the image pickup element 1016.
  • the image sensor 1016 a two-dimensional CCD sensor, a line CCD sensor, a TDI sensor group in which a plurality of TDIs are arranged in parallel, a photodiode array, and the like are used.
  • CCD is an abbreviation for Charge-Coupled Device.
  • TDI is an abbreviation for Time Delay Integration.
  • the scanning electron microscope 1002 and the optical microscope 1003 are fixed so as to maintain an accurate distance.
  • the control unit 1006 includes a stage control circuit 1018, an SEM imaging system control circuit 1019, an image processing circuit 1020, an external input / output interface 1021, a central processing unit 1022 (CPU), and a memory 1023.
  • the stage control circuit 1018, the SEM imaging system control circuit 1019, and the image processing circuit 1020 are connected to the external input / output interface 1021, the central calculation unit 1022, and the memory 1023 via the bus 1024.
  • the stage control circuit 1018, the SEM imaging system control circuit 1019, and the image processing circuit 1020 are circuits for moving the wafer 1001, observing defects on the surface of the wafer 1001, and other operations.
  • the image processing circuit 1020 integrates the signals of the image acquired by the image sensor 1016, performs data conversion and the like, discriminates the type of defects and the like, and identifies the positions and dimensions thereof. Information on the results of discrimination, identification, etc. will be referred to as "defect information" in the present specification.
  • the defect information is input to the recording device 1008 or the memory 1023.
  • the memory 1023 is mainly used for temporary storage.
  • the recording device 1008 can be used to store and store the acquired defect information.
  • the stage control circuit 1018 controls the stage 1004 and the SEM imaging system control circuit 1019 controls the scanning electron microscope 1002 based on the defect information. Then, the control unit 1006 observes some or all of the defects detected by the optical microscope 1003 in detail, classifies the defects and the like, analyzes the cause of the defects, and the like. Further, the control unit 1006 also controls the focus and output of the SEM image, controls the analysis, analyzes the data obtained by the scanning electron microscope 1002, and corrects the positions of defects and the like obtained by the optical microscope 1003. Further, the control unit 1006 can also perform display on the terminal 1007, data transfer via the network 1009, and the like.
  • the terminal 1007 conditions for observing defects and the like are set. Further, in the terminal 1007, parameters for controlling the scanning electron microscope 1002, the optical microscope 1003, and the stage 1004 are set. Further, in the terminal 1007, settings related to the opening / closing operation of the shutter (described later) of the shutter array device 1101 are also made. Further, in the terminal 1007, the angle (opening angle) when the shutter is opened can be adjusted to an appropriate value. In this case, a method of adjusting the voltage applied to the shutter array device 1101 may be adopted while checking the image obtained by the image sensor 1016 into a pupil image on the terminal 1007. As a result, it is possible to prevent failures such as adhesion to the substrate and damage to the shaft portion of the shutter caused by excessive opening of the shutter.
  • a force acts as an elastic body that tries to return to the closed state against the stress in the open state of the shutter.
  • the opening angle is determined by the balance between this force and the electrostatic force for opening the shutter generated by applying the voltage. Therefore, the opening angle can be adjusted by adjusting the above voltage.
  • the upper limit of the shutter opening angle is determined by the above voltage.
  • FIG. 2 is a schematic configuration diagram showing an optical microscope which is a defect detection unit of a defect observation device.
  • the optical microscope 20 includes an image sensor 100 (sensor), an imaging lens 101, and an objective lens 102.
  • Microlens arrays 106 and 107 are installed between the imaging lens 101 and the objective lens 102.
  • a shutter array device 200 (optical filtering device) is installed between the microlens arrays 106 and 107.
  • the microlens arrays 106, 107 and the shutter array device 200 are installed near the pupil surface of the optical microscope 20.
  • the objective lens 102 is configured such that the light beam 300 radiated from the laser light source 103 to the wafer 104 is reflected on the surface of the wafer 104 and the reflected light 301 is incident on the wafer 104.
  • the light that has passed through the objective lens 102 passes through the pupil surface (Fourier transform surface) and the imaging lens 101, reaches the image pickup element 100, and is detected as an electrical signal.
  • the light beam 300 emitted from the laser light source 103 passes through the vacuum sealing window 351 and is reflected by the mirror 352 to irradiate the wafer 104.
  • the defect 108 When the defect 108 is present on the wafer 104, the light ray 300 that hits the defect 108 is reflected, and a reflected light 301 different from the usual one is generated.
  • the reflected light 301 can be detected by the image pickup device 100, and the data corresponding to the image of the defect 108 can be acquired by the image processing circuit 1020 of FIG. By moving the stage 105, the defect 108 existing on the surface of the wafer 104 can be found.
  • FIG. 3A is a schematic enlarged view showing a shutter array device and a microlens array.
  • the shutter array device 200 is installed between the microlens arrays 106 and 107. All shutters 220 of the shutter array device 200 are open. Therefore, the reflected light 302 passing through the shutter array device 200 converges and focuses at the shutter opening 304 to become the light 303.
  • FIG. 3B shows a state in which a part of the shutter 220 other than the shutter 220 is closed. Further, FIG. 3C shows a state in which all shutters 210 are closed. As described above, the plurality of shutters 210 and 220 have a configuration in which each of the shutters 210 and 220 can be opened and closed independently.
  • 3D, 3E and 3F show spatial filters corresponding to the states shown in FIGS. 3A, 3B and 3C, respectively.
  • 3D, 3E and 3F are views viewed from above or below the shutter 220.
  • the shutter closed state 211 is shown in black, and the shutter open state 221 is shown in white.
  • a plurality of types of spatial filters can be configured by individually ON / OFF controlling each pixel of the shutter array device 200.
  • the shutters 210 and 220 of the shutter array device 200 and the lenses of the microlens arrays 106 and 107 are arranged in 3 rows and 3 columns, but this is an example and is necessary. Depending on the situation, a larger matrix may be formed.
  • FIG. 4A is a perspective view showing the shutter array device of the first embodiment.
  • the shutter array device 200 shown in this figure has a shutter array 205, an electrode array 206, and a rack 260 (pedestal).
  • the shutter array 205 and the electrode array 206 have a substrate 201 and are fixed to the rack 260.
  • the shutter array 205 and the electrode array 206 each have a rectangular parallelepiped shape, and are installed on a slope having a concavo-convex structure provided on the rack 260.
  • the shutter array 205 and the electrode array 206 are installed on the slope of the rack 260.
  • the shutter array 205 and the electrode array 206 are configured to be inclined with respect to the bottom surface of the rack 260.
  • the substrate 201 is divided by the substrate division slit 202.
  • the shutter array 205 and the electrode array 206 are adhesively fixed on the adhesive surface 250 with a conductive adhesive to ensure electrical continuity.
  • the shutter array 205 and the electrode array 206 are adhesively fixed to the rack wiring 261 provided on the rack 260 and the adhesive surface 251 with a conductive adhesive, respectively, to ensure electrical continuity.
  • a conductive adhesive film, solder, or the like may be used, or a metal bond or the like using Au-Au, Cu-Cu, Cu-Sn, or the like may be used.
  • shutters 212 (opening and closing plates) are arranged in a matrix of 3 rows and 3 columns, and 3 electrode arrays 206 are arranged on both sides thereof, but the present invention is limited thereto.
  • the shutter 212 may be arranged in a matrix of 30 rows and 30 columns together with a large number of electrode arrays 206.
  • a plurality of shutters 212 are arranged so as to be adjacent to each other.
  • the shutter array 205 and the electrode array 206 have a rectangular parallelepiped shape in which one dimension (length, width, height, respectively) is approximately 1 mm ⁇ 3 mm ⁇ 1 mm.
  • FIG. 4B shows one shutter array
  • the shutter array 205 has an insulating layer 270 provided between one shutter support portion 203 in which three shutters 212 are arranged in a row, three substrates 201, and the shutter support portions 203 and the substrate 201. And have.
  • Substrate dividing slits 202a and 202b are provided between adjacent substrates 201.
  • the substrate 201 is divided by the substrate dividing slits 202a and 202b.
  • the insulating layer 270 is integrated in the same manner as the shutter support portion 203.
  • the insulating layer 270 insulates the shutter support portion 203 and the substrate 201 so that different voltages can be applied to each of them.
  • the shutter 212, the shutter support portion 203, and the substrate 201 are made of silicon (Si).
  • the insulating layer 270 is made of silica (SiO 2 ).
  • FIG. 4C shows one electrode array
  • the electrode array 206 has three electrode plates 207 that do not have a shutter and three substrates 201.
  • Substrate dividing slits 202a and 202b are provided between adjacent substrates 201.
  • the substrate 201 is divided by the substrate dividing slits 202a and 202b.
  • the electrode plate 207 is also divided by slits 204a and 204b.
  • the electrode array 206 is not provided with an insulating layer.
  • the substrate 201 and the electrode plate 207 are electrically connected to each other.
  • the substrate 201 and the electrode plate 207 are divided into three by the substrate dividing slits 202a and 202b and the slits 204a and 204b, and different voltages can be applied to these three.
  • the adjacent substrates 201 are connected with an insulating adhesive.
  • the electrode plate 207 can be used as a terminal for connecting the substrate 201 and the outside.
  • a wire 240 is connected to the end of the shutter support portion 203.
  • a wire 241 is connected to the electrode plate 207.
  • the wires 240 and 241 are fixed by wire bonding or the like. As a result, the voltage can be set to ON or OFF and applied for the opening / closing operation of the shutter 212.
  • FIG. 5 shows a BB cross section of FIG. 4A.
  • the rack 260 is provided with a plurality of rack openings 263 perpendicular to the bottom surface of the rack 260. Then, the shutter array 205 is installed so that the shutter opening 264 communicates with each rack opening 263. The shutter opening 264 is provided perpendicular to the upper surface of the shutter support 203.
  • the width of the rack opening 263 is 700 ⁇ m.
  • the width of the rack opening 263 is preferably 100 to 1000 ⁇ m.
  • the shutter 212 is parallel to the upper surface of the shutter support portion 203 in the closed state (shutter closed 223).
  • the shutter angle 280 opening angle
  • a rack insulating layer 262 is provided on the upper surface of the rack 260, and rack wiring 261 is formed on the surface of the rack insulating layer 262.
  • the rack wiring 261 and the rack insulating layer 262 are also provided between the shutter array 205 and the rack 260 and between the electrode array 206 and the rack 260.
  • the electrical connection between the rack wiring 261 and the substrate 201 is made via a substrate bottom surface 232 and a substrate side surface 233 using a conductive adhesive.
  • the rack 260 has a rack wiring 261 that is electrically connected to the substrate 201.
  • the lower end portion of the shutter 212 having an opening angle of less than 90 degrees and the inner wall surface of the substrate 201 facing the upper surface (right side surface in the drawing) of the shutter 212.
  • the distance between them is the smallest at the shutter opening 264.
  • the shaft portion of the shutter 212 protrudes above the rack opening 263.
  • the inner wall surface of the substrate 201 on the shaft portion side of the shutter 212 partially covers the rack opening 263.
  • the distance between the surface extending the upper surface of the shutter 212 downward and the lower end of the inner wall surface of the substrate 201 facing the upper surface of the shutter 212 is determined. It is smaller than the width of the rack opening 263 and the shutter opening 264. That is, the effective aperture ratio of the shutter array 205 is low.
  • the effective opening ratio is defined as a ratio (percentage) calculated with the width of the shutter opening 264 as the denominator and the above minimum distance as the numerator.
  • the light passing through the rack opening 263 and the shutter opening 264 is adjusted so as to converge to the above minimum distance or less and focus in a region where the width of the rack opening 263 or the shutter opening 264 is small.
  • the angle at which the light converges is such that the reflected light 302 and the light 303 do not collide with the inner wall surface of the substrate 201 and the shutter 212.
  • the inclination of the substrate 201 is small, that is, the inclination of the shutter opening 264 with respect to the rack opening 263 is small.
  • the shutter angle 280 is preferably in the range of 85 degrees to 60 degrees, more preferably in the range of 80 degrees to 60 degrees, and particularly preferably in the range of 75 degrees to 60 degrees.
  • the meaning of the lower limit value "60 degrees" in the above range is an effective aperture ratio in a configuration in which the inclination of the substrate 201 is 0 degrees, that is, in a configuration in which the inner wall surfaces of the rack opening 263 and the shutter opening 264 are parallel.
  • the value is 50% or more.
  • the effective opening ratio is less than 50%, it is desirable from the viewpoint that the degree of convergence of light passing through the rack opening 263 and the shutter opening 264 becomes a problem, and the distance between adjacent shutter openings 264 becomes large. No.
  • the upper limit of the shutter angle 280 can be a value obtained by subtracting the inclination of the substrate 201 from 90 degrees.
  • FIG. 6 shows the AA cross section of FIG. 4A.
  • FIG. 6 shows the states of the shutter open 213 and the shutter closed 223.
  • FIG. 7 is a top view of the rack 260 of FIG. 4A.
  • the rack wiring 261 is formed so as to electrically connect the upper surface edges of the rack openings 263 adjacent to each other in the lateral direction in the drawing, including the slope of the uneven structure provided on the rack 260. ..
  • An insulating portion 265 is provided between the adjacent rack wirings 261 in parallel with the rack wirings 261 so as not to be electrically conductive.
  • FIG. 8 is a cross-sectional view showing the shutter array device of the second embodiment.
  • the height of the substrate 201 is lower than that in the first embodiment shown in FIG.
  • Other configurations are the same as in FIG.
  • the length of the shutter opening 264 bent with respect to the rack opening 263 is shortened, and the opening area through which the optical axis passes at the shutter opening 213 can be widened. .. Further, even if the opening angle of the shutter 212 is further reduced, the opening area can be secured.
  • the electrode array 206 is formed by forming the rack wiring 261 so as to form an appropriate circuit and connecting wiring such as a wire to the shutter support portion 203 in order to change the potentials of the shutter support portion 203 and the shutter 212. Can be omitted.
  • FIG. 9 is a cross-sectional view showing the shutter array device of the third embodiment.
  • the height of the substrate 201 is lowered as in the second embodiment shown in FIG.
  • the ends of adjacent shutter arrays 205 are arranged so as to overlap each other.
  • the substrate 201 of the shutter array 205 is arranged so as to partially cover the upper part of the shutter support portion 203 of the adjacent shutter array 205.
  • a gap 290 is provided in a portion where the substrate 201 and the shutter support portion 203 overlap.
  • the electrode array 206 is also arranged so as to overlap in the same manner. Since the gap 290 is provided, the substrate 201 and the lower shutter support portion 203 are not in contact with each other. As a result, insulation can be ensured and short circuits can be prevented. Instead of providing the gap 290, an insulating material may be sandwiched.
  • the distance between adjacent shutter openings 264 can be set narrow.
  • the degree of integration of the shutter array 205 can be increased, and the pattern of the spatial filter can also be increased.
  • FIG. 10A shows a shutter array of a comparative example.
  • the shutter 212 shown in this figure is in a state of being opened too much and is in close contact with the inner wall surface 282 of the substrate 201. In this case, there is a concern that the attached shutter 212 will not be separated from the inner wall surface 282 and the opening / closing function cannot be obtained.
  • FIG. 10B shows the shutter array of Example 4.
  • the convex portion 281 is provided on the inner wall surface 282 of the substrate 201 so that the contact of the shutter 212 becomes a part. As a result, the shutter 212 can be prevented from being fixed in the open state. Further, the convex portion 281 sets an upper limit value of the opening angle of the shutter 212.
  • FIG. 5 and the like show a configuration in which the upper surface of the shutter array intersects the optical axis diagonally when the shutter 212 is closed
  • the upper surface of the shutter array is formed.
  • the shutter 212 may be configured to intersect with the optical axis substantially perpendicularly.
  • FIG. 10C is a top view of the shutter array of this embodiment.
  • Two convex portions 281 shown in this figure are provided in the vertical direction so as to support the shutter 212 with a small area when the shutter is opened 213.
  • FIG. 11 shows the shutter array of Example 5.
  • a convex portion 283 is provided on a part of the lower surface of the shutter 212. This prevents the shutter 212 from adhering to the substrate 201 and getting stuck when the shutter 212 is opened too much.
  • FIG. 12A shows the shutter array of Example 6.
  • the shutter opening 264 of the substrate 201 is tilted with respect to the bottom surface of the shutter support 203.
  • FIG. 12B shows a state in which the shutter array of this embodiment is installed in a rack.
  • the inner wall surface of the rack opening 263 is the shutter opening when the shutter array 205 is installed in the rack 260 at a predetermined angle. It is substantially parallel to the inner wall surface of 264. In other words, the rack opening 263 and the shutter opening 264 communicate with each other substantially in parallel. As a result, the rack opening 263 and the shutter opening 264 can be arranged substantially parallel to the optical axis.
  • the shutter 212 is the inner wall surface of the shutter opening 264 even when the opening angle of the shutter 212 is maximized.
  • the convex portion 281 of FIG. 10B or the convex portion 283 of FIG. 11 is provided, the convex portion 281 of FIG.
  • the spot diameter focused on each shutter 212 by the microlens array can be increased, and the design margin of the microlens can be increased. This also contributes to cost reduction of the microlens.
  • the shutter array of this embodiment can be formed by tilting the substrate 201 and setting it in the dry etching apparatus when the silicon of the substrate 201 is etched and removed by using the dry etching apparatus.
  • FIG. 13 is a top view showing the details of the shutter array of the seventh embodiment.
  • the shutter 2001 that opens and closes is supported by the shutter support portion 2002 that constitutes the same plane via the twist rod 284 (shaft portion).
  • the shutter 2001 is connected near the center of the torsion bar 284.
  • a slit 2003 is provided between the shutter 2001 and the shutter support portion 2002.
  • a slit 2004 is provided between the shutter support portion 2002 and the twist rod 284.
  • the twist rod 284 has a linear central axis and a square cross section, a rectangular shape, a circular shape, an elliptical shape, or the like. Mechanically, a circular shape is desirable, but from the viewpoint of ease of manufacture, a square shape or a rectangular shape is preferable.
  • the shutter 2001 When the shutter 2001 is opened, a torsional stress is generated on the torsion rod 284.
  • an electrostatic force accompanying the application of a voltage acts, the shutter 2001 opens, so that a torsional stress is generated.
  • the electrostatic force disappears, the shutter 2001 closes, and the torsional stress disappears.
  • the torsion rod 284 functions as a torsion rod spring (elastic body).
  • the shutter 2001 has a single door structure with a twist rod 284 as a shaft.
  • the opening angle of the shutter 2001 is preferably smaller than 90 degrees in consideration of fatigue fracture of the torsion rod 284 and its surroundings.
  • FIG. 14 is a top view showing the details of the shutter array of the eighth embodiment.
  • the shutter 2001 that opens and closes is supported by the shutter support portion 2002 that constitutes the same plane via the meander rod 285 (shaft portion).
  • a slit 2004 is provided between the shutter support portion 2002 and the meander rod 285.
  • the Mianda rod 285 has, for example, a sinusoidal shape or the like, and has a square cross section, a rectangular shape, a circular shape, an elliptical shape, or the like.
  • FIG. 15 schematically shows a cross section of the shutter array.
  • a voltage is applied to the shutter 212 so as to have a positive potential (V1) via the shutter support portion 203, and to the substrate 201 so as to have a negative potential (V2).
  • An electrostatic force is generated by the potential difference generated by this, and the shutter 212 opens.
  • the lower surface of the shutter 212 is positively charged, and the inner wall surface 282 of the substrate 201 is negatively charged. This causes the shutter 212 to rotate around the shaft, resulting in the shutter opening.
  • the applied voltage is 20 to 200V.
  • the present invention is not limited to the above example because it changes depending on the size of the shutter 212.
  • Shutter array, electrode array, rack, etc. are formed by combining surface oxidation treatment of silicon used in the semiconductor manufacturing process, photolithography, etching, vapor deposition, ion implantation, etc., and parts are assembled.
  • the shutter array device as an integral body may be manufactured.
  • 10 Defect observation device, 20: Optical microscope, 100: Imaging element, 101: Imaging lens, 102: Objective lens, 103: Laser light source, 104: Wafer, 106, 107, 1102: Microlens array, 108: Defect, 200, 1101: Shutter array device, 201: Substrate, 202, 202a, 202b: Substrate division slit, 203, 2002: Shutter support, 204a, 204b: Slit, 205: Shutter array, 206: Electrode array, 207: Electrode plate , 211: Shutter closed, 212, 220, 2001: Shutter, 221: Shutter open, 240, 241: Wire, 250, 251: Adhesive surface, 260: Rack, 261: Rack wiring, 263: Rack opening, 264 : Shutter opening, 265: Insulation, 270: Insulation layer, 281, 283: Convex, 282: Inner wall surface, 284: Twist rod, 285: Mi

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

The present invention is a light filtering device comprising a shutter (212) that has an axis part and has an openable/closable configuration, and a substrate (201) that has a shutter opening part (264), the light filtering device having a configuration wherein voltage is applied between the shutter (212) and the substrate (201), the shutter (212) rotates around the axis part and moves to the shutter opening part (264) and thus is brought into a opening state, and the opening angle (280) of the shutter is adjusted to less than 90 degrees. Accordingly, fatigue fracture of the shutter of the light filtering device to be used for an optical microscope, which is a component of a defect observation apparatus, is prevented, and the life of a shutter array device can be prolonged.

Description

光フィルタリングデバイス、光学顕微鏡及び欠陥観察装置Optical filtering device, light microscope and defect observation device
 本発明は、光フィルタリングデバイス、光学顕微鏡及び欠陥観察装置に関する。 The present invention relates to an optical filtering device, an optical microscope and a defect observation device.
 欠陥観察装置は、半導体製造ライン等において半導体の基板であるウエハの表面に生じる各種の欠陥、異物等(以下「欠陥等」という。)のレビュー、分類等を行う走査型電子顕微鏡(SEM)等を備えている。 Defect observation devices include scanning electron microscopes (SEMs) that review and classify various defects, foreign substances, etc. (hereinafter referred to as "defects, etc.") that occur on the surface of wafers that are semiconductor substrates in semiconductor manufacturing lines, etc. It has.
 欠陥観察装置は、光学顕微鏡を更に備えていることが望ましい。欠陥観察装置は、光学顕微鏡を制御し、ウエハ表面の欠陥等を効率よく自動的に検出し、座標アライメントを行う機能を有する。光学顕微鏡により検出した微小な欠陥等については、SEMを制御することにより、その形状を詳しく観察し、成分分析することができる。光学顕微鏡は、暗視野光学顕微鏡(DFOM:Dark Field Optical Microscope)として使用可能なものが望ましい。 It is desirable that the defect observation device is further equipped with an optical microscope. The defect observation device has a function of controlling an optical microscope, efficiently and automatically detecting defects on the wafer surface, and performing coordinate alignment. By controlling the SEM, the shape of minute defects detected by an optical microscope can be observed in detail and the components can be analyzed. It is desirable that the optical microscope can be used as a dark field optical microscope (DFOM: Dark Field Optical Microscope).
 また、欠陥観察装置は、SEM像、欠陥等の分類データ、元素分析データ等を自動的に出力する機能を有し、出力されたデータから欠陥マップを作成することもできる。さらに、欠陥観察装置は、作成した欠陥マップを元に、欠陥等の観察、分類及び分析を行うこともできる。このため、欠陥観察装置は、レビューSEMとも呼ばれている。また、欠陥レビューSEM(Defect Review-SEM)又はウエハ検査SEMとも呼ばれている。 In addition, the defect observation device has a function of automatically outputting SEM images, classification data such as defects, elemental analysis data, etc., and can also create a defect map from the output data. Further, the defect observation device can also observe, classify, and analyze defects and the like based on the created defect map. For this reason, the defect observation device is also called a review SEM. It is also called a defect review SEM (Defect Review-SEM) or a wafer inspection SEM.
 言い換えると、欠陥観察装置において、光学顕微鏡とSEMとは共通のステージを有し、このステージに載置したウエハについて、光学顕微鏡で観察し、検出した欠陥等の位置を特定し、その欠陥等をSEMにより観察することができる。例えば、数十μmの精度を有する欠陥マップに従って、欠陥観察装置の暗視野顕微鏡を用いて数百nmの範囲で欠陥等を探索し、数μm以下の精度で欠陥等の位置を特定することができる。 In other words, in the defect observation device, the optical microscope and the SEM have a common stage, and the wafer placed on this stage is observed with an optical microscope, the position of the detected defect or the like is specified, and the defect or the like is identified. It can be observed by SEM. For example, according to a defect map having an accuracy of several tens of μm, a defect or the like can be searched for in a range of several hundred nm using a dark field microscope of a defect observation device, and the position of the defect or the like can be identified with an accuracy of several μm or less. can.
 これにより、光学顕微鏡とSEMとの座標系の乖離を補正し、欠陥観察の成功率を向上させ、高いスループットを維持することができる。また、半導体デバイスの製造工程において、配線の絶縁不良や短絡等の不良の原因になる欠陥等を早期に検出し、その発生源を突き止め、歩留まり低下を防ぐことができる。 This makes it possible to correct the deviation of the coordinate system between the optical microscope and the SEM, improve the success rate of defect observation, and maintain high throughput. Further, in the manufacturing process of a semiconductor device, it is possible to detect a defect that causes a defect such as a wiring insulation defect or a short circuit at an early stage, identify the source thereof, and prevent a decrease in yield.
 特許文献1には、第一撮像部(光学顕微鏡)及び第二撮像部(SEM)を備えた欠陥観察装置において、第一撮像部の複数の撮像手段の中から第一撮像部の次の撮像手段又は第二撮像部の撮像条件を設定し、第二撮像部の撮像条件として、積算フレーム枚数、加速電圧、プローブ電流、撮像倍率又は撮像視野を設定し、第一撮像部によって検出された欠陥の位置情報と第一撮像部による画像取得により得られた情報に基づいて座標補正式を算出し、補正された位置情報に基づいて第二撮像部を用いて欠陥を撮像するものが開示されている。 In Patent Document 1, in a defect observation device including a first imaging unit (optical microscope) and a second imaging unit (SEM), the next imaging of the first imaging unit from among a plurality of imaging means of the first imaging unit is described. Defects detected by the first imaging unit by setting the imaging conditions of the means or the second imaging unit, setting the integrated frame number, acceleration voltage, probe current, imaging magnification or imaging field as the imaging conditions of the second imaging unit. A coordinate correction formula is calculated based on the position information of the above and the information obtained by image acquisition by the first imaging unit, and a defect is imaged using the second imaging unit based on the corrected position information. There is.
 特許文献2には、SOIウェハに2次元状に配列する孔部と、孔部を覆う光学的に不透明な薄膜であってSOIウェハ上に2次元状に配列したシャッタパターンと、SOIウェハに形成された動作電極と、を有するシャッタアレイを備えた、光学フィルタリングデバイスが開示されている。ここで、SOIは、Silicon on Insulatorの略称であり、SOIウェハは、Si基板の上に、酸化絶縁膜(BOX層:Buried Oxide 層)、表面Si膜(SOI部)が形成された構造を有するものである。 Patent Document 2 describes holes that are arranged two-dimensionally on an SOI wafer, a shutter pattern that is an optically opaque thin film that covers the holes and is arranged two-dimensionally on an SOI wafer, and is formed on an SOI wafer. An optical filtering device comprising a shutter array with an insulator is disclosed. Here, SOI is an abbreviation for Silicon on Insulator, and the SOI wafer has a structure in which an oxide insulating film (BOX layer: Burid Oxide layer) and a surface Si film (SOI portion) are formed on a Si substrate. It is a thing.
特開2019-132637号公報Japanese Unexamined Patent Publication No. 2019-132637 特許第5867736号公報Japanese Patent No. 5867736
 暗視野顕微鏡においては、欠陥等の種類に応じた瞳フィルタが必要であり、多種類の欠陥等に対応する1mm以下の寸法を有する微小なシャッタが求められている。このようなシャッタを開閉させることにより、多様な空間フィルタを形成することができると考えられる。 In a dark-field microscope, a pupil filter according to the type of defect or the like is required, and a minute shutter having a dimension of 1 mm or less corresponding to various types of defects or the like is required. It is considered that various spatial filters can be formed by opening and closing such a shutter.
 このようなシャッタを使わない従来の暗視野光学系による欠陥検出においては、各種の欠陥散乱光の瞳面における空間特性及び偏光特性を利用して、欠陥と、検出ノイズとなるウエハラフネスとの判別可能性を空間フィルタ及び偏光フィルタにより高めていた。 In defect detection using a conventional dark-field optical system that does not use such a shutter, defects and wafer roughness, which is detection noise, are discriminated by utilizing the spatial characteristics and polarization characteristics of various defect scattered lights on the pupil surface. The possibilities were increased by spatial filters and polarizing filters.
 欠陥等の種類によって検出に有利な空間フィルタの形状が異なるため、複数種の欠陥の検出感度向上のためには、複数種の空間フィルタとフィルタ切り替え機構とが必要である。フィルタ切り替え機構を用いることにより、シャッタの開閉箇所を選択することができ、複数種の空間フィルタを構成することができるからである。 Since the shape of the spatial filter that is advantageous for detection differs depending on the type of defect, etc., multiple types of spatial filter and filter switching mechanism are required to improve the detection sensitivity of multiple types of defects. This is because the opening / closing location of the shutter can be selected by using the filter switching mechanism, and a plurality of types of spatial filters can be configured.
 シャッタの開閉動作の際には、弾性変形する軸部であるサスペンション部に発生する変形量が大きくなる。このため、開閉動作の繰り返しにより、シャッタの軸部及びその周辺部における疲労破壊が発生しやすくなり、シャッタの寿命の短くなることが懸念される。 When the shutter is opened and closed, the amount of deformation generated in the suspension portion, which is the shaft portion that elastically deforms, increases. Therefore, repeated opening and closing operations are likely to cause fatigue failure in the shaft portion of the shutter and its peripheral portion, and there is a concern that the life of the shutter may be shortened.
 本発明は、欠陥観察装置の構成要素である光学顕微鏡に用いるシャッタアレイデバイス(光フィルタリングデバイス)のシャッタの疲労破壊を防止し、シャッタアレイデバイスの寿命を長くすることを目的とする。 An object of the present invention is to prevent fatigue destruction of the shutter of a shutter array device (optical filtering device) used in an optical microscope, which is a component of a defect observation device, and to prolong the life of the shutter array device.
 本発明の光フィルタリングデバイスは、軸部を有し開閉可能な構成を有するシャッタと、シャッタ開口部を有する基板と、を備え、シャッタと基板との間に電圧を印加する構成を有し、シャッタは、軸部の周りに回転しシャッタ開口部に移動することにより開状態となる構成を有し、シャッタの開き角は、90度未満に調整される構成を有する。 The optical filtering device of the present invention includes a shutter having a shaft portion and a structure that can be opened and closed, and a substrate having a shutter opening, and has a configuration in which a voltage is applied between the shutter and the substrate. Has a configuration in which it is opened by rotating around a shaft portion and moving to a shutter opening, and has a configuration in which the opening angle of the shutter is adjusted to less than 90 degrees.
 本発明によれば、欠陥観察装置の構成要素である光学顕微鏡に用いる光フィルタリングデバイスのシャッタの疲労破壊を防止し、シャッタアレイデバイスの寿命を長くすることができる。 According to the present invention, it is possible to prevent fatigue destruction of the shutter of the optical filtering device used in the optical microscope, which is a component of the defect observation device, and extend the life of the shutter array device.
実施形態に係る欠陥観察装置を示す模式構成図である。It is a schematic block diagram which shows the defect observation apparatus which concerns on embodiment. 図1の欠陥観察装置の欠陥検出部である光学顕微鏡を示す模式構成図である。It is a schematic block diagram which shows the optical microscope which is the defect detection part of the defect observation apparatus of FIG. シャッタアレイデバイス及びマイクロレンズアレイを示す模式拡大図である。It is a schematic enlarged view which shows the shutter array device and the microlens array. 図3Aのシャッタアレイデバイスを構成するシャッタが一部を除き閉じた状態を示す模式拡大図である。FIG. 3A is a schematic enlarged view showing a state in which the shutters constituting the shutter array device of FIG. 3A are closed except for a part. 図3Aのシャッタアレイデバイスを構成するシャッタの全てが閉じた状態を示す模式拡大図である。FIG. 3 is a schematic enlarged view showing a state in which all the shutters constituting the shutter array device of FIG. 3A are closed. 図3Aのシャッタアレイデバイスの状態に対応する空間フィルタを示す図である。It is a figure which shows the spatial filter corresponding to the state of the shutter array device of FIG. 3A. 図3Bのシャッタアレイデバイスの状態に対応する空間フィルタを示す図である。It is a figure which shows the spatial filter corresponding to the state of the shutter array device of FIG. 3B. 図3Cのシャッタアレイデバイスの状態に対応する空間フィルタを示す図である。It is a figure which shows the spatial filter corresponding to the state of the shutter array device of FIG. 3C. 実施例1のシャッタアレイデバイスを示す斜視図である。It is a perspective view which shows the shutter array device of Example 1. FIG. 1個のシャッタアレイを示す斜視図である。It is a perspective view which shows one shutter array. 1個の電極アレイを示す斜視図である。It is a perspective view which shows one electrode array. 図4AのB-B断面図である。FIG. 4A is a cross-sectional view taken along the line BB of FIG. 4A. 図4AのA-A断面図である。FIG. 4A is a cross-sectional view taken along the line AA of FIG. 4A. 図4Aのラックの上面図である。It is a top view of the rack of FIG. 4A. 実施例2のシャッタアレイデバイスを示す断面図である。It is sectional drawing which shows the shutter array device of Example 2. FIG. 実施例3のシャッタアレイデバイスを示す断面図である。It is sectional drawing which shows the shutter array device of Example 3. FIG. 比較例のシャッタアレイを示す断面図である。It is sectional drawing which shows the shutter array of the comparative example. 実施例4のシャッタアレイを示す断面図である。It is sectional drawing which shows the shutter array of Example 4. FIG. 実施例4のシャッタアレイを示す上面図である。It is a top view which shows the shutter array of Example 4. FIG. 実施例5のシャッタアレイを示す断面図である。It is sectional drawing which shows the shutter array of Example 5. 実施例6のシャッタアレイを示す断面図である。It is sectional drawing which shows the shutter array of Example 6. 実施例6のシャッタアレイをラックに設置した状態を示す断面図である。It is sectional drawing which shows the state which installed the shutter array of Example 6 in a rack. 実施例7のシャッタアレイの詳細を示す上面図である。It is a top view which shows the detail of the shutter array of Example 7. 実施例8のシャッタアレイの詳細を示す上面図である。It is a top view which shows the detail of the shutter array of Example 8. 一実施形態のシャッタアレイを示す模式断面図である。It is a schematic cross-sectional view which shows the shutter array of one Embodiment.
 図1は、欠陥観察装置を示す模式構成図である。 FIG. 1 is a schematic configuration diagram showing a defect observation device.
 本図において、欠陥観察装置10は、走査型電子顕微鏡1002(SEM)と、光学顕微鏡1003(欠陥検出部)と、制御部1006と、端末1007と、記録装置1008と、ネットワーク1009と、を備えている。 In this figure, the defect observation device 10 includes a scanning electron microscope 1002 (SEM), an optical microscope 1003 (defect detection unit), a control unit 1006, a terminal 1007, a recording device 1008, and a network 1009. ing.
 走査型電子顕微鏡1002は、ステージ1004とともに、真空槽1005に設置されている。ステージ1004には、ウエハ1001が載置されるようになっている。ウエハ1001は、X軸及びY軸について移動可能なステージ1004とともに移動させることができる。これにより、ウエハ1001の任意の表面について、走査型電子顕微鏡1002及び光学顕微鏡1003による観察が可能となっている。 The scanning electron microscope 1002 is installed in the vacuum chamber 1005 together with the stage 1004. Wafer 1001 is placed on the stage 1004. Wafer 1001 can be moved with a stage 1004 that is movable about the X and Y axes. This makes it possible to observe an arbitrary surface of the wafer 1001 with a scanning electron microscope 1002 and an optical microscope 1003.
 光学顕微鏡1003は、レーザー光源1010と、対物レンズ1013と、結像レンズ1015と、撮像素子1016と、を備えている。対物レンズ1013は、真空槽1005に設置されている。このため、対物レンズ1013を通過した光が撮像素子1016に到達するように、真空封止窓1014が設けられている。真空封止窓1014と結像レンズ1015との間には、真空封止窓1014側から順に、マイクロレンズアレイ1103、シャッタアレイデバイス1101及びマイクロレンズアレイ1102が設置されている。レーザー光源1010から照射された光線は、真空封止窓1011を通過し、ミラー1012を介してウエハ1001の上面に照射されるように構成されている。 The optical microscope 1003 includes a laser light source 1010, an objective lens 1013, an imaging lens 1015, and an imaging element 1016. The objective lens 1013 is installed in the vacuum chamber 1005. Therefore, the vacuum sealing window 1014 is provided so that the light that has passed through the objective lens 1013 reaches the image sensor 1016. A microlens array 1103, a shutter array device 1101 and a microlens array 1102 are installed between the vacuum sealing window 1014 and the imaging lens 1015 in this order from the vacuum sealing window 1014 side. The light beam emitted from the laser light source 1010 passes through the vacuum sealing window 1011 and is configured to irradiate the upper surface of the wafer 1001 through the mirror 1012.
 ウエハ1001の上面で反射した光は、対物レンズ1013及び真空封止窓1014を順に通過し、マイクロレンズアレイ1103、シャッタアレイデバイス1101及びマイクロレンズアレイ1102を順に通過し、結像レンズ1015で結像されて、撮像素子1016により検出される。撮像素子1016としては、2次元CCDセンサ、ラインCCDセンサ、複数のTDIを平行に配置したTDIセンサ群、フォトダイオードアレイ等が用いられる。ここで、CCDは、Charge-Coupled Deviceの略称である。また、TDIは、Time Delay Integrationの略称である。 The light reflected on the upper surface of the wafer 1001 passes through the objective lens 1013 and the vacuum sealing window 1014 in order, passes through the microlens array 1103, the shutter array device 1101 and the microlens array 1102 in order, and is imaged by the imaging lens 1015. Then, it is detected by the image pickup element 1016. As the image sensor 1016, a two-dimensional CCD sensor, a line CCD sensor, a TDI sensor group in which a plurality of TDIs are arranged in parallel, a photodiode array, and the like are used. Here, CCD is an abbreviation for Charge-Coupled Device. TDI is an abbreviation for Time Delay Integration.
 走査型電子顕微鏡1002と光学顕微鏡1003とは、正確な距離を保つように固定されている。 The scanning electron microscope 1002 and the optical microscope 1003 are fixed so as to maintain an accurate distance.
 制御部1006は、ステージ制御回路1018と、SEM撮像系制御回路1019と、画像処理回路1020と、外部入出力インターフェース1021と、中央演算部1022(CPU)と、メモリ1023と、を有する。ステージ制御回路1018、SEM撮像系制御回路1019及び画像処理回路1020は、バス1024を介して、外部入出力インターフェース1021、中央演算部1022及びメモリ1023と接続されている。ステージ制御回路1018、SEM撮像系制御回路1019及び画像処理回路1020は、ウエハ1001の移動、ウエハ1001の表面の欠陥等の観察その他の操作をするための回路である。画像処理回路1020は、撮像素子1016で取得した画像の信号を積算し、データ変換等を行って、欠陥等の種類の判別、その位置及び寸法の特定等を行う。判別、特定等の結果に関する情報は、本明細書においては「欠陥情報」と呼ぶことにする。 The control unit 1006 includes a stage control circuit 1018, an SEM imaging system control circuit 1019, an image processing circuit 1020, an external input / output interface 1021, a central processing unit 1022 (CPU), and a memory 1023. The stage control circuit 1018, the SEM imaging system control circuit 1019, and the image processing circuit 1020 are connected to the external input / output interface 1021, the central calculation unit 1022, and the memory 1023 via the bus 1024. The stage control circuit 1018, the SEM imaging system control circuit 1019, and the image processing circuit 1020 are circuits for moving the wafer 1001, observing defects on the surface of the wafer 1001, and other operations. The image processing circuit 1020 integrates the signals of the image acquired by the image sensor 1016, performs data conversion and the like, discriminates the type of defects and the like, and identifies the positions and dimensions thereof. Information on the results of discrimination, identification, etc. will be referred to as "defect information" in the present specification.
 欠陥情報は、記録装置1008又はメモリ1023に入力される。メモリ1023は、主として、一時的な保存に用いられる。一方、記録装置1008は、取得された欠陥情報を蓄積し保管するために用いることができる。 The defect information is input to the recording device 1008 or the memory 1023. The memory 1023 is mainly used for temporary storage. On the other hand, the recording device 1008 can be used to store and store the acquired defect information.
 制御部1006においては、欠陥情報に基づいて、ステージ制御回路1018がステージ1004を、SEM撮像系制御回路1019が走査型電子顕微鏡1002を制御する。そして、制御部1006においては、光学顕微鏡1003により検出された欠陥等のいくつか又は全てを詳細に観察し、欠陥等の分類、その発生原因の分析等を行う。また、制御部1006においては、SEM像の焦点や出力の制御、分析の制御、走査型電子顕微鏡1002で得られたデータの解析、光学顕微鏡1003で得られた欠陥等の位置補正等も行う。さらに、制御部1006においては、端末1007への表示、ネットワーク1009経由のデータ転送等も行うことができる。 In the control unit 1006, the stage control circuit 1018 controls the stage 1004 and the SEM imaging system control circuit 1019 controls the scanning electron microscope 1002 based on the defect information. Then, the control unit 1006 observes some or all of the defects detected by the optical microscope 1003 in detail, classifies the defects and the like, analyzes the cause of the defects, and the like. Further, the control unit 1006 also controls the focus and output of the SEM image, controls the analysis, analyzes the data obtained by the scanning electron microscope 1002, and corrects the positions of defects and the like obtained by the optical microscope 1003. Further, the control unit 1006 can also perform display on the terminal 1007, data transfer via the network 1009, and the like.
 端末1007においては、欠陥等の観察に関する条件設定を行う。また、端末1007においては、走査型電子顕微鏡1002、光学顕微鏡1003及びステージ1004を制御するためのパラメータ設定を行う。また、端末1007においては、シャッタアレイデバイス1101のシャッタ(後述)の開閉動作に関する設定も行う。さらに、端末1007においては、シャッタ開のときの角度(開き角)を適正な値に調整することもできるようになっている。この場合においては、撮像素子1016で得られた画像から瞳像に変換した画像を端末1007で確認しながら、シャッタアレイデバイス1101に印加する電圧の調整を行う方法を採用してもよい。これにより、シャッタの開き過ぎにより生じる基板への付着、シャッタの軸部の破損等の故障を防止することができる。 In the terminal 1007, conditions for observing defects and the like are set. Further, in the terminal 1007, parameters for controlling the scanning electron microscope 1002, the optical microscope 1003, and the stage 1004 are set. Further, in the terminal 1007, settings related to the opening / closing operation of the shutter (described later) of the shutter array device 1101 are also made. Further, in the terminal 1007, the angle (opening angle) when the shutter is opened can be adjusted to an appropriate value. In this case, a method of adjusting the voltage applied to the shutter array device 1101 may be adopted while checking the image obtained by the image sensor 1016 into a pupil image on the terminal 1007. As a result, it is possible to prevent failures such as adhesion to the substrate and damage to the shaft portion of the shutter caused by excessive opening of the shutter.
 シャッタの軸部においては、シャッタの開状態における応力に対抗して閉状態に戻ろうとする弾性体としての力が働く。この力と、上記の電圧印加によって発生するシャッタを開こうとする静電力との釣り合いにより、開き角が決定される。よって、上記の電圧を調整することにより、開き角を調整することができる。シャッタの開き角の上限値は、上記の電圧により定められる。 At the shaft of the shutter, a force acts as an elastic body that tries to return to the closed state against the stress in the open state of the shutter. The opening angle is determined by the balance between this force and the electrostatic force for opening the shutter generated by applying the voltage. Therefore, the opening angle can be adjusted by adjusting the above voltage. The upper limit of the shutter opening angle is determined by the above voltage.
 図2は、欠陥観察装置の欠陥検出部である光学顕微鏡を示す模式構成図である。 FIG. 2 is a schematic configuration diagram showing an optical microscope which is a defect detection unit of a defect observation device.
 本図において、光学顕微鏡20は、撮像素子100(センサ)と、結像レンズ101と、対物レンズ102と、を備えている。結像レンズ101と対物レンズ102との間には、マイクロレンズアレイ106、107が設置されている。マイクロレンズアレイ106、107の間には、シャッタアレイデバイス200(光フィルタリングデバイス)が設置されている。マイクロレンズアレイ106、107及びシャッタアレイデバイス200は、光学顕微鏡20の瞳面の近傍に設置されている。 In this figure, the optical microscope 20 includes an image sensor 100 (sensor), an imaging lens 101, and an objective lens 102. Microlens arrays 106 and 107 are installed between the imaging lens 101 and the objective lens 102. A shutter array device 200 (optical filtering device) is installed between the microlens arrays 106 and 107. The microlens arrays 106, 107 and the shutter array device 200 are installed near the pupil surface of the optical microscope 20.
 対物レンズ102は、レーザー光源103からウエハ104に照射された光線300がウエハ104の表面で反射し、その反射光301が入射するように構成されている。対物レンズ102を通過した光は、瞳面(フーリエ変換面)及び結像レンズ101を通過し、撮像素子100に到達し、電気的な信号として検出される。なお、レーザー光源103から照射される光線300は、真空封止窓351を透過し、ミラー352で反射し、ウエハ104に照射されるようになっている。 The objective lens 102 is configured such that the light beam 300 radiated from the laser light source 103 to the wafer 104 is reflected on the surface of the wafer 104 and the reflected light 301 is incident on the wafer 104. The light that has passed through the objective lens 102 passes through the pupil surface (Fourier transform surface) and the imaging lens 101, reaches the image pickup element 100, and is detected as an electrical signal. The light beam 300 emitted from the laser light source 103 passes through the vacuum sealing window 351 and is reflected by the mirror 352 to irradiate the wafer 104.
 ウエハ104に欠陥108が存在する場合は、欠陥108に当たった光線300が反射し、通常と異なる反射光301が発生する。この反射光301を撮像素子100により検出し、図1の画像処理回路1020により欠陥108の像に対応するデータを取得することができる。ステージ105を移動することにより、ウエハ104の表面に存在する欠陥108を見つけることができる。 When the defect 108 is present on the wafer 104, the light ray 300 that hits the defect 108 is reflected, and a reflected light 301 different from the usual one is generated. The reflected light 301 can be detected by the image pickup device 100, and the data corresponding to the image of the defect 108 can be acquired by the image processing circuit 1020 of FIG. By moving the stage 105, the defect 108 existing on the surface of the wafer 104 can be found.
 図3Aは、シャッタアレイデバイス及びマイクロレンズアレイを示す模式拡大図である。 FIG. 3A is a schematic enlarged view showing a shutter array device and a microlens array.
 本図においては、マイクロレンズアレイ106、107の間にシャッタアレイデバイス200が設置されている。シャッタアレイデバイス200のシャッタ220はすべて開となっている。このため、シャッタアレイデバイス200を通過する反射光302は、シャッタ開口部304において収束して焦点を結び、光303となる。 In this figure, the shutter array device 200 is installed between the microlens arrays 106 and 107. All shutters 220 of the shutter array device 200 are open. Therefore, the reflected light 302 passing through the shutter array device 200 converges and focuses at the shutter opening 304 to become the light 303.
 図3Bは、一部のシャッタ220以外が閉じた状態を示したものである。また、図3Cは、全てのシャッタ210が閉じた状態を示したものである。このように、複数個のシャッタ210、220は、それぞれが独立に開閉可能な構成を有する。 FIG. 3B shows a state in which a part of the shutter 220 other than the shutter 220 is closed. Further, FIG. 3C shows a state in which all shutters 210 are closed. As described above, the plurality of shutters 210 and 220 have a configuration in which each of the shutters 210 and 220 can be opened and closed independently.
 図3D、3E及び3Fはそれぞれ、図3A、3B及び3Cに示す状態に対応する空間フィルタを示したものである。図3D、3E及び3Fは、シャッタ220の上方又は下方から見た図である。 3D, 3E and 3F show spatial filters corresponding to the states shown in FIGS. 3A, 3B and 3C, respectively. 3D, 3E and 3F are views viewed from above or below the shutter 220.
 これらの図において、シャッタ閉状態211は黒色で表し、シャッタ開状態221は白色で表している。シャッタアレイデバイス200の画素ごとに個別にON/OFF制御することにより、複数種の空間フィルタ(空間マスク)を構成することができる。なお、図3A、3B及び3Cにおいては、シャッタアレイデバイス200のシャッタ210、220及びマイクロレンズアレイ106、107のレンズは、3行3列で配置されているが、これは一例であって、必要に応じて、更に大規模なマトリクスを形成してもよい。 In these figures, the shutter closed state 211 is shown in black, and the shutter open state 221 is shown in white. A plurality of types of spatial filters (spatial masks) can be configured by individually ON / OFF controlling each pixel of the shutter array device 200. In FIGS. 3A, 3B and 3C, the shutters 210 and 220 of the shutter array device 200 and the lenses of the microlens arrays 106 and 107 are arranged in 3 rows and 3 columns, but this is an example and is necessary. Depending on the situation, a larger matrix may be formed.
 以下、図面を用いて実施例について説明する。 Hereinafter, examples will be described with reference to the drawings.
 図4Aは、実施例1のシャッタアレイデバイスを示す斜視図である。 FIG. 4A is a perspective view showing the shutter array device of the first embodiment.
 本図に示すシャッタアレイデバイス200は、シャッタアレイ205と、電極アレイ206と、ラック260(台座)と、を有している。シャッタアレイ205及び電極アレイ206は、基板201を有し、ラック260に固定されている。シャッタアレイ205及び電極アレイ206は、それぞれが直方体形状であり、ラック260に設けられた凹凸構造の斜面に設置されている。言い換えると、シャッタアレイ205及び電極アレイ206は、ラック260の斜面に設置されている。これにより、シャッタアレイ205及び電極アレイ206は、ラック260の底面に対して傾斜した構成となる。 The shutter array device 200 shown in this figure has a shutter array 205, an electrode array 206, and a rack 260 (pedestal). The shutter array 205 and the electrode array 206 have a substrate 201 and are fixed to the rack 260. The shutter array 205 and the electrode array 206 each have a rectangular parallelepiped shape, and are installed on a slope having a concavo-convex structure provided on the rack 260. In other words, the shutter array 205 and the electrode array 206 are installed on the slope of the rack 260. As a result, the shutter array 205 and the electrode array 206 are configured to be inclined with respect to the bottom surface of the rack 260.
 基板201は、基板分割スリット202で分割されている。 The substrate 201 is divided by the substrate division slit 202.
 シャッタアレイ205及び電極アレイ206は、接着面250で導電性接着剤により接着固定され、電気的導通が確保されている。シャッタアレイ205及び電極アレイ206はそれぞれ、ラック260及び接着面251に設けられたラック配線261に導電性接着剤で接着固定され、電気的導通が確保されている。なお、導電性接着剤の代わりに、導電性接着フィルム、はんだ等を用いてもよいし、Au-Au、Cu-Cu、Cu-Sn等を用いたメタル接合等を利用してもよい。 The shutter array 205 and the electrode array 206 are adhesively fixed on the adhesive surface 250 with a conductive adhesive to ensure electrical continuity. The shutter array 205 and the electrode array 206 are adhesively fixed to the rack wiring 261 provided on the rack 260 and the adhesive surface 251 with a conductive adhesive, respectively, to ensure electrical continuity. Instead of the conductive adhesive, a conductive adhesive film, solder, or the like may be used, or a metal bond or the like using Au-Au, Cu-Cu, Cu-Sn, or the like may be used.
 本図においては、シャッタ212(開閉板)が3行3列のマトリクス状に配置され、その両側にそれぞれ3個ずつの電極アレイ206が配置されているが、本発明は、これに限定されるものではなく、例えば、多数の電極アレイ206とともに、シャッタ212が30行30列のマトリクス状に配置された構成であってもよい。まとめると、シャッタ212は、複数個が隣り合うように配置されている。 In this figure, shutters 212 (opening and closing plates) are arranged in a matrix of 3 rows and 3 columns, and 3 electrode arrays 206 are arranged on both sides thereof, but the present invention is limited thereto. However, for example, the shutter 212 may be arranged in a matrix of 30 rows and 30 columns together with a large number of electrode arrays 206. In summary, a plurality of shutters 212 are arranged so as to be adjacent to each other.
 シャッタアレイ205及び電極アレイ206は、1個の寸法(縦、横、高さのそれぞれ)がおおよそ1mm×3mm×1mmの直方体形状である。 The shutter array 205 and the electrode array 206 have a rectangular parallelepiped shape in which one dimension (length, width, height, respectively) is approximately 1 mm × 3 mm × 1 mm.
 図4Bは、1個のシャッタアレイを示したものである。 FIG. 4B shows one shutter array.
 本図において、シャッタアレイ205は、3つのシャッタ212が一列に配置された1つのシャッタ支持部203と、3つの基板201と、シャッタ支持部203と基板201との間に設けられた絶縁層270と、を有している。隣り合う基板201の間には、基板分割スリット202a、202bが設けられている。言い換えると、基板201は、基板分割スリット202a、202bで分割されている。絶縁層270は、シャッタ支持部203と同様に一体となっている。絶縁層270により、シャッタ支持部203と基板201とは絶縁され、それぞれに対して異なる電圧を印加することができるようなっている。 In this figure, the shutter array 205 has an insulating layer 270 provided between one shutter support portion 203 in which three shutters 212 are arranged in a row, three substrates 201, and the shutter support portions 203 and the substrate 201. And have. Substrate dividing slits 202a and 202b are provided between adjacent substrates 201. In other words, the substrate 201 is divided by the substrate dividing slits 202a and 202b. The insulating layer 270 is integrated in the same manner as the shutter support portion 203. The insulating layer 270 insulates the shutter support portion 203 and the substrate 201 so that different voltages can be applied to each of them.
 本実施例においては、シャッタ212、シャッタ支持部203及び基板201は、シリコン(Si)で形成されている。一方、絶縁層270は、シリカ(SiO)で形成されている。 In this embodiment, the shutter 212, the shutter support portion 203, and the substrate 201 are made of silicon (Si). On the other hand, the insulating layer 270 is made of silica (SiO 2 ).
 図4Cは、1個の電極アレイを示したものである。 FIG. 4C shows one electrode array.
 本図に示すように、電極アレイ206は、シャッタを有していない3つの電極板207と、3つの基板201と、を有している。隣り合う基板201の間には、基板分割スリット202a、202bが設けられている。言い換えると、基板201は、基板分割スリット202a、202bで分割されている。電極板207も、スリット204a、204bで分割されている。電極アレイ206には、絶縁層が設けられていない。基板201と電極板207とは、電気的に接続された構成となっている。すなわち、基板201及び電極板207は、基板分割スリット202a、202b及びスリット204a、204bにより3つに分割され、これらの3つに対して異なる電圧を印加することができるようなっている。なお、隣接する基板201は、絶縁性の接着剤で連接されている。これにより、電極板207が基板201と外部とを接続するための端子として用いることができるようになっている。 As shown in this figure, the electrode array 206 has three electrode plates 207 that do not have a shutter and three substrates 201. Substrate dividing slits 202a and 202b are provided between adjacent substrates 201. In other words, the substrate 201 is divided by the substrate dividing slits 202a and 202b. The electrode plate 207 is also divided by slits 204a and 204b. The electrode array 206 is not provided with an insulating layer. The substrate 201 and the electrode plate 207 are electrically connected to each other. That is, the substrate 201 and the electrode plate 207 are divided into three by the substrate dividing slits 202a and 202b and the slits 204a and 204b, and different voltages can be applied to these three. The adjacent substrates 201 are connected with an insulating adhesive. As a result, the electrode plate 207 can be used as a terminal for connecting the substrate 201 and the outside.
 図4Aに示すように、シャッタ支持部203の端部には、ワイヤ240が接続されている。また、電極板207には、ワイヤ241が接続されている。ワイヤ240、241は、ワイヤボンディング等により固定されている。これにより、シャッタ212の開閉動作のために電圧をON又はOFFに設定して印加することができる。 As shown in FIG. 4A, a wire 240 is connected to the end of the shutter support portion 203. A wire 241 is connected to the electrode plate 207. The wires 240 and 241 are fixed by wire bonding or the like. As a result, the voltage can be set to ON or OFF and applied for the opening / closing operation of the shutter 212.
 図5は、図4AのB-B断面を示したものである。 FIG. 5 shows a BB cross section of FIG. 4A.
 図5において、ラック260には、ラック260の底面に垂直なラック開口部263が複数設けられている。そして、それぞれのラック開口部263にシャッタ開口部264が連通するように、シャッタアレイ205が設置されている。シャッタ開口部264は、シャッタ支持部203の上面に対して垂直に設けられている。 In FIG. 5, the rack 260 is provided with a plurality of rack openings 263 perpendicular to the bottom surface of the rack 260. Then, the shutter array 205 is installed so that the shutter opening 264 communicates with each rack opening 263. The shutter opening 264 is provided perpendicular to the upper surface of the shutter support 203.
 本実施例においては、ラック開口部263の幅は、700μmとした。ラック開口部263の幅は、100~1000μmが望ましい。 In this embodiment, the width of the rack opening 263 is 700 μm. The width of the rack opening 263 is preferably 100 to 1000 μm.
 シャッタ212は、閉じている状態(シャッタ閉223)では、シャッタ支持部203の上面に平行となっている。一方、シャッタ212が開いた状態(シャッタ開213)では、シャッタ角度280(開き角)が90度よりも小さくなっている。 The shutter 212 is parallel to the upper surface of the shutter support portion 203 in the closed state (shutter closed 223). On the other hand, when the shutter 212 is open (shutter open 213), the shutter angle 280 (opening angle) is smaller than 90 degrees.
 ラック260の上面には、ラック絶縁層262が設けられ、ラック絶縁層262の表面にラック配線261が形成されている。ラック配線261及びラック絶縁層262は、シャッタアレイ205とラック260との間及び電極アレイ206とラック260との間にも設けられている。ラック配線261と基板201との電気的接続は、導電性接着剤を用いて、基板底面232及び基板側面233を介してなされている。言い換えると、ラック260は、基板201と電気的に接続するラック配線261を有する。 A rack insulating layer 262 is provided on the upper surface of the rack 260, and rack wiring 261 is formed on the surface of the rack insulating layer 262. The rack wiring 261 and the rack insulating layer 262 are also provided between the shutter array 205 and the rack 260 and between the electrode array 206 and the rack 260. The electrical connection between the rack wiring 261 and the substrate 201 is made via a substrate bottom surface 232 and a substrate side surface 233 using a conductive adhesive. In other words, the rack 260 has a rack wiring 261 that is electrically connected to the substrate 201.
 これにより、それぞれの基板201に電圧を印加することができるようになっている。また、ラック260とラック配線261との間にラック絶縁層262を設けているため、隣り合うラック配線261の間で導通が生じることを防止することができる。 This makes it possible to apply a voltage to each substrate 201. Further, since the rack insulating layer 262 is provided between the rack 260 and the rack wiring 261, it is possible to prevent conduction from occurring between the adjacent rack wirings 261.
 本図に示すように、シャッタ開213の状態においては、開き角が90度未満のシャッタ212の下端部と、シャッタ212の上面(図中右側の面)に対向する基板201の内壁面との間の距離が、シャッタ開口部264において最も小さくなっている。 As shown in this figure, in the state where the shutter is open 213, the lower end portion of the shutter 212 having an opening angle of less than 90 degrees and the inner wall surface of the substrate 201 facing the upper surface (right side surface in the drawing) of the shutter 212. The distance between them is the smallest at the shutter opening 264.
 さらに、シャッタアレイ205の基板201が傾きを有するため、シャッタ212の軸部がラック開口部263の上方にせり出している。言い換えると、シャッタ212の軸部側の基板201の内壁面がラック開口部263を部分的に覆う構成をなっている。そして、シャッタ212の上面を下方に延長した面と、シャッタ212の上面に対向する基板201の内壁面の下端部との間の距離(シャッタ212と基板201の内壁面との最小距離)が、ラック開口部263及びシャッタ開口部264の幅に比べて小さくなっている。すなわち、シャッタアレイ205の有効開口率が低くなっている。ここで、有効開口率は、シャッタ開口部264の幅を分母とし、上記の最小距離を分子として算出した割合(百分率)と定義する。 Further, since the substrate 201 of the shutter array 205 has an inclination, the shaft portion of the shutter 212 protrudes above the rack opening 263. In other words, the inner wall surface of the substrate 201 on the shaft portion side of the shutter 212 partially covers the rack opening 263. Then, the distance between the surface extending the upper surface of the shutter 212 downward and the lower end of the inner wall surface of the substrate 201 facing the upper surface of the shutter 212 (minimum distance between the shutter 212 and the inner wall surface of the substrate 201) is determined. It is smaller than the width of the rack opening 263 and the shutter opening 264. That is, the effective aperture ratio of the shutter array 205 is low. Here, the effective opening ratio is defined as a ratio (percentage) calculated with the width of the shutter opening 264 as the denominator and the above minimum distance as the numerator.
 よって、ラック開口部263及びシャッタ開口部264を通過する光は、上記の最小距離以下に収束して、ラック開口部263又はシャッタ開口部264の幅が小さい領域で焦点を結ぶように調整されることが望ましい。光が収束する際の角度(図3Aの反射光302及び光303の縦断面における角度)は、反射光302及び光303が基板201の内壁面及びシャッタ212に衝突しない角度とすることが望ましい。 Therefore, the light passing through the rack opening 263 and the shutter opening 264 is adjusted so as to converge to the above minimum distance or less and focus in a region where the width of the rack opening 263 or the shutter opening 264 is small. Is desirable. It is desirable that the angle at which the light converges (the angle in the vertical cross section of the reflected light 302 and the light 303 in FIG. 3A) is such that the reflected light 302 and the light 303 do not collide with the inner wall surface of the substrate 201 and the shutter 212.
 したがって、有効開口率の観点からは、基板201の傾きが小さいこと、すなわち、シャッタ開口部264のラック開口部263に対する傾きが小さいことが望ましい。 Therefore, from the viewpoint of the effective opening ratio, it is desirable that the inclination of the substrate 201 is small, that is, the inclination of the shutter opening 264 with respect to the rack opening 263 is small.
 一方、シャッタ212の軸部における応力の低減の観点からは、シャッタ角度280が小さくなるように調整することが望ましい。 On the other hand, from the viewpoint of reducing stress at the shaft portion of the shutter 212, it is desirable to adjust the shutter angle 280 so as to be small.
 上記の2つの観点から、シャッタ角度280は、85度から60度までの範囲が望ましく、80度から60度までの範囲が更に望ましく、75度から60度までの範囲が特に望ましい。ここで、上記の範囲における下限値「60度」の意味は、基板201の傾きを0度とした構成、すなわちラック開口部263及びシャッタ開口部264の内壁面を平行とした構成において有効開口率が50%以上であることが望ましいことに対応している。有効開口率が50%未満となると、ラック開口部263及びシャッタ開口部264を通過する光の収束の程度が問題となること、隣り合うシャッタ開口部264の間隔が大きくなること等の観点から望ましくない。 From the above two viewpoints, the shutter angle 280 is preferably in the range of 85 degrees to 60 degrees, more preferably in the range of 80 degrees to 60 degrees, and particularly preferably in the range of 75 degrees to 60 degrees. Here, the meaning of the lower limit value "60 degrees" in the above range is an effective aperture ratio in a configuration in which the inclination of the substrate 201 is 0 degrees, that is, in a configuration in which the inner wall surfaces of the rack opening 263 and the shutter opening 264 are parallel. Corresponds to the fact that it is desirable that the value is 50% or more. When the effective opening ratio is less than 50%, it is desirable from the viewpoint that the degree of convergence of light passing through the rack opening 263 and the shutter opening 264 becomes a problem, and the distance between adjacent shutter openings 264 becomes large. No.
 なお、図5に示すように、シャッタ角度280は、シャッタ212の上面がラック開口部263の内壁面に平行となれば十分であり、それよりも大きくする必要はない。よって、シャッタ角度280は、90度から基板201の傾きを引いた値を上限値とすることができる。 As shown in FIG. 5, it is sufficient that the upper surface of the shutter 212 is parallel to the inner wall surface of the rack opening 263, and the shutter angle 280 does not need to be larger than that. Therefore, the upper limit of the shutter angle 280 can be a value obtained by subtracting the inclination of the substrate 201 from 90 degrees.
 図6は、図4AのA-A断面を示したものである。 FIG. 6 shows the AA cross section of FIG. 4A.
 図6においては、シャッタ開213及びシャッタ閉223の状態を示している。 FIG. 6 shows the states of the shutter open 213 and the shutter closed 223.
 図7は、図4Aのラック260の上面図である。 FIG. 7 is a top view of the rack 260 of FIG. 4A.
 本図においては、ラック260に設けられた凹凸構造の斜面を含め、図中横方向に隣り合うラック開口部263の上面縁部を電気的に接続するように、ラック配線261が形成されている。隣り合うラック配線261に間には、ラック配線261に平行に絶縁部265が設けられ、電気的に導通しないように構成されている。 In this figure, the rack wiring 261 is formed so as to electrically connect the upper surface edges of the rack openings 263 adjacent to each other in the lateral direction in the drawing, including the slope of the uneven structure provided on the rack 260. .. An insulating portion 265 is provided between the adjacent rack wirings 261 in parallel with the rack wirings 261 so as not to be electrically conductive.
 図8は、実施例2のシャッタアレイデバイスを示す断面図である。 FIG. 8 is a cross-sectional view showing the shutter array device of the second embodiment.
 本図に示すシャッタアレイデバイス200においては、図5に示す実施例1よりも、基板201の高さを低くしている。この他の構成は、図5と同様である。 In the shutter array device 200 shown in this figure, the height of the substrate 201 is lower than that in the first embodiment shown in FIG. Other configurations are the same as in FIG.
 基板201の高さを低くした構成により、ラック開口部263に対して屈曲しているシャッタ開口部264の長さが短くなり、シャッタ開213において光軸が通過する開口面積を広くすることができる。また、シャッタ212の開き角を更に小さくしても、開口面積を確保することができる。 Due to the configuration in which the height of the substrate 201 is lowered, the length of the shutter opening 264 bent with respect to the rack opening 263 is shortened, and the opening area through which the optical axis passes at the shutter opening 213 can be widened. .. Further, even if the opening angle of the shutter 212 is further reduced, the opening area can be secured.
 なお、ラック配線261を適切な回路となるように形成し、かつ、シャッタ支持部203及びシャッタ212の電位を変化させるためにワイヤ等の配線をシャッタ支持部203に接続することにより、電極アレイ206を省略することは可能である。 The electrode array 206 is formed by forming the rack wiring 261 so as to form an appropriate circuit and connecting wiring such as a wire to the shutter support portion 203 in order to change the potentials of the shutter support portion 203 and the shutter 212. Can be omitted.
 図9は、実施例3のシャッタアレイデバイスを示す断面図である。 FIG. 9 is a cross-sectional view showing the shutter array device of the third embodiment.
 本図に示すシャッタアレイデバイス200においては、図8に示す実施例2と同様に、基板201の高さを低くしている。 In the shutter array device 200 shown in this figure, the height of the substrate 201 is lowered as in the second embodiment shown in FIG.
 本図においては、隣り合うシャッタアレイ205の端部が重なるように配置されている。言い換えると、シャッタアレイ205の基板201が隣のシャッタアレイ205のシャッタ支持部203の上方を部分的に覆うように配置されている。基板201とシャッタ支持部203とが重なる部分には、隙間290が設けられている。電極アレイ206も、同様に重なるように配置している。隙間290が設けられているため、基板201と下方のシャッタ支持部203とは接触しない構成となっている。これにより、絶縁を確保し、ショートを防止することができる。なお、隙間290を設ける代わりに、絶縁材料を挟み込んでもよい。 In this figure, the ends of adjacent shutter arrays 205 are arranged so as to overlap each other. In other words, the substrate 201 of the shutter array 205 is arranged so as to partially cover the upper part of the shutter support portion 203 of the adjacent shutter array 205. A gap 290 is provided in a portion where the substrate 201 and the shutter support portion 203 overlap. The electrode array 206 is also arranged so as to overlap in the same manner. Since the gap 290 is provided, the substrate 201 and the lower shutter support portion 203 are not in contact with each other. As a result, insulation can be ensured and short circuits can be prevented. Instead of providing the gap 290, an insulating material may be sandwiched.
 以上の構成により、隣り合うシャッタ開口部264の間隔を狭く設定することができる。その結果、シャッタアレイ205の集積度を高めることができ、空間フィルタのパターンも増やすことが可能となる。 With the above configuration, the distance between adjacent shutter openings 264 can be set narrow. As a result, the degree of integration of the shutter array 205 can be increased, and the pattern of the spatial filter can also be increased.
 (比較例)
 図10Aは、比較例のシャッタアレイを示したものである。
(Comparison example)
FIG. 10A shows a shutter array of a comparative example.
 本図に示すシャッタ212は、開き過ぎた状態であり、基板201の内壁面282に密着している。この場合、付着したシャッタ212が内壁面282から離脱しなくなり、開閉機能が得られなくなる懸念がある。 The shutter 212 shown in this figure is in a state of being opened too much and is in close contact with the inner wall surface 282 of the substrate 201. In this case, there is a concern that the attached shutter 212 will not be separated from the inner wall surface 282 and the opening / closing function cannot be obtained.
 図10Bは、実施例4のシャッタアレイを示したものである。 FIG. 10B shows the shutter array of Example 4.
 本図においては、基板201の内壁面282に凸部281を設けることにより、シャッタ212の接触が一部分となるようにしている。これにより、シャッタ212が開いた状態で固定されないようにすることができる。また、凸部281により、シャッタ212の開き角の上限値が設定されている。 In this figure, the convex portion 281 is provided on the inner wall surface 282 of the substrate 201 so that the contact of the shutter 212 becomes a part. As a result, the shutter 212 can be prevented from being fixed in the open state. Further, the convex portion 281 sets an upper limit value of the opening angle of the shutter 212.
 なお、図5等においては、シャッタアレイの上面が、シャッタ212の閉状態では光軸と斜めに交わる構成を示しているが、本発明は、図10Bに示すように、シャッタアレイの上面が、シャッタ212の閉状態では光軸と略垂直に交わる構成としてもよい。 Although FIG. 5 and the like show a configuration in which the upper surface of the shutter array intersects the optical axis diagonally when the shutter 212 is closed, in the present invention, as shown in FIG. 10B, the upper surface of the shutter array is formed. In the closed state of the shutter 212, the shutter 212 may be configured to intersect with the optical axis substantially perpendicularly.
 図10Cは、本実施例のシャッタアレイを上面から見た図である。 FIG. 10C is a top view of the shutter array of this embodiment.
 本図に示す凸部281は、鉛直方向に2本設けられ、シャッタ開213においてシャッタ212を小さい面積で支持するようになっている。これにより、過剰な電圧によるシャッタ212の開き過ぎ、装置のステージのトラブルによる衝撃や振動、地震等による振動その他の異常事態が発生し、シャッタ212の開き角が設定範囲を超えても、シャッタ212が基板201に付着して動かなくなることを防止し、長期の信頼性を確保することができる。 Two convex portions 281 shown in this figure are provided in the vertical direction so as to support the shutter 212 with a small area when the shutter is opened 213. As a result, even if the shutter 212 opens too much due to excessive voltage, shocks and vibrations due to equipment stage troubles, vibrations due to earthquakes, and other abnormal situations occur, and the opening angle of the shutter 212 exceeds the set range, the shutter 212 Can be prevented from adhering to the substrate 201 and becoming immobile, and long-term reliability can be ensured.
 図11は、実施例5のシャッタアレイを示したものである。 FIG. 11 shows the shutter array of Example 5.
 本図においては、シャッタ212の下面の一部に凸部283を設けている。これにより、シャッタ212が開き過ぎた場合に、シャッタ212が基板201に付着して動かなくなることを防止する。 In this figure, a convex portion 283 is provided on a part of the lower surface of the shutter 212. This prevents the shutter 212 from adhering to the substrate 201 and getting stuck when the shutter 212 is opened too much.
 図12Aは、実施例6のシャッタアレイを示したものである。 FIG. 12A shows the shutter array of Example 6.
 本図においては、シャッタ支持部203の底面に対して基板201のシャッタ開口部264を傾けて形成している。 In this figure, the shutter opening 264 of the substrate 201 is tilted with respect to the bottom surface of the shutter support 203.
 図12Bは、本実施例のシャッタアレイをラックに設置した状態を示したものである。 FIG. 12B shows a state in which the shutter array of this embodiment is installed in a rack.
 本図に示すように、基板201のシャッタ開口部264は、傾斜した形状を有するため、シャッタアレイ205をラック260に所定の角度で設置した状態では、ラック開口部263の内壁面がシャッタ開口部264の内壁面と略平行になっている。言い換えると、ラック開口部263とシャッタ開口部264とが略平行に連通している。これにより、ラック開口部263及びシャッタ開口部264を光軸に対して略平行に配置することができる。 As shown in this figure, since the shutter opening 264 of the substrate 201 has an inclined shape, the inner wall surface of the rack opening 263 is the shutter opening when the shutter array 205 is installed in the rack 260 at a predetermined angle. It is substantially parallel to the inner wall surface of 264. In other words, the rack opening 263 and the shutter opening 264 communicate with each other substantially in parallel. As a result, the rack opening 263 and the shutter opening 264 can be arranged substantially parallel to the optical axis.
 これにより、光軸を基準として、基板201の内壁面がラック開口部263を覆うような構造になることを避けることができ、シャッタアレイ205の有効開口率を向上させることができる。また、シャッタ212の開き角を小さくすることができる。 As a result, it is possible to prevent the inner wall surface of the substrate 201 from covering the rack opening 263 with reference to the optical axis, and it is possible to improve the effective aperture ratio of the shutter array 205. Further, the opening angle of the shutter 212 can be reduced.
 本実施例においては、シャッタ開口部264の内壁面とシャッタ支持部203の内壁面とが平行でないため、シャッタ212の開き角が最大となった状態においてもシャッタ212がシャッタ開口部264の内壁面に密着することはないと考えられるが、図10Bの凸部281又は図11の凸部283を設けて、密着を確実に防止する構成としてもよい。 In this embodiment, since the inner wall surface of the shutter opening 264 and the inner wall surface of the shutter support 203 are not parallel, the shutter 212 is the inner wall surface of the shutter opening 264 even when the opening angle of the shutter 212 is maximized. Although it is considered that the convex portion 281 of FIG. 10B or the convex portion 283 of FIG. 11 is provided, the convex portion 281 of FIG.
 本実施例の構成により、マイクロレンズアレイによりそれぞれのシャッタ212に集光されるスポット径を大きくすることができ、マイクロレンズの設計裕度を高めることができる。また、このことは、マイクロレンズのコスト削減にも寄与する。 With the configuration of this embodiment, the spot diameter focused on each shutter 212 by the microlens array can be increased, and the design margin of the microlens can be increased. This also contributes to cost reduction of the microlens.
 なお、本実施例のシャッタアレイは、ドライエッチング装置を用いて基板201のシリコンをエッチング除去する際に、基板201を傾けてドライエッチング装置にセットすることにより形成することができる。 The shutter array of this embodiment can be formed by tilting the substrate 201 and setting it in the dry etching apparatus when the silicon of the substrate 201 is etched and removed by using the dry etching apparatus.
 図13は、実施例7のシャッタアレイの詳細を示す上面図である。 FIG. 13 is a top view showing the details of the shutter array of the seventh embodiment.
 本図において、開閉動作をするシャッタ2001は、同一平面を構成するシャッタ支持部2002にねじり棒284(軸部)を介して支持されている。シャッタ2001は、ねじり棒284の中央部付近で接続されている。シャッタ2001とシャッタ支持部2002との間には、スリット2003が設けられている。また、シャッタ支持部2002とねじり棒284との間には、スリット2004が設けられている。 In this figure, the shutter 2001 that opens and closes is supported by the shutter support portion 2002 that constitutes the same plane via the twist rod 284 (shaft portion). The shutter 2001 is connected near the center of the torsion bar 284. A slit 2003 is provided between the shutter 2001 and the shutter support portion 2002. Further, a slit 2004 is provided between the shutter support portion 2002 and the twist rod 284.
 ねじり棒284は、中心軸が直線状であり、断面が正方形状、長方形状、円形状、楕円形状等である。力学的には円形状が望ましいが、製造の容易さの観点からは正方形状又は長方形状が望ましい。 The twist rod 284 has a linear central axis and a square cross section, a rectangular shape, a circular shape, an elliptical shape, or the like. Mechanically, a circular shape is desirable, but from the viewpoint of ease of manufacture, a square shape or a rectangular shape is preferable.
 シャッタ2001が開く際には、ねじり棒284にねじり応力が生じる。電圧の印加に伴う静電力が作用すると、シャッタ2001が開くため、ねじり応力が生じる。電圧の印加を停止すると、静電力がなくなり、シャッタ2001が閉じ、ねじり応力がなくなる。このように、ねじり棒284は、ねじり棒ばね(弾性体)として機能する。 When the shutter 2001 is opened, a torsional stress is generated on the torsion rod 284. When an electrostatic force accompanying the application of a voltage acts, the shutter 2001 opens, so that a torsional stress is generated. When the application of the voltage is stopped, the electrostatic force disappears, the shutter 2001 closes, and the torsional stress disappears. In this way, the torsion rod 284 functions as a torsion rod spring (elastic body).
 まとめると、本図に示すように、シャッタ2001は、ねじり棒284を軸部とする片開き扉の構造を有する。 In summary, as shown in this figure, the shutter 2001 has a single door structure with a twist rod 284 as a shaft.
 シャッタ2001の開き角が90度になると、ねじり応力が最大となる。このため、ねじり棒284及びその周辺の疲労破壊等を考慮すると、シャッタ2001の開き角は、90度よりも小さいことが望ましい。 When the opening angle of the shutter 2001 reaches 90 degrees, the torsional stress becomes maximum. Therefore, the opening angle of the shutter 2001 is preferably smaller than 90 degrees in consideration of fatigue fracture of the torsion rod 284 and its surroundings.
 図14は、実施例8のシャッタアレイの詳細を示す上面図である。 FIG. 14 is a top view showing the details of the shutter array of the eighth embodiment.
 本図において、開閉動作をするシャッタ2001は、同一平面を構成するシャッタ支持部2002にミアンダ棒285(軸部)を介して支持されている。シャッタ支持部2002とミアンダ棒285との間には、スリット2004が設けられている。ミアンダ棒285は、例えば、正弦波形状等であり、断面が正方形状、長方形状、円形状、楕円形状等である。 In this figure, the shutter 2001 that opens and closes is supported by the shutter support portion 2002 that constitutes the same plane via the meander rod 285 (shaft portion). A slit 2004 is provided between the shutter support portion 2002 and the meander rod 285. The Mianda rod 285 has, for example, a sinusoidal shape or the like, and has a square cross section, a rectangular shape, a circular shape, an elliptical shape, or the like.
 シャッタ2001が開く際には、シャッタ2001の回転軸方向(軸部の長手方向)に対して交差するミアンダ棒285の屈曲部が伸びる方向に応力が生じる。 When the shutter 2001 is opened, stress is generated in the direction in which the bent portion of the meander rod 285 that intersects the rotation axis direction (longitudinal direction of the shaft portion) of the shutter 2001 extends.
 この構成により、図13のねじり棒284を用いる場合に比べて、局所的な応力が低減され、シャッタアレイとしての信頼性を向上させることができる。 With this configuration, local stress can be reduced and the reliability of the shutter array can be improved as compared with the case of using the torsion rod 284 of FIG.
 つぎに、シャッタの駆動方式について説明する。 Next, the shutter drive method will be described.
 図15は、シャッタアレイの断面を模式的に示したものである。 FIG. 15 schematically shows a cross section of the shutter array.
 本図において、シャッタ212にはシャッタ支持部203を介して正の電位(V1)となるように、基板201には負の電位(V2)となるように、電圧が印加される。これにより生じる電位差により静電力が生じ、シャッタ212が開く。 In this figure, a voltage is applied to the shutter 212 so as to have a positive potential (V1) via the shutter support portion 203, and to the substrate 201 so as to have a negative potential (V2). An electrostatic force is generated by the potential difference generated by this, and the shutter 212 opens.
 本図に示すように、シャッタ212の下面が正に帯電し、基板201の内壁面282が負に帯電する。これにより、シャッタ212が軸部の周りに回転し、その結果としてシャッタ開となる。 As shown in this figure, the lower surface of the shutter 212 is positively charged, and the inner wall surface 282 of the substrate 201 is negatively charged. This causes the shutter 212 to rotate around the shaft, resulting in the shutter opening.
 電圧の印加を停止すると、軸部の復元力により、シャッタ閉の状態に戻る。 When the application of voltage is stopped, the shutter is returned to the closed state due to the restoring force of the shaft.
 例えば、V1が正の電位として+10~100V、V2が負の電位として-10~-100Vとなるようにする場合、印加する電圧は、20~200Vである。ただし、シャッタ212の大きさによっても変わるものであり、本発明が上記の例に限定されるものではない。 For example, when V1 has a positive potential of +10 to 100V and V2 has a negative potential of -10 to -100V, the applied voltage is 20 to 200V. However, the present invention is not limited to the above example because it changes depending on the size of the shutter 212.
 なお、上述の実施例においては、シャッタアレイ、電極アレイ、ラック等の部品を組み立てることにより作製したシャッタアレイデバイスを示しているが、本発明は、このような実施例に限定されるものではなく、シャッタアレイ、電極アレイ、ラック等に該当する部分を、半導体製造工程で用いられるシリコンの表面酸化処理、フォトリソグラフィ、エッチング、蒸着、イオン注入等を組み合わせることにより形成し、部品の組み立てをすることなく、一体物としてのシャッタアレイデバイスを作製してもよい。 Although the above-described embodiment shows a shutter array device manufactured by assembling parts such as a shutter array, an electrode array, and a rack, the present invention is not limited to such an embodiment. , Shutter array, electrode array, rack, etc. are formed by combining surface oxidation treatment of silicon used in the semiconductor manufacturing process, photolithography, etching, vapor deposition, ion implantation, etc., and parts are assembled. Instead, the shutter array device as an integral body may be manufactured.
 10:欠陥観察装置、20:光学顕微鏡、100:撮像素子、101:結像レンズ、102:対物レンズ、103:レーザー光源、104:ウエハ、106、107、1102:マイクロレンズアレイ、108:欠陥、200、1101:シャッタアレイデバイス、201:基板、202、202a、202b:基板分割スリット、203、2002:シャッタ支持部、204a、204b:スリット、205:シャッタアレイ、206:電極アレイ、207:電極板、211:シャッタ閉状態、212、220、2001:シャッタ、221:シャッタ開状態、240、241:ワイヤ、250、251:接着面、260:ラック、261:ラック配線、263:ラック開口部、264:シャッタ開口部、265:絶縁部、270:絶縁層、281、283:凸部、282:内壁面、284:ねじり棒、285:ミアンダ棒、290:隙間、303:光、304:シャッタ開口部、300:光線、301、302:反射光、351:真空封止窓、352:ミラー、1001:ウエハ、1002:走査型電子顕微鏡、1003:光学顕微鏡、1004:ステージ、1005:真空槽、1006:制御部、1007:端末、1008:記録装置、1009:ネットワーク、1010:レーザー光源、1013:対物レンズ、1015:結像レンズ、1016:撮像素子、1018:ステージ制御回路、1019:SEM撮像系制御回路、1020:画像処理回路、1021:外部入出力インターフェース、1022:中央演算部、1023:メモリ、2003、2004:スリット。 10: Defect observation device, 20: Optical microscope, 100: Imaging element, 101: Imaging lens, 102: Objective lens, 103: Laser light source, 104: Wafer, 106, 107, 1102: Microlens array, 108: Defect, 200, 1101: Shutter array device, 201: Substrate, 202, 202a, 202b: Substrate division slit, 203, 2002: Shutter support, 204a, 204b: Slit, 205: Shutter array, 206: Electrode array, 207: Electrode plate , 211: Shutter closed, 212, 220, 2001: Shutter, 221: Shutter open, 240, 241: Wire, 250, 251: Adhesive surface, 260: Rack, 261: Rack wiring, 263: Rack opening, 264 : Shutter opening, 265: Insulation, 270: Insulation layer, 281, 283: Convex, 282: Inner wall surface, 284: Twist rod, 285: Mianda rod, 290: Gap, 303: Light, 304: Shutter opening , 300: Ray, 301, 302: Reflected light, 351: Vacuum sealing window, 352: Mirror, 1001: Wafer, 1002: Scanning electron microscope, 1003: Optical microscope, 1004: Stage, 1005: Vacuum chamber, 1006: Control unit, 1007: Terminal, 1008: Recording device, 1009: Network, 1010: Laser light source, 1013: Objective lens, 1015: Imaging lens, 1016: Imaging element, 1018: Stage control circuit, 1019: SEM imaging system control circuit 1020: Image processing circuit, 1021: External input / output interface, 1022: Central arithmetic unit, 1023: Memory, 2003, 2004: Slit.

Claims (18)

  1.  軸部を有し開閉可能な構成を有するシャッタと、
     シャッタ開口部を有する基板と、を備え、
     前記シャッタと前記基板との間に電圧を印加する構成を有し、
     前記シャッタは、前記軸部の周りに回転し前記シャッタ開口部に移動することにより開状態となる構成を有し、
     前記シャッタの開き角は、90度未満に調整される構成を有する、光フィルタリングデバイス。
    A shutter that has a shaft and can be opened and closed,
    With a substrate having a shutter opening,
    It has a configuration in which a voltage is applied between the shutter and the substrate.
    The shutter has a configuration in which it is opened by rotating around the shaft portion and moving to the shutter opening portion.
    An optical filtering device having a configuration in which the opening angle of the shutter is adjusted to less than 90 degrees.
  2.  前記シャッタは、閉状態では光軸と略垂直に交わる構成を有する、請求項1記載の光フィルタリングデバイス。 The optical filtering device according to claim 1, wherein the shutter has a configuration that intersects the optical axis substantially perpendicularly in the closed state.
  3.  前記シャッタは、閉状態では光軸と斜めに交わる構成を有する、請求項1記載の光フィルタリングデバイス。 The optical filtering device according to claim 1, wherein the shutter has a configuration in which it intersects the optical axis diagonally in the closed state.
  4.  前記シャッタは、複数個が隣り合うように配置されている、請求項1記載の光フィルタリングデバイス。 The optical filtering device according to claim 1, wherein a plurality of the shutters are arranged so as to be adjacent to each other.
  5.  前記複数個の前記シャッタは、それぞれが独立に開閉可能な構成を有する、請求項4記載の光フィルタリングデバイス。 The optical filtering device according to claim 4, wherein each of the plurality of shutters can be opened and closed independently.
  6.  前記シャッタの前記開き角は、85度から60度までの範囲に調整される構成を有する、請求項1記載の光フィルタリングデバイス。 The optical filtering device according to claim 1, wherein the opening angle of the shutter is adjusted in a range of 85 degrees to 60 degrees.
  7.  前記シャッタ、シャッタ支持部及び前記基板を含むシャッタアレイと、
     前記シャッタアレイを設置するラックと、を含み、
     前記ラックは、前記基板と電気的に接続するラック配線を有する、請求項1記載の光フィルタリングデバイス。
    A shutter array including the shutter, the shutter support portion, and the substrate,
    Includes a rack on which the shutter array is installed.
    The optical filtering device according to claim 1, wherein the rack has rack wiring that is electrically connected to the substrate.
  8.  前記ラックには、ラック開口部が設けられ、
     前記シャッタアレイは、前記ラックの斜面に設置され、
     前記シャッタ開口部と前記ラック開口部とは連通している、請求項7記載の光フィルタリングデバイス。
    The rack is provided with a rack opening.
    The shutter array is installed on the slope of the rack.
    The optical filtering device according to claim 7, wherein the shutter opening and the rack opening communicate with each other.
  9.  前記シャッタ開口部は、前記ラック開口部に対して屈曲している、請求項8記載の光フィルタリングデバイス。 The optical filtering device according to claim 8, wherein the shutter opening is bent with respect to the rack opening.
  10.  前記シャッタ開口部と前記ラック開口部とは、略平行に連通している、請求項8記載の光フィルタリングデバイス。 The optical filtering device according to claim 8, wherein the shutter opening and the rack opening communicate with each other substantially in parallel.
  11.  隣り合う前記シャッタアレイは、部分的に重なるように配置されている、請求項8記載の光フィルタリングデバイス。 The optical filtering device according to claim 8, wherein the adjacent shutter arrays are arranged so as to partially overlap each other.
  12.  前記基板の内壁面又は前記シャッタには、凸部が設けられ、前記凸部により前記開き角の上限値が設定されている、請求項1記載の光フィルタリングデバイス。 The optical filtering device according to claim 1, wherein a convex portion is provided on the inner wall surface of the substrate or the shutter, and an upper limit value of the opening angle is set by the convex portion.
  13.  前記シャッタの前記開き角の上限値は、前記電圧により定められる、請求項1記載の光フィルタリングデバイス。 The optical filtering device according to claim 1, wherein the upper limit value of the opening angle of the shutter is determined by the voltage.
  14.  前記軸部は、ねじり棒又はミアンダ棒で構成されている、請求項1記載の光フィルタリングデバイス。 The optical filtering device according to claim 1, wherein the shaft portion is composed of a twisting rod or a meander rod.
  15.  前記シャッタ支持部と前記基板との間には、絶縁層が設けられている、請求項7記載の光フィルタリングデバイス。 The optical filtering device according to claim 7, wherein an insulating layer is provided between the shutter support portion and the substrate.
  16.  電極アレイを更に含み、
     前記電極アレイは、前記ラックに設置されている、請求項7記載の光フィルタリングデバイス。
    Further including an electrode array,
    The optical filtering device according to claim 7, wherein the electrode array is installed in the rack.
  17.  請求項1記載の光フィルタリングデバイスと、
     マイクロレンズアレイと、を備えた、光学顕微鏡。
    The optical filtering device according to claim 1 and
    An optical microscope equipped with a microlens array.
  18.  請求項17記載の光学顕微鏡と、
     走査型電子顕微鏡と、を備えた、欠陥観察装置。
    The optical microscope according to claim 17,
    A defect observation device including a scanning electron microscope.
PCT/JP2020/012940 2020-03-24 2020-03-24 Light filtering device, optical microscope, and defect observation apparatus WO2021192017A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/012940 WO2021192017A1 (en) 2020-03-24 2020-03-24 Light filtering device, optical microscope, and defect observation apparatus
JP2022509817A JP7385003B2 (en) 2020-03-24 2020-03-24 Optical filtering devices, optical microscopes and defect observation equipment
KR1020227030668A KR20220136419A (en) 2020-03-24 2020-03-24 Light filtering device, optical microscope and defect observation apparatus
TW110107649A TW202204883A (en) 2020-03-24 2021-03-04 Light filtering device, optical microscope, and defect observation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012940 WO2021192017A1 (en) 2020-03-24 2020-03-24 Light filtering device, optical microscope, and defect observation apparatus

Publications (1)

Publication Number Publication Date
WO2021192017A1 true WO2021192017A1 (en) 2021-09-30

Family

ID=77891170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012940 WO2021192017A1 (en) 2020-03-24 2020-03-24 Light filtering device, optical microscope, and defect observation apparatus

Country Status (4)

Country Link
JP (1) JP7385003B2 (en)
KR (1) KR20220136419A (en)
TW (1) TW202204883A (en)
WO (1) WO2021192017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009340A1 (en) * 2022-07-04 2024-01-11 株式会社日立ハイテク Optical filtering device and mems shutter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289807A (en) * 1986-05-22 1987-12-16 シ−メンス、アクチエンゲゼルシヤフト Optical type image processor
JPH1039239A (en) * 1996-07-18 1998-02-13 Ricoh Co Ltd Spatial light modulation element
KR20060046844A (en) * 2004-11-12 2006-05-18 한국과학기술원 Light valve having movable thin film and display apparatus using thereof
JP2014010371A (en) * 2012-06-29 2014-01-20 Takahisa Yamaguchi Display device and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784190A (en) * 1995-04-27 1998-07-21 John M. Baker Electro-micro-mechanical shutters on transparent substrates
JPH11271650A (en) * 1998-03-24 1999-10-08 Fuji Photo Film Co Ltd Array type exposure element and plane type display
JP2010113067A (en) * 2008-11-05 2010-05-20 Olympus Corp Optical deflector array
JP5867736B2 (en) 2011-02-04 2016-02-24 株式会社日立製作所 Optical filtering device, defect inspection method and apparatus
WO2012105055A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Optical filtering method, device therefor, substrate-defect inspection method, and apparatus therefor
JP2019132637A (en) 2018-01-30 2019-08-08 株式会社日立ハイテクノロジーズ Defect observation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289807A (en) * 1986-05-22 1987-12-16 シ−メンス、アクチエンゲゼルシヤフト Optical type image processor
JPH1039239A (en) * 1996-07-18 1998-02-13 Ricoh Co Ltd Spatial light modulation element
KR20060046844A (en) * 2004-11-12 2006-05-18 한국과학기술원 Light valve having movable thin film and display apparatus using thereof
JP2014010371A (en) * 2012-06-29 2014-01-20 Takahisa Yamaguchi Display device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009340A1 (en) * 2022-07-04 2024-01-11 株式会社日立ハイテク Optical filtering device and mems shutter

Also Published As

Publication number Publication date
KR20220136419A (en) 2022-10-07
JP7385003B2 (en) 2023-11-21
TW202204883A (en) 2022-02-01
JPWO2021192017A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
KR102480232B1 (en) Apparatus of Plural Charged-Particle Beams
JP6972312B2 (en) Charged particle beam device and system and method to operate the device
US20230054632A1 (en) Charged particle assessment tool, inspection method
TWI759664B (en) Multi-beam inspection apparatus
JP2018535525A (en) Multiple charged particle beam equipment
WO2012105055A1 (en) Optical filtering method, device therefor, substrate-defect inspection method, and apparatus therefor
WO2021192017A1 (en) Light filtering device, optical microscope, and defect observation apparatus
JP2023519566A (en) Charged particle evaluation tool, inspection method
JP2004533094A (en) TDI detection device, feed-through device, electron beam device using the same, and semiconductor device manufacturing method using the electron beam device
CN113906535A (en) Multi-charged particle beam apparatus and method of operating the same
US20240134175A1 (en) Optical filtering device, method of controlling optical filtering device, and mems shutter
WO2024009340A1 (en) Optical filtering device and mems shutter
TWI815231B (en) Charged particle tool, calibration method, inspection method
JP7400106B2 (en) Multi-charged particle beam device with low crosstalk
JP7457820B2 (en) Charged particle inspection tools and inspection methods
EP3872836A1 (en) Electrostatic lens designs
WO2021175678A1 (en) Beam manipulator in charged particle-beam exposure apparatus
EP3975222A1 (en) Charged particle assessment tool, inspection method
US20240038485A1 (en) Electron-optical device
KR20240017084A (en) Methods for compensating for the effects of electrode distortion, evaluation system
KR20240007649A (en) Evaluation system, evaluation method
TW202407739A (en) Charged-particle assessment tools and inspection methods
TW202414486A (en) Electron-optical device
JP2023538243A (en) Detector module containing printed circuit board for sealing the vacuum chamber
CN116547777A (en) Objective lens array assembly, electron optical system array, and focusing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509817

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227030668

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926386

Country of ref document: EP

Kind code of ref document: A1