WO2021189674A1 - 一种半硬质三聚氰胺泡沫塑料及其制备方法 - Google Patents
一种半硬质三聚氰胺泡沫塑料及其制备方法 Download PDFInfo
- Publication number
- WO2021189674A1 WO2021189674A1 PCT/CN2020/095888 CN2020095888W WO2021189674A1 WO 2021189674 A1 WO2021189674 A1 WO 2021189674A1 CN 2020095888 W CN2020095888 W CN 2020095888W WO 2021189674 A1 WO2021189674 A1 WO 2021189674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semi
- rigid
- melamine
- reactor
- melamine foam
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/141—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G12/00—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08G12/02—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
- C08G12/26—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
- C08G12/30—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with substituted triazines
- C08G12/32—Melamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G12/00—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08G12/02—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
- C08G12/40—Chemically modified polycondensates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0023—Use of organic additives containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0085—Use of fibrous compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0016—Foam properties semi-rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/005—< 50kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/026—Crosslinking before of after foaming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/20—Ternary blends of expanding agents
- C08J2203/202—Ternary blends of expanding agents of physical blowing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/05—Open cells, i.e. more than 50% of the pores are open
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/08—Semi-flexible foams
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2361/00—Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
- C08J2361/20—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08J2361/26—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
- C08J2361/28—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2361/00—Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
- C08J2361/20—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08J2361/32—Modified amine-aldehyde condensateS
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Definitions
- the invention relates to a foamed plastic, in particular to a semi-rigid melamine foamed plastic and a preparation method thereof, and belongs to the technical field of foamed plastics.
- Foam plastic has many excellent properties such as light weight, heat insulation, sound absorption, shock absorption, etc. It is a type of polymer material formed by a large number of gas micropores dispersed in solid plastic, and has an extremely wide range of applications.
- Melamine foam also known as melamine foam, is similar in appearance to polyurethane sponge and has broad application prospects in the fields of construction, transportation, vehicle manufacturing, acoustic engineering, electronic information, and surface cleaning and decontamination. Melamine foam was first launched by BASF in Germany and has long been in a high-priced monopoly position. It has the advantages of stability, good low-temperature flexibility, good air permeability, strong abrasion resistance, and wide practical temperature range, but its mechanical properties are relatively poor.
- melamine foam mainly focuses on flexible foam (density ⁇ 12kg/m 3 ).
- Flexible foam has excellent properties such as low density, good toughness, and flame retardancy, but its low hardness, easy deformation, fragile, easy to slag and other defects, greatly limit its application range.
- the preparation method of semi-rigid melamine foam is relatively rare. In order to meet the market demand, it is necessary to research and develop such products.
- the purpose of the present invention is to provide a semi-rigid melamine foam in order to overcome the above-mentioned shortcomings of the prior art.
- the invention also provides a method for preparing the above-mentioned melamine foam plastic.
- a preparation method of semi-rigid melamine foam plastic includes the following steps:
- Modified resin synthesis Put solid powdery melamine and modifier 3-aminopropyltriethoxysilane (APTES) into the reactor, and raise the temperature in the reactor to 75 ⁇ 85 After temperature, keep the reaction temperature for 20-50 minutes; after the materials in the reactor are cooled to room temperature, adjust the pH value of the material solution in the reactor to 3 ⁇ 4 with an appropriate amount of acid; heat the material solution, when the temperature rises to 80 ⁇ 95°C After that, the reaction is kept for 40 to 80 minutes, and the end of the reaction is judged by the cloud point of the test material; when the reaction reaches the end, an appropriate amount of alkali is immediately added to adjust the pH value in the reactor to 8.5 to 9.0 to obtain a semi-rigid foam Use modified melamine resin;
- APTES modifier 3-aminopropyltriethoxysilane
- step (3) the semi-rigid melamine foam obtained in step (3) is cut by an online cutting machine and dried to obtain a semi-rigid melamine foam product.
- the amount of PVA used is 1-15 wt% of the amount of melamine; the amount of APTES used is 5-25 wt% of the amount of melamine. It is further preferred that the amount of PVA used is 5-12% by weight of the amount of melamine; the amount of APTES used is 10-20% by weight of the amount of melamine. Excessive amount of APTES will dissociate in the resin system and affect the heat resistance and flame retardancy of the foam.
- the molar ratio of melamine, paraformaldehyde and formaldehyde solution is 1:2-3:1-2.
- the mass ratio of the semi-rigid modified melamine resin to the mixing aid is 100:10-40%.
- the foaming agent is one or a mixture of water, pentane, hexane or petroleum ether;
- the emulsifier is alkylphenol polyoxyethylene ether, fatty acid polyglycol ether or alkyltrimethylammonium
- the curing agent is one or more of sulfuric acid, hydrochloric acid, formic acid, acetic acid or nitric acid.
- the alkali used to adjust the pH value is one of sodium hydroxide solution with a mass percentage of 30-40% or triethanolamine; the acid used to adjust the pH can be nitric acid with a mass percentage of 45%.
- the additives are fiber reinforced materials, nanomaterials, pigments, water repellents or other additives used to improve certain aspects of the foam.
- the use mode is one or more combinations, and the use amount is resin The amount is 0-10wt%.
- the selection of additives is mainly based on the requirements of certain aspects of foam performance. This aspect of technology is basic common sense to those skilled in the art, and is not the focus of the present invention.
- a semi-rigid melamine foam prepared by the method of the present invention The density of the semi-rigid melamine foam is 15 to 35 kg/m 3 . Further, the density of the semi-rigid melamine foam is 15-28 kg/m 3 .
- the beneficial effects of the present invention are: compared with soft melamine foam, the semi-rigid melamine foam of the present invention greatly improves the indentation hardness and has relatively stable external dimensions. Industries such as equipment manufacturing have greatly expanded the application range of melamine foam.
- the semi-rigid melamine foam provided by the present invention is an intrinsic flame-retardant foam prepared from melamine-formaldehyde resin through a curing and foaming process. In addition to excellent flame-retardant properties, it also has good sound absorption, heat resistance and heat preservation. It can be used to prepare oil-water separation materials, supercapacitors, sound-absorbing materials, thermal insulation and flame-retardant materials, etc.
- a preparation method of semi-rigid melamine foam plastic specifically includes the following steps:
- Modified resin synthesis Put solid powdery melamine and modifier 3-aminopropyltriethoxysilane (APTES) into the reactor, and raise the temperature in the reactor to 75°C , Continue the heat preservation reaction for 50 minutes; after the materials in the reaction kettle are cooled to room temperature, adjust the pH value of the material solution in the reaction kettle to 3.5-4 with an appropriate amount of acid; heat the material solution, when the temperature rises to 90 °C, heat preservation reaction 40 Minutes, judge the end of the reaction by testing the cloud point of the material; when the reaction reaches the end, immediately add an appropriate amount of alkali to adjust the pH value in the reactor to 8.5-9.0 to obtain a semi-rigid modified melamine resin;
- APTES 3-aminopropyltriethoxysilane
- step (3) the semi-rigid melamine foam obtained in step (3) is cut by an online cutting machine and dried to obtain a semi-rigid melamine foam product.
- the molar ratio of the raw materials melamine, paraformaldehyde and formaldehyde solution is 1:2.5:1.5.
- the amount of PVA used is 5 wt% of the amount of melamine; the amount of APTES used is 25 wt% of the amount of melamine.
- the foaming agent is hexane; the emulsifier is alkylphenol polyoxyethylene ether; and the curing agent is hydrochloric acid.
- the mass ratio of the semi-rigid modified melamine resin to the mixing assistant is 100:10.
- the alkali used to adjust the pH value is a sodium hydroxide solution with a mass percentage of 30-40%; the acid used to adjust the pH is a nitric acid solution with a mass percentage of 45%.
- the microwave foaming furnace is a tunnel type microwave foaming furnace.
- the mixed and emulsified resin is uniformly distributed at the front end of the tunnel type microwave foaming furnace, and the conveying device of the foaming furnace continuously passes through the microwave heating cavity of the microwave oven to produce Highly open cell foam.
- the microwave frequency of the microwave oven used for microwave foaming is 2450MHz
- the growth time of the microwave foaming is 4 minutes
- the temperature of the microwave oven foaming cavity is 90-100°C.
- a preparation method of semi-rigid melamine foam plastic specifically includes the following steps:
- Modified resin synthesis Put solid powdery melamine and modifier 3-aminopropyltriethoxysilane (APTES) into the reactor, and raise the temperature in the reactor to 85°C , Continue the heat preservation reaction for 20 minutes; after the materials in the reaction kettle are cooled to room temperature, adjust the pH value of the material solution in the reaction kettle to 3.5-4 with an appropriate amount of acid; heat the material solution, when the temperature rises to 95 °C, heat preservation reaction 80 Minutes, judge the end of the reaction by testing the cloud point of the material; when the reaction reaches the end, immediately add an appropriate amount of alkali to adjust the pH value in the reactor to 8.5-9.0 to obtain a semi-rigid modified melamine resin;
- APTES 3-aminopropyltriethoxysilane
- step (3) the semi-rigid melamine foam obtained in step (3) is cut by an online cutting machine and dried to obtain a semi-rigid melamine foam product.
- the molar ratio of the raw materials melamine, paraformaldehyde and formaldehyde solution is 1:2:1.
- the usage amount of PVA is 12wt% of the melamine usage; the usage amount of APTES is 20wt% of the melamine usage.
- the foaming agent is a mixture of hexane and petroleum ether in a mass ratio of 1:1; the emulsifier is fatty acid polyglycol ether; and the curing agent is acetic acid.
- the mass ratio of the semi-rigid modified melamine resin to the mixing assistant is 100:20.
- the alkali used to adjust the pH value is a sodium hydroxide solution with a mass percentage of 30-40%; the acid used to adjust the pH is a nitric acid solution with a mass percentage of 45%.
- the microwave foaming furnace is a tunnel type microwave foaming furnace.
- the mixed and emulsified resin is uniformly distributed at the front end of the tunnel type microwave foaming furnace, and the conveying device of the foaming furnace continuously passes through the microwave heating cavity of the microwave oven to produce Highly open cell foam.
- the microwave frequency of the microwave oven used for microwave foaming is 2450MHz
- the growth time of the microwave foaming is 4 minutes
- the temperature of the microwave oven foaming cavity is 90-100°C.
- a preparation method of semi-rigid melamine foam plastic specifically includes the following steps:
- step (3) the semi-rigid melamine foam obtained in step (3) is cut by an online cutting machine and dried to obtain a semi-rigid melamine foam product.
- the molar ratio of the raw materials melamine, paraformaldehyde and formaldehyde solution is 1:3:1.
- the usage amount of PVA is 15wt% of the melamine usage; the usage amount of APTES is 10wt% of the melamine usage.
- the foaming agent is pentane; the emulsifier is alkylphenol polyoxyethylene ether; and the curing agent is a mixture of formic acid and acetic acid in a volume ratio of 1:2.
- the mass ratio of the semi-rigid modified melamine resin and the mixing assistant is 100:30.
- the alkali used to adjust the pH value is a sodium hydroxide solution with a mass percentage of 30-40%; the acid used to adjust the pH is a nitric acid solution with a mass percentage of 45%.
- the microwave foaming furnace is a tunnel type microwave foaming furnace.
- the mixed and emulsified resin is uniformly distributed at the front end of the tunnel type microwave foaming furnace, and the conveying device of the foaming furnace continuously passes through the microwave heating cavity of the microwave oven to produce Highly open cell foam.
- the microwave frequency of the microwave oven used for microwave foaming is 2450MHz
- the growth time of the microwave foaming is 4 minutes
- the temperature of the microwave oven foaming cavity is 90-100°C.
- the residual amount of free formaldehyde in the product does not exceed 10 ppm.
- a preparation method of semi-rigid melamine foam is the same as those in Example 1. The difference is: in the step (3), the mass ratio of the semi-rigid modified melamine resin and the mixing auxiliary is It is 100:40.
- the mixing auxiliary agent contains the auxiliary agent (carbon fiber) with a resin amount of 10% by weight, which is used to enhance the flame-retardant performance of the product.
- Example 2 In order to investigate the influence of different amounts of PVA and PTES on the performance of foam plastics, the method described in Example 2 was used to prepare melamine foam plastics for comparative tests. The quantitative data in the tests were all set for three repeated experiments, and the results were averaged. In Comparative Examples 1 to 4, the usage amount of PVA and the usage amount of APTES were respectively 0/0, 12%/0, 0/20%, 20%/30% of the melamine usage. The performance test results are shown in Table 2.
- Comparative example 4 proves that excessive addition has an effect on product performance, and excessive amount will be free in the resin system, affecting the heat resistance and flame retardancy of the foam.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Emergency Medicine (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Phenolic Resins Or Amino Resins (AREA)
Abstract
一种半硬质三聚氰胺泡沫塑料及其制备方法,该半硬质三聚氰胺泡沫塑料的制备方法包括如下步骤:(1)将多聚甲醛置于反应釜内,加入甲醛溶液和聚乙烯醇(PVA),加热反应釜直至反应釜内固体颗粒完全溶解,加入适量的碱调整反应釜内的pH值为8.0~9;(2)改性树脂合成;(3)固化发泡;(4)切割干燥。该半硬质三聚氰胺泡沫塑料是一种本征型阻燃泡沫,除了优异的阻燃性能以外,还具有良好的吸音、耐热和保温等性能,可用于制备油水分离材料、超级电容器、吸音材料等。
Description
本发明涉及一种泡沫塑料,具体涉及一种半硬质三聚氰胺泡沫塑料及其制备方法,属于泡沫塑料技术领域。
泡沫塑料具有质轻、隔热、吸音、减震等诸多优良性能,是由大量气体微孔分散于固体塑料中而形成的一类高分子材料,具有极其广泛的应用范围。三聚氰胺泡沫塑料,又称密胺泡沫塑料,外形类似聚氨酯海绵,在建筑、交通、车辆制造、声学工程、电子信息和物体表面清洁去污等领域都具有广阔的应用前景。三聚氰胺泡沫塑料由德国巴斯夫公司率先推出,长久以来处于高价垄断地位,其具有稳定、低温柔性好、透气性好、耐磨损能力强、实用温区广等优点,但是其力学性能比较差。
目前,关于三聚氰胺泡沫的研究主要集中在软质泡沫(密度≤12kg/m
3)方面。软质泡沫具有密度低、韧性好、阻燃等优良性能,但是它的硬度低、易变形、易碎、易掉渣等缺陷,大大限制了其应用范围。半硬质三聚氰胺泡沫塑料的制备方法比较少见,为适应市场需求,需要对此类产品进行研发。
发明概述
问题的解决方案
本发明的目的是为克服上述现有技术的不足,提供一种半硬质三聚氰胺泡沫塑料。
本发明还提供了上述三聚氰胺泡沫塑料的制备方法。
为实现上述目的,本发明采用下述技术方案:
一种半硬质三聚氰胺泡沫塑料的制备方法该方法包括如下步骤:
(1)将多聚甲醛置于反应釜内,加入甲醛溶液和聚乙烯醇(PVA),加热反 应釜直至反应釜内固体颗粒完全溶解,加入适量的碱调整反应釜内的pH值为8.0~9;
(2)改性树脂合成:将固体粉状三聚氰胺和改性剂3-氨丙基三乙氧基硅烷(APTES)投入到所述的反应釜内,升高反应釜内的温度至75~85℃后,保温反应20~50分钟;待反应釜内物料冷却至室温后,用适量的酸调整反应釜内物料溶液的pH值为3~4;加热物料溶液,当温度升至80~95℃后,保温反应40~80分钟,通过测试物料的浊点来判断反应的终点;当反应到达终点时,立即加入适量的碱调节反应釜内的pH值为8.5~9.0,得到半硬质发泡用改性三聚氰胺树脂;
(3)固化发泡:将适量的发泡剂、乳化剂、助剂和固化剂投入至搅拌釜中搅拌混合均匀,得到混合助剂;将混合助剂与半硬质改性三聚氰胺树脂泵入混炼乳化机中进行混合乳化;混炼乳化好的树脂置于微波加热炉腔内进行微波发泡,生成高度开孔的半硬质三聚氰胺泡沫塑料;
(4)切割干燥:步骤(3)得到的半硬质三聚氰胺泡沫塑料经在线裁断机切割,干燥,得到半硬质三聚氰胺泡沫塑料成品。
作为优选,PVA的使用量为三聚氰胺用量的1~15wt%;APTES的使用量为三聚氰胺用量的5~25wt%。进一步优选的是,PVA的使用量为三聚氰胺用量的5~12wt%;APTES的使用量为三聚氰胺用量的10~20wt%。APTES用量过多,会游离在树脂体系中,影响泡沫的耐热性能和阻燃性能。
作为优选,三聚氰胺、多聚甲醛及甲醛溶液的摩尔比为1∶2~3∶1~2。
作为优选,半硬质改性三聚氰胺树脂与混合助剂的投料质量比为100∶10~40%。
作为优选,发泡剂为水、戊烷、己烷或石油醚中的一种或几种混合;乳化剂为烷基酚聚氧乙烯醚、脂肪酸聚乙二醇醚或烷基三甲基铵盐中的其中一种或几种混合;固化剂为硫酸、盐酸、甲酸、乙酸或硝酸的其中一种或几种混合。
作为优选,用于调整pH值的碱为质量百分浓度为30~40%的氢氧化钠溶液或者三乙醇胺中的一种;用于调整pH的酸可以为质量百分浓度为45%的硝酸溶液、质量百分浓度为30%的盐酸溶液、质量百分浓度为35%的乙酸溶液或者质量百分浓度为30%的甲酸溶液中的其中任意一种。
作为优选,所述的助剂为纤维增强材料、纳米材料、颜料、憎水剂或者其他用于改善泡沫某方面性能的添加材料,其使用方式为一种或多种的组合,使用量为树脂用量的0~10wt%。助剂的选择主要针对泡沫某方面性能的需求,这方面技术对本领域的技术人员是基本的常识,非本发明所要研究的重点。
一种本发明所述的方法制得的半硬质三聚氰胺泡沫塑料。该半硬质三聚氰胺泡沫塑料的密度是15~35kg/m
3。进一步的,该半硬质三聚氰胺泡沫塑料的密度是15~28kg/m
3。
根据本发明所述的方法制得的半硬质三聚氰胺泡沫塑料,其性能参数见表1。
表1
[Table 1]
性能 | 结果 | 检验标准 |
表观密度(kg/m 3) | 15~35 | GB/T6343-2009 |
拉伸强度(kPa) ≥ | 50 | GB/T6344-2008 |
断裂伸长率(%) ≥ | 5 | GB/T6344-2008 |
压缩永久变形(%) ≤ | 10 | GB/T6669-2008 |
回弹率(%) ≥ | 50 | GB/T6670-2008 |
撕裂强度(N/m) ≥ | 30 | GB/T10808-2006 |
压陷硬度(N) ≥ | 1000 | GB/T10807-2006 |
发明的有益效果
本发明的有益效果是:本发明的半硬质三聚氰胺泡沫塑料相对于软质三聚氰胺泡沫塑料,极大地提高了压陷硬度,具备了相对稳定的外形尺寸,在建筑工程、机械车辆船舶制造、工业设备制造等行业极大地拓宽了三聚氰胺泡沫塑料的应用范围。
本发明提供的半硬质三聚氰胺泡沫塑料是由三聚氰胺甲醛树脂经过固化发泡工艺制备出的一种本征型阻燃泡沫,除了优异的阻燃性能以外,还具有良好的吸 音、耐热和保温等性能,可用于制备油水分离材料、超级电容器、吸音材料、保温隔热阻燃材料等。
实施该发明的最佳实施例
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通和/或改变都将落入本发明保护范围。
在本发明中,若非特指,所有的份、百分比均为重量单位,所采用的设备和原料等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
实施例1
一种半硬质三聚氰胺泡沫塑料的制备方法,该方法具体包括如下步骤:
(1)将多聚甲醛置于反应釜内,加入甲醛溶液和PVA,加热反应釜直至反应釜内固体颗粒完全溶解,加入适量的碱调整反应釜内的pH值为8.0~9;
(2)改性树脂合成:将固体粉状三聚氰胺和改性剂3-氨丙基三乙氧基硅烷(APTES)投入到所述的反应釜内,升高反应釜内的温度至75℃后,继续保温反应50分钟;待反应釜内物料冷却至室温后,用适量的酸调整反应釜内物料溶液的pH值为3.5~4;加热物料溶液,当温度升至90℃后,保温反应40分钟,通过测试物料的浊点来判断反应的终点;当反应到达终点时,立即加入适量的碱调节反应釜内的pH值为8.5~9.0,得到半硬质改性三聚氰胺树脂;
(3)固化发泡:将适量的发泡剂、乳化剂、助剂和固化剂投入至搅拌釜中搅拌混合均匀,得到混合助剂;将混合助剂与半硬质改性三聚氰胺树脂泵入混炼乳化机中进行混合乳化;混炼乳化好的树脂置于微波加热炉腔内进行微波发泡,生成高度开孔的半硬质三聚氰胺泡沫塑料;
(4)切割干燥:步骤(3)得到的半硬质三聚氰胺泡沫塑料经在线裁断机切割,干燥,得到半硬质三聚氰胺泡沫塑料成品。
所述的方法中,原料三聚氰胺、多聚甲醛及甲醛溶液的摩尔比为1∶2.5∶1.5。PVA的使用量为三聚氰胺用量的5wt%;APTES的使用量为三聚氰胺用量的25wt% 。
所述的步骤(2)中,发泡剂为己烷;乳化剂为烷基酚聚氧乙烯醚;固化剂为盐酸。
所述的步骤(3)中,半硬质改性三聚氰胺树脂与混合助剂的投料质量比为100∶10。
本实施例中,用于调整pH值的碱为质量百分浓度为30~40%的氢氧化钠溶液;用于调整pH的酸为质量百分浓度为45%的硝酸溶液。
所述微波发泡炉为隧道式微波发泡炉,将混炼乳化好的树脂均匀地布料在隧道式微波发泡炉的前端,随发泡炉的输送装置连续经过微波炉微波加热炉腔,生成高度开孔的泡沫塑料。用于微波发泡的微波炉的微波频率2450MHz,微波发泡的生长时间为4分钟,微波炉发泡炉腔温度为90~100℃。
游离甲醛残留量不低
实施例2
一种半硬质三聚氰胺泡沫塑料的制备方法,该方法具体包括如下步骤:
(1)将多聚甲醛置于反应釜内,加入甲醛溶液和PVA,加热反应釜直至反应釜内固体颗粒完全溶解,加入适量的碱调整反应釜内的pH值为8.0~9;
(2)改性树脂合成:将固体粉状三聚氰胺和改性剂3-氨丙基三乙氧基硅烷(APTES)投入到所述的反应釜内,升高反应釜内的温度至85℃后,继续保温反应20分钟;待反应釜内物料冷却至室温后,用适量的酸调整反应釜内物料溶液的pH值为3.5~4;加热物料溶液,当温度升至95℃后,保温反应80分钟,通过测试物料的浊点来判断反应的终点;当反应到达终点时,立即加入适量的碱调节反应釜内的pH值为8.5~9.0,得到半硬质改性三聚氰胺树脂;
(3)固化发泡:将适量的发泡剂、乳化剂、助剂和固化剂投入至搅拌釜中搅拌混合均匀,得到混合助剂;将混合助剂与半硬质改性三聚氰胺树脂泵入混炼乳化机中进行混合乳化;混炼乳化好的树脂置于微波加热炉腔内进行微波发泡,生成高度开孔的半硬质三聚氰胺泡沫塑料;
(4)切割干燥:步骤(3)得到的半硬质三聚氰胺泡沫塑料经在线裁断机切割,干燥,得到半硬质三聚氰胺泡沫塑料成品。
所述的方法中,原料三聚氰胺、多聚甲醛及甲醛溶液的摩尔比为1∶2∶1。PVA的使用量为三聚氰胺用量的12wt%;APTES的使用量为三聚氰胺用量的20wt%。
所述的步骤(2)中,发泡剂为己烷和石油醚质量比为1∶1的混合物;乳化剂为脂肪酸聚乙二醇醚;固化剂为乙酸。
所述的步骤(3)中,半硬质改性三聚氰胺树脂与混合助剂的投料质量比为100∶20。
本实施例中,用于调整pH值的碱为质量百分浓度为30~40%的氢氧化钠溶液;用于调整pH的酸为质量百分浓度为45%的硝酸溶液。
所述微波发泡炉为隧道式微波发泡炉,将混炼乳化好的树脂均匀地布料在隧道式微波发泡炉的前端,随发泡炉的输送装置连续经过微波炉微波加热炉腔,生成高度开孔的泡沫塑料。用于微波发泡的微波炉的微波频率2450MHz,微波发泡的生长时间为4分钟,微波炉发泡炉腔温度为90~100℃。
游离甲醛残留量不低
实施例3
一种半硬质三聚氰胺泡沫塑料的制备方法,该方法具体包括如下步骤:
(1)将多聚甲醛置于反应釜内,加入甲醛溶液和PVA,加热反应釜直至反应釜内固体颗粒完全溶解,加入适量的碱调整反应釜内的pH值为8.0~9;
(2)改性树脂合成:将固体粉状三聚氰胺和改性剂3-氨丙基三乙氧基硅烷(APTES)投入到所述的反应釜内,升高反应釜内的温度至80℃后,继续保温反应30分钟;待反应釜内物料冷却至室温后,用适量的酸调整反应釜内物料溶液的pH值为3.5~4;加热物料溶液,当温度升至80℃后,保温反应60分钟,通过测试物料的浊点来判断反应的终点;当反应到达终点时,立即加入适量的碱调节反应釜内的pH值为8.5~9.0,得到半硬质改性三聚氰胺树脂;
(3)固化发泡:将适量的发泡剂、乳化剂、助剂和固化剂投入至搅拌釜中搅拌混合均匀,得到混合助剂;将混合助剂与半硬质改性三聚氰胺树脂泵入混炼乳化机中进行混合乳化;混炼乳化好的树脂置于微波加热炉腔内进行微波发泡,生成高度开孔的半硬质三聚氰胺泡沫塑料;
(4)切割干燥:步骤(3)得到的半硬质三聚氰胺泡沫塑料经在线裁断机切割 ,干燥,得到半硬质三聚氰胺泡沫塑料成品。
所述的方法中,原料三聚氰胺、多聚甲醛及甲醛溶液的摩尔比为1∶3∶1。PVA的使用量为三聚氰胺用量的15wt%;APTES的使用量为三聚氰胺用量的10wt%。
所述的步骤(2)中,发泡剂为戊烷;乳化剂为烷基酚聚氧乙烯醚;固化剂为甲酸和乙酸体积比1∶2的混合物。
所述的步骤(3)中,半硬质改性三聚氰胺树脂与混合助剂的投料质量比为100∶30。
本实施例中,用于调整pH值的碱为质量百分浓度为30~40%的氢氧化钠溶液;用于调整pH的酸为质量百分浓度为45%的硝酸溶液。
所述微波发泡炉为隧道式微波发泡炉,将混炼乳化好的树脂均匀地布料在隧道式微波发泡炉的前端,随发泡炉的输送装置连续经过微波炉微波加热炉腔,生成高度开孔的泡沫塑料。用于微波发泡的微波炉的微波频率2450MHz,微波发泡的生长时间为4分钟,微波炉发泡炉腔温度为90~100℃。
本实施例制备得到的半硬质三聚氰胺泡沫塑料,其产品中游离甲醛残留量不超过10ppm。
实施例4
一种半硬质三聚氰胺泡沫塑料的制备方法,该方法具体步骤同实施例1,不同之处是:所述的步骤(3)中,半硬质改性三聚氰胺树脂与混合助剂的投料质量比为100∶40。该混合助剂中含有树脂用量10wt%的助剂(碳纤维),用于增强产品阻燃性能。
对比例1~4
为考察不同PVA、PTES的使用量对泡沫塑料性能的影响,采用实施例2所述方法制备三聚氰胺泡沫塑料进行对比试验,试验中的定量数据,均设置三次重复实验,结果取平均值。对比例1~4中,PVA的使用量以及APTES的使用量分别为三聚氰胺用量的0/0、12%/0、0/20%、20%/30%。性能检测结果具体见表2。
表2
[Table 2]
试验证明,PVA的适量添加,可以使泡沫塑料的断裂伸长率提高;PTES的适量添加,可以使泡沫塑料的回弹率提高,但是耐热性降低;同时添加适量的PVA和PTES,可以实现泡沫塑料综合性能优化。
对比例4证明添加过量对产品性能影响,用量过多,会游离在树脂体系中,影响泡沫的耐热性能和阻燃性能。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简 单,相关之处参见方法部分说明即可。
以上对本发明所提供的半硬质三聚氰胺泡沫塑料的制备方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
Claims (10)
- 一种半硬质三聚氰胺泡沫塑料的制备方法,其特征在于该方法包括如下步骤:(1)将多聚甲醛置于反应釜内,加入甲醛溶液和聚乙烯醇(PVA),加热反应釜直至反应釜内固体颗粒完全溶解,加入适量的碱调整反应釜内的pH值为8.0~9;(2)改性树脂合成:将固体粉状三聚氰胺和改性剂3-氨丙基三乙氧基硅烷(APTES)投入到所述的反应釜内,升高反应釜内的温度至75~85℃后,保温反应20~50分钟;待反应釜内物料冷却至室温后,用适量的酸调整反应釜内物料溶液的pH值为3~4;加热物料溶液,当温度升至80~95℃后,保温反应40~80分钟,通过测试物料的浊点来判断反应的终点;当反应到达终点时,立即加入适量的碱调节反应釜内的pH值为8.5~9.0,得到半硬质改性三聚氰胺树脂;(3)固化发泡:将适量的发泡剂、乳化剂、助剂和固化剂投入至搅拌釜中搅拌混合均匀,得到混合助剂;将混合助剂与半硬质改性三聚氰胺树脂泵入混炼乳化机中进行混合乳化;混炼乳化好的树脂置于微波加热炉腔内进行微波发泡,生成高度开孔的半硬质三聚氰胺泡沫塑料;(4)切割干燥:步骤(3)得到的半硬质三聚氰胺泡沫塑料经在线裁断机切割,干燥,得到半硬质三聚氰胺泡沫塑料成品。
- 根据权利要求1所述的半硬质三聚氰胺泡沫塑料的制备方法,其特征在于:PVA的使用量为三聚氰胺用量的1~15wt%;APTES的使用量为三聚氰胺用量的5~25wt%。
- 根据权利要求1所述的半硬质三聚氰胺泡沫塑料的制备方法,其特征在于:三聚氰胺、多聚甲醛及甲醛溶液的摩尔比为1∶2~3∶1~2。
- 根据权利要求1所述的半硬质三聚氰胺泡沫塑料的制备方法,其特 征在于:半硬质改性三聚氰胺树脂与混合助剂的投料质量比为100∶10~40%。
- 根据权利要求1所述的半硬质三聚氰胺泡沫塑料的制备方法,其特征在于:发泡剂为水、戊烷、己烷或石油醚中的一种或几种混合;乳化剂为烷基酚聚氧乙烯醚、脂肪酸聚乙二醇醚或烷基三甲基铵盐中的其中一种或几种混合;固化剂为硫酸、盐酸、甲酸、乙酸或硝酸的其中一种或几种混合。
- 根据权利要求1所述的半硬质三聚氰胺泡沫塑料的制备方法,其特征在于:用于调整pH值的碱为质量百分浓度为30~40%的氢氧化钠溶液或者三乙醇胺中的一种;用于调整pH的酸可以为质量百分浓度为45%的硝酸溶液、质量百分浓度为30%的盐酸溶液、质量百分浓度为35%的乙酸溶液或者质量百分浓度为30%的甲酸溶液中的其中任意一种。
- 根据权利要求1所述的半硬质三聚氰胺泡沫塑料的制备方法,其特征在于:所述的助剂为纤维增强材料、纳米材料、颜料、憎水剂或者其他用于改善泡沫某方面性能的添加材料,其使用方式为一种或多种的组合,使用量为树脂用量的0~10wt%。
- 根据权利要求1所述的半硬质三聚氰胺泡沫塑料的制备方法,其特征在于:PVA的使用量为三聚氰胺用量的5~12wt%;APTES的使用量为三聚氰胺用量的10~20wt%。
- 一种权利要求1~8任一项所述的方法制得的半硬质三聚氰胺泡沫塑料。
- 根据权利要求1所述的半硬质三聚氰胺泡沫塑料,其特征在于:该半硬质三聚氰胺泡沫塑料的密度是15~35kg/m 3。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/416,893 US12084557B2 (en) | 2020-03-27 | 2020-06-12 | Semi-rigid melamine foam plastic and preparation method thereof |
JP2021549897A JP7336532B2 (ja) | 2020-03-27 | 2020-06-12 | 半硬質シアヌロトリアミド発泡プラスチック及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010232102.1A CN111285987B (zh) | 2020-03-27 | 2020-03-27 | 一种半硬质三聚氰胺泡沫塑料及其制备方法 |
CN202010232102.1 | 2020-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021189674A1 true WO2021189674A1 (zh) | 2021-09-30 |
Family
ID=71022673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/095888 WO2021189674A1 (zh) | 2020-03-27 | 2020-06-12 | 一种半硬质三聚氰胺泡沫塑料及其制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12084557B2 (zh) |
JP (1) | JP7336532B2 (zh) |
CN (1) | CN111285987B (zh) |
WO (1) | WO2021189674A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114551893A (zh) * | 2021-09-07 | 2022-05-27 | 万向一二三股份公司 | 一种全固态电池用集流体的制备方法及其在电池中的应用 |
CN114290471B (zh) * | 2021-11-17 | 2023-04-07 | 濮阳绿宇新材料科技股份有限公司 | 一种轻质蜜胺级阻燃泡沫木屑板及其制备方法 |
CN114163680B (zh) * | 2021-12-02 | 2023-07-21 | 华东理工大学 | 一种低甲醛高弹性半硬质密胺泡沫及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6274936A (ja) * | 1985-09-28 | 1987-04-06 | バスフ アクチェン ゲゼルシャフト | 弾性メラミン発泡体の製法 |
CN104559051A (zh) * | 2014-12-29 | 2015-04-29 | 中科院广州化学有限公司 | 本征阻燃双组分改性三聚氰胺甲醛泡沫及其制备方法和应用 |
CN104725773A (zh) * | 2015-03-26 | 2015-06-24 | 嘉兴市杭星精细化工有限公司 | 一种三聚氰胺泡沫塑料及其生产工艺 |
CN104725774A (zh) * | 2015-03-26 | 2015-06-24 | 嘉兴市杭星精细化工有限公司 | 一种三聚氰胺泡沫塑料的生产工艺 |
CN105733183A (zh) * | 2014-12-31 | 2016-07-06 | 中国科学院成都有机化学有限公司 | 一种半硬质三聚氰胺泡沫的制备方法 |
CN107892738A (zh) * | 2017-05-16 | 2018-04-10 | 中国科学院成都有机化学有限公司 | 一种疏水三聚氰胺泡沫专用树脂液、制备方法和由其制备的发泡液 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3402712B2 (ja) * | 1993-12-07 | 2003-05-06 | 日清紡績株式会社 | メラミン系樹脂発泡体、その製造方法及びメラミンホルムアルデヒド縮合体 |
DE19735809A1 (de) | 1997-08-18 | 1999-02-25 | Basf Ag | Kontinuierliches Verfahren zur Herstellung von Amino- und/oder Phenoplasten |
US7872088B2 (en) * | 2006-02-16 | 2011-01-18 | Knauf Insulation Gmbh | Low formaldehyde emission fiberglass |
US20090313909A1 (en) * | 2008-06-20 | 2009-12-24 | Bayer Materialscience Llc | Low density semi-rigid flame resistant foams |
CN104387608A (zh) * | 2014-11-28 | 2015-03-04 | 中科院广州化学有限公司 | 一种自阻燃型改性三聚氰胺甲醛泡沫及其制备方法和应用 |
CN109610027B (zh) | 2018-01-08 | 2021-01-19 | 江苏恒辉安防股份有限公司 | 石墨烯复合超高分子量聚乙烯纤维及其制备方法 |
CN110724237A (zh) | 2019-11-06 | 2020-01-24 | 徐州盛安化工科技有限公司 | 一种三聚氰胺泡沫的改性方法 |
-
2020
- 2020-03-27 CN CN202010232102.1A patent/CN111285987B/zh active Active
- 2020-06-12 JP JP2021549897A patent/JP7336532B2/ja active Active
- 2020-06-12 US US17/416,893 patent/US12084557B2/en active Active
- 2020-06-12 WO PCT/CN2020/095888 patent/WO2021189674A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6274936A (ja) * | 1985-09-28 | 1987-04-06 | バスフ アクチェン ゲゼルシャフト | 弾性メラミン発泡体の製法 |
CN104559051A (zh) * | 2014-12-29 | 2015-04-29 | 中科院广州化学有限公司 | 本征阻燃双组分改性三聚氰胺甲醛泡沫及其制备方法和应用 |
CN105733183A (zh) * | 2014-12-31 | 2016-07-06 | 中国科学院成都有机化学有限公司 | 一种半硬质三聚氰胺泡沫的制备方法 |
CN104725773A (zh) * | 2015-03-26 | 2015-06-24 | 嘉兴市杭星精细化工有限公司 | 一种三聚氰胺泡沫塑料及其生产工艺 |
CN104725774A (zh) * | 2015-03-26 | 2015-06-24 | 嘉兴市杭星精细化工有限公司 | 一种三聚氰胺泡沫塑料的生产工艺 |
CN107892738A (zh) * | 2017-05-16 | 2018-04-10 | 中国科学院成都有机化学有限公司 | 一种疏水三聚氰胺泡沫专用树脂液、制备方法和由其制备的发泡液 |
Also Published As
Publication number | Publication date |
---|---|
JP7336532B2 (ja) | 2023-08-31 |
US20220340728A1 (en) | 2022-10-27 |
CN111285987A (zh) | 2020-06-16 |
CN111285987B (zh) | 2022-01-18 |
US12084557B2 (en) | 2024-09-10 |
JP2022529875A (ja) | 2022-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021189674A1 (zh) | 一种半硬质三聚氰胺泡沫塑料及其制备方法 | |
CA1121950A (en) | Phenolic foam and surfactant useful therein | |
CN103030924A (zh) | 用纤维材料改性的三聚氰胺甲醛泡沫及其制备方法 | |
CN104479092A (zh) | 低密度全水开孔硬质聚氨酯泡沫及其制备方法 | |
CN107556514B (zh) | 一种阻燃保温用改性三聚氰胺甲醛硬质泡沫板的制备方法 | |
CN108192128A (zh) | 聚氨酯保温板材组合料 | |
US5441992A (en) | Non-CFC foam produced using perfluoroalkanes | |
US5407963A (en) | Non-CFC foam produced using blended surfactants | |
CN106380783B (zh) | 一种纳米结晶纤维素改性增强的硬质蜜胺泡沫及其制备方法 | |
CN113004483B (zh) | 一种阻燃型硬质聚氨酯泡沫吸声材料及其全水发泡制备工艺 | |
CN113637136B (zh) | 一种混合发泡剂组合聚醚及聚氨酯硬泡 | |
CN113278215A (zh) | 一种聚乙烯发泡材料及其制备方法 | |
CN109422914B (zh) | 多胺乙醇胺碱性发泡剂和用于制备聚氨酯太阳能泡沫体材料的用途 | |
CN111574780B (zh) | 一种石墨挤塑板 | |
CN111349204A (zh) | 一种改性酚醛树脂及泡沫的制备方法和制备的产品 | |
CN115141342B (zh) | 用于聚氨酯硬质泡沫的聚醚组合物及其制备方法和应用 | |
CN115160632B (zh) | 一种超轻质三聚氰胺吸音泡沫塑料及其制备方法 | |
CN114835940B (zh) | 一种耐粉化酚醛树脂泡沫及其制备方法 | |
CN111117093B (zh) | 一种静曲强度高的eps板及其制备方法 | |
CN111116893B (zh) | 一种阻燃型三聚氰胺酚醛硬泡聚醚多元醇的合成方法 | |
CN109422908B (zh) | 包含多胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途 | |
JP2514879B2 (ja) | 防火性フェノ―ル樹脂発泡性組成物及び発泡体の製造方法 | |
JP3555012B2 (ja) | フェノール系樹脂発泡性組成物及び該組成物を用いた発泡体の製造方法 | |
CN109422913B (zh) | 包含多胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途 | |
CN116589799A (zh) | 一种高抗压发泡聚苯乙烯板及其制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021549897 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20927056 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20927056 Country of ref document: EP Kind code of ref document: A1 |