WO2021189250A1 - 散热模块与电池模组 - Google Patents

散热模块与电池模组 Download PDF

Info

Publication number
WO2021189250A1
WO2021189250A1 PCT/CN2020/080882 CN2020080882W WO2021189250A1 WO 2021189250 A1 WO2021189250 A1 WO 2021189250A1 CN 2020080882 W CN2020080882 W CN 2020080882W WO 2021189250 A1 WO2021189250 A1 WO 2021189250A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier
spacer
heat dissipation
heat
battery
Prior art date
Application number
PCT/CN2020/080882
Other languages
English (en)
French (fr)
Inventor
胡传鹏
李长江
兰天保
胡联亚
Original Assignee
东莞新能安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能安科技有限公司 filed Critical 东莞新能安科技有限公司
Priority to EP20866919.2A priority Critical patent/EP3913729A1/en
Priority to PCT/CN2020/080882 priority patent/WO2021189250A1/zh
Priority to CN202080009491.XA priority patent/CN113875070B/zh
Publication of WO2021189250A1 publication Critical patent/WO2021189250A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0013Particular heat storage apparatus the heat storage material being enclosed in elements attached to or integral with heat exchange conduits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of battery technology, and in particular, to a heat dissipation module and a battery module.
  • An energy storage device is a device that converts external energy into electrical energy and stores it inside to supply power to external equipment when needed.
  • energy storage devices include battery modules, inverters, and controllers.
  • the battery module as the core component usually includes a plurality of battery cells arranged adjacent to each other in series or in parallel, and the plurality of battery cells can be cooperated together to achieve high-power output.
  • the heat generated by the multiple battery cells working at the same time is huge. If the heat is not discharged in time, it may cause thermal runaway of the battery module, and even cause safety accidents such as the explosion of the battery module and the energy storage device.
  • the cooling components include a cooling pipe, a cooling fluid, and a power unit.
  • the cooling liquid is filled in the cooling pipe; the power device is connected with the cooling pipe and is used to drive the cooling liquid to circulate in the cooling pipe.
  • the cooling component takes the heat generated by the battery core to the outside through the flow of the cooling liquid, so as to realize the control of the temperature of the battery core in a reasonable range.
  • the inventor of the present application discovered in the process of realizing the present application that the current cooling components used for battery modules include cooling pipes and power devices, and their structures are relatively complex, so the overall structure of the battery modules including the cooling components is also relatively complex. .
  • the embodiments of the present application aim to provide a heat dissipation module and a battery module to solve the technical problem of the complex structure of the cooling assembly currently applied to the battery module.
  • a heat dissipation module applied to a battery module, includes a spacer, a heat conductive material, and a first barrier.
  • An accommodation space is provided inside the isolation sheet.
  • the side surface of the spacer is provided with a communicating groove.
  • the communicating groove communicates with the receiving space.
  • the heat-conducting material is filled in the containing space.
  • the heat-conducting material is used to absorb heat generated in the battery module and radiate the heat to the isolation sheet through the communication groove.
  • the first barrier is configured to be arranged between the battery cell of the battery module and the separator, and the first barrier is configured to prevent the thermally conductive material from passing through.
  • the thermally conductive material fills 60% to 90% of the total volume of the receiving space and the communicating groove.
  • the storage space is continuously bent.
  • the first barrier is provided with a microporous structure for the gas generated in the battery module to pass.
  • the isolation sheet is a gas-permeable structure.
  • the isolation sheet is an air-impermeable structure
  • the isolation sheet is provided with a heat-conducting end surface at an end close to the first barrier
  • the heat-conducting end surface is provided with an air guide groove.
  • At least one end of the air guide groove extends to the side surface of the spacer.
  • the projection of the accommodating space in the direction perpendicular to the heat-conducting end surface is staggered with the projection of the air guide groove.
  • it also includes a second barrier that covers and seals the opening of the communication groove, and the second barrier is used to prevent the heat-conducting material from leaking out The isolation sheet.
  • At least one end of the air guide groove extends to the side surface of the spacer where the communication groove is provided;
  • the heat dissipation module further includes a second barrier that covers and seals the opening of the communicating groove and the opening of the air guide groove at one end corresponding to the communicating groove;
  • the second baffle is used to prevent the heat-conducting material from seeping out of the spacer, and the second baffle is provided with a microporous structure for the gas generated by the battery to pass through.
  • the first baffle is made of polytetrafluoroethylene
  • the second baffle is made of polytetrafluoroethylene.
  • the thermally conductive material is a phase change material.
  • a battery module includes a housing assembly and a battery cell, the housing assembly is provided with an accommodating cavity, and the battery is accommodated in the accommodating cavity.
  • the battery module further includes a heat dissipation module arranged between the battery cores and/or between the battery core and the housing assembly.
  • the heat dissipation module includes:
  • the spacer is connected to the housing assembly, the inner spacer of the spacer is provided with a receiving space, the spacer is provided with a communicating groove on the side surface corresponding to the inner wall of the housing assembly, and the communicating groove is connected to the housing assembly.
  • the containment space is connected;
  • thermally conductive material filled in the accommodating space the thermally conductive material is used to absorb the heat generated by the battery core, and dissipate the heat to the outside through the communicating groove and the housing assembly;
  • the first barrier is arranged between the battery core and the isolation sheet, and the first barrier is configured to prevent the thermally conductive material from passing through.
  • the volume filled with the thermally conductive material is 60% to 90% of the total volume of the receiving space and the communicating groove.
  • the storage space is continuously bent.
  • the first barrier is provided with a microporous structure for the gas generated by the battery core to pass.
  • the isolation sheet is a gas-permeable structure.
  • the spacer is an air-impermeable structure, the spacer is provided with a heat-conducting end surface at one end close to the first baffle, and the heat-conducting end surface is provided with an air guide groove.
  • At least one end of the air guide groove extends to the side surface of the spacer.
  • the heat dissipation module further includes a second barrier that covers and seals the opening of the communication groove, and the second barrier is used to prevent the The thermally conductive material oozes out of the spacer.
  • At least one end of the air guide groove extends to the side surface of the spacer where the communication groove is provided;
  • the heat dissipation module further includes a second barrier that covers and seals the opening of the communication groove, and covers and seals the opening of the air guide groove and the corresponding end of the communication groove;
  • the second barrier is used to prevent the heat-conducting material from leaking out of the isolation sheet, and the second barrier is provided with a microporous structure for the gas generated by the cell to pass through.
  • the housing assembly includes a housing and a buffer sheet, the battery core is accommodated inside the housing, and the buffer sheet is at least partially embedded in the second barrier. Between the shell and the shell, the shell and the buffer sheet jointly form the accommodating cavity.
  • the receiving space and the communicating groove extend along the same straight line and are integrally formed, and both the receiving space and the communicating groove extend obliquely with respect to the bottom of the housing assembly.
  • the heat dissipation module provided by the embodiments of the present application is applied to a battery module, and includes a spacer, a first barrier, and a thermally conductive material; Connecting grooves for spatial communication.
  • the heat-conducting material is used for absorbing the heat generated by the external heating element, and dissipating the heat to the outside through the communication groove.
  • the heat dissipation module Compared with the battery modules with cooling components currently on the market, the heat dissipation module provided by the embodiments of the present application absorbs the heat generated by the heating element through the heat-conducting material, and the heat-dissipating module only includes a spacer, a heat-conducting material, and a first baffle.
  • the structure of the heat dissipation module is relatively simple, so the structure of the battery module with the heat dissipation module is also relatively simple.
  • the first baffle can prevent the heat-conducting material accidentally exuding from the containing space from flowing to the surface of the cell and affecting the normal operation of the cell.
  • FIG. 1 is an exploded schematic diagram of a battery module provided by one of the embodiments of the application;
  • Fig. 2 is a three-dimensional schematic diagram of the spacer in Fig. 1;
  • Fig. 3 is a partial enlarged schematic diagram of A in Fig. 2;
  • FIG. 4 is a perspective view of another embodiment of the spacer in FIG. 1;
  • Fig. 5 is a partial enlarged schematic diagram of B in Fig. 4;
  • Fig. 6 is an exploded schematic diagram of the battery core, the second blocking member and the buffer member in Fig. 1;
  • FIG. 7 is a schematic perspective cut-away view of a battery module provided by another embodiment of this application.
  • Fig. 8 is a schematic cross-sectional view of the spacer in Fig. 7.
  • the "installation” includes welding, screwing, clamping, bonding, etc. to fix or restrict a certain element or device to a specific position or place, and the element or device can be held in a specific position or place. It can also move within a limited range without moving.
  • the element or device can be disassembled or cannot be disassembled after being fixed or restricted to a specific position or place, which is not limited in the embodiment of the present application.
  • FIG. 1 shows an exploded schematic diagram of a battery module provided by one embodiment of the present application.
  • the battery module includes a housing assembly 100, a battery cell 200 and a heat dissipation module 300.
  • the housing assembly 100 is provided with an accommodating cavity 111, and the battery cell 200 is accommodated in the accommodating cavity 111.
  • the heat dissipation module 300 is also accommodated in the above-mentioned accommodating cavity 111, which is disposed between the battery core 200 and/or between the battery core 200 and the housing assembly 100.
  • the heat dissipation module 300 includes a spacer 310, a thermally conductive material (not shown in the figure), and a first barrier 320.
  • the spacer 310 is connected to the housing assembly 100 and has a receiving space inside, and the spacer 310 is provided with at least one communicating groove on the side surface corresponding to the inner wall of the housing assembly 100, and the communicating groove is communicated with the above-mentioned receiving space.
  • the heat-conducting material is filled in the above-mentioned accommodating space, which is used to absorb the heat generated by the cell 200 in the battery module, and dissipate the heat to the outside through the communication groove and the housing assembly 100.
  • the first barrier 320 is disposed between the cell 200 and the isolation sheet 310, and the first barrier 320 is configured to prevent the thermally conductive material from passing through.
  • FIG. 1 includes a housing 110.
  • the housing 110 has a rectangular parallelepiped shape as a whole, which includes a bottom wall, a side wall extending from the edge of the bottom wall, and a top wall (not shown) provided at one end of the side wall away from the bottom wall.
  • the walls collectively enclose the accommodating cavity 111.
  • the number of the battery cells 200 is at least two, and the at least two battery cells 200 are stacked along the first direction X.
  • the number of heat dissipation modules 300 is multiple. Between the end of the outer battery core 200 away from the other battery core 200 and the inner wall of the housing assembly 100. Each heat dissipation module 300 is in close contact with the battery core 200 to better absorb the heat generated by the battery core 200; at the same time, each heat dissipation module 300 is correspondingly connected to at least one inner wall of the housing assembly 100 to pass the absorbed heat The housing assembly 100 is distributed to the outside.
  • the heat dissipation module 300 includes a spacer 310, a thermally conductive material, and a first barrier 320.
  • the heat dissipation module 300 receives the heat radiated by the cell 200 to dissipate heat for the cell 200.
  • FIGS. 2 and 3 respectively show a three-dimensional schematic view of the spacer 310 and a partial enlarged schematic view at A.
  • FIG. 2 It is provided with a receiving space 311 (shown by a dashed line in FIG. 2) for filling a thermally conductive material.
  • the space 311 is connected, and the opening at the other end is completely covered by the inner wall of the housing assembly 100.
  • the accommodating space 311 is an S-shape extending continuously in the vertical direction as shown in FIG.
  • the bottom is connected, and the two communicating grooves 312 are respectively provided on two opposite sides of the spacer 310 along the second direction Y, and the second direction Y and the first direction X are perpendicular to each other.
  • the S-shaped design of the receiving space 311 can effectively guide the thermally conductive material to the communicating groove 312.
  • this application does not specifically limit the shape of the receiving space 311.
  • the receiving space may also be a continuously bent Z shape, or an O shape, or a Y shape. , " ⁇ " shape, " ⁇ ” shape and other shapes, I will not list them in detail here.
  • the spacer 310 is made of an elastic thermally conductive material.
  • the spacer 310 has elastic characteristics that enable it to absorb the expansion of the cell 200 when the cell 200 in contact with it undergoes thermal expansion, thereby avoiding the The cell 200 is damaged due to excessive internal pressure; on the other hand, the thermal conductivity of the spacer 310 can also absorb the heat generated by the cell 200 in contact with it, and dissipate the heat to the outside through the housing assembly 100 connected to it. Therefore, the heat dissipation effect of the heat dissipation module 300 on the cell 200 is further enhanced.
  • the thermally conductive material is filled in the aforementioned receiving space 311, which is used to absorb the heat generated by the corresponding battery core 200 during the heating process of the battery core 200 to reduce the temperature of the battery core 200, and passes through the aforementioned communicating groove 312 And the housing assembly 100 dissipates heat to the outside, so that the thermally conductive material can continue the heat absorption process.
  • the thermally conductive material is preferably a phase change material.
  • the phase change material may be solid or liquid before the phase change.
  • the thermally conductive material is further preferably a phase change material that is solid at room temperature.
  • the thermally conductive material includes organic phase change energy storage material modified paraffin, and the modified paraffin includes paraffin and graphite, wherein the mass of the paraffin accounts for 50% to the mass of the modified paraffin. 70%; during the heating process of the cell 200 and before the temperature of the modified paraffin wax is higher than the phase transition temperature, the modified paraffin wax has been using its latent heat to continuously cool the cell.
  • the thermally conductive material includes at least one of inorganic phase change energy storage materials CaCl2 ⁇ 6H2O, NaSO 4 ⁇ 10H 2 O, C 2 H 3 NaO 2 ⁇ 3H 2 O, During the heating process of the cell 200 and before the temperature of the thermally conductive material is higher than the phase transition temperature, the thermally conductive material continuously uses its latent heat to continuously cool the cell 200. It is understandable that the thermally conductive material can also be other organic phase change energy storage materials or inorganic salt phase change energy storage materials, which are not limited here. It should also be understood that, even though the thermal conductive material is used as the phase change material in this embodiment, in other embodiments of the present application, the thermal conductive material may also be any other material that can realize heat conduction, such as thermal conductive silicone grease.
  • the thermal conductive material directly touches the battery core 200 and affects the normal use of the battery core 200.
  • the end of the spacer 310 opposite to the cell 200 is provided with a heat-conducting end surface, and the end opposite to the above-mentioned cell 200 is also provided with a heat-conducting end surface.
  • the first barrier 320 is fixed to the heat-conducting end surface.
  • Each spacer 310 corresponds to two first spacers 320, that is, the spacer 310 is provided with the aforementioned heat conducting end surface at one end close to the first spacer 320; it is understood that the spacer 310 can also be separated from the first spacer 320.
  • the stoppers 320 correspond one-to-one.
  • the first barrier 320 may also be fixed on the end surface of the battery cell close to the spacer. At this time, each battery cell corresponds to two first barriers 320; in the same way, the battery cell 200 can also correspond to the first blocking member 320 one-to-one.
  • the first baffle 320 is provided with a microporous structure through which the gas generated by the power supply core 200 passes.
  • the first barrier 320 is a waterproof and breathable membrane made of polytetrafluoroethylene, and the waterproof and breathable membrane is formed with a microporous structure with a pore diameter of less than 2 nm to facilitate the passage of gas generated by the battery cell 200.
  • the first barrier 320 made of polytetrafluoroethylene also has the advantages of good waterproof performance, good air permeability, low friction coefficient, and a wide range of operating temperatures (-40°C to 150°C). It is understandable that the first barrier 320 is not limited to the above-mentioned waterproof and breathable membrane made of polytetrafluoroethylene. In other embodiments of the present application, it can be adjusted according to the type of thermally conductive material, as long as It can prevent the passage of the thermally conductive material while being configured to allow the gas generated by the cell 200 to pass.
  • the first baffle 320 is a unidirectional gas-permeable membrane, which is configured to only allow The gas passes along the direction from the adjacent cell to the adjacent spacer, and at the same time, the heat-conducting material is not allowed to pass.
  • the spacer 310 in order to ensure that the gas passing through the first barrier 320 can escape smoothly, the spacer 310 is made of a gas-permeable material, such as foam, so that the gas generated by the battery cell 200 can pass through the first barrier in turn.
  • the stopper 320 and the spacer 310 then escape to the accommodating cavity 111 or escape to the outside through the gap of the housing assembly 100. It is worth noting that since the spacer 310 is made of a gas-permeable material, the storage space 311 inside the spacer 310 should be treated with an anti-permeation process to prevent the thermally conductive material from leaking out of the spacer.
  • the spacer 310 is made of a gas impermeable material, such as thermally conductive rubber.
  • the thermally conductive end surface of the spacer 310 is provided with an air guide groove.
  • Figures 4 and 5 show a three-dimensional schematic view of an embodiment of the spacer 310 and a partial enlarged schematic view at B.
  • the thermally conductive end surface of the spacer 310 is provided with a guide
  • the gas groove 313 is a straight line extending along the second direction Y as shown in the figure, so that the gas generated by the cell 200 can pass through the first barrier 320 and enter the gas groove 313, thereby preventing the cell 200 from being excessive Disadvantages of inflation. Further, in order to prevent the gas generated by the battery cell 200 from filling the air guide groove 313 in a large amount, the air pressure in the air guide groove 313 will increase significantly, which will affect the fixing effect of the first barrier 320, and even damage the first partition.
  • At least one end of the air guiding groove 313 extends to the side surface of the spacer 310, and the gas entering the air guiding groove 313 can escape to the accommodating cavity through the opening of the air guiding groove 313 on the side of the spacer 310, or further pass through The gap of the housing assembly 100 escapes to the outside.
  • one end of the air guiding groove 313 extends to a side surface of the spacer 310 with a communicating groove, and the other end of the air guiding groove 313 extends to the other side of the spacer 310 with another communicating groove.
  • the air guide groove in this embodiment is linear, the present application is not limited to this, and the air guide groove can also have any other shape as long as it is provided on the aforementioned heat conducting end surface; for example, in this application
  • the air guide groove 313 has an S shape continuously bent and extended along the height direction Z of the spacer, and at least one end extends to the side surface of the spacer 310 where the communicating groove is provided; for another example:
  • the air guide groove 313 is Y-shaped, and its three ends respectively extend to the side surface of the spacer 310 close to the bottom wall of the casing, and the two opposite side surfaces of the spacer in the second direction Y.
  • the projection of the accommodating space 311 in the direction perpendicular to the heat conducting end surface and the projection of the air guide groove are staggered to each other, so as to ensure the accommodating space 311
  • the volume is as large as possible so that the containing space can be filled with more thermally conductive materials.
  • the time heat dissipation module 300 is arranged between the battery core and the inner wall of the housing assembly.
  • the heat dissipation module 300 further includes a second barrier provided at the opening of the communication groove 312.
  • a second barrier provided at the opening of the communication groove 312.
  • FIG. 6, shows an exploded schematic view of the second barrier 330, the battery cell 200 and the buffer sheet 120, and in conjunction with FIGS. 1 to 5, in this embodiment, the number of the second barrier 330 is two
  • the two second spacers 330 are respectively arranged on both sides of each spacer 310 along the second direction Y perpendicular to the first direction X, and each second spacer 330 covers and seals all the single sides of the spacer 310
  • the opening of the communicating groove 312 is used to prevent the thermally conductive material in a fluid state from leaking out of the spacer 310 through the opening of the communicating groove 312.
  • the "sealing" mentioned in this application means: preventing fluid or solid particles from leaking from the adjacent joint of two components.
  • the second spacer 330 is basically the same as the size of the spacer 310 and basically covers the side surface of the spacer 310, the second spacer 330 will simultaneously seal the communicating groove 312 and the opening of the air guiding groove 313 and the corresponding end of the communicating groove.
  • the second baffle 330 is selected to have waterproof and breathable performance similar to the above-mentioned first baffle 320.
  • the second barrier 330 is used to prevent the thermal conductive material from penetrating to the spacer 310 from the opening of the communicating groove 312 on the one hand, and on the other hand, it is provided with a microporous structure to self-conduct the gas generated by the power supply core 200 The opening of the slot 313 passes through.
  • the second barrier 330 is made of polytetrafluoroethylene.
  • a second barrier 330 corresponds to the communicating grooves of a plurality of spacers 310 at the same time
  • the present application is not limited to this.
  • the second barrier There can also be a one-to-one correspondence with the communication groove; in addition, the communication groove can also be provided on the side of the spacer corresponding to the top wall of the housing.
  • the pieces preferably correspond to the communicating grooves one-to-one. It is worth noting that the configuration of the second barrier 330 described above is based on the thermal conductive material being a solid-liquid phase change material, and the configuration of the second barrier 330 will change with the selection of the thermal conductive material.
  • the second baffle 330 should be configured to prevent gas from escaping from the accommodating space 311 from the inside of the accommodating space 311. At this time, the second baffle 330 may be airtight. structure. It is understandable that when the heat-conducting material is a liquid-to-gas phase change material, the second baffle 330 can still be configured to allow the gas generated by the cell 200 to pass through, but the heat-conducting material may be transformed into a gas and escape the accommodating space. At the time, the thermal conductive material is a consumable.
  • the volume filled with the thermally conductive material is set to be 60% to 90% of the total volume of the receiving space and the communicating groove 312.
  • the margin provides expansion space for the expansion of the heat-conducting material during the heating process, which can effectively prevent the heat-conducting material from rapidly expanding due to heat during the heat absorption process and causing the accommodating
  • the pressure in the space and the communication groove is too high, which in turn causes the damage of the spacer 310 and the leakage of the thermally conductive material.
  • the "normal temperature” in this embodiment means a temperature range of 20°C to 30°C.
  • the above-mentioned housing assembly 100 further includes a buffer sheet 120.
  • the buffer sheet 120 at least partially corresponds to the second barrier 330 and is embedded between the second barrier 330 and the housing 110, which is used to vibrate the battery module
  • the second barrier 330 is elastically deformed to provide a buffering force, so as to avoid damage to the second barrier 330 or reduce the degree of damage to the second barrier 330.
  • the above-mentioned buffer sheet at least partially corresponds to the outermost first barrier 320 and is embedded in the outermost part.
  • the buffer sheet 120 and the housing 110 jointly form the aforementioned accommodating cavity 111.
  • the buffer sheet 120 is a thermally conductive foam.
  • the foam can provide the above-mentioned buffering force, and on the other hand, it can quickly guide the heat generated by the thermally conductive material and the spacer 310 to the housing, thereby dissipating the heat To the outside world.
  • the buffer sheet 120 may also be other sheet-like materials capable of elastic deformation, such as rubber or silica gel.
  • the battery module provided by the embodiment of the present application includes a housing assembly 100, a battery cell 200, and a heat dissipation module 300.
  • the battery cell 200 is accommodated in the accommodating cavity 111 of the housing assembly 100, the heat dissipation module 300 and the battery core 200 are disposed between the two battery cores 200, and/or between the battery core 200 and the housing assembly 100.
  • the heat dissipation module 300 specifically includes a spacer 310, a thermally conductive material, and a first barrier 320; wherein the spacer 310 is provided with a receiving space 311 for filling the thermally conductive material, and at least one is provided on the side surface corresponding to the inner wall of the housing assembly 100 A communicating groove 312, which communicates with the above-mentioned receiving space.
  • the heat-conducting material is filled in the above-mentioned accommodating space, which is used for absorbing the heat generated by the battery cell 200, and dissipating the heat to the outside through the communicating groove and the housing assembly 100.
  • the spacer 310 is further provided with a thermally conductive end surface at one end close to the cell 200, the first barrier 320 is provided on the thermally conductive end surface or the end surface of the cell 200 close to the spacer 310, and the first barrier 320 is configured to prevent heat conduction Material passed.
  • the heat dissipation module 300 in the battery module provided by the embodiment of the present application only includes the spacer 310, the thermal conductive material, and the first barrier 320, and does not require complicated cooling. Tube and other power devices, the structure of the battery module is relatively simple and easy to install.
  • the arrangement of the first baffle 320 can prevent the heat-conducting material accidentally exuding from the accommodating space 311 from flowing to the surface of the battery cell 200 and affecting the normal operation of the battery cell 200, and on the other hand, it can also prevent the power supply core 200 from generating damage. The gas passes through to avoid the disadvantage of excessive expansion of the battery cell 200.
  • FIGS. 7 and 8 respectively show a three-dimensional cut-away schematic view of the battery module 400 and a cut-away schematic view of the spacer 410. Please refer to FIGS. 1 to 4 at the same time.
  • the main difference between the battery module and the battery module in the first embodiment lies in the specific structure of the separator:
  • the accommodating space 311 on the spacer 310 is a continuously bent S-shape as a whole;
  • the thermally conductive end surface of the receiving space 411 of the spacer 410 is in a rectangular shape adapted to the shape of the battery core, the bottom of the rectangle is parallel to the bottom of the housing assembly, and the receiving space 411 and the communicating groove 412 are both straight
  • the accommodating space 411 and the communicating groove 412 are arranged obliquely with respect to the bottom of the housing assembly, and they are gradually moving away from the bottom of the housing assembly in the direction from the external high temperature environment area H to the low temperature environment area L.
  • the thermally conductive material can circulate in the receiving space 411 and the communicating groove 412 to achieve long-term heat dissipation of the battery cell.
  • a spacer 410 is provided with more than two accommodating spaces 411, and the two or more accommodating spaces 411 are arranged in parallel along the direction from the bottom wall of the housing to the top wall, and two communicating grooves corresponding to the same accommodating space 411 412 are respectively arranged on two opposite side surfaces of the spacer 410 along the second direction Y, and a second barrier member corresponds to each communication groove at one end of each spacer 410 along the second direction Y.
  • one spacer 410 corresponds to two second spacers, and the two second spacers are respectively disposed on the spacer along the second direction Y.
  • each communicating groove 412 The two sides of the 410 seal each communicating groove 412; for another example, the second barriers correspond to the communicating grooves 412 one-to-one, that is, each separator corresponds to a plurality of second barriers, and each second barrier The parts are sealed with a communicating groove.
  • the present application also provides a heat dissipation module, which is applied to a battery module, and the specific structure of the heat dissipation module is the same as the structure of the heat dissipation module in the battery module in any of the foregoing embodiments.
  • the heat dissipation module absorbs the heat generated in the battery module by contacting the heating element in the battery module, or absorbs the heat radiated by the heating element to dissipate the heating element, and dissipates the heat through the communicating groove to the spacer .
  • the heat dissipation module provided in this embodiment has a simpler structure and is easy to install. It should be understood that the heating element mentioned above may include a battery cell or other elements in the battery module.
  • the present application also provides an energy storage device, which includes the battery module in any of the foregoing embodiments. Due to the above-mentioned battery module, the structure of the heat dissipation module in the energy storage device is relatively simple and easy to install.
  • the present application also provides an automobile, which includes the battery module in the above-mentioned embodiment. Due to the above-mentioned battery module, the heat dissipation module in the battery module in the automobile has a simple structure and is easy to install.

Abstract

涉及电池技术领域,公开了一种散热模块(300)与电池模组(400)。该散热模块(300)应用于电池模组(400),其包括:隔离片(310,410),隔离片(310,410)的内部设有收容空间(311,411),隔离片(310,410)的侧面设有连通槽(312,412),连通槽(312,412)与收容空间(311,411)连通;导热材料,填充于收容空间(311,411),导热材料用于电池模组(400)内产生的热量,并通过连通槽(312,412)将热量散发出隔离片(310,410);以及第一隔挡件(320),用于设置在电池模组(400)的电芯(200)与所述隔离片(310,410)之间,第一隔挡件(320)被配置为能够阻止导热材料通过。该散热模块(300)通过导热材料吸收电池模组(400)内产生的热量,其仅包括隔离片(310,410)、导热材料及第一隔挡件(320),不需要冷却管以及另外的动力装置,则该散热模块(300)的结构相对简单。

Description

散热模块与电池模组 技术领域
本申请实施例涉及电池技术领域,尤其涉及一种散热模块与电池模组。
背景技术
储能装置是一种将外界的能量转化为电能并储存于其内部,以在需要的时刻对外部设备进行供电的装置。一般地,储能装置包括电池模组、逆变器与控制器。其中,作为核心部件的电池模组通常包括多个相邻设置并相互串联或并联的电芯,该多个电芯可以共同配合以实现大功率的输出。该多个电芯同时工作产生的热量巨大,如不及时排出这些热量则有可能导致电池模组热失控,甚至引发电池模组及储能装置爆炸等安全事故。
为克服这一缺陷,目前有些厂商会在相邻的两电芯之间设置冷却组件,通常冷却组件包括冷却管、冷却液以及动力装置。冷却液填充于冷却管;动力装置与冷却管连接,且用于驱动冷却液于冷却管内循环流动。冷却组件通过冷却液的流动将电芯产生的热量带出至外界,以实现将电芯的温度控制在合理的区间。
本申请的发明人在实现本申请的过程中发现:目前用于电池模组的冷却组件包括冷却管及动力装置,其结构较为复杂,故包括该冷却组件的电池模组的整体结构也相对复杂。
发明内容
本申请实施例旨在提供一种散热模块与电池模组,以解决目前应用于电池模组的冷却组件结构复杂的技术问题。
本申请实施例解决其技术问题采用以下技术方案:
一种散热模块,应用于电池模组,其包括隔离片、导热材料以及第一隔挡件。所述隔离片的内部设有收容空间。所述隔离片的侧面设有连通槽。所述连通槽与所述收容空间连通。导热材料填充于所述收容空间。所述导热材料用于吸收电池模组内产生的热量,并通过所述连通槽将热量散发出隔离片。所述第一隔挡件用于设置在所述电池模组的电芯与所述隔离片之间,所述第一隔挡件 被配置为能够阻止所述导热材料通过。
作为上述技术方案的进一步改进方案,常温下,所述导热材料填充所述收容空间及所述连通槽的总容积的60%~90%。
作为上述技术方案的进一步改进方案,所述收容空间呈连续弯折状。
作为上述技术方案的进一步改进方案,所述第一隔挡件设有微孔结构,以供所述电池模组内产生的气体通过。
作为上述技术方案的进一步改进方案,所述隔离片为透气结构。
作为上述技术方案的进一步改进方案,所述隔离片为不透气结构,所述隔离片于靠近所述第一隔挡件的一端设有导热端面,所述导热端面设有导气槽。
作为上述技术方案的进一步改进方案,所述导气槽至少一端延伸至所述隔离片的侧面。
作为上述技术方案的进一步改进方案,于平行于导热端面的平面内,收容空间沿垂直导热端面的方向上的投影与导气槽的投影相互错开。
作为上述技术方案的进一步改进方案,还包括第二隔挡件,所述第二隔挡件覆盖并密封所述连通槽的开口,所述第二隔挡件用于阻止所述导热材料渗出所述隔离片。
作为上述技术方案的进一步改进方案,所述导气槽至少一端延伸至所述隔离片设有所述连通槽的侧面;
所述散热模块还包括第二隔挡件,所述第二隔挡件覆盖并密封所述连通槽的开口以及所述导气槽与所述连通槽对应的一端的开口;
所述第二隔挡件用于阻止所述导热材料渗出所述隔离片,且所述第二隔挡 件设有微孔结构,以供所述电芯产生的气体通过。
作为上述技术方案的进一步改进方案,所述第一隔挡件由聚四氟乙烯制成;
和/或,所述第二隔挡件由聚四氟乙烯制成。
作为上述技术方案的进一步改进方案,所述导热材料为相变材料。
本申请实施例解决其技术问题还采用以下技术方案:
一种电池模组,包括壳体组件与电芯,所述壳体组件设有容置腔,所述电芯收容于所述容置腔。所述电池模组还包括设置于所述电芯之间和/或所述电芯与所述壳体组件之间的散热模块。所述散热模块包括:
隔离片,与所述壳体组件连接,所述隔离片的内部隔离片设有收容空间,所述隔离片于对应所述壳体组件的内壁的侧面设有连通槽,所述连通槽与所述收容空间连通;
导热材料,填充于所述收容空间,所述导热材料用于吸收所述电芯产生的热量,并通过所述连通槽及所述壳体组件将所述热量散发至外界;以及
第一隔挡件,设置在所述电芯与所述隔离片之间,所述第一隔挡件被配置为能够阻止所述导热材料通过。
作为上述技术方案的进一步改进方案,常温下,所述导热材料填充的体积为所述收容空间及所述连通槽的总容积的60%~90%。
作为上述技术方案的进一步改进方案,所述收容空间呈连续弯折状。
作为上述技术方案的进一步改进方案,所述第一隔挡件设有微孔结构,以供所述电芯产生的气体通过。
作为上述技术方案的进一步改进方案,所述隔离片为透气结构。
作为上述技术方案的进一步改进方案,所述隔离片为不透气结构,所述隔 离片于靠近所述第一隔挡件的一端设有导热端面,所述导热端面设有导气槽。
作为上述技术方案的进一步改进方案,所述导气槽至少一端延伸至所述隔离片的侧面。
作为上述技术方案的进一步改进方案,所述散热模块还包括第二隔挡件,所述第二隔挡件覆盖并密封所述连通槽的开口,所述第二隔挡件用于阻止所述导热材料渗出所述隔离片。
作为上述技术方案的进一步改进方案,所述导气槽至少一端延伸至所述隔离片设有所述连通槽的侧面;
所述散热模块还包括第二隔挡件,所述第二隔挡件覆盖并密封所述连通槽的开口,以及覆盖并密封所述导气槽与所述连通槽对应的一端的开口;
所述第二隔挡件用于阻止所述导热材料渗出所述隔离片,且所述第二隔挡件设有微孔结构,以供所述电芯产生的气体通过。
作为上述技术方案的进一步改进方案,所述壳体组件包括壳体与缓冲片,所述电芯收容于所述壳体的内部,所述缓冲片至少部分嵌设于所述第二隔挡件与所述壳体之间,所述壳体与所述缓冲片共同形成所述容置腔。
作为上述技术方案的进一步改进方案,所述收容空间及所述连通槽沿同一直线延伸且一体成型,所述收容空间及所述连通槽均相对所述壳体组件的底部倾斜延伸。
本申请的有益效果是:
本申请实施例提供的散热模块应用于电池模组,其包括隔离片、第一隔挡件以及导热材料;隔离片设有用于收容导热材料的收容空间,此外隔离片的侧面还设有与收容空间连通的连通槽。导热材料用于吸收外部的发热元件产生的热量,并通过上述连通槽将热量散发至外界。
与目前市场上带有冷却组件的电池模组相比,本申请实施例提供的散热模 块通过导热材料吸收发热元件产生的热量,该散热模块仅包括隔离片、导热材料及第一隔挡件,不需要冷却管以及另外的动力装置,则该散热模块的结构相对简单,故带有该散热模组的电池模组的结构也相对简单。此外,第一隔挡件可避免自收容空间意外渗出的导热材料流动至电芯表面而影响电芯正常工作的弊端。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请其中一实施例提供的电池模组的分解示意图;
图2为图1中隔离片的立体示意图;
图3为图2中A处的局部放大示意图;
图4为图1中隔离片的另一实施例的立体示意图;
图5为图4中B处的局部放大示意图;
图6为图1中电芯、第二隔挡件以及缓冲件的分解示意图;
图7为本申请其中另一实施例提供的电池模组的立体剖切示意图;
图8为图7中隔离片的剖切示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”/“固接于”/“安装于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的 术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
在本说明书中,所述“安装”包括焊接、螺接、卡接、粘合等方式将某一元件或装置固定或限制于特定位置或地方,所述元件或装置可在特定位置或地方保持不动也可在限定范围内活动,所述元件或装置固定或限制于特定位置或地方后可进行拆卸也可不能进行拆卸,在本申请实施例中不作限制。
请参阅图1,其示出了本申请其中一实施例提供的电池模组的分解示意图,该电池模组包括壳体组件100、电芯200以及散热模块300。壳体组件100设有容置腔111,电芯200收容于上述容置腔111。散热模块300亦收容于上述容置腔111,其设置于电芯200之间,和/或者电芯200与壳体组件100之间。散热模块300包括隔离片310、导热材料(图中未示出)以及第一隔挡件320。其中,隔离片310与壳体组件100连接,且内部设有收容空间,隔离片310于对应壳体组件100内壁的侧面设有至少一连通槽,该连通槽与上述收容空间连通。导热材料填充于上述收容空间,其用于吸收电池模组内电芯200产生的热量,并通过连通槽及壳体组件100将所述热量散发至外界。第一隔挡件320设置在电芯200与隔离片310之间,且第一隔挡件320被配置为能够阻止导热材料通过。
对于上述壳体组件100,请参照图1,其包括壳体110。壳体110整体呈长方体形状,其包括底壁、自底壁的边缘延伸出的侧壁,以及设于侧壁远离底壁一端的顶壁(未示出),上述底壁、侧壁以及顶壁共同围成所述容置腔111。
对于上述电芯200,请继续参照图1,其整体呈立直放置的扁平长方体状,且收容于上述的容置腔111。本实施例中,电芯200的数量为至少两个,该至少两个电芯200之间沿第一方向X堆叠设置。
对于上述散热模块300,请参照图1,散热模块300的数量为多个,该多个散热模块300分别设于相邻的两电芯200之间,和/或沿第一方向X设于最外侧的电芯200背离其他电芯200的一端和壳体组件100的内壁之间。每一散热模块300均与电芯200紧密接触,以更好地吸收电芯200产生的热量;同时,每一散热模块300与壳体组件100的至少一内壁对应连接,以将吸收的热量通过壳体组件100散发至外界。散热模块300包括隔离片310、导热材料以及第一隔挡件320。当然,在本申请的其他实施例中,散热模块300与电芯200之间也可 以具有一定间隙,此时,散热模块300通过接收电芯200辐射的热量,从而为电芯200散热。
对于前述隔离片310,请参照图2及图3,其分别示出了隔离片310的立体示意图及A处的局部放大示意图,请同时结合图1,隔离片310整体呈扁平的片状结构,其设有用于填充导热材料的收容空间311(图2中以虚线示出),隔离片310于与壳体组件100的侧壁对应的侧面设有连通槽312,该连通槽312的一端与收容空间311连通,另一端的开口由壳体组件100的内壁完全覆盖。本实施例中,收容空间311为图2中所示沿竖直方向呈连续弯折状延伸的S形,一连通槽312与收容空间311的顶部连通,另一连通槽312与收容空间311的底部连通,该两连通槽312分别设于隔离片310沿第二方向Y相对设置的两个侧面,该第二方向Y与第一方向X相互垂直。其中,收容空间311为S形的设计能够有效地将导热材料引导至连通槽312处。值得一提的是,本申请对收容空间311的形状并不作具体限定,例如,在本申请其他的一些实施例中,收容空间还可以是连续弯折状的Z形,或O形、Y形、“口”字形、“工”字形等其他形状,在此不一一详举。可选地,隔离片310由弹性导热材料制成,一方面,隔离片310具有的弹性特点能够使其在与其接触的电芯200发生热膨胀时,吸收该电芯200的膨胀量,从而避免该电芯200由于内部压力过大而发生损坏;另一方面,隔离片310具有的导热特点还可以吸收与其接触的电芯200产生的热量,并通过与其连接的壳体组件100将热量散发至外界,从而进一步强化散热模块300对电芯200的散热效果。
对于前述导热材料,其填充于上述收容空间311,其用于在电芯200发热的过程中,吸收对应的电芯200所产生的热量,以降低电芯200的温度,并通过上述连通槽312以及壳体组件100将热量散发至外界,以使导热材料可以持续进行吸热过程。考虑到相变材料具有优异的储热性能,导热材料优选相变材料。其中,相变材料在相变之前可以是固态,也可以是液态,进一步地,考虑到由固态至液态的相变过程,相变材料的体积变化相对较小,其不会导致收容空间内部的压强激增,故导热材料进一步优选常温下为固态的相变材料。例如:在本申请的一些实施例中,该导热材料包括有机相变储能材料改性石蜡,该改性石蜡包括石蜡以及石墨,其中,石蜡的质量占该改性石蜡的质量的50%~70%;在电芯200发热的过程中且改性石蜡的温度高于相变温度之前,改性石蜡一直 利用其潜热持续对电芯进行降温。又例如:在本申请的另一些实施例中,该导热材料包括无机相变储能材料CaCl2·6H2O、NaSO 4·10H 2O、C 2H 3NaO 2·3H 2O中的至少一种,在电芯200发热的过程中且该导热材料的温度高于相变温度之前,该导热材料一直利用其潜热持续对电芯200进行降温。可以理解的是,导热材料还可以是其他有机相变储能材料或无机盐相变储能材料,在此不一一限定。还应当理解,即使本实施例中是以导热材料为相变材料进行说明,但在本申请的其他实施例中,导热材料还可以是其他能够实现导热的任意材料,例如导热硅脂。
对于前述第一隔挡件320,请参照图1,第一隔挡件320设于隔离片310与对应的电芯200之间,其被配置为能够阻止导热材料通过,以便在导热材料意外渗出收容空间之外时,避免导热材料直接接触到电芯200而影响电芯200正常使用的弊端。本实施例中,隔离片310与电芯200相对设置的一端设有导热端面,其于与上述电芯200相背设置的一端亦设有导热端面,第一隔挡件320固定于导热端面,每一隔离片310对应两第一隔挡件320,即是:隔离片310于靠近第一隔挡件320的一端设有上述导热端面;可以理解的是,隔离片310也可以与第一隔挡件320一一对应。此外,在本申请的其他实施例中,第一隔挡件320还可以固定于电芯靠近隔离片的端面,此时,每一电芯对应两第一隔挡件320;同理,电芯200亦可以与第一隔挡件320一一对应。
进一步地,为避免由于第一隔挡件320与电芯200紧密接触,而导致电芯200充放电的过程中产生的气体被第一隔挡件320密闭而无法释放,进而导致电芯200过度膨胀的弊端,第一隔挡件320设有微孔结构,以供电芯200产生的气体通过。本实施例中,第一隔挡件320为由聚四氟乙烯制成的防水透气膜,该防水透气膜形成有孔径小于2nm的微孔结构,以便于电芯200产生的气体通过。此外,由聚四氟乙烯制成的第一隔挡件320还具有防水性能好、透气性能佳、摩擦系数小、使用温度(-40℃~150℃)范围广的优点。可以理解的是,第一隔挡件320并不局限于上述由聚四氟乙烯制成的防水透气膜,在本申请的其他实施例中,其可以根据导热材料的种类作出适应性调整,只要其能够实现阻止导热材料通过,同时还被配置为允许电芯200产生的气体通过即可,例如,在一些实施例中,第一隔挡件320为单向透气膜,其被配置为仅允许气体沿自与其相邻的电芯指向与其相邻的隔离片的方向通过,同时不允许导热材料通过。
在一些实施例中,为保证自第一隔挡件320通过的气体能够顺畅地逸出,隔离片310由透气材料制成,如泡棉,则电芯200产生的气体能够依次通过第一隔挡件320及隔离片310,然后逸散至容置腔111,或通过壳体组件100的间隙逸散至外界。值得注意的是,由于隔离片310采用透气材料制成,故隔离片310内部的收容空间311应当进行防渗透工艺处理,以避免导热材料向隔离片外部渗出。
在一些实施例中,隔离片310由不透气材料制成,如导热橡胶,为确保自第一隔挡件320通过的气体能够顺畅地逸出,隔离片310的导热端面设置有导气槽。具体地,请参照图4及图5,其示出了隔离片310的一个实施例的立体示意图以及B处的局部放大示意图,请同时结合图1至图3,隔离片310的导热端面设置导气槽313,该导气槽313为图示沿第二方向Y延伸的直线状,则电芯200产生的气体能够通过第一隔挡件320并进入导气槽313,从而避免电芯200过度膨胀的弊端。进一步地,为避免电芯200产生的气体较大量地填充在上述导气槽313,而导致导气槽313内气压显著上升,进而影响第一隔挡件320的固定效果,甚至破坏第一隔挡件320,导气槽313至少一端延伸至隔离片310的侧面,则进入导气槽313的气体能够通过导气槽313于隔离片310侧面的开口逸出至容置腔,或者再进一步通过壳体组件100的间隙逸出至外界。本实施例中,导气槽313的一端延伸至隔离片310设有连通槽的一侧面,导气槽313的另一端延伸至隔离片310设有另一连通槽的另一侧面。应当理解,即使本实施例中的导气槽呈直线状,但本申请并不局限于此,导气槽还可以是其他任意形状,只要其设于上述导热端面即可;例如:在本申请的一些实施例中,导气槽313为沿隔离片的高度方向Z呈连续弯折延伸的S形,且至少一端延伸至隔离片310设有连通槽的侧面;又例如:在本申请的另一些实施例中,导气槽313呈Y形,其三个端部分别延伸至隔离片310靠近壳体底壁的侧面,以及隔离片沿第二方向Y相对设置的两个侧面。可选地,不论导气槽313呈何种形状,于平行于导热端面的平面内,收容空间311沿垂直导热端面的方向上的投影与导气槽的投影相互错开,则可确保收容空间311的容积尽可能大,以使收容空间能够填充更多的导热材料。
应当理解,即使本实施例中,电芯200的数量为至少两个,但本申请并不局限于此,在本申请其他的实施例中,电芯的数量还可以是一个,相应地,此 时散热模块300设于电芯与壳体组件的内壁之间。
在本申请的一些实施例中,散热模块300还包括设于连通槽312开口处的第二隔挡件。请参照图6,其示出了第二隔挡件330、电芯200以及缓冲片120的分解示意图,同时结合图1至图5,本实施例中,第二隔挡件330的数量为两个,该两第二隔挡件330沿与第一方向X垂直的第二方向Y分别设于各隔离片310的两侧,每一第二隔挡件330覆盖并密封所有隔离片310单侧的连通槽312的开口,其用于阻止处于流体状态的导热材料通过连通槽312的开口渗出隔离片310。值得一提的是,本申请中所述的“密封”意为:防止流体或固体微粒从两部件相邻的结合处泄漏。
进一步地,当隔离片310为图4中所示的由不透气材料制成的结构时,为保证第二隔挡件330的固定效果,沿隔离片310的高度方向Z,第二隔挡件330的尺寸与隔离片310的尺寸基本相同,并基本覆盖隔离片310的侧面,则第二隔挡件330将同时密封连通槽312,及导气槽313与连通槽对应的一端的开口。为方便使电芯200产生的气体逸出至隔离片310之外,从而避免导气槽313内部的气压过大,第二隔挡件330选用与上述第一隔挡件320性能相似的防水透气膜,即是:第二隔挡件330一方面用于防止导热材料自连通槽312的开口渗透至隔离片310,另一方面其设有微孔结构,以供电芯200产生的气体自导气槽313的开口通过。本实施例中,第二隔挡件330由聚四氟乙烯制成。
应当理解,即使本实施例中,一第二隔挡件330同时对应多个隔离片310的连通槽,但本申请并不局限于此,在本申请的其他实施例中,第二隔挡件与连通槽还可以是一一对应;此外,连通槽还可以是设置在隔离片对应壳体顶壁的侧面,此时,由于极耳设置在电芯靠近壳体顶壁一端,第二隔挡件优选与连通槽一一对应。值得注意的是,上述第二隔挡件330的配置方式是基于导热材料为固液相变材料,而第二隔挡件330的配置方式会随着导热材料选取不同发生改变。例如,当导热材料为液气相变的材料时,第二隔挡件330均应当被配置为阻止气体自收容空间311的内部逸出收容空间311,此时第二隔挡件330可以为不透气结构。可以理解的是,当导热材料为液气相变材料时,第二隔挡件330仍可以被配置为能够允许电芯200产生的气体通过,但导热材料可能相变为气体逸出收容空间,此时,导热材料为消耗品。
在本申请的一些实施例中,于常温下,导热材料填充的体积设置为收容空 间及所述连通槽312的总容积的60%~90%。则常温下,收容空间及连通槽312内部具有一定的余量,该余量一方面为导热材料升温过程的膨胀提供了膨胀空间,能够有效避免导热材料在吸热过程中受热迅速膨胀而导致收容空间及连通槽内的压力过大,进而导致隔离片310受损、导热材料渗出的弊端。值得一提的是,本实施例中的“常温”意为20℃~30℃的温度范围。
在本申请的一些实施例中,为避免第二隔挡件330在该电池模组的振动过程中受到冲击破损,上述壳体组件100还包括缓冲片120。请参照图6,同时结合其他附图,缓冲片120至少部分与第二隔挡件330对应并嵌设于第二隔挡件330与壳体110之间,其用于在电池模组振动的过程中通过弹性形变为第二隔挡件330提供一缓冲力,从而避免第二隔挡件330的受损或降低第二隔挡件330的受损程度。同理,为避免位于最外侧第一隔挡件320在电池模组的振动过程中受到冲击破损,上述缓冲片至少部分与最外侧的第一隔挡件320对应,并嵌设于该最外侧的第一隔挡件320与壳体110之间。缓冲片120与壳体110共同形成上述的容置腔111。本实施例中,缓冲片120为导热泡棉,泡棉一方面能够提供上述缓冲力,另一方面还可以迅速将导热材料及隔离片310产生的热量引导至壳体,从而将所述热量散发至外界。可以理解的是,缓冲片120还可以是橡胶、硅胶等其他能够发生弹性形变的片状材料。
本申请实施例提供的电池模组包括壳体组件100、电芯200以及散热模块300。其中,电芯200收容于壳体组件100的容置腔111,散热模块300与电芯200设于两电芯200之间,和/或电芯200与壳体组件100之间。散热模块300具体包括隔离片310、导热材料以及第一隔挡件320;其中,隔离片310内部设有用以填充导热材料的收容空间311,且于对应壳体组件100内壁的侧面设有至少一连通槽312,该连通槽与上述收容空间连通。导热材料填充于上述收容空间,其用于吸收电芯200产生的热量,并通过连通槽及壳体组件100将所述热量散发至外界。隔离片310于靠近电芯200的一端还设置有导热端面,第一隔挡件320设于上述导热端面或者电芯200靠近隔离片310的端面,且第一隔挡件320被配置为阻止导热材料通过。
与目前市场上带有冷却组件的电池模组相比,本申请实施例提供的电池模组中的散热模块300仅包括隔离片310、导热材料及第一隔挡件320,不需要复杂的冷却管及另外的动力装置,则该电池模组的结构相对简单,且便于安装。 此外,第一隔挡件320的设置一方面可避免自收容空间311意外渗出的导热材料流动至电芯200表面而影响电芯200正常工作的弊端,另一方面还可以供电芯200产生的气体通过,以避免电芯200过度膨胀的弊端。
基于同一发明构思,本申请还提供另一种电池模组,具体请参照图7及图8,其分别示出了该电池模组400的立体剖切示意图,以及隔离片410的剖切示意图,请同时结合图1至图4,该电池模组与第一实施例中电池模组的主要不同在于隔离片的具体结构:
第一实施例中隔离片310上的收容空间311为整体呈连续弯折的S形;
而第二实施例中隔离片410的收容空间411的导热端面呈与电芯外形适配的矩形形状,该矩形的底边与壳体组件的底部平行,收容空间411与连通槽412均呈直线状且沿同一直线延伸,同时,收容空间411及连通槽412相对壳体组件的底部倾斜设置,两者自外部的高温环境区域H指向低温环境区域L的方向逐渐远离壳体组件的底部。一般地,导热材料自靠近高温环境区域H的一端发生相变(液化或气化)之后,其密度将减小,故导热材料将向低温环境区域L一侧扩散;直至其与第二隔挡件及壳体组件接触并散发热量之后,导热材料又将发生相变(固化或液化),并在重力的作用顺着收容空间411的路径运动至靠近高温环境区域的一侧。如此,导热材料能够在收容空间411及连通槽412内循环流动,以实现对电芯的长时间散热。本实施例中,一隔离片410设有两个以上的收容空间411,该两个以上的收容空间411沿自壳体底壁指向顶壁的方向平行排列,同一收容空间411对应的两连通槽412分别设于隔离片410沿第二方向Y相对设置的两个侧面,一第二隔挡件对应各隔离片410沿第二方向Y一端的各连通槽。可以理解的是,在本申请还可在本实施例上作适应变形,例如,一隔离片410对应两第二隔挡件,该两第二隔挡件沿第二方向Y分别设于隔离片410的两侧面并密封各连通槽412;又例如,第二隔挡件与连通槽412一一对应,即是,每一隔离片均对应多个第二隔挡件,每一第二隔挡件均密封一连通槽。
基于同一发明构思,本申请还提供一种散热模块,该散热模块应用于电池模组,且该散热模块的具体结构与上述任一实施例中的电池模组内的散热模块结构相同。该散热模块通过与电池模组内的发热元件接触进而吸收电池模组内产生的热量,或者通过吸收上述发热元件辐射的热量进而对该发热元件进行散 热,并通过连通槽将热量散发出隔离片。
与目前市场上的冷却组件相比,本实施例提供的散热模块结构更为简单,且便于安装。应当理解:上述的发热元件可以包括电芯,亦可以是电池模组内的其他元件。
基于同一发明构思,本申请还提供一种储能装置,该储能装置包括上述任一实施例中的电池模组。由于具有上述电池模组,故该储能装置内散热模块的结构也相对简单,且便于安装。
基于同一发明构思,本申请还提供一种汽车,该汽车包括上述实施例中的电池模组。由于具有上述电池模组,故该汽车内电池模组中的散热模块结构简单,且便于安装。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种散热模块,应用于电池模组,其特征在于,包括:
    隔离片,所述隔离片的内部设有收容空间,所述隔离片的侧面设有连通槽,所述连通槽与所述收容空间连通;
    导热材料,填充于所述收容空间,所述导热材料用于吸收电池模组内产生的热量,并通过所述连通槽将热量散发出隔离片;以及
    第一隔挡件,用于设置在所述电池模组的电芯与所述隔离片之间,所述第一隔挡件被配置为能够阻止所述导热材料通过。
  2. 根据权利要求1所述的散热模块,其特征在于,常温下,所述导热材料填充所述收容空间及所述连通槽的总容积的60%~90%。
  3. 根据权利要求1所述的散热模块,其特征在于,所述收容空间呈连续弯折状。
  4. 根据权利要求1所述的散热模块,其特征在于,所述第一隔挡件设有微孔结构,以供所述电池模组内产生的气体通过。
  5. 根据权利要求1所述的散热模块,其特征在于,所述隔离片为透气结构。
  6. 根据权利要求1所述的散热模块,其特征在于,所述隔离片为不透气结构,所述隔离片于靠近所述第一隔挡件的一端设有导热端面,所述导热端面设有导气槽。
  7. 根据权利要求6所述的散热模块,其特征在于,所述导气槽至少一端延伸至所述隔离片的侧面。
  8. 根据权利要求1所述的散热模块,其特征在于,还包括第二隔挡件,所述第二隔挡件覆盖并密封所述连通槽的开口,所述第二隔挡件用于阻止所述导热材料渗出所述隔离片。
  9. 根据权利要求7所述的散热模块,其特征在于,所述导气槽至少一端延伸至所述隔离片设有所述连通槽的侧面;
    所述散热模块还包括第二隔挡件,所述第二隔挡件覆盖并密封所述连通槽的开口以及所述导气槽与所述连通槽对应的一端的开口;
    所述第二隔挡件用于阻止所述导热材料渗出所述隔离片,且所述第二隔挡件设有微孔结构,以供所述电芯产生的气体通过。
  10. 根据权利要求8或9所述的散热模块,其特征在于,所述第一隔挡件由聚四氟乙烯制成;
    和/或,所述第二隔挡件由聚四氟乙烯制成。
  11. 根据权利要求1至9中任一项所述的散热模块,其特征在于,所述导热材料为相变材料。
  12. 一种电池模组,其特征在于,包括壳体组件与电芯,所述壳体组件设有容置腔,所述电芯收容于所述容置腔,所述电池模组还包括设置于所述电芯之间和/或所述电芯与所述壳体组件之间的散热模块,所述散热模块包括:
    隔离片,与所述壳体组件连接,所述隔离片设有收容空间,所述隔离片于对应所述壳体组件的内壁的侧面设有连通槽,所述连通槽与所述收容空间连通;
    导热材料,填充于所述收容空间,所述导热材料用于吸收所述电芯产生的热量,并通过所述连通槽及所述壳体组件将所述热量散发至外界;以及
    第一隔挡件,设置在所述电芯与所述隔离片之间,所述第一隔挡件被配置为能够阻止所述导热材料通过。
  13. 根据权利要求12所述的电池模组,其特征在于,常温下,所述导热材料填充的体积为所述收容空间及所述连通槽的总容积的60%~90%。
  14. 根据权利要求12所述的电池模组,其特征在于,所述收容空间呈连续弯折状。
  15. 根据权利要求12所述的电池模组,其特征在于,所述第一隔挡件设有微孔结构,以供所述电芯产生的气体通过。
  16. 根据权利要求15所述的电池模组,其特征在于,所述隔离片为透气结构。
  17. 根据权利要求15所述的电池模组,其特征在于,所述隔离片为不透气结构,所述隔离片于靠近所述第一隔挡件的一端设有导热端面,所述导热端面设有导气槽。
  18. 根据权利要求17所述的电池模组,其特征在于,所述导气槽至少一端延伸至所述隔离片的侧面。
  19. 根据权利要求12所述的电池模组,其特征在于,所述散热模块还包括第二隔挡件,所述第二隔挡件覆盖并密封所述连通槽的开口,所述第二隔挡件用于阻止所述导热材料渗出所述隔离片。
  20. 根据权利要求18所述的电池模组,其特征在于,所述导气槽至少一端延伸至所述隔离片设有所述连通槽的侧面;
    所述散热模块还包括第二隔挡件,所述第二隔挡件覆盖并密封所述连通槽的开口,以及覆盖并密封所述导气槽与所述连通槽对应的一端的开口;
    所述第二隔挡件用于阻止所述导热材料渗出所述隔离片,且所述第二隔挡件设有微孔结构,以供所述电芯产生的气体通过。
  21. 根据权利要求19或20所述的电池模组,其特征在于,所述壳体组件包括壳体与缓冲片,所述电芯收容于所述壳体的内部,所述缓冲片至少部分嵌设于所述第二隔挡件与所述壳体之间,所述壳体与所述缓冲片共同形成所述容置腔。
  22. 根据权利要求12所述的电池模组,其特征在于,所述收容空间及所述连通槽沿同一直线延伸,所述收容空间及所述连通槽均相对所述壳体组件的底部倾斜延伸。
PCT/CN2020/080882 2020-03-24 2020-03-24 散热模块与电池模组 WO2021189250A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20866919.2A EP3913729A1 (en) 2020-03-24 2020-03-24 Heat dissipation module and battery module
PCT/CN2020/080882 WO2021189250A1 (zh) 2020-03-24 2020-03-24 散热模块与电池模组
CN202080009491.XA CN113875070B (zh) 2020-03-24 2020-03-24 散热模块与电池模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080882 WO2021189250A1 (zh) 2020-03-24 2020-03-24 散热模块与电池模组

Publications (1)

Publication Number Publication Date
WO2021189250A1 true WO2021189250A1 (zh) 2021-09-30

Family

ID=77890847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080882 WO2021189250A1 (zh) 2020-03-24 2020-03-24 散热模块与电池模组

Country Status (3)

Country Link
EP (1) EP3913729A1 (zh)
CN (1) CN113875070B (zh)
WO (1) WO2021189250A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976357A (zh) * 2022-06-08 2022-08-30 南京航空航天大学 一种基于相变材料循环换热的动力电池散热系统
CN114980486A (zh) * 2022-05-20 2022-08-30 联想(北京)有限公司 一种散热防护结构及电子器件封装
CN115663369A (zh) * 2022-10-25 2023-01-31 淮北津奥铝业有限公司 一种新能源动力电池箱体减震散热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838463A (zh) * 2005-03-25 2006-09-27 三星Sdi株式会社 可再充电电池模块
US20130084487A1 (en) * 2011-09-29 2013-04-04 Hyundai Motor Company Battery package filled with phase change material and battery using the same
CN105406148A (zh) * 2015-12-16 2016-03-16 东莞新能德科技有限公司 具有散热构件的电池及电池组
CN207320270U (zh) * 2017-06-30 2018-05-04 苏州安靠电源有限公司 一种电池换热器和配置该电池换热器的电池
CN108511846A (zh) * 2018-03-26 2018-09-07 广东亿纬赛恩斯新能源系统有限公司 一种电池模组固定结构及电池包
CN209461595U (zh) * 2018-02-07 2019-10-01 广东朋昊鑫动力新能源有限公司 一种多环境下使用的锂电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW513905B (en) * 2001-11-30 2002-12-11 Jiun-Guang Luo Method and device for internal conductive air flow energy transmission
KR101305122B1 (ko) * 2012-02-08 2013-09-12 현대자동차주식회사 배터리 셀 모듈용 열 제어 파우치 및 이를 갖는 배터리 셀 모듈
FR3024770B1 (fr) * 2014-08-11 2016-09-02 Valeo Systemes Thermiques Plaque d'echange thermique pour gestion thermique de pack batteries
FR3056342B1 (fr) * 2016-09-21 2020-01-03 Valeo Systemes Thermiques Gestion de temperature de batterie
CN208835235U (zh) * 2018-09-29 2019-05-07 郑州深澜动力科技有限公司 一种电池模组及电池模组用相变储能隔片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838463A (zh) * 2005-03-25 2006-09-27 三星Sdi株式会社 可再充电电池模块
US20130084487A1 (en) * 2011-09-29 2013-04-04 Hyundai Motor Company Battery package filled with phase change material and battery using the same
CN105406148A (zh) * 2015-12-16 2016-03-16 东莞新能德科技有限公司 具有散热构件的电池及电池组
CN207320270U (zh) * 2017-06-30 2018-05-04 苏州安靠电源有限公司 一种电池换热器和配置该电池换热器的电池
CN209461595U (zh) * 2018-02-07 2019-10-01 广东朋昊鑫动力新能源有限公司 一种多环境下使用的锂电池
CN108511846A (zh) * 2018-03-26 2018-09-07 广东亿纬赛恩斯新能源系统有限公司 一种电池模组固定结构及电池包

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913729A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980486A (zh) * 2022-05-20 2022-08-30 联想(北京)有限公司 一种散热防护结构及电子器件封装
CN114976357A (zh) * 2022-06-08 2022-08-30 南京航空航天大学 一种基于相变材料循环换热的动力电池散热系统
CN115663369A (zh) * 2022-10-25 2023-01-31 淮北津奥铝业有限公司 一种新能源动力电池箱体减震散热装置
CN115663369B (zh) * 2022-10-25 2024-03-15 淮北津奥铝业有限公司 一种新能源动力电池箱体减震散热装置

Also Published As

Publication number Publication date
EP3913729A4 (en) 2021-11-24
CN113875070B (zh) 2023-04-25
CN113875070A (zh) 2021-12-31
EP3913729A1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2021189250A1 (zh) 散热模块与电池模组
JP6123746B2 (ja) 組電池
KR102273881B1 (ko) 온도 조절 성능이 개선된 배터리 팩
CN108336048B (zh) 具有相变蓄热功能的热超导翅片散热器
KR102058688B1 (ko) 간접 냉각 방식의 배터리 모듈
CN208637482U (zh) 一种电池箱
KR20200011787A (ko) 전기자동차용 배터리 냉각장치
WO2020211416A1 (zh) 空调室外机和空调器
CN106549194A (zh) 内压自平衡散热装置及电源装置
CN210430029U (zh) 板式加热冷却导热装置及采用该装置的可控温锂电池组
CN115458832A (zh) 多元复合相变材料和水冷协同作用的动力电池散热系统
WO2021012304A1 (zh) 一种应用于电池包的相变控温装置
CN103500864B (zh) 一种密封式动力蓄电池模块
WO2021026979A1 (zh) 板式加热冷却导热装置及采用该装置的可控温锂电池组
WO2022135098A1 (zh) 延缓热失控的集成式结构
WO2023066260A1 (zh) 电池壳体和方壳电池
CN214848774U (zh) 一种电池箱散热装置及电池包
TWI441369B (zh) Lithium battery module
CN206388823U (zh) 自调节散热装置及电源装置
CN207368037U (zh) 一种散热电池箱结构
CN220233296U (zh) 一种用于家用储能的风冷高效散热储能电池模组
CN207350284U (zh) 一种新型结构的高效散热器
CN218735519U (zh) 嵌入式工控机及电子设备
CN107438347B (zh) 一种散热装置
CN210378493U (zh) 一种硬盘盒及电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020866919

Country of ref document: EP

Effective date: 20210329

NENP Non-entry into the national phase

Ref country code: DE