WO2022135098A1 - 延缓热失控的集成式结构 - Google Patents

延缓热失控的集成式结构 Download PDF

Info

Publication number
WO2022135098A1
WO2022135098A1 PCT/CN2021/134960 CN2021134960W WO2022135098A1 WO 2022135098 A1 WO2022135098 A1 WO 2022135098A1 CN 2021134960 W CN2021134960 W CN 2021134960W WO 2022135098 A1 WO2022135098 A1 WO 2022135098A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid cooling
thermal runaway
energy
integrated structure
Prior art date
Application number
PCT/CN2021/134960
Other languages
English (en)
French (fr)
Inventor
卢军
孙焕丽
刘鹏
乔延涛
孙士杰
陈雷
宋博涵
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022135098A1 publication Critical patent/WO2022135098A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of delaying thermal runaway of an energy cell, for example, to an integrated structure for delaying thermal runaway.
  • the power battery system mainly ensures the functions of the vehicle at low speed, braking energy recovery, and energy regulation of the hybrid engine system.
  • the power battery system includes a battery assembly containing multiple energy cells. When the thermal runaway occurs in one energy cell, the battery assembly cannot delay the thermal runaway of other energy cells, resulting in poor safety performance.
  • the present application provides an integrated structure for delaying thermal runaway, which can effectively delay the thermal runaway of other energy cells, and improves the safety of the integrated structure for delaying thermal runaway.
  • the present application adopts the following technical solutions.
  • An integrated structure for delaying thermal runaway comprising: a liquid-cooling plate, a liquid-cooling cavity is defined in the liquid-cooling plate, a cooling liquid containing a fire extinguishing agent is arranged in the liquid-cooling cavity, and a middle part of the liquid-cooling plate is A placement slot is formed; a plurality of energy cells, the plurality of energy cells are spaced apart and bonded side by side in the placement slot, each adjacent two energy cells are arranged face to face, and each energy cell is provided with explosion-proof valve, the explosion-proof valve is arranged facing the liquid-cooling plate, and the explosion-proof valve can break through the liquid-cooling plate to make the cooling liquid flow out when the thermal runaway of each energy cell occurs; the protection plate is arranged on the The top ends of the plurality of energy cells and the protective plate are provided with a plurality of grids, each adjacent two grids form a partition, and one end of each energy cell can extend into one of the partitions.
  • the integrated structure for delaying thermal runaway further includes a box body fixedly arranged on the liquid cooling plate, and the liquid cooling plate is located in the box body,
  • the box body is provided with a liquid inlet channel and a liquid outlet channel, and the liquid inlet channel and the liquid outlet channel are both communicated with the liquid cooling chamber.
  • the bottom of the box body is open and the lower end of the box body is lower than the bottom surface of the liquid cooling plate.
  • each energy cell is provided with two explosion-proof valves, and the two explosion-proof valves are respectively located at opposite ends of each energy cell. .
  • each energy cell is bonded to the bottom of the placement slot by means of thermally conductive adhesive, and the side surface of each energy cell is coated with a thermally conductive layer.
  • the heat conduction layer is sandwiched between each energy cell and the side wall of the placement groove.
  • protrusions are provided on the bottom surface of the liquid cooling plate facing away from the plurality of energy cells, and the inside of the liquid cooling plate is facing the protrusions.
  • the region forms a receiving groove, and the receiving groove communicates with the liquid cooling chamber.
  • the specific heat capacity of the cooling liquid is greater than or equal to 3000 J/(kg ⁇ K).
  • each energy cell is bonded in a compartment, the number of the protection plates is two, and the two protection plates are respectively located in the Both ends in the longitudinal direction of the plurality of energy cells.
  • an insulating protective layer is provided on a side of the protective plate facing away from the plurality of energy cells.
  • the insulating protective layer includes at least one of a mica layer, a melamine layer, a polyurethane layer and a boron nitride layer.
  • FIG. 1 is a schematic diagram of an integrated structure for delaying thermal runaway to remove a box provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a protective plate and part of an energy cell provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of an integrated structure for delaying thermal runaway provided by an embodiment of the present application in one direction;
  • FIG. 4 is a cross-sectional view of an integrated structure for delaying thermal runaway provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of an integrated structure for delaying thermal runaway provided by an embodiment of the present application in another direction.
  • Liquid-cooling plate 101. Liquid-cooling cavity; 102. Placing slot; 11. Protrusion; 110. Receiving slot;
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • This embodiment provides an integrated structure for delaying thermal runaway, as shown in FIG. 1 to FIG. 4 , including a liquid cooling plate 1 , a plurality of energy cells 21 and a protective plate 3 , and a liquid cooling cavity is defined in the liquid cooling plate 1 101, the liquid cooling chamber 101 is provided with a cooling liquid containing a fire extinguishing agent, a placement slot 102 is formed in the middle of the liquid cooling plate 1, and a plurality of energy cells 21 are spaced apart and bonded side by side in the placement slot 102.
  • the cells 21 are arranged face-to-face, each energy cell 21 is provided with an explosion-proof valve 22, and the explosion-proof valve 22 is arranged facing the liquid cooling plate 1.
  • the one energy cell 21 When a thermal runaway occurs in one energy cell 21, the one energy cell 21 is provided with an explosion-proof valve 22.
  • the explosion-proof valve 22 can break through the liquid cooling plate 1 to allow the cooling liquid to flow out.
  • the protective plate 3 is arranged on the top of the plurality of energy cells 21 and the protective plate 3 is provided with a plurality of grids 31, and every two adjacent grids 31 A spacer 30 is formed, one end of each energy cell 21 can extend into the spacer 30 , and the plurality of grids 31 play the role of fixing and limiting the plurality of energy cells 21 .
  • the fire extinguishing agent contained in the cooling liquid in this embodiment belongs to the related art, which is not limited in this embodiment, and is selected according to actual needs. It should be noted that, as shown in FIG. 2 , the length of the grid 31 in this embodiment is relatively long, and the grid 31 with a longer length can ensure good insulation performance between adjacent energy cells 21 . When the thermal runaway occurs in the energy cell 21 , other energy cells 21 adjacent to the energy cell 21 can delay the occurrence of thermal runaway, which greatly improves the insulation protection capability of the energy cell 21 .
  • the energy cell 21 in this embodiment is a rectangular parallelepiped battery cell, and a plurality of energy cells 21 form a battery module.
  • the energy cell 21 may also be other structures capable of thermal runaway, and the shape of the energy cell 21 is not limited to the shape of the rectangular parallelepiped in this embodiment, and is selected according to actual needs.
  • Each energy cell 21 in this embodiment is provided with two explosion-proof valves 22, and the two explosion-proof valves 22 are respectively located at opposite ends of each energy cell 21.
  • Each explosion-proof valve 22 is disposed facing the liquid cooling plate 1.
  • the two explosion-proof valves 22 When a thermal runaway occurs in one energy cell 21, the two explosion-proof valves 22 are flushed out and the two explosion-proof valves 22 can break through the liquid cooling plate 1, and the liquid cooling The cooling liquid in the liquid cooling cavity 101 of the plate 1 flows out. Since the cooling liquid contains fire extinguishing agent, the fire caused by the thermal runaway of the one energy cell 21 can be extinguished by the cooling liquid, which greatly improves the efficiency of multiple energy cells.
  • the insulation protection capability of the body 21 delays the large voltage arcing phenomenon caused by the insulation failure between different battery modules, and avoids the phenomenon of thermal runaway of the battery modules caused by the large voltage.
  • the cooling liquid of the liquid cooling plate 1 can cool the energy cell 21 when the temperature is high, and can also heat the energy cell 21 when the temperature is low , to avoid the influence of the external temperature on the energy cell 21.
  • the explosion-proof valve 22 on the energy cell 21 can break through the liquid cold plate 1, and the cooling liquid in the liquid cold plate 1 flows into In the placing tank 102, since the temperature of the cooling liquid is relatively low, it can cool the energy cell 21 and other energy cells 21.
  • the cooling liquid contains fire extinguishing agent, the cooling liquid can play the role of fire extinguishing , so as to further protect other energy cells 21 .
  • the cooling liquid in the liquid cooling plate 1 can also play the role of heating or cooling the energy cells 21 when the energy cells 21 are not thermally out of control, and the adjacent energy cells 21 can be distributed at intervals to protect other energy cells 21 , so as to achieve the purpose of delaying thermal runaway.
  • the integrated structure for delaying thermal runaway in this embodiment further includes a box body 4 fixed on the liquid cooling plate 1 , the liquid cooling plate 1 is located in the box body 4 , and the box body 4 is provided with a liquid inlet The channel, the liquid outlet channel, the liquid inlet channel and the liquid outlet channel are all communicated with the liquid cooling chamber 101 .
  • the box body 4 is welded on the liquid cooling plate 1. This connection method effectively enhances the strength of the integrated structure that delays thermal runaway. Once the thermal runaway occurs in the energy cell 21, the liquid cooling plate 1 is broken, and the box body 4 can still be Effectively resist the impact of thermal runaway and further delay battery thermal runaway.
  • the liquid cooling plate 1 and the box body 4 are integrally arranged, and the liquid cooling plate 1 is arranged in the middle of the box body 4 , which can effectively save the space utilization efficiency of the integrated structure that delays thermal runaway.
  • a liquid inlet pipe 41 and a liquid outlet pipe 42 are further provided on the box body 4 of this embodiment, wherein the liquid inlet pipe 41 is communicated with the liquid inlet channel, and the liquid outlet pipe 42 is communicated with the liquid outlet channel.
  • a cooling liquid with a relatively high temperature is introduced into the liquid cooling chamber 101 through the liquid inlet pipe 41 and the liquid inlet channel, and the temperature of the cooling liquid after heating the energy cell 21 decreases,
  • the cooling liquid with lower temperature is discharged from the liquid outlet pipe 42 through the liquid outlet channel; when the temperature of the energy cell 21 is high and needs to be cooled down, the cooling liquid with lower temperature is passed into the liquid cooling chamber 101 through the liquid inlet pipe 41 and the liquid inlet channel. Cooling liquid, the temperature of the cooling liquid after cooling the energy unit 21 increases, and the cooling liquid with a higher temperature is discharged from the liquid outlet pipe 42 through the liquid outlet passage.
  • the specific heat capacity of the cooling liquid is required to be greater than or equal to 3000 J/(kg ⁇ K).
  • the specific heat capacity of the cooling liquid may also be less than 3000 J/(kg ⁇ K), which is selected according to actual needs.
  • the bottom of the box 4 in this embodiment is open and the lower end of the box 4 is lower than the bottom surface of the liquid cooling plate 1 .
  • the upper end surface of the bottom frame of the box body 4 is flush with the bottom surface of the liquid cooling plate 1
  • the bottom of the box body 4 is open. That is to say, the box body 4 of this embodiment has no bottom plate.
  • the energy density per unit mass of the integrated structure for delaying thermal runaway in this embodiment is higher, which is beneficial to the delay.
  • the lightweight setting of the integrated structure with thermal runaway, and the absence of a bottom plate in the box body 4 can also improve the heat dissipation performance of the liquid cooling plate 1 and make the liquid cooling plate 1 fully contact with the external environment.
  • the lower end of the box 4 is lower than the bottom surface of the liquid cooling plate 1 to protect the liquid cooling plate 1. If the lower end of the box 4 is flush with the bottom surface of the liquid cooling plate 1 or the lower end of the box 4 is higher than the liquid cooling plate On the bottom surface of the 1, other components may collide with the liquid-cooling plate 1, thereby causing damage to the liquid-cooling plate 1, increasing the probability of damage to the liquid-cooling plate 1.
  • each energy cell 21 is bonded to the bottom of the placement groove 102 by means of thermally conductive adhesive, and the side surface of each energy cell 21 is coated with a thermally conductive layer (not shown in the figure), and the thermally conductive layer is sandwiched between between each of the energy cells 21 and the side wall of the placement groove 102 .
  • the energy cell 21 is bonded to the liquid-cooling plate 1 by thermally conductive glue, which can ensure good thermal conductivity between the energy cell 21 and the liquid-cooling plate 1, and the heat conduction layer on the side of the energy cell 21 can further improve the energy
  • the thermal conductivity between the body 21 and the liquid cooling plate 1 ensures the heat transfer between the surrounding of the liquid cooling plate 1 and the energy cell 21, improves the temperature management capability of the energy cell 21, and improves the performance of the integrated structure that delays thermal runaway.
  • the response speed can achieve uniform distribution of the temperature of the energy cell 21, and improve the working efficiency of the integrated structure that delays thermal runaway.
  • the center of the liquid cooling plate 1 of this embodiment directly forms a placement groove 102 for placing the energy cell 21.
  • the heat conduction layer on the side surface of the energy cell 21 is sandwiched between the energy cell 21 and the side wall of the placement groove 102.
  • the heat transfer area between the liquid cooling plate 1 and the energy cell 21 is increased, the heating rate and cooling rate of the energy cell 21 are accelerated, the integrated structure for delaying thermal runaway is compact, and the space utilization of the overall structure is increased. rate, which is conducive to the miniaturization of the overall structure.
  • protrusions 11 are provided on the bottom surface of the liquid cooling plate 1 facing away from the plurality of energy cells 21 in this embodiment, and a receiving groove 110 is formed in the area of the liquid cooling plate 1 facing the protrusions 11 .
  • the accommodating tank 110 communicates with the liquid cooling chamber 101 .
  • the additional protrusions 11 can increase the surface area of the liquid cooling plate 1, and the accommodating grooves 110 formed by the protrusions 11 can increase the volume of the liquid cooling cavity 101, thereby improving the heat exchange capacity of the liquid cooling plate 1, and at the same time, the protrusions 11 can also enhance the The strength of the liquid cooling plate 1 reduces the probability of damage to the bottom surface of the liquid cooling plate 1 and prolongs the service life of the liquid cooling plate 1 .
  • Each energy cell 21 in this embodiment is bonded in a compartment 30 .
  • the number of protective plates 3 is two, and the two protective plates 3 are respectively located at the length of the plurality of energy cells 21 . At both ends of the direction, each protective plate 3 is bonded to the upper end of the plurality of energy cells 21 .
  • the sides of the two protective plates 3 facing away from the plurality of energy cells 21 are provided with an insulating protective layer (not shown in the figure).
  • the insulating protective layer includes at least one of a mica layer, a melamine layer, a polyurethane layer and a boron nitride layer.
  • the insulating protective layer is not limited to this limitation in this embodiment, and may also be composed of other insulating materials, which can be set according to actual needs.
  • the protective plate 3 is not limited to being bonded to the upper ends of the plurality of energy cells 21 in this embodiment, and the protective plate 3 can also be clipped on the upper ends of the plurality of energy cells 21, according to actual needs set up.
  • the two protective plates 3 When one energy cell 21 is thermally out of control, the two protective plates 3 have the following three protective effects on other energy cells 21: 1.
  • the two protective plates 3 isolate the one energy cell 21 from thermal runaway caused by Open flame to protect other energy cells 21; 2. After the thermal runaway of the one energy cell 21 occurs, the two explosion-proof valves 22 at both ends of the one energy cell 21 are flushed open, making the one energy cell 21 open. Both ends of 21 are sprayed with high-temperature and high-pressure solid-liquid mixed objects.
  • the surface temperature of the one energy cell 21 is relatively high, and the two protective plates 3 can effectively isolate the temperature conduction; 3.
  • the two protective plates 3 with insulation function wrapped at both ends can greatly improve the insulation protection capability of multiple energy cells 21, delay the high-voltage arcing phenomenon caused by insulation failure between different battery modules, and avoid super large Extreme thermal runaway caused by voltage.
  • the integrated structure for delaying thermal runaway of this embodiment has the advantages of obvious thermal runaway effect, high space utilization, compact structure, high safety performance and good cooling effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Public Health (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请公开了一种延缓热失控的集成式结构,包括液冷板、多个能量单体及防护板,液冷板内限定出液冷腔,液冷腔内设有含有灭火剂的冷却液,液冷板的中部形成放置槽,多个能量单体间隔且并排粘接在放置槽内,每相邻两个能量单体面对面设置,每个能量单体上均设有防爆阀,防爆阀正对液冷板设置,所述每个能量单体发生热失控时防爆阀能够冲破液冷板以使冷却液流出,防护板设置在多个能量单体的顶端且防护板上设有多个格栅,每相邻两个格栅形成一个隔槽,每个能量单体的一端能够伸入一个隔槽内。

Description

延缓热失控的集成式结构
本申请要求在2020年12月23日提交中国专利局、申请号为202011538574.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及延缓能量单体的热失控技术领域,例如涉及一种延缓热失控的集成式结构。
背景技术
相关技术中,新能源汽车以能量效率高、零排放、无污染、比能量高、噪音低、可靠性高等优点被广泛应用。动力电池系统作为新能源电池车的主要储能部件,主要保证整车低速行驶、制动能量回收、混合动力发动机系统能量调节等功能。动力电池系统包括含有多个能量单体的电池总成,电池总成在一个能量单体发生热失控时无法延缓其他能量单体发生热失控,安全性能差。
发明内容
本申请提供了一种延缓热失控的集成式结构,能够有效延缓其他能量单体发生热失控,提高了延缓热失控的集成式结构的安全性。
本申请采用以下技术方案。
一种延缓热失控的集成式结构,包括:液冷板,所述液冷板内限定出液冷腔,所述液冷腔内设有含有灭火剂的冷却液,所述液冷板的中部形成放置槽;多个能量单体,所述多个能量单体间隔且并排粘接在所述放置槽内,每相邻两个能量单体面对面设置,每个能量单体上均设有防爆阀,所述防爆阀正对所述液冷板设置,所述每个能量单体发生热失控时所述防爆阀能够冲破所述液冷板以使所述冷却液流出;防护板,设置在所述多个能量单体的顶端且所述防护板上设有多个格栅,每相邻两个格栅形成一个隔槽,每个能量单体的一端能够伸入一个隔槽内。
作为一种延缓热失控的集成式结构的可选方案,所述延缓热失控的集成式结构还包括固定设置在所述液冷板上的箱体,所述液冷板位于所述箱体内,所述箱体上设有进液通道和出液通道,所述进液通道和所述出液通道均与所述液冷腔连通。
作为一种延缓热失控的集成式结构的可选方案,所述箱体的底部敞开设置 且所述箱体的下端低于所述液冷板的底面。
作为一种延缓热失控的集成式结构的可选方案,每个能量单体上均设有两个防爆阀,所述两个防爆阀分别位于所述每个能量单体的相对设置的两端。
作为一种延缓热失控的集成式结构的可选方案,每个能量单体与所述放置槽的槽底通过导热胶粘接,每个能量单体的侧面上涂覆有导热层,所述导热层夹设于每个能量单体与所述放置槽的侧壁之间。
作为一种延缓热失控的集成式结构的可选方案,所述液冷板背离所述多个能量单体的底面上设有凸起,所述液冷板的内部正对所述凸起的区域形成容纳槽,所述容纳槽与所述液冷腔连通。
作为一种延缓热失控的集成式结构的可选方案,所述冷却液的比热容大于或者等于3000J/(kg·K)。
作为一种延缓热失控的集成式结构的可选方案,每个能量单体均粘接在一个隔槽内,所述防护板的个数为两个,所述两个防护板分别位于所述多个能量单体的长度方向的两端。
作为一种延缓热失控的集成式结构的可选方案,所述防护板背离所述多个能量单体的一侧设有绝缘防护层。
作为一种延缓热失控的集成式结构的可选方案,所述绝缘防护层包括云母层、三聚氰胺层、聚氨酯层及氮化硼层中的至少一种。
附图说明
下面将对本申请实施例描述中所需要使用的附图作简单的介绍。
图1是本申请实施例提供的延缓热失控的集成式结构除去箱体的示意图;
图2是本申请实施例提供的防护板和部分能量单体的示意图;
图3是本申请实施例提供的延缓热失控的集成式结构在一个方向的示意图;
图4是本申请实施例提供的延缓热失控的集成式结构的剖视图;
图5是本申请实施例提供的延缓热失控的集成式结构在另一个方向的示意图。
图中:
1、液冷板;101、液冷腔;102、放置槽;11、凸起;110、容纳槽;
21、能量单体;22、防爆阀;
3、防护板;30、隔槽;31、格栅;
4、箱体;41、进液管;42、出液管。
具体实施方式
下面将结合附图对本申请实施例的技术方案进行描述。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“第一位置”和“第二位置”为两个不同的位置。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
本实施例提供一种延缓热失控的集成式结构,如图1至图4所示,包括液冷板1、多个能量单体21及防护板3,液冷板1内限定出液冷腔101,液冷腔101内设有含有灭火剂的冷却液,液冷板1的中部形成放置槽102,多个能量单体21间隔且并排粘接在放置槽102内,每相邻两个能量单体21面对面设置,每个能量单体21上均设有防爆阀22,防爆阀22正对液冷板1设置,一个能量单体21发生热失控时,所述一个能量单体21上设置的防爆阀22能够冲破液冷板1以使冷却液流出,防护板3设置在多个能量单体21的顶端且防护板3上设有多个格栅31,每相邻两个格栅31形成一个隔槽30,每个能量单体21的一端能够伸入一个隔槽30内,多个格栅31起到固定和限位多个能量单体21的作用。
本实施例的冷却液中含有的灭火剂属于相关技术,本实施例不做限定,根据实际需要选定。需要说明的是,如图2所示,本实施例的格栅31的长度较长,长度较长的格栅31能够保证相邻的能量单体21之间具有较好的绝缘性能,当一个能量单体21发生热失控时,与该能量单体21相邻的其他能量单体21能够延缓热失控的发生,极大地提高了能量单体21的绝缘防护能力。
本实施例的能量单体21为长方体的电池单体,多个能量单体21组成一个电池模组。在其他实施例中,能量单体21还可以为其他能够发生热失控的结构,能量单体21的形状也并不限于本实施例的长方体的形状,根据实际需要选定。本实施例的每个能量单体21上设有两个防爆阀22,两个防爆阀22分别位于所 述每个能量单体21的相对设置的两端。每个防爆阀22均正对液冷板1设置,当一个能量单体21发生热失控时,两个防爆阀22被冲出且所述两个防爆阀22能够冲破液冷板1,液冷板1的液冷腔101内的冷却液流出,由于冷却液内含有灭火剂,因此,所述一个能量单体21热失控产生的火能够被冷却液浇灭,极大地提高了多个能量单体21的绝缘防护能力,延缓了不同电池模组之间由于绝缘失效而造成的大电压拉弧现象,避免了大电压造成的电池模组的热失控的现象。
本实施例提供的延缓热失控的集成式结构,液冷板1的冷却液能够在能量单体21温度较高时对其进行降温,还能够在能量单体21温度较低时对其进行加热,避免了外界温度对能量单体21的影响,当一个能量单体21发生热失控时,该能量单体21上的防爆阀22能够冲破液冷板1,液冷板1内的冷却液流入放置槽102内,由于冷却液的温度相对较低,能够起到冷却该能量单体21和其他能量单体21的作用,另外由于冷却液内含有灭火剂,使得冷却液能够起到灭火的作用,从而进一步保护其他能量单体21。液冷板1内的冷却液还能够在能量单体21未发生热失控时起到加热或者冷却能量单体21的作用,相邻的能量单体21间隔分布能够起到保护其他能量单体21的作用,从而达到延缓热失控的目的。
如图3所示,本实施例的延缓热失控的集成式结构还包括固定设置在液冷板1上的箱体4,液冷板1位于箱体4内,箱体4上设有进液通道和出液通道,进液通道和出液通道均与液冷腔101连通。箱体4焊接在液冷板1上,这种连接方式有效增强了延缓热失控的集成式结构的强度,一旦发生能量单体21发生热失控,液冷板1被冲破,箱体4还可以有效抵御热失控的冲击,进一步延缓电池热失控。本实施例的液冷板1与箱体4的一体式设置且液冷板1布置在箱体4的中部,可以有效节省延缓热失控的集成式结构的空间使用效率。
如图3所示,本实施例的箱体4上还设有进液管41和出液管42,其中,进液管41与进液通道连通,出液管42与出液通道连通。当外界环境温度较低需要加热能量单体21时,通过进液管41和进液通道向液冷腔101内通入温度较高的冷却液,加热能量单体21后的冷却液温度降低,温度较低的冷却液经过出液通道从出液管42排出;当能量单体21温度较高需要降温时,通过进液管41和进液通道向液冷腔101内通入温度较低的冷却液,冷却能量单体21后的冷却液温度升高,温度较高的冷却液经过出液通道从出液管42排出。
为了更好的加热或者冷却能量单体21,要求冷却液的比热容大于或者等于3000J/(kg·K)。冷却液的比热容越大,吸收或者放出相同的热量所需要的冷却液的质量越少,也就是说,冷却液的比热容越大,将能量单体21升高或者降低至指定温度所需要的总质量越少,越有利于该延缓热失控的集成式结构的轻 量化设计。在其他实施例中,若是对延缓热失控的集成式结构的重量不做限定,冷却液的比热容还可以小于3000J/(kg·K),根据实际需要选定。
如图4所示,本实施例的箱体4的底部敞开设置且箱体4的下端低于液冷板1的底面。本实施例的箱体4的底边框的上端面与液冷板1的底面平齐,箱体4的底部敞开设置。也就是说,本实施例的箱体4没有底板,这与带有底板的箱体4相比,本实施例的单位质量的延缓热失控的集成式结构的能量密度更大,有利于该延缓热失控的集成式结构的轻量化设置,此外箱体4不设置底板还能够提高液冷板1的散热性能,使液冷板1与外界环境充分接触。箱体4的下端低于液冷板1的底面能够起到保护液冷板1的作用,若是箱体4的下端与液冷板1的底面平齐或者箱体4的下端高于液冷板1的底面,其他零部件有能够会碰撞液冷板1,从而导致液冷板1发生损坏,增加了液冷板1损坏的概率。
本实施例的每个能量单体21与放置槽102的槽底通过导热胶粘接,每个能量单体21的侧面上涂覆有导热层(图中未示出),导热层夹设于所述每个能量单体21与放置槽102的侧壁之间。能量单体21通过导热胶粘接在液冷板1上能够保证能量单体21与液冷板1之间具有较好的导热性能,能量单体21的侧面上的导热层能够进一步提高能量单体21与液冷板1之间的导热性能,保证液冷板1的四周与能量单体21之间的热量传递,提升能量单体21的温度管理能力,提高延缓热失控的集成式结构的响应速度,实现能量单体21的温度的均匀分布,提升延缓热失控的集成式结构的工作效率。
本实施例的液冷板1的中部直接形成放置能量单体21的放置槽102,能量单体21的侧面上的导热层夹设于能量单体21与放置槽102的侧壁之间,增加了液冷板1与能量单体21之间的传热面积,加速了能量单体21的升温速度和降温速度,使得延缓热失控的集成式结构的结构较为紧凑,增加了整体结构的空间利用率,利于整体结构的小型化设置。
如图4和图5所示,本实施例的液冷板1背离多个能量单体21的底面上设有凸起11,液冷板1的内部正对凸起11的区域形成容纳槽110,容纳槽110与液冷腔101连通。增设的凸起11能够增加液冷板1的表面积,凸起11形成的容纳槽110能够增大液冷腔101的体积,从而提升液冷板1的换热能力,同时凸起11还能够增强液冷板1的强度,降低了液冷板1的底面损坏的概率,延长了液冷板1的使用寿命。
本实施例的每个能量单体21均粘接在一个隔槽30内,如图3所示,防护板3的个数为两个,两个防护板3分别位于多个能量单体21长度方向的两端,每个防护板3粘接在多个能量单体21的上端。两个防护板3背离多个能量单体21的一侧设有绝缘防护层(图中未示出)。绝缘防护层包括云母层、三聚氰胺 层、聚氨酯层及氮化硼层中的至少一种。在其他实施例中,绝缘防护层并不限于本实施例的这种限定,还可以由其他绝缘材料组成,根据实际需要设置。在其他实施例中,防护板3并不限于本实施例的这种粘接在多个能量单体21的上端,防护板3还可以卡接在多个能量单体21的上端,根据实际需要设置。
当一个能量单体21发生热失控时,两个防护板3对其他能量单体21产生有以下三种保护作用:1、两个防护板3隔绝所述一个能量单体21发生热失控产生的明火,保护其他能量单体21;2、所述一个能量单体21发生热失控之后,由于所述一个能量单体21的两端的两个防爆阀22被冲开,使得所述一个能量单体21的两端喷射高温高压的固液混合态物体,所述一个能量单体21表面的温度较高,两个防护板3能够有效隔绝温度的传导;3、通过在多个能量单体21的两端包裹的具有绝缘功能的两个防护板3,可以极大地提升多个能量单体21的绝缘防护能力,延缓不同电池模组之间产生绝缘失效带来的高电压拉弧现象,避免超大电压造成的极端热失控现象。
本实施例的延缓热失控的集成式结构具有热失控效果明显、空间利用率高、结构紧凑、安全性能高及冷却效果好的优点。

Claims (10)

  1. 一种延缓热失控的集成式结构,包括:
    液冷板(1),所述液冷板(1)内限定出液冷腔(101),所述液冷腔(101)内设有含有灭火剂的冷却液,所述液冷板(1)的中部形成放置槽(102);
    多个能量单体(21),所述多个能量单体(21)间隔且并排粘接在所述放置槽(102)内,每相邻两个能量单体(21)面对面设置,每个能量单体(21)上均设有防爆阀(22),所述防爆阀(22)正对所述液冷板(1)设置,所述每个能量单体(21)发生热失控时所述防爆阀(22)能够冲破所述液冷板(1)以使所述冷却液流出;
    防护板(3),设置在所述多个能量单体(21)的顶端且所述防护板(3)上设有多个格栅(31),每相邻两个格栅(31)形成一个隔槽(30),每个能量单体(21)的一端能够伸入一个隔槽(30)内。
  2. 根据权利要求1所述的延缓热失控的集成式结构,还包括固定设置在所述液冷板(1)上的箱体(4),所述液冷板(1)位于所述箱体(4)内,所述箱体(4)上设有进液通道和出液通道,所述进液通道和所述出液通道均与所述液冷腔(101)连通。
  3. 根据权利要求2所述的延缓热失控的集成式结构,其中,所述箱体(4)的底部敞开设置且所述箱体(4)的下端低于所述液冷板(1)的底面。
  4. 根据权利要求1所述的延缓热失控的集成式结构,其中,每个能量单体(21)上均设有两个防爆阀(22),所述两个防爆阀(22)分别位于所述每个能量单体(21)的相对设置的两端。
  5. 根据权利要求1所述的延缓热失控的集成式结构,其中,每个能量单体(21)与所述放置槽(102)的槽底通过导热胶粘接,每个能量单体(21)的侧面上涂覆有导热层,所述导热层夹设于每个能量单体(21)与所述放置槽(102)的侧壁之间。
  6. 根据权利要求1所述的延缓热失控的集成式结构,其中,所述液冷板(1)背离所述多个能量单体(21)的底面上设有凸起(11),所述液冷板(1)的内部正对所述凸起(11)的区域形成容纳槽(110),所述容纳槽(110)与所述液冷腔(101)连通。
  7. 根据权利要求1所述的延缓热失控的集成式结构,其中,所述冷却液的比热容大于或者等于3000J/(kg·K)。
  8. 根据权利要求1所述的延缓热失控的集成式结构,其中,每个能量单体(21)均粘接在一个隔槽(30)内,所述防护板(3)的个数为两个,所述两个 防护板(3)分别位于所述多个能量单体(21)的长度方向的两端。
  9. 根据权利要求1所述的延缓热失控的集成式结构,其中,所述防护板(3)背离所述多个能量单体(21)的一侧设有绝缘防护层。
  10. 根据权利要求9所述的延缓热失控的集成式结构,其中,所述绝缘防护层包括云母层、三聚氰胺层、聚氨酯层及氮化硼层中的至少一种。
PCT/CN2021/134960 2020-12-23 2021-12-02 延缓热失控的集成式结构 WO2022135098A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011538574.6A CN112652838A (zh) 2020-12-23 2020-12-23 一种延缓热失控的集成式结构
CN202011538574.6 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022135098A1 true WO2022135098A1 (zh) 2022-06-30

Family

ID=75359794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134960 WO2022135098A1 (zh) 2020-12-23 2021-12-02 延缓热失控的集成式结构

Country Status (2)

Country Link
CN (1) CN112652838A (zh)
WO (1) WO2022135098A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652838A (zh) * 2020-12-23 2021-04-13 中国第一汽车股份有限公司 一种延缓热失控的集成式结构

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136391A1 (en) * 2009-09-12 2010-06-03 Tesla Motors, Inc. Active Thermal Runaway Mitigation System for Use Within a Battery Pack
CN208298909U (zh) * 2018-01-29 2018-12-28 浙江美都海创锂电科技有限公司 一种安全防爆圆柱型电池模块
CN110571378A (zh) * 2019-08-29 2019-12-13 广汽新能源汽车有限公司 电池壳与电池系统
CN110571495A (zh) * 2019-08-29 2019-12-13 广汽新能源汽车有限公司 电池包冷却结构、电池壳及电池系统
CN211376746U (zh) * 2020-02-21 2020-08-28 宁德时代新能源科技股份有限公司 电池组及装置
CN211789178U (zh) * 2020-04-22 2020-10-27 淮安骏盛新能源科技有限公司 一种锂电池热失控防护装置
CN112086605A (zh) * 2020-10-19 2020-12-15 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN112349996A (zh) * 2020-11-11 2021-02-09 中国第一汽车股份有限公司 一种动力电池及车辆
CN112652838A (zh) * 2020-12-23 2021-04-13 中国第一汽车股份有限公司 一种延缓热失控的集成式结构
CN213026307U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN213483827U (zh) * 2020-06-29 2021-06-18 比亚迪股份有限公司 电池模组、电池包及车辆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170179551A1 (en) * 2015-12-18 2017-06-22 Hamilton Sundstrand Corporation Thermal management for electrical storage devices
CN206921973U (zh) * 2017-05-25 2018-01-23 惠州中科新能源研究院 一种散热安全圆柱形电池模组
CN109216604B (zh) * 2017-06-30 2020-12-25 比亚迪股份有限公司 电池托盘以及具有它的电池包总成
CN108682917B (zh) * 2018-05-03 2020-10-30 惠州亿纬锂能股份有限公司 一种液冷箱体及电池模组
KR102296992B1 (ko) * 2018-08-14 2021-09-01 주식회사 엘지에너지솔루션 전지 프레임을 포함하는 배터리 팩
CN208637554U (zh) * 2018-09-05 2019-03-22 江苏奥吉瑞斯新能源有限公司 一种凸起结构的动力电池水冷板
CN110931911A (zh) * 2018-09-20 2020-03-27 广州小鹏汽车科技有限公司 一种冷却板及冷却系统
CN209730091U (zh) * 2019-04-30 2019-12-03 宁德时代新能源科技股份有限公司 电池模组以及电池包
CN111490311B (zh) * 2020-04-21 2023-08-25 上海加冷松芝汽车空调股份有限公司 一种集成式换热板及车用电池热管理系统
CN212113764U (zh) * 2020-06-12 2020-12-08 上汽通用汽车有限公司 电池模组上盖、电池模组及电池包总成

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136391A1 (en) * 2009-09-12 2010-06-03 Tesla Motors, Inc. Active Thermal Runaway Mitigation System for Use Within a Battery Pack
CN208298909U (zh) * 2018-01-29 2018-12-28 浙江美都海创锂电科技有限公司 一种安全防爆圆柱型电池模块
CN110571378A (zh) * 2019-08-29 2019-12-13 广汽新能源汽车有限公司 电池壳与电池系统
CN110571495A (zh) * 2019-08-29 2019-12-13 广汽新能源汽车有限公司 电池包冷却结构、电池壳及电池系统
CN211376746U (zh) * 2020-02-21 2020-08-28 宁德时代新能源科技股份有限公司 电池组及装置
CN211789178U (zh) * 2020-04-22 2020-10-27 淮安骏盛新能源科技有限公司 一种锂电池热失控防护装置
CN213483827U (zh) * 2020-06-29 2021-06-18 比亚迪股份有限公司 电池模组、电池包及车辆
CN213026307U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN112086605A (zh) * 2020-10-19 2020-12-15 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN112349996A (zh) * 2020-11-11 2021-02-09 中国第一汽车股份有限公司 一种动力电池及车辆
CN112652838A (zh) * 2020-12-23 2021-04-13 中国第一汽车股份有限公司 一种延缓热失控的集成式结构

Also Published As

Publication number Publication date
CN112652838A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN112736324A (zh) 一种带液冷的软包电池系统
WO2022156400A1 (zh) 电池液冷板总成、电池总成及车辆
WO2020259135A1 (zh) 电池包和电池包制造方法及车辆
CN110071348A (zh) 基于复合相变材料冷却的动力电池热管理系统及其应用
WO2024082591A1 (zh) 一种框架散热结构及具有该结构的动力电池模组
WO2022135098A1 (zh) 延缓热失控的集成式结构
WO2024016908A1 (zh) 电池包及包括其的电动装置
WO2023125086A1 (zh) 电池模组、电池包和储能系统
CN113471604A (zh) 一种动力电池包
WO2023066259A1 (zh) 电池包和储能系统
CN110289377B (zh) 基于泡沫铝材料和圆柱形电池的动力电池包
WO2024087801A1 (zh) 电芯托盘、电池模组及车辆
CN108565527B (zh) 一种扁平热管用于电池模组散热的装置
WO2023124553A1 (zh) 电池模组和电池包
CN214254531U (zh) 一种带液冷的软包电池系统
WO2021249272A1 (zh) 一种电池包及电动车
WO2023125085A1 (zh) 电池模组、电池包和储能系统
CN116154355A (zh) 一种可变导热系数的主/被动结合的散热结构
CN115966802A (zh) 一种基于特斯拉阀的电池散热结构
CN111525062A (zh) 一种基于液体金属的动力电池热管理模组
CN219086057U (zh) 一种电池包
CN220065815U (zh) 电池包组件和用电装置
CN219246779U (zh) 一种电池模组和电池包
CN116826246B (zh) 一种适配风冷散热系统的电池模组及飞行器
CN214336785U (zh) 电池热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909095

Country of ref document: EP

Kind code of ref document: A1