WO2020259135A1 - 电池包和电池包制造方法及车辆 - Google Patents

电池包和电池包制造方法及车辆 Download PDF

Info

Publication number
WO2020259135A1
WO2020259135A1 PCT/CN2020/091228 CN2020091228W WO2020259135A1 WO 2020259135 A1 WO2020259135 A1 WO 2020259135A1 CN 2020091228 W CN2020091228 W CN 2020091228W WO 2020259135 A1 WO2020259135 A1 WO 2020259135A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
battery
battery pack
assembly
box
Prior art date
Application number
PCT/CN2020/091228
Other languages
English (en)
French (fr)
Inventor
游凯杰
汪用广
王鹏
周灵刚
陈兴地
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to US15/734,553 priority Critical patent/US11824177B2/en
Priority to EP20808001.0A priority patent/EP3790070B1/en
Priority to EP22152077.8A priority patent/EP4009429B1/en
Publication of WO2020259135A1 publication Critical patent/WO2020259135A1/zh
Priority to US18/484,720 priority patent/US20240055695A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/276Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of batteries, in particular to a battery pack, a method for manufacturing the battery pack, and a vehicle.
  • Rechargeable batteries have been widely used to power high-power devices, such as electric vehicles.
  • Rechargeable batteries can achieve larger capacity or power by connecting multiple battery cells in series, parallel or in series.
  • Each battery cell integrally forms a battery assembly.
  • a prior art known to the inventor is to provide cooling at the bottom of the box. The temperature control system.
  • the temperature control system can only cool one side of the battery assembly, the other side is completely dependent on the battery assembly itself for heat transfer, so it is easy to make the battery assembly in the height direction.
  • the battery components form a temperature difference.
  • the side of the battery components close to the temperature control system has a faster cooling speed, and the effect of adjustment by the temperature control system is more obvious; the side of the battery components away from the temperature control system has a slow cooling speed, and the effect of the adjustment by the temperature control system is better difference.
  • the long-term temperature difference between the two sides of the battery assembly is large, it will affect the service life of the battery assembly.
  • the embodiments of the present invention provide a battery pack, a method for manufacturing the battery pack, and a vehicle, which can increase the service life of the battery pack.
  • a battery pack including:
  • the box body assembly includes a box body, a heat conduction beam and a temperature control component.
  • the heat conduction beam is arranged in the box body and connected to the box body, and the temperature control component is arranged at the bottom area of the box body;
  • the heat-conducting cover is connected to the heat-conducting beam and is located above the heat-conducting beam along the height direction of the battery pack.
  • the first chamber is enclosed between the heat-conducting cover, the box and the heat-conducting beam;
  • a plurality of battery cells form a battery assembly as a whole.
  • the battery assembly is arranged in the first chamber and above the temperature control component.
  • the battery pack further includes a heat-resistant layer disposed between the bottom surface of the battery assembly and the inner bottom surface of the box.
  • the thermal conductivity of the heat-resistant layer is smaller than that of the thermal conductive beam and the thermal conductive cover.
  • contact heat conduction is adopted between the heat conducting cover and the heat conducting beam.
  • the thermal conductive cover and the top of the battery assembly adopt contact thermal conduction.
  • At least one of the thermally conductive beam and the thermally conductive cover and the side of the battery assembly away from the pole adopt contact heat conduction.
  • the heat-conducting cover includes a main body part and an installation part connected to the main body part, the main body part covers the battery assembly, and the installation part is fixedly connected to the heat-conducting beam.
  • the battery pack further includes a first thermally conductive layer, and the first thermally conductive layer is provided between the mounting part and the thermally conductive beam.
  • the battery pack further includes a second heat-conducting layer disposed between the main body and the heat-conducting beam and the side of the battery assembly away from the pole.
  • the battery pack further includes a third thermally conductive layer disposed between the main body and the top of the battery assembly.
  • the battery pack further includes a cover, which is arranged on the top of the thermally conductive cover, and is fixed and sealed with the box.
  • the battery cell includes a casing and an electrode assembly arranged in the casing, and the electrode assembly includes a first pole piece, a second pole piece, and a diaphragm arranged between the first pole piece and the second pole piece;
  • the electrode assembly has a rolled structure and is flat, and the outer surface of the electrode assembly includes two flat surfaces; or, the electrode assembly has a laminated structure, and the first pole piece and the second pole piece are stacked;
  • the flat surface of the electrode assembly or the plane surface on which the first pole piece is located is arranged with respect to the bottom surface of the box body, and a plurality of battery cells are arranged in a single layer or superimposed at least two layers along the height direction of the battery pack.
  • the battery cell includes a casing and an electrode assembly arranged in the casing, and the electrode assembly includes a first pole piece, a second pole piece, and a diaphragm arranged between the first pole piece and the second pole piece. ;
  • the electrode assembly has a rolled structure and is flat, and the outer surface of the electrode assembly includes two flat surfaces; or, the electrode assembly has a laminated structure, and the first pole piece and the second pole piece are stacked;
  • the flat surface of the electrode assembly or the plane surface where the first pole piece is located is arranged on the side surface of the box body, and a plurality of battery cells are arranged superimposed along the length direction or the width direction of the battery pack.
  • the battery assembly is divided into at least two groups in a plane perpendicular to the height direction of the battery pack, and the heat conduction beam and the side surface of the battery assembly away from the pole are conducted by contact heat conduction, and the grouping direction of the battery assembly is perpendicular to the heat conduction beam The extension direction.
  • the ratio between the thickness of the thermal barrier layer and the height of the thermally conductive beam is in the range of 1/5 to 1/500; and/or, the thermal conductivity of the thermal barrier layer is different from the thermal conductivity of the thermally conductive beam or the thermally conductive cover The ratio range between 0.001 and 0.5.
  • the battery pack further includes a heat-resistant layer, which is provided between the bottom of the battery assembly and the inner bottom surface of the box.
  • the ratio of the thickness of the first heat conductive layer to the thickness of the heat resisting layer ranges from 0.0001 to 0.1.
  • the ratio of the thermal conductivity of the first thermal conductive layer to the thermal conductivity of the thermal barrier layer ranges from 20 to 1,000.
  • the ratio of the thickness of the second thermally conductive layer to the thickness of the heat-resistant layer ranges from 0.0001 to 0.1.
  • the ratio of the thermal conductivity of the second thermal conductive layer to the thermal conductivity of the thermal barrier layer ranges from 20 to 1,000.
  • the ratio between the thickness of the third thermal conductive layer and the thickness of the thermal barrier layer ranges from 0.0001 to 0.1.
  • the ratio of the thermal conductivity of the third thermal conductivity layer to the thermal conductivity of the thermal barrier layer ranges from 20 to 1,000.
  • a vehicle including:
  • the vehicle body The vehicle body;
  • the battery pack is provided in the vehicle body.
  • a method for manufacturing a battery pack including:
  • a box body assembly which includes a box body, a heat conduction beam and a temperature control component.
  • the heat conduction beam is arranged in the box body and connected to the box body, and the temperature control part is arranged at the bottom area of the box body;
  • thermal conductive cover is connected with the thermal conductive beam, and is located above the thermal conductive beam along the height direction of the battery pack, and the first cavity is enclosed between the thermal conductive cover, the box body and the thermal conductive beam;
  • a plurality of battery cells are provided, and the plurality of battery cells integrally form a battery assembly.
  • the battery assembly is arranged in the first chamber and above the temperature control component.
  • the battery pack of an embodiment of the present invention is provided with a heat-conducting beam and a heat-conducting cover, so that the temperature of the temperature control component is adjusted at the bottom of the box, and the temperature can be sequentially transferred to the heat-conducting beam and the heat-conducting cover, changing the temperature.
  • the heat conduction path when the control component adjusts the temperature of the battery assembly can balance the temperature distribution in the first chamber along the height of the battery pack, reduce the temperature difference between the upper and lower areas of the battery assembly, improve the temperature uniformity of the battery assembly, and make the battery assembly discharge depth The consistency of the battery is improved, thereby increasing the service life of the battery pack.
  • Fig. 1 is an exploded schematic diagram of an embodiment of the battery pack of the present invention
  • FIG 2 is a front view of the battery pack shown in Figure 1;
  • FIG. 3 is a schematic structural diagram of an embodiment of the box assembly in the battery pack shown in FIG. 1;
  • Figure 4 is a front view of the box assembly shown in Figure 3;
  • FIG. 5 is a schematic structural view of a plurality of battery cells stacked in the height direction in the battery pack shown in FIG. 1;
  • FIG. 6 is a schematic diagram of the structure of a single battery cell in the battery pack shown in FIG. 1;
  • Figure 7 is an exploded schematic diagram of an embodiment of a battery cell in a battery pack
  • FIG. 8 is a cross-sectional view of a battery cell using a wound electrode assembly along the xz plane in FIG. 7;
  • FIG. 9 is a cross-sectional view of a battery cell using a laminated electrode assembly along the xz plane in FIG. 7.
  • FIG. 10 is an exploded schematic diagram of another embodiment of the battery pack of the present invention.
  • FIG. 11 is a schematic diagram of a state in which the cover of the battery pack shown in FIG. 10 is opened;
  • Figure 12 is a front view of the battery pack shown in Figure 10;
  • FIG. 13 is a schematic view showing the structure of multiple battery cells superimposed along the length direction in the battery pack shown in FIG. 10.
  • Box assembly 11. Box body; 111, first flange; 112, first hole; 12, heat conduction beam; 121, second hole; 13, temperature control component;
  • first and second appearing in the present invention are only for convenience of description, to distinguish different components with the same name, and do not indicate a sequence or a primary-secondary relationship.
  • the element when an element is referred to as being “on” another element, the element can be directly on the other element, or it can be indirectly on the other element with one or More intermediate components.
  • the element when an element is referred to as being “connected to” another element, the element may be directly connected to the other element, or may be indirectly connected to the other element with one or more interposed therebetween.
  • a middle element In the following, the same reference numerals denote the same elements.
  • multiple refers to two or more (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple roots” refers to two or more (Including two).
  • the coordinate system in Figure 1 defines the various directions of the battery pack
  • the x direction represents the length direction of the battery pack
  • the y direction represents the width direction of the battery pack
  • the z direction is vertical
  • the plane formed in the x and y directions represents the height direction of the battery pack.
  • the height direction of the battery pack is parallel to the vertical direction.
  • the vertical direction mentioned here is allowed to be vertical relative to the theory. There is a certain angular deviation in the direction. Based on this definition of orientation, “up”, “down”, “top” and “bottom” are used, all of which are relative to the height direction.
  • the present invention provides a vehicle.
  • the vehicle includes a vehicle body and a battery pack, and the battery pack is disposed in the vehicle body.
  • the vehicle is a new energy vehicle, which can be a pure electric vehicle, a hybrid vehicle or a range-extended vehicle.
  • a drive motor is provided in the main body of the vehicle, and the drive motor is electrically connected to the battery pack.
  • the battery pack provides electrical energy to drive the motor.
  • the transmission mechanism is connected with the wheels on the vehicle body to drive the vehicle to travel.
  • the battery pack can be installed horizontally on the bottom of the vehicle body, and can be mounted on top and/or supported by the bottom.
  • Fig. 1 is a schematic structural diagram of an embodiment of the battery pack of the present invention.
  • the battery pack 100 includes a box body assembly 1, a thermally conductive cover 3 and a plurality of battery cells 2 integrally forming the battery assembly 20.
  • the box assembly 1 includes a box 11, a heat conducting beam 12 and a temperature control component 13.
  • the box body 11 has an open end, and the heat conducting beam 12 is fixed in the box body 11 and connected to the box body 11, so that the temperature control component 13 and the box body 11, the heat conducting beam 12 and the heat conducting cover 3 can conduct heat to each other, for example, the heat conducting beam 12 can be fixed on the inner bottom surface or side wall of the box body 11.
  • the temperature control component 13 is provided in the bottom area of the box body 11, and can be provided inside or outside the box body 11, or integrated with the bottom plate of the box body 11.
  • the temperature control component 13 is used to adjust the temperature of the battery assembly 20, for example, for The heat generated during the working process of the battery assembly 20 is taken away, and the battery assembly 20 can be cooled.
  • the temperature control component 13 includes a cooling pipe arranged at the bottom of the box 11 and a circulating component for passing coolant into the cooling pipe. Or the temperature control component 13 includes a liquid cooling plate arranged at the bottom of the box 11; or when the battery pack is used in a low temperature area, the battery cells of the battery assembly 20 can be heated, and the temperature control component 13 is included at the bottom of the box 11 Electric heating elements etc.
  • the heat conducting cover 3 is connected to the heat conducting beam 12 and is located above the heat conducting beam 12 along the height direction of the battery pack.
  • the first cavity A is formed between the heat conducting cover 3 and the inner bottom surface of the box 11 and the inner side surface of the heat conducting beam 12, preferably ,
  • the size of the first cavity A is adapted to the overall external size of each battery cell 2.
  • the battery assembly 20 is disposed in the first chamber A and located above the temperature control component 13 so that the temperature control component 13 can adjust the temperature below the battery assembly 20.
  • the heat-conducting beam 12 can be a solid beam or a hollow beam, and the use of a hollow beam has better heat conduction efficiency.
  • the cross section of the thermally conductive beam 12 can be rectangular, trapezoidal or C-shaped, and the upper surface of the thermally conductive beam 12 can be set to be flat to fix the thermally conductive cover 3 on the upper surface of the thermally conductive beam 12.
  • the thermally conductive cover 3 can also be fixed to the thermally conductive beam. 12 on the side.
  • the heat-conducting beam 12 can be designed as a continuous structure in its extension direction, or can be designed as a segmented structure.
  • the thermal conductive beam 12 and the thermal conductive cover 3 are provided, so that the temperature of the temperature control component 13 is adjusted at the bottom of the box 11, and the temperature can be transferred to the thermal conductive beam 12 and the thermal conductive cover 3 in turn, which changes the effect of the temperature control component 13 on the battery.
  • the heat conduction path for the temperature control of the component 20 can balance the temperature distribution in the first chamber A along the height of the battery pack, reduce the temperature difference between the upper and lower regions of the battery assembly 20, and improve the temperature uniformity of the battery assembly 20, so that the battery assembly 20 The consistency of the depth of discharge is improved.
  • the thermally conductive cover 3 can also restrain the battery assembly 20 from swelling in the height direction of the battery pack. Both of these advantages can increase the service life of the battery pack.
  • the battery pack may further include a heat-resistant layer 6, which is provided between the bottom surface of the battery assembly 20 and the inner bottom surface of the box body 11.
  • the thermal conductivity of the heat-resistant layer 6 is smaller than that of the thermally conductive beam 12 and the thermally conductive cover.
  • the thermal conductivity of 3 can hinder the heat transfer between the temperature control component 13 and the bottom of the battery assembly 20, delay the temperature adjustment effect of the temperature control component 13 on the bottom of the battery assembly 20, and prevent the temperature control component 13 from passing through the bottom bearing surface of the box 11
  • the temperature of the battery cell 2 is directly adjusted.
  • the heat resistance layer 6 does not require complete heat insulation, as long as the heat transfer efficiency can be reduced, and non-metallic materials are preferred.
  • the heat-resistant layer 6 can be made of glass fiber, asbestos, rock wool, silicate or aerogel felt. More preferably, the heat-resistant layer 6 also has the function of an adhesive, so as to reliably fix the battery cell 2 in the box 11 and improve the structural strength of the entire battery pack.
  • the heat released by the temperature control component 13 can be transferred to the thermal conduction beam 12 and the thermal conduction cover 3 in sequence before the temperature regulation effect of the temperature control component 13 reaches the bottom of the battery assembly 20, so that the box body 11
  • the temperature of the bottom, the heat conduction beam 12 and the heat conduction cover 3 are uniform, so that heat can be transferred from the different surfaces of the battery assembly 20 to the battery assembly 20 at the same time, thereby further reducing the temperature difference of the battery assembly 20 along the height of the battery pack and improving the battery pack Life.
  • the battery assembly 20 includes two layers of battery cells 2 in the height direction of the battery pack, and the heat resistance layer 6 is provided between the bottom battery cells 2 and the inner bottom surface of the box 11.
  • the heat-resistant layer 6 can be provided as a whole piece to sufficiently hinder the heat transfer between the temperature control component 13 and the bottom of the battery assembly 20, so that the heat can quickly reach the top of the battery assembly 20 through the thermally conductive beam 12 and the thermally conductive cover 3.
  • a heat-resistant layer 6 can be provided between the bottom surface of each group of battery cells 2 and the inner bottom surface of the box 11, which can save the material of the heat-resistant layer 6
  • the amount can also enable the heat released by the temperature control component to be transferred to at least the top of the battery assembly 20 through the space between the adjacent battery cells 2 to reduce the temperature difference between the upper and lower regions in the first chamber A.
  • the ratio of the thickness of the thermal barrier layer 6 to the height of the heat conducting beam 12 ranges from 1/5 to 1/500, for example, 1/5, 1/10, 1/30, 1/40, 1/50. , 1/60, 1/70, 1/80, 1/90, 1/100, 1/200, 1/300, 1/400 or 1/500 etc.
  • the ratio of the thermal conductivity of the thermal barrier layer 6 to the thermal conductivity of the thermally conductive beam 12 or the thermally conductive cover 3 ranges from 0.001 to 0.5, for example, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4 or 0.5.
  • a preset gap may be set between the thermal conductive cover 3 and the thermal conductive beam 12 to conduct heat through air.
  • contact heat conduction is used between the thermally conductive cover 3 and the thermally conductive beam 12, which can reduce the heat transfer time between the thermally conductive beam 12 and the thermally conductive cover 3, improve the thermal conductivity efficiency, and shorten the temperature adjustment required to reach a stable state. time.
  • the thermally conductive cover 3 includes a main body portion 31 and a mounting portion 32 connected to the main body portion 31.
  • the main body portion 31 covers the battery assembly 20.
  • the battery assembly 20 includes at least two layers of battery cells 2.
  • the part 31 can cover the topmost battery cell 2, and the mounting part 32 is fixedly connected to the heat conducting beam 12.
  • the thermally conductive cover 3 can be formed by bending a flat plate structure.
  • the thermal conductive cover 3 and the thermal conductive beam 12 may be in direct contact, or the battery pack further includes a first thermal conductive layer 7, and the first thermal conductive layer 7 is provided between the mounting portion 32 and the thermal conductive beam 12.
  • the first thermal conductive layer 7 can be formed by filling thermal conductive glue.
  • the thermal conductive glue can eliminate the gap between the mounting portion 32 and the thermal conductive beam 12. Compared with the direct contact method, the thermal conductivity can be improved and the temperature control component 13 can be adjusted. The heat is transferred to the main body 31 through the heat conducting beam 12 and the mounting part 32 faster, so that the heat is transferred from the main body 31 to the top surface of the battery assembly 20, and since the top surface of the battery assembly 20 has a larger heat conduction area, the battery assembly can be balanced 20 The temperature difference between the upper and lower areas.
  • the main body portion 31 of the thermally conductive cover 3 protrudes in a direction away from the battery cell 2 relative to the mounting portion 32.
  • This structure can not only reduce the installation height of the heat-conducting beam 12 and ensure the strength of the heat-conducting beam 12, but also can prevent the fastener 5 from protruding from the top of the main body 31 when the mounting part 32 and the heat-conducting beam 12 are fixed by the fastener 5. Surface, can reduce the height of the battery pack.
  • the main body portion 31 simultaneously covers the top surface and part of the side surface of the battery cell 2.
  • the battery assembly 20 is provided with two sets of battery cells 2 along the width direction (y direction) of the battery pack.
  • the poles of the two sets of battery cells 2 are arranged opposite to each other, and between the two sets of battery cells 2 There is a preset interval for setting the bus bars.
  • this method can reduce the heat transfer time between the heat conduction beam 12 and the main body 31 and the side surface of the battery assembly 20, improve the heat conduction efficiency, and shorten the time required for the temperature adjustment to reach a stable state.
  • the thermal conductive cover 3 and the thermal conductive beam 12 can also be in direct contact with the battery assembly 20.
  • the battery pack may further include a second thermally conductive layer 8, which is provided between the thermally conductive cover 3 and the thermally conductive beam 12 and the side surface of the battery assembly 20.
  • the second thermal conductive layer 8 can be formed by filling the thermal conductive glue.
  • the thermal conductive glue can eliminate the gap between the thermal conductive cover 3 and the thermal conductive beam 12 and the side surface of the battery assembly 20.
  • the thermal conductivity can be improved and the temperature control component can be improved.
  • the temperature adjustment effect of 13 is simultaneously transmitted to the side surface of the battery assembly 20 through the heat conducting beam 12 and the main body portion 31 to improve the temperature adjustment efficiency.
  • the two groups of battery cells 2 are arranged opposite to each other on the surface away from the pole.
  • the heat conduction beam 12 is kept at a preset distance from the side of the battery assembly 20, which can conduct heat through air. .
  • the main body 31 of the thermally conductive cover 3 and the top surface of the battery assembly 20 can also be in direct contact.
  • the battery pack may further include a third thermally conductive layer 9 provided between the thermally conductive cover 3 and the top surface of the battery assembly 20, and the third thermally conductive layer 9 may be formed by filling a thermally conductive glue.
  • the main body portion 31 can completely cover the top surface of each battery cell 2 to increase the temperature adjustment capability of the top of the battery assembly 20.
  • the ratio of the thickness of the first thermal conductive layer 7, the second thermal conductive layer 8 and/or the third thermal conductive layer 9 to the thermal barrier layer 6 ranges from 0.0001 to 0.1, for example, 0.0001, 0.001, 0.01 or 0.1; and / Or the ratio between the thermal conductivity of the first thermal conductive layer 7, the second thermal conductive layer 8 and/or the third thermal conductive layer 9 and the thermal barrier layer 6 ranges from 20 to 1000, for example, 20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 etc.
  • the first thermal conductive layer 7, the second thermal conductive layer 8 and/or the third thermal conductive layer 9 in the above embodiments can make the temperature of the temperature control component 13 evenly distributed to the first chamber A through the thermal conductive beam 12 and the thermal conductive cover 3 In the high-level space, the uniformity of the temperature throughout the battery assembly 20 is improved.
  • each thermally conductive layer can also function as an adhesive, so as to improve the reliability of fixing each battery cell 2 and improve the structural strength of the battery assembly 20.
  • the vehicle will transmit vibration to the battery pack during driving, and the first heat conducting layer 7, the second heat conducting layer 8 and/or the third heat conducting layer 9 can also play a role in buffering vibration , Improve the working reliability of the battery assembly 20.
  • the battery pack of the present invention may further include a cover 4 arranged on the top of the heat conducting cover 3, snap-fitted to the open end of the box body 11, and fixed and sealed with the box body 11.
  • the cover 4 and the heat-conducting cover 3 are arranged independently, which can play the role of closing the box body 11. Moreover, since the heat-conducting cover 3 is provided, the deformation of the outer cover 4 can be reduced, thereby improving the sealing performance of the battery pack.
  • the preset gap between the inner surface of the outer cover 4 and the outer surface of the thermally conductive cover 3.
  • the force after the deformation of the thermally conductive cover 3 can be prevented from being transmitted to the outer cover 4 to force the outer cover 4 to deform; moreover, even if the battery assembly 20 swells, the thermally conductive cover 3 is deformed to top the outer cover At 4 o'clock, the outer cover 4 can further limit the deformation of the thermally conductive cover 3 and the expansion of the battery assembly 20.
  • the preset gap ranges from 2 mm to 100 mm.
  • a first flange 111 is provided around the open end of the box 11, and a second flange 41 is provided around the cover 4.
  • the flanging 111 and the second flanging 41 can be fixed by bonding or connecting with fasteners.
  • the first flange 111 is provided with a plurality of first holes 112 at intervals
  • the second flange 41 is provided with a plurality of fourth holes 411 at intervals
  • the fourth holes 411 and the first holes 112 are penetrated by the fastener 5.
  • the cover 4 and the box 11 are fixed.
  • a plurality of third holes 321 are provided on the mounting portion 32 at intervals along the extending direction of the thermally conductive beam 12, and the top of the thermally conductive beam 12 is provided with multiple second holes at intervals along the extending direction of the thermally conductive beam 12 121. Pass the fastener 5 through the third hole 321 and the second hole 121 to fix the heat conducting cover 3 and the heat conducting beam 12.
  • extensions can also be provided at opposite ends of the heat conducting cover 3 to be fixed to the box body 11 through the extensions.
  • This structure can omit the cover 4 to simplify the structure of the battery pack and reduce the weight.
  • the battery assembly 20 is divided into at least two groups in a plane perpendicular to the height direction of the battery pack, and the grouping direction is perpendicular to the extending direction of the heat conducting beam 12.
  • the battery cells 2 of each group can be arranged at intervals.
  • the grouping direction is perpendicular to the extending direction of the thermally conductive beam 12, so that each group of battery cells 2 can be continuously arranged along the extending direction of the thermally conductive beam 12. Because the thermally conductive beam 12 and the battery cells 2 of the corresponding group have a continuous thermally conductive area , The temperature adjustment effect of the temperature control component 13 can be efficiently transferred to other areas other than the bottom of the battery assembly 20 through the heat conducting beam 12.
  • the grouping direction of the battery assembly 20 may also be the same as the extending direction of the heat conducting beam 12.
  • the box body 11 is rectangular, and the heat conducting beam 12 extends along the length direction of the box body 11.
  • the heat conducting beam 12 can increase the length of the heat-conducting beam 12, so that the temperature adjustment effect of the temperature control component 13 is more efficiently transmitted to the battery assembly 20 through the heat-conducting beam 12.
  • the heat-conducting beam may also extend along the width direction of the box 11.
  • the box body 11 is provided with two thermally conductive beams 12 extending along the length of the box body 11.
  • Each battery cell 2 is located between the two thermally conductive beams 12, the thermally conductive beam 12 and the box body 11
  • the inner side walls can be arranged at intervals.
  • a rectangular ring-shaped heat conduction beam 12 can also be provided to surround the outer periphery of the battery assembly 20.
  • the shape of the mounting portion 32 of the heat conduction cover 3 is consistent with the heat conduction.
  • Beam 12 fits.
  • a thermally conductive beam 12 may also be provided between adjacent battery cells 2.
  • Each battery cell 2 includes: a housing 21 and the electrode assembly 22 provided in the housing 21.
  • the housing 21 may have a hexahedral shape or other shapes and have an opening.
  • the electrode assembly 22 is housed in the case 21.
  • the opening of the housing 21 is covered with a cover plate assembly 24.
  • the cover plate assembly 24 includes a cover plate 241 and two electrode terminals arranged on the cover plate. The two electrode terminals are a first electrode terminal 242 and a second electrode terminal 243 respectively.
  • the first electrode terminal 242 may be a positive electrode terminal, and the second electrode terminal 243 is a negative electrode terminal. In other embodiments, the first electrode terminal 242 may also be a negative electrode terminal, and the second electrode terminal 243 is a positive electrode terminal.
  • An adapter sheet 23 is provided between the cover plate assembly 24 and the electrode assembly 22, and the tabs of the electrode assembly 22 are electrically connected to the electrode terminals on the cover plate 241 through the adapter plate 23. In this embodiment, there are two adapter plates 23, namely, a positive electrode adapter plate and a negative electrode adapter plate.
  • two electrode assemblies 22 are provided in the housing 21, and the two electrode assemblies 22 are stacked along the height direction (z direction) of the battery cell 2, wherein the height direction of the battery cell 2 is the same as that of the battery pack.
  • the height direction is the same.
  • one electrode assembly 22 may also be provided in the housing 21, or more than three electrode assemblies 22 may be provided in the housing 21.
  • the plurality of electrode assemblies 22 are stacked in the height direction (z direction) of the battery cell 2.
  • the electrode assembly 22 includes a first pole piece 221, a second pole piece 222 and a diaphragm 223 disposed between the first pole piece 221 and the second pole piece 222.
  • the first pole piece 221 may be a positive pole piece
  • the second pole piece 222 is a negative pole piece.
  • the first pole piece 221 may also be a negative pole piece
  • the second pole piece 222 is a positive pole piece.
  • the diaphragm 223 is an insulator between the first pole piece 221 and the second pole piece 222.
  • the active material of the positive electrode sheet can be coated on the coating area of the positive electrode sheet, and the active material of the negative electrode sheet can be coated on the coating area of the negative electrode sheet.
  • the part extending from the coating area of the positive electrode sheet is used as the positive electrode tab; the part extending from the coating area of the negative electrode sheet is used as the negative electrode tab.
  • the positive electrode tab is connected to the positive electrode terminal on the cover plate assembly 24 through a positive adapter piece.
  • the negative electrode tab is connected to the negative electrode terminal on the cover plate assembly 24 through a negative electrode adapter piece.
  • the electrode assembly 22 has a wound structure.
  • the first pole piece 221, the diaphragm 223 and the second pole piece 222 are all belt-shaped structures.
  • the first pole piece 221, the diaphragm 223 and the second pole piece 222 are sequentially stacked and wound two times to form the electrode assembly 22.
  • the electrode assembly 22 has a flat shape.
  • the electrode assembly 22 may be directly wound into a flat shape, or may be wound into a hollow cylindrical structure first, and then flattened into a flat shape after the winding.
  • FIG. 8 is a schematic diagram of the outline of the electrode assembly 22.
  • the outer surface of the electrode assembly 22 includes two flat surfaces 224, and the two flat surfaces 224 are arranged oppositely along the height direction (z direction) of the battery cell 2.
  • the electrode assembly 22 has a substantially hexahedral structure, and the flat surface 224 is substantially parallel to the winding axis and is the outer surface with the largest area.
  • the flat surface 224 may be a relatively flat surface, and is not required to be a pure plane.
  • the electrode assembly 22 is a laminated structure, that is, the electrode assembly 22 includes a plurality of first pole pieces 221 and a plurality of second pole pieces 222, and the diaphragm 223 is disposed on the first pole piece 221 and the second pole piece 222. Between slices 222. The first pole piece 221 and the second pole piece 222 are stacked along the height direction (z direction) of the battery cell 2.
  • each battery cell 2 is provided with a single layer or superimposed at least in the height direction. Two floors. Each battery cell 2 can be fixed by bonding. The two ends of the single battery cell 2 in the horizontal plane along the stacking direction can be provided with plates 20', which can limit the single battery cell 2 and protect the battery cells.
  • the body 2 can also function to insulate the battery cell 2 from the box body 11 and the cover body 4 when an insulating material is used.
  • This arrangement can increase the contact area between the bottom of the box body 11 and the thermal conductive cover 3 and the battery cell 2, thereby improving the heat conduction efficiency and improving the efficiency of temperature regulation of the battery assembly 20.
  • the electrode assembly 22 will inevitably expand in the thickness direction of the pole pieces during the charging and discharging process. The expansion of each pole piece is superimposed, and the accumulated expansion in the height direction is greater than other directions.
  • the heat conductive cover 3 can also be used for the battery The direction of the maximum expansion of the monomer 2 is restricted to prevent the battery pack from deforming and further improve the service life of the battery pack.
  • this method can make the posture of the battery cell 2 more stable during the stacking installation process, which is beneficial to the assembly operation.
  • the temperature control component 13 can adopt various installation methods.
  • the temperature control component 13 is provided on the outer bottom surface of the box body 11 to perform heat transfer through the bottom of the box body 11.
  • the box 11 is provided with a second chamber B, the temperature control component 13 is provided in the second chamber B, the second chamber B is located at the bottom of the first chamber A, and the second chamber B is isolated from the first chamber A.
  • This structure separates the first chamber A and the second chamber B.
  • the temperature control component 13 uses liquid for heating or cooling, if liquid leakage occurs in the temperature control component, It will not flow into the first cavity A, so that safety accidents caused by the battery assembly 20 being soaked in water can be avoided, and the safety of the battery pack operation can be improved.
  • FIGS. 10 to 13 are schematic structural diagrams of another embodiment of the battery pack of the present invention.
  • the difference between the battery pack 200 and the battery pack 100 shown in FIGS. 1 to 9 is that each battery cell 2 is stacked in a different manner.
  • the battery cell 2 includes a casing and an electrode assembly provided in the casing, and the battery cell 2 is in a side-standing state.
  • the flat surface 224 of the electrode assembly 22 or the plane surface on which the first pole piece 221 is located is arranged on the side surface of the box body 11, and a plurality of battery cells 2 are superimposed and arranged along the length direction or the width direction of the box body 11.
  • only one layer of battery cells 2 is provided in the height direction of the battery pack.
  • each battery cell 2 to be in contact with the bottom surface of the box 11 and the heat conducting cover 3 at the same time, so that the temperature between the battery cells 2 is more uniform, and the overall working performance of the battery pack is improved; moreover, More battery cells 2 can be arranged in a single layer, and the number of layers in the height direction can be reduced, which is beneficial to heat conduction.
  • FIG. 12 is a front view of the battery pack shown in FIG. 10, and FIG. 13 is a schematic diagram of a single group of battery cells 2, a plurality of battery cells 2 in a single group are sequentially stacked along the extending direction of the heat conducting beam 12.
  • the present invention also provides a method for manufacturing the above-mentioned battery pack, including:
  • the box assembly (1) includes a box (11), a heat-conducting beam (12) and a temperature control component (13), and the heat-conducting beam (12) is arranged on the box ( 11) inside and connected to the box body (11), and the temperature control component (13) is arranged at the bottom area of the box body (11);
  • a thermally conductive cover (3) is provided, the thermally conductive cover (3) is connected to the thermally conductive beam (12) and is located above the thermally conductive beam (12) in the height direction of the battery pack, the thermally conductive cover (3)
  • a first chamber (A) is enclosed between the box body (11) and the heat conducting beam (12);
  • a plurality of battery cells (2) are provided, the plurality of battery cells (2) integrally form a battery assembly (20), the battery assembly (20) is arranged in the first chamber (A) and is located Above the temperature control component (13).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明涉及一种电池包和电池包制造方法及车辆,其中,电池包包括箱体组件(1),箱体组件(1)包括箱体(11)、导热梁(12)和温控部件(13),导热梁(12)设在箱体(11)内且连接于箱体(11),温控部件(13)设在箱体(11)的底部区域;导热盖(3),与导热梁(12)连接,且沿电池包的高度方向位于导热梁(12)上方,导热盖(3)与箱体(11)和导热梁(12)之间围合成第一腔室(A);和多个电池单体(2),整体形成电池组件(20),电池组件(20)设在第一腔室(A)内且位于温控部件(13)上方。此种电池包能够改变温度传导路径,减小电池组件上下区域温差,提高电池组件的温度均匀程度,提高电池包的使用寿命。

Description

电池包和电池包制造方法及车辆
本申请要求享有2019年06月27日提交的名称为“电池包及车辆”的中国专利申请CN201910565343.5的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及电池技术领域,尤其涉及一种电池包和电池包制造方法及车辆。
背景技术
近年来,可充电电池被广泛地应用于为高功率的装置提供动力,例如电动车辆等。可充电电池通过将多个电池单体串联、并联或混联连接以实现较大的容量或功率。
各个电池单体整体形成电池组件,为了带走电池组件工作过程中产生的热量,以使电池包具备良好的工作性能,发明人所知晓的一种现有技术是在箱体底部设置用于冷却的温控系统。
但是,利用此种温控系统对电池组件进行冷却时,由于温控系统只能对电池组件的一侧进行冷却,另一侧完全是依靠电池组件本身进行传热,从而容易在高度方向上使得电池组件形成温度差,电池组件靠近温控系统的一侧冷却速度快,受到温控系统调节的效果较明显;电池组件远离温控系统的一侧冷却速度慢,受到温控系统调节的效果较差。当电池组件两侧长期温差较大,则会影响电池组件的使用寿命。
发明内容
本发明的实施例提供了一种电池包和电池包制造方法及车辆,能够提高电池包的使用寿命。
根据本发明的一方面,提供了一种电池包,包括:
箱体组件,包括箱体、导热梁和温控部件,导热梁设在箱体内且连接于箱体,温控部件设在箱体的底部区域;
导热盖,与导热梁连接,且沿电池包的高度方向位于导热梁上方,导热盖与箱体和导 热梁之间围合成第一腔室;和
多个电池单体,整体形成电池组件,电池组件设在第一腔室内,且位于温控部件上方。
在一些实施例中,电池包还包括阻热层,设在电池组件的底面与箱体的内底面之间,阻热层的导热系数小于导热梁以及导热盖的导热系数。
在一些实施例中,导热盖与导热梁之间采用接触导热。
在一些实施例中,导热盖与电池组件的顶部采用接触导热。
在一些实施例中,导热梁和导热盖中的至少一个与电池组件远离极柱的侧面采用接触导热。
在一些实施例中,导热盖包括主体部和连接于主体部的安装部,主体部覆盖电池组件,安装部与导热梁固定连接。
在一些实施例中,电池包还包括第一导热层,第一导热层设在安装部与导热梁之间。
在一些实施例中,电池包还包括第二导热层,设在主体部和导热梁与电池组件远离极柱的侧面之间。
在一些实施例中,电池包还包括第三导热层,设在主体部与电池组件的顶部之间。
在一些实施例中,电池包还包括盖体,设在导热盖的顶部,与箱体固定且密封。
在一些实施例中,电池单体包括壳体和设在壳体内的电极组件,电极组件包括第一极片、第二极片以及设置在第一极片和第二极片之间的隔膜;
其中,电极组件为卷绕式结构且为扁平状,电极组件的外表面包括两个扁平面;或者,电极组件为叠片式结构,第一极片和第二极片层叠设置;
电极组件的扁平面或者第一极片所在的平面面对于箱体的底面设置,多个电池单体沿电池包的高度方向设有单层或叠加设置至少两层。
在另一些实施例中,电池单体包括壳体和设在壳体内的电极组件,电极组件包括第一极片、第二极片以及设置在第一极片和第二极片之间的隔膜;
其中,电极组件为卷绕式结构且为扁平状,电极组件的外表面包括两个扁平面;或者,电极组件为叠片式结构,第一极片和第二极片层叠设置;
电极组件的扁平面或者第一极片所在的平面面对于箱体的侧面设置,多个电池单体沿电池包的长度方向或宽度方向叠加设置。
在一些实施例中,电池组件在垂直于电池包的高度方向的平面内分为至少两组,且导 热梁与电池组件远离极柱的侧表面采用接触导热,电池组件的分组方向垂直于导热梁的延伸方向。
在一些实施例中,阻热层的厚度与导热梁的高度之间的比值范围为1/5~1/500;和/或,阻热层的导热系数与导热梁或导热盖的导热系数之间的比值范围为0.001~0.5。
在一些实施例中,电池包还包括阻热层,设在电池组件的底部与箱体的内底面之间。
在一些实施例中,第一导热层的厚度与阻热层的厚度之间的比值范围为0.0001~0.1。
在一些实施例中,第一导热层的导热系数与阻热层的导热系数之间的比值范围为20~1000。
在一些实施例中,第二导热层的厚度与阻热层的厚度之间的比值范围为0.0001~0.1。
在一些实施例中,第二导热层的导热系数与阻热层的导热系数之间的比值范围为20~1000。
在一些实施例中,第三导热层的厚度与阻热层的厚度之间的比值范围为0.0001~0.1。
在一些实施例中,第三导热层的导热系数与阻热层的导热系数之间的比值范围为20~1000。
根据本发明的另一方面,提供了一种车辆,包括:
车辆主体;和
上述实施例的电池包,电池包设于车辆主体。
根据本发明的第三方面,提供了一种电池包制造方法,包括:
提供箱体组件,箱体组件包括箱体、导热梁和温控部件,导热梁设在箱体内且连接于箱体,温控部件设在箱体的底部区域;
提供导热盖,导热盖与导热梁连接,且沿电池包的高度方向位于导热梁上方,导热盖与箱体和导热梁之间围合成第一腔室;和
提供多个电池单体,多个电池单体整体形成电池组件,电池组件设在所述第一腔室内,且位于温控部件上方。基于上述技术方案,本发明一个实施例的电池包,通过设置导热梁和导热盖,使温控部件在箱体底部进行温度调节的同时,温度可依次传递至导热梁和导热盖,改变了温控部件对电池组件进行温度调控时的热传导路径,可平衡第一腔室内沿电池包高度方向的温度分布,减小电池组件上下区域的温差,提高电池组件的温度均匀程度,使电池组件放电深度的一致性提高,从而提高电池包的使用寿命。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明电池包的一个实施例的分解示意图;
图2为图1所示电池包的主视图;
图3为图1所示电池包中箱体组件的一个实施例的结构示意图;
图4为图3所示箱体组件的主视图;
图5为图1所示电池包中多个电池单体在高度方向上叠加设置的结构示意图;
图6为图1所示电池包中单个电池单体的结构示意图;
图7为电池包中电池单体的一个实施例的分解示意图;
图8为电池单体采用卷绕式电极组件沿图7中xz平面的剖视图;
图9为电池单体采用叠片式电极组件沿图7中xz平面的剖视图。
图10为本发明电池包的另一个实施例的分解示意图;
图11为图10所示电池包打开盖体的状态示意图;
图12为图10所示电池包的主视图;
图13为图10所示电池包中多个电池单体沿长度方向叠加的结构示意图。
附图标记说明
1、箱体组件;11、箱体;111、第一翻边;112、第一孔;12、导热梁;121、第二孔;13、温控部件;
2、电池单体;20、电池组件;20’、板;21、壳体;22、电极组件;221、第一极片;222、第二极片;223、隔膜;224、扁平面;23、转接片;24、盖板组件;241、盖板;242、第一电极端子;243、第二电极端子;
3、导热盖;31、主体部;32、安装部;321、第三孔;
4、外盖;41、第二翻边;411、第四孔;
5、紧固件;6、阻热层;7、第一导热层;8、第二导热层;9、第三导热层。
具体实施方式
以下详细说明本发明。在以下段落中,更为详细地限定了实施例的不同方面。如此限定的各方面可与任何其他的一个方面或多个方面组合,除非明确指出不可组合。尤其是,被认为是优选的或有利的任何特征可与其他一个或多个被认为是优选的或有利的特征组合。
本发明中出现的“第一”、“第二”等用语仅是为了方便描述,以区分具有相同名称的不同组成部件,并不表示先后或主次关系。
此外,当元件被称作“在”另一元件“上”时,该元件可以直接在所述另一元件上,或者可以间接地在所述另一元件上并且在它们之间插入有一个或更多个中间元件。另外,当元件被称作“连接到”另一元件时,该元件可以直接连接到所述另一元件,或者可以间接地连接到所述另一元件并且在它们之间插入有一个或更多个中间元件。在下文中,同样的附图标记表示同样的元件。
本发明中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多根”指的是两根以上(包括两根)。
为了在以下实施例中清楚地描述各个方位,例如图1中的坐标系对电池包的各个方向进行了定义,x方向表示电池包的长度方向;y方向表示电池包的宽度方向;z方向垂直于x和y方向形成的平面,表示电池包的高度方向,当电池包安装于车辆上时,电池包的高度方向平行于竖直方向,此处提到的竖直方向允许相对于理论竖直方向存在一定角度偏差。基于此种方位定义,采用了“上”、“下”、“顶”、“底”,均相对于高度方向而言。
在一些实施例中,本发明提供了一种车辆,车辆包括车辆主体和电池包,电池包设置于车辆主体中。其中,车辆为新能源汽车,其可以为纯电动汽车,也可以混合动力汽车或增程式汽车,在车辆主体中设置有驱动电机,驱动电机与电池包电连接,由电池包提供电能,驱动电机通过传动机构与车辆主体上的车轮连接,从而驱动汽车行进。优选地,电池包可水平设置于车辆主体的底部,可采用顶部挂接和/或底部支撑的安装方式。
图1为本发明电池包的一个实施例的结构示意图。电池包100包括:箱体组件1、导热盖3和整体形成电池组件20的多个电池单体2。
其中,箱体组件1包括箱体11、导热梁12和温控部件13。箱体11具有开口端,导热梁12固定在箱体11中且连接于箱体11,使得温控部件13与箱体11、导热梁12以及 导热盖3之间能相互热传导,例如,导热梁12可以固定在箱体11的内底面上或者侧壁上。温控部件13设在箱体11的底部区域,可以设在箱体11的内部或外部,或者与箱体11的底板集成,温控部件13用于对电池组件20进行温度调节,例如,为了带走电池组件20工作过程中产生的热量,可以对电池组件20进行冷却,温控部件13包括排布在箱体11底部的冷却管以及用于向冷却管中通入冷却液的循环部件,或者温控部件13包括设在箱体11底部的液体冷却板;或者在低温地区使用电池包时,可以对电池组件20电池单体进行加热,温控部件13包括在排布在箱体11底部的电加热元件等。
导热盖3与导热梁12连接,且沿电池包的高度方向位于导热梁12上方,导热盖3与箱体11的内底面和导热梁12的内侧面之间形成第一腔室A,优选地,第一腔室A的尺寸与各个电池单体2的整体外形尺寸相适配。电池组件20设在第一腔室A内,且位于温控部件13上方,以使温控部件13在电池组件20下方进行调温。
具体地,导热梁12可采用实心梁或空心梁,采用空心梁具备较好的导热效率。导热梁12的截面可以为矩形、梯形或C形等,其上表面可设置为平面,以便将导热盖3固定在导热梁12的上表面,可选地,导热盖3也可固定于导热梁12的侧面。导热梁12可以在自身的延伸方向上设计为连续结构,也可设计为分段结构。
该实施例通过设置导热梁12和导热盖3,使温控部件13在箱体11底部进行温度调节的同时,温度可依次传递至导热梁12和导热盖3,改变了温控部件13对电池组件20进行温度调控的热传导路径,可平衡第一腔室A内沿电池包高度方向的温度分布,减小电池组件20上下区域的温差,提高电池组件20的温度均匀程度,从而使电池组件20放电深度的一致性提高。而且,导热盖3还能约束电池组件20在电池包高度方向上发生膨胀。这两个优点均能提高电池包的使用寿命。
进一步地,如图1所示,电池包还可包括阻热层6,设在电池组件20的底面与箱体11的内底面之间,阻热层6的导热系数小于导热梁12以及导热盖3的导热系数,能够阻碍温控部件13与电池组件20底部之间的热量传递,延缓温控部件13对电池组件20底部的温度调节作用,避免温控部件13通过箱体11的底部承载面直接对电池单体2进行温度调节。需要说明的是,阻热层6并不要求完全隔热,只要能降低热传导效率即可,优选非金属材料。例如,阻热层6可采用玻璃纤维、石棉、岩棉、硅酸盐或者气凝胶毡等。更优地,阻热层6兼具粘接剂功能,以将电池单体2可靠地固定在箱体11内,提高整个电池包的结构强度。
该实施例通过设置阻热层6,能够在温控部件13的温度调节作用到达电池组件20底 部之前,先使温控部件13释放的热量依次传递至导热梁12和导热盖3,使箱体11底部、导热梁12和导热盖3的温度均匀,这样热量可从电池组件20的不同表面基本同时传递至电池组件20,从而进一步缩小电池组件20沿电池包高度方向的温度差异,提高电池包的使用寿命。
如图2所示,电池组件20包括在电池包的高度方向上包括两层电池单体2,阻热层6设在底层电池单体2与箱体11的内底面之间。阻热层6可设置为整体的一块,以充分阻碍温控部件13与电池组件20底部之间的热传递,使热量通过导热梁12和导热盖3快速到达电池组件20顶部。或者,对于电池组件20包括多组电池单体2的结构,每组电池单体2的底面与箱体11的内底面之间均可设置一块阻热层6,可节约阻热层6的材料用量,还能使温控部件的释放的热量通过相邻组电池单体2之间的空间传递至少电池组件20的顶部,减小第一腔室A内上下区域的温度差。
优选地,阻热层6的厚度与导热梁12的高度之间的比值范围为1/5~1/500,例如,1/5、1/10、1/30、1/40、1/50、1/60、1/70、1/80、1/90、1/100、1/200、1/300、1/400或1/500等。
优选地,阻热层6的导热系数与导热梁12或导热盖3的导热系数之间的比值范围为0.001~0.5,例如,0.001、0.01、0.1、0.2、0.3、0.4或0.5等。
在一些实施例中,导热盖3与导热梁12之间可设置预设间隙以通过空气导热。在另一些实施例中,导热盖3与导热梁12之间采用接触导热,可减小导热梁12与导热盖3之间的热传递时间,提高导热效率,缩短温度调节达到稳定状态所需的时间。
例如,如图1所示,导热盖3包括主体部31和连接于主体部31的安装部32,主体部31覆盖电池组件20,例如,电池组件20包括至少两层的电池单体2,主体部31可覆盖最顶层的电池单体2,安装部32与导热梁12固定连接。例如,导热盖3可采用平板结构弯折形成。导热盖3与导热梁12之间可直接接触,或者电池包还包括第一导热层7,第一导热层7设在安装部32与导热梁12之间。第一导热层7可通过填充导热胶形成,导热胶可消除安装部32与导热梁12之间的间隙,与直接接触的方式相比,可提高导热效率,使温控部件13的温度调节作用更快地通过导热梁12、安装部32传递至主体部31,以便热量从主体部31传递至电池组件20的顶面,而且由于电池组件20的顶面导热面积较大,因此能够平衡电池组件20上下区域的温度差。
如图2所示,导热盖3中的主体部31整体相对于安装部32朝向远离电池单体2的方向凸出。此种结构不仅能够降低导热梁12的设置高度,保证导热梁12的强度,而且在采 用紧固件5将安装部32和导热梁12固定时,可避免紧固件5凸出主体部31顶面,可减小电池包的高度。
对于此种结构,在一些实施例中,主体部31同时包覆电池单体2的顶面和部分侧面。如图2所示,电池组件20沿电池包的宽度方向(y向)设置了两组电池单体2,两组电池单体2的极柱相对设置,而且,两组电池单体2之间具有预设间隔以便设置汇流条,为了减小电池包在电池组件20分组方向上占用的空间,导热梁12与电池组件20的侧面采用接触导热,和/或主体部31与电池组件20的侧面采用接触导热,此种方式可减小导热梁12和主体部31与电池组件20侧面之间的热传递时间,提高导热效率,缩短温度调节达到稳定状态所需的时间。
导热盖3和导热梁12与电池组件20之间也可直接接触。或者,如图1所示,电池包还可包括第二导热层8,第二导热层8设在导热盖3和导热梁12与电池组件20的侧面之间。第二导热层8可通过填充导热胶形成,导热胶可消除导热盖3和导热梁12与电池组件20侧面之间的间隙,与直接接触的方式相比,可提高导热效率,使温控部件13的温度调节作用同时通过导热梁12和主体部31传递至电池组件20的侧面,以提高温度调节效率。
可选地,在图2的基础上,为了提高防爆安全性,两组电池单体2各自远离极柱的表面相对设置,导热梁12与电池组件20的侧面保留预设距离,可通过空气导热。
如图2所示,导热盖3的主体部31与电池组件20的顶面之间也可直接接触。或者,如图2所示,电池包还可包括第三导热层9,设在导热盖3与电池组件20的顶面之间,第三导热层9可通过填充导热胶形成。优选地,主体部31可将各电池单体2的顶面全部覆盖,以增加对电池组件20顶部的温度调节能力。
优选地,第一导热层7、第二导热层8和/或第三导热层9与阻热层6的厚度之间的比值范围为0.0001~0.1,例如,0.0001、0.001、0.01或0.1;和/或第一导热层7、第二导热层8和/或第三导热层9与阻热层6的导热系数之间的比值范围为20~1000等,例如,20、50、100、200、300、400、500、600、700、800、900或1000等。
上述实施例中的第一导热层7、第二导热层8和/或第三导热层9可使温控部件13的温度通过导热梁12和导热盖3均匀地分布到第一腔室A的高度空间中,提高电池组件20各处温度的均匀性。此外,各导热层也可兼具粘接剂的功能,以提高各个电池单体2固定的可靠性,提高电池组件20的结构强度。而且,当电池包用于车辆时,车辆在行驶过程中会将振动传递至电池包,第一导热层7、第二导热层8和/或第三导热层9还能起到缓 冲振动的作用,提高电池组件20的工作可靠性。
如图1所示,本发明的电池包还可包括盖体4,设在导热盖3的顶部,扣合在箱体11的开口端,与箱体11固定且密封。盖体4与导热盖3独立设置,可起到封闭箱体11的作用;而且,由于设置了导热盖3,可以降低外盖4的变形,从而提高电池包的密封性。
外盖4的内表面与导热盖3的外表面之间具有预设间隙。通过为电池组件20预留膨胀空间,可防止导热盖3变形后的力传递至外盖4迫使外盖4也发生变形;而且,即使在电池组件20发生膨胀导致导热盖3变形顶到外盖4时,外盖4也能进一步限制导热盖3的变形和电池组件20的膨胀。优选地,对于不同尺寸的电池包,预设间隙的范围为2mm~100mm。
具体地,如图1所示,为了实现盖体4与箱体11的固定,箱体11开口端的四周设有第一翻边111,盖体4的四周设有第二翻边41,第一翻边111与第二翻边41之间可通过粘接或紧固件连接的方式固定。例如,第一翻边111上间隔设有多个第一孔112,第二翻边41上间隔设有多个第四孔411,通过紧固件5穿设第四孔411和第一孔112实现盖体4与箱体11的固定。
为了实现导热盖3与导热梁12的固定,安装部32上沿导热梁12的延伸方向间隔设有多个第三孔321,导热梁12的顶部沿自身延伸方向间隔设有多个第二孔121,将紧固件5穿设第三孔321和第二孔121,可将导热盖3与导热梁12固定。
可选地,也可在导热盖3相对的两端设置延伸部,以通过延伸部与箱体11固定。此种结构可省去盖体4,以简化电池包的结构,并减轻重量。
如图1所示,电池组件20在垂直于电池包高度方向的平面内分为至少两组,分组方向垂直于导热梁12的延伸方向。各组电池单体2可间隔设置。
通过将电池组件20分组设置,当部分电池单体2工作产生较大的热量发生热失控时,能够延缓热热量向其它组的电池单体扩散,提高电池组件20工作的安全性,即使部分电池单体2无法正常使用,也能使电池包降功率使用。而且,分组方向垂直于导热梁12的延伸方向,可使各组电池单体2在沿着导热梁12的延伸方向连续排布,由于导热梁12与相应组的电池单体2具有连续导热区域,可使温控部件13的温度调节作用高效地通过导热梁12传递至电池组件20底部以外的其它区域。可选地,电池组件20的分组方向也可与导热梁12的延伸方向一致。
如图1所示,箱体11呈矩形,导热梁12沿着箱体11的长度方向延伸。此种结构可增加导热梁12的长度,以便将温控部件13的温度调节作用更加高效地通过导热梁12传 递至电池组件20。可选地,导热梁也可沿着箱体11的宽度方向延伸。
如图3和图4所示,箱体11内设有两条沿箱体11长度方向延伸的导热梁12,各个电池单体2位于两条导热梁12之间,导热梁12与箱体11的内侧壁可间隔设置。进一步地,为了优化导热效果,缩短温度调节达到稳定状态所需的时间,也可设置矩形环状的导热梁12,以包围电池组件20的外周,同时导热盖3的安装部32的形状与导热梁12适配。或者,在相邻组电池单体2之间也可设置导热梁12。
如图5所示,为单组电池单体2的结构示意图,图6为单个电池单体的结构示意图,图7为单个电池单体的分解示意图,每个电池单体2均包括:壳体21和设在壳体21内的电极组件22,壳体21可具有六面体形状或其他形状,且具有开口。电极组件22容纳于壳体21内。壳体21的开口覆盖有盖板组件24。盖板组件24包括盖板241和设置于盖板上的两个电极端子,两个电极端子分别为第一电极端子242和第二电极端子243。其中,第一电极端子242可以为正电极端子,第二电极端子243为负电极端子。在其他的实施例中,第一电极端子242还可以为负电极端子,而第二电极端子243为正电极端子。在盖板组件24与电极组件22之间设置有转接片23,电极组件22的极耳通过转接片23与盖板241上的电极端子电连接。本实施例中,转接片23有两个,即分别为正极转接片和负极转接片。
如图7所示,壳体21内设置有两个电极组件22,两个电极组件22沿电池单体2的高度方向(z向)堆叠,其中,电池单体2的高度方向与电池包的高度方向一致。当然,在其他实施例中,在壳体21内也可设置有一个电极组件22,或者在壳体21内设置有三个以上的电极组件22。多个电极组件22沿电池单体2的高度方向(z向)堆叠。
如图8和图9所示,电极组件22包括第一极片221、第二极片222以及设置于所述第一极片221和所述第二极片222之间的隔膜223。其中,第一极片221可以为正极片,第二极片222为负极片。在其他的实施例中,第一极片221还可以为负极片,而第二极片222为正极片。其中,隔膜223是介于第一极片221和第二极片222之间的绝缘体。正极片的活性物质可被涂覆在正极片的涂覆区上,负极片的活性物质可被涂覆到负极片的涂覆区上。由正极片的涂覆区延伸出的部分则作为正极极耳;由负极片的涂覆区延伸出的部分则作为负极极耳。正极极耳通过正极转接片连接于盖板组件24上的正电极端子,同样地,负极极耳通过负极转接片连接于盖板组件24上的负电极端子。
如图8所示,电极组件22为卷绕式结构。其中,第一极片221、隔膜223以及第二极片222均为带状结构,将第一极片221、隔膜223以及第二极片222依次层叠并卷绕两 圈以上形成电极组件22,并且电极组件22呈扁平状。在电极组件22制作时,电极组件22可直接卷绕为扁平状,也可以先卷绕成中空的圆柱形结构,卷绕之后再压平为扁平状。图8为电极组件22的外形轮廓示意图,电极组件22的外表面包括两个扁平面224,两个扁平面224沿电池单体2的高度方向(z向)相对设置。其中,电极组件22大致为六面体结构,扁平面224大致平行于卷绕轴线且为面积最大的外表面。扁平面224可以是相对平整的表面,并不要求是纯平面。
如图9所示,电极组件22为叠片式结构,即电极组件22中包括多个第一极片221以及多个第二极片222,隔膜223设置在第一极片221和第二极片222之间。第一极片221和第二极片222沿着电池单体2的高度方向(z向)层叠设置。
基于上述电池单体2的结构,电极组件22的扁平面224或者第一极片221所在的平面面对于箱体11的底面设置,各个电池单体2沿高度方向设有单层或叠加设置至少两层。各电池单体2之间可通过粘接固定,单组电池单体2在水平面内沿叠加方向的两端可设置板20’,可对单组电池单体2进行限位,并保护电池单体2,在采用绝缘材料时,还可起到将电池单体2与箱体11和盖体4绝缘的作用。
此种排布方式可增大箱体11底部和导热盖3与电池单体2的接触面积,从而提高热传导效率,以提高对电池组件20进行温度调节的效率。而且,电极组件22在充放电过程中不可避免的会沿极片的厚度方向发生膨胀,各个极片的膨胀量叠加,在高度方向上累积的膨胀量大于其它方向,导热盖3也可对电池单体2膨胀量最大的方向进行约束,防止电池包发生变形,进一步提高电池包的使用寿命。另外,此种方式可使电池单体2在叠加安装过程中姿态更稳定,有利于装配操作。
另外,温控部件13可采用多种安装方式。例如,温控部件13设在箱体11的外底面上,以通过箱体11的底部进行热传递。
或者如图4所示,箱体11内设有第二腔室B,温控部件13设在第二腔室B内,第二腔室B位于第一腔室A底部,且第二腔室B与第一腔室A隔离,此种结构将第一腔室A和第二腔室B独立设置,对于温控部件13利用液体进行加热或冷却的结构,若温控部件中发生液体泄漏,也不会流入第一腔体A,可避免电池组件20泡水发生安全事故,提高电池包工作的安全性。
图10至图13为本发明电池包的另一个实施例的结构示意图,该电池包200与图1至图9所示电池包100的区别在于,各个电池单体2的叠加方式不同。
如图10所示和图11所示,电池单体2包括壳体和设在壳体内的电极组件,电池单体 2呈侧立状态。其中,电极组件22的扁平面224或者第一极片221所在的平面面对于箱体11的侧面设置,多个电池单体2沿箱体11的长度方向或宽度方向叠加设置,为了提高多个电池单体2排布的稳定性,优选地,在电池包高度方向上只设置一层电池单体2。此种排布方式可使各个电池单体2与箱体11的底面和导热盖3均同时接触,从而使各个电池单体2之间的温度较为均匀,提升电池包的整体工作性能;而且,在单层内可排布更多的电池单体2,可减少高度方向上的层数,有利于热传导。
图12为图10所示电池包的主视图,图13为单组电池单体2的示意图,单组内多个电池单体2沿着导热梁12的延伸方向依次叠加。
此外,本发明还提供了一种上述电池包制造方法,包括:
提供箱体组件(1),所述箱体组件(1)包括箱体(11)、导热梁(12)和温控部件(13),所述导热梁(12)设在所述箱体(11)内且连接于所述箱体(11),所述温控部件(13)设在所述箱体(11)的底部区域;
提供导热盖(3),所述导热盖(3)与所述导热梁(12)连接,且沿所述电池包的高度方向位于所述导热梁(12)上方,所述导热盖(3)与所述箱体(11)和导热梁(12)之间围合成第一腔室(A);和
提供多个电池单体(2),所述多个电池单体(2)整体形成电池组件(20),所述电池组件(20)设在所述第一腔室(A)内,且位于所述温控部件(13)上方。
以上对本发明所提供的一种电池包及车辆进行了详细介绍。本文中应用了具体的实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (18)

  1. 一种电池包,其中,包括:
    箱体组件(1),包括箱体(11)、导热梁(12)和温控部件(13),所述导热梁(12)设在所述箱体(11)内且连接于所述箱体(11),所述温控部件(13)设在所述箱体(11)的底部区域;
    导热盖(3),与所述导热梁(12)连接,且沿所述电池包的高度方向位于所述导热梁(12)上方,所述导热盖(3)与所述箱体(11)和导热梁(12)之间围合成第一腔室(A);和
    多个电池单体(2),整体形成电池组件(20),所述电池组件(20)设在所述第一腔室(A)内,且位于所述温控部件(13)上方。
  2. 根据权利要求1所述的电池包,其中,还包括阻热层(6),设在所述电池组件(20)的底面与所述箱体(11)的内底面之间,所述阻热层(6)的导热系数小于所述导热梁(12)以及所述导热盖(3)的导热系数。
  3. 根据权利要求1~2任一项所述的电池包,其中,
    所述导热盖(3)与所述导热梁(12)之间采用接触导热。
  4. 根据权利要求1~3任一项所述的电池包,其中,
    所述导热盖(3)与所述电池组件(20)的顶面采用接触导热。
  5. 根据权利要求1~4任一项所述的电池包,其中,所述导热梁(12)和所述导热盖(3)中的至少一个与所述电池组件(20)远离极柱(242;243)的侧面采用接触导热。
  6. 根据权利要求1~5任一项所述的电池包,其中,所述导热盖(3)包括主体部(31)和连接于所述主体部(31)的安装部(32),所述主体部(31)覆盖所述电池组件(20),所述安装部(32)与所述导热梁(12)固定连接;
    所述电池包还包括第一导热层(7),所述第一导热层(7)设在所述安装部(32)与所述导热梁(12)之间。
  7. 根据权利要求1~6任一项所述的电池包,其中,所述导热盖(3)包括主体部(31)和连接于所述主体部(31)的安装部(32),所述主体部(31)覆盖所述电池组件(20),所述安装部(32)与所述导热梁(12)固定连接;
    所述电池包还包括第二导热层(8),设在所述主体部(31)和导热梁(12)与所述 电池组件(20)远离极柱(242;243)的侧面之间。
  8. 根据权利要求1~7任一项所述的电池包,其中,所述导热盖(3)包括主体部(31)和连接于所述主体部(31)的安装部(32),所述主体部(31)覆盖所述电池组件(20),所述安装部(32)与所述导热梁(12)固定连接;
    所述电池包还包括第三导热层(9),设在所述主体部(31)与所述电池组件(20)的顶面之间。
  9. 根据权利要求1~8任一项所述的电池包,其中,还包括盖体(4),设在所述导热盖(3)的顶部,与所述箱体(11)固定且密封。
  10. 根据权利要求1~9任一项所述的电池包,其中,所述电池单体(2)包括壳体(21)和设在所述壳体(21)内的电极组件(22),所述电极组件(22)包括第一极片(221)、第二极片(222)以及设置在所述第一极片(221)和所述第二极片(222)之间的隔膜(223);
    其中,所述电极组件(22)为卷绕式结构且为扁平状,所述电极组件(22)的外表面包括两个扁平面(224);或者,所述电极组件(22)为叠片式结构,所述第一极片(221)和所述第二极片(222)层叠设置;
    所述电极组件(22)的扁平面(224)或者所述第一极片(221)所在的平面面对于所述箱体(11)的底面设置,所述多个电池单体(2)沿所述电池包的高度方向设有单层或叠加设置至少两层。
  11. 根据权利要求1~9任一项所述的电池包,其中,所述电池单体(2)包括壳体(21)和设在所述壳体(21)内的电极组件(22),所述电极组件(22)包括第一极片(221)、第二极片(222)以及设置在所述第一极片(221)和所述第二极片(222)之间的隔膜(223);
    其中,所述电极组件(22)为卷绕式结构且为扁平状,所述电极组件(22)的外表面包括两个扁平面(224);或者,所述电极组件(22)为叠片式结构,所述第一极片(221)和所述第二极片(222)层叠设置;
    所述电极组件(22)的扁平面(224)或者所述第一极片(221)所在的平面面对于所述箱体(11)的侧面设置,所述多个电池单体(2)沿所述电池包的长度方向或宽度方向叠加设置。
  12. 根据权利要求1~11任一项所述的电池包,其中,所述电池组件(20)在垂直于所述电池包的高度方向的平面内分为至少两组,且所述导热梁(12)与所述电池组件(20)远离极柱的侧表面采用接触导热,所述电池组件(20)的分组方向垂直于所述导热梁(12) 的延伸方向。
  13. 根据权利要求2所述的电池包,其中,
    所述阻热层(6)的厚度与所述导热梁(12)的高度之间的比值范围为1/5~1/500;和/或
    所述阻热层(6)的导热系数与所述导热梁(12)或所述导热盖(3)的导热系数之间的比值范围为0.001~0.5。
  14. 根据权利要求6所述的电池包,其中,还包括阻热层(6),设在所述电池组件(20)的底部与所述箱体(11)的内底面之间;
    所述第一导热层(7)的厚度与所述阻热层(6)的厚度之间的比值范围为0.0001~0.1;和/或
    所述第一导热层(7)的导热系数与所述阻热层(6)的导热系数之间的比值范围为20~1000。
  15. 根据权利要求7所述的电池包,其中,还包括阻热层(6),设在所述电池组件(20)的底部与所述箱体(11)的内底面之间;
    所述第二导热层(8)的厚度与所述阻热层(6)的厚度之间的比值范围为0.0001~0.1;和/或
    所述第二导热层(8)的导热系数与所述阻热层(6)的导热系数之间的比值范围为20~1000。
  16. 根据权利要求8所述的电池包,其中,还包括阻热层(6),设在所述电池组件(20)的底部与所述箱体(11)的内底面之间;
    所述第三导热层(9)的厚度与所述阻热层(6)的厚度之间的比值范围为0.0001~0.1;和/或
    所述第三导热层(9)的导热系数与所述阻热层(6)的导热系数之间的比值范围为20~1000。
  17. 一种车辆,其中,包括:
    车辆主体;和
    根据权利要求1~16任一项所述的电池包,所述电池包设于所述车辆主体。
  18. 一种电池包制造方法,包括:
    提供箱体组件(1),所述箱体组件(1)包括箱体(11)、导热梁(12)和温控部件(13),所述导热梁(12)设在所述箱体(11)内且连接于所述箱体(11),所述温控部件(13)设在所述箱体(11)的底部区域;
    提供导热盖(3),所述导热盖(3)与所述导热梁(12)连接,且沿所述电池包的高度方向位于所述导热梁(12)上方,所述导热盖(3)与所述箱体(11)和导热梁(12)之间围合成第一腔室(A);和
    提供多个电池单体(2),所述多个电池单体(2)整体形成电池组件(20),所述电池组件(20)设在所述第一腔室(A)内,且位于所述温控部件(13)上方。
PCT/CN2020/091228 2019-06-27 2020-05-20 电池包和电池包制造方法及车辆 WO2020259135A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/734,553 US11824177B2 (en) 2019-06-27 2020-05-20 Battery pack, method for manufacturing battery pack and vehicle
EP20808001.0A EP3790070B1 (en) 2019-06-27 2020-05-20 Battery pack, method for manufacturing same, and vehicle
EP22152077.8A EP4009429B1 (en) 2019-06-27 2020-05-20 Battery pack, method for manufacturing same, and vehicle
US18/484,720 US20240055695A1 (en) 2019-06-27 2023-10-11 Battery pack, method for manufacturing battery pack and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910565343.5 2019-06-27
CN201910565343.5A CN112151917B (zh) 2019-06-27 2019-06-27 电池包及车辆

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/734,553 A-371-Of-International US11824177B2 (en) 2019-06-27 2020-05-20 Battery pack, method for manufacturing battery pack and vehicle
US18/484,720 Continuation US20240055695A1 (en) 2019-06-27 2023-10-11 Battery pack, method for manufacturing battery pack and vehicle

Publications (1)

Publication Number Publication Date
WO2020259135A1 true WO2020259135A1 (zh) 2020-12-30

Family

ID=73868592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091228 WO2020259135A1 (zh) 2019-06-27 2020-05-20 电池包和电池包制造方法及车辆

Country Status (5)

Country Link
US (2) US11824177B2 (zh)
EP (2) EP4009429B1 (zh)
CN (2) CN114256497B (zh)
HU (1) HUE062505T2 (zh)
WO (1) WO2020259135A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7369874B2 (ja) 2021-07-15 2023-10-26 寧徳時代新能源科技股▲分▼有限公司 電池及び電力消費装置
JP7490812B2 (ja) 2021-07-15 2024-05-27 寧徳時代新能源科技股▲分▼有限公司 電池及び電力消費装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151709A (zh) * 2019-06-27 2020-12-29 宁德时代新能源科技股份有限公司 电池包及车辆
CN114256497B (zh) * 2019-06-27 2024-04-05 宁德时代新能源科技股份有限公司 电池包及车辆
CN115347294A (zh) * 2021-05-14 2022-11-15 中创新航科技股份有限公司 电池包
CN115347295A (zh) * 2021-05-14 2022-11-15 中创新航科技股份有限公司 电池箱体、电池包及车辆
CN113948760B (zh) * 2021-10-26 2022-11-15 傲普(上海)新能源有限公司 一种能耗低温度均匀的储能系统及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047208A (ja) * 2002-07-10 2004-02-12 Ngk Insulators Ltd 集合電池用断熱容器
CN201804918U (zh) * 2010-08-03 2011-04-20 唐菊香 密闭式动力电池组模块
CN106549197A (zh) * 2015-09-18 2017-03-29 北京长城华冠汽车科技股份有限公司 电池模组的温控方法
CN108777336A (zh) * 2018-05-28 2018-11-09 重庆交通大学 锂电池包热管理系统
CN208489245U (zh) * 2018-04-24 2019-02-12 北京新能源汽车股份有限公司 电池包
CN109686894A (zh) * 2019-03-05 2019-04-26 爱驰汽车有限公司 电池包

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010739B4 (de) * 2007-02-27 2009-01-29 Daimler Ag Batterie mit einer Wärmeleitplatte
JP5909371B2 (ja) * 2012-01-18 2016-04-26 株式会社日立製作所 リチウムイオン二次電池
JP2014093241A (ja) * 2012-11-06 2014-05-19 Nissan Motor Co Ltd 電池モジュール
JP2015210894A (ja) * 2014-04-24 2015-11-24 株式会社東芝 組電池モジュール
CN104037373B (zh) * 2014-05-22 2016-06-01 江苏华东锂电技术研究院有限公司 电池组及具有该电池组的电池模块
CN106025126A (zh) * 2016-05-27 2016-10-12 苏州太浦新能源科技有限公司 一种高效热管理汽车动力电池包
JP2017228364A (ja) * 2016-06-20 2017-12-28 株式会社豊田自動織機 電池パック
DE102016212273A1 (de) 2016-07-05 2018-01-11 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher für ein Kraftfahrzeug
CN207504140U (zh) * 2017-11-13 2018-06-15 杭州高特新能源技术有限公司 一种电池包结构
CN207572496U (zh) * 2017-11-17 2018-07-03 宁德时代新能源科技股份有限公司 电池模组
US11189867B2 (en) * 2018-11-16 2021-11-30 Chongqing Jinkang Powertrain New Energy Co., Ltd. Battery packs with integrated cold plates for electric vehicles
CN109802194B (zh) * 2019-01-17 2022-02-01 重庆大学 基于珀尔帖效应和热管冷却的电池包及其热管理方法
CN111987248B (zh) * 2019-05-21 2022-05-13 比亚迪股份有限公司 动力电池包和车辆
CN209963118U (zh) * 2019-06-27 2020-01-17 宁德时代新能源科技股份有限公司 电池包及车辆
CN112151709A (zh) * 2019-06-27 2020-12-29 宁德时代新能源科技股份有限公司 电池包及车辆
CN114256497B (zh) * 2019-06-27 2024-04-05 宁德时代新能源科技股份有限公司 电池包及车辆
CN209963117U (zh) * 2019-06-27 2020-01-17 宁德时代新能源科技股份有限公司 电池包及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047208A (ja) * 2002-07-10 2004-02-12 Ngk Insulators Ltd 集合電池用断熱容器
CN201804918U (zh) * 2010-08-03 2011-04-20 唐菊香 密闭式动力电池组模块
CN106549197A (zh) * 2015-09-18 2017-03-29 北京长城华冠汽车科技股份有限公司 电池模组的温控方法
CN208489245U (zh) * 2018-04-24 2019-02-12 北京新能源汽车股份有限公司 电池包
CN108777336A (zh) * 2018-05-28 2018-11-09 重庆交通大学 锂电池包热管理系统
CN109686894A (zh) * 2019-03-05 2019-04-26 爱驰汽车有限公司 电池包

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3790070A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7369874B2 (ja) 2021-07-15 2023-10-26 寧徳時代新能源科技股▲分▼有限公司 電池及び電力消費装置
JP7490812B2 (ja) 2021-07-15 2024-05-27 寧徳時代新能源科技股▲分▼有限公司 電池及び電力消費装置

Also Published As

Publication number Publication date
US20240055695A1 (en) 2024-02-15
EP3790070A4 (en) 2021-07-14
CN114256497B (zh) 2024-04-05
US11824177B2 (en) 2023-11-21
EP3790070B1 (en) 2022-03-09
EP4009429A1 (en) 2022-06-08
CN112151917B (zh) 2022-01-14
US20210167441A1 (en) 2021-06-03
CN114256497A (zh) 2022-03-29
HUE062505T2 (hu) 2023-11-28
CN112151917A (zh) 2020-12-29
EP4009429B1 (en) 2023-06-21
EP3790070A1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
WO2020259135A1 (zh) 电池包和电池包制造方法及车辆
WO2020259139A1 (zh) 电池包和电池包的制造方法及车辆
CN110637380B (zh) 电源装置和具备其的车辆、蓄电装置以及电源装置用隔板
JP5456371B2 (ja) 車両用のバッテリシステム及びこのバッテリシステムを搭載する車両
WO2018207607A1 (ja) 電源装置及びこれを備える車両、蓄電装置並びに電源装置用セパレータ
TWI445233B (zh) 具有導熱膠之電池組
JP7016842B2 (ja) 電池パック及び車両
JP2010272430A (ja) 車両用のバッテリシステム
KR101757382B1 (ko) 냉각 성능이 개선된 냉각부재와 이를 포함하는 전지모듈
KR101971512B1 (ko) 배터리 모듈 및 그 제조 방법
US11936024B2 (en) Battery pack, method for producing battery pack and vehicle
CN113966565B (zh) 电池包及交通设备
WO2023207798A1 (zh) 热管理部件、电池及用电装置
WO2020140643A1 (zh) 一种电池包及车辆
EP3686948B1 (en) Battery module and battery pack
JP2013038001A (ja) 電池モジュール
CN219321458U (zh) 一种换热板、电池装置
CN213304253U (zh) 一种具有加热功能的电池包箱体
WO2023060658A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023000511A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
CN219321462U (zh) 一种真空隔热电池模组及移动载具
CN216054929U (zh) 一种安全性高的电池组
CN220400865U (zh) 电池包及用电装置
CN220021557U (zh) 电池托盘、电池包箱体及具有其的电池包和车辆
CN217280976U (zh) 一种隔热电池、电池模组、电池包及新能源汽车

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020808001

Country of ref document: EP

Effective date: 20201126

NENP Non-entry into the national phase

Ref country code: DE