WO2021186787A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2021186787A1
WO2021186787A1 PCT/JP2020/041179 JP2020041179W WO2021186787A1 WO 2021186787 A1 WO2021186787 A1 WO 2021186787A1 JP 2020041179 W JP2020041179 W JP 2020041179W WO 2021186787 A1 WO2021186787 A1 WO 2021186787A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
rotary electric
frame
refrigerant
flat plate
Prior art date
Application number
PCT/JP2020/041179
Other languages
English (en)
French (fr)
Inventor
大祐 郡
愼治 杉本
藤井 克彦
摂 土谷
水里 里
能久 千葉
Original Assignee
株式会社日立インダストリアルプロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ filed Critical 株式会社日立インダストリアルプロダクツ
Publication of WO2021186787A1 publication Critical patent/WO2021186787A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the present invention relates to a rotary electric machine provided with a rotor and a stator, and a rotary electric machine system for a dump truck using the same.
  • the cooling method with a simple structure and high cooling performance is the axial flow open type.
  • the refrigerant for cooling the rotary electric machine can be obtained by a self-excited fan arranged on the rotary shaft in the rotary electric machine or an electric blower installed separately from the rotary electric machine.
  • a method of forcibly flowing the refrigerant into the rotating electric machine by an electric blower is adopted.
  • dust such as dust is mixed in the refrigerant. The size and type of dust will vary depending on the environment in which it is applied.
  • the cooling system of the rotary electric machine applied to the dump truck is an axial flow open type forced ventilation system. Since the dump truck has a high vehicle height and the electric blower is arranged at a high position, a refrigerant containing dust such as dirt smoke composed of fine particles flying in the air is blown into the rotary electric machine. Therefore, fine dust is accumulated in the ventilation passage in the rotary electric machine and fixed. Excessive maintenance time is required to remove this dust.
  • Patent Document 1 describes a traction motor for vehicles that effectively removes dust accumulated in an electric motor (rotary electric machine).
  • the traction motor for vehicles of Patent Document 1 cools the inside of the motor by introducing the cooling air taken in by the cooling fan from the outside air intake into the gap between the stator and the rotor and the air hole provided in the rotor. ..
  • the cooling air sent out to the heat radiating fin side is guided toward the exhaust port along the heat radiating fin, and is discharged to the outside from the exhaust port.
  • the bracket on the side where the cooling fan is provided for the stator and rotor is provided with a dust discharge port and a discharge port through which the dust discharge port communicates, and the dust is collected at the entrance of the dust discharge port or inside. Dust and moisture are discharged to the outside of the machine from the discharge port through the dust discharge port (see summary and FIG. 1).
  • the cooling fan is composed of a push-in fan, and the air taken in from the outside air intake is sent into the internal space of the motor (see paragraph 0009).
  • the cooling fan is composed of a push-in fan, and the efficiency of removing dust is improved from the positional relationship between the push-in fan and the dust discharge port and the flow of the refrigerant (air) by the push-in fan.
  • the efficiency of removing dust is improved from the positional relationship between the push-in fan and the dust discharge port and the flow of the refrigerant (air) by the push-in fan.
  • An object of the present invention is to improve the efficiency of removing dust in a rotary electric machine.
  • the rotary electric machine of the present invention A rotor with a rotation axis and A stator facing the rotor in the radial direction and A frame for accommodating the rotor and the stator, and A refrigerant inlet provided on the frame and taking in the refrigerant sent from a blower provided outside the frame into the frame.
  • the rotor has a circular flat plate provided on the rotating shaft.
  • the circular flat plate has the internal space of the frame in the direction of the rotation axis with respect to the first space located on the side opposite to the side of the rotor and the stator with respect to the circular flat plate and the circular flat plate.
  • the frame has a communication portion that communicates the second space and the outside of the frame between the circular flat plate and the rotor and the stator in the direction of the rotation axis.
  • FIGS. 1 to 17 the rotary electric machine and the rotary electric machine system of the dump truck according to the embodiment of the present invention will be described with reference to FIGS. 1 to 17.
  • the same parts are designated by the same reference numerals, and duplicate description will be omitted.
  • FIG. 1 is a cross-sectional view showing an outline of the configuration of a rotary electric machine according to an embodiment of the present invention.
  • the rotation axis direction is a direction along the alternate long and short dash line 5a in FIG. 1, and the alternate long and short dash line 5a represents the center line of the rotating shaft 5.
  • Reference numeral 100 denotes a rotary electric machine mainly used by connecting to an engine. It is a rotary electric machine with an output of several thousand KVA and a rotation speed of several thousand rpm class, and is applied as a power source for large dump trucks. As shown in FIG.
  • the frame 1 has a cylindrical main body portion 1a and a bracket portion (end face portion in the rotation axis direction) 1b provided at an end portion of the main body portion in the rotation axis direction.
  • the main body portion 1a of the frame 1 and the bracket portion 1b may be integrally formed or may be configured as separate members.
  • the frame 1 is provided with a bearing 4 for rotating the rotor 2 on one side in the direction of the rotation axis. In FIG. 1, the other without the bearing 4 is supported by a bearing on the engine side (not shown) connected to the rotary electric machine 100. Instead of the configuration of this embodiment, bearings 4 may be provided on both sides of the rotary electric machine 100 in the rotation axis direction.
  • the rotor 2 is fixed to a rotating shaft (shaft) 5, and a circular flat plate 6 is fixed to the rotating shaft 5 by fastening.
  • a space 7 is provided between the circular flat plate 6 and the frame 1, the rotor 2, and the stator 3.
  • the space 7 is a space formed on both sides of the rotor 2 and the stator 3 in the direction of the rotation axis, on the side where the circular flat plate 6 is provided.
  • the space 7 includes a first space 7a formed between the circular flat plate 6 and the bracket portion 1b, a second space 7b formed between the circular flat plate 6 and the rotor 2 and the stator 3, and a circular flat plate. 6 and a space 7c formed between the inner peripheral surface (inner wall surface) 1aa of the main body portion 1a of the frame 1 are included.
  • the gap 7c communicates the first space 7a and the second space 7b.
  • FIG. 2 is a conceptual diagram showing a state of refrigerant flow in a rotary electric machine according to an embodiment of the present invention.
  • a refrigerant inlet (inflow port) 8 into which air, which is a refrigerant 9, flows into the frame 1 is arranged.
  • the refrigerant inlet 8 is provided so as to introduce the refrigerant into the space 7.
  • the refrigerant 9 is sent into the space 7a via the refrigerant inlet 8 by a blower 301 provided separately from the rotary electric machine 100.
  • the refrigerant inlet 8 may be configured to include a pipe connected to the blower 301 to allow the refrigerant 9 to flow.
  • the refrigerant 9 sent by the blower 301 flows into the space 7a blocked inside the rotary electric machine 100 by the circular flat plate 6. That is, the space 7 is divided into the space 7a and the space 7b by the circular flat plate 6, and the refrigerant 9 is introduced to the side of the space 7a by the blower 301.
  • the space 7b is a space located on the side of the rotor 2 and the stator 3 with respect to the circular flat plate 6, and the space 7a is on the side opposite to the side of the space 7b with respect to the circular flat plate 6, that is, on the side of the bracket portion 7b. It is the space where it is located.
  • the inflowing refrigerant 9 is introduced into a flat space in the rotation axis direction separated by the circular flat plate 6, and the flow in the rotation axis direction is blocked by the circular flat plate 6. Therefore, as shown in FIG. 2, the refrigerant 9 becomes a swirling flow 9a that swirls around the rotating shaft 5 in the frame 1. Since the outflow side (left side in FIG. 2) is open to the atmosphere, the refrigerant 9 swirls in the space 7a between the circular flat plate 6 and the frame 1, and then flows to the outflow side through the space 7b.
  • the refrigerant 9b flowing through the space 7b is also a swirling flow that swirls around the rotating shaft 5.
  • the refrigerant 9 introduced into the space 7a from the outside contains dust 11.
  • the refrigerant 9 swirls to form a swirling flow 9a, so that the dust 11 moves radially outward due to centrifugal force and flows along the inner peripheral surface 1aa (inner wall surface) of the frame 1.
  • a through hole 10 is provided between the circular flat plate 6 and the stator 3.
  • the through hole 10 is provided as a communication portion that communicates the second space 7b with the outside of the frame 1, and constitutes a discharge port for dust 11.
  • the refrigerant (swirl flow) 9a flows separately on the through hole 10 side and the rotor 2 and the stator 3 side.
  • the setting of the size of the through hole 10 will be described in detail later. Since the dust 11 is swung toward the outer peripheral side (inner peripheral surface 1aa side) of the space 7a by the swirling flows 9a and 9b, the dust 11 is discharged from the through hole 10 together with a part of the refrigerant 9c to the outside of the rotary electric machine 100.
  • the dust 11 is efficiently removed from the through hole 10.
  • the dust 11 is removed from the swirling flow 9b flowing through the space 7b, and the refrigerant (clean refrigerant) 12 from which the dust 11 has been removed is supplied to the rotor 2 and the stator 3.
  • the rotary electric machine 100 of the present embodiment houses the rotor 2 having the rotating shaft 5, the stator 3 facing the rotor 2 in the radial direction, and the rotor 2 and the stator 3 inside.
  • the frame 1 is provided with a refrigerant inlet 8 for taking in the refrigerant 9 sent from the blower 301 provided on the frame 1 and provided outside the frame 1 into the frame 1.
  • the rotor 2 has a circular flat plate 6 provided on the rotating shaft 5.
  • the circular flat plate 6 has the internal space of the frame 1 with respect to the first space 7a located on the side opposite to the side of the rotor 2 and the stator 3 with respect to the circular flat plate 6 and the circular flat plate 6.
  • the second space 7b located on the side of the rotor 2 and the stator 3 is divided into the first space 7a and the second space 7b between the outer peripheral portion of the circular flat plate 6 and the inner wall surface 1aa of the frame 1. It is provided so as to form a gap 7c that communicates with. Further, the frame 1 has a communication portion (through hole) 10 for communicating the second space 7b and the outside of the frame 1 between the circular flat plate 6 and the rotor 2 and the stator 3 in the direction of the rotation axis.
  • the circular flat plate 6, the first space 7a, and the refrigerant inlet 10 generate a swirling flow in the refrigerant 9 along the circumferential direction of the inner wall surface 1aa of the first space 7a in the first space 7a.
  • FIG. 3 is a cross-sectional view showing a part of a cross section of a rotor and a stator of a rotary electric machine according to an embodiment of the present invention, which is perpendicular to the rotation axis direction.
  • the cross-sectional view of FIG. 3 shows a 1/10 cross-sectional portion of the rotor 2 and the stator 3 in the circumferential direction.
  • the rotary electric machine 100 of the present embodiment has 10 poles and 90 slots of the stator 3, but the effect of the present invention can be obtained with other poles and slots.
  • the type of the rotary electric machine 100 is a field winding type synchronous rotary electric machine, but even if it is applied to other rotary electric machines such as an induction rotary electric machine and a permanent magnet type rotary electric machine, the dust removing effect in this embodiment can be obtained. can get.
  • the rotor core 13, the stator core 14, the field coil 15, the stator coil 16, the damper bar 18, the rotor wedge 19, and the stator wedge 20 are used. Consists of including. In the radial direction, a gap 17 is formed between the rotor 2 and the stator 3.
  • An axial duct 21 for flowing the clean refrigerant 12 in the direction of the rotation axis is provided on the inner diameter side of the rotor core 13.
  • the axial duct 21 is provided between the field coil 15 and the rotating shaft 5 in the radial direction.
  • a plurality of fixing portions 1c between the stator 2 and the frame 1 are provided at predetermined intervals in the circumferential direction, and a back duct 22 for flowing the clean refrigerant 12 in the rotation axis direction is provided between the plurality of fixing portions 1c.
  • the clean refrigerant 12 diverges into the gap 17, the back duct 22, and the axial duct 21, and is released into the atmosphere while cooling the rotor 2 and the stator 3.
  • the refrigerant 9 containing the dust 11 is separated into the dust 11 and the clean refrigerant 12. As described above, as a factor that can efficiently remove the dust 11, it is important that the refrigerant 9 facilitates the formation of the swirling flow 9a, and the main component for that purpose is the circular flat plate 6.
  • FIG. 17 is a conceptual diagram showing a refrigerant flow in a rotary electric machine in a comparative example with the present invention.
  • the comparative example of FIG. 17 is different from the embodiment of the present invention shown in FIG. 1 in that the circular flat plate 6 is not provided.
  • the inflowing refrigerant 9 flows directly to the rotor 2 and the stator 3 without forming a swirling flow.
  • a part of the refrigerant 9 that has flowed into the space 7 from the refrigerant inlet 8 is diverted and discharged from the through hole 10 to the outside, but most of the dust contained in the refrigerant 9 is transferred to the refrigerant 9d that flows in the central portion in the radial direction.
  • the dust that has reached the rotor 2 and the stator 3 accumulates in the refrigerant flow paths 17, 21 and 22, resulting in a decrease in the refrigerant flow rate or a decrease in the cooling effect, thereby reducing the refrigerant flow rate. It will be in the same state as that.
  • the circular flat plate 6 since the circular flat plate 6 does not function as a fan, the loss can be reduced as compared with the configuration in which a normal fan is provided on the rotating shaft 56. This is the reason why the circular flat plate 6 is adopted.
  • the frame 1 preferably has a cylindrical shape in order to easily generate a swirling flow.
  • FIG. 4 is a diagram showing an example of the configuration of a circular flat plate in a rotary electric machine according to an embodiment of the present invention.
  • the circular flat plate 6 may be formed integrally with the rotating shaft 5, may be fixed to the rotating shaft 5 by shrink fitting as a separate part from the rotating shaft 5, or may be fixed with a bolt 23 as shown in FIG. It may be fastened to the flange portion 5a provided on the rotating shaft 5.
  • the circular flat plate 6 integrally with the rotating shaft 5, the number of parts can be reduced. Further, the circular flat plate 6 can be easily assembled to the rotating shaft 5 by shrink-fitting or fastening the circular flat plate 6 to the rotating shaft 5.
  • FIG. 5 is a diagram according to an embodiment of the present invention, and is a diagram showing the arrangement of through holes in the circumferential direction.
  • a plurality of through holes 10 are provided at regular intervals in the circumferential direction. Thereby, the removal efficiency of the dust 11 can be improved.
  • the through hole 10 may be appropriately arranged according to the environment in which the rotary electric machine 100 is arranged.
  • FIG. 6 is a diagram according to an embodiment of the present invention, and is an explanatory diagram showing the shape of the through hole.
  • the through hole 10 may be formed so as to widen in diameter toward the outside so that the pressure loss can be reduced and the dust 11 can be discharged as easily as possible (FIG. 6 (A)). That is, the through hole 10 may be formed so as to expand in diameter toward the outside in the radial direction. Further, the through hole 10 may be provided with a curved portion 24 at the entrance portion on the inner wall surface 1aa side to reduce the pressure loss (FIG. 6 (B)).
  • FIG. 7 is a conceptual diagram illustrating the ventilation resistance of the rotary electric machine according to the embodiment of the present invention in an electric circuit manner.
  • the rotary electric machine 100 has a plurality of main flow paths through which the refrigerant 9 flows, the area of the flow path (first flow path) of the gap 7c is Sa, and the inner wall surface 1aa of the frame 1 is set.
  • the area of the flow path (second flow path) between the stator coil end 25 and the stator coil end 25 is Sb, and the area of the flow path (third flow path) between the field coil end 26 and the stator coil end 25 is Sc.
  • the area of the flow path (fourth flow path) between the field coil end 26 and the rotating shaft 5 is Sd, and the area of the flow path (fifth flow path) of the through hole 10 is Se.
  • the flow path areas Sb, Sc, Sd, and Se are the flow path cross-sectional areas perpendicular to the flow direction of the refrigerant. Further, the first flow path constituting the flow path area Sa and the third flow path forming the flow path area Sc are configured as one flow path continuous in the circumferential direction, and the other second flow path and the fourth flow path. The flow path and the fifth flow path are each divided into a plurality of flow paths in the circumferential direction. In this case, the flow path areas Sb, Sd, and Se of the second flow path, the fourth flow path, and the fifth flow path are the total cross-sectional areas of the plurality of divided flow paths.
  • the second flow path between the inner wall surface 1aa of the frame 1 and the stator coil end 25 has the narrowest flow path area in the back duct 22, and the area Sb of the second flow path is the flow path of the back duct 22.
  • the area shall be representative.
  • the third flow path between the field coil end 26 and the stator coil end 25 has the narrowest flow path area in the gap 17, and the area Sc of the third flow path is represented by the flow path area of the gap 17.
  • the fourth flow path between the field coil end 26 and the rotating shaft 5 has the narrowest flow path area in the axial duct 21, and the area Sd of the fourth flow path is represented by the flow path area of the axial duct 21.
  • the flow path portion through which the refrigerant 9 flowing into the rotary electric machine 100 forms a swirling flow and first passes through is the first flow path having the flow path area Sa. That is, the size of Sa determines the flow rate flowing downstream from Sa. Therefore, it is preferable that the combined flow path area of each flow path area Sb, Sc, Sd, Se provided on the downstream side of Sa is smaller than Sa. On the contrary, even if the combined flow path area of the flow path areas Sb, Sc, Sd, and Se on the downstream side of Sa is made larger, the flow rate does not exceed the flow rate that has passed through Sa.
  • the combined flow path area of the flow path areas Sb, Sc, Sd, and Se is made smaller than Sa, and the flow velocity of the refrigerant 9 is increased to increase the heat transfer coefficient. It is more effective to increase.
  • the rotor 2 and the stator 3 are provided with flow paths 17, 21, 22 in which the refrigerant flows in the direction of the rotation axis, respectively, and are formed between the outer peripheral portion of the circular flat plate 6 and the frame 1.
  • the area Sa of the gap 7c to be formed is larger than the areas Sc, Sd, Sc of the flow paths 17, 21 and 22, provided in the rotor 2 and the stator 3.
  • P static pressure
  • density
  • loss coefficient
  • v flow velocity
  • Q flow rate
  • a area flow path area
  • R flow path resistance
  • the static pressure P can be expressed by the product of the square of the flow rate Q and the flow path resistance.
  • the flow path resistance R is determined by the flow path area A area.
  • FIG. 7 shows an electric circuit in which each flow path area shown in FIG. 1 is replaced with a flow path resistance.
  • R F is illustrated as an electric circuit with reference to R A , as shown in FIG. 7, R A and R F are connected in series.
  • the flow path resistance is such that the combined flow path area Sf of each flow path area Sb, Sc, Sd, Se provided on the downstream side of the flow path area Sa is smaller than Sa (Sa> Sf). Since the flow path area is dominant, the combined flow path resistance R F is larger than the flow path resistance R A when the flow path area is replaced with the flow path resistance. That is, the relationship is R A ⁇ R F.
  • the refrigerant 9 that has passed through Sa in FIG. 1 is split into Sb, Sc, Sd, and Se. Dust 11 flows through Se.
  • the clean refrigerant 12 flows through Sb, Sc and Sd to cool the rotor 2 and the stator 3.
  • the flow path area Se is extremely larger than the combined flow path resistance RG of the flow path areas Sb, Sc and Sd, the flow rate of the clean refrigerant 12 flowing to Sb, Sc and Sd is reduced, and the rotor This will reduce the cooling performance of 2 and the stator 3. In other words, the efficiency of removing the dust 11 is high, but the flow rate of the refrigerant for cooling is low.
  • the flow path area Se is smaller than the combined flow path resistance RG of Sb, Sc and Sd.
  • the other flow path resistors R B , R C , and R D are all connected in parallel with respect to R E , so that the flow path resistors R B , R
  • the combined flow path resistance R G of C and R D is expressed by the following equation.
  • R G is illustrated as an electric circuit with reference to R E , as shown in FIG. 7, R E and R G are connected in series. If the relationship in which the flow path area Se is smaller than the combined flow path area of each flow path area Sb, Sc, and Sd provided on the downstream side is replaced with the flow path resistance, the relationship is R E > R G. Since the flow path area is dominant in the flow path resistance, Se ⁇ Sg can be replaced with the relationship between the combined flow path area Sg and the flow path area Se of the flow path areas Sb, Sc and Sd constituting the RG. It becomes the relationship of.
  • the clean refrigerant 12 passing through Sb flows into the back duct 22
  • the clean refrigerant 12 passing through Sc flows into the gap 17, and the clean refrigerant 12 passing through Sd flows into the axial duct 21. ..
  • the flows are in series, so the flow path resistance of each flow path is determined by each flow path represented by each flow path area Sb, Sc and Sd.
  • resistors R B , R C , R D Replaced by resistors R B , R C , R D.
  • R B the sum of the flow path resistance between the frame 1 and the stator coil end 25 and the flow path resistance of the rear duct 22 is R B.
  • the flow path resistance of the back duct 22 can be treated as R B.
  • L1 and L2 preferably have a relationship of L1 ⁇ L2. Since L1 and L2 have a relationship of L1 ⁇ L2, the dust 11 can be efficiently removed. That is, it is preferable that the through holes 10 are arranged as close as possible to the circular flat plate 6 in the direction of the rotation axis. Immediately after passing through the circular flat plate 6 (void 7), the refrigerant 9 (9b) exerts a stronger turning force and is therefore effective in removing the dust 11.
  • the turning force of the refrigerant 9 (9b) becomes weaker as compared with the case where the through hole 10 is provided in the immediate vicinity of the circular flat plate 6, and each flow path portion.
  • the dust 11 is separated from the inner wall surface of the frame 1 provided with the through hole 10, so that the efficiency of removing the dust 11 is lowered.
  • the through hole (communication portion) 10 is arranged at a position closer to the circular flat plate 6 than the rotor 2 and the stator 3 in the rotation axis direction.
  • a convex portion 28 protruding inward in the radial direction from the inner wall surface 1aa in the immediate vicinity of the downstream side of the through hole 10.
  • the frame 1 has a convex portion 28 protruding inward in the radial direction from the inner wall surface 1aa of the frame 1 on the downstream side of the through hole (communication portion) 10.
  • the convex portion 28 is preferably formed so as to project inward in the radial direction from the opening of the through hole 10 on the inner wall surface 1aa.
  • the position of the convex portion 28 in the rotation axis direction is also preferably provided in the immediate vicinity of the downstream side of the through hole 10, and the effect of the convex portion 28 becomes smaller as the distance from the through hole 10 increases.
  • the convex portion 28 may be attached to the frame 1 as a separate component, or may be integrally formed with the frame 1. In either case, the convex portion 28 is preferably provided on the entire circumference of the inner wall surface (inner diameter) 1aa of the frame 1.
  • FIG. 8 is a cross-sectional view showing a modified example in which the arrangement of the through holes according to the embodiment of the present invention is changed.
  • FIG. 9 is a diagram showing the arrangement of through holes in the modified example of FIG. 8 in a state where the cylindrical frame is developed in a plane.
  • FIG. 10 is a diagram showing a modified example in which the arrangement of the through holes in FIG. 9 is further changed.
  • the through holes 10 can be arranged in two rows or more in the axial direction. By arranging the through holes 10 in a plurality of rows, the efficiency of removing the dust 11 may be improved. In this case, the number of rows may be appropriately determined in consideration of the amount of dust 11 to be removed and the length of the rotary electric machine 100 in the rotation axis direction.
  • FIG. 9 shows an example in which the through holes 10 in each row are arranged in a straight line in the direction of the rotation axis when the through holes 10 are arranged in two rows or more.
  • FIG. 10 shows an example in which the through holes 10 in each row are arranged in a staggered arrangement in the circumferential direction or the rotation axis direction when the through holes 10 are arranged in two rows or more.
  • the staggered arrangement is effective.
  • L1 and L2 are set with reference to the through holes 10 arranged on the downstream side as shown in FIG. 8, and L1 ⁇ It is preferable to arrange a plurality of rows of through holes 10 so as to have an L2 relationship. That is, the length in the rotation axis direction between the circular flat plate 6 and the through hole 10 on the most downstream side is L1, and the length in the rotation axis direction between the through hole 10 on the most downstream side and the stator coil end 25 is L2. As a result, a plurality of rows of through holes 10 are arranged so as to have a relationship of L1 ⁇ L2.
  • FIG. 11 is a cross-sectional view showing a modified example in which a dust pool is provided inside the through hole according to the embodiment of the present invention.
  • a dust reservoir 27 is provided at a portion of the frame 1 where the through hole 10 is arranged.
  • the dust reservoir 27 is provided so as to project radially outward from the other parts of the frame 1, and forms a space recessed radially outward from the inner wall surface 1aa on the radial inside. That is, in this modified example, a recess 27 that is recessed outward in the radial direction is formed at a portion of the inner wall surface 1aa of the frame 1 where the through hole (communication portion) 10 opens.
  • the dust reservoir 27 may be arranged according to the number of through holes 10, or may be provided as a full-circumferential groove on the inner wall surface (inner diameter) 1aa of the frame 1 according to the arrangement position of the through holes 10.
  • FIG. 12 is a cross-sectional view showing a modified example in which the position of the refrigerant intake according to the embodiment of the present invention is changed.
  • the refrigerant intake 8 is arranged at a position perpendicular to the rotating shaft 5, and the refrigerant 9 is forcibly flowed in the radial direction.
  • the refrigerant intake port 8 is provided in the direction parallel to the rotating shaft 5.
  • the refrigerant intake 8 and the circular flat plate 6 overlap on this virtual plane. It is important to be placed in.
  • the refrigerant inlet 8 is arranged so as to face the circular flat plate 6 in the direction of the rotation axis.
  • the refrigerant intake 8 is projected in the direction of the rotation axis, the refrigerant intake 8 is configured to be projected on the plate surface of the circular flat plate 6.
  • the reason for this is that when the refrigerant is arranged at a position facing the gap 7c, it becomes difficult to be shielded by the circular flat plate 6 due to the influence of dynamic pressure, and the refrigerant 9 flows linearly to the outflow side.
  • FIG. 13 is a cross-sectional view showing a modified example in which the position of the refrigerant intake according to the embodiment of the present invention is changed.
  • the inflow direction (streamline) of the refrigerant 9 flowing in from the refrigerant intake 8 is eccentric with respect to the center (axis center) 5a of the rotating shaft 5, that is, the radial center of the space 7a. It is provided so that it can be used. In order to effectively remove the dust 11, it is important to facilitate the generation of swirling flows 9a and 9b. Therefore, the refrigerant intake port 8 is directed to the inflow direction (streamline) of the refrigerant 9 flowing in from the refrigerant intake port 8. Is arranged so as to direct the position on the outer side in the radial direction from the center 5a of the rotary electric machine 100.
  • the refrigerant intake 8 is arranged so that the inflow direction of the refrigerant flowing from the refrigerant intake 8 into the first space 7a points radially outward with respect to the axis of the rotating shaft 5.
  • the refrigerant 9 easily flows along the inner wall surface 1aa of the frame 1 along the circumferential direction, so that a swirling flow is likely to occur.
  • this embodiment is more effective when the rotation direction of the rotary electric machine is one direction as in the generator.
  • the flow direction of the refrigerant 9 and the rotation direction of the circular flat plate 6 are the same.
  • the refrigerant intake port 8 is preferably arranged on the left side which is line-symmetric with respect to the line segment LA.
  • FIG. 14 is a perspective view showing a modified example of the circular flat plate according to the embodiment of the present invention.
  • FIG. 14 shows an external view of the circular flat plate 6.
  • a plurality of convex portions 29 are provided on the surface 6a perpendicular to the rotation axis direction of the circular flat plate 6. That is, in this modified example, the circular flat plate 6 has a convex portion 29 protruding in the rotation axis direction on the end surface in the rotation axis direction.
  • the convex portion 29 By providing the convex portion 29, the refrigerant 9 flowing in from the refrigerant intake port 8 is likely to generate a swirling flow due to the convex portion 29.
  • the convex portion 29 has a circular shape in FIG. 14, the same effect can be obtained with other shapes.
  • FIG. 15 is a perspective view showing a modified example of the circular flat plate according to the embodiment of the present invention.
  • FIG. 15 shows an external view of the circular flat plate 6.
  • a plurality of recesses 30 are provided on the outer peripheral surface 6b of the circular flat plate 6. That is, in this modified example, the circular flat plate 6 has a recess 30 recessed inward in the radial direction on the outer peripheral surface 6b.
  • the reason why the member 6 that shields the flow of the refrigerant 9 in the rotation axis direction is a circular flat plate is to suppress the loss as much as possible.
  • the circular flat plate 6 does not have a fan function, it is inevitable that a fluid friction loss will occur due to rotation.
  • the fluid friction loss is generated by the contact surface between the fluid (refrigerant 9) and the circular flat plate 6 which is a rotating body.
  • the recess 30 on the outer peripheral surface 6b of the circular flat plate 6 as in this modified example, the contact area with the fluid is reduced, so that the fluid friction loss can be reduced.
  • the concave portion 30 has a circular shape in FIG. 15, the same effect can be obtained with other shapes.
  • FIG. 16 is a schematic configuration diagram of a rotary electric system of a dump truck according to an embodiment of the present invention.
  • FIG. 16 shows an example in which the above-mentioned rotary electric machine 100 is applied to a rotary electric machine system for a dump truck.
  • the rotary electric machine 100 is directly connected to the engine 200 via the coupling 31.
  • electric power is supplied from the rotary electric machine (rotary electric machine for power generation) 100 to the power converters 201a and 201b.
  • the power converter 201a supplies electric power to the rotary electric machine 300 for driving the dump truck.
  • the electric power converter 201b supplies electric power to an auxiliary machine such as a blower 301 that flows a refrigerant 9 for cooling the rotary electric machine 100.
  • the rotary electric machine system for the dump truck of this embodiment includes a rotary electric machine for power generation, a rotary electric machine for driving 300, an engine 200, a power converter 201a, and a blower 301 for cooling the rotary electric machine for power generation, and the engine 200.
  • a rotary electric machine for driving 300 for generating electric power
  • an engine 200 for generating electric power
  • the electric power generated by the electric power generation rotary electric machine 100 is supplied to the drive rotary electric machine 300 via the power converter 201a.
  • the power generation rotary electric machine is composed of the power generation rotary electric machine 100 according to the present invention described above.
  • the refrigerant that cools the motor is not a self-excited fan, but a blower 301. Therefore, even when the motor is stopped, it can be operated without stopping the cooling function. Therefore, even in the case of an electric motor having an extremely high heat generation density, the cooling function can be used for the phenomenon that the temperature of the electric motor continues to rise for a certain period of time according to the thermal time constant when the electric motor is stopped. Further, from the viewpoint of improving efficiency, since the self-excited fan is not used, the loss due to the self-excited fan does not occur, and the decrease in the efficiency of the motor can be suppressed. Further, regarding dust removal, in the present embodiment, the dust (dust) can be efficiently guided to the discharge port in the configuration using the push-in fan, so that the dust removal effect is improved.
  • the present invention is not limited to the above-described examples and modifications thereof, and includes various modifications.
  • the above-described examples and modifications thereof have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations.
  • the configuration of each modification can be applied to the embodiment in combination with other modification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本発明の目的は、回転電機における粉塵の除去効率を向上することにある。回転電機100は、回転子2及び固定子3を内部に収容するフレーム1と、フレーム1に設けられ送風機301から送られる冷媒9をフレーム1の内部に取り入れる冷媒取入口8と、を備える。回転子2は、回転軸5に設けられた円形平板6を有する。円形平板6は、フレーム1の内部空間を、円形平板6に対して回転子2の側とは反対側に位置する第1空間7aと、円形平板6に対して回転子2の側に位置する第2空間7bと、に区分すると共に、円形平板6の外周部とフレーム1の内壁面1aaとの間に空隙7cを形成するように設けられる。さらにフレーム1は、回転軸方向における円形平板6と回転子2及び固定子3との間に、第2空間7bとフレーム1の外部とを連通する連通部10を有する。

Description

回転電機
 本発明は、回転子と固定子とを備えた回転電機、及びこれを用いたダンプトラックの回転電機システムに関する。
 近年、CO2の排出量を抑えるために、回転電機の高効率化が図られている。また、自動車や鉄道等のビークル系に適用される回転電機に関しては、高効率化の他に小型・軽量化も求められている。回転電機の軽量化を図ることで、車体自体を軽くすることができることから、燃費が向上し、結果的に自動車や鉄道システムとしての効率を向上することに繋がっている。
 一般的に、小型・軽量化と回転電機の効率とはトレードオフの関係になるため、小型・軽量化を優先させれば回転電機の効率は低下する。即ち、損失が大きくなることを意味している。つまり、出力密度の増加と同時に発熱密度も増加することになる。このため、小型・軽量化を優先して回転電機として成立させるためには、冷却性能の向上が必須となる。
 回転電機の冷却方式には様々な方式があるが、構造が単純で冷却性能が高い冷却方式は軸流開放型である。軸流開放型の冷却方式の構造は、回転電機の内部と外部(外気) とがダイレクトに繋がっている。回転電機を冷却するための冷媒は回転電機内の回転軸に配置される自励ファンや、回転電機とは別に設置される電動送風機により得ることができる。
特に、回転電機が停止中でも冷却する必要がある場合等は電動送風機により、強制的に冷媒を回転電機内に流す方法(強制通風方式)が採用される。軸流開放型での強制通風方式では、外部の冷媒を回転電機内に送り込むため、冷媒中に粉塵等のゴミが混入することになる。粉塵の大きさや種類は適用される環境によって変わってくる。
 ビークル系に適用される回転電機のうち、特に過酷環境下で使用されるものとして大型のダンプトラックが挙げられる。ダンプトラックに適用される回転電機の冷却方式は上述したように、軸流開放型の強制通風方式である。ダンプトラックは車高が高く、電動送風機が高い位置に配置されるため、宙に舞った微細な粒子からなる土煙等の粉塵を含む冷媒が回転電機内に送風されることになる。このため、回転電機内に微細な粉塵が、回転電機内の通風路に堆積し、固着する。この粉塵を除去するために、過大なメンテンナス時間を要している。
 特開2004-364466号公報(特許文献1)には、電動機(回転電機)内に堆積する塵埃(粉塵)を効果的に除去するようにした車両用主電動機が記載されている。特許文献1の車両用主電動機は、外気取入口から冷却ファンによって取り入れた冷却風を、固定子と回転子との間の空隙、回転子に設けられた風穴に導入し、電動機内を冷却する。放熱フィン側に送り出された冷却風は放熱フィンに沿って排気口の方向に導かれ、排気口から外部に排出される。固定子及び回転子に対して冷却ファンが設けられた側のブラケットには塵埃排出口とこの塵埃排出口が連通する排出口とが設けられており、塵埃排出口の入り口部分や内部に溜まった塵埃や水分は塵埃排出口を通って排出口から機外に排出される(要約及び図1参照)。特許文献1の車両用主電動機は、冷却ファンが押し込みファンで構成され、外気取入口から取り入れた空気を電動機内部空間に送り込んでいる(段落0009参照)。
特開2004-364466号公報
 特許文献1の車両用主電動機は、冷却ファンが押し込みファンで構成され、押し込みファンと塵埃排出口との位置関係、及び押し込みファンによる冷媒(空気)の流れ方から、塵埃を除去する効率の向上に限界がある。
 本発明の目的は、回転電機における粉塵の除去効率を向上することにある。
 上記目的を達成するために、本発明の回転電機は、
 回転軸を有する回転子と、
 径方向において前記回転子と対向する固定子と、
 前記回転子及び前記固定子を内部に収容するフレームと、
 前記フレームに設けられ、当該フレームの外部に設けられた送風機から送られる冷媒を当該フレームの内部に取り入れる冷媒取入口と、
を備え、
 前記回転子は、前記回転軸に設けられた円形平板を有し、
 前記円形平板は、回転軸方向において、前記フレームの内部空間を、当該円形平板に対して前記回転子及び前記固定子の側とは反対側に位置する第1空間と、当該円形平板に対して前記回転子及び前記固定子の側に位置する第2空間と、に区分すると共に、当該円形平板の外周部と前記フレームとの間に前記第1空間と前記第2空間とを連通する空隙を形成するように設けられ、
 前記フレームは、回転軸方向における前記円形平板と前記回転子及び前記固定子との間に、前記第2空間と当該フレームの外部とを連通する連通部を有する。
 本発明によれば、軸流開放型冷却構造による強制通風方式を適用した際に、回転電機内に流入する粉塵を低減できる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る回転電機の構成の概略を示す断面図である。 本発明の一実施例に係る回転電機内の冷媒の流れの状態を示す概念図である。 本発明の一実施例に係る回転電機の回転子及び固定子の、回転軸方向に垂直な断面の一部を示す断面図である。 本発明の一実施例に係る回転電機における円形平板の構成の一例を示す図である。 本発明の一実施例に係る図であり、貫通孔の周方向の配置を示す図である。 本発明の一実施例に係る図であり、貫通孔の形状を示す説明図である。 本発明の一実施例に係る回転電機の通風抵抗を電気回路的に図示した概念図である。 本発明の一実施例に係る貫通孔の配置を変更した変更例を示す断面図である。 図8の変更例について、円筒状のフレームを平面状に展開した状態で、貫通孔の配置を示す図である。 図9の貫通孔の配置を更に変更した変更例を示す図である。 本発明の一実施例に係る貫通孔の内側に粉塵溜まりを設けた変更例を示す断面図である。 本発明の一実施例に係る冷媒取入口の位置を変更した変更例を示す断面図である。 本発明の一実施例に係る冷媒取入口の位置を変更した変更例を示す断面図である。 本発明の一実施例に係る円形平板の変更例を示す斜視図である。 本発明の一実施例に係る円形平板の変更例を示す斜視図である。 本発明の一実施例に係るダンプトラックの回転電機システムの概略構成図である。 本発明との比較例における回転電機内の冷媒流れを示す概念図である。
 以下、本発明の一実施例に係る回転電機及びダンプトラックの回転電機システムについて、図1~17を用いて説明する。各図において同一部分には同じ符号を付し、重複する説明は省略する。
 図1は、本発明の一実施例に係る回転電機の構成の概略を示す断面図である。以下の説明において、回転軸5に沿う方向を回転軸方向、又は単に軸方向と呼んで説明する。この回転軸方向は、図1において一点鎖線5aに沿う方向であり、この一点鎖線5aは回転軸5の中心線を表している。
  100は、主にエンジンと接続して使用する回転電機である。出力は数千KVA、回転速度は数千rpmクラスの回転電機であり、大型ダンプトラックの電源として適用される。
図1に示すように、フレーム1内に、回転子2及び固定子3が配置される。フレーム1は円筒状の本体部分1aと、本体部分の回転軸方向の端部に設けられるブラケット部(回転軸方向の端面部)1bとを有する。フレーム1の本体部分1aとブラケット部1bとは一体に形成されてもよいし、別部材として構成されてもよい。フレーム1には、回転軸方向の一方の側に、回転子2が回転するための軸受け4が設けてある。図1において、軸受け4が無い他方は、この回転電機100に接続される図示しないエンジン側の軸受けで支持される。本実施例の構成に替えて、回転電機100の回転軸方向の両側に軸受け4を設けてもよい。回転子2は回転軸(シャフト)5に固定されており、更に回転軸5には円形平板6が締結により固定されている。円形平板6とフレーム1、回転子2及び固定子3との間には空間7が設けられる。
 空間7は、回転軸方向において、回転子2及び固定子3の両側に形成される空間のうち、円形平板6が設けられる側の空間である。空間7は、円形平板6とブラケット部1bとの間に形成される第1空間7aと、円形平板6と回転子2及び固定子3との間に形成される第2空間7bと、円形平板6とフレーム1の本体部分1aの内周面(内壁面)1aaとの間に形成される空隙7cと、を含んで構成される。空隙7cは第1空間7aと第2空間7bとを連通する。
 次に、図2を用いて、冷媒の流れについて説明する。図2は、本発明の一実施例に係る回転電機内の冷媒の流れの状態を示す概念図である。
 フレーム1には冷媒9である空気が流入する冷媒取入口(流入口)8が配置される。冷媒取入口8は空間7に冷媒を導入するように設けられる。冷媒9は、回転電機100とは別に設けられる送風機301により、冷媒取入口8を介して空間7aに送り込まれる。なお冷媒取入口8は、送風機301に接続されて冷媒9を流す配管を含む構成であってもよい。
 送風機301により送り込まれる冷媒9は、円形平板6により回転電機100の内部を遮られた空間7aに流れる。すなわち空間7は、円形平板6により空間7aと空間7bとに分けられており、冷媒9は送風機301により空間7aの側に導入される。空間7bは円形平板6に対して回転子2及び固定子3の側に位置する空間であり、空間7aは円形平板6に対して空間7bの側とは反対側、すなわちブラケット部7bの側に位置する空間である。
 流入した冷媒9は円形平板6により区切られた回転軸方向に扁平な空間に導入され、円形平板6により回転軸方向への流れが遮られる。このため、図2に示すように、冷媒9はフレーム1内で回転軸5の周りを旋回する旋回流9aとなる。流出側(図2の左側)は大気に開放されるため、冷媒9は円形平板6とフレーム1との間の空間7aを旋回した後、空間7bを介して流出側へ流れる。空間7bを流れる冷媒9bも回転軸5の周りを旋回する旋回流となっている。外部から空間7aに導入される冷媒9は粉塵11を含んでいる。
冷媒9は旋回して旋回流9aを形成することで、粉塵11が遠心力により径方向外側に移動し、フレーム1の内周面1aa(内壁面)に沿って流れる。
 円形平板6と固定子3との間には貫通孔10が設けられている。貫通孔10は、第2空間7bとフレーム1の外部とを連通する連通部として設けられ、粉塵11の排出口を構成する。この貫通孔10の大きさを適切に設定することで、冷媒(旋回流)9aは貫通孔10側と回転子2及び固定子3側とに分かれて流れる。貫通孔10の大きさの設定については、後で詳細に説明する。粉塵11は旋回流9a,9bにより空間7aの外周側(内周面1aa側)に振られていることから、貫通孔10から一部の冷媒9cと共に回転電機100の外へ排出される。このため、粉塵11は貫通孔10から効率的に除去される。これにより、空間7bを流れる旋回流9bからは粉塵11が除去され、回転子2及び固定子3には粉塵11が除去された冷媒(クリーン冷媒)12が供給される。
 上述した様に、本実施例の回転電機100は、回転軸5を有する回転子2と、径方向において回転子2と対向する固定子3と、回転子2及び固定子3を内部に収容するフレーム1と、フレーム1に設けられフレーム1の外部に設けられた送風機301から送られる冷媒9をフレーム1の内部に取り入れる冷媒取入口8と、を備える。回転子2は、回転軸5に設けられた円形平板6を有する。円形平板6は、回転軸方向において、フレーム1の内部空間を、円形平板6に対して回転子2及び固定子3の側とは反対側に位置する第1空間7aと、円形平板6に対して回転子2及び固定子3の側に位置する第2空間7bと、に区分すると共に、円形平板6の外周部とフレーム1の内壁面1aaとの間に第1空間7aと第2空間7bとを連通する空隙7cを形成するように設けられる。さらにフレーム1は、回転軸方向における円形平板6と回転子2及び固定子3との間に、第2空間7bとフレーム1の外部とを連通する連通部(貫通孔)10を有する。
 この場合、円形平板6、第1空間7a及び冷媒取入口10は、冷媒9に、第1空間7aに第1空間7aの内壁面1aaの周方向に沿って流れる旋回流を生じさせる。
 図3は、本発明の一実施例に係る回転電機の回転子及び固定子の、回転軸方向に垂直な断面の一部を示す断面図である。図3の断面図は、回転子2及び固定子3の周方向の1/10の断面部分を示している。
 本実施例の回転電機100は、極数が10極、固定子3のスロット数が90であるが、他の極数、スロット数としても本発明の効果は得られる。また、回転電機100の種類としては界磁巻線形同期回転電機であるが、誘導回転電機、永久磁石型回転電機等のその他の回転電機に適用しても、本実施例での粉塵除去効果は得られる。
 回転子2及び固定子3を構成する主な部品として、回転子鉄心13、固定子鉄心14、界磁コイル15、固定子コイル16、ダンパーバー18、回転子楔19、及び固定子楔20を含んで構成される。径方向において、回転子2と固定子3との間には、ギャップ17が構成されている。
 回転子鉄心13の内径側には、回転軸方向にクリーン冷媒12を流すためのアキシャルダクト21が設けられている。アキシャルダクト21は、径方向において、界磁コイル15と回転軸5との間に設けられている。固定子2とフレーム1との固定部1cは周方向に所定の間隔で複数設けられており、複数の固定部1cの間には回転軸方向にクリーン冷媒12を流すための背面ダクト22が設けられている。よって、クリーン冷媒12はギャップ17、背面ダクト22及びアキシャルダクト21に分流して流れ、回転子2及び固定子3を冷却しながら大気に放出される。
 以上説明したように、粉塵11を含む冷媒9は粉塵11とクリーン冷媒12とに分離される。このように、粉塵11を効率的に除去できる要因として、冷媒9が旋回流9aを形成し易くすることが肝要であり、そのための主要な構成部品は円形平板6である。
 仮に円形平板6が無い場合の流れを、図17を用いて説明する。図17は、本発明との比較例における回転電機内の冷媒流れを示す概念図である。
 図17の比較例では、円形平板6が設けられていない点で、図1に示す本発明に係る実施例と相違する。この比較例では、流入した冷媒9は旋回流を形成することなく、直接、回転子2及び固定子3へ流れる。冷媒取入口8から空間7に流入した冷媒9はその一部9cが分流して貫通孔10から外部へ排出されるが、冷媒9に含まれる粉塵の多くは径方向中央部を流れる冷媒9dに乗って回転子2及び固定子3に到る。回転子2及び固定子3にたどり着いた粉塵は、冷媒流路17,21,22に堆積してしまい、結果的に冷媒流量の減少を招くか、冷却効果の低下を招くことで冷媒流量が減ったことと同じ状態となる。
 本実施例では、円形平板6はファンとしての機能は無いため、通常のファンを回転軸56に設けた構成と比べて、損失を低減できる。これが円形平板6を採用している所以である。また、旋回流を発生させやすくするため、フレーム1は円筒形状が好ましい。
 図4は、本発明の一実施例に係る回転電機における円形平板の構成の一例を示す図である。円形平板6は回転軸5と一体に形成してもよいし、回転軸5とは別部品として回転軸5に焼き嵌めにより固定してもよいし、または図4に示すようにボルト23にて回転軸5に設けた鍔部5aと締結しても良い。円形平板6を回転軸5と一体に形成することにより、部品点数を削減することができる。また円形平板6を回転軸5に焼き嵌めしたり締結したりすることにより、円形平板6を回転軸5に簡単に組み付けることができる。
 図5は、本発明の一実施例に係る図であり、貫通孔の周方向の配置を示す図である。本実施例では、貫通孔10は周方向に一定の間隔をあけて複数設けている。これにより、粉塵11の除去効率を向上することができる。貫通孔10は回転電機100が配置される環境に応じて適宜、配置すれば良い。
 図6は、本発明の一実施例に係る図であり、貫通孔の形状を示す説明図である。貫通孔10は、圧力損失を低減して、なるべく粉塵11を排出し易くできるように、径を外部に向かって広がるよう形成するとよい(図6(A))。すなわち貫通孔10は、径方向外側に向かって拡径するように形成されるとよい。更に貫通孔10は、内壁面1aa側の入り口部に曲線部24を設けて、圧力損失を低減するようにするとよい(図6(B))。
 図7は、本発明の一実施例に係る回転電機の通風抵抗を電気回路的に図示した概念図である。
 図1に示すように、回転電機100は、冷媒9が流れる複数の主要な流路を有しており、空隙7cの流路(第1流路)の面積をSa、フレーム1の内壁面1aaと固定子コイルエンド25との間の流路(第2流路)の面積をSb、界磁コイルエンド26と固定子コイルエンド25との間の流路(第3流路)の面積をSc、界磁コイルエンド26と回転軸5との間の流路(第4流路)の面積をSd、貫通孔10の流路(第5流路)の面積をSeとする。なお上記流路面積Sb,Sc,Sd,Seは、冷媒の流れ方向に垂直な流路断面積である。また、流路面積Saを構成する第1流路及び流路面積Scを構成する第3流路は周方向に連続した1つの流路として構成されており、その他の第2流路、第4流路及び第5流路はそれぞれ周方向に複数の流路に分割されている。この場合、第2流路、第4流路及び第5流路の各流路面積Sb,Sd,Seはそれぞれ分割された複数の流路の総断面積である。
 なお、フレーム1の内壁面1aaと固定子コイルエンド25との間の第2流路は、背面ダクト22における流路面積が最も狭く、この第2流路の面積Sbは背面ダクト22の流路面積が代表するものとする。界磁コイルエンド26と固定子コイルエンド25との間の第3流路は、ギャップ17における流路面積が最も狭く、この第3流路の面積Scはギャップ17の流路面積が代表するものとする。界磁コイルエンド26と回転軸5との間の第4流路は、アキシャルダクト21における流路面積が最も狭く、この第4流路の面積Sdはアキシャルダクト21の流路面積が代表するものとする。
 回転電機100内に流れ込んだ冷媒9が旋回流を形成して最初に通過する流路部は流路面積Saの第1流路である。つまり、Saの大きさにより、Saより下流側へ流れる流量が決まることになる。よって、Saより下流側に設けられる各流路面積Sb,Sc,Sd,Seの合成流路面積はSaより小さいことが好ましい。逆にSaより下流側の流路面積Sb,Sc,Sd,Seの合成流路面積の方を大きくしても、Saを通過した流量以上にはなることは無い。従って、回転子2及び固定子3の冷却性能を向上させるには、流路面積Sb,Sc,Sd,Seの合成流路面積をSaよりも小さくし、冷媒9の流速を上げて熱伝達率を増加させる方が効果的である。
 すなわち本実施例では、回転子2及び固定子3は、それぞれに、回転軸方向に冷媒が流れる流路17,21,22が設けられ、円形平板6の外周部とフレーム1との間に形成される空隙7cの面積Saは、回転子2及び固定子3に設けられる流路17,21,22の面積Sc,Sd,Scよりも大きい。
 ここで、上記の流路面積と流量、圧力の関係について説明する。流体流れと圧力の関係は次式で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、P:静圧、γ:密度、ζ:損失係数、v:流速、Q:流量、Aarea:流路面積、R:流路抵抗である。
 (1)式で示すように、静圧Pは流量Qの二乗と流路抵抗との積で表すことができる。一般的に、電圧、電流の関係を流体の流れに置き換えて説明されている文献等がある。このことから、逆に、流体の流れを電気回路として置き換えることもできる。仮に(1)式の密度γ、損失係数ζを同じとした場合、流路抵抗Rは流路面積Aareaで決まることになる。
図1で示した、各流路面積を流路抵抗に置き換えて、電気回路的に図示すると図7となる。図1のSa部(第1流路)の流路抵抗がRA、Sb部(第2流路)の流路抵抗がRB、Sc部(第3流路)の流路抵抗がRC、Sd部(第4流路)の流路抵抗がRD、Se部(第5流路)の流路抵抗がREとなる。RAを基準にすると、その他の流路抵抗RB,RC,RD,REは全て並列抵抗となる。よって、電気回路と同様に流路抵抗RB,RC,RD,REの合成流路抵抗RFで表すと次式となる。
Figure JPOXMLDOC01-appb-M000002
 RAを基準にして、RFを電気回路的に図示すると、図7のように、RAとRFとが直列接続された関係となる。上述したように流路面積Saよりも、下流側に設けられる各流路面積Sb,Sc,Sd,Seの合成流路面積SfがSaより小さくなる関係(Sa>Sf)において、流路抵抗は流路面積が支配的となることから、流路面積を流路抵抗に置き換えて表すと、合成流路抵抗RFは流路抵抗RAよりも大きくなる。すなわち、RA<RFの関係となる。
 図1のSaを通過した冷媒9はSb、Sc、Sd及びSeに分流される。Seには粉塵11が流れる。Sb、Sc及びSdにはクリーン冷媒12が流れ、回転子2及び固定子3を冷却する。ここで、流路面積Seが流路面積Sb、Sc及びSdの合成流路抵抗RGよりも極端に大きい場合、Sb、Sc及びSdへ流れるクリーン冷媒12の流量が減ることになり、回転子2及び固定子3の冷却性能を低下させることになる。言い換えれば、粉塵11の除去効率は高くなるが、冷却するための冷媒流量は低下することになる。粉塵11は完全に除去する必要はなく、回転電機100に堆積しない程度に除去することが、冷却性能の維持に繋がる。つまり、流路面積SeはSb、Sc及びSdの合成流路抵抗RGよりも小さくすることが好ましい。この関係を電気回路的に図示すると、図1に示すように、REに対してその他の流路抵抗RB,RC,RDは全て並列接続となるため、流路抵抗RB,RC,RDの合成流路抵抗RGで表すと次式となる。
Figure JPOXMLDOC01-appb-M000003
 REを基準にして、RGを電気回路的に図示すると図7のように、REとRGとが直列接続された関係となる。流路面積Seが下流側に設けられる各流路面積Sb、Sc及びSdの合成流路面積より小さくなる関係を流路抵抗に置き換えて表すとRE>RGの関係となる。流路抵抗は流路面積が支配的となることから、RGを構成する各流路面積Sb、Sc及びSdの合成流路面積Sgと流路面積Seとの関係に置き換えると、Se<Sgの関係となる。
 図1に示すように、Sbを通過するクリーン冷媒12は背面ダクト22に流れ、Scを通過するクリーン冷媒12はギャップ17に流れ、Sdを通過するクリーン冷媒12はアキシャルダクト21へ流れることとなる。Sb、Sc及びSdより下流側の流路断面積は異なっても、流れは直列になるため、各流路の流路抵抗は各流路面積を代表するSb、Sc及びSdによって決まる各流路抵抗RB、RC、RDに置き換えられる。例えば、RBを考えると、フレーム1と固定子コイルエンド25との間の流路抵抗と背面ダクト22の流路抵抗の和がRBとなる。この場合、上述した様に、背面ダクト22の流路抵抗が支配的になるため、背面ダクト22の流路抵抗をRBとして扱うことができる。
 図1に示すように、円形平板6と貫通孔10との間の回転軸方向長さをL1とし、貫通孔10と固定子コイルエンド25との間の回転軸方向長さをL2とした場合、L1とL2とはL1<L2の関係を有するようにすることが好ましい。L1とL2とがL1<L2の関係を有することにより、粉塵11を効率的に除去することができる。つまり、貫通孔10を回転軸方向において円形平板6にできる限り近づけて配置することが好ましい。円形平板6(空隙7)を通過した直後の冷媒9(9b)は、より強い旋回力が働いているため、粉塵11を除去するには効果的である。逆に、円形平板6から下流側の遠い位置に貫通孔10を設けると、円形平板6の直近に設けた場合と比較して、冷媒9(9b)は旋回力が弱くなり、各流路部17,21,22へ拡散されるように分流されることで、貫通孔10が設けられたフレーム1の内壁面から離れるため、粉塵11の除去効率は低下することになる。
 すなわち本実施例では、貫通孔(連通部)10は、回転軸方向において、回転子2及び固定子3よりも円形平板6に近い位置に配置されることが好ましい。
 また図1に示すように、貫通孔10の下流側の直近に内壁面1aaから径方向内側に突出した凸部28を設けるとよい。凸部28を設けることで、粉塵11は凸部28の手前で堰き止められる形になり、粉塵11を効果的に貫通孔10から排出することが可能となる。
 すなわち本実施例では、フレーム1は、貫通孔(連通部)10の下流側に、フレーム1の内壁面1aaから径方向内側に向かって突出する凸部28を有することが好ましい。この場合、凸部28は内壁面1aaにおける貫通孔10の開口部から径方向内側に向かって突出するように形成されることが好ましい。
 この凸部28の回転軸方向における位置も、図示してあるように、貫通孔10の下流側直近に設けることが好ましく、貫通孔10から離れると凸部28の効果は小さくなっていく。この凸部28は、別部品としてフレーム1に取り付けても良く、フレーム1と一体に形成されたものであっても良い。いずれの場合も、凸部28はフレーム1の内壁面(内径)1aaの全周に設けることが好ましい。
 [変更例1]
 図8は、本発明の一実施例に係る貫通孔の配置を変更した変更例を示す断面図である。
図9は、図8の変更例について、円筒状のフレームを平面状に展開した状態で、貫通孔の配置を示す図である。図10は、図9の貫通孔の配置を更に変更した変更例を示す図である。
 貫通孔10は、軸方向に2列又はそれ以上に配置することができる。貫通孔10を複数列に配置することで、粉塵11の除去効率が向上する可能性がある。この場合、列数は除去したい粉塵11の量や回転電機100の回転軸方向の長さを考慮して適宜、決定すれば良い。図9では、貫通孔10を2列或いはそれ以上に配置する場合に、各列の貫通孔10が回転軸方向に一直線上に並ぶように配置した例を示している。また図10では、貫通孔10を2列或いはそれ以上に配置する場合に、各列の貫通孔10が周方向又は回転軸方向に千鳥配置となるように配置した例を示している。
 貫通孔10を設ける、回転軸方向の長さが短い状態で回転軸方向に複数列の貫通孔10を配置する場合、千鳥配置は有効となる。
 本変更例のように、貫通孔10を回転軸方向に複数列設けた場合、図8に示すように、下流側に配置した貫通孔10を基準にしてL1とL2とを設定し、L1<L2の関係を有するように複数列の貫通孔10を配置することが好ましい。すなわち、円形平板6と最下流側の貫通孔10との間の回転軸方向長さをL1とし、最下流側の貫通孔10と固定子コイルエンド25との間の回転軸方向長さをL2として、L1<L2の関係を有するように複数列の貫通孔10を配置する。
 [変更例2]
 図11は、本発明の一実施例に係る貫通孔の内側に粉塵溜まりを設けた変更例を示す断面図である。
 フレーム1の貫通孔10を配置する部位に粉塵溜め27を設けている。粉塵溜め27はフレーム1のその他の部位よりも径方向外側に突出するように設けられ、径方向内側に内壁面1aaよりも径方向外側に窪んだ空間を形成する。すなわち本変更例では、フレーム1の内壁面1aaにおける、貫通孔(連通部)10が開口する部位に、径方向外側に向かって窪む凹部27が形成されている。
 貫通孔10へ流入する手前に粉塵溜め27を設けることで、旋回流9bにより外周側に振られた粉塵11が、粉塵溜め27に溜まり、粉塵11を外へ放出し易くなる。この粉塵溜め27は、貫通孔10の数に合わせて配置しても良く、貫通孔10の配置位置に合わせて、フレーム1の内壁面(内径)1aaに全周溝として設けても良い。
 [変更例3]
 図12は、本発明の一実施例に係る冷媒取入口の位置を変更した変更例を示す断面図である。
 図1の実施例では、冷媒取入口8は回転軸5に対して直角となる位置に配置され、冷媒9を径方向に強制的に流入させている。これに対して本変更例では、図12に示すように、回転軸5と平行な方向に冷媒取入口8を設けている。この場合も、本実施例の旋回流9a,9bを作ることは可能である。しかし、冷媒取入口8は、冷媒取入口8と円形平板6とを回転軸方向に垂直な仮想平面上に投影した場合に、冷媒取入口8と円形平板6とがこの仮想平面上で重なるように配置されることが重要である。すなわち冷媒取入口8は、円形平板6と回転軸方向において対向するように配置される。言い換えれば、冷媒取入口8を回転軸方向に投影した場合に、冷媒取入口8は円形平板6の板面上に投影されるように構成される。この理由は、空隙7cに対向する位置に配置した場合、動圧の影響により円形平板6に遮蔽され難くなり、直線的に流出側に冷媒9が流れてしまうためである。
 [変更例4]
 図13は、本発明の一実施例に係る冷媒取入口の位置を変更した変更例を示す断面図である。
 本変更例では、冷媒取入口8は、冷媒取入口8から流入する冷媒9の流入方向(流線)が回転軸5の中心(軸心)5a、すなわち空間7aの径方向中心に対して偏心するように、設けられている。粉塵11を効果的に除去するには、旋回流9a,9bを発生し易くすることが肝要であるため、冷媒取入口8を、冷媒取入口8から流入する冷媒9の流入方向(流線)が回転電機100の中心5aから径方向外側の位置を指向するように、配置する。
 すなわち本変更例では、冷媒取入口8は、冷媒取入口8から第1空間7aに流入する冷媒の流入方向が回転軸5の軸心に対して径方向外側の位置を指向するように配置される。
 これにより、冷媒9はフレーム1の内壁面1aaを周方向に沿って流れ易くなるため、旋回流が発生しやすくなる。尚、本実施例は発電機のように、回転電機の回転方向が一方向の場合、より有効である。例えば、冷媒9の流れ方向と円形平板6の回転方向(図13では左回り)が同じになるように構成することが好ましい。円形平板6の回転方向が図13で右回りの場合、冷媒取入口8は線分LAに対して線対称となる左側に配置することが好ましい。
 [変更例5]
 図14は、本発明の一実施例に係る円形平板の変更例を示す斜視図である。図14では、円形平板6の外観図を示している。
 本変更例では、円形平板6の回転軸方向に垂直な面6aに凸部29を複数設けている。
すなわち本変更例では、円形平板6は、回転軸方向の端面に、回転軸方向に突出する凸部29を有する。
 凸部29を設けることで、冷媒取入口8から流入した冷媒9は、凸部29により旋回流を発生し易くなる。図14では円形状の凸部29としているが、その他の形状としても同様の効果が得られる。
 [変更例6]
 図15は、本発明の一実施例に係る円形平板の変更例を示す斜視図である。図15では、円形平板6の外観図を示している。
 本変更例では、円形平板6の外周面6bに凹部30を複数設けている。すなわち本変更例では、円形平板6は、外周面6bに径方向内側に窪んだ凹部30を有する。
 上述した実施例では、回転軸方向における冷媒9の流れを遮蔽する部材6を円形平板としている所以は、損失をなるべく抑えたいためである。円形平板6はファンの機能を備えていないが、回転することによる流体摩擦損失が発生することは避けられない。流体摩擦損失は流体(冷媒9)と回転体である円形平板6との接触面により発生する。本変更例のように、円形平板6の外周面6bに凹部30を設けることで、流体との接触面積が減るため流体摩擦損失を低減することが可能となる。図15では円形状の凹部30としているが、その他の形状としても同様の効果が得られる。
 [ダンプトラック用の回転電機システムの実施例]
 図16は、本発明の一実施例に係るダンプトラックの回転電機システムの概略構成図である。図16では、上述した回転電機100をダンプトラック用の回転電機システムに適用した例を示す。
 回転電機100はカップリング31を介してエンジン200に直結される。エンジン200が駆動することで、回転電機(発電用回転電機)100から、電力変換機201a,201bへ電力が供給される。電力変換機201aは、ダンプトラックの駆動用回転電機300に電力を供給する。一方、電力変換機201bは、回転電機100を冷却するための冷媒9を流す送風機301等の補機に電力を供給する。
 すなわち本実施例のダンプトラック用の回転電機システムでは、発電用回転電機、駆動用回転電機300、エンジン200、電力変換器201a、及び発電用回転電機を冷却するための送風機301を備え、エンジン200が駆動することで発電用回転電機が発電し、発電用回転電機100が発電した電力を、電力変換器201aを介して駆動用回転電機300に供給する。そして、発電用回転電機は、上述した本発明に係る発電用回転電機100で構成される。
 以下、本発明に係る実施例(変更例を含む)に共通する特徴について説明する。
  本実施例では、電動機を冷却する冷媒は自励ファンではなく、送風機301である。そのため、電動機が停止状態の場合でも冷却機能を停止することなく、作動させることができる。よって、発熱密度が極端に高い電動機の場合でも、電動機を停止した際に、熱時定数に応じて一定時間、電動機の温度が上昇し続ける現象に対して、冷却機能を使用することができる。また、高効率化の観点においても、自励ファンを使用しないため、自励ファンによる損失が発生せず、電動機の効率の低下を抑制することができる。また、塵埃除去に関しても、本実施例では、押し込みファンを使用する構成に対して、塵埃(粉塵)を排出口に効率よく導くことができるため、塵埃の除去効果が向上する。
 本実施例は、効率の低下を抑えつつ、冷媒の流れを変化させるための適切な部品の配置を行うことで、効率的に粉塵を除去できる回転電機及び回転電機システムを提供することができる。
 なお、本発明は上記した実施例及びその変更例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例及びその変更例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施例及びその変更例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、各変更例の構成は他の変更例と組み合わせて実施例に適用することができる。
 1…フレーム、1aa…フレーム1の内壁面、2…回転子、3…固定子、5…回転軸、6…円形平板、7a…第1空間、7b…第2空間、7c…円形平板6の外周部とフレーム1の内壁面1aaとの間に形成される空隙、8…冷媒取入口、9…冷媒、10…連通部(貫通孔)、17,21,22…回転子2及び固定子3における冷媒9の流路、27…凹部(粉塵溜め)、28…凸部、29…円形平板6の端面に形成される回転軸方向の凸部、30…円形平板6の外周面6bに形成される凹部、100…回転電機、200…エンジン、201a…電力変換器、300…駆動用回転電機、301…送風機、Sb,Sc,Sd…流路22,17,21の面積。

Claims (10)

  1.  回転軸を有する回転子と、
     径方向において前記回転子と対向する固定子と、
     前記回転子及び前記固定子を内部に収容するフレームと、
     前記フレームに設けられ、当該フレームの外部に設けられた送風機から送られる冷媒を当該フレームの内部に取り入れる冷媒取入口と、
    を備え、
     前記回転子は、前記回転軸に設けられた円形平板を有し、
     前記円形平板は、回転軸方向において、前記フレームの内部空間を、当該円形平板に対して前記回転子及び前記固定子の側とは反対側に位置する第1空間と、当該円形平板に対して前記回転子及び前記固定子の側に位置する第2空間と、に区分すると共に、当該円形平板の外周部と前記フレームとの間に前記第1空間と前記第2空間とを連通する空隙を形成するように設けられ、
     前記フレームは、回転軸方向における前記円形平板と前記回転子及び前記固定子との間に、前記第2空間と当該フレームの外部とを連通する連通部を有する回転電機。
  2.  請求項1に記載の回転電機において、
     前記円形平板、前記第1空間及び前記冷媒取入口は、前記冷媒に、前記第1空間に当該第1空間の内壁面の周方向に沿って流れる旋回流を生じさせる回転電機。
  3.  請求項1に記載の回転電機において、
     前記回転子及び前記固定子は、それぞれに、回転軸方向に冷媒が流れる流路が設けられ、
     前記円形平板の外周部と前記フレームとの間に形成される前記空隙の面積は、前記回転子及び前記固定子に設けられる前記流路の面積よりも大きい回転電機。
  4.  請求項1に記載の回転電機において、
     前記連通部は、回転軸方向において、前記回転子及び前記固定子よりも前記円形平板に近い位置に配置されることを特徴とする回転電機。
  5.  請求項1に記載の回転電機において、
     前記連通部の、前記フレームの内壁面における、前記連通部が開口する部位に、径方向外側に向かって窪む凹部が形成されている回転電機。
  6.  請求項1に記載の回転電機において、
     前記冷媒取入口は、当該冷媒取入口から前記第1空間に流入する冷媒の流入方向が前記回転軸の軸心に対して径方向外側の位置を指向するように配置される回転電機。
  7.  請求項1に記載の回転電機において、
     前記フレームは、前記連通部の下流側に、当該フレームの内壁面から径方向内側に向かって突出する凸部を有する回転電機。
  8.  請求項1に記載の回転電機において、
     前記円形平板は、回転軸方向の端面に、回転軸方向に突出する凸部を有する回転電機。
  9.  請求項1に記載の回転電機において、
     前記円形平板は、外周面に径方向内側に窪んだ凹部を有する回転電機。
  10.  発電用回転電機、駆動用回転電機、エンジン、電力変換器、及び前記発電用回転電機を冷却するための送風機を備え、前記エンジンが駆動することで前記発電用回転電機が発電し、前記発電用回転電機が発電した電力を、前記電力変換器を介して前記駆動用回転電機に供給するダンプトラック用の回転電機システムにおいて、
     前記発電用回転電機を、請求項1に記載の回転電機で構成したダンプトラック用の回転電機システム。
PCT/JP2020/041179 2020-03-16 2020-11-04 回転電機 WO2021186787A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020045365A JP7341087B2 (ja) 2020-03-16 2020-03-16 回転電機及び回転電機システム
JP2020-045365 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021186787A1 true WO2021186787A1 (ja) 2021-09-23

Family

ID=77771143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041179 WO2021186787A1 (ja) 2020-03-16 2020-11-04 回転電機

Country Status (2)

Country Link
JP (1) JP7341087B2 (ja)
WO (1) WO2021186787A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192759U (ja) * 1981-05-28 1982-12-07
JPS6020740A (ja) * 1983-07-15 1985-02-02 Hitachi Ltd 軸上向回転機の軸受部の構造
JPH0621364U (ja) * 1992-08-19 1994-03-18 国産電機株式会社 ブラシ付き電動機
JPH07184348A (ja) * 1993-12-24 1995-07-21 Hitachi Ltd 回転電気機械
JP2003061308A (ja) * 2001-08-10 2003-02-28 Honda Motor Co Ltd 直流電動機の通風冷却装置
JP2016101008A (ja) * 2014-11-21 2016-05-30 株式会社東芝 回転電機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192759U (ja) * 1981-05-28 1982-12-07
JPS6020740A (ja) * 1983-07-15 1985-02-02 Hitachi Ltd 軸上向回転機の軸受部の構造
JPH0621364U (ja) * 1992-08-19 1994-03-18 国産電機株式会社 ブラシ付き電動機
JPH07184348A (ja) * 1993-12-24 1995-07-21 Hitachi Ltd 回転電気機械
JP2003061308A (ja) * 2001-08-10 2003-02-28 Honda Motor Co Ltd 直流電動機の通風冷却装置
JP2016101008A (ja) * 2014-11-21 2016-05-30 株式会社東芝 回転電機

Also Published As

Publication number Publication date
JP2021150983A (ja) 2021-09-27
JP7341087B2 (ja) 2023-09-08

Similar Documents

Publication Publication Date Title
US6570276B1 (en) Ventilation device and rail traction electric motor equipped with such a device
US8207642B2 (en) Compact high power alternator
US8536744B2 (en) Traction motor
KR100528586B1 (ko) 전폐 외선 냉각형 전동기
US9450473B2 (en) Motor for vehicle and railway vehicle
CN102934328B (zh) 具有双轴向气流的交流发电机
JP2007515147A (ja) 通気を行うための手段を備える電磁制動機
WO2021186787A1 (ja) 回転電機
JP2006180684A (ja) 車両駆動用全閉形電動機
JP3162622B2 (ja) 車輪一体形電動機
JP2004312875A (ja) 車両駆動用全閉形電動機
JP2003274609A (ja) 車両駆動用電動機
JP7162962B2 (ja) 電気駆動式走行装置
EP1750353B1 (en) Vehicle-use generator with cooling air outlet windows of different widths
CN114649884A (zh) 用于驱动机动车辆的电动机器
JP4180974B2 (ja) 車両駆動用全閉自冷形電動機及び該電動機に備わる冷却器の製造方法
JP2007043838A (ja) 車両用発電機の冷却機構
JP4424163B2 (ja) 車両用交流発電機
JPH09182372A (ja) 鉄道車両用主電動機
JPH0393441A (ja) 車両用通風冷却形回転電機
WO2024085099A1 (ja) 回転電機及び回転電機システム
JP7153834B2 (ja) 温度調和ユニット
JP4515808B2 (ja) 車両用主電動機
JPH06237553A (ja) 強制通風形回転電機
JPH06169548A (ja) 車両用通風冷却形回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925553

Country of ref document: EP

Kind code of ref document: A1