WO2021186530A1 - 電動機の固定子及び圧縮機 - Google Patents

電動機の固定子及び圧縮機 Download PDF

Info

Publication number
WO2021186530A1
WO2021186530A1 PCT/JP2020/011645 JP2020011645W WO2021186530A1 WO 2021186530 A1 WO2021186530 A1 WO 2021186530A1 JP 2020011645 W JP2020011645 W JP 2020011645W WO 2021186530 A1 WO2021186530 A1 WO 2021186530A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
stator
winding
phase
coil group
Prior art date
Application number
PCT/JP2020/011645
Other languages
English (en)
French (fr)
Inventor
優樹 東
利夫 荒井
松岡 篤
克弥 坂邊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022508642A priority Critical patent/JP7325608B2/ja
Priority to CZ2022386A priority patent/CZ2022386A3/cs
Priority to CN202080098381.5A priority patent/CN115336141A/zh
Priority to PCT/JP2020/011645 priority patent/WO2021186530A1/ja
Publication of WO2021186530A1 publication Critical patent/WO2021186530A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present disclosure relates to a stator of a motor and a compressor having a stator of a motor.
  • a coil is wound around the stator core of the stator of the motor.
  • coil winding methods There are two types of coil winding methods: centralized winding and distributed winding.
  • the distributed winding has a higher winding coefficient than the concentrated winding, and the magnetic flux of the rotor of the motor can be used more effectively.
  • a stator in which a coil is wound by a distributed winding.
  • the winding unit in which the electric wire is spirally wound is inserted into the slot of the stator core.
  • the two coils inserted in the same slot must be regularly arranged so that one is on the outer diameter side of the stator and the other is on the inner diameter side of the stator. Therefore, it is necessary to appropriately correct the coil position when mounting the coil on the coil insertion jig. This position correction must be done manually by the operator or in an expensive winding device with a correction mechanism of complex structure.
  • the present disclosure has been made against the background of the above-mentioned problems, and is a stator of an electric motor which is small in size, advantageous in manufacturing, and has good electric efficiency, and a compressor having a stator of such an electric motor. Is to provide.
  • the stator of the motor includes an annular core back portion and a plurality of teeth portions extending inward from the core back portion and formed at intervals in the circumferential direction.
  • a stator of an electric motor including a stator core in which a plurality of slots are formed by adjacent tooth portions in the teeth portion of the above, and windings wound around the teeth portion for each of a plurality of phases.
  • the winding constitutes a first coil group arranged on the outer diameter side of the stator and a second coil group arranged on the inner diameter side of the stator, and the first coil group.
  • the second coil group each has a plurality of coils wound concentrically, and the plurality of coils are connected in series, and in the teeth portion, on the upper part of a shaft extending in the radial direction of the stator. The windings of all the phases of the plurality of phases are crossed.
  • the size can be increased while ensuring a sufficient tooth width.
  • a suppressed motor stator is obtained.
  • the coils of the first coil group and the second coil group are connected in series, the imbalance of the current value flowing through each coil group is suppressed. Therefore, the decrease in motor efficiency due to electrical characteristics is suppressed.
  • the plurality of coils of the first coil group and the second coil group are wound concentrically, they can be easily attached to the stator core.
  • the windings of all the phases of the plurality of phases extend over the shaft extending in the radial direction of the stator, and the windings are evenly arranged. Therefore, it is suppressed that the coil end is locally enlarged, and the effect of reducing the amount of copper used can be obtained. As a result, the manufacturing cost of the stator can be reduced and the motor efficiency can be improved.
  • FIG. 1 It is sectional drawing which shows typically the closed type compressor provided with the stator of the motor which concerns on Embodiment 1 of this disclosure. It is a top view which shows the stator of the motor which concerns on Embodiment 1 of this disclosure. It is a top view which shows the structure of the winding of the stator of the motor which concerns on Embodiment 1 of this disclosure. It is a figure which shows the 1st winding before being inserted into the stator of the motor which concerns on Embodiment 1 of this disclosure. It is a figure which shows the 2nd winding before being inserted into the stator of the motor which concerns on Embodiment 1 of this disclosure.
  • FIG. 3 It is a figure which shows the coil of the coil group before being inserted into the stator of the motor which concerns on Embodiment 3 of this disclosure. It is a top view which shows the state which the 1st coil group and the 2nd coil group are arranged in a stator in Embodiment 3 of this disclosure. It is a top view which shows the arrangement mode of the winding of the stator of the motor which concerns on Embodiment 5 of this disclosure. It is a top view which shows the arrangement mode of the winding of the stator of the motor which concerns on Embodiment 5 of this disclosure.
  • the present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure.
  • the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments.
  • the motor stator shown in the drawing shows an example of a device to which the motor stator of the present disclosure is applied, and the motor stator shown in the drawing limits the applicable device of the present disclosure. It's not a thing.
  • terms indicating directions for example, “top”, “bottom”, “right”, “left”, “front”, “rear”, etc. are appropriately used for ease of understanding.
  • FIG. 1 is a cross-sectional view schematically showing a sealed compressor provided with a stator of the motor according to the first embodiment of the present disclosure.
  • the closed compressor 1 has a configuration in which the compression mechanism portion 3 is housed in the upper part inside the closed container 2 and the rotary electric machine part 4 is housed in the lower part.
  • the compression mechanism unit 3 has a fixed scroll 31, a swing scroll 32, a guide frame 33, a compliant frame 34, and an old dam ring 35.
  • the rotary electric machine unit 4 has a rotor 40 and a stator 50.
  • the stator 50 is fixed to the closed container 2 by a method such as shrink fitting.
  • the stator 50 is connected to the terminal 13 attached to the closed container 2 by the stator power line 12.
  • the compression mechanism unit 3 and the rotary electric machine unit 4 are connected by a rotary shaft 10 held by the guide frame 33 and the subframe 11, and the power generated by the motor of the rotary electric machine unit 4 is transmitted to the compression mechanism unit 3. ..
  • Refrigerating machine oil 21 for lubricating each sliding portion of the closed compressor 1 is sealed in the closed container 2.
  • the fixed scroll 31 in the compression mechanism unit 3 is fixed to the guide frame 33 by bolts (not shown).
  • the guide frame 33 is fixed to the closed container 2 by welding.
  • the swing scroll 32 is held by the compliant frame 34, and the compliant frame 34 is held by the guide frame 33.
  • the claw-shaped portion (not shown) of the old dam ring 35 is engaged with the groove-shaped portion (not shown) formed on the guide frame 33 and the swing scroll 32. As a result, the rotational movement of the swing scroll 32 with respect to the fixed scroll 31 is regulated.
  • a discharge port 36 for discharging the refrigerant from the compression mechanism unit 3 is formed.
  • a suction port 37 for sucking the refrigerant into the compression mechanism portion 3 is formed.
  • a discharge pipe 22 for flowing out the high-pressure refrigerant discharged into the closed container 2 to the freezing circuit is provided on the side surface of the closed container 2.
  • the sealed compressor 1 of the first embodiment is a high-pressure shell type scroll compressor.
  • the fixed scroll 31 having a vertical wall shape formed on the base plate along the involute spiral and the rocking scroll 32 having a vertical wall shape obtained by rotating the same shape as the fixed scroll 31 by 180 degrees face each other. And are combined.
  • the oscillating scroll 32 makes a circumferential motion by the power obtained from the electric starting portion by the eccentric rotating shaft 10.
  • the claw-shaped portion of the Oldham ring 35 moves in parallel along the groove-shaped portion provided at right angles to the guide frame 33 and the swing scroll 32, whereby the swing scroll 32 rotates with respect to the fixed scroll 31.
  • Exercise is regulated.
  • the fixed scroll 31 and the swing scroll 32 which are combined so as to face each other, form a compression chamber from the outside of the spiral shape by contacting each other's standing walls, and the swing scroll 32 is moved from the suction port 37 by the circumferential motion.
  • the sucked refrigerant is transferred and compressed toward the center of the spiral, and the refrigerant is discharged into the closed container 2 from the discharge port 36 provided at the center of the compression mechanism unit 3.
  • the high-pressure refrigerant discharged into the closed container 2 flows out from the discharge pipe to the freezing circuit.
  • FIG. 2 is a plan view showing a stator of the motor according to the first embodiment of the present disclosure.
  • FIG. 2 conceptually shows the configuration of the stator 50.
  • the stator 50 has a stator core 51 and a winding 52.
  • the stator core 51 is configured by, for example, laminating a plurality of electromagnetic steel sheets.
  • the stator core 51 has an annular core back portion 51A and a plurality of teeth portions 51B extending radially from the core back portion 51A to the center of the stator core 51.
  • the plurality of tooth portions 51B are arranged at a predetermined pitch in the circumferential direction of the stator core 51.
  • stator core 51 In the plurality of teeth portions 51B, slots 51C are formed between adjacent teeth portions 51B, and a plurality of slots 51C are formed in the stator core 51.
  • the stator core 51 has 18 teeth portions 51B, and therefore 18 slots 51C are formed.
  • the winding 52 has an A-phase winding 53, a B-phase winding 54, and a C-phase winding 55, and the winding is wound around the teeth portion 51B for each of a plurality of phases.
  • the A-phase winding 53, the B-phase winding 54, and the C-phase winding 55 are hatched differently.
  • the stator 50 in the stator 50, six A-phase windings 53, six B-phase windings 54, and six C-phase windings 55 are provided, and the stator 50 has six poles. doing.
  • FIG. 3 is a plan view showing the configuration of the winding of the stator of the motor according to the first embodiment of the present disclosure.
  • the A-phase winding 53 is concentric and has an A-phase first coil group 53A and an A-phase second coil group 53B.
  • the A-phase first coil group 53A has an A-phase first coil 531, an A-phase second coil 532, and an A-phase third coil 533.
  • the A-phase second coil group 53B has an A-phase fourth coil 534, an A-phase fifth coil 535, and an A-phase sixth coil 536.
  • the A-phase first coil group 53A and the A-phase second coil group 53B each have a plurality of coils.
  • the A-phase first coil group 53A is located on the outer diameter side of the stator 50
  • the A-phase second coil group 53B is located on the inner diameter side of the stator 50. That is, the A-phase first coil group 53A is located closer to the core back portion 51A than the A-phase second coil group 53B, and the A-phase second coil group 53B has a stator 50 than the A-phase first coil group 53A. It is located near the center.
  • the A-phase first coil 531 and the A-phase second coil 532, and the A-phase third coil 533 may be collectively referred to as the coils of the A-phase first coil group 53A.
  • the A-phase 4th coil 534, the A-phase 5th coil 535, and the A-phase 6th coil 536 may be collectively referred to as the coils of the A-phase second coil group 53B.
  • the A-phase 1st coil 531 and the A-phase 2nd coil 532, and the A-phase 3rd coil 533 of the A-phase 1st coil group 53A are a plan view of the stator 50 starting from the A-phase lead wire extraction position 5. It is inserted into the slot 51C at an equal slot pitch in the counterclockwise direction of the time. In the example shown in FIG. 3, the A-phase first coil 531 and the A-phase second coil 532, and the A-phase third coil 533 are arranged at a 4-slot pitch.
  • the A-phase 4th coil 534, the A-phase 5th coil 535, and the A-phase 6th coil 536 of the A-phase 2nd coil group 53B are clocks when the stator 50 is viewed in a plan view from the lead wire extraction position 5. It is inserted into the slot 51C at equal pitches in the clockwise direction. In the example shown in FIG. 3, the A-phase 4th coil 534, the A-phase 5th coil 535, and the A-phase 6th coil 536 are arranged at a 4-slot pitch.
  • the coil arrangement direction of the A-phase first coil group 53A and the coil arrangement direction of the A-phase second coil group 53B in the circumferential direction of the stator 50 are opposite to each other.
  • the coil of the A-phase first coil group 53A is inserted on the outer diameter side, and the coil of the A-phase second coil group 53B is inserted on the inner diameter side.
  • the coils of the A-phase first coil group 53A on the outer diameter side are arranged in the counterclockwise direction when the stator 50 is viewed in a plan view, and the coils of the A-phase second coil group 53B on the inner diameter side are fixed.
  • the child 50 is arranged in the clockwise direction when viewed in a plan view, but the present invention is not limited to this.
  • the coils of the A-phase first coil group 53A on the outer diameter side are arranged in the counterclockwise direction
  • the coils of the A-phase second coil group 53B on the inner diameter side are arranged in the clockwise direction. It may be arranged.
  • the arrangement of the stator 50 in the circumferential direction is such that the coil of the A-phase first coil group 53A on the outer diameter side and the coil of the A-phase second coil group 53B on the inner diameter side are arranged. It should be the opposite.
  • the B-phase winding 54 and the C-phase winding 55 also have the same configuration as the A-phase winding 53.
  • FIG. 4 is a diagram showing the first winding before being inserted into the stator of the motor according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram showing a second winding before being inserted into the stator of the motor according to the first embodiment of the present disclosure.
  • FIG. 6 is a plan view showing a state in which the first winding and the second winding are arranged on the stator in the first embodiment of the present disclosure. The arrangement of the coils in the first embodiment will be described with reference to FIGS. 4 to 6.
  • reference numeral 102 is a lead wire at the start of winding of the first winding 101
  • reference numeral 103 is a lead wire at the end of winding of the first winding 101.
  • the first winding 101 includes a first winding first coil 101A, a first winding second coil 101B, and a first winding third coil 101C.
  • the first winding first coil 101A, the first winding second coil 101B, and the first winding third coil 101C are uniformly wound in the winding direction indicated by the thick white wire A in FIG. ing.
  • the first winding first coil 101A, the first winding second coil 101B, and the first winding third coil 101C are each concentrically wound.
  • the number of windings of the first winding first coil 101A, the first winding second coil 101B, and the first winding third coil 101C is the same.
  • the first winding first coil 101A closest to the winding start wire 102 is called the start coil
  • the first winding third coil 101C closest to the winding end wire 103 is called the end coil. May be called.
  • reference numeral 112 is a lead wire at the start of winding of the second winding 111
  • reference numeral 113 is a lead wire at the end of winding of the second winding 111.
  • the second winding 111 includes a second winding first coil 111A, a second winding second coil 111B, and a second winding third coil 111C.
  • the second winding first coil 111A, the second winding second coil 111B, and the second winding third coil 111C are uniformly wound in the winding direction indicated by the thick white line B in FIG. ing.
  • the second winding first coil 111A, the second winding second coil 111B, and the second winding third coil 111C are each concentrically wound.
  • the number of windings of the first coil 111A of the second winding, the second coil 111B of the second winding, and the third coil 111C of the second winding are the same.
  • the second winding first coil 111A closest to the winding start wire 112 is called the start coil
  • the second winding third coil 111C closest to the winding end wire 113 is called the end coil. May be called.
  • first winding first coil 101A, the first winding second coil 101B, the first winding third coil 101C, the second winding first coil 111A, the second winding second coil 111B, and The number of windings of the second winding third coil 111C is the same.
  • the thick line A in FIG. 4 and the thick line B in FIG. 5 are in opposite directions. That is, the winding directions of the first winding 101 and the second winding 111 are opposite to each other.
  • the stator core 51 is formed by combining the first winding 101, which is wound as shown in FIG. 4, and the second winding 111, which is wound as shown in FIG. Place in.
  • the coils of the first winding 101 and the second winding 111 are alternately arranged.
  • the second winding first coil 111A and the second winding of the second winding 111 are adjacent to both sides of the first winding first coil 101A of the first winding 101.
  • the third coil 111C is arranged.
  • the first winding first coil 101A, the first winding second coil 101B, and the first winding third coil 101C of the first winding 101 are inserted into the slots 51C at equal slot pitches.
  • the first winding first coil 101A, the first winding second coil 101B, and the first winding third coil 101C are inserted into the slots 51C at a pitch of four slots.
  • first winding 101 is arranged on the outer diameter side of the stator core 51
  • second winding 111 is arranged on the inner diameter side of the stator core 51.
  • the first winding 101 When mounting the first winding 101 wound as shown in FIG. 4 on the coil insertion jig, first, the first winding 101 is mounted on the stator core at an equal pitch of 4 slot pitches from the start coil to the end coil. It is attached to 51. Next, as shown in FIG. 5, the second winding 111 is mounted on the stator core 51 at an equal pitch of 4 slot pitches from the start coil to the end coil. At this time, the second winding 111 is mounted on the inner diameter side of the stator core 51 with respect to the first winding 101. As a result, each coil of the first winding 101 constitutes the A-phase first coil group 53A shown in FIG. 3, and each coil of the second winding 111 forms the A-phase second coil group 53B shown in FIG. It will be configured.
  • FIG. 7 shows the ideal stator winding arrangement of the rotary electric machine part in the lap winding method.
  • FIG. 8 shows the stator winding arrangement before the position correction of the rotary electric machine portion in the lap winding method.
  • the coil is arranged as shown in FIG. 7 after the winding is inserted into the slot portion of the stator core.
  • the first coil 60A is the starting coil
  • the sixth coil 60F is the ending coil
  • the second coil 60B in order between the first coil 60A and the sixth coil 60F
  • the third coil 60C, the fourth coil 60D, and the fifth coil 60E are arranged.
  • the first to sixth coils 60A, 60B, 60C, 60D, 60E, so that the slots into which the two coils are inserted are located at equal pitches in the circumferential direction of the stator core, And 60F are arranged. Then, each coil is arranged so as to be located on the outer diameter side with respect to the other coil in one of the two inserted slots and on the inner diameter side with respect to the other coil in the other slot. ing.
  • the coil arrangement is as shown in FIG. Become. That is, the first coil 60A and the second coil 60B, the second coil 60B and the third coil 60C, the third coil 60C and the fourth coil 60D, the fourth coil 60D and the fifth coil 60E, and the fifth coil 60E and the sixth coil.
  • the positional relationship of the coils 60F can be the arrangement shown in FIG. However, the positional relationship between the first coil 60A, which is the starting coil, and the sixth coil 60F, which is the ending coil, is not arranged as shown in FIG. 7.
  • the first coil 60A is located on the outer diameter side in both the slot inserted together with the second coil 60B and the slot inserted together with the sixth coil 60F. Therefore, as shown in FIG. 7, the positional relationship between the first coil 60A and the sixth coil 60F is such that the first coil 60A is located on the inner diameter side and the sixth coil 60F is located on the outer diameter side.
  • the processing cost increases due to the need to fix the position correction.
  • the position correction by the operator is not required manually as compared with the case where the coil formed by the lap winding shown in FIGS. 7 and 8 is attached to the stator core. .. Therefore, according to the first embodiment, an increase in processing cost can be suppressed.
  • FIG. 9 is a plan view showing the coil arrangement of each phase of the stator of the motor according to the first embodiment of the present disclosure.
  • FIG. 10 is an electric circuit diagram of a stator of an electric motor according to the first embodiment of the present disclosure.
  • the B-phase winding 54 and the C-phase winding 55 have the same configuration as the A-phase winding 53 described above.
  • the B-phase winding 54 is concentric and has a B-phase first coil group 54A and a B-phase second coil group 54B.
  • the B-phase first coil group 54A has a B-phase first coil 541, a B-phase second coil 542, and a B-phase third coil 543.
  • the B-phase second coil group 54B has a B-phase fourth coil 544, a B-phase fifth coil 545, and a B-phase sixth coil 546.
  • the B-phase first coil group 54A is located on the outer diameter side of the stator 50
  • the B-phase second coil group 54B is located on the inner diameter side of the stator 50.
  • the B-phase first coil group 54A is located closer to the core back portion 51A than the B-phase second coil group 54B, and the B-phase second coil group 54B has a stator 50 than the B-phase first coil group 54A. It is located near the center.
  • the B-phase first coil 541, the B-phase second coil 542, and the B-phase third coil 543 of the B-phase first coil group 54A are counterclockwise when the stator 50 is viewed in a plan view from the winding start position. It is inserted into the slot 51C at an equal slot pitch in the direction of.
  • the B-phase first coil 541, the B-phase second coil 542, and the B-phase third coil 543 are arranged at a 4-slot pitch.
  • the B-phase 4th coil 544, the B-phase 5th coil 545, and the B-phase 6th coil 546 of the B-phase 2nd coil group 54B are slotted at equal pitches in the clockwise direction when the stator 50 is viewed in a plan view. It is inserted in 51C.
  • the B-phase 4th coil 544, the B-phase 5th coil 545, and the B-phase 6th coil 546 are arranged at a 4-slot pitch.
  • the coil arrangement direction of the B-phase first coil group 54A and the coil arrangement direction of the B-phase second coil group 54B in the circumferential direction of the stator 50 are opposite to each other.
  • the coil of the B-phase first coil group 54A is inserted on the outer diameter side, and the coil of the B-phase second coil group 54B is inserted on the inner diameter side.
  • the C-phase winding 55 is concentric and has a C-phase first coil group 55A and a C-phase second coil group 55B.
  • the C-phase first coil group 55A has a C-phase first coil 551, a C-phase second coil 552, and a C-phase third coil 553.
  • the C-phase second coil group 55B has a C-phase fourth coil 554, a C-phase fifth coil 555, and a C-phase sixth coil 556.
  • the C-phase first coil group 55A is located on the outer diameter side of the stator 50
  • the C-phase second coil group 55B is located on the inner diameter side of the stator 50.
  • the C-phase first coil group 55A is located closer to the core back portion 51A than the C-phase second coil group 55B, and the C-phase second coil group 55B has a stator 50 than the C-phase first coil group 55A. It is located near the center.
  • the C-phase first coil 551, the C-phase second coil 552, and the C-phase third coil 553 of the C-phase first coil group 55A are counterclockwise when the stator 50 is viewed in a plan view from the winding start position. It is inserted into the slot 51C at an equal slot pitch in the direction of. In the example shown in FIG. 9, the C-phase first coil 551, the C-phase second coil 552, and the C-phase third coil 553 are arranged at a 4-slot pitch.
  • the C-phase 4th coil 554, the C-phase 5th coil 555, and the C-phase 6th coil 556 of the C-phase 2nd coil group 55B are slotted at equal pitches in the clockwise direction when the stator 50 is viewed in a plan view. It is inserted in 51C.
  • the C-phase 4th coil 554, the C-phase 5th coil 555, and the C-phase 6th coil 556 are arranged at a 4-slot pitch.
  • the coil arrangement direction of the C-phase first coil group 55A and the coil arrangement direction of the C-phase second coil group 55B in the circumferential direction of the stator 50 are opposite to each other.
  • the coil of the C-phase first coil group 55A is inserted on the outer diameter side, and the coil of the C-phase second coil group 55B is inserted on the inner diameter side.
  • coils of all phases of the stator 50 are arranged in all the teeth portions 51B. More specifically, in each of the plurality of teeth portions 51B, the A-phase winding 53, the B-phase winding 54, and the C-phase winding 55 are formed on the upper portion of the shaft 56 of the teeth portion 51B extending in the radial direction of the stator 50. The coil is passed to form the coil end.
  • the A-phase winding 53, the B-phase winding 54, and the C-phase winding 55 are formed on the upper portion of the shaft 56 of the teeth portion 51B extending in the radial direction of the stator 50.
  • the coil is passed to form the coil end.
  • the A-phase 6th coil 536 of the A-phase 2nd coil group 53B, the B-phase 2nd coil 542 of the B-phase 1st coil group 54A, and the C-phase 1st coil group Only the teeth portion 51B through which the C-phase second coil 552 of 55A is passed and the coil end is formed shows the shaft 56. However, in the other teeth portion 51B, the relationship between the shaft 56 and the coil end is the same.
  • the A-phase first coil group 53A and the A-phase second coil group 53B are connected in the wiring process and are connected in series. That is, the A-phase first coil group winding end 132 and the A-phase second coil group winding start 133 are connected in series. Then, the A-phase first coil group winding start 131 becomes a power supply lead wire, and the A-phase second coil group winding end 134 becomes a neutral point lead wire.
  • the B-phase first coil group 54A and the B-phase second coil group 54B are connected in the wiring process and are connected in series. That is, the B-phase first coil group winding end 142 and the B-phase second coil group winding start 143 are connected in series. Then, the B-phase first coil group winding start 141 becomes the power supply lead wire, and the B-phase second coil group winding end 144 becomes the neutral point lead wire.
  • the C-phase first coil group 55A and the C-phase second coil group 55B are each connected in the wiring process and are connected in series. That is, the C-phase first coil group winding end 152 and the C-phase second coil group winding start 153 are connected in series. Then, the C-phase first coil group winding start 151 becomes the power supply lead wire, and the C-phase second coil group winding end 154 becomes the neutral point lead wire.
  • the A-phase first coil group winding start 131 which is the power outlet wire of the A-phase winding 53
  • the B-phase first coil group winding start 141 which is the power outlet wire of the B-phase winding 54
  • the C-phase first coil group winding start 151 which is the power outlet wire, is taken out to the outer diameter side of the stator 50, respectively. Therefore, when the stator power supply line 12 shown in FIG. 1 is connected to the terminal 13 attached to the closed container 2, the A-phase winding 53, the B-phase winding 54, and the C-phase winding 55 and the terminal 13 are connected to each other. The distance will be shorter. As a result, the manufacturing cost of the sealed compressor 1 can be reduced. Further, it is possible to suppress slack due to lengthening the stator power supply line 12. As a result, contact of the stator power supply line 12 with the closed container 2 and the like can be suppressed.
  • the windings inserted into the slots 51C are the first coil group on the outer diameter side and the second coil group on the inner diameter side. It is divided into. Then, as described above, the coils of all the phases of the stator 50 are arranged in all the teeth portions 51B. Therefore, since the windings are evenly arranged, it is possible to prevent the coil end from becoming locally large, and the effect of reducing the amount of copper used can be obtained. As a result, the manufacturing cost of the stator can be reduced and the motor efficiency can be improved.
  • connection in FIG. 10 shows an example of the connection of the stator 50 according to the first embodiment.
  • the connection is not limited to the connection shown in FIG. 10 as long as the connection can form an electric circuit equivalent to that shown in FIG.
  • the first embodiment has been described by taking the closed type compressor 1 which is a scroll compressor as an example, but the present invention is not limited to this. It also applies to rotary compressors and other types of motors.
  • FIG. 11 is a plan view showing an arrangement mode of windings of the stator of the motor according to the second embodiment of the present disclosure.
  • FIG. 11 shows only the A-phase winding 70 of the stator 250 to avoid complication of the figure.
  • the A-phase winding 70 has an A-phase first coil group 70A and an A-phase second coil group 70B.
  • the A-phase first coil group 70A is located on the outer diameter side of the stator 50
  • the A-phase second coil group 70B is located on the inner diameter side of the stator 50.
  • the winding start of the A-phase first coil group 70A is indicated by reference numeral 71, and the winding end is indicated by reference numeral 72.
  • the winding start of the A-phase second coil group 70B is indicated by reference numeral 73, and the winding end is indicated by reference numeral 74.
  • the A-phase first coil group 70A has an A-phase first coil 711, an A-phase second coil 712, and an A-phase third coil 713.
  • the A-phase second coil group 70B has an A-phase fourth coil 714, an A-phase fifth coil 715, and an A-phase sixth coil 716.
  • the winding mode of each coil of the A-phase first coil group 70A and the A-phase second coil group 70B before being inserted into the stator 50 is the same as that shown in FIG. .. That is, in the above-described first embodiment, the winding direction of the A-phase first coil group 50A and the winding direction of the A-phase second coil group 50B are opposite, whereas in the second embodiment, A. The winding direction of the first phase coil group 70A and the winding direction of the second phase A coil group 70B are the same.
  • the winding end 72 of the A-phase first coil group 70A and the winding end 74 of the A-phase second coil group 70B are connected in series.
  • the winding start 71 of the A-phase first coil group 70A is the power supply lead wire
  • the winding start 73 of the A-phase second coil group 70B is the neutral point lead wire.
  • the B-phase winding and the C-phase winding are also arranged in the same manner as shown in FIG. With this configuration, the stator 50 can be provided with a winding equivalent to that of the first embodiment.
  • the winding direction of the coil is one direction
  • the arrangement mode in the stator 50 is such that each coil of the A phase first coil group 70A is arranged counterclockwise, and the A phase is arranged.
  • Each coil of the second coil group 70B is arranged counterclockwise. Therefore, the winding process can be simplified and the cycle time can be improved. Further, since the coil winding direction is one direction, it is possible to prevent the windings used for the A-phase first coil group 70A and the A-phase second coil group 70B from being mistaken for each other.
  • the coil winding mode of the A-phase first coil group 70A and the A-phase second coil group 70B before being inserted into the stator 50 may be the same as that shown in FIG.
  • winding in FIG. 11 shows an example of the connection of the stator 50 according to the second embodiment.
  • the connection is not limited to the connection shown in FIG. 11 as long as the connection can form an electric circuit equivalent to that shown in FIG.
  • FIG. 12 is a diagram showing the coils of the coil group before being inserted into the stator of the motor according to the third embodiment of the present disclosure.
  • FIG. 13 is a plan view showing an arrangement mode of windings of the stator of the motor according to the third embodiment of the present disclosure.
  • FIG. 13 shows only one phase winding to avoid complication of the figure.
  • reference numeral 81 is a lead wire at the start of winding the coil
  • reference numeral 82 is a lead wire at the end of winding the coil.
  • the coil group 80 includes a first coil 80A, a second coil 80B, a third coil 80C, a fourth coil 80D, a fifth coil 80E, and a sixth coil 80F.
  • the first coil 80A and the second coil 80B are continuous, the second coil 80B and the third coil 80C are continuous, the third coil 80C and the fourth coil 80D are continuous, and the fourth coil 80D and the fifth coil 80E are continuous.
  • the 5th coil 80E and the 6th coil 80F are continuous.
  • the first coil 80A, the second coil 80B, the third coil 80C, the fourth coil 80D, the fifth coil 80E, and the sixth coil 80F are wound concentrically.
  • the coil shown in FIG. 12 is arranged on the stator 350 as shown in FIG.
  • the first coil 80A, the second coil 80B, and the third coil 80C are arranged on the outer diameter side of the stator 350 to form the first coil group.
  • the fourth coil 80D, the fifth coil 80E, and the sixth coil 80F are arranged on the inner diameter side of the stator 350 to form the second coil group.
  • the first coil 80A, the second coil 80B, and the third coil 80C are arranged counterclockwise when the stator 350 is viewed in a plan view.
  • the fourth coil 80D, the fifth coil 80E, and the sixth coil 80F are arranged counterclockwise when the stator 50 is viewed in a plan view.
  • the winding shown in FIG. 12 is arranged on the stator 350 as shown in FIG.
  • the two divided coil groups are connected in series in the wiring step.
  • the coils constituting the two coil groups are wound at the stage of the winding process. Therefore, the wiring process can be simplified, the cycle time can be improved, and erroneous wiring can be suppressed.
  • the winding start wire 81 serves as the power supply lead wire
  • the winding end wire 82 constitutes the neutral point lead wire. Therefore, the number of places where power is taken out from the slot 51C of the stator 50 can be limited to two places. As a result, the visibility of the power outlet wire and the neutral point outlet wire of the stator 50 before the connection process is improved.
  • Embodiment 4 the coils of the first coil group arranged on the outer diameter side of the stator 50 and the coils of the second coil group arranged on the inner diameter side of the stator 50 are the same. It is wound by the number of turns.
  • the stator 50 is configured by making the number of turns of each coil of the first coil group different from the number of turns of each coil of the second coil group. In this case, the same number of windings are inserted into the plurality of slots 51C of the stator 50. For example, when the number of turns of each coil of the first coil group is n (n is a natural number), the number of turns of each coil of the second coil group is set to n + 1. The number of windings inserted in all the slots 51C is 2n + 1. Other configurations are the same as those of the first to third embodiments, and the coils are connected in series.
  • the total number of turns of the six coils connected in series is 6 ⁇ n. ..
  • the specific value of the number of turns is, for example, 6, 12, or 18.
  • the total number of turns of the six coils connected in series is 6n + 3.
  • the specific value of the number of turns is, for example, 9, 15, or 21.
  • the range of selection of the number of coil turns is limited as compared with the case where the number of turns of each coil of the first coil group and the number of turns of each coil of the second coil group are the same. Not done. Therefore, the degree of freedom in designing the number of coil turns that can be applied to the stator 50 is increased, and a more optimum winding design can be applied to the stator 50.
  • the first coil group and the second coil group are connected in series as in the first to third embodiments. Therefore, all the coils having the same phase are connected in series, and the same number of windings are inserted in each slot 50C of the stator 50. Therefore, even if there is a difference in the number of turns between the first coil group and the second coil group, there is no difference in the magnetomotive force, so that the stator 50 can be configured without causing an electrical problem. ..
  • the number of turns of each coil of the first coil group may be n + 1.
  • FIG. 14 is a plan view showing an arrangement mode of windings of the stator of the motor according to the fifth embodiment of the present disclosure.
  • FIG. 14 shows only the A-phase winding 53 similar to the first embodiment in order to avoid complication of the drawing.
  • the same components as those shown in FIG. 9 are designated by the same reference numerals.
  • the A-phase first coil group winding end 132 and the A-phase second coil group winding start 133 are connected in series. Further, the A-phase first coil group winding start 131 is a power supply lead wire, and the A-phase second coil group winding end 134 is a neutral point lead wire. As shown in FIG.
  • the A-phase first coil 531 to which the power supply line is connected and the A-phase sixth coil 536 connected to the neutral point are centered on the stator 50.
  • the A-phase first coil group 53A and the A-phase second coil group 53B are arranged so as to sandwich and face each other.
  • the A-phase 1st coil 531 closest to the power supply and the A-phase 6th coil 536 farthest from the power supply face each other with the center of the stator 50 in between.
  • the two coil group 53B is arranged.
  • FIG. 15 is a plan view showing an arrangement mode of windings of the stator of the motor according to the fifth embodiment of the present disclosure.
  • FIG. 15 shows only the A-phase winding 70 similar to the second embodiment in order to avoid complication of the drawing.
  • the same components as those shown in FIG. 11 are designated by the same reference numerals.
  • the A-phase first coil group winding end 72 and the A-phase second coil group winding end 74 are connected in series.
  • the A-phase first coil group winding start 71 is a power supply lead wire
  • the A-phase second coil group winding start 73 is a neutral point lead wire. As shown in FIG.
  • the A-phase first coil 711 to which the power supply line is connected and the A-phase fourth coil 714 connected to the neutral point are centered on the stator 250.
  • the A-phase first coil group 70A and the A-phase second coil group 70B are arranged so as to sandwich and face each other. In other words, the A-phase first coil 711 closest to the power supply and the A-phase fourth coil 714 farthest from the power supply face each other with the center of the stator 50 in between.
  • the two coil group 70B is arranged.
  • the potential difference for the coil closest to the power supply is highest for the coil connected to the neutral point farthest from the power supply.
  • the coil closest to the power supply among the first coil group arranged on the outer diameter side of the stator and the second coil arranged on the inner diameter side of the stator.
  • the coil farthest from the power supply in the coil group faces each other with the center of the stator in between. Therefore, it is avoided that the coil having the largest potential difference is inserted into the same slot, and the reliability of the stator is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Compressor (AREA)

Abstract

電動機の固定子は、環状のコアバック部と、コアバック部から内方へ延び、周方向において間隔を空けて形成されている複数のティース部と、を有し、複数のティース部において隣り合うティース部により複数のスロットが形成されている固定子鉄心と、複数の相毎にティース部に巻き回された巻線と、を備える。巻線は、固定子の外径側に配置されている第1コイル群と、固定子の内径側に配置されている第2コイル群と、を構成している。第1コイル群及び第2コイル群は、それぞれ同心巻で巻かれている複数のコイルを有し、複数のコイルは直列に接続され、ティース部において、固定子の径方向に延びる軸の上部に複数の相の全ての相の巻線が渡っている。

Description

電動機の固定子及び圧縮機
 本開示は、電動機の固定子、及び電動機の固定子を有する圧縮機に関する。
 従来、電動機の固定子の固定子鉄心にはコイルが巻線されている。コイルの巻線方式には集中巻と分布巻がある。分布巻は、集中巻に比べ巻線係数が高く、電動機の回転子の磁束をより有効に活用することができる。空気調和機の圧縮機に搭載される電動機を例にとると、圧縮機に求められる能力が大きい場合、分布巻によりコイルが巻線された固定子を有する電動機を搭載することが望ましい。
 一方、分布巻は集中巻に比べコイルエンドが大きいため、分布巻によりコイルが巻線された固定子を有する電動機を採用すると、銅量が増加する。そのため、材料費の高騰、及び銅損増加による効率低下を招く場合がある。コイルエンドを縮小させるために、分布巻として波巻若しくは重ね巻を採用することが考えられる。コイルを波巻若しくは重ね巻により固定子鉄心のティースに巻線することにより、固定子鉄心の同一スロット内に同相の2つのコイルが挿入され、各相のコイルの挿入位置が分散されるため、コイルの重なりが低減される。その結果、コイルエンドが縮小され、小型かつ高効率な固定子を得られる。例えば、特許文献1には重ね巻の態様が示されている。
特開2015-35837号公報
 固定子に重ね巻の巻線を施す場合、螺旋状に電線が巻き回された巻線ユニットが固定子鉄心部のスロット内に挿入される。この時、同一スロット内に挿入された2つのコイルは、一方が固定子外径側、他方が固定子内径側となるように規則性をもって配置されなければならない。そのため、コイル挿入治具へコイルを装着する際にコイル位置を適宜補正する必要がある。この位置補正は、作業者が手動で行うか、若しくは複雑な構造の補正機構を備えた高価な巻線装置で行われなければならない。
 重ね巻とは異なり、同心巻コイルを用いて、同一のスロット内に2つのコイル群を挿入し、同一のスロット内のコイルを固定子の外径側と内径側にそれぞれ配置することが考えられる。しかしながら、この場合、固定子外径側に配置されるコイルと固定子内径側に配置されるコイルとでインダクタンス値が異なり、これらのコイルを並列接続しコイル群とすると、各コイル群に流れる電流値にアンバランスが生じる可能性がある。その結果、銅損増加によるモータ効率悪化の原因になるという課題があった。一方、スロット内の円周方向において均等に2つのコイル群を配置することが考えられるが、この場合、スロットの幅を円周方向に拡大する必要があり、固定子が大型化し、モータ全体が大型化する。その結果、圧縮機に搭載する際に求められる電動機のモータサイズを実現するためには、十分なティース幅が得られない場合がある。
 本開示は、上記のような課題を背景としてなされたものであり、小型で、製造上も有利で有り、かつ電動効率のよい電動機の固定子、及びそのような電動機の固定子を有する圧縮機を提供するものである。
 本開示に係る電動機の固定子は、環状のコアバック部と、前記コアバック部から内方へ延び、周方向において間隔を空けて形成されている複数のティース部と、を有し、前記複数のティース部において隣り合うティース部により複数のスロットが形成されている固定子鉄心と、複数の相毎に前記ティース部に巻き回された巻線と、を備える電動機の固定子であって、前記巻線は、前記固定子の外径側に配置されている第1コイル群と、前記固定子の内径側に配置されている第2コイル群と、を構成しており、前記第1コイル群及び前記第2コイル群は、それぞれ同心巻で巻かれている複数のコイルを有し、前記複数のコイルは直列に接続され、前記ティース部において、前記固定子の径方向に延びる軸の上部に前記複数の相の全ての相の前記巻線が渡っているものである。
 本開示によれば、第1コイル群が固定子の外径側に配置され、第2コイル群が固定子の内径側に配置されているため、十分なティース幅を確保しつつ、大型化が抑制された電動機の固定子が得られる。また、第1コイル群及び第2コイル群のコイルが直列に接続されているため、各コイル群に流れる電流値のアンバランスが抑制される。従って、電気的特性によるモータ効率の低下が抑制される。また、第1コイル群及び第2コイル群の複数のコイルは同心巻で巻かれているため、固定子鉄心への装着が容易である。また、ティース部において、固定子の径方向に延びる軸の上部に複数の相の全ての相の巻線が渡っており、巻線が均等に配置されている。従って、コイルエンドが局所的に大きくなることが抑制され、使用される銅量の減少の効果が得られる。その結果、固定子の製造コストを低減化し、かつモータ効率を向上させることができる。
本開示の実施の形態1に係る電動機の固定子を備えた密閉型圧縮機を概略的に示す断面図である。 本開示の実施の形態1に係る電動機の固定子を示す平面図である。 本開示の実施の形態1に係る電動機の固定子の巻線の構成を示す平面図である。 本開示の実施の形態1に係る電動機の固定子に挿入する前の第1巻線を示す図である。 本開示の実施の形態1に係る電動機の固定子に挿入する前の第2巻線を示す図である。 本開示の実施の形態1において第1巻線と第2巻線を固定子に配置した状態を示す平面図である。 重ね巻方式における回転電機部の理想的な固定子巻線配置を示したものである。 重ね巻方式における回転電機部の位置修正前の固定子巻線配置を示したものである。 本開示の実施の形態1に係る電動機の固定子の各相のコイル配置を示す平面図である。 本開示の実施の形態1に係る電動機の固定子の電機回路図である。 本開示の実施の形態2に係る電動機の固定子の巻線の配置態様を示す平面図である。 本開示の実施の形態3に係る電動機の固定子に挿入する前のコイル群のコイルを示す図である。 本開示の実施の形態3において第1コイル群と第2コイル群を固定子に配置した状態を示す平面図である。 本開示の実施の形態5に係る電動機の固定子の巻線の配置態様を示す平面図である。 本開示の実施の形態5に係る電動機の固定子の巻線の配置態様を示す平面図である。
 以下、本開示に係る電動機の固定子の実施の形態を、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、図面に示す電動機の固定子は、本開示の電動機の固定子が適用される機器の一例を示すものであり、図面に示された電動機の固定子によって本開示の適用機器が限定されるものではない。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これらは説明のためのものであって、本開示を限定するものではない。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。尚、各図面では、各構成部材の相対的な寸法関係又は形状等が実際のものとは異なる場合がある。
実施の形態1.
 図1は、本開示の実施の形態1に係る電動機の固定子を備えた密閉型圧縮機を概略的に示す断面図である。密閉型圧縮機1は密閉容器2の内部の上部に圧縮機構部3が収納され、下部に回転電機部4が収納された構成を有している。圧縮機構部3は、固定スクロール31、揺動スクロール32、ガイドフレーム33、コンプライアントフレーム34、及びオルダムリング35を有している。回転電機部4は、回転子40及び固定子50を有している。固定子50は密閉容器2に焼嵌め等の方法により固定されている。固定子50は、固定子電源線12により、密閉容器2に取り付けられた端子13に接続される。圧縮機構部3と回転電機部4は、ガイドフレーム33とサブフレーム11とにより保持された回転軸10によって繋がっており、回転電機部4のモータで発生した動力が圧縮機構部3に伝達される。密閉容器2内には密閉型圧縮機1の各摺動部を潤滑するための冷凍機油21が封入されている。
 圧縮機構部3内の固定スクロール31は図示省略のボルトによってガイドフレーム33に固定されている。ガイドフレーム33は密閉容器2に溶接によって固定されている。揺動スクロール32はコンプライアントフレーム34によって保持されており、コンプライアントフレーム34はガイドフレーム33に保持されている。オルダムリング35が有する図示省略の爪形状部は、ガイドフレーム33及び揺動スクロール32に形成された図示省略の溝形状部に係合している。これにより、揺動スクロール32の固定スクロール31に対する回転運動が規制されている。
 固定スクロール31の中心には、圧縮機構部3より冷媒を吐出する吐出ポート36が形成されている。固定スクロール31の外側には、圧縮機構部3に冷媒を吸入する吸入ポート37が形成されている。密閉容器2の側面には、密閉容器2内に吐出された高圧の冷媒を冷凍回路へ流出させるための吐出管22が設けられている。
 以上のように、本実施の形態1の密閉型圧縮機1は、高圧シェル方式のスクロール圧縮機である。圧縮機構部3では、台盤上にインボリュート渦巻に沿って形成された立壁形状を有する固定スクロール31と、固定スクロール31と同形状を180度回転させた立壁形状を有する揺動スクロール32とを対向して組み合わせられている。そして、偏芯した回転軸10によって電動起動部から得た動力にて揺動スクロール32が円周運動する。このとき、オルダムリング35が持つ爪形状部は、ガイドフレーム33及び揺動スクロール32に互いに直角に設けられた溝形状部に沿って平行運動し、これにより揺動スクロール32の固定スクロール31に対する回転運動が規制される。
ここで、対向して組み合わされた固定スクロール31と揺動スクロール32とは、互いの立壁が接することにより渦巻形状の外側から圧縮室を作り、揺動スクロール32の円周運動によって吸入ポート37より吸入した冷媒を渦巻の中心に向かって移送圧縮し、圧縮機構部3の中心に設けられた吐出ポート36より密閉容器2内に冷媒を吐出する。
密閉容器2内に吐出された高圧の冷媒は吐出管より冷凍回路へ流出する。
 図2は、本開示の実施の形態1に係る電動機の固定子を示す平面図である。図2は、固定子50の構成を概念的に示している。固定子50は、固定子鉄心51と巻線52とを有している。固定子鉄心51は、例えば電磁鋼板を複数枚積層して構成されている。固定子鉄心51は、円環状のコアバック部51Aと、コアバック部51Aから径方向に沿って、固定子鉄心51の中心に延びている複数のティース部51Bと、を有している。複数のティース部51Bは、固定子鉄心51の周方向において所定のピッチで配列されている。複数のティース部51Bにおいて、隣り合うティース部51Bの間にはスロット51Cが形成されており、固定子鉄心51において複数のスロット51Cが形成されている。本実施の形態1において、固定子鉄心51は18個のティース部51Bを有しており、従って、18個のスロット51Cが形成されている。
 巻線52は、A相巻線53と、B相巻線54と、C相巻線55と、を有しており、複数の相毎に巻線がティース部51Bに巻回されている。図2中、A相巻線53,B相巻線54、及びC相巻線55には、それぞれ異なるハッチングが施されている。図2に示すように、固定子50において、A相巻線53,B相巻線54、及びC相巻線55は、それぞれ6つ設けられており、固定子50は6つの極数を有している。
 すなわち、極数をPとし、スロット数をSとすると、固定子50はS=3Pの関係を満たしている。
 図3は、本開示の実施の形態1に係る電動機の固定子の巻線の構成を示す平面図である。図3では、図の複雑化を避けるためにA相巻線53のみが示されている。A相巻線53は同心巻であり、A相第1コイル群53AとA相第2コイル群53Bとを有している。A相第1コイル群53Aは、A相第1コイル531と、A相第2コイル532と、A相第3コイル533と、を有している。A相第2コイル群53Bは、A相第4コイル534と、A相第5コイル535と、A相第6コイル536と、を有している。すなわち、A相第1コイル群53A及びA相第2コイル群53Bは、それぞれ複数のコイルを有している。後述するように、A相第1コイル群53Aは固定子50の外径側に位置し、A相第2コイル群53Bは固定子50の内径側に位置している。すなわち、A相第1コイル群53AはA相第2コイル群53Bよりもコアバック部51Aの近傍に位置し、A相第2コイル群53BはA相第1コイル群53Aよりも固定子50の中心の近傍に位置している。
 以降の説明において、A相第1コイル531、A相第2コイル532、及びA相第3コイル533を、総称してA相第1コイル群53Aのコイルと呼ぶ場合がある。同様に、A相第4コイル534、A相第5コイル535、及びA相第6コイル536を、総称してA相第2コイル群53Bのコイルと呼ぶ場合がある。
 A相第1コイル群53AのA相第1コイル531、A相第2コイル532、及びA相第3コイル533は、A相の口出し線取り出し位置5を起点に、固定子50を平面視したときの反時計回りの方向に、等スロットピッチでスロット51Cに挿入されている。図3に示す例では、A相第1コイル531、A相第2コイル532、及びA相第3コイル533は、4スロットピッチで配置されている。
 A相第2コイル群53BのA相第4コイル534、A相第5コイル535、及びA相第6コイル536は、口出し線取り出し位置5を起点に、固定子50を平面視したときの時計回りの方向に、等ピッチでスロット51Cに挿入されている。図3に示す例では、A相第4コイル534、A相第5コイル535、及びA相第6コイル536は、4スロットピッチで配置されている。
 すなわち、固定子50を平面視したとき、固定子50の周方向におけるA相第1コイル群53Aのコイルの配置方向とA相第2コイル群53Bのコイル配置方向は逆向きとなっている。
 同一スロット51C内において、A相第1コイル群53Aのコイルは外径側に挿入され、A相第2コイル群53Bのコイルは内径側に挿入されている。
 図3では、外径側のA相第1コイル群53Aのコイルは固定子50を平面視したときの反時計回りの方向に配置され、内径側のA相第2コイル群53Bのコイルは固定子50を平面視したときの時計回りの方向に配置されているが、これに限るものではない。固定子50を平面視したとき、外径側のA相第1コイル群53Aのコイルが反時計回りの方向に配置され、内径側のA相第2コイル群53Bのコイルが時計回りの方向に配置されていてもよい。すなわち、固定子50を平面視したときの固定子50の周方向における配置が、外径側のA相第1コイル群53Aのコイルと内径側のA相第2コイル群53Bのコイルとで、反対になっていればよい。
 後述するように、B相巻線54及びC相巻線55も、A相巻線53と同様の構成を有している。
 図4は、本開示の実施の形態1に係る電動機の固定子に挿入する前の第1巻線を示す図である。図5は、本開示の実施の形態1に係る電動機の固定子に挿入する前の第2巻線を示す図である。図6は、本開示の実施の形態1において第1巻線と第2巻線を固定子に配置した状態を示す平面図である。図4~図6を参照して、本実施の形態1におけるコイルの配置について説明する。
 図4中、符号102は、第1巻線101の巻き始めの口出し線であり、符号103は、第1巻線101の巻き終わりの口出し線である。第1巻線101は、第1巻線第1コイル101A、第1巻線第2コイル101B、及び第1巻線第3コイル101Cを含んでいる。第1巻線第1コイル101A、第1巻線第2コイル101B、及び第1巻線第3コイル101Cは、図4中、白抜きの太線Aで示す巻線方向に統一して巻線されている。第1巻線第1コイル101A、第1巻線第2コイル101B、及び第1巻線第3コイル101Cは、それぞれ同心巻の巻線が施されている。第1巻線第1コイル101A、第1巻線第2コイル101B、及び第1巻線第3コイル101Cの巻き線の巻き数は同一である。尚、以降の説明において、巻き始めの口出し線102に最も近い第1巻線第1コイル101Aを始端コイルと呼び、巻き終わりの口出し線103に最も近い第1巻線第3コイル101Cを終端コイルと呼ぶ場合がある。
 図5中、符号112は、第2巻線111の巻き始めの口出し線であり、符号113は、第2巻線111の巻き終わりの口出し線である。第2巻線111は、第2巻線第1コイル111A、第2巻線第2コイル111B、及び第2巻線第3コイル111Cを含んでいる。第2巻線第1コイル111A、第2巻線第2コイル111B、及び第2巻線第3コイル111Cは、図5中、白抜きの太線Bで示す巻線方向に統一して巻線されている。第2巻線第1コイル111A、第2巻線第2コイル111B、及び第2巻線第3コイル111Cは、それぞれ同心巻の巻線が施されている。第2巻線第1コイル111A、第2巻線第2コイル111B、及び第2巻線第3コイル111Cの巻き線の巻き数は同一である。尚、以降の説明において、巻き始めの口出し線112に最も近い第2巻線第1コイル111Aを始端コイルと呼び、巻き終わりの口出し線113に最も近い第2巻線第3コイル111Cを終端コイルと呼ぶ場合がある。
 さらに、第1巻線第1コイル101A、第1巻線第2コイル101B、及び第1巻線第3コイル101Cと、第2巻線第1コイル111A、第2巻線第2コイル111B、及び第2巻線第3コイル111Cの巻き線の巻き数は同一である。
 図4中の太線Aと図5中の太線Bとは互いに反対方向になっている。すなわち、第1巻線101と第2巻線111とは、巻線方向が反対となっている。
 図4に示すように巻線が施された第1巻線101と、図5に示すように巻線が施された第2巻線111とを、図6に示すように、固定子鉄心51に配置する。固定子鉄心51の円周方向において、第1巻線101と第2巻線111とは、それぞれのコイルが交互に配置されている。例えば、固定子鉄心51の円周方向において、第1巻線101の第1巻線第1コイル101Aの両隣には、第2巻線111の第2巻線第1コイル111A及び第2巻線第3コイル111Cが配置されている。
 図6に示す例では、第1巻線101の第1巻線第1コイル101A、第1巻線第2コイル101B、及び第1巻線第3コイル101Cは、等スロットピッチでスロット51Cに挿入されている。本実施の形態1では、第1巻線第1コイル101A、第1巻線第2コイル101B、及び第1巻線第3コイル101Cは、4スロットピッチでスロット51Cに挿入されている。
 また、第1巻線101が固定子鉄心51の外径側に配置され、第2巻線111が固定子鉄心51の内径側に配置されている。
 図4のように巻線した第1巻線101をコイル挿入治具に装着する際、まず、第1巻線101を、始端コイルから始めて終端コイルまで、4スロットピッチの等ピッチで固定子鉄心51に装着する。次いで、図5のように第2巻線111を、始端コイルから始めて終端コイルまで、4スロットピッチの等ピッチで固定子鉄心51に装着する。このとき、第2巻線111は、第1巻線101に対して固定子鉄心51の内径側に装着する。これにより、第1巻線101の各コイルが、図3に示すA相第1コイル群53Aを構成し、第2巻線111の各コイルが、図3に示すA相第2コイル群53Bを構成することとなる。
 これに対し、波巻の巻線を固定子鉄心に装着する場合、まず円環状のコイルを形成し、円環状のコイルに対して、径方向に沿って外方から中心へ向けて外力を加え、凸部と凹部とが周方向において交互に並列するいわゆる星形コイルを成型する。そして、星形コイルを固定子鉄心に装着する。これに対し、本実施の形態1によれば、円環状のコイルを星形コイルに成型する工程が不要である。また、コイルに対して外力を加える必要がないため、コイルにおける損傷の発生が抑制される。すなわち、本実施の形態1によれば、波巻の巻線を固定子鉄心に装着する場合に比べ、コイルの加工工程の簡略化による加工費の削減、及び巻線信頼性の向上という効果が得られる。
 図7は、重ね巻方式における回転電機部の理想的な固定子巻線配置を示したものである。図8は、重ね巻方式における回転電機部の位置修正前の固定子巻線配置を示したものである。重ね巻の巻線を固定子鉄心に装着する場合、固定子鉄心のスロット部に巻線挿入後、図7のようにコイルが配置されることが要求される。図7に示す重ね巻コイルにおいては、第1コイル60Aが始端コイルであり、第6コイル60Fが終端コイルであり、第1コイル60Aと第6コイル60Fとの間に、順に第2コイル60B、第3コイル60C、第4コイル60D、及び第5コイル60Eが配置されている。
 図7に示す巻線配置においては、2つのコイルが挿入されているスロットが固定子鉄心の周方向において等ピッチで位置するよう、第1~第6コイル60A、60B、60C、60D、60E、及び60Fは配置されている。そして、各コイルは、挿入されている2つのスロットのうち一方のスロットにおいては他のコイルに対し外径側に位置し、他方のスロットにおいては他のコイルに対し内径側に位置するよう配置されている。
 重ね巻で形成されたコイルをコイル挿入治具に装着する際、第1コイル60Aより順にコイル挿入治具に装着したものをそのまま固定子鉄心に挿入すると、コイルの配置は図8に示すようになる。すなわち、第1コイル60Aと第2コイル60B、第2コイル60Bと第3コイル60C、第3コイル60Cと第4コイル60D、第4コイル60Dと第5コイル60E、及び第5コイル60Eと第6コイル60Fの位置関係は、図7に示す配置とすることができる。しかしながら、始端コイルである第1コイル60Aと終端コイルである第6コイル60Fとの位置関係は、図7に示すような配置とならない。すなわち、第1コイル60Aは、第2コイル60Bと共に挿入されているスロットにおいても、第6コイル60Fと共に挿入されているスロットにおいても、外径側に位置してしまう。そのため、第1コイル60Aと第6コイル60Fの位置関係を図7に示すように、第1コイル60Aが内径側に位置し、第6コイル60Fが外径側に位置するよう、作業者が手作業で補正しなければならない。その結果、位置補正の固定が必要に起因する加工費の増加が発生する。
 これに対し、本実施の形態1によれば、図7及び図8に示す重ね巻で形成されたコイルを固定子鉄心に装着する場合に比べ、作業者の手作業による位置補正を必要としない。従って、本実施の形態1によれば加工費の増加を抑制することができる。
 図9は、本開示の実施の形態1に係る電動機の固定子の各相のコイル配置を示す平面図である。図10は、本開示の実施の形態1に係る電動機の固定子の電機回路図である。B相巻線54及びC相巻線55は、上述のA相巻線53と同様の構成を有している。
 B相巻線54は同心巻であり、B相第1コイル群54AとB相第2コイル群54Bとを有している。B相第1コイル群54Aは、B相第1コイル541と、B相第2コイル542と、B相第3コイル543と、を有している。B相第2コイル群54Bは、B相第4コイル544と、B相第5コイル545と、B相第6コイル546と、を有している。B相第1コイル群54Aは固定子50の外径側に位置し、B相第2コイル群54Bは固定子50の内径側に位置している。すなわち、B相第1コイル群54AはB相第2コイル群54Bよりもコアバック部51Aの近傍に位置し、B相第2コイル群54BはB相第1コイル群54Aよりも固定子50の中心の近傍に位置している。
 B相第1コイル群54AのB相第1コイル541、B相第2コイル542、及びB相第3コイル543は、巻き始め位置を起点に、固定子50を平面視したときの反時計回りの方向に、等スロットピッチでスロット51Cに挿入されている。図9に示す例では、B相第1コイル541、B相第2コイル542、及びB相第3コイル543は、4スロットピッチで配置されている。
 B相第2コイル群54BのB相第4コイル544、B相第5コイル545、及びB相第6コイル546は、固定子50を平面視したときの時計回りの方向に、等ピッチでスロット51Cに挿入されている。図9に示す例では、B相第4コイル544、B相第5コイル545、及びB相第6コイル546は、4スロットピッチで配置されている。
 すなわち、固定子50を平面視したとき、固定子50の周方向におけるB相第1コイル群54Aのコイルの配置方向とB相第2コイル群54Bのコイル配置方向は逆向きとなっている。
 同一スロット51C内において、B相第1コイル群54Aのコイルは外径側に挿入され、B相第2コイル群54Bのコイルは内径側に挿入されている。
 C相巻線55は同心巻であり、C相第1コイル群55AとC相第2コイル群55Bとを有している。C相第1コイル群55Aは、C相第1コイル551と、C相第2コイル552と、C相第3コイル553と、を有している。C相第2コイル群55Bは、C相第4コイル554と、C相第5コイル555と、C相第6コイル556と、を有している。C相第1コイル群55Aは固定子50の外径側に位置し、C相第2コイル群55Bは固定子50の内径側に位置している。すなわち、C相第1コイル群55AはC相第2コイル群55Bよりもコアバック部51Aの近傍に位置し、C相第2コイル群55BはC相第1コイル群55Aよりも固定子50の中心の近傍に位置している。
 C相第1コイル群55AのC相第1コイル551、C相第2コイル552、及びC相第3コイル553は、巻き始め位置を起点に、固定子50を平面視したときの反時計回りの方向に、等スロットピッチでスロット51Cに挿入されている。図9に示す例では、C相第1コイル551、C相第2コイル552、及びC相第3コイル553は、4スロットピッチで配置されている。
 C相第2コイル群55BのC相第4コイル554、C相第5コイル555、及びC相第6コイル556は、固定子50を平面視したときの時計回りの方向に、等ピッチでスロット51Cに挿入されている。図9に示す例では、C相第4コイル554、C相第5コイル555、及びC相第6コイル556は、4スロットピッチで配置されている。
 すなわち、固定子50を平面視したとき、固定子50の周方向におけるC相第1コイル群55Aのコイルの配置方向とC相第2コイル群55Bのコイル配置方向は逆向きとなっている。
 同一スロット51C内において、C相第1コイル群55Aのコイルは外径側に挿入され、C相第2コイル群55Bのコイルは内径側に挿入されている。
 図9に示すように、全てのティース部51Bには、固定子50の全ての相のコイルが配置されている。詳述すると、複数のティース部51Bのそれぞれにおいて、固定子50の径方向に延びるティース部51Bの軸56の上部に、A相巻線53、B相巻線54、及びC相巻線55のコイルが渡されてコイルエンドを形成している。尚、図9では図の複雑化を避けるために、A相第2コイル群53BのA相第6コイル536、B相第1コイル群54AのB相第2コイル542、C相第1コイル群55AのC相第2コイル552が渡されてコイルエンドが形成されているティース部51Bのみ、軸56を示している。しかしながら、他のティース部51Bにおいても軸56とコイルエンドとの関係は同様の態様である。
 A相第1コイル群53AとA相第2コイル群53Bは、結線工程で接続され、直列に接続される。すなわち、A相第1コイル群巻き終わり132とA相第2コイル群巻き始め133とが直列に接続される。そして、A相第1コイル群巻き始め131は電源口出し線となり、A相第2コイル群巻き終わり134は中性点口出し線となる。
 B相第1コイル群54AとB相第2コイル群54B、結線工程で接続され、直列に接続される。すなわち、B相第1コイル群巻き終わり142とB相第2コイル群巻き始め143とが直列に接続される。そして、B相第1コイル群巻き始め141は電源口出し線となり、B相第2コイル群巻き終わり144は中性点口出し線となる。
 C相第1コイル群55AとC相第2コイル群55Bは、それぞれ結線工程で接続され、直列に接続される。すなわち、C相第1コイル群巻き終わり152とC相第2コイル群巻き始め153とが直列に接続される。そして、C相第1コイル群巻き始め151は電源口出し線となり、C相第2コイル群巻き終わり154は中性点口出し線となる。
 A相巻線53の電源口出し線であるA相第1コイル群巻き始め131と、B相巻線54の電源口出し線であるB相第1コイル群巻き始め141と、C相巻線55の電源口出し線であるC相第1コイル群巻き始め151とは、それぞれ固定子50の外径側に取り出される。従って、図1に示す固定子電源線12により、密閉容器2に取り付けられた端子13に接続する際、A相巻線53、B相巻線54、及びC相巻線55と端子13との距離がより短くなる。その結果、密閉型圧縮機1の製造コストを低減させることができる。また、固定子電源線12を長くとることによる弛みを抑制することができる。その結果、固定子電源線12の密閉容器2等への接触を抑制することができる。
 本実施の形態1によれば、A相、B相、及びC相の全ての相において、各スロット51Cに挿入される巻線が外径側の第1コイル群と内径側の第2コイル群に分けられている。そして、上述のように、全てのティース部51Bには、固定子50の全ての相のコイルが配置されている。従って、巻線が均等に配置されているためコイルエンドが局所的に大きくなることが抑制され、使用される銅量の減少の効果が得られる。その結果、固定子の製造コストを低減化し、かつモータ効率を向上させることができる。
 図10における結線は、本実施の形態1に係る固定子50の結線の一例を示すものである。図10と等価の電気回路を構成可能な結線であれば、図10に示す結線に限るものではない。
 また、本実施の形態1は、スクロール圧縮機である密閉型圧縮機1を例にとって説明したがこれに限るものではない。ロータリー圧縮機、及び他のタイプの電動機にも適用される。
実施の形態2.
 図11は、本開示の実施の形態2に係る電動機の固定子の巻線の配置態様を示す平面図である。図11は、図の複雑化を避けるため、固定子250のA相巻線70のみ示している。図11中、図3に示す構成要素と同一の構成要素には同一の符号が付されている。A相巻線70は、A相第1コイル群70Aと、A相第2コイル群70Bと、を有している。A相第1コイル群70Aは、固定子50の外径側に位置し、A相第2コイル群70Bは、固定子50の内径側に位置している。A相第1コイル群70Aの巻き始めは符号71で示され、巻き終わりは符号72で示されている。A相第2コイル群70Bの巻き始めは符号73で示され、巻き終わりは符号74で示されている。
 A相第1コイル群70Aは、A相第1コイル711、A相第2コイル712、及びA相第3コイル713を有している。A相第2コイル群70Bは、A相第4コイル714、A相第5コイル715、及びA相第6コイル716を有している。
 本実施の形態2では、A相第1コイル群70A及びA相第2コイル群70Bの、固定子50に挿入する前の各コイルの巻き線の態様は、図4に示すものと同様である。すなわち、上述の実施の形態1では、A相第1コイル群50Aの巻線方向とA相第2コイル群50Bの巻線方向は、反対であるのに対し、本実施の形態2では、A相第1コイル群70Aの巻線方向とA相第2コイル群70Bの巻線方向は同一である。
 本実施の形態2では、A相第1コイル群70Aの巻き終わり72と、A相第2コイル群70Bの巻き終わり74とが直列に接続されている。そして、A相第1コイル群70Aの巻き始め71が電源口出し線となり、A相第2コイル群70Bの巻き始め73が中性点口出し線となっている。B相巻線及びC相巻線も図11に示す配置と同様に配置される。この構成により、実施の形態1と等価の巻線を固定子50に施すことができる。
 本実施の形態2によれば、コイルの巻線方向は1方向であり、かつ、固定子50における配置態様は、A相第1コイル群70Aの各コイルが反時計回りに配置され、A相第2コイル群70Bの各コイルが反時計回りに配置される。従って、巻線工程を簡略化することができ、サイクルタイムを改善することができる。また、コイルの巻線方向は1方向であるため、A相第1コイル群70A及びA相第2コイル群70Bに用いる巻線の取り違えが抑制される。
 尚、A相第1コイル群70A及びA相第2コイル群70Bの、固定子50に挿入する前のコイルの巻き線の態様を、図5に示すものと同様としてもよい。
 尚、図11における巻線は、本実施の形態2に係る固定子50の結線の一例を示すものである。図11と等価の電気回路を構成可能な結線であれば、図11に示す結線に限るものではない。
 図12は、本開示の実施の形態3に係る電動機の固定子に挿入する前のコイル群のコイルを示す図である。図13は、本開示の実施の形態3に係る電動機の固定子の巻線の配置態様を示す平面図である。図13は、図の複雑化を避けるため、1つの相の巻線のみ示している。図12中、符号81は、コイルの巻き始めの口出し線であり、符号82は、コイルの巻き終わりの口出し線である。コイル群80は、第1コイル80A、第2コイル80B、第3コイル80C、第4コイル80D、第5コイル80E、及び第6コイル80Fを含んでいる。第1コイル80Aと第2コイル80Bは連続し、第2コイル80Bと第3コイル80Cは連続し、第3コイル80Cと第4コイル80Dは連続し、第4コイル80Dと第5コイル80Eは連続し、第5コイル80Eと第6コイル80Fは連続している。第1コイル80A、第2コイル80B、第3コイル80C、第4コイル80D、第5コイル80E、及び第6コイル80Fは、同心巻で巻かれている。
 図12に示すコイルは図13に示すように固定子350に配置される。第1コイル80A、第2コイル80B、及び第3コイル80Cが固定子350の外径側に配置され、第1コイル群を構成する。第4コイル80D、第5コイル80E、及び第6コイル80Fが固定子350の内径側に配置され、第2コイル群を構成する。第1コイル80A、第2コイル80B、及び第3コイル80Cは、固定子350を平面視したとき反時計回りに配置されている。同様に、第4コイル80D、第5コイル80E、及び第6コイル80Fは、固定子50を平面視したとき反時計回りに配置されている。
 実施の形態3においては、A相巻線、B相巻線、及びC相巻線について、図12に示す巻線を図13に示すように固定子350に配置される。
 上述の実施の形態1及び実施の形態2では、分割された2つのコイル群を結線工程で直列に接続している。これに対し、本実施の形態3では、巻線工程の段階で2つのコイル群を構成するコイルを巻線している。従って、結線工程を簡略化することができ、サイクルタイムの改善及び誤結線を抑制することができる。
 また、A相巻線、B相巻線、及びC相巻線のそれぞれにおいて、巻き始め線81が電源口出し線となり、巻き終わり線82が中性点口出し線を構成する。従って、固定子50のスロット51Cから電源が取り出される箇所を2箇所に限定することができる。その結果、結線工程前の固定子50の電源口出し線及び中性点口出し線の視認性が向上する。
実施の形態4.
 上述の実施の形態1~3では、固定子50の外径側に配置される第1コイル群の各コイルと、固定子50の内径側に配置される第2コイル群の各コイルは、同一の巻き数で巻き回されている。これに対し、実施の形態4では、第1コイル群の各コイルの巻き数と第2コイル群の各コイルの巻き数とを異ならせて固定子50が構成される。この場合、固定子50の複数のスロット51Cの内にはそれぞれ同数の巻線が挿入されている。例えば、第1コイル群の各コイルの巻き数n(nは自然数)としたとき、第2コイル群の各コイルの巻き数をn+1とする。そして、全てのスロット51Cに挿入されている巻線の数は2n+1となる。その他の構成は実施の形態1~3と同様であり、各コイルは直列に接続される。
 第1コイル群の各コイルと第2コイル群の各コイルを同一の巻き数nで固定子鉄心51に巻き回した場合、6つの直列に接続されたコイルの合計巻き数は6×nとなる。この場合、巻き数の具体的な値は、例えば、6、12、若しくは18のようになる。一方、第1コイル群の各コイルの巻き数をnとし、第2コイル群の各コイルの巻き数をn+1とした場合、6つの直列に接続されたコイルの合計巻き数は6n+3となる。この場合、巻き数の具体的な値は、例えば、9、15、若しくは21のようになる。すなわち、第1コイル群の各コイルの巻き数と第2コイル群の各コイルの巻き数とを同一にする場合に比べ、本実施の形態4においては、コイルの巻き数の選択の範囲が制限されない。従って、固定子50に施すことができるコイルの巻き数について設計の自由度が増し、より最適な巻線設計を固定子50に施すことが可能である。
 尚、本実施の形態4では、実施の形態1~3と同様、第1コイル群と第2コイル群とが直列に接続されている。そのため、同相の全てのコイルは直列に接続されており、固定子50の各スロット50C内には同数の巻線が挿入されている。従って、第1コイル群と第2コイル群との間に巻き数の差異があっても起磁力の差異が無いため、電気的な問題を発生させることなく、固定子50を構成することができる。
 尚、第2コイル群の各コイルの巻き数をnとしたとき、第1コイル群の各コイルの巻き数n+1としてもよい。
実施の形態5.
 図14は、本開示の実施の形態5に係る電動機の固定子の巻線の配置態様を示す平面図である。図14は、図の複雑化を避けるため、実施の形態1と同様のA相巻線53のみ示している。図14において、図9に示す構成要素と同一の構成要素には同一の符号が付されている。上述のように、A相第1コイル群巻き終わり132とA相第2コイル群巻き始め133は直列に接続されている。また、A相第1コイル群巻き始め131は電源口出し線であり、A相第2コイル群巻き終わり134は中性点口出し線である。図14に示すように、本実施の形態5においては、電源線が接続されるA相第1コイル531と、中性点に接続されるA相第6コイル536は、固定子50の中心を挟んで対向するよう、A相第1コイル群53A及びA相第2コイル群53Bは配置されている。換言すると、電源に最も近いA相第1コイル531と、電源から最も遠いA相第6コイル536と、固定子50の中心を挟んで対向するよう、A相第1コイル群53A及びA相第2コイル群53Bは配置されている。
 図15は、本開示の実施の形態5に係る電動機の固定子の巻線の配置態様を示す平面図である。図15は、図の複雑化を避けるため、実施の形態2と同様のA相巻線70のみ示している。図15において、図11に示す構成要素と同一の構成要素には同一の符号が付されている。上述のように、A相第1コイル群巻き終わり72とA相第2コイル群巻き終わり74は直列に接続されている。また、A相第1コイル群巻き始め71は電源口出し線であり、A相第2コイル群巻き始め73は中性点口出し線である。図15に示すように、本実施の形態5においては、電源線が接続されるA相第1コイル711と、中性点に接続されるA相第4コイル714は、固定子250の中心を挟んで対向するよう、A相第1コイル群70A及びA相第2コイル群70Bは配置されている。換言すると、電源に最も近いA相第1コイル711と、電源から最も遠いA相第4コイル714は、固定子50の中心を挟んで対向するよう、A相第1コイル群70A及びA相第2コイル群70Bは配置されている。
 電源に最も近いコイルに対する電位差は、電源から最も遠い中性点に接続されるコイルでは最も高くなる。本実施の形態5によれば、本実施の形態5では、固定子の外径側に配置される第1コイル群のうち電源に最も近いコイルと、固定子の内径側に配置される第2コイル群のうち電源から最も遠いコイルとが、固定子の中心を挟んで対向している。従って、電位差の最も大きいコイルが同一スロットに挿入されることが回避され、固定子の信頼性が向上する。
 1 密閉型圧縮機、2 密閉容器、3 圧縮機構部、4 回転電機部、5 口出し線取り出し位置、10 回転軸、11 サブフレーム、12 固定子電源線、13 端子、21 冷凍機油、22 吐出管、31 固定スクロール、32 揺動スクロール、33 ガイドフレーム、34 コンプライアントフレーム、35 オルダムリング、36 吐出ポート、37 吸入ポート、40 回転子、50 固定子、50A A相第1コイル群、50B A相第2コイル群、50C スロット、51 固定子鉄心、51A コアバック部、51B ティース部、51C スロット、52 巻線、53 A相巻線、53A A相第1コイル群、53B A相第2コイル群、54 B相巻線、54A B相第1コイル群、54B B相第2コイル群、55 C相巻線、55A C相第1コイル群、55B C相第2コイル群、56 軸、60F 第6コイル、70 A相巻線、70A A相第1コイル群、70B A相第2コイル群、80 コイル群、80A 第1コイル、80B 第2コイル、80C 第3コイル、80D 第4コイル、80E 第5コイル、80F 第6コイル、101 第1巻線、101A 第1巻線第1コイル、101B 第1巻線第2コイル、101C 第1巻線第3コイル、102 口出し線、103 口出し線、111 第2巻線、111A 第2巻線第1コイル、111B 第2巻線第2コイル、111C 第2巻線第3コイル、112 口出し線、113 口出し線、250 固定子、350 固定子、531 A相第1コイル、532 A相第2コイル、533 A相第3コイル、534 A相第4コイル、535 A相第5コイル、536 A相第6コイル、541 B相第1コイル、542 B相第2コイル、543 B相第3コイル、544 B相第4コイル、545 B相第5コイル、546 B相第6コイル、551 C相第1コイル、552 C相第2コイル、553 C相第3コイル、554 C相第4コイル、555 C相第5コイル、556 C相第6コイル、711 A相第1コイル、712 A相第2コイル、713 A相第3コイル、714 A相第4コイル、715 A相第5コイル、716 A相第6コイル、n 巻き数。

Claims (10)

  1.  環状のコアバック部と、前記コアバック部から内方へ延び、周方向において間隔を空けて形成されている複数のティース部と、を有し、前記複数のティース部において隣り合うティース部により複数のスロットが形成されている固定子鉄心と、
     複数の相毎に前記ティース部に巻き回された巻線と、を備える電動機の固定子であって、
     前記巻線は、前記固定子の外径側に配置されている第1コイル群と、前記固定子の内径側に配置されている第2コイル群と、を構成しており、
     前記第1コイル群及び前記第2コイル群は、それぞれ同心巻で巻かれている複数のコイルを有し、
     前記複数のコイルは直列に接続され、
     前記ティース部において、前記固定子の径方向に延びる軸の上部に前記複数の相の全ての相の前記巻線が渡っている電動機の固定子。
  2.  前記第1コイル群を構成する前記複数のコイルは直列に接続され、前記第2コイル群を構成する前記複数のコイルは直列に接続され、前記第1コイル群と前記第2コイル群は直列に結線されている請求項1に記載の電動機の固定子。
  3.  前記第1コイル群の前記複数のコイルの巻線方向と前記第2コイル群の前記複数のコイルの巻線方向は反対方向である請求項2に記載の電動機の固定子。
  4.  前記第1コイル群の巻き終わりと前記第2コイル群の巻き始めが直列に接続されており、
     前記第1コイル群の巻き始めが電源口出し線であり
     前記第2コイル群の巻き終わりが中性点口出し線である請求項3に記載の電動機の固定子。
  5.  前記第1コイル群の巻き終わりと前記第2コイル群の巻き終わりが直列に接続されており、
     前記第1コイル群の巻き始めが電源口出し線であり
     前記第2コイル群の巻き始めが中性点口出し線である請求項3に記載の電動機の固定子。
  6.  前記第1コイル群の前記複数のコイルの巻線方向と前記第2コイル群の前記複数のコイルの巻線方向は同一であり、前記第1コイル群の前記複数のコイルと前記第2コイル群の前記複数のコイルは連続している請求項2に記載の電動機の固定子。
  7.  前記第1コイル群に電源線が接続され、前記第2コイル群に中性点が接続されている請求項1~6のいずれか一項に記載の電動機の固定子。
  8.  前記第1コイル群の複数のコイルの巻数と前記第2コイル群の複数のコイルの巻数は異なっている請求項1~7のいずれか一項に記載の電動機の固定子。
  9.  前記第1コイル群の前記複数のコイルのうち電源に最も近いコイルと、前記第2コイル群のうち電源から最も遠いコイルとが、前記固定子の中心を挟んで対向するよう、前記第1コイル群及び前記第2コイル群が配置されている請求項1に記載の電動機の固定子。
  10.  請求項1~9のいずれか一項に記載の電動機の固定子を有する回転電機部と、
     前記回転電機部により駆動し、外部から吸入した冷媒を圧縮する圧縮機構部と、
     前記回転電機部及び前記圧縮機構部を収納する密閉容器と、を備えた圧縮機。
PCT/JP2020/011645 2020-03-17 2020-03-17 電動機の固定子及び圧縮機 WO2021186530A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022508642A JP7325608B2 (ja) 2020-03-17 2020-03-17 電動機の固定子及び圧縮機
CZ2022386A CZ2022386A3 (cs) 2020-03-17 2020-03-17 Stator pro motor a kompresor
CN202080098381.5A CN115336141A (zh) 2020-03-17 2020-03-17 电动机的定子以及压缩机
PCT/JP2020/011645 WO2021186530A1 (ja) 2020-03-17 2020-03-17 電動機の固定子及び圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011645 WO2021186530A1 (ja) 2020-03-17 2020-03-17 電動機の固定子及び圧縮機

Publications (1)

Publication Number Publication Date
WO2021186530A1 true WO2021186530A1 (ja) 2021-09-23

Family

ID=77770896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011645 WO2021186530A1 (ja) 2020-03-17 2020-03-17 電動機の固定子及び圧縮機

Country Status (4)

Country Link
JP (1) JP7325608B2 (ja)
CN (1) CN115336141A (ja)
CZ (1) CZ2022386A3 (ja)
WO (1) WO2021186530A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171203A (ja) * 2014-03-06 2015-09-28 シャープ株式会社 圧縮機
JP2016152730A (ja) * 2015-02-18 2016-08-22 ファナック株式会社 3相交流電動機
WO2019016893A1 (ja) * 2017-07-19 2019-01-24 三菱電機株式会社 回転電機
WO2020008883A1 (ja) * 2018-07-06 2020-01-09 三菱電機株式会社 回転電機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171203A (ja) * 2014-03-06 2015-09-28 シャープ株式会社 圧縮機
JP2016152730A (ja) * 2015-02-18 2016-08-22 ファナック株式会社 3相交流電動機
WO2019016893A1 (ja) * 2017-07-19 2019-01-24 三菱電機株式会社 回転電機
WO2020008883A1 (ja) * 2018-07-06 2020-01-09 三菱電機株式会社 回転電機

Also Published As

Publication number Publication date
CN115336141A (zh) 2022-11-11
JPWO2021186530A1 (ja) 2021-09-23
JP7325608B2 (ja) 2023-08-14
CZ2022386A3 (cs) 2022-10-26

Similar Documents

Publication Publication Date Title
JP4841536B2 (ja) モータ及びそれを備えた冷媒圧縮機
JP5259934B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
US7501734B2 (en) Motor, compressor, and air conditioner
JP6664958B2 (ja) コンプレッサ用モータ及びそれを備えたコンプレッサ
JP5372468B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP3938726B2 (ja) 永久磁石式回転電機およびそれを用いた圧縮機
JP2010119163A (ja) 圧縮機、圧縮機の組立設備、及び、圧縮機の組立方法
JP2007330060A (ja) 永久磁石電動機,永久磁石同期電動機の回転子及びそれを用いた圧縮機
JP3960122B2 (ja) 電動圧縮機
KR101663409B1 (ko) 차량용 전동 압축기
JP2007312513A (ja) 永久磁石式回転電機及びそれを用いた電動圧縮機
JP3953242B2 (ja) 薄型大径回転電機およびこれを用いたエレベータ
JP2016116391A (ja) コンプレッサ用モータ及びそれを備えたコンプレッサ
US8602752B2 (en) Electric compressor
WO2021186530A1 (ja) 電動機の固定子及び圧縮機
JP5208662B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
US20110210639A1 (en) Motor stator and phase coil preform
KR100540096B1 (ko) 전동 압축기
JP2011102543A (ja) 圧縮機
WO2017209110A1 (ja) 電動圧縮機
JP7113957B2 (ja) 固定子、電動機及び圧縮機
JP5506269B2 (ja) 密閉型電動圧縮機
JP2005245101A (ja) 電動圧縮機
WO2023054485A1 (ja) 電動圧縮機
WO2022071358A1 (ja) コア、回転電気機械、及び静止器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925297

Country of ref document: EP

Kind code of ref document: A1