WO2021185162A1 - 晶圆卡盘温度量测及温度校准的方法和温度量测系统 - Google Patents

晶圆卡盘温度量测及温度校准的方法和温度量测系统 Download PDF

Info

Publication number
WO2021185162A1
WO2021185162A1 PCT/CN2021/080389 CN2021080389W WO2021185162A1 WO 2021185162 A1 WO2021185162 A1 WO 2021185162A1 CN 2021080389 W CN2021080389 W CN 2021080389W WO 2021185162 A1 WO2021185162 A1 WO 2021185162A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
wafer chuck
semiconductor device
wafer
semiconductor devices
Prior art date
Application number
PCT/CN2021/080389
Other languages
English (en)
French (fr)
Inventor
钱仕兵
林仕杰
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/376,584 priority Critical patent/US11852542B2/en
Publication of WO2021185162A1 publication Critical patent/WO2021185162A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/002Calibrated temperature sources, temperature standards therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2213/00Temperature mapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • G01K3/06Thermometers giving results other than momentary value of temperature giving means values; giving integrated values in respect of space

Definitions

  • the present invention relates to the field of semiconductor technology, in particular to a method for temperature measurement and temperature calibration of a wafer chuck and a temperature measurement system.
  • the temperature measurement method of the wafer chuck temperature in the process chamber of a typical semiconductor equipment is to place a temperature calibrator at various places on the equipment carrying table, and use the temperature calibrator to correct the temperature of the process chamber to ensure that all parts of the carrying table are The temperature is the same, but this method has some disadvantages.
  • One aspect of the present application provides a method for measuring the temperature of a wafer chuck, including:
  • the heat source is provided with a wafer chuck, a test wafer is placed on the wafer chuck, and a plurality of semiconductor devices whose electrical parameters change with temperature are formed on the test wafer;
  • the set temperature is greater than or equal to the minimum critical temperature that the semiconductor device can withstand and is less than or equal to the maximum critical temperature that the semiconductor device can withstand.
  • Another aspect of the present application provides a method for calibrating the temperature of a wafer chuck, including the step of measuring the temperature of the wafer chuck.
  • the temperature measurement of the wafer chuck adopts the above-mentioned wafer chuck temperature measurement.
  • the temperature calibration method further includes:
  • the heat source is adjusted according to the actual temperature distribution of the wafer chuck, so that when the temperature of the wafer chuck reaches the set temperature, the actual temperature of the semiconductor device tends to the set temperature.
  • the temperature measurement system includes:
  • a heating module the heating module is used to heat the wafer chuck to a set temperature, a test wafer is placed on the wafer chuck, and an electrical parameter is formed on the test wafer to have a function with temperature Varying multiple semiconductor devices;
  • a setting module the setting module is used to set the set temperature of the wafer chuck
  • a measuring module which is used to measure the semiconductor device on the test wafer and obtain the electrical parameters of the semiconductor device
  • a calculation module which is used to obtain the function change of the electrical parameter with temperature and the electrical parameter of the semiconductor device corresponding to the set temperature, and calculate the actual temperature of the semiconductor device corresponding to the set temperature, And obtaining the actual temperature distribution of the wafer chuck according to the actual temperature of the semiconductor device;
  • the set temperature is greater than or equal to the minimum critical temperature that the semiconductor device can withstand and is less than or equal to the maximum critical temperature that the semiconductor device can withstand.
  • FIG. 1 is a flowchart of a method for measuring the temperature of a wafer chuck in an embodiment
  • FIG. 2 is a flow chart of measuring the semiconductor device to obtain the electrical parameters corresponding to the semiconductor device in an embodiment
  • 3 is a flowchart of obtaining the actual temperature of the semiconductor device according to the electrical parameter and the electrical parameter change with the temperature function in an embodiment
  • FIG. 4 is a flowchart of obtaining the actual temperature distribution of the wafer chuck according to the actual temperature of the semiconductor device in an embodiment
  • FIG. 6 is a second distribution of the actual temperature of the wafer chuck when the temperature of the wafer chuck reaches a second set temperature in an embodiment
  • Fig. 7 is a structural block diagram of a temperature measurement system in an embodiment.
  • first element, component, region, layer or section discussed below may be represented as a second element, component, region, layer or section.
  • Spatial relationship terms such as “under”, “below”, “below”, “below”, “above”, “above”, etc., in It can be used here for the convenience of description to describe the relationship between one element or feature shown in the figure and other elements or features. It should be understood that in addition to the orientations shown in the figures, the spatial relationship terms are intended to include different orientations of devices in use and operation. For example, if the device in the figure is turned over, then elements or features described as “under” or “below” or “under” other elements will be oriented “on” the other elements or features. Therefore, the exemplary terms “below” and “below” can include both an orientation of above and below. The device can be otherwise oriented (rotated by 90 degrees or other orientation) and the spatial descriptors used here are interpreted accordingly.
  • a method known to the applicant for measuring the temperature of the wafer chuck temperature of the process chamber of the semiconductor device is to place a temperature calibrator at various places on the equipment carrying table, and use the temperature calibrator to calibrate the temperature of the process chamber. Ensure that the temperature everywhere on the bearing platform is consistent, but this method has the following disadvantages: 1. Limited by the number of sensors placed on the bearing platform, it is impossible to measure the temperature distribution on the bearing platform; 2. Because of the surrounding environment, the sensor Between the air, the test points on the wafer are the wafers, the temperature detected by the sensor on the carrying table and the actual temperature of the wafer placed on the carrying table have a certain deviation; 3. The temperature is changed by manpower, and the waiting time is long Requires the inspector to slowly measure one temperature by one temperature, the measurement cycle is long, and the labor cost is high.
  • a method for measuring the temperature of a wafer chuck which includes:
  • a heat source is provided, a wafer chuck is arranged on the heat source, a test wafer is placed on the wafer chuck, and a plurality of semiconductor devices whose electrical parameters change with temperature are formed on the test wafer.
  • the semiconductor devices on the test wafer include at least one of a bipolar junction transistor device, a resistance device, and a field effect tube device.
  • the semiconductor device includes one or more electrical parameters within a certain temperature range (for example, between -150 degrees Celsius and 150 degrees Celsius, between -100 degrees Celsius and 100 degrees Celsius) having a function change with temperature, for example Resistance parameters, voltage parameters, etc.
  • a certain temperature range for example, between -150 degrees Celsius and 150 degrees Celsius, between -100 degrees Celsius and 100 degrees Celsius
  • the size of the wafer chuck is related to the size of the wafer that the wafer chuck is used to carry.
  • the wafer chuck is a wafer chuck or a carrier that carries 8-inch wafers Wafer chuck for 1-inch wafers.
  • the temperature of the wafer chuck can reach an arbitrary set temperature that is greater than or equal to the minimum critical temperature that the semiconductor device can withstand, and is less than or equal to the maximum critical temperature that the semiconductor device can withstand, For example, -40°C, -20°C, 0°C, 10°C, 25°C, 50°C, 85°C, 100°C, 125°C, 150°C, etc.
  • S106 Measure the semiconductor device, and obtain electrical parameters corresponding to the semiconductor device.
  • the semiconductor device is measured to obtain the electrical parameters corresponding to the semiconductor device.
  • S108 Obtain the actual temperature of the semiconductor device according to the electrical parameter and the change of the electrical parameter as a function of temperature.
  • the actual temperature of the semiconductor device is obtained, that is, the measured temperature of the semiconductor device is obtained.
  • the actual temperature of the semiconductor device on the wafer chuck is the same as the actual temperature of the wafer chuck underneath. According to the actual temperature of the semiconductor device, the actual temperature distribution of the wafer chuck can be obtained, that is, the wafer card is obtained. The actual temperature distribution of the wafer chuck when the temperature of the disk reaches the set temperature.
  • the set temperature includes a first set temperature and a second set temperature
  • the test wafer has A semiconductor devices, and A is an integer greater than or equal to 2; as shown in FIG. 2, step S106 include:
  • the wafer chuck temperature After the wafer chuck temperature reaches the first set temperature, select B semiconductor devices greater than or equal to 2 and less than or equal to A from the A semiconductor devices of the test wafer, and measure the electrical parameters of the B semiconductor devices respectively Afterwards, the first set of parameters composed of the electrical parameters of B semiconductor devices is obtained.
  • the C semiconductor devices include at least one semiconductor device belonging to the B semiconductor devices.
  • the C semiconductor devices are composed of a group of semiconductor devices different from the B semiconductor devices on the test wafer.
  • step S108 includes:
  • the actual temperatures of the B semiconductor devices are obtained respectively according to the change of the first group of parameters and the electrical parameters as a function of temperature.
  • the actual temperatures of the C semiconductor devices are obtained respectively.
  • step S110 includes:
  • S402 Obtain a first distribution of the actual temperature of the wafer chuck according to the actual temperature of the B semiconductor devices.
  • the temperature of the semiconductor device on the wafer chuck can be used to characterize the temperature of the wafer chuck below it.
  • the actual temperature of the semiconductor device can obtain the first distribution of the actual temperature of the wafer chuck when the temperature of the wafer chuck reaches the first set temperature.
  • the first distribution of the actual temperature of the wafer chuck when the temperature reaches the first set temperature wherein the same letter represents an area with the same temperature or the same letter represents an area with a temperature fluctuation range less than or equal to 0.02°C.
  • S404 Obtain a second distribution of the actual temperature of the wafer chuck according to the actual temperature of the C semiconductor devices.
  • the temperature of the semiconductor device on the wafer chuck can be used to characterize the temperature of the wafer chuck below it.
  • the actual temperature of the semiconductor device can obtain the second distribution of the actual temperature of the wafer chuck when the temperature of the wafer chuck reaches the second set temperature.
  • the second distribution of the actual temperature of the wafer chuck when the temperature reaches the second set temperature where the same letter represents an area with the same temperature or the same letter represents an area with a temperature fluctuation range of less than or equal to 0.02°C.
  • B or/and C are equal to A, and the first distribution of the actual temperature of the wafer chuck when the temperature of the wafer chuck obtained in step S402 reaches the first set temperature and the first distribution of the actual temperature of the wafer chuck obtained in step S404 When the temperature of the circular chuck reaches the second set temperature, the second distribution of the actual temperature of the wafer chuck is the temperature distribution of all positions on the surface of the wafer chuck.
  • the B semiconductor devices or/and the C semiconductor devices are semiconductor devices in the central region of the test wafer.
  • the B semiconductor devices or/and the C semiconductor devices are evenly distributed on the test wafer.
  • the first set of parameters and/or the second set of parameters include an electrical parameter that changes as a function of temperature.
  • the first set of parameters and/or the second set of parameters include two or more electrical parameters that change as a function of temperature
  • the temperature of the wafer chuck is obtained through step S110 to reach the set temperature
  • the actual temperature distribution of multiple wafer chucks with different electrical parameters corresponding to different electrical parameters the actual temperature distribution of multiple wafer chucks at the same set temperature is fitted to obtain the actual temperature distribution of a wafer chuck
  • the temperature distribution is used as the actual temperature distribution of the wafer chuck at the set temperature, thereby reducing the deviation of the temperature measurement of the wafer chuck.
  • the method before step S104, further includes the step of providing a measurement device, the measurement device having a measurement probe, and the measurement probe is close to the test wafer.
  • the method before measuring the semiconductor device, the method further includes: acquiring the position coordinates of each semiconductor device on the test wafer, and storing the position coordinates in the measuring device, The measurement device adjusts the position of the measurement probe according to the position coordinates, so that the probe card can measure the electrical parameters of the chip.
  • the thickness of different test wafers has a certain difference.
  • the measurement probe Before measuring the electrical parameters, there is a certain distance between the measurement probe and the test wafer, that is, the measurement probe has a certain height relative to the test wafer. The initial position and height of the measuring probe enable the measuring probe to effectively contact the test area on the semiconductor device to be measured in the subsequent measurement steps, thereby obtaining the electrical parameters of the semiconductor device.
  • measurement probes of different materials have different deformations with temperature, and the size of semiconductor devices on the test wafer also varies with temperature to varying degrees.
  • the measurement probes are adjusted. The initial position and height are matched with the set temperature of the wafer chuck, so that in the subsequent measurement steps, the measurement probe can effectively contact the test area on the semiconductor device to be measured, thereby obtaining the electrical power of the semiconductor device.
  • Sexual parameters are adjusted.
  • step S104 the method includes:
  • the electrical parameter measurement is started, so that the temperature of the wafer chuck is in a stable state or the electrical parameters of the semiconductor device change less, and an electrical parameter with less deviation is obtained.
  • Test data of sexual parameters After the temperature of the wafer chuck is maintained for an interval of time t, the electrical parameter measurement is started, so that the temperature of the wafer chuck is in a stable state or the electrical parameters of the semiconductor device change less, and an electrical parameter with less deviation is obtained. Test data of sexual parameters.
  • the interval time t is greater than or equal to 0.5 hours.
  • step S106 includes: after the measuring probe is moved to the surface of the test wafer, stopping for a period of time so that the temperature of the measuring probe reaches the temperature of the wafer chuck and then the electrical parameter measurement is started.
  • step S110 the temperature of the wafer chuck returns to the set temperature of the idle state of the wafer chuck.
  • the above-mentioned method for measuring the temperature of a wafer chuck includes providing a heat source, a wafer chuck is provided on the heat source, and a test wafer is placed on the wafer chuck, and an electrical property is formed on the test wafer.
  • controlling the heat source to make the temperature of the wafer chuck reach a set temperature measuring the semiconductor devices to obtain electrical parameters corresponding to the semiconductor devices; Obtain the actual temperature of the semiconductor device according to the electrical parameter and the electrical parameter as a function of temperature; obtain the actual temperature distribution of the wafer chuck according to the actual temperature of the semiconductor device; wherein
  • the set temperature is greater than or equal to the minimum critical temperature that the semiconductor device can withstand and less than or equal to the maximum critical temperature that the semiconductor device can withstand.
  • a test wafer formed with a plurality of semiconductor devices whose electrical parameters change as a function of temperature is placed on a wafer chuck, and the semiconductor device is measured to obtain the electrical parameters corresponding to the semiconductor device; Measure the electrical parameter corresponding to the semiconductor device when the temperature of the wafer chuck reaches the set temperature, and obtain the actual temperature of the semiconductor device according to the electrical parameter and the change of the electrical parameter as a function of temperature, and then obtain the crystal
  • the actual temperature distribution of the circular chuck eliminates the influence of the surrounding environment on the temperature measurement of the wafer chuck, and reduces the deviation of the temperature measurement of the wafer chuck.
  • a method for calibrating the temperature of a wafer chuck is provided.
  • a method for measuring the temperature of a chuck, and the method for temperature calibration further includes:
  • the heat source is adjusted according to the actual temperature distribution of the wafer chuck, so that when the temperature of the wafer chuck reaches a set temperature, the actual temperature of the semiconductor device tends to the set temperature.
  • the wafer chuck includes a wafer chuck carrying 8-inch wafers and a wafer chuck carrying 12-inch wafers.
  • the method for calibrating the temperature of the wafer chuck includes the step of measuring the temperature of the wafer chuck, the temperature measurement of the wafer chuck adopts the method for measuring the temperature of the wafer chuck as described in any one of the above,
  • the temperature calibration method further includes: adjusting the heat source according to the actual temperature distribution of the wafer chuck, so that the actual temperature of the semiconductor device tends to be when the temperature of the wafer chuck reaches a set temperature. At the set temperature.
  • a test wafer formed with a plurality of semiconductor devices whose electrical parameters change as a function of temperature is placed on a wafer chuck, and the semiconductor device is measured to obtain the electrical parameters corresponding to the semiconductor device; Measure the electrical parameter corresponding to the semiconductor device when the temperature of the wafer chuck reaches the set temperature, and obtain the actual temperature of the semiconductor device according to the electrical parameter and the change of the electrical parameter as a function of temperature, and then obtain the crystal
  • the actual temperature distribution of the circular chuck eliminates the influence of the surrounding environment on the temperature measurement of the wafer chuck, and reduces the deviation of the temperature measurement of the wafer chuck.
  • the heat source is adjusted according to the actual temperature distribution of the wafer chuck, so that when the temperature of the wafer chuck reaches a set temperature, the actual temperature of the semiconductor device tends to the set temperature.
  • the deviation between the actual temperature of the test semiconductor device position on the obtained wafer chuck and the set temperature is reduced, and the accuracy of the temperature calibration of the wafer chuck is improved.
  • a temperature measurement system 100 for measuring the temperature of a wafer chuck, and the temperature measurement system includes:
  • the heating module 102 is used to heat the wafer chuck to a set temperature, a test wafer is placed on the wafer chuck, and an electrical parameter is formed on the test wafer to have a function with temperature Varying multiple semiconductor devices.
  • the heating module 102 After the heating module 102 obtains the set temperature of the wafer chuck, it heats the temperature of the wafer chuck to a corresponding set temperature.
  • the semiconductor device includes at least one of a bipolar junction transistor device, a resistance device, and a field effect tube device.
  • the semiconductor device has an electrical parameter greater than or equal to a certain temperature range (for example, between -150 degrees Celsius and 150 degrees Celsius, between -100 degrees Celsius and 100 degrees Celsius) with a function of temperature, such as Resistance parameters, voltage parameters, etc.
  • a certain temperature range for example, between -150 degrees Celsius and 150 degrees Celsius, between -100 degrees Celsius and 100 degrees Celsius
  • a function of temperature such as Resistance parameters, voltage parameters, etc.
  • the size of the wafer chuck is related to the size of the wafer that the wafer chuck is used to carry.
  • the wafer chuck is a wafer chuck that carries 8-inch wafers or Wafer chuck for 12-inch wafers.
  • the setting module 104 is used to set the set temperature of the wafer chuck, wherein the set temperature is greater than or equal to the minimum critical temperature that the semiconductor device can withstand and is less than or equal to the semiconductor device's minimum critical temperature The maximum critical temperature to withstand.
  • the measurement module 106 is used to measure the semiconductor device on the test wafer and obtain the electrical parameters of the semiconductor device.
  • the test module 106 is also used to obtain the position coordinates of the semiconductor device on the test wafer, and store the position coordinates in the measurement module; the measurement module includes a measurement probe Needle, the measurement module is also used to adjust the position of the measurement probe according to the position coordinates.
  • the calculation module 108 is configured to obtain the function change of the electrical parameter with temperature and the electrical parameter of the semiconductor device corresponding to the set temperature, and calculate the actual temperature of the semiconductor device corresponding to the set temperature, And obtain the actual temperature distribution of the wafer chuck according to the actual temperature of the semiconductor device.
  • the set temperature includes a first set temperature and a second set temperature; the setting module 104 is also used to set the B semiconductor devices on the test wafer to be corresponding to the first set temperature The semiconductor devices and the C semiconductor devices on the test wafer are semiconductor devices corresponding to the second set temperature; the measurement module 106 is also used to measure the electrical power of the B semiconductor devices on the test wafer at the first temperature. Parameters to obtain a first set of parameters.
  • the measurement module 106 is also used to measure the electrical parameters of the C semiconductor devices on the test wafer at the second temperature to obtain a second set of parameters; the calculation module 108 is also used to The acquired first set of parameters, the second set of parameters, and the electrical parameters change as a function of temperature, and the actual temperatures corresponding to the B semiconductor devices and the C semiconductor devices are obtained respectively, and the actual temperatures corresponding to the B semiconductor devices and the C semiconductor devices are obtained respectively.
  • the actual temperatures corresponding to the C semiconductor devices are obtained, and the first distribution of the actual temperature of the wafer chuck at the first set temperature and the second distribution of the actual temperature of the wafer chuck at the second set temperature are obtained Distribution; wherein, there are A semiconductor devices on the test wafer, A is an integer greater than or equal to 2, and B and C are both integers greater than or equal to 2 and less than or equal to A.
  • the set temperature of the wafer chuck is set in the setting module 104 as required, for example, -40°C, -20°C, 0°C, 10°C, 25°C, 50°C, 85°C, 100°C, 125°C, 150°C, etc.
  • At least one semiconductor device among the C semiconductor devices belongs to the B semiconductor devices.
  • the C semiconductor devices are composed of a group of semiconductor devices different from the B semiconductor devices on the test wafer.
  • the B semiconductor devices or/and the C semiconductor devices are semiconductor devices in the central region of the test wafer.
  • the B semiconductor devices or/and the C semiconductor devices are evenly distributed on the test wafer.
  • the temperature measurement system described above is used to measure the temperature of the wafer chuck.
  • the temperature measurement system includes a heating module for heating the wafer chuck to a set temperature.
  • a test wafer is placed on the round chuck, and a plurality of semiconductor devices whose electrical parameters change with temperature are formed on the test wafer; a setting module, which is used to set the wafer chuck.
  • Constant temperature measurement module, the measurement module is used to measure the semiconductor device on the test wafer, to obtain the electrical parameters of the semiconductor device; calculation module, the calculation module is used to obtain the electrical parameters
  • the functional change of temperature and the electrical parameters of the semiconductor device corresponding to the set temperature are calculated to obtain the actual temperature of the semiconductor device corresponding to the set temperature, and the wafer chuck is obtained according to the actual temperature of the semiconductor device The actual temperature distribution; wherein the set temperature is greater than or equal to the minimum critical temperature that the semiconductor device can withstand and less than or equal to the maximum critical temperature that the semiconductor device can withstand.
  • This solution uses a heating module to heat the wafer chuck on which the test wafer is placed to a set temperature, and then the measurement module measures the semiconductor devices on the test wafer to obtain the electrical parameters of the semiconductor devices, and the calculation module is based on Obtain the change of the electrical parameters as a function of temperature and the electrical parameters of the semiconductor device corresponding to the set temperature, calculate the actual temperature of the semiconductor device corresponding to the set temperature, and calculate the actual temperature of the semiconductor device according to the actual temperature of the semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种晶圆卡盘温度量测及温度校准的方法和温度量测系统。包括在晶圆卡盘上放置测试晶圆(S102);测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件,使晶圆卡盘的温度达到设定温度(S104);对半导体器件进行量测,获取半导体器件对应的电性参数(S106);根据电性参数和电性参数随温度的函数变化获取半导体器件的实际温度(S108);根据半导体器件的实际温度获取晶圆卡盘的实际温度分布(S110)。

Description

晶圆卡盘温度量测及温度校准的方法和温度量测系统
本申请要求于2020年3月19日提交的申请号为202010196028.2、名称为“晶圆卡盘温度量测及温度校准的方法和温度量测系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体技术领域,特别是涉及一种晶圆卡盘温度量测及温度校准的方法和一种温度量测系统。
背景技术
典型半导体设备的工艺腔室的晶圆卡盘温度的测温方式是在设备承载台上的各处放置校温器,利用校温器进行工艺腔室的温度校正,以确保承载台上各处的温度一致,但是该方法具有一些缺点。
发明内容
本申请的一个方面提供一种晶圆卡盘温度量测的方法,包括:
提供热源,所述热源上设有晶圆卡盘,将测试晶圆放置在所述晶圆卡盘上,所述测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件;
控制所述热源使所述晶圆卡盘的温度达到设定温度;
对所述半导体器件进行量测,获取所述半导体器件对应的电性参数;
根据所述电性参数和所述电性参数随温度的函数变化获取所述半导体器件的实际温度;
根据所述半导体器件的实际温度,获取所述晶圆卡盘的实际温度分布;
其中,所述设定温度大于等于所述半导体器件所能承受的最小临界温度且小于等于所述半导体器件所能承受的最大临界温度的数值。
本申请的另一方面提供一种晶圆卡盘温度校准的方法,包括进行晶圆卡盘温度量测的步骤,所述晶圆卡盘温度量测采用如上所述的晶圆卡盘温度量测的方法,所述温度校准的方法还包括:
根据所述晶圆卡盘的实际温度分布对热源进行调整,使得在所述晶圆卡盘的温度达到设定温度时半导体器件的实际温度趋于所述设定温度。
本申请的再一方面提供一种温度量测系统,用于量测晶圆卡盘的温度,所述温度量测系统包括:
加热模块,所述加热模块用于将所述晶圆卡盘加热到设定温度,所述晶圆卡盘上放置有测试晶圆,所述测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件;
设置模块,所述设置模块用于设置所述晶圆卡盘的设定温度;
测量模块,所述测量模块用于量测所述测试晶圆上的半导体器件,获取所述半导体器件的电性参数;
计算模块,所述计算模块用于获取所述电性参数随温度的函数变化和所述设定温度对应的半导体器件的电性参数,计算得到所述设定温度对应的半导体器件的实际温度,并根据所述半导体器件的实际温度获取所述晶圆卡盘的实际温度分布;
其中,所述设定温度大于等于所述半导体器件所能承受的最小临界温度且小于等于所述半导体器件所能承受的最大临界温度。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明本申请的实施例,可参考一幅或多幅附图,但用于描述附图的附加细节或示例不应当被认为是对本申请的发明创造、目前所描述的实施例或优选方式中任何一者的范围的限制。
图1为一实施例中晶圆卡盘温度量测的方法流程图;
图2为一实施例中对所述半导体器件进行量测,获取所述半导体器件对应的电性参数的流程图;
图3为一实施例中根据所述电性参数和所述电性参数随温度的函数变化获取所述半导体器件的实际温度的流程图;
图4为一实施例中根据所述半导体器件的实际温度,获取所述晶圆卡盘的实际温度分布的流程图;
图5为一实施例中晶圆卡盘的温度达到第一设定温度时晶圆卡盘的实际温度的第一分布;
图6为一实施例中晶圆卡盘的温度达到第二设定温度时晶圆卡盘的实际温度的第二分布;
图7为一实施例中温度量测系统的结构框图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第 一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
申请人已知的一种半导体设备的工艺腔室的晶圆卡盘温度的测温方式是在设备承载台上的各处放置校温器,利用校温器进行工艺腔室的温度校正,以确保承载台上各处的温度一致,但是该方法具有以下缺点:1.受限于承载台上放置的传感器的数量,无法测出承载台上的温度分布;2.因为周围环境的关系,传感器之间是空气,晶圆上的测试点之间为晶圆,承载台上传感器检测到的温度和放置在承载台上的晶圆的实际温度具有一定的偏差;3.人力变温,等待时间长,需要检测人员一个温度一个温度的慢慢测量,测量周期 长,人力成本高。
如图1所示,在一个实施例中,提供一种晶圆卡盘温度量测的方法,包括:
S102,在晶圆卡盘上放置测试晶圆。
提供热源,所述热源上设有晶圆卡盘,将测试晶圆放置在所述晶圆卡盘上,所述测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件。
在一个实施例中,所述测试晶圆上的半导体器件至少包括双极结型晶体管器件、电阻器件、场效应管器件中的一种。
在一个实施例中,所述半导体器件包括大于等于一种电性参数在一定温度范围内(例如-150摄氏度~150摄氏度之间、-100摄氏度~100摄氏度之间)随温度具有函数变化,例如电阻参数、电压参数等。
在一个实施例中,所述晶圆卡盘的尺寸与所述晶圆卡盘用于承载的晶圆的尺寸有关,例如晶圆卡盘为承载8英寸晶圆的晶圆卡盘或承载12寸晶圆的晶圆卡盘。
S104,使所述晶圆卡盘的温度达到设定温度。
通过控制所述热源,使所述晶圆卡盘的温度达到大于等于所述半导体器件所能承受的最小临界温度,且小于等于所述半导体器件所能承受的最大临界温度的任意设定温度,例如-40℃,-20℃,0℃,10℃,25℃,50℃,85℃,100℃,125℃,150℃等。
S106,对所述半导体器件进行量测,获取所述半导体器件对应的电性参数。
当晶圆卡盘的温度达到设定温度后,对所述半导体器件进行量测,获取所述半导体器件对应的电性参数。
S108,根据所述电性参数和所述电性参数随温度的函数变化获取所述半导体器件的实际温度。
通过测量获得的半导体器件的电性参数和该电性参数随温度的函数变化,得到半导体器件的实际温度,即得到半导体器件的测量温度。
S110,根据所述半导体器件的实际温度,获取所述晶圆卡盘的实际温度 分布。
位于晶圆卡盘上的半导体器件的实际温度与其下方晶圆卡盘的实际温度相同,根据所述半导体器件的实际温度,可获取所述晶圆卡盘的实际温度分布,即获得晶圆卡盘的温度达到设定温度时晶圆卡盘的实际温度分布。
在一个实施例中,设定温度包括第一设定温度和第二设定温度,所述测试晶圆上具有A个半导体器件,A为大于等于2的整数;如图2所示,步骤S106包括:
S202,在第一设定温度下,分别量测测试晶圆上的B个半导体器件的电性参数获取第一组参数。
在晶圆卡盘温度达到第一设定温度后,在测试晶圆的A个半导体器件中选取大于等于2且小于等于A的B个半导体器件,分别测量所述B个半导体器件的电性参数后得到由B个半导体器件的电性参数构成的第一组参数。
S204,在第二设定温度下,分别量测测试晶圆上的C个半导体器件的电性参数获取第二组参数。
在晶圆卡盘温度达到第二设定温度后,在测试晶圆的A个半导体器件中选取大于等于2且小于等于A的C个半导体器件,分别测量所述C个半导体器件的电性参数后得到由C个半导体器件的电性参数构成的第二组参数。
在一个实施例中,所述C个半导体器件至少包括1个半导体器件属于所述B个半导体器件。
在一个实施例中,所述C个半导体器件是由所述测试晶圆上不同于所述B个半导体器件的一组半导体器件组成的。
如图3所示,步骤S108包括:
S302,根据所述第一组参数获取所述B个半导体器件对应的实际温度。
根据所述第一组参数和所述电性参数随温度的函数变化,分别获取所述B个半导体器件的实际温度。
S304,根据所述第二组参数获取所述C个半导体器件对应的实际温度。
根据所述第二组参数和所述电性参数随温度的函数变化,分别获取所述C 个半导体器件的实际温度。
如图4所示,步骤S110包括:
S402,根据所述B个半导体器件的实际温度,获取所述晶圆卡盘的实际温度的第一分布。
由于晶圆卡盘上的半导体器件与其下方的晶圆卡盘直接接触,可以用晶圆卡盘上的半导体器件的温度来表征其下方的晶圆卡盘的温度,根据获取的所述B个半导体器件的实际温度,即可获取晶圆卡盘的温度达到第一设定温度时晶圆卡盘的实际温度的第一分布,如图5所示,为一实施例中晶圆卡盘的温度达到第一设定温度时晶圆卡盘的实际温度的第一分布,其中,相同的字母表示温度相同的区域或相同的字母表示温度波动范围小于等于0.02℃的区域。
S404,根据所述C个半导体器件的实际温度,获取所述晶圆卡盘的实际温度的第二分布。
由于晶圆卡盘上的半导体器件与其下方的晶圆卡盘直接接触,可以用晶圆卡盘上的半导体器件的温度来表征其下方的晶圆卡盘的温度,根据获取的所述C个半导体器件的实际温度,即可获取晶圆卡盘的温度达到第二设定温度时晶圆卡盘的实际温度的第二分布,如图6所示,为一实施例中晶圆卡盘的温度达到第二设定温度时晶圆卡盘的实际温度的第二分布,其中,相同的字母表示温度相同的区域或相同的字母表示温度波动范围小于等于0.02℃的区域。
在一个实施例中,B或/和C等于A,通过步骤S402获取的晶圆卡盘的温度达到第一设定温度时晶圆卡盘的实际温度的第一分布和通过步骤S404获取的晶圆卡盘的温度达到第二设定温度时晶圆卡盘的实际温度的第二分布均为晶圆卡盘表面所有位置的温度分布。
在一个实施例中,所述B个半导体器件或/和所述C个半导体器件为所述测试晶圆中心区域的半导体器件。
在一个实施例中,所述B个半导体器件或/和所述C个半导体器件在所述 测试晶圆上均匀分布。
在一个实施例中,所述第一组参数和/或所述第二组参数包括一种随温度具有函数变化的电性参数。
在一个实施例中,所述第一组参数和/或所述第二组参数包括大于等于两种随温度具有函数变化的电性参数,通过步骤S110获取晶圆卡盘的温度达到设定温度时对应的不同电性参数的多个晶圆卡盘的实际温度分布后,对同一设定温度下的多个晶圆卡盘的实际温度分布进行拟合后得到的一个晶圆卡盘的实际温度分布作为该设定温度下的晶圆卡盘的实际温度分布,从而减小晶圆卡盘温度量测的偏差。
在一个实施例中,步骤S104之前还包括:提供量测装置的步骤,所述量测装置具有量测探针,所述量测探针靠近所述测试晶圆。
在一个实施例中,对所述半导体器件进行量测之前还包括:获取各所述半导体器件在所述测试晶圆上的位置坐标,并将所述位置坐标存储在所述量测装置中,所述量测装置根据所述位置坐标调整所述量测探针的位置,使得所述探针卡能测量所述芯片的电性参数。
不同的测试晶圆的厚度具有一定的差异,在测量电性参数之前量测探针与测试晶圆之间具有一定的距离,即量测探针相对测试晶圆具有一定的高度,通过调整量测探针的初始位置和高度,使得后续测量步骤中量测探针能与需要测量的半导体器件上的测试区域有效接触,进而得到所述半导体器件的电性参数。
在一个实施例中,不同材质的量测探针随温度具有不同的形变,并且测试晶圆上半导体器件的尺寸随温度也有不同程度的变化,在测量电性参数之前通过调整量测探针的初始位置和高度,使其与晶圆卡盘的设定温度相匹配,使得后续测量步骤中量测探针能与需要测量的半导体器件上的测试区域有效接触,进而得到所述半导体器件的电性参数。
在一个实施例中,步骤S104之后包括:
使所述晶圆卡盘的温度保持间隔时间t后开始进行电性参数的测量,从 而使得晶圆卡盘的温度处于稳定状态或半导体器件的电性参数变化较小,得到偏差较小的电性参数的测试数据。
在一个实施例中,间隔时间t为大于等于0.5小时。
在一个实施例中,步骤S106包括:量测探针移动到测试晶圆表面后停止一段时间使得量测探针的温度达到晶圆卡盘的温度后开始进行电性参数测量。
在一个实施例中,步骤S110之后晶圆卡盘的温度回到晶圆卡盘闲置状态的设定温度。
上述晶圆卡盘温度量测的方法,包括提供热源,所述热源上设有晶圆卡盘,将测试晶圆放置在所述晶圆卡盘上,所述测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件,控制所述热源使所述晶圆卡盘的温度达到设定温度;对所述半导体器件进行量测,获取所述半导体器件对应的电性参数;根据所述电性参数和所述电性参数随温度的函数变化获取所述半导体器件的实际温度;根据所述半导体器件的实际温度,获取所述晶圆卡盘的实际温度分布;其中,所述设定温度大于等于所述半导体器件所能承受的最小临界温度且小于等于所述半导体器件所能承受的最大临界温度。本方案在晶圆卡盘上放置形成有电性参数随温度具有函数变化的多个半导体器件的测试晶圆,对所述半导体器件进行量测,获取所述半导体器件对应的电性参数;通过测量晶圆卡盘的温度达到设定温度时半导体器件对应的电性参数,并根据所述电性参数和所述电性参数随温度的函数变化获取所述半导体器件的实际温度,进而获取晶圆卡盘的实际温度分布,消除了周围环境对晶圆卡盘测量温度的影响,减小了晶圆卡盘温度量测的偏差。
在一个实施例中,提供一种晶圆卡盘温度校准的方法,包括进行晶圆卡盘温度量测的步骤,所述晶圆卡盘温度量测采用如上述任一项所述的晶圆卡盘温度量测的方法,所述温度校准的方法还包括:
根据所述晶圆卡盘的实际温度分布对所述热源进行调整,使得在所述晶圆卡盘的温度达到设定温度时所述半导体器件的实际温度趋于所述设定温 度。
在一个实施例中,所述晶圆卡盘包括承载8英寸晶圆的晶圆卡盘和承载12寸晶圆的晶圆卡盘。
上述晶圆卡盘温度校准的方法,包括进行晶圆卡盘温度量测的步骤,所述晶圆卡盘温度量测采用如上述任一项所述的晶圆卡盘温度量测的方法,所述温度校准的方法还包括:根据所述晶圆卡盘的实际温度分布对所述热源进行调整,使得在所述晶圆卡盘的温度达到设定温度时所述半导体器件的实际温度趋于所述设定温度。本方案在晶圆卡盘上放置形成有电性参数随温度具有函数变化的多个半导体器件的测试晶圆,对所述半导体器件进行量测,获取所述半导体器件对应的电性参数;通过测量晶圆卡盘的温度达到设定温度时半导体器件对应的电性参数,并根据所述电性参数和所述电性参数随温度的函数变化获取所述半导体器件的实际温度,进而获取晶圆卡盘的实际温度分布,消除了周围环境对晶圆卡盘测量温度的影响,减小了晶圆卡盘温度量测的偏差。根据所述晶圆卡盘的实际温度分布对所述热源进行调整,使得在所述晶圆卡盘的温度达到设定温度时所述半导体器件的实际温度趋于所述设定温度。减小了获取的晶圆卡盘上测试半导体器件位置的实际温度与设定温度之间的偏差,提高了晶圆卡盘温度校准的精度。
如图7所示,在一个实施例中,提供一种温度量测系统100,用于量测晶圆卡盘的温度,所述温度量测系统包括:
加热模块102,加热模块102用于将所述晶圆卡盘加热到设定温度,所述晶圆卡盘上放置有测试晶圆,所述测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件。
具体为,加热模块102获取晶圆卡盘的设定温度后,将晶圆卡盘的温度加热到对应的设定温度。
在一个实施例中,所述半导体器件至少包括双极结型晶体管器件、电阻器件、场效应管器件中的一种。
在一个实施例中,所述半导体器件具有大于等于一种电性参数在一定温 度范围内(例如-150摄氏度~150摄氏度之间、-100摄氏度~100摄氏度之间)随温度具有函数变化,例如电阻参数、电压参数等。
在一个实施例中,所述晶圆卡盘的尺寸与所述晶圆卡盘用于承载的晶圆的尺寸有关,例如所述晶圆卡盘为承载8英寸晶圆的晶圆卡盘或承载12寸晶圆的晶圆卡盘。
设置模块104,设置模块104用于设置所述晶圆卡盘的设定温度,其中,所述设定温度大于等于所述半导体器件所能承受的最小临界温度且小于等于所述半导体器件所能承受的最大临界温度。
测量模块106,测量模块106用于量测所述测试晶圆上的半导体器件,获取所述半导体器件的电性参数。
在一个实施例中,测试模块106还用于获取所述半导体器件在所述测试晶圆上的位置坐标,并将所述位置坐标存储在所述测量模块中;所述测量模块包括量测探针,所述测量模块还用于根据所述位置坐标调整所述量测探针的位置。
计算模块108,计算模块108用于获取所述电性参数随温度的函数变化和所述设定温度对应的半导体器件的电性参数,计算得到所述设定温度对应的半导体器件的实际温度,并根据所述半导体器件的实际温度获取所述晶圆卡盘的实际温度分布。
在一个实施例中,所述设定温度包括第一设定温度和第二设定温度;设置模块104还用于设置所述测试晶圆上的B个半导体器件为第一设定温度对应的半导体器件和所述测试晶圆上的C个半导体器件为第二设定温度对应的半导体器件;测量模块106还用于量测第一温度下所述测试晶圆上的B个半导体器件的电性参数,获取第一组参数,测量模块106还用于量测第二温度下所述测试晶圆上的C个半导体器件的电性参数,获取第二组参数;计算模块108还用于根据获取的第一组参数、第二组参数和所述电性参数随温度的函数变化,分别得到所述B个半导体器件和所述C个半导体器件对应的实际温度,并根据B个半导体器件和所述C个半导体器件对应的实际温度,获取 第一设定温度下所述晶圆卡盘的实际温度的第一分布和第二设定温度下所述晶圆卡盘的实际温度的第二分布;其中,所述测试晶圆上具有A个半导体器件,A为大于等于2的整数,B和C均为大于等于2且小于等于A的整数。
在一个实施例中,根据需要在设置模块104中设置晶圆卡盘的设定温度,例如-40℃,-20℃,0℃,10℃,25℃,50℃,85℃,100℃,125℃,150℃等。
在一个实施例中,所述C个半导体器件中至少有1个半导体器件属于所述B个半导体器件。
在一个实施例中,所述C个半导体器件是由所述测试晶圆上不同于所述B个半导体器件的一组半导体器件组成的。
在一个实施例中,所述B个半导体器件或/和所述C个半导体器件为所述测试晶圆中心区域的半导体器件。
在一个实施例中,所述B个半导体器件或/和所述C个半导体器件在所述测试晶圆上均匀分布。
上述温度量测系统,用于量测晶圆卡盘的温度,所述温度量测系统包括:加热模块,所述加热模块用于将所述晶圆卡盘加热到设定温度,所述晶圆卡盘上放置有测试晶圆,所述测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件;设置模块,所述设置模块用于设置所述晶圆卡盘的设定温度;测量模块,所述测量模块用于量测所述测试晶圆上的半导体器件,获取所述半导体器件的电性参数;计算模块,所述计算模块用于获取所述电性参数随温度的函数变化和所述设定温度对应的半导体器件的电性参数,计算得到所述设定温度对应的半导体器件的实际温度,并根据所述半导体器件的实际温度获取所述晶圆卡盘的实际温度分布;其中,所述设定温度大于等于所述半导体器件所能承受的最小临界温度且小于等于所述半导体器件所能承受的最大临界温度。本方案通过加热模块将放置有测试晶圆的晶圆卡盘加热到设定温度后,测量模块量测所述测试晶圆上的半导体器件,获取所述半导体器件的电性参数,计算模块根据获取所述电性参数随温度的函数变化和所 述设定温度对应的半导体器件的电性参数,计算得到所述设定温度对应的半导体器件的实际温度,并根据所述半导体器件的实际温度获取所述晶圆卡盘的实际温度分布,其中,测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件;消除了周围环境对晶圆卡盘测量温度的影响,减小了晶圆卡盘温度量测的偏差。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种晶圆卡盘温度量测的方法,包括:
    提供热源,所述热源上设有晶圆卡盘,将测试晶圆放置在所述晶圆卡盘上,所述测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件;
    控制所述热源使所述晶圆卡盘的温度达到设定温度;
    对所述半导体器件进行量测,获取所述半导体器件对应的电性参数;
    根据所述电性参数和所述电性参数随温度的函数变化获取所述半导体器件的实际温度;
    根据所述半导体器件的实际温度,获取所述晶圆卡盘的实际温度分布;
    其中,所述设定温度大于等于所述半导体器件所能承受的最小临界温度且小于等于所述半导体器件所能承受的最大临界温度。
  2. 根据权利要求1所述的方法,其中,所述半导体器件包括大于等于一种随温度具有函数变化的电性参数。
  3. 根据权利要求1所述的方法,其中,所述设定温度包括第一设定温度和第二设定温度;
    所述对所述半导体器件进行量测,获取所述半导体器件对应的电性参数的步骤包括:
    在第一设定温度下,分别量测测试晶圆上的B个半导体器件的电性参数获取第一组参数;
    在第二设定温度下,分别量测测试晶圆上的C个半导体器件的电性参数获取第二组参数;
    所述根据所述电性参数和所述电性参数随温度的函数变化获取所述半导体器件的实际温度的步骤包括:
    根据所述第一组参数获取所述B个半导体器件对应的实际温度;
    根据所述第二组参数获取所述C个半导体器件对应的实际温度;
    所述根据所述半导体器件的实际温度,获取所述晶圆卡盘的实际温度分 布的步骤包括:
    根据所述B个半导体器件的实际温度,获取所述晶圆卡盘的实际温度的第一分布;
    根据所述C个半导体器件的实际温度,获取所述晶圆卡盘的实际温度的第二分布;
    其中,所述测试晶圆上具有A个半导体器件,A为大于等于2的整数,B和C均为大于等于2且小于等于A的整数。
  4. 根据权利要求3所述的方法,其中,所述第一组参数和/或所述第二组参数包括大于等于一种随温度具有函数变化的电性参数。
  5. 根据权利要求3所述的方法,其中,所述B个半导体器件或/和所述C个半导体器件为所述测试晶圆中心区域的半导体器件。
  6. 根据权利要求1所述的方法,其中,控制所述热源使所述晶圆卡盘的温度达到设定温度之前还包括:
    提供量测装置的步骤,所述量测装置具有量测探针,所述量测探针靠近所述测试晶圆。
  7. 根据权利要求6所述的方法,其中,对所述半导体器件进行量测之前还包括:
    获取各所述半导体器件在所述测试晶圆上的位置坐标,并将所述位置坐标存储在所述量测装置中,所述量测装置根据所述位置坐标调整所述量测探针的位置。
  8. 根据权利要求1-7任一项所述的方法,其中,所述半导体器件至少包括双极结型晶体管器件、电阻器件、场效应管器件中的一种。
  9. 一种晶圆卡盘温度校准的方法,包括进行晶圆卡盘温度量测的步骤,所述晶圆卡盘温度量测采用如权利要求1-8任一项所述的晶圆卡盘温度量测的方法,所述温度校准的方法还包括:
    根据所述晶圆卡盘的实际温度分布对热源进行调整,使得在所述晶圆卡盘的温度达到设定温度时半导体器件的实际温度趋于所述设定温度。
  10. 一种温度量测系统,用于量测晶圆卡盘的温度,所述温度量测系统包括:
    加热模块,所述加热模块用于将所述晶圆卡盘加热到设定温度,所述晶圆卡盘上放置有测试晶圆,所述测试晶圆上形成有电性参数随温度具有函数变化的多个半导体器件;
    设置模块,所述设置模块用于设置所述晶圆卡盘的设定温度;
    测量模块,所述测量模块用于量测所述测试晶圆上的半导体器件,获取所述半导体器件的电性参数;
    计算模块,所述计算模块用于获取所述电性参数随温度的函数变化和所述设定温度对应的半导体器件的电性参数,计算得到所述设定温度对应的半导体器件的实际温度,并根据所述半导体器件的实际温度获取所述晶圆卡盘的实际温度分布;
    其中,所述设定温度大于等于所述半导体器件所能承受的最小临界温度且小于等于所述半导体器件所能承受的最大临界温度。
  11. 根据权利要求10所述的温度量测系统,其中,所述设定温度包括第一设定温度和第二设定温度;所述设置模块还用于设置所述测试晶圆上的B个半导体器件为第一设定温度对应的半导体器件和所述测试晶圆上的C个半导体器件为第二设定温度对应的半导体器件;所述测量模块还用于量测第一温度下所述测试晶圆上的B个半导体器件的电性参数,获取第一组参数,所述测量模块还用于量测第二温度下所述测试晶圆上的C个半导体器件的电性参数,获取第二组参数;所述计算模块还用于根据获取的第一组参数、第二组参数和所述电性参数随温度的函数变化,分别得到所述B个半导体器件和所述C个半导体器件对应的实际温度,并根据B个半导体器件和所述C个半导体器件对应的实际温度,获取第一设定温度下所述晶圆卡盘的实际温度的第一分布和第二设定温度下所述晶圆卡盘的实际温度的第二分布;
    其中,所述测试晶圆上具有A个半导体器件,A为大于等于2的整数,B和C均为大于等于2且小于等于A的整数。
  12. 根据权利要求10所述的温度量测系统,其中,所述测量模块还用于获取所述半导体器件在所述测试晶圆上的位置坐标,并将所述位置坐标存储在所述测量模块中;所述测量模块包括量测探针,所述测量模块还用于根据所述位置坐标调整所述量测探针的位置。
  13. 根据权利要求10-12任一项所述的温度量测系统,其中,所述半导体器件至少包括双极结型晶体管器件、电阻器件、场效应管器件中的一种。
PCT/CN2021/080389 2020-03-19 2021-03-12 晶圆卡盘温度量测及温度校准的方法和温度量测系统 WO2021185162A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/376,584 US11852542B2 (en) 2020-03-19 2021-07-15 Methods for measuring temperature of wafer chuck and calibrating temperature and system for measuring temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010196028.2 2020-03-19
CN202010196028.2A CN113432737A (zh) 2020-03-19 2020-03-19 晶圆卡盘温度量测及温度校准的方法和温度量测系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/376,584 Continuation US11852542B2 (en) 2020-03-19 2021-07-15 Methods for measuring temperature of wafer chuck and calibrating temperature and system for measuring temperature

Publications (1)

Publication Number Publication Date
WO2021185162A1 true WO2021185162A1 (zh) 2021-09-23

Family

ID=77752344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080389 WO2021185162A1 (zh) 2020-03-19 2021-03-12 晶圆卡盘温度量测及温度校准的方法和温度量测系统

Country Status (3)

Country Link
US (1) US11852542B2 (zh)
CN (1) CN113432737A (zh)
WO (1) WO2021185162A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116209910A (zh) 2021-09-30 2023-06-02 爱德万测试公司 用于控制自动化测试设备(ate)的控制装置、ate、用于控制ate的方法、用于操作ate的方法以及用于执行此类包括温度估计或确定的方法的计算机程序
CN116256544B (zh) * 2023-01-05 2023-12-05 苏州斯尔特微电子有限公司 具有偏移校正功能的晶圆测试探针台

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435646A (en) * 1993-11-09 1995-07-25 Hughes Aircraft Company Temperature measurement using ion implanted wafers
JP2012256799A (ja) * 2011-06-10 2012-12-27 Renesas Electronics Corp 半導体検査装置
CN103050423A (zh) * 2012-12-20 2013-04-17 上海宏力半导体制造有限公司 晶圆温度的检测方法
CN103280413A (zh) * 2013-04-23 2013-09-04 上海宏力半导体制造有限公司 获取晶圆的电阻温度系数的离散度的工业实现方法
CN103808425A (zh) * 2012-11-08 2014-05-21 中芯国际集成电路制造(上海)有限公司 测量多晶硅温度变化的方法
CN104051298A (zh) * 2013-03-14 2014-09-17 台湾积体电路制造股份有限公司 可精细控制温度的晶圆加热系统
JP2014190801A (ja) * 2013-03-27 2014-10-06 Hiroshima Univ 半導体デバイス温度制御装置
CN106505018A (zh) * 2016-11-01 2017-03-15 杭州长川科技股份有限公司 吸盘表面温度均匀性检测装置及检测方法
CN107091697A (zh) * 2016-02-18 2017-08-25 中芯国际集成电路制造(上海)有限公司 基于硅通孔的温度传感器及温度测量方法、电子装置
CN108803260A (zh) * 2018-06-01 2018-11-13 上海华力集成电路制造有限公司 曝光后烘焙装置及晶圆线宽优化方法
CN109659244A (zh) * 2017-10-12 2019-04-19 北京信息科技大学 一种晶圆测试温度调节的装置和方法
CN110085531A (zh) * 2019-04-23 2019-08-02 武汉新芯集成电路制造有限公司 晶圆温度分布的检测方法
CN110600419A (zh) * 2019-09-20 2019-12-20 上海华力微电子有限公司 一种静电吸盘及其使用方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860532A (ja) * 1981-10-06 1983-04-11 Fujitsu Ltd サセプタ
US5001423A (en) * 1990-01-24 1991-03-19 International Business Machines Corporation Dry interface thermal chuck temperature control system for semiconductor wafer testing
US5436494A (en) * 1994-01-12 1995-07-25 Texas Instruments Incorporated Temperature sensor calibration wafer structure and method of fabrication
JP3563224B2 (ja) * 1996-03-25 2004-09-08 住友電気工業株式会社 半導体ウエハの評価方法、熱処理方法、および熱処理装置
US6164816A (en) * 1998-08-14 2000-12-26 Applied Materials, Inc. Tuning a substrate temperature measurement system
US6190040B1 (en) * 1999-05-10 2001-02-20 Sensarray Corporation Apparatus for sensing temperature on a substrate in an integrated circuit fabrication tool
TW421832B (en) * 1999-09-23 2001-02-11 Applied Materials Inc Method for adjusting the temperature distribution on the wafer surface in a thermal treatment
US6616332B1 (en) * 1999-11-18 2003-09-09 Sensarray Corporation Optical techniques for measuring parameters such as temperature across a surface
JP2002016117A (ja) * 2000-06-26 2002-01-18 Hitachi Ltd 半導体ウェハの処理温度測定方法及び温度測定手段を備える半導体ウェハ
US6552561B2 (en) * 2000-07-10 2003-04-22 Temptronic Corporation Apparatus and method for controlling temperature in a device under test using integrated temperature sensitive diode
US6545494B1 (en) * 2000-07-10 2003-04-08 Temptronic Corporation Apparatus and method for controlling temperature in a wafer using integrated temperature sensitive diode
DE10103991C1 (de) * 2001-01-30 2002-06-06 Infineon Technologies Ag Verfahren zur Ermittlung der Temperatur eines Halbleiterbauelements insbesondere beim Fehlertest
US6495802B1 (en) * 2001-05-31 2002-12-17 Motorola, Inc. Temperature-controlled chuck and method for controlling the temperature of a substantially flat object
US7135852B2 (en) * 2002-12-03 2006-11-14 Sensarray Corporation Integrated process condition sensing wafer and data analysis system
JP4230799B2 (ja) * 2003-03-20 2009-02-25 株式会社小松製作所 平均温度測定センサならびにこれを用いたダミーウェハ及び温調装置
DE102004057215B4 (de) * 2004-11-26 2008-12-18 Erich Reitinger Verfahren und Vorrichtung zum Testen von Halbleiterwafern mittels einer Sondenkarte unter Verwendung eines temperierten Fluidstrahls
US7718967B2 (en) * 2005-01-26 2010-05-18 Analog Devices, Inc. Die temperature sensors
US7802917B2 (en) 2005-08-05 2010-09-28 Lam Research Corporation Method and apparatus for chuck thermal calibration
JP2007104162A (ja) 2005-10-03 2007-04-19 Kawasaki Microelectronics Kk 水晶発振器の製造方法及び水晶発振器
TWI405281B (zh) * 2005-12-13 2013-08-11 Sensarray Corp 製程條件感應晶圓及資料分析系統
JP4744382B2 (ja) 2006-07-20 2011-08-10 株式会社東京精密 プローバ及びプローブ接触方法
US7924408B2 (en) * 2007-02-23 2011-04-12 Kla-Tencor Technologies Corporation Temperature effects on overlay accuracy
US8078997B2 (en) * 2007-12-28 2011-12-13 Cadence Design Systems, Inc. Method, system, and computer program product for implementing a direct measurement model for an electronic circuit design
KR101221079B1 (ko) * 2008-05-21 2013-01-11 가부시키가이샤 어드밴티스트 시험용 웨이퍼 유닛 및 시험 시스템
JP2010074407A (ja) 2008-09-17 2010-04-02 Toshiba Corp バイアス制御装置
DE102010040068A1 (de) * 2010-08-31 2012-03-01 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG Bewertung der thermisch-mechanischen Eigenschaften komplexer Halbleiterbauelemente durch integrierte Heizsysteme
JP5953012B2 (ja) * 2011-06-22 2016-07-13 株式会社アルバック 基板保持装置
CN105097421B (zh) 2014-05-05 2018-03-02 无锡华润上华科技有限公司 用于masson快速热处理机台的温度校准的方法
TWM528516U (zh) * 2015-02-16 2016-09-11 漢民科技股份有限公司 測溫晶圓結構
KR102423818B1 (ko) * 2015-12-18 2022-07-21 삼성전자주식회사 정전척 어셈블리 및 그를 포함하는 반도체 제조장치, 그리고 정전척 온도 측정방법
CN107331595B (zh) 2016-04-29 2019-08-13 中微半导体设备(上海)股份有限公司 用于等离子处理装置及其温度控制方法和校准方法
US10366867B2 (en) 2016-08-19 2019-07-30 Applied Materials, Inc. Temperature measurement for substrate carrier using a heater element array
CN106501699B (zh) 2016-10-20 2019-02-19 北京工业大学 一种饱和状态下双极晶体管结温的实时测量方法
WO2018086666A1 (en) 2016-11-08 2018-05-17 Aalborg Universitet Junction temperature measurement in a power semiconductor module
CN106771942B (zh) 2016-11-09 2019-06-07 北京工业大学 双极型晶体管工作在放大区的结温实时测量方法
CN106840439B (zh) 2016-12-29 2022-09-20 北京怡和嘉业医疗科技股份有限公司 加热管路的温度采集方法和装置
CN110274705B (zh) 2018-03-14 2021-06-22 香港理工大学 一种光学玻璃模压温度在线检测方法以及装置
US10872747B2 (en) 2018-08-08 2020-12-22 Lam Research Corporation Controlling showerhead heating via resistive thermal measurements
CN110888470A (zh) 2018-09-07 2020-03-17 长鑫存储技术有限公司 温度控制装置、温度控制方法和半导体生产设备
CN109084911B (zh) 2018-09-12 2024-02-20 上海艾为电子技术股份有限公司 温度检测采样电路及音频放大器芯片
CN109186790B (zh) 2018-10-18 2020-11-10 卓捷创芯科技(深圳)有限公司 一种提高半导体温度传感器测量精度的方法
CN109540961A (zh) 2018-11-06 2019-03-29 清华大学深圳研究生院 测量热学参数的方法、装置及热觉传感器
CN113496910B (zh) * 2020-03-19 2024-02-06 长鑫存储技术有限公司 校温片及其应用方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435646A (en) * 1993-11-09 1995-07-25 Hughes Aircraft Company Temperature measurement using ion implanted wafers
JP2012256799A (ja) * 2011-06-10 2012-12-27 Renesas Electronics Corp 半導体検査装置
CN103808425A (zh) * 2012-11-08 2014-05-21 中芯国际集成电路制造(上海)有限公司 测量多晶硅温度变化的方法
CN103050423A (zh) * 2012-12-20 2013-04-17 上海宏力半导体制造有限公司 晶圆温度的检测方法
CN104051298A (zh) * 2013-03-14 2014-09-17 台湾积体电路制造股份有限公司 可精细控制温度的晶圆加热系统
JP2014190801A (ja) * 2013-03-27 2014-10-06 Hiroshima Univ 半導体デバイス温度制御装置
CN103280413A (zh) * 2013-04-23 2013-09-04 上海宏力半导体制造有限公司 获取晶圆的电阻温度系数的离散度的工业实现方法
CN107091697A (zh) * 2016-02-18 2017-08-25 中芯国际集成电路制造(上海)有限公司 基于硅通孔的温度传感器及温度测量方法、电子装置
CN106505018A (zh) * 2016-11-01 2017-03-15 杭州长川科技股份有限公司 吸盘表面温度均匀性检测装置及检测方法
CN109659244A (zh) * 2017-10-12 2019-04-19 北京信息科技大学 一种晶圆测试温度调节的装置和方法
CN108803260A (zh) * 2018-06-01 2018-11-13 上海华力集成电路制造有限公司 曝光后烘焙装置及晶圆线宽优化方法
CN110085531A (zh) * 2019-04-23 2019-08-02 武汉新芯集成电路制造有限公司 晶圆温度分布的检测方法
CN110600419A (zh) * 2019-09-20 2019-12-20 上海华力微电子有限公司 一种静电吸盘及其使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG, LU ET AL.: "Linear conversion method from nonlinear thermistor to temperature sensor", SCIENCE AND TECHNOLOGY, vol. 28, no. 31, 10 October 2016 (2016-10-10), pages 71,73, XP055851004, ISSN: 1672-8289 *
JIA, JINGCAI ET AL.: "Wafer Temperature Monitoring Technology in Integrated Circuit Manufacturing Process", CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT, vol. 42, no. 1, 31 January 2021 (2021-01-31), pages 15 - 29, XP055851319, ISSN: 0254-3087 *

Also Published As

Publication number Publication date
CN113432737A (zh) 2021-09-24
US11852542B2 (en) 2023-12-26
US20210341342A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2021185162A1 (zh) 晶圆卡盘温度量测及温度校准的方法和温度量测系统
US9562943B2 (en) Wafer temperature sensing methods and related semiconductor wafer
TWI699461B (zh) 一種校準磊晶腔溫度的方法
CN101399163A (zh) 校正外延反应腔温度的方法
CN103050423B (zh) 晶圆温度的检测方法
JP2024019227A (ja) プロセス条件計測ウェハアセンブリ向けのシステム及び方法
US20120276675A1 (en) Apparatus and method for measuring local surface temperature of semiconductor device
TW202211721A (zh) 用於電阻加熱器之被動和主動校準方法
CN103094143B (zh) 离子注入监测方法
CN106771619B (zh) 一种高精度温控电阻测试系统
CN103412272B (zh) 用于确定校正汞探针电阻率量测仪的标准片的方法及校正汞探针电阻率量测仪的方法
KR20180012972A (ko) 반도체 소자 검사 장치
TW202336445A (zh) 一種晶片溫度調節方法
CN107946204B (zh) 快速热处理机台的调机方法
TW202340734A (zh) 電阻率測試的標準片的製備方法、標準片及校準方法
WO2010101006A1 (ja) 導電性試料の比熱容量及び半球全放射率の測定方法及び装置
WO2021185158A1 (zh) 温度量测及温度校准的方法和温度量测系统
CN102479690B (zh) 提高晶圆上源漏极退火时工作电流均匀性的方法
CN105097582B (zh) 一种监测晶圆固定器应力的方法
CN113496910B (zh) 校温片及其应用方法
CN207232257U (zh) 一种变温四探针测量系统
CN109724712B (zh) 温度检测装置及其制造方法和激光表面退火设备
CN116884891B (zh) 炉管设备的工艺匹配方法
CN109254238A (zh) 一种c8-btbt晶体管湿度检测方法
CN110957246B (zh) 一种校准外延设备反应腔温度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770748

Country of ref document: EP

Kind code of ref document: A1