WO2021184344A1 - 可变吸排量泵、由该泵组成的驱动装置及其驱动方法 - Google Patents

可变吸排量泵、由该泵组成的驱动装置及其驱动方法 Download PDF

Info

Publication number
WO2021184344A1
WO2021184344A1 PCT/CN2020/080389 CN2020080389W WO2021184344A1 WO 2021184344 A1 WO2021184344 A1 WO 2021184344A1 CN 2020080389 W CN2020080389 W CN 2020080389W WO 2021184344 A1 WO2021184344 A1 WO 2021184344A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
movable
blade
suction
passive
Prior art date
Application number
PCT/CN2020/080389
Other languages
English (en)
French (fr)
Inventor
章睿承
Original Assignee
章睿承
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 章睿承 filed Critical 章睿承
Priority to US17/906,703 priority Critical patent/US20230136689A1/en
Priority to CN202080084224.9A priority patent/CN114761689B/zh
Priority to EP20926171.8A priority patent/EP4123176A4/en
Priority to JP2022556530A priority patent/JP2023534341A/ja
Priority to PCT/CN2020/080389 priority patent/WO2021184344A1/zh
Publication of WO2021184344A1 publication Critical patent/WO2021184344A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • F04C14/226Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam by pivoting the cam around an eccentric axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/08Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/185Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by varying the useful pumping length of the cooperating members in the axial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/01Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/05Speed
    • F04C2270/052Speed angular
    • F04C2270/0525Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/20Flow
    • F04C2270/205Controlled or regulated

Definitions

  • the present invention relates to a variable suction and displacement pump and a driving device composed of the pump and a method thereof, in particular to an impeller type pump consisting of a fixed wall part, a movable wall part, and a movable leaf chamber cover And a vane rotor, the impeller pump has a leaf chamber that can be expanded and contracted along the axial direction of the vane rotor, and a variable suction and displacement pump is formed by the expansion and contraction of the volume space of the leaf chamber; and At least two of the variable suction and discharge pumps are connected and combined to form an active and passive drive device, and then use the principle of force balance between the driving force and the load resistance to form a variable speed drive that can automatically adjust the speed ratio between the active and passive pumps during operation Device.
  • the present invention provides a variable suction and displacement pump, which has a leaf chamber body and a vane rotor arranged in the leaf chamber body.
  • a leaf chamber surrounded by a movable blade chamber sleeve, the blade rotor has an impeller arranged in the blade chamber, and the impeller is provided with blades; the movable wall member and the movable blade chamber sleeve can follow the blade rotor
  • the axial direction is relatively displaced with the fixed wall member, so that the capacity of the blade chamber can be increased or decreased along the axial direction of the blade rotor.
  • the number of blades therein can be less than or equal to the number of the deviated chamber regions.
  • the leaf chamber may have a plurality of deviated leaf chamber regions, and the impeller is provided with a plurality of blades in cooperation with the plurality of deviated leaf chamber regions.
  • the two rotor shaft ends of the vane rotor are respectively mounted on the frame bodies corresponding to the two rotor shaft ends, and at least one of the rotor shaft ends is connected to the transmission element to receive Power or bear the load.
  • the fixed wall member may be provided with a fixed wall seat cover and a fixed wall end surface, the fixed wall end surface is arranged at one end of the fixed wall member, and the fixed wall end surface is aligned with the shaft of the vane rotor Vertically, the end surface of the fixed wall can closely abut an axially vertical end surface on the impeller of the blade rotor.
  • the base is provided with a fixed wall end column, the fixed wall end column is filled with a fixed wall hole preset in the center of the fixed wall end surface, and a column end surface of the fixed wall end column is connected to the fixed wall
  • the wall end surfaces together form a fixed wall surface that can closely abut on an axially vertical end surface of the blade rotor; and the fixed wall end column is provided with an offset rotor shaft hole for pivoting a blade rotor Shaft end.
  • each suction and discharge channel may extend toward the same rotor shaft end, and the respective suction and discharge channels are respectively connected with the shaft center and the non-shaft center position of the rotor shaft end and directly pass through a base and a frame.
  • the external suction and discharge openings on at least one of the bodies are connected to the outside.
  • the movable wall member can be set outside the vane rotor, and the movable wall member can slide on the periphery of the impeller according to the axial direction of the vane rotor; the movable vane
  • the chamber sleeve can be sleeved on the periphery between the fixed wall member and the impeller, and the movable wall member and the movable wall member synchronously slide axially.
  • the movable wall part and the movable leaf chamber cover can be combined with a fixed part to maintain the two (movable wall part and movable leaf chamber).
  • Sleeve can synchronously slide according to the axial direction of the blade rotor.
  • the inner leaf chamber of the movable leaf chamber cover is surrounded by the movable leaf chamber cover, a fixed wall end surface on the fixed wall member, and a fixed wall end surface on the movable wall member.
  • the space between the movable wall surface and the blade rotor in the remaining space after the space occupied by the impeller is removed, at least one deviated blade chamber area offset from the axis of the blade rotor is formed.
  • the blade has a blade top edge away from the blade rotor, the blade top edge can form a close contact with the inner wall of the blade, and the blade top edge can be along the axis of the blade rotor At least one of the direction and the circumferential direction slides relative to the inner wall of the leaf chamber.
  • a sealing block is provided at the location where the top edge of the blade, the movable wall member and the movable leaf chamber cover at the same time intersect, so as to avoid the three (the top edge of the blade and the The moving wall part and the movable leaf chamber cover) at the same time intersect the part to create a gap and leak the fluid in the leaf chamber.
  • variable suction and displacement pump it is possible to output and input a working fluid to the leaf chamber from a closed circuit, and to make at least one of the movable wall member and the movable leaf chamber cover and the fixed wall
  • the relative displacement of the blade chamber changes the volume of the leaf chamber, so that the output and input of the operating fluid that the blade rotor rotates and pushes through the blade chamber in a unit time can be different according to the change in the volume of the leaf chamber.
  • the blade rotor can produce power transmission at different speeds according to the change of the volume of the blade chamber.
  • an external force can be used to force an element to act on at least one of the movable wall member and the movable leaf chamber cover, so that the movable wall member and the movable leaf chamber cover are both There is a relative displacement with the fixed wall.
  • variable suction and displacement pump a variable speed drive device can be formed, which is configured with at least two variable suction and displacement pumps corresponding to each other, and the variable suction and displacement pumps are arranged correspondingly in pairs. In between, the suction and discharge channels respectively corresponding to the suction fluid and the discharge fluid are intersected and communicated.
  • One of the two correspondingly configured variable suction and displacement pumps is set as an active pump, and the two correspondingly configured variable suction and discharge channels are configured as an active pump.
  • the other of the pumps is set as a passive pump, so that a driving circuit is formed between the active pump and the passive pump.
  • variable speed drive device at least one of the movable wall member and the movable vane cover of the active pump and the movable wall member and the movable vane cover of the passive pump are connected in the same direction.
  • One of the displacement coupling and the synchronous displacement coupling is linked.
  • the active pump end and the passive pump end each have at least four times the number of blades and an offset chamber area with a number greater than or equal to the number of blades, and each blade in the blade chamber is in its corresponding
  • the angular phases in the deviated blade chamber area of the two blades are in a 180-degree complementary relationship with the angular phase of at least another blade.
  • variable speed drive device is provided with at least two active pumps, and a common associated member is provided on the periphery of each active pump to be driven synchronously.
  • variable speed drive device wherein the variable speed drive device is provided with at least two of the active pump and at least two passive pumps, and the configuration of at least one of the active pump and the passive pump is formed
  • the variable speed drive device is provided with at least two of the active pump and at least two passive pumps, and the configuration of at least one of the active pump and the passive pump is formed
  • variable speed drive device wherein the variable speed drive device is provided with at least two of the active pumps and at least two of the passive pumps, and the configuration of at least one of the active pump and the passive pump is Form a combination of linear connections.
  • variable speed drive device wherein the variable speed drive device is provided with at least two of the active pumps and at least two of the passive pumps, and the configuration of at least one of the active pump and the passive pump is Form a combination of tandem connection.
  • variable speed drive device it is possible to output and input a working fluid to and from the respective leaf chambers of the active and passive pumps in a closed circuit, and make at least one of the movable wall parts and the movable leaf chamber cover , Produce relative displacement with the fixed wall parts to change the size of each leaf chamber, so that the active and passive pumps can change the corresponding leaf chamber volume according to the change, so that the speed of each corresponding blade rotor changes inversely proportional to each other. Power transmission.
  • the working fluid can be used to separately push and act between the movable wall parts, the movable blade chamber cover, the blade rotor and the fixed wall parts, so that the movable wall part and the movable blade chamber There is a relative displacement between the two sleeves and the fixed wall.
  • an external force can be used to force a component to act on at least one of the movable wall member and the movable leaf chamber cover, so that both the movable wall member and the movable leaf chamber cover are fixedly connected to each other. There is a relative displacement between the wall pieces.
  • the driving force of the active pump rotates its vane rotor and drives the vanes, and the movable vane sleeve located on the discharge side of the vane in the deviated vane area of the active pump,
  • the wall surface and the movable wall surface apply pushing pressure, and at the same time, the movable blade chamber cover, the fixed wall surface and the movable wall surface located on the suction side of the blade in the deflection chamber area of the active pump, and the deflection chamber of the passive pump In the area, the blade surface on the discharge side of the blade and the movable leaf chamber cover, the fixed wall surface and the movable wall surface form a push to generate vacuum suction;
  • the movable wall piece together with the movable leaf chamber sleeve close to it is moved synchronously and axially, and the two sides of the blades in the passive pump are respectively pushed
  • the pressure and the vacuum suction force are driven in the same direction and drive the vane rotor to rotate to output power to the load end of the passive pump.
  • the active pump when the area of the movable wall on the suction side of the blade in the deflection chamber of the active pump is smaller than the area of the movable wall on the discharge side of the blade in the deflection chamber of the passive pump, the active pump The vacuum suction force generated on the suction side of the blade generated by the sweeping creates a greater attraction force on the movable wall surface of the passive pump with a larger area, so that the movable wall part of the active pump and the movable leaf chamber cover are moved away Displacement in the direction of the fixed wall, the movable wall of the passive pump together with the movable vane cover, displaces in the direction close to the fixed wall;
  • the active pump combination of multiple deviated chamber areas to the passive pump combination of multiple deviated chamber areas, so that the coupled active pump and passive pump can be offset on both sides of the blades.
  • the total area of the movable wall in the leaf chamber area can be equal, so that the driving force of the active pump combination and the load resistance of the passive pump combination are in a balance, so that the discharge side and suction of the respective combination of the active pump and the passive pump.
  • the total area of the movable wall surface on the side is equal, and the angle phase of the blades in the respective offset chambers is also configured correspondingly and complementary, so that the respective combination of the active pump and the passive pump can be maintained during any operation.
  • the closed driving circuit of the combination of at least one of the active pump and the passive pump is in operation.
  • the total capacity and speed of the active pump and the total speed of the passive pump are automatically adjusted.
  • the capacity and speed allow the driving force and load resistance to automatically reach a balanced state, and the speed ratio between the active pump and the passive pump is automatically adjusted according to changes in the driving force and load resistance.
  • Figure 1 is a schematic diagram of the structure of a conventional variable suction and displacement pump.
  • Fig. 2 is an exploded perspective view of the structure of the first possible embodiment of the present invention.
  • Fig. 3 is a perspective view of a partially assembled state of the structure of the embodiment shown in Fig. 2.
  • Fig. 4 is the combined structure of the embodiment shown in Fig. 2, and the space in the leaf chamber is relatively smaller than the sectional view of the state shown in Fig. 4-1.
  • Fig. 4-1 is the combined structure of the embodiment shown in Fig. 2, and the space in the leaf chamber is relatively larger than the sectional view of the state shown in Fig. 4.
  • Fig. 5 is a schematic view of the combined structure of the embodiment shown in Fig. 2 in which the movable wall member is driven by the forcing mechanism.
  • Fig. 7 is a schematic diagram of the active-passive connection relationship between an active pump and a passive pump using the combined structure of the embodiment shown in Fig. 2; wherein the movable wall member of the active and passive pump and the movable vane cover are at least one of them One has the same displacement connecting piece in the connection.
  • Figure 7-1 is a schematic diagram of the active and passive connection relationship between two active pumps and two passive pumps by using the combined structure of the embodiment shown in Figure 2; wherein the movable wall part of the active and passive pump and the movable vane cover are both At least one of them is connected with the same displacement connecting piece.
  • Figure 7-2 is a schematic diagram of the active-passive connection relationship between four active pumps and four passive pumps using the combined structure of the embodiment shown in Figure 2; the movable wall part of the active and passive pump and the movable vane cover are both At least one of them is connected with a synchronous displacement connecting piece.
  • Figure 7-3 is a combined structure of the embodiment shown in Figure 7, especially in the expansion direction of the active pump's leaf chamber is additionally provided with a schematic diagram of the relationship between a displacement resistance element; wherein the movable wall of the active and passive pump and the movable blade At least one of the two chamber covers is connected with a same-direction displacement connecting member.
  • Fig. 7-4 is a combined structure of the embodiment shown in Fig. 7, and a schematic diagram of the relationship between a displacement resistance element is additionally provided in the shrinking direction of the leaf chamber of the passive pump; wherein the movable wall member and the movable leaf of the active and passive pump At least one of the two chamber covers is connected with a same-direction displacement connecting member.
  • Fig. 8 is a schematic diagram of a relationship in which two pumps are combined into an active pump end by using the combined structure of the embodiment shown in Fig. 2 and a common associated member is synchronously driven between them.
  • Fig. 8-2 is a schematic diagram of the relationship between using the combined structure of the embodiment shown in Fig. 2 to combine four pumps into an array type active pump end and synchronously driven by a common associated member at a peripheral position.
  • Fig. 8-4 is a schematic diagram of the relationship between the active pump end with four pumps combined into a tandem arrangement after changing the shape of one shaft end and the fluid suction and discharge port part by using the combined structure of the first embodiment of the present invention.
  • Fig. 9 is an exploded perspective view of the structure of a second possible embodiment of the present invention.
  • Fig. 11 is an axial cross-sectional view of the combined structure of the embodiment shown in Fig. 9 in the combined state.
  • Fig. 12 is a schematic diagram of a radial cross-sectional view of the combined structure of the embodiment shown in Fig. 11 taken along A-A.
  • the present invention is mainly composed of a chamber body 2, a blade rotor 3, a frame body 4, and a frame body 40.
  • the chamber body 2 is at least composed of a fixed wall 21 and a movable wall. 22 and a movable leaf chamber cover 23.
  • the movable wall member 22 and the movable leaf chamber cover 23 can move along the axial direction of the blade rotor 3 to produce relative displacement with the fixed wall member 21. 21.
  • At least one leaf chamber 230 is formed between the movable wall member 22 and the movable leaf chamber cover 23, when the movable wall member 22 and the movable leaf chamber cover 23 are relative to the fixed wall member 21 along the axial direction of the vane rotor 3 When it is displaced, the volume of the above-mentioned leaf chamber 230 can be changed.
  • the fixed wall 21 of the first embodiment of the present invention (FIGS. 2 to 5) is provided with a fixed wall seat cover 211 and a fixed wall end surface 212.
  • the fixed wall end surface 212 is arranged on the fixed wall.
  • One end of the seat cover 211 is perpendicular to the axis of the blade rotor 3, and a fixed wall hole 213 is provided in the center of the fixed wall end surface 212.
  • the base 41 can be detachably mounted on one end of the frame 4 as described above, and can also be integrally formed and fixed on one end of the frame 4.
  • the vane rotor 3 has at least one impeller 30, and at least one radially telescopic and sliding vane 31 can be combined on the impeller 30, and an axially vertical end surface 301 on the impeller 30 can be closely attached to the aforementioned
  • the fixed wall 204 and one of the rotor shaft ends 33 of the blade rotor 3 can be pivoted in an offset rotor shaft hole 412 on the base 41, and penetrate the frame 4 to connect the transmission element 36 to the outside.
  • a fluid suction and discharge port 35 is pre-fitted on the rotor shaft end 34, and then the fluid suction and discharge port 35 is placed on the other end.
  • One end of the frame body 40; the fluid suction and discharge port member 35 allows the rotor shaft end 34 to pivot in its interior for relative shaft rotation, so that the first suction and discharge port 341 and the second suction and discharge port 342 of the rotor shaft end 34 can be separated by
  • the fluid suction and discharge port member 35 communicates with the first suction and discharge port 351 and the second suction and discharge port 352 of the fluid suction and discharge port 35, so that the rotating internal fluid passage It is transformed into a fluid connection interface that can provide static and non-axial rotation to the outside (please refer to Figures 4 to 5), so that while the blade rotor 3 continues to operate, it can maintain the external connection of the fluid
  • the shaft end 33 and the rotor shaft end 34 are connected to the outside; the embodiment shown in FIG. 11 can also be used to make the suction and discharge passage 343 and the suction and discharge passage 344 communicate with the shaft center 345 and the non-shaft center 346 of the same rotor shaft end 34 respectively. , And then directly connected to the outside through the external suction and discharge port 410 and the suction and discharge port 4100 provided on the base 41 and/or the frame 4.
  • the movable wall member 22 is set on the outside of the blade rotor 3, and can be slidably sleeved on the periphery of the impeller 30.
  • a movable wall surface 221 is provided on it, and the movable wall surface 221 closely abuts against the movable blade.
  • the chamber sleeve 23 faces the end surface 2302 of the chamber sleeve of the movable wall member 22, and the center of the movable wall member 22 is provided with a sleeve hole 222 that can be axially slidably fitted on the periphery of the impeller 30, and the inside of the sleeve hole 222 corresponds to the blade 31, there is a leaf-containing groove 2221 into which the blade 31 can slide, and when the movable wall member 22 is relatively axially approaching the fixed wall member 21, more parts of each blade 31 can be slidably accommodated in the In the leaf-containing groove 2221; the movable leaf housing 23 is provided with a leaf chamber 230 inside, and the leaf chamber 230 can be slidably sleeved in the periphery between the fixed wall member 21 and the impeller 30, and the leaf
  • the interior of the chamber 230 is surrounded by the movable blade chamber sleeve 23, the fixed wall end surface 212, the movable wall surface 2
  • the inner wall of 230 slides relative to each other; and the parts where the above-mentioned blade 31 contacts the inner wall of the leaf chamber 230, as well as the fixed wall member 21, the movable wall member 22, the movable leaf chamber cover 23 and the blade rotor 3, are closely attached to or
  • the relative displacement positions can be provided with appropriate sealing and leak-proof elements to prevent the fluid inside the leaf chamber 230 from leaking at the above-mentioned positions during operation; especially on the blade top edge 311 of the above-mentioned blade 31 and the movable wall member 22 and the The part where the three intersects of the moving leaf chamber cover 23 is due to the surface curve of the top edge 311 of the blade and the cross-sectional curve of
  • the vane rotor 3 drives the vane 31 to sweep in the offset chamber area 2301 during operation
  • the fluid located on the forward side of the vane 31 sweeping direction is squeezed and discharged to form the discharge side, and
  • the fluid located on the other side of the blade 31 is sucked into the suction side, and because the offset chamber area 2301 is offset relative to the axis of the blade rotor 3, the blade 31 sweeps through the offset chamber area 2301
  • the area of the fixed wall surface 204 per unit angle will continue to change as the blade rotor 3 rotates; this phenomenon is equivalent to the area where the movable wall surface 221 on both sides of the blade 31 intersects the interior of the deviated leaf chamber area 2301 and the fluid flow on both sides of the blade 31
  • the suction and discharge volume of the blade 31 will change relative to the sweep position of the blade 31.
  • the space occupied by the blade 31 in the deflection chamber area 2301 will also relatively change accordingly, resulting in the fluid discharged from the discharge side of the blade 31
  • the amount is slightly different from the amount of fluid sucked on the suction side; moreover, under the forced pushing of the external force compulsory element 8 (please refer to Figure 5) or the difference in the flow and pressure of the working fluid, the movable wall 22 can be combined with
  • the moving blade chamber cover 23 will be fitted on the blade rotor 3 and the fixed wall seat cover 211 for relative axial displacement.
  • the offset blade chamber area 2301 The suction and discharge capacity is relatively gradually reduced.
  • variable suction and displacement pumps are specially configured and connected in two corresponding ways, and the first suction and discharge port 351 and the second suction and discharge port 352 of the pump are correspondingly configured.
  • the suction port and the discharge port set in the set are intersected with each other; therefore, if the left pump in the figure of the two correspondingly configured pumps is set as the active pump 101 and the other right pump is set as the passive pump 102 , And connect the discharge port of the active pump 101 to the suction port of the passive pump 102, so that the fluid discharged from the discharge port of the active pump 101 can enter the suction port of the passive pump 102 and the suction side of the blade 31;
  • the discharge port of the passive pump 102 is connected to the suction port of the active pump 101, so that the discharge side fluid of the blade 31 of the passive pump 102 is discharged from the discharge port and then flows back to the suction port of the active pump 101 and the suction port of the blade 31 On the suction side, the leaf chamber
  • the movable vane cover 23 In the area 2301, the movable vane cover 23, the fixed wall surface 204 and the movable wall surface 221 on the suction side of the blade 31, and the deviated vane area 2301 of the passive pump 102, the vane surface of the vane 31 located on the discharge side of the vane 31
  • the vacuum suction force generated after pushing is formed; because of the pushing pressure or vacuum suction direction that the movable leaf chamber cover 23 bears, it is exactly the same as the movable leaf chamber cover 23
  • the direction of the axial movement is vertical, so the driving pressure or vacuum suction force cannot directly generate the movable vane cover 23
  • the fixed wall surface 204 is fixed and non-movable, so during the driving process, only the movable wall surface 221 will bear the pushing pressure or vacuum suction force to cause the movable wall member 22 to move axially, and will also link the movable leaf chamber cover 23 at the same time.
  • the area of the movable wall surface 221 on the discharge side of the blade 31 in the deflection chamber area 2301 of the active pump 101 at this time is larger than the deflection chamber area of the passive pump 102
  • the area of the movable wall surface 221 located on the suction side of the vane 31 in 2301, the greater the force receiving area, the greater the pushing force, and the load force of the vane 31 of the passive pump 102 will cause the active pump 101 to fail.
  • the movable wall member 22 together with the movable leaf chamber cover 23 will gradually produce axial displacement in the direction away from the fixed wall surface 204, which enlarges the axial space of the deviated leaf chamber area 2301, and at the same time forms the passive pump 102
  • the suction side of the vane 31 generates suction, which sucks the movable wall member 22 of the passive pump 102 together with the movable vane cover 23 to a direction close to the fixed wall 204 to generate axial displacement; at the same time, the deflection vane of the active pump 101
  • the area of the movable wall surface 221 located on the suction side of the vane 31 in the chamber area 2301 is smaller than the area of the movable wall surface 221 located on the discharge side of the vane 31 in the offset chamber area 2301 of the passive pump 102, so that the vane of the active pump 101
  • the vacuum suction force generated on the suction side of the passive pump 102 after the sweep of 31 forms a large attracting force on the
  • variable speed drive device if the combined closed circuit outputs and inputs a working fluid to the respective leaf chambers 230 of the active pump 101 and the passive pump 102, and the external force is used to force the element 8
  • the forced pushing of the working fluid or the change in the pressure generated in the interior of the leaf chamber 230 during the process of pushing and transmitting the working fluid acts on at least one of the movable wall member 22 and the movable leaf chamber cover 23 and the fixed Between the wall members 21, the movable wall member 22 and/or the movable leaf chamber cover 23 and the fixed wall member 21 are relatively displaced, thereby changing the volume of the leaf chamber 230, so that the active pump 101,
  • the passive pump 102 can generate power transmission that varies inversely proportional to each other in the rotational speed of the respective blade rotor 3 according to the change of the volume of each corresponding leaf chamber 230, respectively.
  • the four-active pump 101 has multiple power cycles input to drive the four-passive pump 102 for one power cycle output, which produces an effect similar to power transmission downshift driving; on the contrary, if the driving force of the four-active pump 101 remains unchanged, but the four-passive pump When the load of the pump 102 is reduced, all the above-mentioned operating conditions are completely opposite, resulting in a power cycle input of the four-active pump 101, which can drive the four-passive pump 102 to output multiple power cycles, resulting in an effect similar to power transmission and upshift driving; It can be seen that in the operation of the closed driving circuit of the combination of the four active pumps 101 and the passive pump 102, when the driving force and load resistance change, the respective total capacities of the four active and passive pumps can be automatically adjusted to automatically balance the driving force and load resistance. It becomes a driving device that can smoothly adjust the speed according to the change of driving force and load resistance.
  • Fig. 7, Fig. 7-1, Fig. 7-2, Fig. 7-3 and Fig. 7-4 show the suction of the active pump 101 and the passive pump 102 per unit time between the active pump and the passive pump.
  • the movable wall member 22 or the movable leaf chamber cover 23 of the active pump 101 and the passive pump 102 are linked by the joint displacement coupling 80 or the synchronous displacement coupling 800, and by The external force pushes the same direction displacement coupling member 80 or the synchronous displacement coupling member 800 to force the movable wall member 22 or the movable leaf chamber cover 23 of the active pump 101 and the passive pump 102 to be in the same direction or in synchronization with each other.
  • the corresponding fixed wall surface 204 carries out opposite displacements away or close to each other, so as to ensure that the increase or decrease value of the leaf chamber volume of the active pump 101 is exactly the same or the same as the volume reduction or increase value of the leaf chamber of the passive pump 102; in addition; In the direction of increasing the volume of the leaf chamber of the active pump 101 in Fig. 7-3 and the direction of reducing the volume of the leaf chamber of the passive pump 102 in Fig.
  • a displacement resistance element 9 and a displacement resistance element 90 (such as a spring ), so that the automatic adjustment of the rotation speed ratio formed by the active pump 101 and the passive pump 102 of the present invention can generate a pre-added internal load resistance due to the installation of the displacement resistance element 9 and the displacement resistance element 90 , Thereby generating a preset balance condition that the actual driving force that needs to be input must be slightly greater than the actual applied load resistance, so as to create a forced downshift effect similar to a transmission mechanism.
  • FIGS. 9 to 12 is a second feasible embodiment of the present invention, which is mainly formed by a fixed wall member 21, a movable wall member 22 and a movable leaf chamber cover 23 with a plurality of deviations.
  • the capacity of the zone 2303 after automatic adjustment is inversely proportional, so that the closed circuit combination between the active pump 101 and the passive pump 102 becomes a variable speed drive device that can automatically adjust the speed; and because the second embodiment has multiple blades 31 and multiple deviations
  • the combination of the active pump and the passive pump in the lobe area 2303 has the driving force as shown in Figure 7-1 or Figure 7-2, which combines multiple groups of active pumps combined with a single vane in the single lobe area.
  • the stable driving effect formed by the passive pump obviously has extremely high industrial use value.
  • variable suction and displacement function can be effectively achieved without increasing the original radial size, and not only can effectively improve the aforementioned traditional variable suction and displacement pump
  • the combination of the pump of the present invention can be used to form a driving device that can automatically adjust the speed ratio between them, which is indeed a design with deep practical value.

Abstract

一种可变吸排量泵、由该泵组成的可变速驱动装置及其驱动方法,主要在一叶轮式泵的内部,以一固定壁件(21)、一可移动壁件(22)及一可移动叶室套(23)组合成至少具有一叶室(230)的叶室体(2),再配合装置在该叶室体(2)内的叶片转子(3),构成该叶室(230)可沿叶片转子(3)的轴向进行伸缩的可变吸排量泵;并且利用至少两具该可变吸排量泵相交联通,形成一主动泵(101)驱动被动泵(102)型态的封闭回路;运转中,当主动泵(101)的驱动力与被动泵(102)的负载阻力产生差值时,可致使该主被动泵(101)的叶室(230)大小产生自动伸缩调节,直到上述驱动力与负载阻力达到平衡,且在主被动泵间的单位时间流体吸排量趋近相等的条件下,让主被动泵之间的叶室(230)容量与转速,自动调整为一反比关系的运转平衡,并达到滑顺变速驱动的目的。

Description

可变吸排量泵、由该泵组成的驱动装置及其驱动方法 技术领域
本发明是有关一种可变吸排量泵及由该泵所组成的驱动装置及其方法,特别是指将一叶轮式泵设成由固定壁件、可移动壁件、可移动叶室套及叶片转子所构成,该叶轮式泵中具有一可沿该叶片转子的轴向进行伸缩的叶室,借该叶室的容量空间的可伸缩作用形成一可变吸排量泵;且可将至少两具该可变吸排泵予以联通组合成主被动驱动装置,再利用驱动力与负载阻力需达到力的平衡的原理,构成在运转过程中可自动调整主被动泵间的转速比的变速驱动装置。
背景技术
一般泵(帮浦)可分为固定吸排量泵和可变吸排量泵两大类型,其中的可变吸排量泵因适用性广,已普遍为相关产业所应用;若再以结构的型态分类,则又可分为活塞式可变吸排泵及叶轮式可变吸排泵两类型;其中的活塞式可变吸排泵,通常使用可变角度的旋转斜板在旋转中,依序推动多个大略相平行配置的活塞式油泵缸所形成;叶轮式可变吸排泵则有如图1所示,主要包含有一叶片转子10,被设置在一泵1内部的偏心环11之中,该偏心环11的一侧利用一偏心量调整元件12推动其相对于叶片转子10的偏心量,借该偏心量的可调节性,造成叶片转子10与偏心环11之间的流体容纳空间为可调变,泵的吸排量因而得以调变运用。
然而,因为上述的偏心环11被装置在该泵1的内部,可调节的位移量的大小被限制在该泵外壳中的固定空间之内,该内部空间的大小直接影响及限制泵体及所有组配元件的径向尺寸,因此当应用上需要制造不相同最大吸排量的产品时,因为各不同吸排量泵之间的零组件共用性相当低,致使每一新的最大吸排量泵会因为多个零组件需要重新设计开模而相对提高其制造成本;此外在运转时,如果泵的吸入侧与排出侧的距离较长,而致使其间的压差太大,则可能让各叶片在运转中的来回径向伸缩位移量太大,而产生震动或碰撞的噪音的不良影响。
发明内容
基于上述传统可变吸排量泵的缺失,本发明的目的在于提供一种全新的叶轮式可变吸排量泵,特别是将泵的叶室设成具有可沿叶片转子的轴向进行伸缩调变其容量空间的 功能,使得泵内部流体的单位循环吸排量,可因该叶室空间的轴向变化而产生增减,因此在需要制造不同吸排量的泵时,各零组件间因径向规格趋于一致而提高彼此的共用性,可大幅降低制造不同吸排量泵的备料成本,而且在泵的最大吸排量需求增加时,只需改变泵及相关零组件的轴向尺寸即可达成,而不会因为叶室的径向尺寸加大,造成叶室中吸入侧与排出侧之间的压差提高的现象,叶片的径向伸缩行程也不会因而加长,运转中因叶片来回伸缩所造成的噪音也可得到有效的降低。
另基于本发明上述可变吸排量泵的设计,若在至少两具相对应配置的该可变吸排量泵之间,将两两相对应的流体吸入口道与排出口道相交联通,形成一封闭的主被动驱动回路;在该回路的驱动运转过程中,当主动泵的驱动力与被动泵的负载阻力产生差值时,该叶室体的可伸缩叶室受到该差值力的推动作用,可致使该主动泵的叶室大小及被动泵的叶室大小产生自动伸缩调节,直到主动泵内对流体的驱动力与被动泵内受流体推动的负载阻力达到平衡,同时在主动泵与被动泵之间的单位时间流体吸排量若趋近相等的条件下,让主被动泵的叶室容量与转速之间,自动调整为一反比关系的平衡运转,形成一可在驱动力或负载阻力发生改变时,自动调整主动泵与被动泵之间的转速比,以达到滑顺变速驱动的目的。
为达上揭的目的,本发明提供一种可变吸排量泵,具有一叶室体及设于叶室体内的叶片转子,叶室体中至少具有由固定壁件、可移动壁件及可移动叶室套所包围构成的叶室,该叶片转子具有被设置在该叶室中的叶轮,该叶轮上设有叶片;该可移动壁件与可移动叶室套能沿该叶片转子的轴方向与该固定壁件进行相对位移,使得该叶室的容量能沿该叶片转子的轴方向进行伸缩增减。
依上述的可变吸排量泵,其中的叶片数量可以小于或等于偏位叶室区的数量。
依上述的可变吸排量泵,其中的叶轮上可以带有单一叶片,且叶室中具有至少一偏位叶室区。
依上述的可变吸排量泵,其中的叶室中可以具有多个偏位叶室区,且该叶轮上配合该多个偏位叶室区设有多个叶片。
依上述的可变吸排量泵,其中该叶片转子的两转子轴端分别置架在相对应于两该转子轴端的架体上,且至少其中一该转子轴端往外联结传动元件,以接收动力或承受负载。
依上述的可变吸排量泵,其中该固定壁件可以设有一固定壁座套及固定壁端面,该固定壁端面设置在该固定壁件的一端,且固定壁端面与叶片转子的轴相垂直,该固定壁端面能紧密贴靠于该叶片转子的叶轮上的一轴向垂直端面。
依上述的可变吸排量泵,其中的固定壁件可以套架在一(端)架体上的一基座上;
该基座上设具一固定壁端柱,该固定壁端柱填满地套塞在该固定壁端面中心所预设的固定壁孔,并使该固定壁端柱的一柱端面与该固定壁端面共同形成一固定壁面,该固定壁面能紧密贴靠于该叶片转子上的一轴向垂直端面;且该固定壁端柱上设有一偏位的转子轴孔用以枢架叶片转子的一轴端。
依上述的可变吸排量泵,其中该叶片转子内部可以布设有至少两条流体的吸排通道,各吸排通道朝向叶室内的一端分别联通到该叶片转子对应叶片的吸入侧及排出侧,各吸排通道远离该吸入侧及排出侧的一端则联通到该叶片转子的两转子轴端的至少其一。
依上述的可变吸排量泵,其中联通有吸排通道的转子轴端可以枢套组合有一流体吸排口部件,且使该转子轴端能在流体吸排口部件中进行轴转,该流体吸排口部件则维持静止不动地置架在一(端的)架体上。
依上述的可变吸排量泵,其中各吸排通道可以朝向同一转子轴端延伸,且该分别与该转子轴端的轴中心与非轴中心位置相联通并直接通过设置在一基座及一架体的至少其一上的对外吸排口道向外连接。
依上述的可变吸排量泵,其中该可移动壁件可以套组在该叶片转子的外部,并且可移动壁件能依叶片转子的轴向在叶轮的外围进行滑移;该可移动叶室套则能套合在固定壁件与叶轮之间的外围,且可移动壁件与该可移动壁件同步轴向滑移。
依上所述的可变吸排量泵,其中的可移动壁件与可移动叶室套之间,可以利用一固定件予以组合,以维持该两者(可移动壁件与可移动叶室套)能同步依叶片转子的轴向进行滑移。
依上述的可变吸排量泵,其中的可移动壁件上设有可移动壁面,该可移动壁面紧密贴靠在可移动叶室套上远离固定壁件的叶室套端面上,且该可移动壁件中央设有能轴向滑移套合于叶轮外围的套孔,该套孔的周围对应叶轮的叶片处设有能让该叶片滑入的容叶槽。
依上述的可变吸排量泵,其中的可移动叶室套内部的叶室内部被包围在可移动叶室套、该固定壁件上的一固定壁端面及该可移动壁件上的一可移动壁面与叶片转子之间的空间中除去叶轮所占的空间后的剩余空间中,形成至少一与叶片转子轴心相偏位的偏位叶室区。
依上述的可变吸排量泵,其中的叶片具有远离叶片转子的叶片顶缘,该叶片顶缘能 与叶室内壁之间形成紧密贴靠,并其该叶片顶缘能沿叶片转子的轴向及圆周方向的至少其一与叶室内壁进行相对滑移。
依上述的可变吸排量泵,其中在该叶片顶缘与可移动壁件及可移动叶室套三者同时相交会的部位设有密封块,以避免该三者(叶片顶缘与可移动壁件及可移动叶室套)同时相交会部位产生间隙而泄漏叶室内的流体。
应用上述的可变吸排量泵,可以由一封闭回路中对该叶室输出及输入一作业流体,并使该可移动壁件及可移动叶室套两者的至少其一,与固定壁件产生相对位移,以改变该叶室容量的大小,使得在单位时间内该叶片转子转动推送通过叶室的作业流体的输出量及输入量,能够依该叶室容量的改变而产生不同,进而使该叶片转子能够依据叶室容量的改变产生不同转速的动力传输。
依上述的可变吸排量泵,可以单独以该作业流体推引作用在该可移动壁件、可移动叶室套、叶片转子及固定壁件之间,使该可移动壁件及可移动叶室套两者与固定壁件之间产生相对位移。
依上述的可变吸排量泵,可以利用一外力强制元件作用在该可移动壁件及可移动叶室套两者的至少其一,使该可移动壁件及可移动叶室套两者与固定壁件之间产生相对位移。
依上述的可变吸排量泵,可以被组成一可变速驱动装置,其以至少两个该可变吸排量泵予以相对应配置,且在两两相对应配置的可变吸排量泵之间,将分别对应于吸入流体与排出流体的吸排通道相交联通,该两两相对应配置的可变吸排量泵的其中一个设为主动泵,两两相对应配置的可变吸排量泵的其中另一个设为被动泵,使主动泵与被动泵之间形成一驱动回路。
依上述的可变速驱动装置,其中的主动泵的可移动壁件及可移动叶室套之间以及被动泵的可移动壁件及可移动叶室套之间的至少其一,联结有一同向位移联结件及同步位移联结件的其中之一予以联动。
依上述的可变速驱动装置,其中的主动泵的叶室增大方向及被动泵的叶室缩小方向的至少其一加设置有一位移阻却元件。
依上述的可变速驱动装置,其中的主动泵端及被动泵端各具有至少四倍数的叶片及数量大于或等于该叶片数的偏位叶室区,且在叶室中每一叶片在其对应的偏位叶室区内的角度相位均与至少另一叶片的角度相位成180度的互补关系。
依上述的可变速驱动装置,其中的各四倍数的偏位叶室区一体成型在单一可变吸排 量泵中。
依上述的可变速驱动装置,其中的各偏位叶室区设置在各独立的可变吸排量泵中。
依上述的可变速驱动装置,其中该可变速驱动装置设有至少两个该主动泵,且各该主动泵中间设有一共同关联件予以同步带动。
依上述的可变速驱动装置,其中该可变速驱动装置设有至少两个该主动泵,且各该主动泵的外围设有一共同关联件予以同步带动。
依上述的可变速驱动装置,其中该可变速驱动装置设有至少两个该主动泵及至少两个被动泵,且该主动泵及该被动泵的至少其中之一的组配型态,是形成阵列式联结的组合。
依上述的可变速驱动装置,其中该可变速驱动装置设有至少两个该主动泵及至少两个该被动泵,且该主动泵及该被动泵的至少其中之一的组配型态,是形成线性联结的组合。
依上述的可变速驱动装置,其中该可变速驱动装置设有至少两个该主动泵及至少两个该被动泵,且该主动泵及该被动泵的至少其中之一的组配型态,是形成串列式联结的组合。
应用上述的可变速驱动装置,可以由一封闭回路中对该主被动泵的各别叶室输出及输入一作业流体,并使各可移动壁件及可移动叶室套两者的至少其一,与各固定壁件产生相对位移,以改变各叶室容量的大小,让主被动泵能够分别依据各该对应叶室的容量的改变,让各别对应的叶片转子的转速产生互为反比变化的动力传输。
依上述的可变速驱动装置,可以单独以该作业流体推引作用在各可移动壁件、可移动叶室套、叶片转子及固定壁件之间,使该可移动壁件及可移动叶室套两者与固定壁件之间产生相对位移。
依上述的可变速驱动装置,可以利用一外力强制元件作用在该可移动壁件及可移动叶室套两者的至少其一,使该可移动壁件及可移动叶室套两者与固定壁件之间产生相对位移。
应用上述的可变速驱动装置其驱动方法的步骤可以为:
(一)使该变速驱动装置产生运转,且让主动泵的驱动力与被动泵所承受的负载阻力产生差值;
(二)让该主动泵的叶室大小及被动泵的叶室大小,受该驱动力及负载阻力的差值推动产生自动伸缩调节;
(三)在主动泵与被动泵间的单位时间流体吸排量趋近相等的条件下,让主动泵内对流体的驱动力与被动泵内流体所承受的负载力相等而达到运转平衡,进而使主动泵与被动泵之间的叶室容量与转速自动调整达到一反比关系的运转,形成一可在驱动力与负载阻力之间的作用发生改变时,自动调整主动泵与被动泵的叶室大小及其间的转速比,在运转中达到驱动力与负载阻力之间的驱动平衡。
依上述的驱动方法;在该驱动回路运转时,该主动泵的驱动力转动其叶片转子及带动叶片,对该主动泵的偏位叶室区内,位于叶片排出侧的可移动叶室套、该固定壁件上的一固定壁面及该可移动壁件上的一可移动壁面,以及该被动泵的偏位叶室区内,位于叶片吸入侧的叶片叶面与可移动叶室套、固定壁面及可移动壁面施加推动压力,且同时对该主动泵的偏位叶室区内,位于叶片吸入侧的可移动叶室套、固定壁面及可移动壁面,以及该被动泵的偏位叶室区内,位于叶片排出侧的叶片叶面与可移动叶室套、固定壁面及可移动壁面形成推动产生真空吸力;
在可移动壁面承受该推动压力或真空吸力后,使可移动壁件连同紧贴在其上的可移动叶室套进行同步轴向移动,且该被动泵内的叶片的两侧,分别受到推动压力及真空吸力的同方向双重影响而被驱动,并带动叶片转子转动而对该被动泵的负载端输出动力。
依上述的驱动方法;当该主动泵的偏位叶室区内位于叶片排出侧的可移动壁面面积,大于该被动泵的偏位叶室区内位于叶片吸入侧的可移动壁面面积时,让该主动泵的可移动壁件连同可移动叶室套,往远离固定壁面的方向逐渐产生轴向位移,扩增该偏位叶室区的轴向空间,同时对该被动泵的叶片吸入侧产生吸力,将该被动泵的可移动壁件连同可移动叶室套吸向靠近固定壁面的方向产生轴向位移;
同时,当该主动泵的偏位叶室区内位于叶片吸入侧的可移动壁面面积,小于该被动泵的偏位叶室区内位于叶片排出侧的可移动壁面面积时,使该主动泵的叶片产生扫动而在其吸入侧产生的真空吸力,对较大面积的该被动泵内可移动壁面形成较大的吸引力,让主动泵的可移动壁件连同可移动叶室套,往远离固定壁面的方向位移,该被动泵的可移动壁件连同可移动叶室套,向靠近固定壁面的方向位移;
反之,当该主动泵与被动泵各自的偏位叶室区内,位于叶片的排出侧及吸入侧的可移动壁面面积大小比较与上述相反时,则主动泵与被动泵的可移动壁件及可移动叶室套即往上述的相反方向位移;再经主动泵与被动泵之间的同向位移联结件的牵引,随着该主动泵的叶片驱动,液态流体对该被动泵内的叶片吸入侧叶面产生推动力,逐渐推动该被动泵及其负载端,使该主动泵与被动泵的驱动回路逐步产生运行。
依上述的驱动方法,特别可以将多个偏位叶室区的主动泵组合联结多个偏位叶室区的被动泵组合,让联结后的主动泵与被动泵各自在叶片两侧的偏位叶室区内可移动壁面的面积总和能相等,以此在该主动泵组合的驱动力与该被动泵组合的负载阻力处于一平衡下,让主动泵与被动泵各自的组合的排出侧及吸入侧的可移动壁面面积总和相等,同时也将在各别偏位叶室区内的叶片的角度相位进行相对应互补的配置,使得主动泵与被动泵各自的组合在任何运行过程中均能维持有叶面承受动力提供驱动作用。
依上述的驱动方法,该主动泵及被动泵至少其一的组合的封闭驱动回路在运行中,当驱动力与负载力发生变动时,自动调整该主动泵的总容量及转速与被动泵的总容量及转速,让该驱动力与负载阻力自动达到平衡的状态,而依驱动力及负载阻力的变化自动调节主动泵与被动泵间的转速比。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
图1是传统可变吸排量泵的结构示意图。
图2是本发明第一种可行实施例的结构的分解立体图。
图3是图2所示实施例的结构的部分组合状态立体图。
图4是图2所示实施例的组合结构,在叶室的空间相对小于图4-1中所示的状态剖面图。
图4-1是图2所示实施例的组合结构,在叶室的空间相对大于图4中所示的状态剖面图。
图5是图2所示实施例的组合结构,以强制机构引动可移动壁件的状态示意图。
图6是图2所示实施例的组合结构,其吸排通道分由叶片转子两轴端分别向外联通的示意图。
图7是利用图2所示实施例的组合结构,以一主动泵组配一被动泵的主被动联结关系示意图;其中的主被动泵的可移动壁件与可移动叶室套两者至少其一之间联结有同向位移联结件。
图7-1是利用图2所示实施例的组合结构,以两主动泵组配两被动泵的主被动联结关系示意图;其中的主被动泵的可移动壁件与可移动叶室套两者至少其一之间联结有同向位移联结件。
图7-2是利用图2所示实施例的组合结构,以四主动泵组配四被动泵的主被动联结 关系示意图;其中的主被动泵的可移动壁件与可移动叶室套两者至少其一之间联结有同步位移联结件。
图7-3是如图7所示实施例的组合结构,特别在主动泵的叶室扩展方向另加设有一位移阻却元件的关系示意图;其中的主被动泵的可移动壁件与可移动叶室套两者至少其一之间联结有同向位移联结件。
图7-4是如图7所示实施例的组合结构,特别在被动泵的叶室缩小方向另加设有一位移阻却元件的关系示意图;其中的主被动泵的可移动壁件与可移动叶室套两者至少其一之间联结有同向位移联结件。
图8是利用图2所示实施例的组合结构,以两泵组合成一主动泵端,并在其间以一共同关联件同步带动的关系示意图。
图8-1是利用图2所示实施例的组合结构,以四泵组合成一阵列式主动泵端,并以一中央位置的共同关联件同步带动的关系示意图。
图8-2是利用图2所示实施例的组合结构,以四泵组合成一阵列式主动泵端,并以一外围位置的共同关联件同步带动的关系示意图。
图8-3是利用图2所示实施例的组合结构,以四泵组合成一线性排列的主动泵端的关系示意图。
图8-4是利用本发明第一种实施例的组合结构,改变其一轴端与流体吸排口部件的型态后,以四泵组合成一串列式排列的主动泵端的关系示意图。
图9是本发明第二种可行实施例的结构的分解立体图。
图10是图9所示实施例的结构的部分组合状态立体图。
图11是图9所示实施例的组合结构,其组合状态的轴向剖面示意图。
图12是图11所示实施例的组合结构,沿A-A剖切的径向剖面示意图。
图13是以图10所示实施例的组合结构,以一主动泵组配一被动泵的主被动联结关系示意图。
附图标号说明:
1、泵;
10、叶片转子;
101、主动泵;
102、被动泵;
11、偏心环;
12、偏心量调整元件;
2、叶室体;
204、固定壁面;
21、固定壁件;
211、固定壁座套;
212、固定壁端面;
213、固定壁孔;
22、可移动壁件;
221、可移动壁面;
222、套孔;
2221、容叶槽;
23、可移动叶室套;
230、叶室;
2301、2303、偏位叶室区;
2302、叶室套端面;
3、叶片转子;
30、叶轮;
301、轴向垂直端面;
31、叶片;
311、叶片顶缘;
33、转子轴端;
34、转子轴端;
341、第一吸排口;
342、第二吸排口;
343、344、吸排通道;
345、轴中心;
346、非轴中心;
35、流体吸排口部件;
351、第一吸排口道;
352、第二吸排口道;
36、传动元件;
37、密封块;
4、40、架体;
41、基座;
410、4100、吸排口道;
411、固定壁端柱;
4110、柱端面;
412、转子轴孔;
5、固定件;
6、60、61、62、共同关联件;
8、外力强制元件;
80、同向位移联结件;
800、同步位移联结件;
9、90、位移阻却元件。
具体实施方式
为了对本发明的技术方案、目的和效果有更清楚的理解,现结合附图说明本发明的具体实施方式。
依图2至图4所示,本发明主要由叶室体2、叶片转子3及架体4、架体40所构成,其中的叶室体2至少是由固定壁件21、可移动壁件22及可移动叶室套23所形成,该可移动壁件22及可移动叶室套23,可沿叶片转子3的轴方向移动而与该固定壁件21产生相对位移,在该固定壁件21、可移动壁件22及可移动叶室套23之间形成至少一叶室230,当可移动壁件22及可移动叶室套23沿叶片转子3的轴方向相对该固定壁件21进行位移时,即可造成上述叶室230容积的改变。
依上述的原则,本发明的第一种实施例(图2至图5)的固定壁件21设有固定壁座套211及固定壁端面212两部分,该固定壁端面212设置在该固定壁座套211的一端,且与叶片转子3的轴相垂直,又该固定壁端面212的中心设有固定壁孔213,该固定壁件21可利用固定壁座套211架套在一基座41上,并使该固定壁端柱411紧密填满地套塞在该固定壁孔213内,使该固定壁端柱411的柱端面4110与固定壁端面212共同形成一固定壁面204;在可行的结构型态中该基座41除了能够如上述般可分离活动的置架 在其中一端架体4上,更可一体成型的固定设计在一端架体4上。
该叶片转子3具有至少一叶轮30,且该叶轮30上至少可组合一可径向伸缩滑移的叶片31,并让该叶轮30上的一轴向垂直端面301,可紧密贴靠于上述的该固定壁面204,同时该叶片转子3的其中一转子轴端33可枢架在该基座41上一偏位的转子轴孔412中,并穿透过该架体4往外联结传动元件36以接收动力或承受负载;另一转子轴端34内部可同时设置有第一吸排口341及第二吸排口342,且该第一吸排口341、第二吸排口342分别联通设置在该叶片转子3内部的吸排通道343、吸排通道344,吸排通道343、吸排通道344分别再延伸连通至上述叶片31两侧的吸入侧及排出侧,与叶室230内连通;该转子轴端34除可直接枢架在另一端架体40之外,更可以如图2至图5所示,预先在该转子轴端34套合一流体吸排口部件35,再借该流体吸排口部件35置架在该另一端的架体40;该流体吸排口部件35可让该转子轴端34枢架在其内部进行相对轴转,因此可以让转子轴端34的该第一吸排口341、第二吸排口342由原本轴转的状态,透过该流体吸排口部件35的中介衔接,与该流体吸排口部件35的第一吸排口道351及第二吸排口道352相对应连通,使得转动中的内部流体通路转变成为可对外提供静止不轴转的流体衔接介面(请参图4至图5),以利在叶片转子3持续运转中,可维持对外连接流体输入源及输出源;然而,吸排通道343、吸排通道344在叶片转子3中的可实施型态除了上揭型式以外尚有无数可行型式,例如图6所示将吸排通道343、吸排通道344分别由叶片转子3的两转子轴端(包括转子轴端33、转子轴端34)对外联通;也可如图11所示实施例,让该吸排通道343、吸排通道344分别与同一转子轴端34的轴中心345及非轴中心346位置相联通,再直接借由设置在该基座41及/或架体4的对外的吸排口道410、吸排口道4100向外连接。
可移动壁件22套组在该叶片转子3的外部,并可轴向滑移套合在叶轮30的外围,其上设有一可移动壁面221,该可移动壁面221紧密贴靠在可移动叶室套23朝向可移动壁件22的叶室套端面2302上,且该可移动壁件22中央设有可轴向滑移套合于叶轮30外围的套孔222,该套孔222内部对应叶片31处,设有可让该叶片31滑入的容叶槽2221,并可在该可移动壁件22相对轴向接近固定壁件21时,让各叶片31的更多部分可滑容在该容叶槽2221中;该可移动叶室套23内部设有一叶室230,且该叶室230可沿轴向滑移套合在该固定壁件21与叶轮30之间的外围,且该叶室230内部被包围在可移动叶室套23、固定壁端面212、可移动壁面221与叶片转子3之间并扣除叶轮30所占的叶室230剩余空间中,可形成至少一与叶片转子3轴心相偏位的偏位叶室区2301;上述叶 片31远离叶片转子3的一叶片顶缘311,紧密贴靠在叶室230内壁上,并可沿轴向及/或圆周方向与叶室230内壁进行相对滑移;而且上述的叶片31与叶室230内壁接触的部位,以及固定壁件21、可移动壁件22、可移动叶室套23及叶片转子3等部件有紧密贴靠或相对位移的部位,均可设置适当的密封防漏元件,以避免运转中叶室230内部的流体在上述部位处发生泄漏现象;特别在上述叶片31的叶片顶缘311与可移动壁件22及可移动叶室套23三者相交会的部位,由于该叶片顶缘311的外表曲线,与该叶片顶缘311穿入可移动壁件22的容叶槽2221的断面曲线,以及与该叶片顶缘311相接触的可移动叶室套23的叶室230内壁曲线均有不同,造成该三者相交会的部位会有微小的间隙,使得在运转中,该叶室230无法完全封闭;为此本发明在该叶片顶缘311上,设置一可紧贴着叶片顶缘311与叶片31同步进行滑移的密封块37,该密封块37更被限制在该可移动壁件22的容叶槽2221与可移动叶室套23的叶室230内壁的外缘的交会路径中,如此,即可在运转中,随时封阻在上述叶片顶缘311与容叶槽2221及叶室230内壁外缘三者的交会处,能对上述的间隙产生良好的密封防漏作用。该可移动壁件22与该可移动叶室套23之间,可利用一固定件5(固定件5的结构可有多种可行型态,于此不一一赘述)予以组合,以维持两者能以相贴组合的关系同步进行上述的轴向滑移。
依上述的组合结构,该叶片转子3于运转中带动叶片31在偏位叶室区2301内进行扫动时,位在该叶片31扫动方向前进侧的流体被挤压排出形成排出侧,以及位在叶片31另一侧的流体被吸入形成吸入侧,且因该偏位叶室区2301相对于叶片转子3的轴心为相偏位,该叶片31在偏位叶室区2301内扫过单位角度的固定壁面204面积,会随着叶片转子3转动而不断改变;此现象等同该叶片31两侧的可移动壁面221与偏位叶室区2301内部交集的面积以及叶片31两侧对流体的吸排量,均会随着叶片31扫动位置变换而相对的改变,同时该叶片31在偏位叶室区2301内所占据的空间也相对跟着改变,造成该叶片31排出侧排出的流体量与吸入侧吸入的流体量有些许差异;而且,在外力强制元件8(请参图5)的强制推动或受作业流体的流量及压力差异的作用下,该可移动壁件22联同可移动叶室套23,将套合在该叶片转子3及固定壁座套211上进行相对轴向位移,当该可移动壁面221逐渐轴向靠近该固定壁面204时,该偏位叶室区2301的可吸排容量即相对逐渐减少,反之若该可移动壁面221逐渐轴向远离该固定壁面204时,该偏位叶室区2301的可吸排容量即逐渐增加,借此形成一种可轴向伸缩改变叶室230吸排量的可变吸排量泵。
因此,应用以上所述的可变吸排量泵,如果将该泵组合在一封闭回路中,并由该封 闭回路对该叶室230输出及输入一作业流体,并利用该外力强制元件8的强制推动或该作业流体在推动传输的过程中,对叶室230内部所产生的压力的改变量,推动作用在该可移动壁件22及可移动叶室套23两者的至少其一与固定壁件21之间,使该可移动壁件22及/或可移动叶室套23与固定壁件21之间产生相对位移,进而改变该叶室230容量的大小,如此即可以使得在单位时间内该叶片转子3转动推送通过叶室230的作业流体的输出量及输入量,能够依该叶室230容量的改变而产生不同,进而使该叶片转子3能够依据叶室230容量的改变产生不同转速的动力传输。
图7所示,是特别将上述所形成可变吸排量的泵,以两相对应的方式予以配置联通,将该两相对应配置泵的第一吸排口道351及第二吸排口道352中所设定的吸入口道与排出口道互为相交联通;以此,若将两相对应配置的泵中位于图示的左边泵设为主动泵101且另一右边泵设为被动泵102,并使该主动泵101的排出口道联通到被动泵102的吸入口道,让主动泵101排出口道排出的流体,可进入被动泵102的吸入口道及叶片31的吸入侧;反之,被动泵102的排出口道联通到主动泵101的吸入口道,让该被动泵102的叶片31的排出侧流体,从排出口道排出再回流到主动泵101的吸入口道及其叶片31的吸入侧,使得主动泵101、被动泵102两泵的叶室及整体吸排通路形成一主动泵101驱动被动泵102的封闭回路,且在该主动泵101、被动泵102的可移动壁件22与可移动叶室套23两者的至少其一之间,可以借由一同向位移联结件80予以连结,使得该主动泵101、被动泵102的可移动壁件22联同可移动叶室套23能够以相同的轴向一起移动;该主被动泵封闭回路在运转中,若使用的流体为液态流体且液体总体积为定量不变,则该主动泵101的偏位叶室区2301内排出侧的液态流体,将随着该叶片转子3转动而被其叶片31推向该被动泵102的吸入侧;相对地,该被动泵102的偏位叶室区2301内排出侧的液态流体,也同时随着该叶片转子3转动而被其叶片31推向该主动泵101的吸入侧,形成完整的主被动泵液态流体驱动回路该驱动回路运转时,该主动泵101的驱动力转动其叶片转子3及带动叶片31,对该主动泵101的偏位叶室区2301内,位于叶片31排出侧的可移动叶室套23、固定壁面204及可移动壁面221,以及该被动泵102的偏位叶室区2301内,位于叶片31吸入侧的叶片31叶面与可移动叶室套23、固定壁面204及可移动壁面221施加推动压力,且另一方面同时对该主动泵101的偏位叶室区2301内,位于叶片31吸入侧的可移动叶室套23、固定壁面204及可移动壁面221,以及该被动泵102的偏位叶室区2301内,位于叶片31排出侧的叶片31叶面与可移动叶室套23、固定壁面204及可移动壁面221形成推动后产生的真空吸力;因上述可移动叶室套 23承受的推动压力或真空吸力方向,正好与可移动叶室套23可轴向移动的方向垂直,故驱动的推动压力或真空吸力无法直接让可移动叶室套23产生位移,而固定壁面204为固定不可移动,所以驱动过程中只有可移动壁面221会承受该推动压力或真空吸力而让可移动壁件22产生轴向移动,且会同时联动可移动叶室套23使其紧贴可移动壁件22进行同步轴向移动,以及该被动泵102内的叶片31的两侧,可分别受到推动压力及真空吸力的同方向双重影响,而被驱动并带动叶片转子3转动,进而对该被动泵102的负载端输出动力;在驱动初始时,该被动泵102尚处于静止不动的状态,该主动泵101的叶片转子3开始被驱动力所转动,使得在该叶片31排出侧的液态流体开始被推挤,若此时该主动泵101的偏位叶室区2301内位在叶片31排出侧的可移动壁面221面积,大于该被动泵102的偏位叶室区2301内位在叶片31吸入侧的可移动壁面221面积,则因受力面积越大其被推压力越大,以及该被动泵102的叶片31有负载力的原因,将造成该主动泵101的可移动壁件22连同可移动叶室套23,会往远离固定壁面204的方向逐渐产生轴向位移,扩增该偏位叶室区2301的轴向空间,同时也形成对该被动泵102的叶片31吸入侧产生吸力,将该被动泵102的可移动壁件22连同可移动叶室套23吸向靠近固定壁面204的方向产生轴向位移;于此同时,该主动泵101的偏位叶室区2301内位在叶片31吸入侧的可移动壁面221面积,小于该被动泵102的偏位叶室区2301内位在叶片31排出侧的可移动壁面221面积,使得该主动泵101的叶片31扫动后在其吸入侧产生的真空吸力,对较大面积的该被动泵102内可移动壁面221形成较大的吸引牵动力,造成主动泵101的可移动壁件22连同可移动叶室套23,会往远离固定壁面204的方向位移,该被动泵102的可移动壁件22连同可移动叶室套23,会向靠近固定壁面204的方向位移;同理,当该主动泵101、被动泵102的偏位叶室区2301内,位在叶片31的排出侧及吸入侧的可移动壁面221面积大小比较与上述相反时,则主动泵101、被动泵102的可移动壁件22及可移动叶室套23会往上述的相反方向位移;在该封闭回路运转过程中,可移动壁件22连同可移动叶室套23将持续发生上述轴向往返位移的情况,直到原本位在主动泵101的叶片31吸入侧与被动泵102的叶片31排出侧通路内的液态流体,经驱动循环转换分别换置到主动泵101的叶片31排出侧与被动泵102的叶片31吸入侧通路内,且换置后的通路内的液态流体体积已大于主动泵101的叶片31排出侧与被动泵102的叶片31吸入侧可轴向移动所调变的最大容积总合时,因主动泵101、被动泵102的间有同向位移联结件80的牵引及液体不可被压缩的特性,随着该主动泵101的叶片31驱动,液态流体的推动力将全部由该被动泵102内的叶片31的吸入侧叶面承 受,进而逐渐推动该被动泵102及其负载端,使该主被动泵封闭回路逐步运行起来。
因此,应用以上所述组合而成的可变速驱动装置,如果由组合的封闭回路对该主动泵101、被动泵102的各别叶室230输出及输入一作业流体,并利用该外力强制元件8的强制推动或该作业流体在推动传输的过程中,对叶室230内部所产生的压力的改变量,推动作用在可移动壁件22及可移动叶室套23两者的至少其一与固定壁件21之间,使该可移动壁件22及/或可移动叶室套23与固定壁件21之间产生相对位移,进而改变叶室230容量的大小,如此即可以使得主动泵101、被动泵102能够分别依据各该对应叶室230的容量的改变,让各别对应的叶片转子3的转速产生互为反比变化的动力传输。
上述主被动泵回路于运转过程中,因该主动泵101、被动泵102的可移动壁件22及可移动叶室套23会持续发生轴向往返位移的情况,让该主动泵101对该被动泵102的叶片31的驱动力发生间断,造成该被动泵102的转动产生忽快忽慢的情形;而且上述的实施例中,主动泵及被动泵内均为单一叶室及单一叶片,若被动泵在初始启动时,其叶片正处于全部崁入在叶片转子内的位置,这时将会造成因被动泵内无叶面承受驱动力,使得主动泵一直处于无效空转,而无法对被动泵施加驱动力,让整个回路成为无效运转;为避免回路发生上述忽快忽慢或无效运转的情况,可如图7-1所示将两主动泵101(或具有两倍数偏位叶室区2301的主动泵101)联结两被动泵102(或具有两倍数偏位叶室区2301的被动泵102)的组合型态,以及图7-2为将四主动泵101(或具有四倍数偏位叶室区2301的主动泵101)联结四被动泵102(或具有四倍数偏位叶室区2301的被动泵102)的组合型态,让多主被动泵组合后,在叶片31两侧的偏位叶室区2301内可移动壁面221的面积总和能趋近或极近相等,如此则可在多主动泵组合的驱动力与多被动泵组合的负载阻力处于某平衡的暂态下,因主动泵与被动泵组合的排出侧及吸入侧的可移动壁面221面积总和相近,有效改善上述忽快忽慢的情形;同时也因多泵组合并将位在各别偏位叶室区2301内的叶片31的角度相位,进行相对应互补的关系配置,使得主动泵与被动泵组合在任何运行过程中均能持续有叶面承受动力,不会发生回路无效空转的现象,以达到全程驱动更为平顺稳定的效果。
依上述多泵组合结构,所组成的主被动泵驱动回路,尤其是图7-2中将四主动泵101联结四被动泵102组合的主被动回路型态,因每组位在各别叶室230内的叶片31的角度相位,均存在有另一相差180度相对称的叶片31与的互补,形成该四主动泵101与四被动泵102的组合,在该组合中各偏位叶室区2301内的叶片31排出侧所对应的可移动壁面221面积总和,与叶片31吸入侧所对应的可移动壁面221面积总和近乎相等, 这也等同四主动泵101与四被动泵102的组合内的液态流体排出量与吸入量近乎相等,能够让整体回路持续稳定的运转;若上述四主动泵101的驱动力不变,但四被动泵102的负载增加时,四被动泵102的叶片31的扫动速度下降,形成四被动泵102叶片31的吸入侧累积液态流体对可移动壁面221产生扩增推力,且四被动泵102叶片31的排出侧回流到四主动泵101叶片31的吸入侧的液态流体减少,形成对可移动壁面221产生真空吸力,因排出侧与吸入侧在偏位叶室区2301内的可移动壁面221面积总和近乎相等,等同四主动泵101、被动泵102的可移动壁面221受力总和近乎相等,在四被动泵102容量扩增推力及四主动泵101真空吸力的作用下,使得四主动泵101的可移动壁件22连同可移动叶室套23往靠近固定壁面204的方向位移,缩小四主动泵101的泵总容量;同时四被动泵102的可移动壁件22连同可移动叶室套23往远离固定壁面204的方向位移,扩增四被动泵102的泵总容量,造成四主动泵101多次动力循环输入,才能驱动四被动泵102一次动力循环输出,产生类似动力传输降档驱动的效果;反之,若四主动泵101的驱动力不变,但四被动泵102的负载减少时,则上述所有运作情况完全相反,造成四主动泵101一次动力循环输入,即能驱动四被动泵102多次动力循环输出,产生类似动力传输升档驱动的效果;由前述可知,在四主动泵101、被动泵102组合的封闭驱动回路运行中,当驱动力与负载阻力发生变动时,可自动调整四主被动泵的各自总容量,让驱动力与负载阻力自动达到平衡的状态,成为一可顺畅地依驱动力及负载阻力的变化自动调节变速的驱动装置。
图7、图7-1、图7-2、图7-3及图7-4所示是表示在主动泵与被动泵之间,在上述主动泵101、被动泵102每一单位时间的吸排量趋于相同的条件下,以一同向位移联结件80或同步位移联结件800联动于主动泵101、被动泵102的可移动壁件22或可移动叶室套23之间,且借由外力推动该同向位移联结件80或同步位移联结件800,即可强迫主动泵101、被动泵102的可移动壁件22或可移动叶室套23,分别同向或同步的相对其各别对应的固定壁面204,进行互为相反的远离或接近的位移,借以确保主动泵101的叶室容量增加或缩减值恰与被动泵102的叶室容量缩减或增加值趋近相等或相等;此外,在图7-3的主动泵101的叶室容量增加方向,以及图7-4的被动泵102的叶室容量缩减方向,可再加设置一位移阻却元件9、位移阻却元件90(如弹簧),以使得本发明的主动泵101、被动泵102间所组构成的自动调节转速比值的作用,可因该位移阻却元件9、位移阻却元件90的装设而产生一预加的内负载阻力,进而产生实际需输入的驱动力需略大于实际外加负载阻力的预设平衡条件,以造就类似变速机构的强迫降档效果。
图8所示是以两泵邻接为组合单位的主动装置的整合结构示意图,该两泵之间则由一共同关联件6予以同步带动;图8-1中所示为以四个泵成为组合单位的主动装置的整合结构示意图;从图中各泵的叶片31位置如上述相位差的简单示意,再以一位在四个泵之间的共同关联件60予以同步带动,则可发现各泵间的吸排时态,恰可彼此互补吸排量的升降,达到每一时间点的吸排量相等的状态趋于稳定,避免在运转中因流体吸排量有差异,而造成驱动过程中忽快忽慢的不稳定现象;又图8-2所示为依图8-1所示的四个泵或为阵列式组合单位的主动装置,仅在其带动以另一种位在各泵外围联结的共同关联件61予以带动,达到相似的同步带动作用;另外,图8-3所示为一线性排列带动模式,两两相邻泵间均设有一相邻接的共同关联件62予以线性联结各泵;图8-4所示则为一串列式,各泵间以同轴或接近同轴的关系形成串列联结。
请再参考图9至图12所示,为本发明第二种可行实施例,主要也是由一固定壁件21、一可移动壁件22及一可移动叶室套23形成一具有多个偏位叶室区2303的可变容量叶室230,并依该偏位叶室区2303的数量与形式,在该叶室230中配置一具有多个叶片31的多叶式叶片转子3,借此即可形成在单次运转循环中即完成多次吸排动作的可变吸排量泵,该叶片31的数量原则上应少于或等于该偏位叶室区2303的数量,以避免吸排通道同时出现在同ㄧ偏位叶室区2303内,产生吸排互通而降低泵驱动效能的情况。
该第二种可行实施例与第一种实施例最明显的不同,该第二种实施例的可移动叶室套23为只能相对叶片转子3进行轴向位移,而无法跟随叶片转子3同步旋转;且其吸排通道343、吸排通道344可如第一种实施例般设置在叶片转子3的叶轮30的叶片31吸入侧与排出侧;图13所示,则是将图9至图12所示的多叶式可变吸排量泵,依照上述图7所示的组合模式,将主动泵101的排出口道联通被动泵102的吸入口道,主动泵101的吸入口道联通被动泵102的排出口道的关系予以组合,如此也能如第一种实施例的泵,在主动泵101、被动泵102之间形成一主动泵101驱动被动泵102的封闭回路;利用该具有多偏位叶室区2303的可变容量叶室230,让该封闭回路在运转中,当对应主动泵101、被动泵102的驱动力与负载阻力发生力的差值变化时,能够让该偏位叶室区2303的容量在该力的差值作用下,自动调变到该力的差值消除后的平衡暂态,此时主动泵101、被动泵102之间的转速,会与上述偏位叶室区2303自动调变后的容量成反比,使主动泵101、被动泵102之间的封闭回路组合,成为能自动调变转速的变速驱动装置;且由于第二实施例为多叶片31及多偏位叶室区2303的主动泵与被动泵的组合,其产生的驱动力已具备有如图7-1或图7-2所示,合并了多组由单叶片组合于单叶室区的主动 泵与被动泵所形成的稳定驱动效果,明显具有极高的产业利用价值无疑。
依上述本发明的可变吸排量泵的设计,确实可在不增加原径向尺寸的条件下,有效达成吸排量的可调变功能,不仅可有效改善前述传统可变吸排量泵的诸项缺失,更可借由本发明的泵的组合形成可自动调变其间转速比的驱动装置,确为一深具实用价值的设计。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的普通技术人员,在不脱离本发明的构思和原则的前提下所作出的等同变化与修改,均应属于本发明保护的范围。

Claims (77)

  1. 一种可变吸排量泵,其特征在于,所述可变吸排量泵具有一叶室体及设于该叶室体内的叶片转子,该叶室体中至少具有由固定壁件、可移动壁件及可移动叶室套所包围构成的叶室,该叶片转子具有被设置在该叶室中的叶轮,该叶轮上设有叶片;该可移动壁件与该可移动叶室套能沿该叶片转子的轴方向与该固定壁件进行相对位移,使得该叶室的容量能沿该叶片转子的轴方向进行伸缩增减。
  2. 根据权利要求1所述的可变吸排量泵,其特征在于,该叶片的数量小于或等于偏位叶室区的数量。
  3. 根据权利要求2所述的可变吸排量泵,其特征在于,该叶轮上带有单一的该叶片,且该叶室中具有至少一该偏位叶室区。
  4. 根据权利要求2所述的可变吸排量泵,其特征在于,该叶室中具有多个该偏位叶室区,且该叶轮上配合多个该偏位叶室区设有多个该叶片。
  5. 根据权利要求1或2或3或4所述的可变吸排量泵,其特征在于,该叶片转子的两转子轴端分别置架在相对应于两该转子轴端的架体上,且至少其中一该转子轴端往外联结传动元件,以接收动力或承受负载。
  6. 根据权利要求1或2或3或4所述的可变吸排量泵,其特征在于,该固定壁件设有一固定壁座套及固定壁端面,该固定壁端面设置在该固定壁件的一端,且该固定壁端面与该叶片转子的轴相垂直,该固定壁端面能紧密贴靠于该叶片转子的该叶轮上的一轴向垂直端面。
  7. 根据权利要求5所述的可变吸排量泵,其特征在于,该固定壁件套架在一该架体上的一基座上;
    该基座上设具一固定壁端柱,该固定壁端柱填满地套塞在该固定壁端面中心所预设的固定壁孔,并使该固定壁端柱的一柱端面与该固定壁端面共同形成一固定壁面,该固定壁面能紧密贴靠于该叶片转子上的一轴向垂直端面;且该固定壁端柱上设有一偏位的转子轴孔用以枢架该叶片转子的一轴端。
  8. 根据权利要求1或2或3或4所述的可变吸排量泵,其特征在于,该叶片转子的内部布设有至少两条流体的吸排通道,各该吸排通道朝向该叶室内的一端分别联通到该叶片转子对应该叶片的吸入侧及排出侧,各该吸排通道远离该吸入侧及排出侧的一端则联通到该叶片转子的两转子轴端的至少其一。
  9. 根据权利要求8所述的可变吸排量泵,其特征在于,各该吸排通道朝向同一该转子轴端延伸,且该吸排通道分别与该转子轴端的轴中心与非轴中心位置相联通并直接通过设置在一基座及一架体的至少其一上的对外吸排口道向外连接。
  10. 根据权利要求8所述的可变吸排量泵,其特征在于,联通有该吸排通道的该转子轴端枢套组合有一流体吸排口部件,且使该转子轴端能在该流体吸排口部件中进行轴转,该流体吸排口部件则维持静止不动地置架在一架体上。
  11. 根据权利要求9所述的可变吸排量泵,其特征在于,联通有该吸排通道的该转子轴端枢套组合有一流体吸排口部件,且使该转子轴端能在该流体吸排口部件中进行轴转,该流体吸排口部件则维持静止不动地置架在一架体上。
  12. 根据权利要求1或2或3或4所述的可变吸排量泵,其特征在于,该可移动壁件套组在该叶片转子的外部,并且该可移动壁件能依该叶片转子的轴向在该叶轮的外围进行滑移;该可移动叶室套则能套合在该固定壁件与该叶轮之间的外围,且该可移动叶室套与该可移动壁件同步轴向滑移。
  13. 根据权利要求6所述的可变吸排量泵,其特征在于,该可移动壁件套组在该叶片转子的外部,并且该可移动壁件能依该叶片转子的轴向在该叶轮的外围进行滑移;该可移动叶室套则能套合在该固定壁件与该叶轮之间的外围,且该可移动叶室套与该可移动壁件同步轴向滑移。
  14. 根据权利要求12所述的可变吸排量泵,其特征在于,该可移动壁件上设有可移动壁面,该可移动壁面紧密贴靠在该可移动叶室套上远离该固定壁件的叶室套端面上,且该可移动壁件中央设有能轴向滑移套合于该叶轮外围的套孔,该套孔的周围对应该叶轮的该叶片处设有能让该叶片滑入的容叶槽。
  15. 根据权利要求1或2或3或4所述的可变吸排量泵,其特征在于,该可移动壁件与该可移动叶室套之间通过一固定件予以组合,以维持该可移动壁件与该可移动叶室套能同步依该叶片转子的轴向进行滑移。
  16. 根据权利要求12所述的可变吸排量泵,其特征在于,该可移动壁件与该可移动叶室套之间通过一固定件予以组合,以维持该可移动壁件与该可移动叶室套能同步依该叶片转子的轴向进行滑移。
  17. 根据权利要求1或2或3或4所述的可变吸排量泵,其特征在于,该可移动叶室套内部的该叶室内部被包围在该可移动叶室套、该固定壁件上的一固定壁端面及该可移动壁件上的一可移动壁面与该叶片转子之间的空间中除去该叶轮所占的空间后的剩 余空间中,形成至少一与该叶片转子轴心相偏位的偏位叶室区。
  18. 根据权利要求8所述的可变吸排量泵,其特征在于,该可移动叶室套内部的该叶室内部被包围在该可移动叶室套、该固定壁件上的一固定壁端面及该可移动壁件上的一可移动壁面与该叶片转子之间的空间中除去该叶轮所占的空间后的剩余空间中,形成至少一与该叶片转子轴心相偏位的偏位叶室区。
  19. 根据权利要求12所述的可变吸排量泵,其特征在于,该可移动叶室套内部的该叶室内部被包围在该可移动叶室套、该固定壁件上的一固定壁端面及该可移动壁件上的一可移动壁面与该叶片转子之间的空间中除去该叶轮所占的空间后的剩余空间中,形成至少一与该叶片转子轴心相偏位的偏位叶室区。
  20. 根据权利要求15所述的可变吸排量泵,其特征在于,该可移动叶室套内部的该叶室内部被包围在该可移动叶室套、该固定壁件上的一固定壁端面及该可移动壁件上的一可移动壁面与该叶片转子之间的空间中除去该叶轮所占的空间后的剩余空间中,形成至少一与该叶片转子轴心相偏位的偏位叶室区。
  21. 根据权利要求1或2或3或4所述的可变吸排量泵,其特征在于,该叶片具有远离该叶片转子的叶片顶缘,该叶片顶缘能与该叶室内壁之间形成紧密贴靠,并且该叶片顶缘能沿该叶片转子的轴向及圆周方向的至少其一与该叶室内壁进行相对滑移。
  22. 根据权利要求8所述的可变吸排量泵,其特征在于,该叶片具有远离该叶片转子的叶片顶缘,该叶片顶缘能与该叶室内壁之间形成紧密贴靠,并且该叶片顶缘能沿该叶片转子的轴向及圆周方向的至少其一与该叶室内壁进行相对滑移。
  23. 根据权利要求12所述的可变吸排量泵,其特征在于,该叶片具有远离该叶片转子的叶片顶缘,该叶片顶缘能与该叶室内壁之间形成紧密贴靠,并且该叶片顶缘能沿该叶片转子的轴向及圆周方向的至少其一与该叶室内壁进行相对滑移。
  24. 根据权利要求15所述的可变吸排量泵,其特征在于,该叶片具有远离该叶片转子的叶片顶缘,该叶片顶缘能与该叶室内壁之间形成紧密贴靠,并且该叶片顶缘能沿该叶片转子的轴向及圆周方向的至少其一与该叶室内壁进行相对滑移。
  25. 根据权利要求17所述的可变吸排量泵,其特征在于,该叶片具有远离该叶片转子的叶片顶缘,该叶片顶缘能与该叶室内壁之间形成紧密贴靠,并且该叶片顶缘能沿该叶片转子的轴向及圆周方向的至少其一与该叶室内壁进行相对滑移。
  26. 根据权利要求1或2或3或4所述的可变吸排量泵,其特征在于,在该叶片与该可移动壁件及该可移动叶室套同时相交会的部位设有密封块,以避免该叶片与该可移 动壁件及该可移动叶室套同时相交会部位产生间隙而泄漏该叶室内的流体。
  27. 根据权利要求6所述的可变吸排量泵,其特征在于,在该叶片与该可移动壁件及该可移动叶室套同时相交会的部位设有密封块,以避免该叶片与该可移动壁件及该可移动叶室套同时相交会部位产生间隙而泄漏该叶室内的流体。
  28. 根据权利要求12所述的可变吸排量泵,其特征在于,在该叶片与该可移动壁件及该可移动叶室套同时相交会的部位设有密封块,以避免该叶片与该可移动壁件及该可移动叶室套同时相交会部位产生间隙而泄漏该叶室内的流体。
  29. 根据权利要求17所述的可变吸排量泵,其特征在于,在该叶片与该可移动壁件及该可移动叶室套同时相交会的部位设有密封块,以避免该叶片与该可移动壁件及该可移动叶室套同时相交会部位产生间隙而泄漏该叶室内的流体。
  30. 根据权利要求21所述的可变吸排量泵,其特征在于,在该叶片顶缘与该可移动壁件及该可移动叶室套同时相交会的部位设有密封块,以避免该叶片顶缘与该可移动壁件及该可移动叶室套同时相交会部位产生间隙而泄漏该叶室内的流体。
  31. 根据权利要求1或2或3或4所述可变吸排量泵,其特征在于,该可移动壁件及该可移动叶室套的至少其一受一外力强制元件联动。
  32. 根据权利要求6所述可变吸排量泵,其特征在于,该可移动壁件及该可移动叶室套的至少其一受一外力强制元件联动。
  33. 根据权利要求12所述可变吸排量泵,其特征在于,该可移动壁件及该可移动叶室套的至少其一受一外力强制元件联动。
  34. 根据权利要求15所述可变吸排量泵,其特征在于,该可移动壁件及该可移动叶室套的至少其一受一外力强制元件联动。
  35. 根据权利要求1或2或3或4所述的可变吸排量泵所组成的可变速驱动装置,其特征在于,该可变速驱动装置以至少两个该可变吸排量泵予以相对应配置,且将两相对应配置的该可变吸排量泵的其中一个设为主动泵,并将两相对应配置的该可变吸排量泵的其中另一个设为被动泵,使主动泵与被动泵之间形成一驱动回路。
  36. 根据权利要求8所述的可变吸排量泵所组成的可变速驱动装置,其特征在于,该可变速驱动装置以至少两个该可变吸排量泵予以相对应配置,且将两相对应配置的该可变吸排量泵的其中一个设为主动泵,并将两相对应配置的该可变吸排量泵的其中另一个设为被动泵。
  37. 根据权利要求12所述的可变吸排量泵所组成的可变速驱动装置,其特征在于, 该可变速驱动装置以至少两个该可变吸排量泵予以相对应配置,且将两相对应配置的该可变吸排量泵的其中一个设为主动泵,并将两相对应配置的该可变吸排量泵的其中另一个设为被动泵。
  38. 根据权利要求15所述的可变吸排量泵所组成的可变速驱动装置,其特征在于,该可变速驱动装置以至少两个该可变吸排量泵予以相对应配置,且将两相对应配置的该可变吸排量泵的其中一个设为主动泵,并将两相对应配置的该可变吸排量泵的其中另一个设为被动泵。
  39. 根据权利要求17所述的可变吸排量泵所组成的可变速驱动装置,其特征在于,该可变速驱动装置以至少两个该可变吸排量泵予以相对应配置,且将两相对应配置的该可变吸排量泵的其中一个设为主动泵,并将两相对应配置的该可变吸排量泵的其中另一个设为被动泵。
  40. 根据权利要求26所述的可变吸排量泵所组成的可变速驱动装置,其特征在于,该可变速驱动装置以至少两个该可变吸排量泵予以相对应配置,且将两相对应配置的该可变吸排量泵的其中一个设为主动泵,并将两相对应配置的该可变吸排量泵的其中另一个设为被动泵。
  41. 根据权利要求31所述的可变吸排量泵所组成的可变速驱动装置,其特征在于,该可变速驱动装置以至少两个该可变吸排量泵予以相对应配置,且将两相对应配置的该可变吸排量泵的其中一个设为主动泵,并将两相对应配置的该可变吸排量泵的其中另一个设为被动泵。
  42. 根据权利要求35所述的可变速驱动装置,其特征在于,该主动泵的该可移动壁件及该可移动叶室套之间以及该被动泵的该可移动壁件及该可移动叶室套之间的至少其一,联结有一同向位移联结件及同步位移联结件的其中之一予以联动。
  43. 根据权利要求37所述的可变速驱动装置,其特征在于,该主动泵的该可移动壁件及该可移动叶室套之间以及该被动泵的该可移动壁件及该可移动叶室套之间的至少其一,联结有一同向位移联结件及同步位移联结件的其中之一予以联动。
  44. 根据权利要求38所述的可变速驱动装置,其特征在于,该主动泵的该可移动壁件及该可移动叶室套之间以及该被动泵的该可移动壁件及该可移动叶室套之间的至少其一,联结有一同向位移联结件及同步位移联结件的其中之一予以联动。
  45. 根据权利要求39所述的可变速驱动装置,其特征在于,该主动泵的该可移动壁件及该可移动叶室套之间以及该被动泵的该可移动壁件及该可移动叶室套之间的至少 其一,联结有一同向位移联结件及同步位移联结件的其中之一予以联动。
  46. 根据权利要求40所述的可变速驱动装置,其特征在于,该主动泵的该可移动壁件及该可移动叶室套之间以及该被动泵的该可移动壁件及该可移动叶室套之间的至少其一,联结有一同向位移联结件及同步位移联结件的其中之一予以联动。
  47. 根据权利要求41所述的可变速驱动装置,其特征在于,该主动泵的该可移动壁件及该可移动叶室套之间以及该被动泵的该可移动壁件及该可移动叶室套之间的至少其一,联结有一同向位移联结件及同步位移联结件的其中之一予以联动。
  48. 根据权利要求35所述的可变速驱动装置,其特征在于,该主动泵的该叶室增大方向及该被动泵的该叶室缩小方向的至少其一加设置有一位移阻却元件。
  49. 根据权利要求35所述的可变速驱动装置,其特征在于,主动泵端及被动泵端各具有至少四倍数的该叶片及数量大于或等于该叶片数的偏位叶室区,且在该叶室中每一该叶片在其对应的该偏位叶室区内的角度相位均与至少另一该叶片的角度相位成180度的互补关系。
  50. 根据权利要求49所述的可变速驱动装置,其特征在于,各四倍数的该偏位叶室区一体成型在单一的该可变吸排量泵中。
  51. 根据权利要求49所述的可变速驱动装置,其特征在于,各该偏位叶室区设置在各独立的该可变吸排量泵中。
  52. 根据权利要求35所述的可变速驱动装置,其特征在于,该可变速驱动装置设有至少两个该主动泵,且各该主动泵中间设有一共同关联件予以同步带动。
  53. 根据权利要求35所述的可变速驱动装置,其特征在于,该可变速驱动装置设有至少两个该主动泵,且各该主动泵的外围设有一共同关联件予以同步带动。
  54. 根据权利要求35所述的可变速驱动装置,其特征在于,该可变速驱动装置设有至少两个该主动泵及至少两个被动泵,且该主动泵及该被动泵的至少其中之一的组配型态,是形成阵列式联结的组合。
  55. 根据权利要求35所述的可变速驱动装置,其特征在于,该可变速驱动装置设有至少两个该主动泵及至少两个该被动泵,且该主动泵及该被动泵的至少其中之一的组配型态,是形成线性联结的组合。
  56. 根据权利要求35所述的可变速驱动装置,其特征在于,该可变速驱动装置设有至少两个该主动泵及至少两个该被动泵,且该主动泵及该被动泵的至少其中之一的组配型态,是形成串列式联结的组合。
  57. 一种应用权利要求1或2或3或4所述的可变吸排量泵的驱动方法,其特征在于,在一封闭回路中对该叶室输出及输入一作业流体,并使该可移动壁件及该可移动叶室套的至少其一与该固定壁件之间产生相对位移,借以改变该叶室容量的大小,使得在单位时间内该叶片转子转动推送通过该叶室的作业流体的输出量及输入量能够依该叶室容量的改变而产生不同,进而使该叶片转子能够依据该叶室容量的改变产生不同转速的动力传输。
  58. 根据权利要求57所述的驱动方法,其特征在于,单独以该作业流体在推动传输过程中,对该叶室内部所产生的压力的改变量,推引作用在该可移动壁件、该可移动叶室套、该叶片转子及该固定壁件之间,使至少该可移动壁件与该固定壁件之间产生相对位移。
  59. 根据权利要求57所述的驱动方法,其特征在于,以一外力强制元件的强制推动,作用在该可移动壁件及该可移动叶室套的至少其一,使至少该可移动壁件与该固定壁件之间产生相对位移。
  60. 一种应用权利要求35所述的可变速驱动装置的驱动方法,其特征在于,在一封闭回路中对该主动泵的该叶室及该被动泵的该叶室分别输出及输入一作业流体,并使该主动泵的该可移动壁件及该可移动叶室套的至少其一与该主动泵的该固定壁件之间产生相对位移、该被动泵的该可移动壁件及该可移动叶室套的至少其一与该被动泵的该固定壁件之间产生相对位移,借以改变主动泵的该叶室容量及该被动泵的该叶室容量的大小,让该主动泵及该被动泵能够分别依据对应该叶室的容量的改变让对应的该叶片转子的转速产生互为反比变化的动力传输。
  61. 根据权利要求60所述的驱动方法,其特征在于,单独以该作业流体在推动传输过程中,对该叶室内部所产生的压力的改变量,推引作用在该可移动壁件、该可移动叶室套、该叶片转子及该固定壁件之间,使至少该可移动壁件与该固定壁件之间产生相对位移。
  62. 根据权利要求60所述的驱动方法,其特征在于,以一外力强制元件的强制推动,作用在该可移动壁件及该可移动叶室套的至少其一,使至少该可移动壁件与该固定壁件之间产生相对位移。
  63. 一种应用权利要求35所述的可变速驱动装置的驱动方法,其特征在于,步骤为:
    (一)使该变速驱动装置产生运转,且让该主动泵的驱动力与该被动泵所承受的负载阻力产生差值;
    (二)让该主动泵的该叶室大小及该被动泵的该叶室大小,受该驱动力及该负载阻力的差值推动产生自动伸缩调节;
    (三)在该主动泵与该被动泵间的单位时间流体吸排量趋近相等的条件下,让该主动泵内对流体的该驱动力与该被动泵内流体的该负载阻力相等而达到运转平衡,进而使主动泵与被动泵之间的该叶室容量与转速自动调整达到一反比关系的运转,形成一可在该驱动力与该负载阻力之间的作用发生改变时,自动调整主动泵与被动泵的该叶室大小及其间的转速比,在运转中达到该驱动力与该负载阻力之间的驱动平衡。
  64. 一种应用根据权利要求42所述的可变速驱动装置的驱动方法,其特征在于,步骤为:
    (一)使该变速驱动装置产生运转,且让该主动泵的驱动力与该被动泵所承受的负载阻力产生差值;
    (二)让该主动泵的该叶室大小及该被动泵的该叶室大小,受该驱动力及该负载阻力的差值推动产生自动伸缩调节;
    (三)在该主动泵与该被动泵间的单位时间流体吸排量趋近相等的条件下,让该主动泵内对流体的该驱动力与该被动泵内流体的该负载阻力相等而达到运转平衡,进而使主动泵与被动泵之间的该叶室容量与转速自动调整达到一反比关系的运转,形成一可在该驱动力与该负载阻力之间的作用发生改变时,自动调整主动泵与被动泵的该叶室大小及其间的转速比,在运转中达到该驱动力与该负载阻力之间的驱动平衡。
  65. 一种应用根据权利要求49所述的可变速驱动装置的驱动方法,其特征在于,步骤为:
    (一)使该变速驱动装置产生运转,且让该主动泵的驱动力与该被动泵所承受的负载阻力产生差值;
    (二)让该主动泵的该叶室大小及该被动泵的该叶室大小,受该驱动力及该负载阻力的差值推动产生自动伸缩调节;
    (三)在该主动泵及该被动泵间的单位时间流体吸排量趋近相等的条件下,让该主动泵内对流体的该驱动力与该被动泵内流体的该负载阻力相等而达到运转平衡,进而使主动泵与被动泵之间的该叶室容量与转速自动调整达到一反比关系的平衡运转,形成一可在该驱动力与该负载阻力之间的作用发生改变时,自动调整主动泵与被动泵的该叶室大小及其间的转速比,在运转中达到该驱动力与该负载阻力之间的驱动平衡。
  66. 根据权利要求63所述的驱动方法;其特征在于,在该驱动回路运转时,该主动 泵的该驱动力转动其叶片转子及带动叶片,对该主动泵的偏位叶室区内,位于叶片排出侧的可移动叶室套、该固定壁件上的一固定壁面及该可移动壁件上的一可移动壁面,以及该被动泵的偏位叶室区内,位于叶片吸入侧的叶片叶面与可移动叶室套、固定壁面及可移动壁面施加推动压力,且同时对该主动泵的偏位叶室区内,位于叶片吸入侧的可移动叶室套、固定壁面及可移动壁面,以及该被动泵的偏位叶室区内,位于叶片排出侧的叶片叶面与可移动叶室套、固定壁面及可移动壁面形成推动产生真空吸力;
    在可移动壁面承受该推动压力或真空吸力后,使可移动壁件连同紧贴在其上的可移动叶室套进行同步轴向移动,且该被动泵内的叶片的两侧,分别受到推动压力及真空吸力的同方向双重影响而被驱动,并带动叶片转子转动而对该被动泵的负载端输出动力。
  67. 根据权利要求66所述的驱动方法;其特征在于,当该主动泵的偏位叶室区内位于叶片排出侧的可移动壁件之一可移动壁面面积,大于该被动泵的偏位叶室区内位于叶片吸入侧的可移动壁件之一可移动壁面面积时,让该主动泵的可移动壁件连同可移动叶室套,往远离该固定壁件之一固定壁面的方向逐渐产生轴向位移,扩增该偏位叶室区的轴向空间,同时对该被动泵的叶片吸入侧产生吸力,将该被动泵的可移动壁件连同可移动叶室套吸向靠近该固定壁面的方向产生轴向位移;
    同时,当该主动泵的偏位叶室区内位于叶片吸入侧的可移动壁面面积,小于该被动泵的偏位叶室区内位于叶片排出侧的可移动壁面面积时,使该主动泵的叶片产生扫动而在其吸入侧产生的真空吸力,对较大面积的该被动泵内可移动壁面形成较大的吸引力,让主动泵的可移动壁件连同可移动叶室套,往远离固定壁面的方向位移,该被动泵的可移动壁件连同可移动叶室套,向靠近固定壁面的方向位移;
    反之,当该主动泵与被动泵各自的偏位叶室区内,位于叶片的排出侧及吸入侧的可移动壁面面积大小比较与上述相反时,则主动泵与被动泵的可移动壁件及可移动叶室套即往上述的相反方向位移;再经主动泵与被动泵之间的同向位移联结件的牵引,随着该主动泵的叶片驱动,液态流体对该被动泵内的叶片吸入侧叶面产生推动力,逐渐推动该被动泵及其负载端,使该主动泵及被动泵的驱动回路逐步产生运行。
  68. 根据权利要求64所述的驱动方法;其特征在于,
    在该驱动回路运转时,该主动泵的该驱动力转动其叶片转子及带动叶片,对该主动泵的偏位叶室区内,位于叶片排出侧的可移动叶室套、该固定壁件上的一固定壁面及该可移动壁件上的一可移动壁面,以及该被动泵的偏位叶室区内,位于叶片吸入侧的叶片叶面与可移动叶室套、固定壁面及可移动壁面施加推动压力,且另一方面同时对该主动 泵的偏位叶室区内,位于叶片吸入侧的可移动叶室套、固定壁面及可移动壁面,以及该被动泵的偏位叶室区内,位于叶片排出侧的叶片叶面与可移动叶室套、固定壁面及可移动壁面形成推动产生真空吸力;
    在可移动壁面承受该推动压力或真空吸力后,使可移动壁件连同紧贴在其上的可移动叶室套使其紧贴可移动壁件进行同步轴向移动,且该被动泵内的叶片的两侧,分别受到推动压力及真空吸力的同方向双重影响而被驱动,并带动叶片转子转动而对该被动泵的负载端输出动力。
  69. 根据权利要求68所述的驱动方法;其特征在于,当该主动泵的偏位叶室区内位于叶片排出侧的可移动壁件之一可移动壁面面积,大于该被动泵的偏位叶室区内位于叶片吸入侧的可移动壁件之一可移动壁面面积时,让该主动泵的可移动壁件连同可移动叶室套,往远离该固定壁件之一固定壁面的方向逐渐产生轴向位移,扩增该偏位叶室区的轴向空间,同时对该被动泵的叶片吸入侧产生吸力,将该被动泵的可移动壁件连同可移动叶室套吸向靠近该固定壁面的方向产生轴向位移;
    同时,当该主动泵的偏位叶室区内位于叶片吸入侧的可移动壁面面积,小于该被动泵的偏位叶室区内位于叶片排出侧的可移动壁面面积时,使该主动泵的叶片产生扫动而在其吸入侧产生的真空吸力,对较大面积的该被动泵内可移动壁面形成较大的吸引力,让主动泵的可移动壁件连同可移动叶室套,往远离固定壁面的方向位移,该被动泵的可移动壁件连同可移动叶室套,向靠近固定壁面的方向位移;
    反之,当该主动泵与被动泵各自的偏位叶室区内,位于叶片的排出侧及吸入侧的可移动壁面面积大小比较与上述相反时,则主动泵与被动泵的可移动壁件及可移动叶室套即往上述的相反方向位移;再经主动泵与被动泵之间的同向位移联结件的牵引,随着该主动泵的叶片驱动,液态流体对该被动泵内的叶片吸入侧叶面产生推动力,逐渐推动该被动泵及其负载端,使该主动泵及被动泵的驱动回路逐步产生运行。
  70. 根据权利要求65所述的驱动方法;其特征在于,
    在该驱动回路运转时,该主动泵的该驱动力转动其叶片转子及带动叶片,对该主动泵的偏位叶室区内,位于叶片排出侧的可移动叶室套、该固定壁件上的一固定壁面及该可移动壁件上的一可移动壁面,以及该被动泵的偏位叶室区内,位于叶片吸入侧的叶片叶面与可移动叶室套、固定壁面及可移动壁面施加推动压力,且另一方面同时对该主动泵的偏位叶室区内,位于叶片吸入侧的可移动叶室套、固定壁面及可移动壁面,以及该被动泵的偏位叶室区内,位于叶片排出侧的叶片叶面与可移动叶室套、固定壁面及可移 动壁面形成推动产生真空吸力;
    在可移动壁面承受该推动压力或真空吸力后,使可移动壁件连同紧贴在其上的可移动叶室套使其紧贴可移动壁件进行同步轴向移动,且该被动泵内的叶片的两侧,分别受到推动压力及真空吸力的同方向双重影响而被驱动,并带动叶片转子转动而对该被动泵的负载端输出动力。
  71. 根据权利要求70所述的驱动方法;其特征在于,当该主动泵的偏位叶室区内位于叶片排出侧的可移动壁件之一可移动壁面面积,大于该被动泵的偏位叶室区内位于叶片吸入侧的可移动壁件之一可移动壁面面积时,让该主动泵的可移动壁件连同可移动叶室套,往远离该固定壁件之一固定壁面的方向逐渐产生轴向位移,扩增该偏位叶室区的轴向空间,同时对该被动泵的叶片吸入侧产生吸力,将该被动泵的可移动壁件连同可移动叶室套吸向靠近该固定壁面的方向产生轴向位移;
    同时,当该主动泵的偏位叶室区内位于叶片吸入侧的可移动壁面面积,小于该被动泵的偏位叶室区内位于叶片排出侧的可移动壁面面积时,使该主动泵的叶片产生扫动而在其吸入侧产生的真空吸力,对较大面积的该被动泵内可移动壁面形成较大的吸引力,让主动泵的可移动壁件连同可移动叶室套,往远离固定壁面的方向位移,该被动泵的可移动壁件连同可移动叶室套,向靠近固定壁面的方向位移;
    反之,当该主动泵与被动泵各自的偏位叶室区内,位于叶片的排出侧及吸入侧的可移动壁面面积大小比较与上述相反时,则主动泵与被动泵的可移动壁件及可移动叶室套即往上述的相反方向位移;再经主动泵与被动泵之间的同向位移联结件的牵引,随着该主动泵的叶片驱动,液态流体对该被动泵内的叶片吸入侧叶面产生推动力,逐渐推动该被动泵及其负载端,使该主动泵及被动泵的驱动回路逐步产生运行。
  72. 根据权利要求65所述的驱动方法,其特征在于,将多个偏位叶室区的主动泵组合联结多个偏位叶室区的被动泵组合,让联结后的主动泵与被动泵各自在叶片两侧的偏位叶室区内可移动壁面的面积总和能相等,以此在该主动泵组合的驱动力与该被动泵组合的负载阻力处于一平衡下,让主动泵与被动泵各自的组合的排出侧及吸入侧的可移动壁面面积总和相等,同时也将在各别偏位叶室区内的叶片的角度相位进行相对应互补的配置,使得主动泵与被动泵各自的组合在任何运行过程中均能维持有叶面承受动力提供驱动作用。
  73. 根据权利要求70所述的驱动方法,其特征在于,将多个偏位叶室区的主动泵组合联结多个偏位叶室区的被动泵组合,让联结后的主动泵与被动泵各自在叶片两侧的偏 位叶室区内可移动壁面的面积总和能相等,以此在该主动泵组合的驱动力与该被动泵组合的负载阻力处于一平衡下,让主动泵与被动泵各自的组合的排出侧及吸入侧的可移动壁面面积总和相等,同时也将在各别偏位叶室区内的叶片的角度相位进行相对应互补的配置,使得主动泵与被动泵各自的组合在任何运行过程中均能维持有叶面承受动力提供驱动作用。
  74. 根据权利要求71所述的驱动方法,其特征在于,将多个偏位叶室区的主动泵组合联结多个偏位叶室区的被动泵组合,让联结后的主动泵与被动泵各自在叶片两侧的偏位叶室区内可移动壁面的面积总和能相等,以此在该主动泵组合的驱动力与该被动泵组合的负载阻力处于一平衡下,让主动泵与被动泵各自的组合的排出侧及吸入侧的可移动壁面面积总和相等,同时也将在各别偏位叶室区内的叶片的角度相位进行相对应互补的配置,使得主动泵与被动泵各自的组合在任何运行过程中均能维持有叶面承受动力提供驱动作用。
  75. 根据权利要求72所述的驱动方法,其特征在于,该主动泵及该被动泵至少其一的组合的封闭驱动回路在运行中,当驱动力与负载阻力发生变动时,自动调整该主动泵的总容量及转速与该被动泵的总容量及转速,让该驱动力与该负载阻力自动达到平衡的状态,而依该驱动力及该负载阻力的变化自动调节该主动泵与该被动泵间的转速比。
  76. 根据权利要求73所述的驱动方法,其特征在于,该主动泵及该被动泵至少其一的组合的封闭驱动回路在运行中,当驱动力与负载阻力发生变动时,自动调整该主动泵的总容量及转速与该被动泵的总容量及转速,让该驱动力与该负载阻力自动达到平衡的状态,而依该驱动力及该负载阻力的变化自动调节该主动泵与该被动泵间的转速比。
  77. 根据权利要求74所述的驱动方法,其特征在于,该主动泵及该被动泵至少其一的组合的封闭驱动回路在运行中,当驱动力与负载阻力发生变动时,自动调整该主动泵的总容量及转速与该被动泵的总容量及转速,让该驱动力与该负载阻力自动达到平衡的状态,而依该驱动力及该负载阻力的变化自动调节该主动泵与该被动泵间的转速比。
PCT/CN2020/080389 2020-03-20 2020-03-20 可变吸排量泵、由该泵组成的驱动装置及其驱动方法 WO2021184344A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/906,703 US20230136689A1 (en) 2020-03-20 2020-03-20 Pump with variable suction/discharge amount and drive device composed of the pump and driving method thereof
CN202080084224.9A CN114761689B (zh) 2020-03-20 2020-03-20 可变吸排量泵、由该泵组成的驱动装置及其驱动方法
EP20926171.8A EP4123176A4 (en) 2020-03-20 2020-03-20 VARIABLE DISPLACEMENT PUMP, DRIVE DEVICE CONSISTING OF THE PUMP, AND METHOD FOR DRIVING THE DRIVE DEVICE
JP2022556530A JP2023534341A (ja) 2020-03-20 2020-03-20 吸排量可変ポンプと、前記ポンプによって構成される駆動装置およびその駆動方法
PCT/CN2020/080389 WO2021184344A1 (zh) 2020-03-20 2020-03-20 可变吸排量泵、由该泵组成的驱动装置及其驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080389 WO2021184344A1 (zh) 2020-03-20 2020-03-20 可变吸排量泵、由该泵组成的驱动装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2021184344A1 true WO2021184344A1 (zh) 2021-09-23

Family

ID=77769600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080389 WO2021184344A1 (zh) 2020-03-20 2020-03-20 可变吸排量泵、由该泵组成的驱动装置及其驱动方法

Country Status (5)

Country Link
US (1) US20230136689A1 (zh)
EP (1) EP4123176A4 (zh)
JP (1) JP2023534341A (zh)
CN (1) CN114761689B (zh)
WO (1) WO2021184344A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104295489A (zh) * 2013-07-15 2015-01-21 上海通用汽车有限公司 一种可变排量叶片泵
CN206175208U (zh) * 2016-11-09 2017-05-17 浙江科博达工业有限公司 叶片铰链活塞复合式变排量泵
WO2017103852A1 (pt) * 2015-12-15 2017-06-22 Universidade De Aveiro Bomba de caudal variavel com deslocamento axial das palhetas
CN107218212A (zh) * 2012-11-27 2017-09-29 日立汽车系统株式会社 容量可变型泵
CN206817135U (zh) * 2017-06-09 2017-12-29 湖南机油泵股份有限公司 一种可变排量转子泵
CN107806408A (zh) * 2017-10-21 2018-03-16 王友宏 一种偏心转子容积泵
CN110131160A (zh) * 2019-05-29 2019-08-16 河南航天液压气动技术有限公司 一种变排量叶片泵
CN110439806A (zh) * 2018-05-02 2019-11-12 通用汽车环球科技运作有限责任公司 可变排量泵

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1527685A (en) * 1922-04-03 1925-02-24 Huwiler Anton Rotary motor or pump for hydraulic gears
DE2061385A1 (de) * 1970-12-14 1972-06-15 Hess, Paul, 4005 Meerbusch Flügelzellenpumpe oder Flügelzellenmotor
US4551080A (en) * 1983-10-19 1985-11-05 Geiger Cletus M Variable displacement sliding vane pump/hydraulic motor
US4744732A (en) * 1985-12-28 1988-05-17 Diesel Kiki Co., Ltd. Variable capacity vane compressor
JP3521939B2 (ja) * 1992-09-09 2004-04-26 株式会社日立ユニシアオートモティブ 可変容量型ベーンポンプ
JPH09303253A (ja) * 1996-05-15 1997-11-25 Zexel Corp 斜板式容量可変ポンプ
JP2003343461A (ja) * 2002-05-27 2003-12-03 Denso Corp 可変容量型流体圧送機
EP2818726B1 (de) * 2013-06-27 2017-08-23 Grundfos Holding A/S Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege
CN103939335B (zh) * 2013-12-23 2015-12-09 马江 一种双作用变量叶片泵或马达
CN106704175A (zh) * 2016-12-28 2017-05-24 常州大学 一种可手动调节的变量齿轮泵
CN210088065U (zh) * 2019-03-27 2020-02-18 章睿承 流体传输的导向控制装置及其应用系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107218212A (zh) * 2012-11-27 2017-09-29 日立汽车系统株式会社 容量可变型泵
CN104295489A (zh) * 2013-07-15 2015-01-21 上海通用汽车有限公司 一种可变排量叶片泵
WO2017103852A1 (pt) * 2015-12-15 2017-06-22 Universidade De Aveiro Bomba de caudal variavel com deslocamento axial das palhetas
CN206175208U (zh) * 2016-11-09 2017-05-17 浙江科博达工业有限公司 叶片铰链活塞复合式变排量泵
CN206817135U (zh) * 2017-06-09 2017-12-29 湖南机油泵股份有限公司 一种可变排量转子泵
CN107806408A (zh) * 2017-10-21 2018-03-16 王友宏 一种偏心转子容积泵
CN110439806A (zh) * 2018-05-02 2019-11-12 通用汽车环球科技运作有限责任公司 可变排量泵
CN110131160A (zh) * 2019-05-29 2019-08-16 河南航天液压气动技术有限公司 一种变排量叶片泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4123176A4 *

Also Published As

Publication number Publication date
EP4123176A4 (en) 2024-02-07
CN114761689A (zh) 2022-07-15
JP2023534341A (ja) 2023-08-09
EP4123176A1 (en) 2023-01-25
CN114761689B (zh) 2024-04-16
US20230136689A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US6824369B2 (en) Rotary variable expansible chamber-kinetic hybrid pump
US4551080A (en) Variable displacement sliding vane pump/hydraulic motor
KR101789899B1 (ko) 다중 제어 챔버를 구비한 베인 펌프
US20110038746A1 (en) Variable-volume internal gear pump
EP1536138A1 (en) Rotor machine
WO2021184344A1 (zh) 可变吸排量泵、由该泵组成的驱动装置及其驱动方法
CA2606096C (en) Rotor sliding-vane machine
TWI831952B (zh) 可變吸排量泵、由該泵組成之驅動裝置及其驅動方法
JP4609496B2 (ja) 回転式流体機械
US7479001B2 (en) Rotor sliding-vane machine with adaptive rotor
TWM600803U (zh) 可變吸排量泵及由該泵組成之驅動裝置
WO2022028523A1 (zh) 多叶型可轴向变化容积的吸排装置及其组成的变速驱动系统
TWM608791U (zh) 多葉型可軸向變化容積之吸排裝置及其組成之變速驅動系統
CN213478646U (zh) 多叶型可轴向变化容积的吸排装置及其变速驱动系统
TW202206704A (zh) 多葉型可軸向變化容積之吸排裝置及其組成之變速驅動系統
US3478692A (en) Pumps
US7314354B2 (en) Rotor machine
JP2006527333A (ja) 流体ポンプ及びモータ
JP7381886B2 (ja) 電動ベーンポンプシステム
JP2528999B2 (ja) 回転型流体エネルギ変換装置
US11492907B2 (en) Cartiodal rotary machine with two-lobe rotor
US4173438A (en) Rotary piston device which displaces fluid in inner and outer variable volume chambers simultaneously
JPH09209917A (ja) 可変容量液圧ピストン装置
JPH0113818Y2 (zh)
KR950013646B1 (ko) 가변회전익형(可變回轉翼型) 배압(背壓)장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020926171

Country of ref document: EP

Effective date: 20221020