WO2021182636A1 - 回転電機用ステータ製造方法 - Google Patents

回転電機用ステータ製造方法 Download PDF

Info

Publication number
WO2021182636A1
WO2021182636A1 PCT/JP2021/010222 JP2021010222W WO2021182636A1 WO 2021182636 A1 WO2021182636 A1 WO 2021182636A1 JP 2021010222 W JP2021010222 W JP 2021010222W WO 2021182636 A1 WO2021182636 A1 WO 2021182636A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
laser
pass
irradiation
range
Prior art date
Application number
PCT/JP2021/010222
Other languages
English (en)
French (fr)
Inventor
英晴 牛田
弘行 大野
圭 江野畑
飛 湯
将也 中村
将成 西田
哲也 杉本
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社, 株式会社デンソー filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US17/802,454 priority Critical patent/US20230098415A1/en
Priority to JP2022506862A priority patent/JP7335420B2/ja
Priority to EP21767821.8A priority patent/EP4120524A4/en
Priority to CN202180015433.2A priority patent/CN115136476A/zh
Publication of WO2021182636A1 publication Critical patent/WO2021182636A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This disclosure relates to a method for manufacturing a stator for a rotary electric machine.
  • One coil piece for forming the stator coil of the rotary electric machine and the tip of the other coil piece are brought into contact with each other, and the irradiation position moves in a loop to the welding target portion related to the contacted tip.
  • a method for manufacturing a stator that irradiates a laser beam in such a manner is known (see, for example, Patent Document 1).
  • Patent Document 1 the prior art as described in Patent Document 1 described above is relatively large in order to obtain the required welding area between the coil pieces due to the use of an infrared laser (fiber laser).
  • the amount of heat input is required, the effect of heat is large, and welding may become unstable.
  • the purpose is to secure the required bonding area between the coil pieces with a relatively small amount of heat input.
  • a step of bringing the tips of one coil piece and the other coil piece for forming a stator coil of a rotary electric machine into contact with each other A welding step of irradiating a laser beam having a wavelength of 0.6 ⁇ m or less to a welding target portion related to the abutted tip portion is included.
  • the laser beam is generated for each pulse oscillation in the laser oscillator in an embodiment having a laser output of 3.0 kW or more.
  • a method for manufacturing a stator for a rotary electric machine, in which the laser beam is moved so that the irradiation position changes in a straight line parallel to the contact surface of the tip portion during at least a part of the period during one pulse oscillation. Is provided.
  • FIG. 7 It is sectional drawing which shows schematic the sectional structure of the motor by one Example. It is a top view of the state of a single item of a stator core. It is a figure which shows typically the pair of coil pieces to be assembled to a stator core. It is a perspective view around the coil end of a stator. It is a perspective view which shows by extracting a part of the coil piece of the same phase. It is a schematic front view of one coil piece. It is a figure which shows the tip part of the coil piece joined to each other, and the vicinity thereof. It is sectional drawing which follows the line AA of FIG. 7 passing through the welding target part. It is a figure which shows the relationship between the laser wavelength and the laser absorption rate with respect to an individual of various materials.
  • predetermined is used in the meaning of “predetermined”.
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a motor 1 (an example of a rotary electric machine) according to an embodiment.
  • FIG. 1 shows the rotating shaft 12 of the motor 1.
  • the axial direction refers to the direction in which the rotation shaft (rotation center) 12 of the motor 1 extends
  • the radial direction refers to the radial direction centered on the rotation shaft 12. Therefore, the radial outer side refers to the side away from the rotating shaft 12, and the radial inner side refers to the side toward the rotating shaft 12. Further, the circumferential direction corresponds to the rotation direction around the rotation shaft 12.
  • the motor 1 may be a vehicle drive motor used in, for example, a hybrid vehicle or an electric vehicle. However, the motor 1 may be used for any other purpose.
  • the motor 1 is an inner rotor type, and the stator 21 is provided so as to surround the radial outer side of the rotor 30.
  • the outer side of the stator 21 in the radial direction is fixed to the motor housing 10.
  • the rotor 30 is arranged inside the stator 21 in the radial direction.
  • the rotor 30 includes a rotor core 32 and a rotor shaft 34.
  • the rotor core 32 is fixed to the outside in the radial direction of the rotor shaft 34 and rotates integrally with the rotor shaft 34.
  • the rotor shaft 34 is rotatably supported by the motor housing 10 via bearings 14a and 14b.
  • the rotor shaft 34 defines the rotating shaft 12 of the motor 1.
  • the rotor core 32 is formed of, for example, an annular magnetic laminated steel plate.
  • a permanent magnet 321 is inserted inside the rotor core 32.
  • the number and arrangement of the permanent magnets 321 are arbitrary.
  • the rotor core 32 may be formed of a green compact obtained by compressing and solidifying the magnetic powder.
  • End plates 35A and 35B are attached to both sides of the rotor core 32 in the axial direction.
  • the end plates 35A and 35B may have a support function for supporting the rotor core 32 and a function for adjusting the imbalance of the rotor 30 (a function for eliminating the imbalance by cutting or the like).
  • the rotor shaft 34 has a hollow portion 34A.
  • the hollow portion 34A extends over the entire length of the rotor shaft 34 in the axial direction.
  • the hollow portion 34A may function as an oil passage.
  • oil is supplied to the hollow portion 34A from one end side in the axial direction, and the oil flows along the radial inner surface of the rotor shaft 34, whereby the rotor core 32 Can be cooled from the inside in the radial direction.
  • the oil traveling along the radial inner surface of the rotor shaft 34 is ejected radially outward through the oil holes 341 and 342 formed at both ends of the rotor shaft 34 (arrows R5 and R6), and the coil end. It may be used for cooling 220A and 220B.
  • the structure of the motor 1 is arbitrary as long as it has a stator coil 24 (described later) joined by welding. Therefore, for example, the rotor shaft 34 may not have the hollow portion 34A, or may have a hollow portion having a significantly smaller inner diameter than the hollow portion 34A. Further, although a specific cooling method is disclosed in FIG. 1, the cooling method of the motor 1 is arbitrary. Therefore, for example, an oil introduction pipe inserted into the hollow portion 34A may be provided, or oil may be dropped from the oil passage in the motor housing 10 toward the coil ends 220A and 220B from the outside in the radial direction. ..
  • the rotor 30 is an inner rotor type motor 1 arranged inside the stator 21, but it may be applied to other types of motors.
  • it may be applied to an outer rotor type motor in which rotors 30 are concentrically arranged on the outside of the stator 21, a dual rotor type motor in which rotors 30 are arranged on both the outside and inside of the stator 21 and the like.
  • stator 21 Next, the configuration of the stator 21 will be described in detail with reference to FIGS. 2 and later.
  • FIG. 2 is a plan view of the stator core 22 in a single item state.
  • FIG. 3 is a diagram schematically showing a pair of coil pieces 52 assembled to the stator core 22.
  • FIG. 3 shows the relationship between the pair of coil pieces 52 and the slot 220 in a state where the stator core 22 is expanded in the radial direction. Further, in FIG. 3, the stator core 22 is shown by a dotted line, and a part of the slot 220 is not shown.
  • FIG. 4 is a perspective view of the coil end 220A of the stator 21.
  • FIG. 5 is a perspective view showing a part of the coil pieces having the same phase extracted.
  • the stator 21 includes a stator core 22 and a stator coil 24.
  • the stator core 22 is made of, for example, an annular magnetic laminated steel plate, but in a modified example, the stator core 22 may be formed of a green compact obtained by compressing and solidifying the magnetic powder.
  • the stator core 22 may be formed by a divided core that is divided in the circumferential direction, or may be in a form that is not divided in the circumferential direction.
  • a plurality of slots 220 around which the stator coil 24 is wound are formed inside the stator core 22 in the radial direction.
  • the stator core 22 includes an annular back yoke 22A and a plurality of teeth 22B extending radially inward from the back yoke 22A, and a plurality of teeth 22B in the circumferential direction.
  • a slot 220 is formed between them.
  • the number of slots 220 is arbitrary, but in this embodiment, it is 48 as an example.
  • the stator coil 24 includes a U-phase coil, a V-phase coil, and a W-phase coil (hereinafter, referred to as a "phase coil" when U, V, and W are not distinguished).
  • the base end of each phase coil is connected to an input terminal (not shown), and the end of each phase coil is connected to the end of another phase coil to form the neutral point of the motor 1. That is, the stator coil 24 is star-connected.
  • the connection mode of the stator coil 24 may be appropriately changed according to the required motor characteristics and the like.
  • the stator coil 24 may be delta-connected instead of the star connection.
  • FIG. 6 is a schematic front view of one coil piece 52.
  • the coil piece 52 is in the form of a segment coil in which the phase coil is divided into units that are easy to assemble (for example, units that are inserted into the two slots 220).
  • the coil piece 52 is formed by coating a linear conductor (flat wire) 60 having a substantially rectangular cross section with an insulating coating 62.
  • the linear conductor 60 is made of copper, for example.
  • the linear conductor 60 may be formed of another conductor material such as iron.
  • the coil piece 52 may be formed in a substantially U shape having a pair of straight-moving portions 50 and a connecting portion 54 connecting the pair of straight-moving portions 50 before assembling to the stator core 22.
  • the pair of straight-moving portions 50 are each inserted into the slots 220 (see FIG. 3).
  • the connecting portion 54 extends in the circumferential direction so as to straddle the plurality of teeth 22B (and the plurality of slots 220 accordingly) on the other end side in the axial direction of the stator core 22.
  • the number of slots 220 straddled by the connecting portion 54 is arbitrary, but is three in FIG.
  • the straight portion 50 is bent in the circumferential direction in the middle thereof, as shown by the alternate long and short dash line in FIG. As a result, the straight portion 50 becomes a leg portion 56 extending in the axial direction in the slot 220 and a crossover portion 58 extending in the circumferential direction on one end side in the axial direction of the stator core 22.
  • the pair of straight-moving portions 50 bends in a direction away from each other, but the present invention is not limited to this.
  • the pair of straight portions 50 may be bent in a direction approaching each other.
  • the stator coil 24 may also have a coil piece for a neutral point or the like for connecting the ends of the three-phase phase coils to each other to form a neutral point.
  • a plurality of leg portions 56 of the coil piece 52 shown in FIG. 6 are inserted into one slot 220 side by side in the radial direction. Therefore, a plurality of crossovers 58 extending in the circumferential direction are arranged in the radial direction on one end side in the axial direction of the stator core 22. As shown in FIGS. 3 and 5, the crossover 58 of one coil piece 52 that protrudes from one slot 220 and extends in the first side in the circumferential direction (for example, in the clockwise direction) protrudes from the other slot 220 and rotates. It is joined to the crossover 58 of another coil piece 52 extending in the second direction (for example, counterclockwise direction).
  • six coil pieces 52 are assembled in one slot 220.
  • they are also referred to as a first turn, a second turn, and a third turn in order from the outermost coil piece 52 in the radial direction.
  • the tip portions 40 of the coil piece 52 of the first turn and the coil piece 52 of the second turn are joined to each other by the joining step described later, and the coil piece 52 of the third turn and the coil piece 52 of the fourth turn are joined.
  • the tip portions 40 are joined to each other by the joining step described later, and the coil pieces 52 of the fifth turn and the coil pieces 52 of the sixth turn are joined to each other by the joining step described later.
  • the coil piece 52 is covered with the insulating coating 62 as described above, but the insulating coating 62 is removed only from the tip portion 40. This is to secure an electrical connection with another coil piece 52 at the tip portion 40.
  • the axial outer end surface 42 that is, the widthwise one end surface of the coil piece 52 is an arc that is convex outward in the axial direction. It is a face.
  • FIG. 7 is a diagram showing the tip portion 40 of the coil pieces 52 joined to each other and the vicinity thereof. Note that FIG. 7 schematically shows a range D1 in the circumferential direction of the welding target portion 90.
  • FIG. 8 is a cross-sectional view taken along the line AA of FIG. 7 passing through the welding target portion 90.
  • one coil piece 52 and the other coil piece 52 have their respective tip 40s perpendicular to the view shown in FIG. 7 (perpendicular to the contact surface 401). They are butted in a C-shaped manner.
  • the two tip portions 40 to be joined to each other may be overlapped and joined in the thickness direction so that the central axes of the respective arc surfaces (outer end faces 42 in the axial direction) coincide with each other.
  • the central axes in this way and overlapping them, even if the bending angle ⁇ is relatively large or small, the lines on the outer sides in the axial direction of the two tip portions 40 joined to each other match, and they are appropriately overlapped. Can be done.
  • welding is used as a joining method when joining the tip portion 40 of the coil piece 52.
  • laser welding using a laser beam source as a heat source is adopted instead of arc welding represented by TIG welding.
  • TIG welding the axial lengths of the coil ends 220A and 220B can be reduced. That is, in the case of TIG welding, it is necessary to bend the tips of the coil pieces to be brought into contact with each other outward in the axial direction and extend them in the axial direction, whereas in the case of laser welding, the necessity of such bending is necessary. As shown in FIG.
  • a laser beam 110 for welding is applied to a welding target portion 90 at two abutted tip portions 40.
  • the irradiation direction (propagation direction) of the laser beam 110 is substantially parallel to the axial direction, and is a direction toward the axially outer end surface 42 of the two abutting tip portions 40 from the axially outer side.
  • damage (carbonization) of the insulating coating 62 can be effectively reduced.
  • the plurality of coil pieces 52 can be electrically connected while maintaining appropriate insulation performance.
  • the circumferential range D1 of the welding target portion 90 is the total circumferential range D0 of the axial outer end surface 42 at the contact portion between the tip portions 40 of the two coil pieces 52. This is the part excluding both ends. This is because it is difficult to secure a sufficient welding depth (see dimension L1 in FIG. 7) at both ends due to the convex arc surface of the outer end surface 42 in the axial direction.
  • the circumferential range D1 of the welding target portion 90 may be adapted so as to secure the required joining area between the coil pieces 52, the required welding strength, and the like.
  • the radial range D2 of the welding target portion 90 is centered on the contact surface 401 between the tip portions 40 of the two coil pieces 52.
  • the radial range D2 of the welding target portion 90 may correspond to the diameter (beam diameter) of the laser beam 110. That is, the laser beam 110 is irradiated in such a manner that the irradiation position changes linearly along the circumferential direction without substantially changing in the radial direction. In other words, the laser beam 110 is moved so that the irradiation position changes in a straight line parallel to the contact surface 401.
  • FIG. 9 is a diagram showing the relationship between the laser wavelength and the laser absorption rate (hereinafter, also simply referred to as “absorption rate”) for an individual of various materials.
  • the horizontal axis is the wavelength ⁇
  • the vertical axis is the absorption rate
  • solids of various materials such as copper (Cu), aluminum (Al), silver (Ag), nickel (Ni), and iron (Fe). The characteristics related to are shown.
  • the absorption rate is as low as about 10% with respect to copper, which is a material of 60. That is, in the case of an infrared laser, most of the laser beam 110 is reflected by the coil piece 52 and is not absorbed. Therefore, in order to obtain the required bonding area between the coil pieces 52 to be bonded, a relatively large amount of heat input is required, the heat effect is large, and welding may become unstable.
  • a green laser is used instead of the infrared laser.
  • the green laser is a concept that includes not only a laser having a wavelength of 532 nm, that is, a SHG (Second Harmonic Generation) laser, but also a laser having a wavelength close to 532 nm.
  • a laser having a wavelength of 0.6 ⁇ m or less, which does not belong to the category of green laser may be used.
  • the wavelength related to the green laser is obtained by converting the basic wavelength produced by, for example, a YAG laser or a YVO4 laser through an oxide single crystal (for example, LBO: lithium triborate).
  • the absorption rate is as high as about 50% with respect to copper which is the material of the linear conductor 60 of the coil piece 52. .. Therefore, according to this embodiment, it is possible to secure the required bonding area between the coil pieces 52 with a smaller amount of heat input as compared with the case of using an infrared laser.
  • the characteristic that the green laser has a higher absorption rate than the infrared laser is remarkable in the case of copper, but not only in copper but also in many other metal materials. You can check. Therefore, welding by a green laser may be realized even when the material of the linear conductor 60 of the coil piece 52 is other than copper.
  • FIG. 10 is an explanatory diagram of a change mode of the absorption rate during welding.
  • the horizontal axis represents the laser power density (denoted as "Laser Power Density")
  • the vertical axis represents the laser absorption rate of copper (denoted as "Laser Absorption Rate”)
  • the characteristic 100G in the case of a green laser.
  • the characteristic 100R in the case of an infrared laser is shown.
  • FIG. 10 shows points P1 and P2 at which copper melting starts in the case of a green laser and an infrared laser, and points P3 at which a keyhole is formed.
  • the green laser can start melting copper with a smaller laser power density than the infrared laser.
  • the green laser has a higher absorption rate at the point P3 where the keyhole is formed and the absorption rate at the start of irradiation (that is, the laser power density) than the infrared laser.
  • the difference from (absorption rate when 0) is small.
  • the change in absorption rate during welding is about 80%
  • the change in absorption rate during welding is about 40%, which is about half. be.
  • FIG. 11B is an image diagram of a keyhole or the like when an infrared laser is used, where 1100 indicates a welding bead, 1102 indicates a molten pool, and 1104 indicates a keyhole.
  • the arrow R1116 schematically shows the mode of degassing.
  • the arrow R110 schematically shows how the irradiation position of the infrared laser is moved due to the small beam diameter.
  • FIG. 11A is an image diagram of a keyhole or the like when a green laser is used, and the significance of the reference numerals is as described above with reference to FIG. 11B.
  • the green laser it can be easily understood from FIG. 11A as an image that the keyhole is stabilized and the gas escape is good due to the expansion of the beam diameter.
  • the absorptivity is relatively high and the beam diameter can be made relatively large, so that the required melting width (FIG. 8).
  • the movement locus (irradiation time) of the irradiation position required to obtain the radial range D2 of the welding target portion 90 shown in (1) can be made relatively short (small).
  • FIGS. 12A and 12B are diagrams showing the relationship between the laser output and the welding depth in the case of a green laser.
  • the horizontal axis represents the welding speed (denoted as “Welding Speed”)
  • the vertical axis represents the welding depth (denoted as “Welding Dept", the same applies hereinafter)
  • various laser outputs here, 1).
  • FIG. 12B the horizontal axis is the welding heat input (denoted as "Welding Heat Input", the same applies hereinafter)
  • the vertical axis is the welding depth
  • various laser outputs here, 1.0 kW, 2.5 kW). , 3.0 kW, 3.5 kW
  • the influence of the laser output is large on the welding depth (penetration depth).
  • the welding speed is reduced, the welding heat input increases, but the effect on the welding depth (penetration depth) is relatively small.
  • the plot point PL1 at a laser output of 3.0 kW and a welding speed of about 35 mm / s has a relatively large welding heat input of about 90 J / mm.
  • the welding depth is substantially the same as the plot point PL2 when the laser output is 3.5 kW and the welding speed is about 150 mm / s (see arrow Q1). From this, it can be seen that the higher the laser output, the higher the heat input efficiency of welding.
  • FIG. 13 is an explanatory diagram of a welding method using a green laser according to this embodiment.
  • the horizontal axis represents time (denoted as “Time”, the same applies hereinafter), the vertical axis represents the laser output (denoted as “Autoput”, the same applies hereinafter), and the time-series waveform of the laser output during welding is shown. Shown schematically.
  • welding is realized by pulse irradiation of a green laser with a laser output of 3.8 kW.
  • the pulse oscillation of the laser oscillator is realized so that the laser output becomes 3.8 kW for 10 msec, and after the interval 100 msec, the pulse oscillation of the laser oscillator is realized again so that the laser output becomes 3.8 kW for 10 msec. ..
  • one pulse irradiation (10 msec pulse irradiation) possible by one pulse oscillation in this way is also referred to as “1 pass”.
  • FIG. 13 shows a pulse waveform 130R related to pulse irradiation in the case of an infrared laser for comparison.
  • the output of the laser oscillator is low (for example, 400 W at the maximum during continuous irradiation), and the high output required to ensure deep penetration (for example, a high output of 3.0 kW or more). Is difficult to obtain. That is, since the green laser is generated through a wavelength conversion crystal such as an oxide single crystal as described above, the output decreases when passing through the wavelength conversion crystal. Therefore, when the laser beam of the green laser is continuously irradiated, the high output required for ensuring deep penetration cannot be obtained.
  • the high output (for example, the high output of laser output of 3.0 kW or more) required for ensuring deep penetration is secured by pulse irradiation of the green laser.
  • pulse irradiation is realized by accumulating continuous energy for increasing the peak power and oscillating the pulse.
  • one welding target portion is irradiated with a beam of a green laser generated by a plurality of pulse oscillations.
  • irradiation of one welding target portion with two or more passes with a relatively high laser output (for example, a laser output of 3.0 kW or more) is executed.
  • a relatively high laser output for example, a laser output of 3.0 kW or more
  • the interval is a specific value of 100 msec, but the interval is arbitrary and may be minimized within a range in which the required high output is secured.
  • the laser output has a specific value of 3.8 kW, but if the laser output is 3.0 kW or more, it may be appropriately changed within a range in which the required welding depth is secured.
  • the pulse waveform 130R when continuously irradiated for 130 msec which is a relatively long time with a laser output of 2.3 kW
  • continuous irradiation is possible with a relatively high laser output (2.3 kW).
  • a movement locus (continuous irradiation time) of a relatively long irradiation position including meandering is required in order to obtain the required melting width, and in this case, the amount of heat input is , About 312J, which is significantly larger than the amount of heat input in the case of the green laser shown in FIG. 13 of about 80J (in the case of 2 passes).
  • the material (copper in this example) of the linear conductor 60 of the coil piece 52 is compared with the case where the infrared laser is used. Welding with a laser beam having a high absorption rate becomes possible.
  • the movement locus (time) of the irradiation position required to obtain the required melting width can be made relatively short (small). That is, the number of pulse oscillations required to obtain the required melting width can be relatively reduced due to the increased keyholes per pulse oscillation with a relatively large beam diameter. As a result, it is possible to secure the required bonding area between the coil pieces 52 with a relatively small amount of heat input.
  • the welding target is welded even when the circumferential range D1 of the welding target portion 90 is relatively wide. It becomes easy to secure a deep penetration over the entire portion 90, and high quality welding can be realized.
  • FIG. 14 is a schematic view showing a mode in which the laser output and welding heat input related to one pass change according to the irradiation position (referred to as “Position” in FIG. 14, the same applies hereinafter), and depends on the irradiation position.
  • the change characteristic 150P of the laser output and the change characteristic 150L of the welding heat input according to the irradiation position are schematically shown.
  • FIG. 15 is an explanatory view of a change mode of the irradiation position for each pass (in FIG. 15, the moving distance which is the amount of change of the irradiation position is expressed as “Distance”), and is an explanatory diagram of the change mode of the irradiation position with respect to time.
  • the change speed of the irradiation position that is, the welding speed is constant as shown in FIG. 15 in one pass.
  • the amount of change in the irradiation position is preferably in the range of 1 mm to 2 mm, and in this embodiment, as an example, it is about 1.45 mm.
  • the length of the range D1 in the circumferential direction of the welding target portion 90 is assumed to be about 2.9 mm.
  • the maximum irradiation time per pulse (about 10 msec in this example) is substantially determined by the irradiation energy of the green laser per pulse, one pulse is obtained under the same welding speed. As the irradiation energy per pulse increases, the moving distance of the laser beam 110 per pulse can be further increased.
  • one pass starts from position P10. That is, one pulse oscillation is started from the position P10.
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at the position P10 (see arrow R140).
  • the irradiation position is linearly changed from the position P10 to the position P12 at a constant speed.
  • the laser output is maintained at a predetermined value (3.8 kW as an example in this example) (see arrow R141).
  • the irradiation position reaches the position P12, the laser output is lowered from a predetermined value (3.8 kW as an example in this example) to 0 (see arrow R142). That is, one pulse oscillation is terminated.
  • the irradiation position may be changed until the irradiation position moves to the position P13 further separated by the distance ⁇ 1 (see, for example, the distance ⁇ 1 from the time t0 in FIG. 15). During this time, a small amount of welding heat input is generated due to the remaining laser output (see Q14 in FIG. 14).
  • the change in the irradiation position (change at a constant speed) may be terminated.
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at the position P10, but welding heat input is performed until the actual laser output reaches a predetermined value. Does not increase at once up to the maximum value. Therefore, as shown in FIG. 14 with the change characteristic 150L, the welding heat input gradually increases from the position P10 to the position P11. Then, the laser output is instantaneously lowered to 0 at the position P12, but the welding heat input is maintained at the maximum value until just before this.
  • such an irradiation mode in which the laser output is instantaneously lowered to 0 is also referred to as an “irradiation mode without a down slope” in order to distinguish it from another irradiation mode described later.
  • the welding heat input at the start position of one pass tends to be significantly smaller than the welding heat input at the end position of the one pass.
  • FIG. 16 is an explanatory view of another irradiation mode (hereinafter, also referred to as “irradiation mode with downslope” for the sake of distinction), and as in FIG. 14, the laser output and welding heat input related to one pass are It is a schematic diagram which shows the mode which changes according to an irradiation position. Similar to FIG. 14, FIG. 16 schematically shows the change characteristic 150P of the laser output according to the irradiation position and the change characteristic 150L of the welding heat input according to the irradiation position.
  • the change speed of the irradiation position that is, the welding speed is constant in one pass as in the case of the irradiation mode without the down slope described above. Suppose there is.
  • one pass starts from position P10. That is, one pulse oscillation is started from the position P10.
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at the position P10 (see arrow R140).
  • the irradiation position is linearly changed from the position P10 to the position P12 at a constant speed. While the irradiation position is from position P10 to position P14, the laser output is maintained at a predetermined value (3.8 kW as an example in this example) (see arrow R141).
  • the laser output is gradually lowered from a predetermined value (3.8 kW as an example in this example) to 0 (see arrow R143). Specifically, when the irradiation position reaches the position P14, the laser output is lowered by one step, and when the irradiation position reaches the position P12, the laser output is further lowered by one step, and when the irradiation position reaches the position P15. , The laser output is reduced to 0. Even if the irradiation position reaches the position P15, the irradiation position is changed until it moves to the position P16 further separated by the distance ⁇ 1.
  • the distance ⁇ 1 may be the same as in the case of the irradiation mode without the down slope described above, or may be shorter than the case of the irradiation mode without the down slope described above.
  • the change in the irradiation position (change at a constant speed) may be terminated.
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at the position P10, but the actual laser output reaches a predetermined value.
  • the welding heat input does not increase at once up to the maximum value. Therefore, as shown in FIG. 16, the welding heat input gradually increases from the position P10 to the position P11. The characteristics up to this point are the same as in the case of the irradiation mode without the down slope described above.
  • the laser output is reduced at the position P14, but the welding heat input is maintained at the maximum value until just before this.
  • the laser output is gradually lowered so as to become 0 at the position P15, so that the welding heat input is gradually lowered as compared with the case of the irradiation mode without the down slope described above.
  • the laser output is reduced from a predetermined value to 0 via two intermediate values, but the number of intermediate values may be one or three or more. You may. Further, the value of each intermediate value itself is also arbitrary, and each intermediate value may be set so that the laser output gradually decreases from the predetermined value within a certain reduction range, or the laser output decreases from the predetermined value. It may be set to gradually decrease with a changing amount of decrease. Further, the positions P14 and P12 where the laser output gradually decreases and the position P15 where the laser output becomes 0 are arbitrary, and a desired characteristic (welding heat input change characteristic 150L according to the irradiation position) can be obtained. May be adapted to be. For example, if possible, the position P14 (the position where the down slope starts) shown in FIG. 16 may coincide with the position 1.45 mm away from the position P10 (the position corresponding to the position P12 in the figure). ..
  • irradiation of two or more passes of green laser is executed on one welding target portion.
  • the laser irradiation by the irradiation mode without the down slope described above may be realized for all the paths for one welding target portion, or the laser irradiation by the irradiation mode with the down slope described above may be realized. , May be implemented for all paths.
  • the above-mentioned irradiation mode without the down slope and the above-mentioned irradiation mode with the down slope may be combined in a manner in which the irradiation mode is changed for each pass with respect to one welding target portion.
  • each of the two or more passes with respect to one welding target location may have the same welding direction (change direction of the irradiation position), or the welding direction may be different from some other passes.
  • FIG. 17 is an explanatory diagram in the case where welding is realized by two passes in which the welding direction (change direction of the irradiation position) is the same, and the upper side is a schematic diagram of the change characteristic of the laser output according to the irradiation position. Shown, the lower side schematically shows the change characteristics of welding heat input according to the irradiation position. The change characteristics of the welding heat input according to the irradiation position are shown separately for each path, and unlike FIGS. 14 and 16, the downward direction indicates that the welding heat input is larger.
  • Area W1 relates to the amount of heat input in the first pass
  • area W2 relates to the amount of heat input in the second pass. Further, in FIG.
  • the welding directions are indicated by arrows R171 and R172 in association with the change characteristics of the welding heat input according to the irradiation position.
  • the arrow R171 is the welding direction of the first pass
  • the arrow R172 is the welding direction of the second pass.
  • the meanings of the arrows R140, arrows R141, and arrows R142 are as described with reference to FIG.
  • the X direction and the X1 side (an example of the first side) and the X2 side (an example of the second side) along the X direction (an example of the first direction) are defined.
  • both the first pass and the second pass are the irradiation modes without the down slope described above.
  • the welding directions are the same as each other, and the irradiation positions are changed from the X1 side to the X2 side along the X direction. It is a changing direction.
  • the first pass is realized by one pulse oscillation that irradiates the first range D11 with the laser beam 110
  • the second pass is the next one that irradiates the second range D12 with the laser beam 110. It is realized by the pulse oscillation of.
  • the welding by the first pass and the welding by the second pass cooperate to cover the entire circumferential range D1 of the welding target portion 90.
  • first range D11 and the second range D12 include parts different from each other as shown in FIG. Specifically, the first range D11 and the second range D12 are set in a continuous manner without overlapping in the X direction. That is, the position where the second pass is started (the position corresponding to the position P10 in FIG. 14) coincides with the position where the first pass is substantially ended (the position corresponding to the position P12 in FIG. 14).
  • the first range D11 and the second range D12 may include portions that overlap each other.
  • the position where the second pass is started (the position corresponding to the position P10 in FIG. 14) is on the X1 side with respect to the position where the first pass is substantially ended (the position corresponding to the position P12 in FIG. 14). May be offset to.
  • the end on the downstream side (X2 side) in the welding direction overlaps with the end on the upstream side (X1 side) in the welding direction in the second range D12, but the other parts are the second. It does not overlap with range D12.
  • the end on the upstream side (X1 side) in the welding direction overlaps with the end on the downstream side (X2 side) in the welding direction in the first range D11, but the other parts are in the first range. It does not overlap with D11.
  • the position where the second pass is started is preferably a range in which the laser output in the second pass is maintained at a predetermined value (position P11 to position P12 in FIG. 14).
  • position P11 to position P12 in FIG. 14 corresponding to the range up to) does not significantly overlap in the X direction with respect to the range in which the laser output in the first pass is maintained at a predetermined value (corresponding to the range from position P11 to position P12 in FIG. 14). Is set to.
  • the position where the second pass starts may be slightly offset to the X2 side with respect to the position where the first pass is substantially ended.
  • the position where the second pass is started is set so that the welded portion realized by the first pass and the welded portion realized by the second pass are not separated in the X direction (that is, the seam). Welding is set to be properly achieved).
  • both the first pass and the second pass are the irradiation modes without the down slope described above, but one or both of them may be the irradiation mode with the down slope described above. good.
  • FIG. 18 is an explanatory diagram in the case where welding is realized by two paths having different welding directions (change directions of irradiation position), and the upper side schematically shows the change characteristics of the laser output according to the irradiation position.
  • the lower side schematically shows the change characteristics of welding heat input according to the irradiation position.
  • the change characteristics of the welding heat input according to the irradiation position are shown separately for each path, and unlike FIGS. 14 and 16, the downward direction indicates that the welding heat input is larger.
  • Area W1 relates to the amount of heat input in the first pass
  • area W2 relates to the amount of heat input in the second pass.
  • the meanings of the arrows R171 and R172 are the same as those in FIG. Further, the meanings of the arrows R140, the arrows R141, and the arrows R142 are as described with reference to FIG.
  • the first pass is realized by one pulse oscillation that irradiates the first range D11 with the laser beam 110
  • the second pass is the laser in the second range D12. It is realized by the next one pulse oscillation that irradiates the beam 110.
  • the welding by the first pass and the welding by the second pass cooperate to cover the entire circumferential range D1 of the welding target portion 90.
  • both the first pass and the second pass are the irradiation modes without the down slope described above.
  • the welding direction (change direction of the irradiation position) is different between the first pass and the second pass than the example shown in FIG.
  • the first pass is a direction in which the irradiation position of the laser beam 110 in the first range D11 is linearly changed from the X1 side to the X2 side along the X direction
  • the second pass is the second pass. Is a direction in which the irradiation position of the laser beam 110 in the second range D12 is linearly changed from the X2 side to the X1 side along the X direction. That is, in both the first pass and the second pass, irradiation is started from the outside toward the center of the circumferential range D1 of the welding target portion 90.
  • the first range D11 and the second range D12 include parts different from each other as shown in FIG. 18, as in the example shown in FIG. Specifically, the first range D11 and the second range D12 are set in a continuous manner without overlapping in the X direction. That is, the position where the second pass is substantially terminated (the position corresponding to the position P12 in FIG. 14) coincides with the position where the first pass is substantially terminated (the position corresponding to the position P12 in FIG. 14). do.
  • the first range D11 and the second range D12 may include portions that overlap each other. That is, the position where the second pass is substantially terminated (the position corresponding to the position P12 in FIG. 14) is relative to the position where the first pass is substantially terminated (the position corresponding to the position P12 in FIG. 14). Therefore, it may be slightly offset to the X1 side or slightly offset to the X2 side.
  • the actual laser output becomes smaller than the predetermined value at both ends (ends on the X1 side and X2 side) of the circumferential range D1 of the welding target portion 90.
  • the actual laser output is smaller than the predetermined value only at the end portion on the X1 side of the circumferential range D1 of the welding target portion 90.
  • the welding heat input gradually increases toward the X2 side, and the welding heat input is gradually increased.
  • the welding heat input gradually increases toward the X1 side.
  • Such a characteristic is suitable for a configuration in which the dimension of the welding object (individual) in the welding depth direction becomes small at both ends of the welding target portion 90 in the X direction. This is because if the welding heat input is relatively large for a part of the object to be welded (individual) whose dimensions in the welding depth direction are insufficient, the quality of welding is likely to be impaired due to penetration of keyholes and the like. be.
  • the two tip portions 40 forming the welding target portion 90 have a tapered shape (a shape in which the outer end surface 42 in the axial direction is curved). Therefore, the dimension in the welding depth direction of the overlapping range of the abutting tip portions 40 (that is, the dimension along the irradiation direction of the laser beam 110 in the overlapping range when viewed in the radial direction) is the welding target portion 90.
  • the dimension L1 at both ends in the X direction is significantly smaller than the dimension L0 at the center of the welding target portion 90 in the X direction.
  • the dimension of the overlapping range of the abutted tip portions 40 and the dimension of the laser beam 110 in the irradiation direction are smaller on the X1 side in the first range D11 than on the X2 side in the first range D11, and , The X2 side in the second range D12 is smaller than the X1 side in the second range D12.
  • irradiation is started from the outside toward the center of the circumferential range D1 of the welding target portion 90 in the two paths having different welding directions (change directions of the irradiation position). With these two passes, a high-quality weld can be formed even with respect to the weld target portion 90 in the tip portion 40 in which the axial outer end surface 42 is curved.
  • both the first pass and the second pass are irradiation modes without the down slope described above, but one or both of them are irradiated with the down slope described above, as will be described later. It may be an embodiment.
  • the entire circumferential range D1 of the welding target portion 90 is covered by two passes, but is covered by three or more passes. You may.
  • FIG. 19 is an explanatory view of protrusions and the like caused by volume expansion, and is a diagram showing a cross section of a welded portion when welding is realized by the two passes shown in FIG.
  • FIG. 19 one of the two abutted tip portions 40 is shown, and the region 1900 surrounded by the dotted line is the welded portion (representing the welding depth).
  • FIG. 19 also shows the first range D11 related to the first pass and the second range D12 related to the second pass.
  • a relatively large protrusion 1902 (a protrusion that is convex outward in the axial direction) is generated at a position where the irradiation in the second pass according to the irradiation mode without the down slope described above is substantially completed.
  • a blow hole 1904 is formed at the boundary portion (seam) between the first pass and the second pass.
  • FIG. 20 is an explanatory diagram of a welding method that makes it possible to reduce protrusions and blow holes, and is a diagram that schematically shows the change characteristics of the laser output according to the irradiation position for each of the two passes.
  • the view of FIG. 20 (the same applies to FIGS. 22 and 23 described later) is the same as that of FIG. 17 described above.
  • the meanings of the arrows R140, the arrows R141, and the arrows R143 are as described in FIG. Further, regarding the arrow R143, (1) is attached to the first pass, and (2) is attached to the second pass.
  • the first pass is realized by one pulse oscillation (an example of the first pulse oscillation) that irradiates the first range D11 with the laser beam 110, and the second pass. Is realized by the following one pulse oscillation (an example of the second pulse oscillation) that irradiates the second range D12 with the laser beam 110.
  • the welding by the first pass and the welding by the second pass cooperate to cover the entire circumferential range D1 of the welding target portion 90.
  • the welding direction (change direction of the irradiation position) is different between the first pass and the second pass, as in the example shown in FIG. That is, in both the first pass and the second pass, irradiation is started from the outside toward the center of the circumferential range D1 of the welding target portion 90.
  • both the first pass and the second pass are the irradiation modes with the down slope described above.
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at the position P20, which is the end point on the X1 side of the first range D11 (see arrow R140), and the position.
  • a predetermined value (3.8 kW as an example in this example) is maintained up to the position P21 on the X2 side by a predetermined distance d1 (not shown) with respect to P20 (see arrow R141).
  • the laser output is reduced to the first intermediate value (2.0 kW as an example in this example), and then at the position P22 on the X2 side by a predetermined distance d2 (not shown) with respect to the position P21.
  • the laser output is reduced to 0 (see arrow R143 (1)).
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at the position P30, which is the end point on the X2 side of the second range D12 (see arrow R140), and the position P30. Therefore, a predetermined value (3.8 kW as an example in this example) is maintained up to the position P31 on the X1 side by a predetermined distance d3 (not shown) (see arrow R141). Then, at the position P31, the laser output is reduced to the first intermediate value (2.0 kW as an example in this example), and then at the position P32 on the X1 side by a predetermined distance d4 (not shown) with respect to the position P31.
  • the laser output is reduced to the second intermediate value (1.0 kW as an example in this example), and then the laser output is 0 at the position P33 on the X1 side by a predetermined distance d5 (not shown) with respect to the position P32. (See arrow R143 (2)).
  • the position P21 where the gradual decrease in the laser output related to the first pass is started and the position P31 where the gradual decrease in the laser output related to the second pass is started are They match, but may be separated in the X direction.
  • the position P31 may be offset to the X1 side or the X2 side with respect to the position P21.
  • FIG. 21 is a diagram showing a cross section of a welded portion when welding is realized by the two passes shown in FIG. 20 as a contrast with FIG. In FIG. 21, one of the two abutted tip portions 40 is shown, and the region 2000 surrounded by the dotted line is the welded portion.
  • FIG. 21 also shows the first range D11 related to the first pass and the second range D12 related to the second pass.
  • the protrusions once solidified during the first pass are melted again by the irradiation from the vicinity of the position P31 of the second pass to the position P33, so that the protrusions are leveled.
  • the absorptivity is high as described above, and the protrusion can be melted even by a relatively low laser output such as the first intermediate value. Is. This is in contrast to infrared lasers, which are unlikely to melt the projections at such relatively low laser powers.
  • the second range D12 related to the second pass includes the vicinity of the end position of irradiation in the first range D11 related to the first pass, so that the first pass is related to the first pass.
  • the protrusions caused by the solidified portion that are likely to occur near the end position of irradiation in 1 range D11 can be melted, and as a result, the height of the protrusions can be reduced. As a result, the body shape of the motor 1 in the axial direction can be reduced.
  • a portion of the second range D12 related to the second pass that overlaps with the vicinity of the irradiation end position in the first range D11 related to the first pass (near the position P31 of the pass eye).
  • the laser output is gradually reduced.
  • the above-mentioned protrusions can be melted by an intermediate value (first intermediate value or the like) lower than a predetermined value (3.8 kW as an example in this example) in a manner in which bubbles or the like are unlikely to be generated.
  • the above-mentioned protrusions can be smoothed while reducing the occurrence of protrusions caused by the second pass itself and which can also occur near the end position of the second pass. It becomes possible to level.
  • the first pass is the irradiation mode with the down slope described above, but may be the irradiation mode without the down slope described above. Further, the first pass is an irradiation mode with a downslope via one intermediate value, but an irradiation mode with a downslope via two or more intermediate values may be used.
  • the second pass is an irradiation mode with a downslope via two intermediate values, but is an irradiation mode with a downslope via one or three or more intermediate values. There may be.
  • the second pass is the irradiation mode with the down slope described above, but may be the irradiation mode without the down slope described above.
  • the welding directions of the first pass and the second pass are the same, and the second pass is started.
  • Position corresponding to position P10 in FIG. 14 may be offset to the X1 side with respect to the position where the first pass is substantially completed (position corresponding to position P12 in FIG. 14).
  • the actual laser output of the second range D12 related to the second pass overlaps with the vicinity of the irradiation end position in the first range D11 related to the first pass (in this example, one example). It is a stage before reaching 3.8 kW).
  • the above-mentioned protrusions can be melted in a manner in which bubbles and the like are unlikely to be generated by the laser output before reaching a predetermined value (3.8 kW as an example in this example).
  • a predetermined value 3.8 kW as an example in this example.
  • the above-mentioned protrusions can be smoothly leveled as in the example shown in FIG.
  • the first pass and the second pass are irradiation modes without a down slope, but at least one of the first pass and the second pass has a down slope. It may be an irradiation mode.
  • the entire circumferential range D1 of the welding target portion 90 is covered by two passes, but as in the example shown in FIG. 23 described below, three or more. You may cover it with a pass.
  • FIG. 23 is an explanatory diagram of another welding method that makes it possible to reduce protrusions and blow holes, and is a diagram schematically showing the change characteristics of the laser output according to the irradiation position for each of the three passes. ..
  • the area W3 relates to the amount of heat input in the third pass. Further, regarding the arrow R143, (1) is attached to the first pass, (2) is attached to the second pass, and (3) is attached to the third pass.
  • the arrow R172 is the welding direction of the third pass.
  • the welding direction (change direction of the irradiation position) is the same for the first pass and the second pass, and is the direction from the X1 side to the X2 side.
  • the welding direction (change direction of the irradiation position) is different between the second pass and the third pass. That is, the third pass is the direction from the X2 side to the X1 side.
  • the first to third passes are all the irradiation modes with the down slope described above.
  • the relationship between the first pass and the second pass is an irradiation mode in which both the first pass and the second pass have a downslope with respect to the relationship between the first pass and the second pass shown in FIG. 22 described above. Except for the points, they are substantially the same. Further, the relationship between the second pass and the third pass is substantially the same as the relationship between the first pass and the second pass shown in FIG. 20 described above.
  • the laser output is a predetermined value at the position P40, which is the end point on the X1 side of the first range D11 (in this example, 3. It rises up to 8 kW) (see arrow R140), and a predetermined value (in this example, 3.8 kW as an example) is maintained up to the position P41 on the X2 side with respect to the position P40 (see arrow R141). Then, the laser output is reduced to the first intermediate value (2.0 kW in this example as an example) at the position P41, and then the laser output is reduced to 0 at the position P42 on the X2 side with respect to the position P41. (See arrow R143 (1)).
  • the laser output is predetermined at the position P50 which is the end point on the X1 side of the second range D12 and at the position P50 on the X1 side of the position P41. It rises to a value (3.8 kW as an example in this example) (see arrow R140), and a predetermined value (3.8 kW as an example in this example) is maintained up to a position P51 on the X2 side with respect to the position P50 (arrow). See R141).
  • the laser output is reduced to the first intermediate value (2.0 kW in this example as an example) at the position P51, and then the laser output is reduced to 0 at the position P52 on the X2 side with respect to the position P51. (See arrow R143 (2)).
  • the laser output is a predetermined value at the position P60 which is the end point on the X2 side of the third range D13 (in this example, 3.8 kW as an example). (See arrow R140), and a predetermined value (3.8 kW as an example in this example) is maintained up to position P61 on the X1 side with respect to position P60 (see arrow R141). Then, the laser output is reduced to the first intermediate value (2.0 kW in this example as an example) at the position P61, and then the laser output is reduced to the second intermediate value (2.0 kW in this example) at the position P62 on the X1 side with respect to the position P61. In this example, the laser output is reduced to 1.0 kW as an example, and then the laser output is reduced to 0 at the position P63 on the X1 side with respect to the position P62 (see arrow R143 (3)).
  • both ends (ends on the X1 side and X2 side) of the circumferential range D1 of the welding target portion 90 are actually The laser output of is smaller than the predetermined value.
  • Such a characteristic is suitable for a configuration in which the dimension of the welding object (individual) in the welding depth direction becomes small at both ends of the welding target portion 90 in the X direction.
  • the two tip portions 40 forming the welding target portion 90 have a tapered shape (a shape in which the outer end surface 42 in the axial direction is curved). Therefore, the dimension of the overlapping range of the abutted tip portions 40 and the dimension of the laser beam 110 in the irradiation direction are smaller on the X1 side in the first range D11 than on the X2 side in the first range D11, and , The X2 side in the third range D13 is smaller than the X1 side in the third range D13. Therefore, according to the example shown in FIG. 23, as in the example shown in FIG.
  • the two paths have different welding directions (change directions of the irradiation position), and the range D1 in the circumferential direction of the welding target portion 90.
  • Welding target location in the tip 40 in the form in which the axially outer end face 42 is curved by welding related to the two passes (the first pass and the third pass) in which irradiation is started from the outside toward the center of the A high quality weld can be formed even for 90.
  • the position P51 where the gradual decrease in the laser output related to the second pass is started and the position P61 where the gradual decrease in the laser output related to the third pass is started are They match, but may be separated in the X direction.
  • the position P61 may be offset to the X1 side or the X2 side with respect to the position P51.
  • FIG. 24A is an explanatory diagram of a welding method using a green laser according to a comparative example.
  • time is taken on the horizontal axis and laser output is taken on the vertical axis, and a time-series waveform of the laser output during welding is schematically shown.
  • welding is realized by pulse irradiation of a green laser with a laser output of 3.8 kW.
  • the pulse oscillation of the laser oscillator is realized so that the laser output becomes 3.8 kW for 2 msec, and after the interval 38 msec, the pulse oscillation of the laser oscillator is realized again so that the laser output becomes 3.8 kW for 2 msec. ..
  • pulse oscillation of the laser oscillator is realized so that the laser output is 3.8 kW for 10 msec, and after an interval of 100 msec, 10 msec is again achieved.
  • the pulse oscillation of the laser oscillator is realized so that the laser output is 3.8 kW.
  • the irradiation position of the laser beam for each path is fixed. That is, in this embodiment, as described above, the irradiation position of the laser beam 110 is linearly changed (moved) at a constant speed during each pulse oscillation, whereas in the comparative example, during each pulse oscillation. The irradiation position of the laser beam is not moved.
  • FIG. 24B is a diagram showing a cross section of a welded portion when welding is realized by a comparative example.
  • FIG. 24B one of the two abutted tip portions 40 is shown, and the region 2400 surrounded by the dotted line is the welded portion (representing the welding depth).
  • 11 passes of irradiation are realized for one welding target portion 90.
  • the weld bottom is smooth, and inconveniences (decrease in fatigue strength, etc.) that occur in the comparative example can be reduced.
  • the irradiation position of the laser beam 110 at an appropriate moving speed (welding speed) while ensuring the laser output at which the required penetration depth can be obtained with respect to the welding target portion 90.
  • the overlap range for each pass is reduced by the smaller number of pulse oscillations per welding target portion 90, and the welding cross-sectional area required for product function is reduced. Can be secured efficiently.
  • the welding time required to secure the welding cross-sectional area required for the product function can be shortened.
  • the welding time is about 440 msec by 11 pulse oscillations, whereas in this embodiment, as shown in FIG. 13 described above, for example, 2 pulses.
  • the welding time is about 220 msec (time until just before the third pass) is sufficient.
  • FIG. 25 is a flowchart schematically showing a manufacturing flow of the stator 21.
  • the method for manufacturing the stator 21 first includes a step (S12) of preparing the stator core 22 and preparing a straight coil piece 52 (coil piece 52 before molding) for forming the stator coil 24.
  • the method for manufacturing the stator 21 includes a removal step (S14) for removing the insulating coating 62 at the tip 40 (start and end) of the coil piece 52.
  • the method for removing the insulating coating 62 is arbitrary, but for example, the insulating coating 62 may be mechanically removed using a cutting tool, or may be chemically removed by etching or the like. Further, the insulating coating 62 may be thermally removed by using a laser.
  • the insulating coating 62 on the surface of the tip portion 40 to be actually joined is removed, and the other surface (the back surface or the other surface of the front surface). , And the side surface) insulating coating 62 may remain.
  • the method for manufacturing the stator 21 includes a molding step (S16) in which a straight coil piece 52 is bent and molded using a mold or the like after the removal step.
  • the coil piece 52 is formed into a substantially U shape having a pair of straight-moving portions 50 and a connecting portion 54 connecting the pair of straight-moving portions 50 as shown in FIG.
  • the order of steps S16 and S14 may be interchanged.
  • the method for manufacturing the stator 21 includes a mounting step (S18) in which the coil piece 52 is inserted into the slot 220 of the stator core 22 after the molding step.
  • the insertion step is completed when all the coil pieces 52 have been inserted.
  • the method for manufacturing the stator 21 includes a deformation step (S20) in which a portion of the straight portion 50 that protrudes from each slot 220 is tilted in the circumferential direction after the insertion step using a dedicated jig.
  • the straight portion 50 becomes a leg portion 56 extending in the axial direction in the slot 220 and a crossover portion 58 extending in the circumferential direction on one end side in the axial direction.
  • the step (S22) is included in which the tip portion 40 of the crossing portion 58 of the other coil piece 52 extending in the counterclockwise direction) is brought into contact with the tip portion 40.
  • a jig (not shown) is used to maintain a plurality of sets of tip portions 40 in contact with each other.
  • each of the two tip portions 40 is joined by welding.
  • the details of the joining process are as described above. Welding is performed for each of the two tips 40, and when the two tips 40 of all sets are welded, the joining process ends.
  • the method for manufacturing the stator 21 includes a finishing step (S26) after the joining step.
  • the finishing step may include, for example, a step of insulating the coil ends 220A and 220B formed by assembling the coil pieces 52 as described above.
  • the insulation treatment may be a treatment of molding the resin in a manner of sealing the entire coil ends 220A and 220B, or a treatment of applying a varnish or the like.
  • FIG. 26 is a diagram showing the measurement result of the temperature history at the time of welding by the green laser.
  • the horizontal axis represents time
  • the vertical axis represents temperature (denoted as “Temperature” in FIG. 26)
  • the temperature history during welding with a green laser is shown.
  • the temperature history shown in FIG. 26 is based on the result of measuring the temperature in the vicinity of the welding target portion 90 of the axial outer end surface 42 with a thermocouple.
  • the time point t1 represents the irradiation start time point.
  • the heat generated by welding may damage (carbonize) the insulating coating 62 of the coil piece 52.
  • the heat generated by welding may damage (carbonize) the insulating coating 62 of the coil piece 52.
  • an insulating material for example, resin, varnish, etc.
  • the maximum temperature during welding remains at about 99 ° C. This is because the amount of heat input is significantly reduced as described above by using the green laser. It should be noted that about 99 ° C. is significantly lower than 180 ° C., which is the temperature at which carbonization of enamel occurs.
  • the green laser it is possible to prevent damage to the insulating coating 62 of the coil piece 52. Therefore, according to this embodiment, in the removing step (S14) (see FIG. 25) for removing the insulating coating 62, only the insulating coating 62 on the surface to be joined is removed from the tip portion 40, and the other surfaces are removed. It may be possible to leave the insulating coating 62.
  • FIG. 27 is an explanatory diagram of a test for verifying foreign matter resistance.
  • the overlapping range of the abutting tip portions 40 is divided into six, and an enamel coating forming an insulating coating 62 is formed in any of the six regions A1 to A6 obtained by the division.
  • a small piece of enamel was sandwiched (sandwiched between the tip 40s in the radial direction) and welded with a green laser. Then, the sandwiching area of the small pieces and the size of the small pieces were changed and welding was performed with a green laser to evaluate the resistance to foreign matter.
  • the stator coil 24 is formed by a plurality of coil pieces 52 in the form of segment coils, but the present invention is not limited to this.
  • the stator coil 24 may be in the form of a centrally wound coil wound (molded) a plurality of times around the teeth 22B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

回転電機(1)のステータコイル(24)を形成するための一のコイル片(52)と他の一のコイル片(52)の先端部(40)同士を当接させる工程と、当接させた先端部に係る溶接対象箇所に、0.6μm以下の波長のレーザビーム(110)を照射する溶接工程とを含み、溶接工程において、レーザビームは、3.0kW以上のレーザ出力を有する態様で、レーザ発振器におけるパルス発振ごとに発生され、一のパルス発振中の少なくとも一部の期間において、レーザビームは、照射位置が先端部の当接面(401)に対して平行な直線状に変化するように移動される、回転電機用ステータ製造方法が開示される。

Description

回転電機用ステータ製造方法
 本開示は、回転電機用ステータ製造方法に関する。
 回転電機のステータコイルを形成するための一のコイル片と他の一のコイル片の先端部同士を当接させ、当接させた先端部に係る溶接対象箇所に、ループ状に照射位置が移動する態様でレーザビームを照射するステータの製造方法が知られている(例えば、特許文献1参照)。
特開2018-20340号公報 特開2007-229725号公報
 しかしながら、上記の特許文献1に記載されるような従来技術は、赤外レーザ(ファイバレーザ)を利用することに起因して、コイル片間での必要な接合面積を得るためには比較的大きい入熱量が必要となり、熱影響が大きく、溶接が不安定となるおそれがある。
 そこで、比較的少ない入熱量で、コイル片間での必要な接合面積を確保することを目的とする。
 1つの側面では、回転電機のステータコイルを形成するための一のコイル片と他の一のコイル片の先端部同士を当接させる工程と、
 当接させた前記先端部に係る溶接対象箇所に、0.6μm以下の波長のレーザビームを照射する溶接工程とを含み、
 前記溶接工程において、前記レーザビームは、3.0kW以上のレーザ出力を有する態様で、レーザ発振器におけるパルス発振ごとに発生され、
 一のパルス発振中の少なくとも一部の期間において、前記レーザビームは、照射位置が前記先端部の当接面に対して平行な直線状に変化するように移動される、回転電機用ステータ製造方法が提供される。
 本開示によれば、比較的少ない入熱量で、コイル片間での必要な接合面積を確保することが可能となる。
一実施例によるモータの断面構造を概略的に示す断面図である。 ステータコアの単品状態の平面図である。 ステータコアに組み付けられる1対のコイル片を模式的に示す図である。 ステータのコイルエンド周辺の斜視図である。 同相のコイル片の一部を抜き出して示す斜視図である。 一のコイル片の概略正面図である。 互いに接合されたコイル片の先端部及びその近傍を示す図である。 溶接対象箇所を通る図7のラインA-Aに沿った断面図である。 レーザ波長と各種材料の個体に対するレーザ吸収率との関係を示す図である。 溶接中の吸収率の変化態様の説明図である。 グリーンレーザを用いた場合のキーホール等のイメージ図である。 赤外レーザを用いた場合のキーホール等のイメージ図である。 グリーンレーザの場合におけるレーザ出力と溶接深さとの関係を示す図である。 グリーンレーザの場合におけるレーザ出力と溶接深さとの関係を示す図である。 本実施例によるグリーンレーザによる溶接方法の説明図である。 照射位置に応じたレーザ出力と溶接入熱の変化特性(ダウンスロープなしの照射態様)を概略的に示す説明図である。 パスごとの照射位置の変化態様の説明図である。 照射位置に応じたレーザ出力と溶接入熱の変化特性(ダウンスロープ有りの照射態様)を概略的に示す説明図である。 溶接方向が同一である2つのパスにより溶接が実現される場合の説明図である。 溶接方向が異なる2つのパスにより溶接が実現される場合の説明図である。 体積膨張に起因した突起等の説明図である。 突起やブローホールを低減することを可能とする溶接方法の説明図である。 図20に示す2つのパスで溶接を実現した場合の溶接部の断面を示す図である。 突起やブローホールを低減することを可能とする他の溶接方法の説明図である。 突起やブローホールを低減することを可能とする他の溶接方法の説明図である。 比較例によるグリーンレーザによる溶接方法の説明図である。 比較例により溶接を実現した場合の溶接部の断面を示す図である。 ステータの製造の流れを概略的に示すフローチャートである。 グリーンレーザによる溶接時の温度履歴の測定結果を示す図である。 異物耐性を検証するための試験の説明図である。
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、本明細書において、「所定」とは、「予め規定された」という意味で用いられている。
 図1は、一実施例によるモータ1(回転電機の一例)の断面構造を概略的に示す断面図である。
 図1には、モータ1の回転軸12が図示されている。以下の説明において、軸方向とは、モータ1の回転軸(回転中心)12が延在する方向を指し、径方向とは、回転軸12を中心とした径方向を指す。従って、径方向外側とは、回転軸12から離れる側を指し、径方向内側とは、回転軸12に向かう側を指す。また、周方向とは、回転軸12まわりの回転方向に対応する。
 モータ1は、例えばハイブリッド車両や電気自動車で使用される車両駆動用のモータであってよい。ただし、モータ1は、他の任意の用途に使用されるものであってもよい。
 モータ1は、インナロータタイプであり、ステータ21がロータ30の径方向外側を囲繞するように設けられる。ステータ21は、径方向外側がモータハウジング10に固定される。
 ロータ30は、ステータ21の径方向内側に配置される。ロータ30は、ロータコア32と、ロータシャフト34とを備える。ロータコア32は、ロータシャフト34の径方向外側に固定され、ロータシャフト34と一体となって回転する。ロータシャフト34は、モータハウジング10にベアリング14a、14bを介して回転可能に支持される。なお、ロータシャフト34は、モータ1の回転軸12を画成する。
 ロータコア32は、例えば円環状の磁性体の積層鋼板から形成される。ロータコア32の内部には、永久磁石321が挿入される。永久磁石321の数や配列等は任意である。変形例では、ロータコア32は、磁性粉末が圧縮して固められた圧粉体により形成されてもよい。
 ロータコア32の軸方向の両側には、エンドプレート35A、35Bが取り付けられる。エンドプレート35A、35Bは、ロータコア32を支持する支持機能の他、ロータ30のアンバランスの調整機能(切削等されることでアンバランスを無くす機能)を有してよい。
 ロータシャフト34は、図1に示すように、中空部34Aを有する。中空部34Aは、ロータシャフト34の軸方向の全長にわたり延在する。中空部34Aは、油路として機能してもよい。例えば、中空部34Aには、図1にて矢印R1で示すように、軸方向の一端側から油が供給され、ロータシャフト34の径方向内側の表面を伝って油が流れることで、ロータコア32を径方向内側から冷却できる。また、ロータシャフト34の径方向内側の表面を伝う油は、ロータシャフト34の両端部に形成される油穴341、342を通って径方向外側へと噴出され(矢印R5、R6)、コイルエンド220A、220Bの冷却に供されてもよい。
 なお、図1では、特定の構造のモータ1が示されるが、モータ1の構造は、溶接により接合されるステータコイル24(後述)を有する限り、任意である。従って、例えば、ロータシャフト34は、中空部34Aを有さなくてもよいし、中空部34Aよりも有意に内径の小さい中空部を有してもよい。また、図1では、特定の冷却方法が開示されているが、モータ1の冷却方法は任意である。従って、例えば、中空部34A内に挿入される油導入管が設けられてもよいし、モータハウジング10内の油路から径方向外側からコイルエンド220A、220Bに向けて油が滴下されてもよい。
 また、図1では、ロータ30がステータ21の内側に配されたインナーロータ型のモータ1であるが、他の形態のモータに適用されてもよい。例えば、ステータ21の外側にロータ30が同心に配されたアウターロータ型のモータや、ステータ21の外側および内側の双方にロータ30が配されたデュアルロータ型のモータ等に適用されてもよい。
 次に、図2以降を参照して、ステータ21に関する構成を詳説する。
 図2は、ステータコア22の単品状態の平面図である。図3は、ステータコア22に組み付けられる1対のコイル片52を模式的に示す図である。図3では、ステータコア22の径方向内側を展開した状態で、1対のコイル片52とスロット220との関係が示される。また、図3では、ステータコア22が点線で示され、スロット220の一部については図示が省略されている。図4は、ステータ21のコイルエンド220A周辺の斜視図である。図5は、同相のコイル片の一部を抜き出して示す斜視図である。
 ステータ21は、ステータコア22と、ステータコイル24とを含む。
 ステータコア22は、例えば円環状の磁性体の積層鋼板からなるが、変形例では、ステータコア22は、磁性粉末が圧縮して固められた圧粉体により形成されてもよい。なお、ステータコア22は、周方向で分割される分割コアにより形成されてもよいし、周方向で分割されない形態であってもよい。ステータコア22の径方向内側には、ステータコイル24が巻回される複数のスロット220が形成される。具体的には、ステータコア22は、図2に示すように、円環状のバックヨーク22Aと、バックヨーク22Aから径方向内側に向かって延びる複数のティース22Bとを含み、周方向で複数のティース22B間にスロット220が形成される。スロット220の数は任意であるが、本実施例では、一例として、48個である。
 ステータコイル24は、U相コイル、V相コイル、及びW相コイル(以下、U、V、Wを区別しない場合は「相コイル」と称する)を含む。各相コイルの基端は、入力端子(図示せず)に接続されており、各相コイルの末端は、他の相コイルの末端に接続されてモータ1の中性点を形成する。すなわち、ステータコイル24は、スター結線される。ただし、ステータコイル24の結線態様は、必要とするモータ特性等に応じて、適宜、変更してもよく、例えば、ステータコイル24は、スター結線に代えて、デルタ結線されてもよい。
 各相コイルは、複数のコイル片52を接合して構成される。図6は、一のコイル片52の概略正面図である。コイル片52は、相コイルを、組み付けやすい単位(例えば2つのスロット220に挿入される単位)で分割したセグメントコイルの形態である。コイル片52は、断面略矩形の線状導体(平角線)60を、絶縁被膜62で被覆してなる。本実施例では、線状導体60は、一例として、銅により形成される。ただし、変形例では、線状導体60は、鉄のような他の導体材料により形成されてもよい。
 コイル片52は、ステータコア22に組み付ける前の段階では、一対の直進部50と、当該一対の直進部50を連結する連結部54と、を有した略U字状に成形されてよい。コイル片52をステータコア22に組み付ける際、一対の直進部50は、それぞれ、スロット220に挿入される(図3参照)。これにより、連結部54は、図3に示すように、ステータコア22の軸方向他端側において、複数のティース22B(及びそれに伴い複数のスロット220)を跨ぐように周方向に延びる。連結部54が跨ぐスロット220の数は、任意であるが、図3では3つである。また、直進部50は、スロット220に挿入された後は、図6において、二点鎖線で示すように、その途中で周方向に屈曲される。これにより、直進部50は、スロット220内において軸方向に延びる脚部56と、ステータコア22の軸方向一端側において周方向に延びる渡り部58と、になる。
 なお、図6では、一対の直進部50は、互いに離れる方向に屈曲するが、これに限られない。例えば、一対の直進部50は、互いに近づく方向に屈曲されてもよい。また、ステータコイル24は、3相の相コイルの末端同士を連結して中性点を形成するための中性点用コイル片等も有することがある。
 一つのスロット220には、図6に示すコイル片52の脚部56が複数、径方向に並んで挿入される。従って、ステータコア22の軸方向一端側には、周方向に延びる渡り部58が複数、径方向に並ぶ。図3及び図5に示すように、一つのスロット220から飛び出て周方向第1側(例えば時計回りの向き)に延びる一のコイル片52の渡り部58は、他のスロット220から飛び出て周方向第2側(例えば反時計回りの向き)に延びる他の一のコイル片52の渡り部58に接合される。
 本実施例では、一例として、1つのスロット220に6つのコイル片52が組み付けられる。以下では、径方向で最も外側のコイル片52から順に、第1ターン、第2ターン、第3ターンとも称する。この場合、第1ターンのコイル片52と第2ターンのコイル片52とは、後述の接合工程により先端部40同士が接合され、第3ターンのコイル片52と第4ターンのコイル片52とは、後述の接合工程により先端部40同士が接合され、第5ターンのコイル片52と第6ターンのコイル片52とは、後述の接合工程により先端部40同士が接合される。
 ここで、コイル片52は、上述した通り、絶縁被膜62で被覆されているが、先端部40だけは、当該絶縁被膜62が除去される。これは、先端部40にて他のコイル片52との電気的接続を確保するためである。また、図5及び図6に示すように、コイル片52の先端部40のうち、最終的に軸方向外側端面42、すなわち、コイル片52の幅方向一端面を、軸方向外側に凸の円弧面としている。
 図7は、互いに接合されたコイル片52の先端部40及びその近傍を示す図である。なお、図7には、溶接対象箇所90の周方向の範囲D1が模式的に示される。図8は、溶接対象箇所90を通る図7のラインA-Aに沿った断面図である。
 コイル片52の先端部40を接合する際には、一のコイル片52と他の一のコイル片52は、それぞれの先端部40が、図7に示すビュー(当接面401に対して垂直な方向視)でC字状をなす態様で、突き合わせられる。この際、互いに接合される2つの先端部40を、それぞれの円弧面(軸方向外側端面42)の中心軸が一致するように、その厚み方向に重ねて接合されてよい。このように中心軸を合わせて重ねることで、屈曲角度αが比較的大きい場合や小さい場合でも、互いに接合される2つの先端部40の軸方向外側のラインが一致し、適切に、重ね合わせることができる。
 ここで、本実施例では、コイル片52の先端部40を接合する際の接合方法としては、溶接が利用される。そして、本実施例では、溶接方法としては、TIG溶接に代表されるアーク溶接ではなく、レーザビーム源を熱源とするレーザ溶接が採用される。TIG溶接に代えて、レーザ溶接を用いることで、コイルエンド220A、220Bの軸方向の長さを低減できる。すなわち、TIG溶接の場合は、当接させるコイル片の先端部同士を軸方向外側に屈曲させて軸方向に延在させる必要があるのに対して、レーザ溶接の場合は、かかる屈曲の必要性がなく、図7に示すように、当接させるコイル片52の先端部40同士を周方向に延在させた状態で溶接を実現できる。これにより、当接させるコイル片52の先端部40同士を軸方向外側に屈曲させて軸方向に延在させる場合に比べて、コイルエンド220A、220Bの軸方向の長さを低減できる。
 レーザ溶接では、図5に模式的に示すように、当接された2つの先端部40における溶接対象箇所90に溶接用のレーザビーム110を当てる。なお、レーザビーム110の照射方向(伝搬方向)は、軸方向に略平行であり、当接された2つの先端部40の軸方向外側端面42に、軸方向外側から向かう方向である。レーザ溶接の場合は、局所的に加熱できるため、先端部40及びその近傍のみを加熱することができ、絶縁被膜62の損傷(炭化)等を効果的に低減できる。その結果、適切な絶縁性能を維持したまま、複数のコイル片52を電気的に接続できる。
 溶接対象箇所90の周方向の範囲D1は、図7に示すように、2つのコイル片52の先端部40同士の当接部分における軸方向外側端面42の周方向の全範囲D0のうちの、両端を除く部分である。両端は、軸方向外側端面42の凸の円弧面に起因して、十分な溶接深さ(図7の寸法L1参照)を確保し難いためである。溶接対象箇所90の周方向の範囲D1は、コイル片52間での必要な接合面積や必要な溶接強度等が確保されるように適合されてよい。
 溶接対象箇所90の径方向の範囲D2は、図8に示すように、2つのコイル片52の先端部40同士の当接面401を中心とする。溶接対象箇所90の径方向の範囲D2は、レーザビーム110の径(ビーム径)に対応してよい。すなわち、レーザビーム110は、照射位置が径方向に実質的に変化することなく周方向に沿って直線的に変化する態様で、照射される。更に換言すると、レーザビーム110は、照射位置が当接面401に対して平行な直線状に変化するように移動される。
 図9は、レーザ波長と各種材料の個体に対するレーザ吸収率(以下、単に「吸収率」とも称する)との関係を示す図である。図9では、横軸に波長λを取り、縦軸に吸収率を取り、銅(Cu)、アルミ(Al)、銀(Ag)、ニッケル(Ni)、及び鉄(Fe)の各種材料の個体に係る特性が示される。
 ところで、レーザ溶接で一般的に用いられる赤外レーザ(波長が1064nmのレーザ)は、図9にてλ2=1.06μmの点線との交点の黒丸で示すように、コイル片52の線状導体60の材料である銅に対して吸収率が約10%と低い。すなわち、赤外レーザの場合、レーザビーム110の大部分は、コイル片52で反射してしまい、吸収されない。このため、接合対象のコイル片52間での必要な接合面積を得るためには比較的大きい入熱量が必要となり、熱影響が大きく、溶接が不安定となるおそれがある。
 この点を鑑み、本実施例では、赤外レーザに代えて、グリーンレーザを利用する。なお、グリーンレーザとは、波長が532nmのレーザ、すなわちSHG(Second Harmonic Generation:第2高調波)レーザのみならず、532nmに近い波長のレーザをも含む概念である。なお、変形例では、グリーンレーザの範疇に属さない0.6μm以下の波長のレーザが利用されてもよい。グリーンレーザに係る波長は、例えばYAGレーザやYVO4レーザで生み出された基本波長を酸化物単結晶(例えば、LBO:リチウムトリボレート)に通して変換することで得られる。
 グリーンレーザの場合、図9にてλ1=0.532μmの点線との交点の黒丸で示すように、コイル片52の線状導体60の材料である銅に対して吸収率が約50%と高い。従って、本実施例によれば、赤外レーザを利用する場合に比べて、少ない入熱量で、コイル片52間での必要な接合面積を確保することが可能となる。
 なお、赤外レーザに比べてグリーンレーザの方が吸収率が高くなるという特性は、図9に示すように、銅の場合において顕著であるが、銅のみならず、他の金属材料の多くにおいて確認できる。従って、コイル片52の線状導体60の材料が銅以外の場合でもグリーンレーザによる溶接が実現されてもよい。
 図10は、溶接中の吸収率の変化態様の説明図である。図10では、横軸にレーザパワー密度(「Laser Power Density」と表記)を取り、縦軸に銅のレーザ吸収率(「Laser Absorption Rate」と表記)を取り、グリーンレーザの場合の特性100Gと、赤外レーザの場合の特性100Rとが示される。
 図10では、グリーンレーザの場合と赤外レーザの場合における銅の溶融が開始するポイントP1、P2が示されるとともに、キーホールが形成されるポイントP3が示される。図10にポイントP1、P2にて示すように、赤外レーザに比べてグリーンレーザの方が、小さいレーザパワー密度で銅の溶融を開始させることができることが分かる。また、上述した吸収率の相違に起因して、赤外レーザに比べてグリーンレーザの方が、キーホールが形成されるポイントP3での吸収率と照射開始時の吸収率(すなわちレーザパワー密度が0のときの吸収率)との差が小さいことが分かる。具体的には、赤外レーザの場合、溶接中の吸収率の変化が約80%であるのに対して、グリーンレーザの場合、溶接中の吸収率の変化が約40%となり、約半分である。
 このように、赤外レーザの場合、溶接中の吸収率の変化(落差)が約80%と比較的大きいため、キーホールが不安定となり溶接深さや溶接幅のバラツキや溶融部の乱れ(例えば、スパッタ等)が生じやすい。これに対して、グリーンレーザの場合、溶接中の吸収率の変化(落差)が約40%と比較的小さいため、キーホールが不安定となり難く、また、溶接深さや溶接幅のバラツキや溶融部の乱れ(例えばスパッタ等)が生じ難い。なお、スパッタとは、レーザ等を照射することにより飛散する金属粒等である。
 なお、赤外レーザの場合、上述のように吸収率が低いため、ビーム径を比較的小さくする(例えばφ0.075mm)ことで、吸収率の低さを補うことが一般的である。この点も、キーホールが不安定となる要因となる。なお、図11Bは、赤外レーザを用いた場合のキーホール等のイメージ図であり、1100は、溶接ビードを示し、1102は、溶融池を示し、1104は、キーホールを示す。また、矢印R1116は、ガス抜けの態様を模式的に示す。また、矢印R110は、ビーム径が小さいことに起因して赤外レーザの照射位置が移動される様子を模式的に示す。このように、赤外レーザの場合、上述のように吸収率が低くビーム径を比較的大きくすることが難しいことに起因して、必要な溶融幅を得るために蛇行を含んだ比較的長い照射位置の移動軌跡(連続的な照射時間)が必要となる傾向がある。
 他方、グリーンレーザの場合、上述のように吸収率が比較的高いため、ビーム径を比較的大きくする(例えばφ0.1mm以上)ことが可能であり、キーホールを大きくして安定化することができる。これにより、ガス抜けが良好となり、スパッタ等の発生を効果的に低減できる。なお、図11Aは、グリーンレーザを用いた場合のキーホール等のイメージ図であり、符号の意義は図11Bを参照して上述したとおりである。グリーンレーザの場合、図11Aから、ビーム径の拡大に起因してキーホールが安定化しガス抜けが良好となる様子がイメージとして容易に理解できる。また、グリーンレーザの場合、赤外レーザの場合とは対照的に、上述のように吸収率が比較的高くビーム径を比較的大きくすることが可能であることから、必要な溶融幅(図8に示す溶接対象箇所90の径方向の範囲D2参照)を得るために必要な照射位置の移動軌跡(照射時間)を比較的短く(小さく)できる。
 図12A及び図12Bは、グリーンレーザの場合におけるレーザ出力と溶接深さとの関係を示す図である。図12Aには、横軸に溶接速度(「Welding Speed」と表記)を取り、縦軸に溶接深さ(「Welding Depth」と表記、以下同様)を取り、各種のレーザ出力(ここでは、1.0kW、2.5kW、3.0kW、3.5kW)の場合の各特性が示される。図12Bには、横軸に溶接入熱(「Welding Heat Input」と表記、以下同様)を取り、縦軸に溶接深さを取り、各種のレーザ出力(ここでは、1.0kW、2.5kW、3.0kW、3.5kW)の場合の各特性が示される。
 図12A及び図12Bからは、溶接深さ(溶け込み深さ)に対しては、レーザ出力の影響が大きいことが分かる。他方、溶接速度を低減させると溶接入熱が増加するが、溶接深さ(溶け込み深さ)に対する影響は比較的小さい。例えば、図12A及び図12Bに示すように、レーザ出力3.0kWで溶接速度が約35mm/sのときのプロット点PL1は、溶接入熱が約90J/mmと比較的大きいにもかかわらず、レーザ出力3.5kWで溶接速度が約150mm/sのときのプロット点PL2と比較しても、溶接深さは略同等である(矢印Q1参照)。このことから、レーザ出力が高いほど入熱効率の高い溶接が実現できることが分かる。
 図13は、本実施例によるグリーンレーザによる溶接方法の説明図である。図13では、横軸に時間(「Time」と表記、以下同様)を取り、縦軸にレーザ出力(「Output」と表記、以下同様)を取り、溶接の際のレーザ出力の時系列波形を模式的に示す。
 本実施例では、図13に示すように、レーザ出力3.8kWでグリーンレーザのパルス照射により溶接を実現する。図13では、10msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現され、インターバル100msec後に、再び、10msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現される。以下では、このようにして一回のパルス発振により可能なパルス照射(10msecのパルス照射)の1回分を、「1パス」とも称する。なお、図13では、1パス目(N=1)から3パス目(N=3)の照射がパルス波形130Gで示され、Nは、Nパス目かを表す(以下、図17等においても同様)。また、図13には、比較用として、赤外レーザの場合のパルス照射に係るパルス波形130Rが併せて示される。
 ここで、グリーンレーザの場合、レーザ発振器の出力が低く(例えば連続的な照射時は最大で400W)、深い溶け込みを確保するために必要な高出力(例えばレーザ出力3.0kW以上の高出力)を得ることが難しい。すなわち、グリーンレーザは、上述のように酸化物単結晶のような波長変換結晶を通して生成されるので、波長変換結晶を通る際に出力が低下する。このため、グリーンレーザのレーザビームを連続的に照射しようとすると、深い溶け込みを確保するために必要な高出力を得ることができない。
 この点、本実施例では、上述のように、深い溶け込みを確保するために必要な高出力(例えばレーザ出力3.0kW以上の高出力)を、グリーンレーザのパルス照射により確保する。これは、連続的な照射の場合は例えば最大で400Wしか出力できない場合でも、パルス照射であれば、例えば3.0kW以上の高出力が可能となるためである。このようにして、パルス照射は、ピークパワーを上げるための連続エネルギを蓄積してパルス発振することで実現される。そして、本実施例では、一の溶接対象箇所に対して、複数回のパルス発振で発生させるグリーンレーザのビームを照射する。すなわち、本実施例では、一の溶接対象箇所に対して、比較的高いレーザ出力(例えばレーザ出力3.0kW以上)による2パス以上の照射が実行される。これにより、上述の溶接対象箇所90の周方向の範囲D1が比較的広い場合でも、溶接対象箇所90の全体にわたり深い溶け込みを確保しやすくなり、高い品質の溶接を実現できる。
 なお、図13では、インターバルが特定の値100msecであるが、インターバルは、任意であり、必要な高出力が確保される範囲内で最小化されてよい。また、図13では、レーザ出力は特定の値3.8kWであるが、レーザ出力は、3.0kW以上であれば、必要な溶接深さが確保される範囲内で適宜変更されてよい。
 図13では、赤外レーザの場合として、レーザ出力2.3kWで、比較的長い時間である130msec間、連続的に照射される際のパルス波形130Rが併せて示される。赤外レーザの場合は、グリーンレーザとは異なり、比較的高いレーザ出力(2.3kW)で連続的な照射が可能である。ただし、上述したように、赤外レーザの場合、必要な溶融幅を得るために蛇行を含んだ比較的長い照射位置の移動軌跡(連続的な照射時間)が必要となり、この場合、入熱量は、約312Jであり、図13に示すグリーンレーザの場合の入熱量である約80J(2パスの場合)に対して、有意に大きくなる。
 このようにして、本実施例によれば、グリーンレーザを利用することで、赤外レーザを利用する場合に比べて、コイル片52の線状導体60の材料(本例では銅)に対して高い吸収率を有するレーザビームによる溶接が可能となる。これにより、必要な溶融幅(図8に示す溶接対象箇所90の径方向の範囲D2参照)を得るために必要な照射位置の移動軌跡(時間)を比較的短く(小さく)できる。すなわち、比較的大きいビーム径による1回のパルス発振あたりの、増加されたキーホールに起因して、必要な溶融幅を得るために必要なパルス発振回数を比較的少なくできる。この結果、比較的少ない入熱量で、コイル片52間での必要な接合面積を確保することが可能となる。
 また、本実施例によれば、一の溶接対象箇所に対して2パス以上のグリーンレーザの照射を実行することで、溶接対象箇所90の周方向の範囲D1が比較的広い場合でも、溶接対象箇所90の全体にわたり深い溶け込みを確保しやすくなり、高い品質の溶接を実現できる。
 次に、図14から図23を参照して、グリーンレーザによるレーザ照射の好ましい例について説明する。
 図14は、一のパスに係るレーザ出力と溶接入熱とが、照射位置(図14では「Position」と表記、以下同様)に応じて変化する態様を示す概略図であり、照射位置に応じたレーザ出力の変化特性150Pと、照射位置に応じた溶接入熱の変化特性150Lとが概略的に示される。図15は、パスごとの照射位置の変化態様(図15では照射位置の変化量である移動距離を、「Distance」と表記)であって、時間に対する照射位置の変化態様の説明図である。
 本実施例では、一例として、一のパスにおいて、照射位置の変化速度、すなわち溶接速度は、図15に示すように、一定であるものとする。約10msecのパスにおいて、照射位置の変化量(レーザビーム110の移動距離)は、好ましくは、1mmから2mmの範囲であり、本実施例では、一例として、約1.45mmである。そして、本実施例では、一例として、溶接対象箇所90の周方向の範囲D1の長さは、約2.9mmであるものとする。なお、1パルスあたりの最大の照射時間(本例では、約10msec)は、実質的には、1パルスあたりのグリーンレーザの照射エネルギから決まるので、溶接速度が同じである条件下で、1パルスあたりの照射エネルギが大きくなれば、1パルスあたりのレーザビーム110の移動距離は、より大きくすることができる。
 具体的には、図14に示すように、一のパスは、位置P10から開始される。すなわち、位置P10から一のパルス発振が開始される。この場合、位置P10でレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がる(矢印R140参照)。そして、照射位置が位置P10から位置P12へと直線状に一定速度で変化される。この間、レーザ出力は所定値(本例では、一例として3.8kW)で維持される(矢印R141参照)。照射位置が位置P12に達すると、レーザ出力は所定値(本例では、一例として3.8kW)から0へと立ち下げられる(矢印R142参照)。すなわち、一のパルス発振が終了される。なお、照射位置が位置P12に達しても、照射位置は、更に距離Δ1(例えば図15の時間t0からの距離Δ1参照)だけ離れた位置P13に移動するまで変化されてもよい。この間、残留するレーザ出力に起因して僅かな溶接入熱が発生する(図14のQ14参照)。なお、変形例では、照射位置が位置P12又はその直前の位置(図示せず)に達した際に、照射位置の変化(一定速度での変化)が終了されてもよい。
 このような照射態様によれば、位置P10にてレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がるが、実際のレーザ出力が所定値に達するまでの間は、溶接入熱は最大値までは一気に増加しない。このため、図14に変化特性150Lにて示すように、位置P10から位置P11までは溶接入熱は徐々に増加していく。そして、位置P12にてレーザ出力が0まで瞬時的に立ち下げられるが、この直前まで溶接入熱は最大値で維持されている。以下、このようなレーザ出力が0まで瞬時的に立ち下げられる照射態様を、後述する別の照射態様と区別するために、「ダウンスロープなしの照射態様」とも称する。
 従って、ダウンスロープなしの照射態様では、一のパスの開始位置での溶接入熱は、当該一のパスの終了位置での溶接入熱に比べて有意に小さくなる傾向がある。
 図16は、他の照射態様(以下、区別のため、「ダウンスロープ有りの照射態様」とも称する)の説明図であり、図14と同様、1パスに係るレーザ出力と溶接入熱とが、照射位置に応じて変化する態様を示す概略図である。図14と同様、図16では、照射位置に応じたレーザ出力の変化特性150Pと、照射位置に応じた溶接入熱の変化特性150Lとが概略的に示される。
 なお、ダウンスロープ有りの照射態様についても、上述したダウンスロープなしの照射態様の場合と同様、一のパスにおいて、照射位置の変化速度、すなわち溶接速度は、図15に示したように、一定であるものとする。
 具体的には、図16に示すように、一のパスは、位置P10から開始される。すなわち、位置P10から一のパルス発振が開始される。この場合、位置P10でレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がる(矢印R140参照)。そして、照射位置が位置P10から位置P12へと直線状に一定速度で変化される。照射位置が位置P10から位置P14までの間、レーザ出力は所定値(本例では、一例として3.8kW)で維持される(矢印R141参照)。照射位置が位置P14に達すると、レーザ出力は所定値(本例では、一例として3.8kW)から0へと段階的に立ち下げられる(矢印R143参照)。具体的には、照射位置が位置P14に達すると、レーザ出力は一段階だけ下げられ、照射位置が位置P12に達すると、レーザ出力は更に一段階だけ下げられ、照射位置が位置P15に達すると、レーザ出力は0へと立ち下げられる。なお、照射位置が位置P15に達しても、照射位置は、更に距離Δ1だけ離れた位置P16に移動するまで変化される。この間、残留するレーザ出力に起因して僅かな溶接入熱が発生する(図16のQ14参照)。距離Δ1は、上述したダウンスロープなしの照射態様の場合と同様であってもよいし、上述したダウンスロープなしの照射態様の場合と同様よりも短くてもよい。なお、変形例では、照射位置が位置P16に達した際に、照射位置の変化(一定速度での変化)は終了されてもよい。
 このような照射態様(ダウンスロープ有りの照射態様)によれば、位置P10にてレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がるが、実際のレーザ出力が所定値に達するまでの間は、溶接入熱は最大値までは一気に増加しない。このため、図16に示すように、位置P10から位置P11までは溶接入熱は徐々に増加していく。ここまでの特性は、上述したダウンスロープなしの照射態様の場合と同様である。そして、位置P14にてレーザ出力が低下されるが、この直前まで溶接入熱は最大値で維持されている。位置P14を過ぎると、レーザ出力が位置P15で0になるように徐々に低下されるので、溶接入熱は、上述したダウンスロープなしの照射態様の場合よりも緩やかに低下していく。
 なお、図16に示す例では、レーザ出力は所定値から2つの中間値を介して0へと低下されるが、中間値の数は、1つであってもよいし、3つ以上であってもよい。また、各中間値の値自体も任意であり、各中間値は、レーザ出力が所定値から一定の低下幅で段階的に低下するように設定されてもよいし、レーザ出力が所定値から、変化する低下幅で段階的に低下するように設定されてもよい。また、レーザ出力の段階的な低下が生じる位置P14、P12や、レーザ出力が0となる位置P15は、任意であり、所望の特性(照射位置に応じた溶接入熱の変化特性150L)が得られるように適合されてよい。例えば、可能な場合には、図16に示す位置P14(ダウンスロープが開始する位置)は、位置P10から1.45mm離れた位置(図中の位置P12に対応する位置)と一致させてもよい。
 ここで、上述のように、本実施例では、一の溶接対象箇所に対して2パス以上のグリーンレーザの照射が実行される。この際、一の溶接対象箇所に対して、上述したダウンスロープなしの照射態様によるレーザ照射が、すべてのパスに対して実現されてもよいし、上述したダウンスロープ有りの照射態様によるレーザ照射が、すべてのパスに対して実現されてもよい。あるいは、一の溶接対象箇所に対して、パスごとに照射態様を変化させる態様で、上述したダウンスロープなしの照射態様と上述したダウンスロープ有りの照射態様とが組み合わせられてもよい。
 また、一の溶接対象箇所に対する2以上のパスのそれぞれは、溶接方向(照射位置の変化方向)が同一であってもよいし、溶接方向が一部の他のパスと異なってもよい。
 以下、図17及び図18を参照して、一の溶接対象箇所に対して2つのパスのレーザ照射が実現される場合に関して、当該2つのパスに係る照射態様の組み合わせ例について説明する。
 図17は、溶接方向(照射位置の変化方向)が同一である2つのパスにより溶接が実現される場合の説明図であり、上側は、照射位置に応じたレーザ出力の変化特性を概略的に示し、下側は、照射位置に応じた溶接入熱の変化特性を概略的に示す。照射位置に応じた溶接入熱の変化特性については、パスごとに分けて示し、図14及び図16とは異なり、下方に向かうほど、溶接入熱が大きいことを表す。面積W1は、1パス目の入熱量に関し、面積W2は、2パス目の入熱量に関する。また、図17では、照射位置に応じた溶接入熱の変化特性に対応付けて、溶接方向が矢印R171、R172で示される。矢印R171は、1パス目の溶接方向であり、矢印R172は、2パス目の溶接方向である。矢印R140、矢印R141、及び矢印R142の意味は、図14で説明したとおりである。図17には、説明上、X方向と、X方向(第1方向の一例)に沿ったX1側(第1側の一例)及びX2側(第2側の一例)が定義されている。
 図17に示す例では、1パス目及び2パス目は、ともに上述したダウンスロープなしの照射態様である。また、1パス目及び2パス目は、矢印R171、R172で示すように、溶接方向(照射位置の変化方向)が互いに同一であり、X方向に沿ってX1側からX2側へと照射位置が変化する方向である。
 図17に示す例では、1パス目は、第1範囲D11にレーザビーム110を照射する一のパルス発振より実現され、2パス目は、第2範囲D12にレーザビーム110を照射する次の一のパルス発振により実現される。1パス目による溶接と2パス目による溶接は、協動して、溶接対象箇所90の周方向の範囲D1の全体をカバーする。
 また、第1範囲D11及び第2範囲D12は、図17に示すように、互いに対して異なる部分を含む。具体的には、第1範囲D11及び第2範囲D12は、X方向で重複せずに連続する態様で設定される。すなわち、2パス目が開始される位置(図14の位置P10に対応する位置)は、1パス目が実質的に終了される位置(図14の位置P12に対応する位置)と一致する。
 ただし、変形例では、第1範囲D11及び第2範囲D12は、互いに重複する部分を含んでもよい。例えば、2パス目が開始される位置(図14の位置P10に対応する位置)は、1パス目が実質的に終了される位置(図14の位置P12に対応する位置)に対してX1側にオフセットされてもよい。この場合、第1範囲D11は、溶接方向の下流側(X2側)の端部が、第2範囲D12における溶接方向の上流側(X1側)の端部と重なるものの、その他の部分が第2範囲D12と重なることはない。また、第2範囲D12は、溶接方向の上流側(X1側)の端部が、第1範囲D11における溶接方向の下流側(X2側)の端部と重なるものの、その他の部分が第1範囲D11と重なることはない。この場合、2パス目が開始される位置(図14の位置P10に対応する位置)は、好ましくは、2パス目におけるレーザ出力が所定値に維持される範囲(図14の位置P11から位置P12までの範囲に対応)が、1パス目におけるレーザ出力が所定値に維持される範囲(図14の位置P11から位置P12までの範囲に対応)に対してX方向で有意に重なることがないように、設定される。これにより、溶接対象箇所90の周方向の範囲D1のうちの、2つのパスでカバーできる範囲(すなわち第1範囲と第2範囲とを組み合わせた範囲)を効率的に増加できる。
 あるいは、逆に、2パス目が開始される位置は、1パス目が実質的に終了される位置に対してわずかにX2側にオフセットされてもよい。この場合、溶接対象箇所90の周方向の範囲D1のうちの、2つのパスでカバーできる範囲(すなわち第1範囲と第2範囲とを組み合わせた範囲)を最大化することができる。ただし、この場合、2パス目が開始される位置は、1パス目により実現される溶接部分と2パス目により実現される溶接部分とがX方向で離間しないように設定される(すなわち継ぎ目の溶接が適切に実現されるように設定される)。
 なお、図17に示す例では、1パス目及び2パス目は、ともに上述したダウンスロープなしの照射態様であるが、いずれか一方又は双方が、上述したダウンスロープ有りの照射態様であってもよい。
 図18は、溶接方向(照射位置の変化方向)が異なる2つのパスにより溶接が実現される場合の説明図であり、上側は、照射位置に応じたレーザ出力の変化特性を概略的に示し、下側は、照射位置に応じた溶接入熱の変化特性を概略的に示す。照射位置に応じた溶接入熱の変化特性については、パスごとに分けて示し、図14及び図16とは異なり、下方に向かうほど、溶接入熱が大きいことを表す。面積W1は、1パス目の入熱量に関し、面積W2は、2パス目の入熱量に関する。矢印R171、R172の意味は、図17と同様である。また、矢印R140、矢印R141、及び矢印R142の意味は、図14で説明したとおりである。
 図18に示す例では、図17に示す例と同様、1パス目は、第1範囲D11にレーザビーム110を照射する一のパルス発振により実現され、2パス目は、第2範囲D12にレーザビーム110を照射する次の一のパルス発振により実現される。1パス目による溶接と2パス目による溶接は、協動して、溶接対象箇所90の周方向の範囲D1の全体をカバーする。
 また、図18に示す例では、図17に示す例と同様、1パス目及び2パス目は、ともに上述したダウンスロープなしの照射態様である。
 ただし、図18に示す例では、図17に示す例に対して、1パス目と2パス目とで溶接方向(照射位置の変化方向)が異なる。具体的には、1パス目は、第1範囲D11におけるレーザビーム110の照射位置をX方向に沿ってX1側からX2側へと直線状に変化させる方向であるのに対して、2パス目は、第2範囲D12におけるレーザビーム110の照射位置をX方向に沿ってX2側からX1側へと直線状に変化させる方向である。すなわち、1パス目及び2パス目は、ともに、溶接対象箇所90の周方向の範囲D1の中心に向かって外側から照射が開始される。
 また、図18に示す例では、図17に示す例と同様、第1範囲D11及び第2範囲D12は、図18に示すように、互いに対して異なる部分を含む。具体的には、第1範囲D11及び第2範囲D12は、X方向で重複せずに連続する態様で設定される。すなわち、2パス目が実質的に終了される位置(図14の位置P12に対応する位置)は、1パス目が実質的に終了される位置(図14の位置P12に対応する位置)と一致する。
 ただし、変形例では、第1範囲D11及び第2範囲D12は、互いに重複する部分を含んでもよい。すなわち、2パス目が実質的に終了される位置(図14の位置P12に対応する位置)は、1パス目が実質的に終了される位置(図14の位置P12に対応する位置)に対して、X1側にわずかにオフセットされてもよいし、X2側にわずかにオフセットされてもよい。
 ここで、図18に示す例では、溶接対象箇所90の周方向の範囲D1のうちの両端部(X1側とX2側の端部)において、実際のレーザ出力が所定値よりも小さくなる。なお、図17に示す例では、対照的に、溶接対象箇所90の周方向の範囲D1のうちの、X1側の端部のみにおいて、実際のレーザ出力が所定値よりも小さくなる。より具体的には、図18に示す例では、溶接対象箇所90の周方向の範囲D1のうちの、X1側の端部では、X2側に向かうにつれて溶接入熱が徐々に増加し、かつ、X2側の端部では、X1側に向かうにつれて溶接入熱が徐々に増加する特性となる。このような特性は、溶接対象箇所90のX方向の両端部において、溶接対象物(個体)の溶接深さ方向の寸法が小さくなる構成に好適である。これは、溶接対象物(個体)における溶接深さ方向の寸法が不十分な部位に対して、溶接入熱が比較的大きくなると、キーホールが貫通する等により溶接の品質が損なわれやすいためである。
 この点、本実施例では、図7に示したように、溶接対象箇所90を形成する2つの先端部40は、先細りの形態(軸方向外側端面42が湾曲する形態)である。従って、当接される先端部40同士の重なる範囲の溶接深さ方向の寸法(すなわち径方向に視たときの重なる範囲における、レーザビーム110の照射方向に沿った寸法)は、溶接対象箇所90のX方向の両端部の寸法L1の方が、溶接対象箇所90のX方向の中央部の同寸法L0よりも有意に小さい。このため、当接させた先端部40同士の重なる範囲の寸法であってレーザビーム110の照射方向の寸法は、第1範囲D11におけるX1側において、第1範囲D11におけるX2側よりも小さく、かつ、第2範囲D12におけるX2側において、第2範囲D12におけるX1側よりも小さい。
 従って、図18に示す例によれば、溶接方向(照射位置の変化方向)が異なる2つのパスであって、溶接対象箇所90の周方向の範囲D1の中心に向かって外側から照射が開始される2つのパスによって、軸方向外側端面42が湾曲する形態の先端部40における溶接対象箇所90に対しても高い品質の溶接部を形成できる。
 なお、図18に示す例では、1パス目及び2パス目は、ともに上述したダウンスロープなしの照射態様であるが、いずれか一方又は双方が、後述するように、上述したダウンスロープ有りの照射態様であってもよい。
 また、図18に示す例(図17に示す例についても同様)では、溶接対象箇所90の周方向の範囲D1の全体を、2つのパスでカバーしているが、3つ以上のパスでカバーしてもよい。
 ところで、一般的に、溶接は、シールドガス(例えば窒素ガス)を用いない環境下や、シールドガスを用いる環境下で実行される。シールドガスを用いない環境下では、先端部40のうちの、レーザビーム110により溶解した部分の凝固部が空気成分と結合して、体積膨張が生じる。すなわち、大気中の酸素が溶融池に溶け込み、凝固する際に酸化物等に起因して体積膨張が生じる。このような体積膨張が生じると、それに応じてモータ1の体格が増加する傾向となる(後述する樹脂モールドを行う際に、樹脂部の厚みが増加してモータ1の体格が増加する傾向となる)。なお、このような体積膨張は、上述のダウンスロープなしの照射態様によるパスにおける照射が実質的に終了される位置(図14の位置P12に対応する位置)で生じやすい傾向がある。これは、照射が実質的に終了される位置でレーザ出力の低下が急峻となり、凝固速度が速くなるため(それ故に酸素が閉じ込められやすいため)と考えられる。
 図19は、体積膨張に起因した突起等の説明図であり、図18に示した2つのパスで溶接を実現した場合の溶接部の断面を示す図である。図19には、当接された2つの先端部40のうちの一方が図示されており、点線で囲まれた領域1900が溶接部(溶接深さを表している)である。図19には、1パス目に係る第1範囲D11と2パス目に係る第2範囲D12とが併せて示される。
 図19から分かるように、図18に示した2つのパスで溶接を実現した場合、軸方向外側端面42における溶接対象箇所90において凹凸が生じている。特に、上述のダウンスロープなしの照射態様による2パス目における照射が実質的に終了される位置で、比較的大きな突起1902(軸方向外側に凸となる突起)が生じている。また、1パス目と2パス目との境界部分(継ぎ目)に、ブローホール1904が生じている。
 そこで、本実施例では、好ましくは、上述したダウンスロープ有りの照射態様を利用して、かかる突起やブローホールを低減することを可能とする。以下、このような構成について、図20から図23を参照して説明する。
 図20は、突起やブローホールを低減することを可能とする溶接方法の説明図であり、2パスのそれぞれについて、照射位置に応じたレーザ出力の変化特性を概略的に示す図である。図20の見方(後出の図22及び図23も同様)は、上述した図17と同様である。図20において、矢印R140、矢印R141、及び矢印R143の意味は、図16で説明したとおりである。また、矢印R143については、1パス目に関しては(1)が付され、2パス目に関しては(2)が付されている。
 図20に示す例では、図18に示す例と同様、1パス目は、第1範囲D11にレーザビーム110を照射する一のパルス発振(第1パルス発振の一例)により実現され、2パス目は、第2範囲D12にレーザビーム110を照射する次の一のパルス発振(第2パルス発振の一例)により実現される。1パス目による溶接と2パス目による溶接は、協動して、溶接対象箇所90の周方向の範囲D1の全体をカバーする。
 また、図20に示す例では、図18に示す例と同様、1パス目と2パス目とで溶接方向(照射位置の変化方向)が異なる。すなわち、1パス目及び2パス目は、ともに、溶接対象箇所90の周方向の範囲D1の中心に向かって外側から照射が開始される。
 ただし、図20に示す例では、図18に示す例とは異なり、1パス目及び2パス目は、ともに上述したダウンスロープ有りの照射態様である。
 具体的には、1パス目では、第1範囲D11のX1側の端点である位置P20にてレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がり(矢印R140参照)、位置P20に対して所定距離d1(図示せず)だけX2側の位置P21まで所定値(本例では、一例として3.8kW)が維持される(矢印R141参照)。そして、位置P21にてレーザ出力が第1中間値(本例では、一例として2.0kW)まで低下され、次いで、位置P21に対して所定距離d2(図示せず)だけX2側の位置P22にてレーザ出力が0まで低下される(矢印R143(1)参照)。
 また、2パス目では、第2範囲D12のX2側の端点である位置P30にてレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がり(矢印R140参照)、位置P30に対して所定距離d3(図示せず)だけX1側の位置P31まで所定値(本例では、一例として3.8kW)が維持される(矢印R141参照)。そして、位置P31にてレーザ出力が第1中間値(本例では、一例として2.0kW)まで低下され、次いで、位置P31に対して所定距離d4(図示せず)だけX1側の位置P32にてレーザ出力が第2中間値(本例では、一例として1.0kW)まで低下され、次いで、位置P32に対して所定距離d5(図示せず)だけX1側の位置P33にてレーザ出力が0まで低下される(矢印R143(2)参照)。
 なお、図20に示す例では、1パス目に係るレーザ出力の段階的な低下が開始される位置P21と、2パス目に係るレーザ出力の段階的な低下が開始される位置P31とは、一致しているが、X方向で離間されてもよい。例えば、位置P31は、位置P21に対してX1側にオフセットされてもよいし、X2側にオフセットされてもよい。
 図21は、図19の対比として、図20に示す2つのパスで溶接を実現した場合の溶接部の断面を示す図である。図21には、当接された2つの先端部40のうちの一方が図示されており、点線で囲まれた領域2000が溶接部である。図21には、1パス目に係る第1範囲D11と2パス目に係る第2範囲D12とが併せて示される。
 図21から分かるように、図20に示す2つのパスで溶接を実現した場合、軸方向外側端面42においては、溶接対象箇所90においても比較的滑らかな湾曲面が維持されている。すなわち、図20に示す2つのパスで溶接を実現した場合、図19で示したような凹凸が低減され、特に比較的大きな突起1902(図19参照)が発生していない。これは、2パス目の位置P31付近から位置P33までの照射によって、1パス目の終了位置付近で生じやすい突起(図19に示した突起1902のような突起)が均されるためと考えられる。すなわち、2パス目の位置P31付近から位置P33までの照射によって、1パス目の際に一度凝固した突起が再度溶融することで、当該突起が均されるためと考えられる。なお、本実施例では、上述のようにグリーンレーザを用いるので、上述のように吸収率が高く、第1中間値等のような比較的低いレーザ出力によっても、当該突起を溶融することが可能である。これは、かかる比較的低いレーザ出力では当該突起を溶融できない可能性が高い赤外レーザとは対照的である。
 また、図21から分かるように、図20に示す2つのパスで溶接を実現した場合、図19で示したようなブローホール1904が発生していない。これは、2パス目の位置P31付近から位置P33までの照射によって、第1範囲D11のX2側の端部範囲(1パス目の終了位置付近の範囲)が再度溶融されるためと考えられる。
 このようにして、図20に示す例によれば、2パス目に係る第2範囲D12が1パス目に係る第1範囲D11における照射の終了位置付近を含むことで、1パス目に係る第1範囲D11における照射の終了位置付近で生じやすい凝固部に起因した突起を、溶融させることができ、その結果、当該突起の高さを低減できる。これにより、モータ1の軸方向の体格を低減できる。
 また、図20に示す例によれば、2パス目に係る第2範囲D12のうちの、1パス目に係る第1範囲D11における照射の終了位置付近と重複する部分(パス目の位置P31付近から位置P33までの部分)では、レーザ出力が段階的に低下される。これにより、所定値(本例では、一例として3.8kW)よりも低い中間値(第1中間値等)により、気泡等が発生し難い態様で、上述した突起を溶融させることができる。これにより、シールドガスを用いない環境下においても、2パス目自体に起因した突起であって2パス目の終了位置付近で同様に生じうる突起の発生を低減しつつ、上述した突起を滑らかに均すことが可能となる。
 なお、図20に示す例では、1パス目は、上述したダウンスロープ有りの照射態様であるが、上述したダウンスロープなしの照射態様であってもよい。また、1パス目は、1つの中間値を介したダウンスロープ有りの照射態様であるが、2つ以上の中間値を介したダウンスロープ有りの照射態様であってもよい。
 また、図20に示す例では、2パス目は、2つの中間値を介したダウンスロープ有りの照射態様であるが、1つ又は3つ以上の中間値を介したダウンスロープ有りの照射態様であってもよい。
 また、図20に示す例では、2パス目は、上述したダウンスロープ有りの照射態様であるが、上述したダウンスロープなしの照射態様であってもよい。この場合、図22に示すように、図17に示した例と同様、1パス目及び2パス目のそれぞれの溶接方向(矢印R171、R172参照)を同一とし、かつ、2パス目が開始される位置(図14の位置P10に対応する位置)を、1パス目が実質的に終了される位置(図14の位置P12に対応する位置)に対してX1側にオフセットしてよい。この場合、2パス目に係る第2範囲D12のうちの、1パス目に係る第1範囲D11における照射の終了位置付近と重複する部分は、実際のレーザ出力が所定値(本例では、一例として3.8kW)に達する前の段階である。これにより、所定値(本例では、一例として3.8kW)に達する前のレーザ出力により、気泡等が発生し難い態様で、上述した突起を溶融させることができる。これにより、図20に示した例と同様、上述した突起を滑らかに均すことが可能となる。
 なお、図22に示した変形例では、1パス目及び2パス目は、ダウンスロープなしの照射態様であるが、1パス目及び2パス目のうちの少なくともいずれか一方は、ダウンスロープ有りの照射態様であってもよい。
 また、図20に示す例では、溶接対象箇所90の周方向の範囲D1の全体を、2つのパスでカバーしているが、次に説明する図23に示す例のように、3つ以上のパスでカバーしてもよい。
 図23は、突起やブローホールを低減することを可能とする他の溶接方法の説明図であり、3パスのそれぞれについて、照射位置に応じたレーザ出力の変化特性を概略的に示す図である。なお、面積W3は、3パス目の入熱量に関する。また、矢印R143については、1パス目に関しては(1)が付され、2パス目に関しては(2)が付され、3パス目に関しては(3)が付されている。なお、矢印R172は、3パス目の溶接方向である。
 図23に示す例では、1パス目と2パス目とで溶接方向(照射位置の変化方向)は同じであり、X1側からX2側に向かう方向である。他方、2パス目と3パス目とで溶接方向(照射位置の変化方向)は異なる。すなわち、3パス目は、X2側からX1側に向かう方向である。
 図23に示す例では、1パス目から3パス目は、すべて、上述したダウンスロープ有りの照射態様である。1パス目と2パス目との関係は、上述した図22に示した1パス目と2パス目との関係に対して、1パス目と2パス目がともにダウンスロープ有りの照射態様である点以外は、実質的に同じである。また、2パス目と3パス目との関係は、上述した図20に示した1パス目と2パス目との関係と実質的に同じである。
 具体的には、1パス目では、図23に実線の特性で示すように、第1範囲D11のX1側の端点である位置P40にてレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がり(矢印R140参照)、位置P40に対してX2側の位置P41まで所定値(本例では、一例として3.8kW)が維持される(矢印R141参照)。そして、位置P41にてレーザ出力が第1中間値(本例では、一例として2.0kW)まで低下され、次いで、位置P41に対してX2側の位置P42にてレーザ出力が0まで低下される(矢印R143(1)参照)。
 また、2パス目では、図23に破線の特性で示すように、第2範囲D12のX1側の端点である位置P50であって、位置P41よりもX1側の位置P50にてレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がり(矢印R140参照)、位置P50に対してX2側の位置P51まで所定値(本例では、一例として3.8kW)が維持される(矢印R141参照)。そして、位置P51にてレーザ出力が第1中間値(本例では、一例として2.0kW)まで低下され、次いで、位置P51に対してX2側の位置P52にてレーザ出力が0まで低下される(矢印R143(2)参照)。
 また、3パス目では、図23に一点鎖線の特性で示すように、第3範囲D13のX2側の端点である位置P60にてレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がり(矢印R140参照)、位置P60に対してX1側の位置P61まで所定値(本例では、一例として3.8kW)が維持される(矢印R141参照)。そして、位置P61にてレーザ出力が第1中間値(本例では、一例として2.0kW)まで低下され、次いで、位置P61に対してX1側の位置P62にてレーザ出力が第2中間値(本例では、一例として1.0kW)まで低下され、次いで、位置P62に対してX1側の位置P63にてレーザ出力が0まで低下される(矢印R143(3)参照)。
 図23に示す例によっても、図22に示した例と同様の原理により、1パス目に係る第1範囲D11における照射の終了位置付近で生じやすい凝固部に起因した突起を、2パス目により溶融させることができるとともに、図20に示した例と同様の原理により、2パス目に係る第2範囲D12における照射の終了位置付近で生じやすい凝固部に起因した突起を、3パス目により溶融させることができる。これにより、溶接部に生じうる突起を低減でき、モータ1の軸方向の体格を低減できる。
 また、図23に示す例によれば、上述した図18に示した例と同様、溶接対象箇所90の周方向の範囲D1のうちの両端部(X1側とX2側の端部)において、実際のレーザ出力が所定値よりも小さくなる。このような特性は、溶接対象箇所90のX方向の両端部において、溶接対象物(個体)の溶接深さ方向の寸法が小さくなる構成に好適である。
 この点、本実施例では、図7に示したように、溶接対象箇所90を形成する2つの先端部40は、先細りの形態(軸方向外側端面42が湾曲する形態)である。このため、当接させた先端部40同士の重なる範囲の寸法であってレーザビーム110の照射方向の寸法は、第1範囲D11におけるX1側において、第1範囲D11におけるX2側よりも小さく、かつ、第3範囲D13におけるX2側において、第3範囲D13におけるX1側よりも小さい。従って、図23に示す例によれば、上述した図18に示した例と同様、溶接方向(照射位置の変化方向)が異なる2つのパスであって、溶接対象箇所90の周方向の範囲D1の中心に向かって外側から照射が開始される2つのパス(1パス目と3パス目の2つのパス)に係る溶接によって、軸方向外側端面42が湾曲する形態の先端部40における溶接対象箇所90に対しても高い品質の溶接部を形成できる。
 なお、図23に示す例では、2パス目に係るレーザ出力の段階的な低下が開始される位置P51と、3パス目に係るレーザ出力の段階的な低下が開始される位置P61とは、一致しているが、X方向で離間されてもよい。例えば、位置P61は、位置P51に対してX1側にオフセットされてもよいし、X2側にオフセットされてもよい。
 次に、図24A及び図24Bを参照して、比較例との対比で本実施例の更なる効果を説明する。
 図24Aは、比較例によるグリーンレーザによる溶接方法の説明図である。図24Aでは、横軸に時間を取り、縦軸にレーザ出力を取り、溶接の際のレーザ出力の時系列波形を模式的に示す。
 比較例では、図24Aに示すように、レーザ出力3.8kWでグリーンレーザのパルス照射により溶接を実現する。図24Aでは、2msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現され、インターバル38msec後に、再び、2msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現される。
 なお、これに対して、本実施例では、図13を参照して上述したように、10msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現され、インターバル100msec後に、再び、10msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現される。
 また、比較例では、本実施例とは異なり、パスごとのレーザビームの照射位置は固定である。すなわち、本実施例では、上述のように、各パルス発振中にレーザビーム110の照射位置が直線状に一定速度で変化(移動)されるのに対して、比較例では、各パルス発振中にレーザビームの照射位置は移動されない。
 図24Bは、比較例により溶接を実現した場合の溶接部の断面を示す図である。図24Bには、当接された2つの先端部40のうちの一方が図示されており、点線で囲まれた領域2400が溶接部(溶接深さを表している)である。なお、比較例では、一の溶接対象箇所90に対して11パスの照射が実現されている。
 図24Bから分かるように、比較例により11つのパスで溶接を実現した場合、軸方向外側端面42における溶接対象箇所90において凹凸が生じている。また、図24Bから分かるように、比較例により11つのパスで溶接を実現した場合、溶接底部2401に鋭い凹凸が生じている。このような溶接底部2401における凹凸には、溶接時の治具から受ける力に起因して応力集中が発生しやすく、疲労強度低下等を招くという不都合が生じる。
 この点、本実施例によれば、上述の図19に示すように、溶接底部が滑らかであり、比較例で生じる不都合(疲労強度低下等)を低減できる。このようにして、本実施例によれば、溶接対象箇所90に対して、必要な溶け込み深さが得られるレーザ出力を確保しつつ、適切な移動速度(溶接速度)でレーザビーム110の照射位置を直線状に移動することで、製品機能上必要な溶接断面積を確保しつつ、高品質の溶接を実現できる。
 また、本実施例によれば、比較例に比べて、一の溶接対象箇所90あたりのパルス発振の回数が少ない分だけ、パスごとの重なり範囲が減少し、製品機能上必要な溶接断面積を効率的に確保できる。換言すると、製品機能上必要な溶接断面積を確保するために必要な溶接時間を短縮できる。例えば、比較例では、図24Bに示すように、11回のパルス発振により約440msecの溶接時間であるのに対して、本実施例では、上述の図13に示すように、例えば2回のパルス発振を利用する場合は約220msecの溶接時間(3パス目の直前までの時間)で済む。
 次に、図25を参照してステータ21の製造の流れについて概説する。図25は、ステータ21の製造の流れを概略的に示すフローチャートである。
 ステータ21の製造方法は、まず、ステータコア22を準備し、かつ、ステータコイル24を形成するための、真っ直ぐなコイル片52(成形前のコイル片52)を準備する工程(S12)を含む。
 続いて、ステータ21の製造方法は、コイル片52の先端部40(始端および終端)の絶縁被膜62を除去する除去工程(S14)を含む。この絶縁被膜62の除去方法としては、任意であるが、例えば、絶縁被膜62は、刃具を用いて機械的に除去されてもよいし、エッチング等により化学的に除去されてもよい。また、絶縁被膜62は、レーザを用いて熱的に除去されてもよい。
 なお、コイル片52同士を接合するためには、少なくとも、先端部40のうち実際に接合される面の絶縁被膜62のみが除去されていればよく、その他の面(裏面または表面の他方の面、および、側面)の絶縁被膜62は、残っていてもよい。
 続いて、ステータ21の製造方法は、除去工程後に、真っ直ぐなコイル片52を、金型等を用いて屈曲させ、成形する成形工程(S16)を含む。例えば、コイル片52を、図6に示したような、一対の直進部50と、一対の直進部50を連結する連結部54と、を有した略U字状に成形する。なお、ステップS16及びステップS14の順番は入れ替わっていてもよい。
 続いて、ステータ21の製造方法は、成形工程後に、コイル片52を、ステータコア22のスロット220に挿入する装着工程(S18)を含む。挿入工程は、全てのコイル片52の挿入が完了した段階で完了する。
 続いて、ステータ21の製造方法は、挿入工程後に、直進部50のうち、各スロット220から突出している部分を、専用の治具を用いて、周方向に倒す変形工程(S20)を含む。これにより、直進部50は、スロット220内において軸方向に延びる脚部56と、軸方向一端側において周方向に延びる渡り部58とになる。
 続いて、ステータ21の製造方法は、変形工程後に、周方向第1側(例えば時計回りの向き)に延びる一のコイル片52の渡り部58の先端部40と、周方向第2側(例えば反時計回りの向き)に延びる他の一のコイル片52の渡り部58の先端部40と、を当接させる工程(S22)を含む。この場合、例えば、治具(図示せず)を用いて複数組の先端部40同士を当接させた状態に維持する。
 続いて、複数組の先端部40同士を当接させた状態で、複数の溶接対象箇所のそれぞれにレーザビーム110を順次照射することで、複数組の先端部40同士を接合する接合工程(S24)を含む。本実施例では、上述のように、各2つの先端部40は、溶接により接合される。接合工程(レーザ溶接による接合工程)の詳細は、上述のとおりである。2つの先端部40ごとに溶接が実行され、すべての組の2つの先端部40が溶接されると、接合工程が終了する。
 続いて、ステータ21の製造方法は、接合工程後に、仕上げ工程(S26)を含む。仕上げ工程は、例えば上述のようにコイル片52を組み付けることで形成されるコイルエンド220A、220Bに対して絶縁処理を行う工程等を含んでよい。なお、絶縁処理は、コイルエンド220A、220Bの全体を封止する態様で樹脂をモールドする処理であってよいし、ワニス等を塗布する処理であってもよい。
 次に、図26を参照してグリーンレーザによる溶接熱の影響について説明する。
 図26は、グリーンレーザによる溶接時の温度履歴の測定結果を示す図である。図26では、横軸に時間を取り、縦軸に温度(図26では、「Temperature」と表記)を取り、グリーンレーザによる溶接時の温度履歴が示される。図26に示す温度履歴は、軸方向外側端面42の溶接対象箇所90の近傍の温度を熱電対で測定した結果に基づく。なお、図26において、時点t1は、照射開始時点を表す。
 ところで、一般的に溶接時には熱が発生するので、溶接により発生した熱によって、コイル片52の絶縁被膜62が損傷(炭化)する場合がある。ここで、損傷(炭化)した絶縁被膜62上には、絶縁材料(例えば樹脂や、ワニス等)を付与するのが困難になるため、溶接後におけるステータコイル24の絶縁性能が悪化する可能性がある。
 この点、本実施例によれば、図26に示すように、溶接時の最高温度は約99℃に留まる。これは、グリーンレーザを用いることで、上述のように入熱量が有意に低減されるためである。なお、約99℃は、エナメルの炭化が生じる温度である180℃よりも有意に低い。このように、本実施例によれば、グリーンレーザを用いることで、コイル片52の絶縁被膜62の損傷が生じ難くすることができる。従って、本実施例によれば、絶縁被膜62を除去する除去工程(S14)(図25参照)において、先端部40のうちの接合される面の絶縁被膜62のみを除去し、その他の面の絶縁被膜62を残存させることが可能となりうる。
 次に、図27を参照して、グリーンレーザによる溶接に係る異物耐性について説明する。
 図27は、異物耐性を検証するための試験の説明図である。ここでは、図27に示すように、当接される先端部40同士の重なる範囲を6分割し、分割して得られる6つの領域A1からA6のいずれかに、絶縁被膜62を形成するエナメル被膜の小片を挟み込み(径方向で先端部40間に挟み込み)、グリーンレーザによる溶接を行った。そして、小片の挟み込み領域や小片のサイズを変更させてグリーンレーザによる溶接を行い、異物耐性を評価した。その結果、例えば、領域A1や領域A3においては、サイズ0.7mm×0.7mmの小片を挟み込んだ場合でも、溶接ビードの表面に穴空き等の欠陥が生じなかった。同様に、領域A2においては、サイズ1.0mm×1.0mmの小片を挟み込んだ場合でも、溶接ビードの表面に穴空き等の欠陥が生じなかった。その他の領域についても同様であった。これに対して、赤外レーザによる溶接の場合、サイズ0.2mm×0.2mmの小片を挟み込んだ場合に、溶接ビードの表面に穴空きが生じ、グリーンレーザによる溶接の異物耐性の高さを確認できた。
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。
 例えば、上述した実施例では、ステータコイル24は、セグメントコイルの形態の複数のコイル片52により形成されるが、これに限られない。例えば、ステータコイル24は、ティース22Bに複数回巻回(成形)された集中巻きのコイルの形態であってもよい。
1・・・モータ(回転電機)、24・・・ステータコイル、52・・・コイル片、40・・・先端部、401・・・当接面、110・・・レーザビーム、90・・・溶接対象箇所

Claims (4)

  1.  回転電機のステータコイルを形成するための一のコイル片と他の一のコイル片の先端部同士を当接させる工程と、
     当接させた前記先端部に係る溶接対象箇所に、0.6μm以下の波長のレーザビームを照射する溶接工程とを含み、
     前記溶接工程において、前記レーザビームは、3.0kW以上のレーザ出力を有する態様で、レーザ発振器におけるパルス発振ごとに発生され、
     一のパルス発振中の少なくとも一部の期間において、前記レーザビームは、照射位置が前記先端部の当接面に対して平行な直線状に変化するように移動される、回転電機用ステータ製造方法。
  2.  前記溶接工程において、一の前記溶接対象箇所に対して、2回以上のパルス発振により前記レーザビームが照射され、
     前記一のパルス発振は、前記2回以上のパルス発振を構成する、請求項1に記載の回転電機用ステータ製造方法。
  3.  前記パルス発振は、その発振期間よりも前の期間を利用して蓄積したエネルギを前記発振期間に集約させる態様で実行される、請求項1又は2に記載の回転電機用ステータ製造方法。
  4.  前記2回以上のパルス発振は、前記溶接対象箇所の第1範囲に前記レーザビームを照射するための第1パルス発振と、前記溶接対象箇所の第2範囲に前記レーザビームを照射するための第2パルス発振と含み、
     前記第1範囲と前記第2範囲は、部分的に重なり、
     前記第1パルス発振中の前記レーザビームの照射位置の移動方向と、前記第2パルス発振中の前記レーザビームの照射位置の移動方向とは、対向する、請求項2に記載の回転電機用ステータ製造方法。
PCT/JP2021/010222 2020-03-12 2021-03-12 回転電機用ステータ製造方法 WO2021182636A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/802,454 US20230098415A1 (en) 2020-03-12 2021-03-12 Method for manufacturing stator for rotary electric machine
JP2022506862A JP7335420B2 (ja) 2020-03-12 2021-03-12 回転電機用ステータ製造方法
EP21767821.8A EP4120524A4 (en) 2020-03-12 2021-03-12 METHOD OF MAKING AN ARMATURE FOR AN ELECTRIC LATHE
CN202180015433.2A CN115136476A (zh) 2020-03-12 2021-03-12 旋转电机用定子制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-042982 2020-03-12
JP2020042982 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021182636A1 true WO2021182636A1 (ja) 2021-09-16

Family

ID=77671748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010222 WO2021182636A1 (ja) 2020-03-12 2021-03-12 回転電機用ステータ製造方法

Country Status (5)

Country Link
US (1) US20230098415A1 (ja)
EP (1) EP4120524A4 (ja)
JP (1) JP7335420B2 (ja)
CN (1) CN115136476A (ja)
WO (1) WO2021182636A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229725A (ja) 2006-02-27 2007-09-13 Laserfront Technologies Inc レーザ加工法
JP2014183623A (ja) * 2013-03-18 2014-09-29 Aisin Aw Co Ltd 回転電機の導体接合方法及び回転電機のコイル
JP2018020340A (ja) 2016-08-02 2018-02-08 トヨタ自動車株式会社 平角線のレーザ溶接方法
JP2019118159A (ja) * 2017-12-26 2019-07-18 トヨタ自動車株式会社 セグメント導体の接合方法
WO2019159737A1 (ja) * 2018-02-19 2019-08-22 株式会社小田原エンジニアリング レーザ溶接方法及びレーザ溶接システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647961B2 (ja) * 2004-09-22 2011-03-09 ミヤチテクノス株式会社 回転子結線方法
JP2013109948A (ja) * 2011-11-21 2013-06-06 Toyota Motor Corp 角線の接合構造及び接合方法
JP6095456B2 (ja) * 2013-04-12 2017-03-15 日本車輌製造株式会社 レーザ溶接方法およびレーザ・アークハイブリッド溶接方法
JP2017098161A (ja) * 2015-11-26 2017-06-01 トヨタ自動車株式会社 平角線の接合方法
US20210053153A1 (en) * 2018-02-23 2021-02-25 WLLT GmbH Method for joining two components to one another by means of laser welding and component arrangement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229725A (ja) 2006-02-27 2007-09-13 Laserfront Technologies Inc レーザ加工法
JP2014183623A (ja) * 2013-03-18 2014-09-29 Aisin Aw Co Ltd 回転電機の導体接合方法及び回転電機のコイル
JP2018020340A (ja) 2016-08-02 2018-02-08 トヨタ自動車株式会社 平角線のレーザ溶接方法
JP2019118159A (ja) * 2017-12-26 2019-07-18 トヨタ自動車株式会社 セグメント導体の接合方法
WO2019159737A1 (ja) * 2018-02-19 2019-08-22 株式会社小田原エンジニアリング レーザ溶接方法及びレーザ溶接システム

Also Published As

Publication number Publication date
JP7335420B2 (ja) 2023-08-29
CN115136476A (zh) 2022-09-30
EP4120524A1 (en) 2023-01-18
JPWO2021182636A1 (ja) 2021-09-16
EP4120524A4 (en) 2023-08-23
US20230098415A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP5958109B2 (ja) 回転電機の導体接合方法
WO2021182635A1 (ja) 回転電機用ステータ製造方法
JP2014007794A (ja) 回転電機の導体接合方法及び回転電機のコイル
WO2022196823A1 (ja) 回転電機用ステータ製造方法
WO2021182636A1 (ja) 回転電機用ステータ製造方法
WO2021153663A1 (ja) 導線の絶縁被膜の剥離方法
CN110431735B (zh) 芯制造方法和芯
JP7460403B2 (ja) 回転電機用ステータ製造方法
JP7410757B2 (ja) 回転電機用ステータ製造方法
WO2022196821A1 (ja) 回転電機用ステータ製造方法
JP2021145481A (ja) 回転電機用ステータ製造方法
WO2020170413A1 (ja) 銅を含む部材の溶接方法、および回転電機の製造方法
WO2021182634A1 (ja) 回転電機用ステータ製造方法
WO2022196822A1 (ja) 回転電機用ステータ製造方法
CN115427186B (zh) 激光焊接方法和使用了该激光焊接方法的旋转电机的制造方法
JP7478699B2 (ja) 回転電機用ステータ製造方法
WO2022179760A1 (en) Laser welding metal foil stack to metal substrate
JP7511079B2 (ja) 回転電機用ステータ製造方法
WO2024080097A1 (ja) 回転電機用ステータ製造方法及び回転電機用ステータ製造装置
EP4336715A1 (en) Electric motor stator manufacturing device and method for manufacturing electric motor stator
JP2024516692A (ja) レーザー溶接が適用された円筒形二次電池とその製造方法、このような二次電池を含むバッテリーパック及び自動車
JPH08214515A (ja) 誘導電動機用かご形回転子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022506862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767821

Country of ref document: EP

Effective date: 20221012