WO2021182195A1 - リン酸塩化合物の製造方法 - Google Patents

リン酸塩化合物の製造方法 Download PDF

Info

Publication number
WO2021182195A1
WO2021182195A1 PCT/JP2021/008015 JP2021008015W WO2021182195A1 WO 2021182195 A1 WO2021182195 A1 WO 2021182195A1 JP 2021008015 W JP2021008015 W JP 2021008015W WO 2021182195 A1 WO2021182195 A1 WO 2021182195A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
chemical formula
phosphate
halogen atom
Prior art date
Application number
PCT/JP2021/008015
Other languages
English (en)
French (fr)
Inventor
昌平 江田
静郁 桂
西田 哲郎
雅士 山本
良憲 佐藤
Original Assignee
ステラケミファ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ステラケミファ株式会社 filed Critical ステラケミファ株式会社
Priority to CN202180006821.4A priority Critical patent/CN114728992A/zh
Publication of WO2021182195A1 publication Critical patent/WO2021182195A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]

Definitions

  • the present invention relates to a method for producing a phosphate compound. More specifically, the present invention relates to a method for producing a phosphate compound capable of producing a high-purity phosphate compound extremely easily by reacting a phosphate ester with a raw material salt.
  • phosphate compounds are wide-ranging, such as surfactants, pharmaceuticals, antistatic agents, flame-retardant agents, and additives for secondary batteries in cleaning composition (Patent Documents 1 to 4), and varies according to each application. Methods for producing various phosphate compounds have been developed.
  • Patent Document 5 discloses a method for producing a phosphate diester salt as a phosphate compound.
  • a phosphoric acid triester is hydrolyzed in the presence of water to produce a phosphoric acid diester, and then the phosphoric acid diester is reacted with a hydroxide such as sodium hydroxide or potassium hydroxide.
  • a hydroxide such as sodium hydroxide or potassium hydroxide.
  • an unreacted phosphoric acid triester, an alcohol produced as a by-product during the hydrolysis of the phosphoric acid triester, and a reaction solvent used for the reaction between the phosphoric acid triester and the hydroxide are used. A complicated process for separation is required.
  • the phosphoric acid triester as a starting material can be obtained by reacting, for example, a monohalophosphate diester or the like with a hydroxy compound in the presence of an organic base such as triethylamine. Since the salt is by-produced, a step for removing the salt of the organic base is also required. Therefore, the method for producing a phosphoric acid diester salt described in Patent Document 5 has many problems in industrial production from the viewpoint of purification / separation process and waste treatment.
  • Patent Document 6 discloses a method for producing a monohalogenophosphate ester salt or a phosphate diester salt. According to this production method, dihalogenophosphate, alcohols and the like are reacted with an alkali metal base and the like to produce a monohalogenophosphate ester salt and the like.
  • the reaction control is not easy, and a mixture with a phosphoric acid diester salt is obtained as a product. Therefore, isolation and purification of monohalogenophosphate ester salts and the like are required, but these steps are extremely difficult.
  • the product may contain a monohalophosphate ester salt or an alkali metal salt depending on the reaction substrate.
  • JP-A-2007-332355 Japanese Unexamined Patent Publication No. 2008-230126 WO2016 / 158258 Japanese Unexamined Patent Publication No. 8-138733 Japanese Unexamined Patent Publication No. 2017-36273 Japanese Unexamined Patent Publication No. 2019-135215
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel method for producing a phosphate compound capable of producing a high-purity phosphate compound by an extremely simple method. There is.
  • the method for producing a phosphate compound according to the present invention comprises a phosphoric acid ester represented by the following chemical formula (A) and a raw material salt represented by the following chemical formula (B). It is characterized by including at least a step (I) of producing a phosphate compound represented by the following chemical formula (C) by reacting.
  • the Z represents a carbon atom or a silicon atom.
  • the X 1 and X 2 are independently halogen atoms, hydrocarbon groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and halogens having 1 to 10 carbon atoms.
  • X 3 ⁇ X 5 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group, an alkoxy group having 1 to 10 carbon atoms having 1 to 10 carbon atoms, carbon atoms was in the range of 1-10
  • an alkoxy group having one, and at least one of the X 3 ⁇ X 5 is either an alkoxy group of a hydrocarbon group or having 1 to 10 carbon atoms having 1 to 10 carbon atoms.
  • the M represents an alkali metal, an alkaline earth metal, aluminum, a transition metal, or an onium.
  • the X 6 is a halogen atom, an alkoxy group having 1 to 10 carbon atoms, a haloacyloxy group, a sulfonyloxy group (-SO 3 Y group: the Y is a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or It represents a hydrocarbon group having 1 to 10 carbon atoms and having at least one of a halogen atom, a heteroatom or an unsaturated bond).
  • the n represents a natural number of 1 to 4.
  • the M represents the same cation species as the chemical formula (B).
  • the X 1 and X 2 represent the same functional group as the chemical formula (A).
  • the n represents the same valence as the chemical formula (B).
  • the Z in the chemical formula (A) is a silicon atom, it is represented by the phosphoric acid compound represented by the following chemical formula (D) and the following chemical formula (E). It is preferable to include a step (II) of reacting with a silicon compound to produce a phosphoric acid silyl ester represented by the following chemical formula (F).
  • the M' is a hydrogen atom, an alkali metal, an alkaline earth metal, a primary hydrocarbon group having 1 to 10 carbon atoms, a secondary hydrocarbon group having 1 to 10 carbon atoms, and a carbon number of carbon atoms. Is in the range of 1 to 10 and is a primary hydrocarbon group having at least one of a halogen atom, a heteroatom or an unsaturated bond, or is in the range of 1 to 10 carbon atoms and is a halogen atom. , Represents a secondary hydrocarbon group having at least one of a heteroatom or an unsaturated bond.
  • the X 1 and X 2 represent the same functional group as the chemical formula (A).
  • the n represents the same valence as the chemical formula (B). ]
  • X 3 ⁇ X 5 represent the same functional group and the chemical formula (A).
  • X 7 is a desorbing group, which is a halogen atom, an alkoxy group having 1 to 10 carbon atoms, a haloacyloxy group, or a sulfonyloxy group (-SO 3 Y group: Y is a halogen atom and has 1 to 10 carbon atoms. Represents a hydrocarbon group of 1) or a hydrocarbon group having 1 to 10 carbon atoms and having at least one of a halogen atom, a heteroatom or an unsaturated bond). ]
  • the silicon compound represented by the chemical formula (E) is a by-product produced as a by-product in the step (I).
  • the X 1 and X 2 in the chemical formula (D) are independently alkoxy groups having 1 to 10 carbon atoms, and the M'is hydrogen. It is preferably a phosphoric acid diester when it is an atom.
  • one of the X 1 and X 2 in the chemical formula (D) is a hydrogen atom, and the other is an alkoxy group having 1 to 10 carbon atoms.
  • the M' is a fluorophosphoric acid ester when it is a hydrogen atom.
  • the phosphoric acid compound is a difluorophosphoric acid in the case where the X 1 and X 2 in the chemical formula (D) are fluorine atoms and the M'is a hydrogen atom. It is preferable to have.
  • the X 3 to X 5 in the chemical formula (E) are independently hydrocarbon groups having 1 to 6 carbon atoms, and the X 7 is a halogen. It is preferably a trialkylsilyl halide when it is an atom.
  • the M in the chemical formula (B) is a lithium atom, a sodium atom, a magnesium atom, 1-methyl-1-propylpyrrolidinium, or 1-ethyl-3-methylimidazole. It is preferably lithium.
  • At least one of the steps (I) and (II) can be performed without a solvent.
  • At least one of the above steps (I) and (II) can be performed in a non-aqueous solvent.
  • the non-aqueous solvent is an aprotic organic solvent.
  • the phosphate represented by the chemical formula (C) is represented by reacting the phosphoric acid ester represented by the chemical formula (A) with the raw material salt represented by the chemical formula (B).
  • the compound can be produced with high purity much more easily and efficiently than the conventional production method.
  • the method for producing the phosphate compound according to the present embodiment will be described below.
  • the phosphate ester represented by the chemical formula (A) is reacted with the raw material salt represented by the chemical formula (B).
  • the step (I) for producing the phosphate compound represented by the chemical formula (C) is included at least.
  • step (I) is that the X 3 X 4 X 5 Z-group of the phosphate ester and the raw salt M are exchanged to produce a phosphate compound, and the phosphate compound is produced. And this amount of by-product (E') is also produced.
  • the phosphoric acid ester is represented by the following chemical formula (A).
  • the Z represents a carbon atom or a silicon atom.
  • X 1 and X 2 independently have a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and 1 carbon atom.
  • a hydrocarbon group having at least one of a halogen atom, a hetero atom or an unsaturated bond in the range of to 10 hereinafter, may be referred to as a "hydrocarbon group having a halogen atom or the like", or.
  • alkoxy group having 1 to 10 carbon atoms and having at least one of a halogen atom, a hetero atom or an unsaturated bond (hereinafter, may be referred to as an "alkoxy group having a halogen atom or the like"). show.
  • carbon number in the functional group means the total carbon number of the functional group unless otherwise specified.
  • hydrocarbon group having 1 to 10 carbon atoms means a general term for a hydrocarbon group having 1, 2, 3, ... Or 10 carbon atoms. This has the same meaning in other functional groups that define the number of carbon atoms, unless otherwise specified.
  • Examples of the hydrocarbon group having 1 to 10 carbon atoms in X 1 and X 2 include an alkyl group having 1 to 10 carbon atoms. Further, the alkyl group having 1 to 10 carbon atoms is not particularly limited, and for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl.
  • Examples thereof include a chain alkyl group composed of a group, a heptyl group, an octyl group, a nonyl group and a decyl group, a cyclic alkyl group such as a cyclopentyl group and a cyclohexyl group, and the like.
  • hydrocarbon groups having 1 to 10 carbon atoms in X 1 and X 2 hydrocarbon groups having 1, 2, 3, 4, 5 and 6 carbon atoms are preferable, and the hydrocarbon groups having 1, 2 and 3 carbon atoms are preferable. Hydrocarbon groups are more preferred.
  • the alkoxy group having 1 to 10 carbon atoms in X 1 and X 2 is not particularly limited, and for example, a chain alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group and a hexoxy group. , Cyclic alkoxy groups such as cyclopentoxy group and cyclohexoxy group, phenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 3,5-dimethylphenoxy group and the like.
  • the alkoxy group having 1 to 10 carbon atoms in X 1 and X 2 the alkoxy group having 1, 2, 3, 4, 5 and 6 carbon atoms is preferable, and the alkoxy group having 1, 2 and 3 carbon atoms is preferable. Is more preferable.
  • the hydrocarbon group having a halogen atom having 1 to 10 carbon atoms in X 1 and X 2 means a functional group in which a part or all of hydrogen in the hydrocarbon group is substituted with a halogen atom. do.
  • the halogen atom represents an atom of fluorine, chlorine, bromine, and iodine.
  • a hydrocarbon group having a halogen atom having 1, 2, 3, 4, 5 and 6 carbon atoms is preferable.
  • Hydrocarbon groups having halogen atoms having 1, 2 and 3 carbon atoms are more preferable.
  • hydrocarbons and hydrogen groups the functional groups some or all of the hydrogen and carbon in the hydrocarbon group is replaced with a heteroatom having a hetero atom having 1 to 10 carbon atoms Means.
  • the heteroatom represents an atom such as oxygen, nitrogen, and sulfur.
  • a hydrocarbon group having a heteroatom having 1, 2, 3, 4, 5 and 6 carbon atoms is preferable.
  • Hydrocarbon groups having heteroatoms having 1, 2 and 3 carbon atoms are more preferable.
  • hydrocarbon group having a halogen atom or a hetero atom in X 1 and X 2 include, for example, iodomethyl group, bromomethyl group, chloromethyl group, fluoromethyl group, diiodomethyl group, dibromomethyl group and dichloromethyl group.
  • Hydrocarbon groups having an unsaturated bond in the range of 1 to 10 and having an unsaturated bond in X 1 and X 2 are, for example, carbon-carbons having a carbon number in the range of 1 to 10. It means a hydrocarbon group having a double bond or a triple bond between them. Further, as the hydrocarbon group having the unsaturated bond, a hydrocarbon group having an unsaturated bond number of 1, 2, 3, 4 and 5 is preferable, and a hydrocarbon group having an unsaturated bond number of 1, 2 and 3 is preferable. More preferred.
  • hydrocarbon group having an unsaturated bond in the range of 1 to 10 and having an unsaturated bond in X 1 and X 2 include, for example, an ethenyl group, a 1-propenyl group, and a 2-propenyl group.
  • Aryl groups such as groups, 1-naphthyl groups and 2-naphthyl groups, ethynyl groups, 2-propynyl groups, butynyl groups, 2-butynyl groups, 3-butynyl groups, pentynyl groups, 2-pentynyl groups, 3-pentynyl groups and Examples thereof include a chain alkynyl group such as a 4-pentynyl group.
  • the alkoxy group having a halogen atom having 1 to 10 carbon atoms in X 1 and X 2 means a functional group in which a part or all of hydrogen in the alkoxy group is substituted with a halogen atom.
  • the halogen atom means an atom of fluorine, chlorine, bromine, and iodine as in the above-mentioned case.
  • an alkoxy group having a halogen atom having 1 to 10 carbon atoms in X 1 and X 2 an alkoxy group having a halogen atom having 1, 2, 3, 4, 5 and 6 carbon atoms is preferable, and carbon is preferable.
  • Alkoxy groups having the number 1, 2 and 3 halogen atoms are more preferable.
  • alkoxy groups having heteroatoms having 1 to 10 carbon atoms functional groups some or all of the hydrogen and carbon in the alkoxy group is substituted with a hetero atom Means.
  • the hetero atom means an atom such as oxygen, nitrogen, and sulfur as in the above-mentioned case.
  • the alkoxy group having a heteroatom having 1 to 10 carbon atoms in X 1 and X 2 an alkoxy group having a heteroatom having 1, 2, 3, 4, 5 and 6 carbon atoms is preferable, and carbon is preferable.
  • Alkoxy groups having heteroatoms of numbers 1, 2 and 3 are more preferred.
  • alkoxy group having a halogen atom or a hetero atom in X 1 and X 2 include, for example, an iodomethoxy group, a bromomethoxy group, a chloromethoxy group, a fluoromethoxy group, a diiodomethoxy group, and a dibromomethoxy group.
  • the alkoxy group having an unsaturated bond in the range of 1 to 10 and having an unsaturated bond in X 1 and X 2 is, for example, an alkoxy group having a double bond or a triple bond between carbon and carbon. means. Further, as the alkoxy group having the unsaturated bond, an alkoxy group having an unsaturated bond number of 1, 2, 3, 4 and 5 is preferable, and an alkoxy group having an unsaturated bond number of 1, 2 and 3 is more preferable.
  • alkoxy group having an unsaturated bond having 1 to 10 carbon atoms in X 1 and X 2 include an ethenyloxy group, a 1-propenyloxy group, a 2-propenyloxy group, and an isopropenyloxy.
  • the X 1 and X 2 may be of the same type or different from each other. Further, the functional groups mentioned above as X 1 and X 2 are merely examples, and the present embodiment is not limited thereto.
  • X 3 to X 5 in the chemical formula (A) are independently hydrogen atoms, halogen atoms, hydrocarbon groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, halogen atoms and the like. Represents a hydrocarbon group having a halogen atom or an alkoxy group having a halogen atom or the like. Furthermore, at least one of the X 3 ⁇ X 5 is either an alkoxy group of a hydrocarbon group or having 1 to 10 carbon atoms having 1 to 10 carbon atoms.
  • hydrocarbon group of 1 to 10 carbon atoms, an alkoxy group having a hydrocarbon group, and a halogen atom such as the number of carbon atoms having an alkoxy group having 1 to 10, a halogen atom, etc., mentioned in the X 1 and X 2 Is similar to. Therefore, the details will be omitted.
  • X 3 ⁇ X 5 may be different from each other may be the same type. Further, the functional groups mentioned above as X 3 to X 5 are merely examples, and the present embodiment is not limited thereto.
  • phosphate ester represented by the chemical formula (A) include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, and 2-ethylhexyl.
  • the raw material salt is represented by the following chemical formula (B).
  • the M represents an alkali metal, an alkaline earth metal, aluminum, a transition metal, or an onium.
  • the alkali metal is not particularly limited, and examples thereof include Li, Na, K, Rb, and Cs. Of these alkali metals, Li, Na and K are preferable from the viewpoint of availability, and Li and Na are more preferable from the viewpoint of versatility of the phosphate compound.
  • the alkaline earth metal is not particularly limited, and examples thereof include Be, Mg, Ca, Sr, and Ba.
  • Mg, Ca and Ba are preferable from the viewpoint of availability and safety, and Mg is more preferable from the viewpoint of versatility of the phosphate compound.
  • the transition metal is not particularly limited, and examples thereof include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn. Of these transition metals, Ti, Mn, Fe, Co, Ni and Cu are preferable from the viewpoint of availability.
  • the onium is not particularly limited, and examples thereof include primary ammonium, secondary ammonium, tertiary ammonium, quaternary ammonium, quaternary phosphonium, and sulfonium.
  • the primary ammonium is not particularly limited, and examples thereof include methylammonium, ethylammonium, propylammonium, and isopropylammonium. These can be used alone or in combination of two or more.
  • the secondary ammonium is not particularly limited, and examples thereof include dimethylammonium, diethylammonium, dipropylammonium, dibutylammonium, ethylmethylammonium, methylpropylammonium, butylmethylammonium, butylpropylammonium, and diisopropylammonium.
  • the tertiary ammonium is not particularly limited, and for example, trimethylammonium, triethylammonium, tripropylammonium ammonium, tributylammonium, ethyldimethylammonium, diethylmethylammonium, triisopropylammonium, dimethylisopropylammonium, diethylisopropylammonium, dimethylpropyl.
  • the quaternary ammonium is not particularly limited, and examples thereof include aliphatic quaternary ammoniums, imidazoliums, pyridiniums, pyrazoliums, and pyridadiniums.
  • the aliphatic quaternary ammonium is not particularly limited, and for example, tetraethylammonium, tetrapropylammonium, tetraisopropylammonium, ethyltrimethylammonium, diethyldimethylammonium, triethylmethylammonium, trimethylpropylammonium, trimethylisopropylammonium, tetra.
  • the imidazoliums are not particularly limited, and for example, 1,3-dimethyl-imidazolium, 1-ethyl-3-methylimidazolium, 1-n-propyl-3-methylimidazolium, 1-n-butyl- Examples thereof include 3-methylimidazolium and 1-n-hexyl-3-methylimidazolium.
  • the pyridiniums are not particularly limited, and examples thereof include 1-methylpyridinium, 1-ethylpyridinium, and 1-n-propylpyridinium.
  • the pyrazols are not particularly limited, and for example, 1,2-dimethylpyrazolium, 2-ethyl-1-methylpyrazolium, 2-methyl-1-propylpyrazolium, 2-butyl-1-methyl Pyrazolium, 1-methylpyrazolium, 3-methylpyrazolium, 4-methylpyrazolium, 4-iodopyrazolium, 4-bromopyrazolium, 4-iodo-3-methylpyrazolium, Examples thereof include 4-bromo-3-methylpyrazolium and 3-trifluoromethylpyrazolium.
  • the pyridadiniums are not particularly limited, and for example, 1-methylpyridazinium, 1-ethylpyridazinium, 1-propylpyridazinium, 1-butylpyridazinium, 3-methylpyridazinium.
  • tetraethylammonium, triethylmethylammonium, 1-methyl-1-propylpyrrolidinium, 1-ethyl-3-methylimidazolium and the like are preferable from the viewpoint of availability and versatility.
  • the in halogen atom on the X 6, fluorine, chlorine, bromine and iodine atoms.
  • chlorine atom, bromine atom and iodine atom are preferable from the viewpoint of high desorption ability and reuse of by-products.
  • alkoxy group of the X 6 in carbon number of 1 to 10 for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, chain alkoxy group such as a pentoxy group and hexoxy group, cyclopentoxy Cyclic alkoxy groups such as groups and cyclohexoxy groups, phenoxy groups, 3-methylphenoxy groups, 4-methylphenoxy groups, 3,5-dimethylphenoxy groups and the like can be mentioned.
  • the alkoxy group in C 1 to C 10 X 6, preferably an alkoxy group having 1, 2, 3, 4 and 6 carbon atoms, more preferably an alkoxy group having 1, 2, and 3 carbon atoms.
  • X 6 in the in-haloacyl group having 1 to 7 or carbon atoms and one or functional groups are more hydrogen atoms are substituted by halogen atoms are preferred .
  • Y is a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or at least one of a halogen atom, a hetero atom, or an unsaturated bond having a carbon number in the range of 1 to 10. Represents a hydrocarbon group having.
  • halogen atom in Y examples include fluorine, chlorine, bromine, and iodine atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms in Y is not particularly limited, and for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and the like. Examples thereof include chain alkyl groups such as pentyl group, hexyl group, heptyl group and octyl group, and cyclic alkyl groups such as cyclopentyl group and cyclohexyl group.
  • the hydrocarbon group having 1 to 10 carbon atoms in Y the hydrocarbon group having 1, 2, 3, 4, 5 and 6 carbon atoms is preferable, and the hydrocarbon group having 1, 2 and 3 carbon atoms is more preferable. preferable.
  • the hydrocarbon group having a halogen atom having 1 to 10 carbon atoms in Y means a functional group in which a part or all of hydrogen in the hydrocarbon group is substituted with a halogen atom.
  • the halogen atom represents an atom of fluorine, chlorine, bromine, and iodine.
  • a hydrocarbon group having a halogen atom having 1, 2, 3, 4, 5 and 6 carbon atoms is preferable, and the hydrocarbon group having 1 carbon atom, Hydrocarbon groups having 2 and 3 halogen atoms are more preferred.
  • the hydrocarbon group having a heteroatom having 1 to 10 carbon atoms in Y means a functional group in which a part or all of hydrogen and carbon in the hydrocarbon group are substituted with a heteroatom.
  • the heteroatom represents an atom such as oxygen, nitrogen, and sulfur.
  • a hydrocarbon group having a heteroatom having 1, 2, 3, 4, 5 and 6 carbon atoms is preferable, and the hydrocarbon group has 1 carbon atom. Hydrocarbon groups having 2, and 3 heteroatoms are more preferred.
  • hydrocarbon group having a halogen atom or a hetero atom in the range of 1 to 10 carbon atoms in Y include, for example, iodomethyl group, bromomethyl group, chloromethyl group, fluoromethyl group, and the like.
  • Heteroaryl groups including halogenated aryl groups, 2-nitrophenyl groups, 4-nitrophenyl groups, 2,4-dinitrophenyl groups, 2,6-dinitrophenyl groups, and 3-amino-2-naphthyl groups. And so on.
  • the hydrocarbon group having an unsaturated bond having a carbon number in the range of 1 to 10 in Y is, for example, a hydrocarbon group having a carbon number in the range of 1 to 10 and having a double carbon-carbon bond. It means a hydrocarbon group having a bond or a triple bond. Further, as the hydrocarbon group having the unsaturated bond, a hydrocarbon group having an unsaturated bond number of 1, 2, 3, 4 and 5 is preferable, and a hydrocarbon group having an unsaturated bond number of 1, 2 and 3 is preferable. More preferred.
  • hydrocarbon group having an unsaturated bond in the range of 1 to 10 carbon atoms in Y include an ethenyl group, a 1-propenyl group, a 2-propenyl group, and an isopropenyl group.
  • Cyclic alkenyl groups such as chain alkenyl group, 1-cyclopentenyl group, 2-cyclopentenyl group, 2,4-cyclopentadienyl group, 1-cyclohexenyl group, 2-cyclohexenyl group and 3-cyclohexenyl group, Phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3,5-dimethylphenyl group, 2,4,6-trimethylphenyl group, 1-naphthyl Aryl groups such as groups and 2-naphthyl groups, ethynyl groups, 2-propynyl groups, butynyl groups, 2-butynyl groups, 3-butynyl groups, pentynyl groups, 2-pentynyl groups, 3-pentynyl groups and 4-pentynyl groups, etc. Examples include the chain alkynyl group of.
  • the raw material salt represented by the chemical formula (B) include lithium fluoride, lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, and foot.
  • n is a valence and represents a natural number from 1 to 4.
  • the phosphate compound is represented by the following chemical formula (C).
  • the M represents the same cation species as the chemical formula (A). Further, X 1 and X 2 represent the same functional group as the chemical formula (A). Therefore, description of these details will be omitted.
  • phosphate compound represented by the chemical formula (C) examples include lithium diethyl phosphate, sodium diethyl phosphate, potassium diethyl phosphate, magnesium diethyl phosphate, calcium diethyl phosphate, aluminum diethyl phosphate, and diethyl.
  • reaction molar ratio in the step (I) is not particularly limited and may be appropriately set according to the reaction species.
  • the lower limit of the phosphoric acid ester is usually 1 mol or more with respect to 1 mol of the raw material salt.
  • the upper limit of the phosphoric acid ester is usually 2.5 mol or less, preferably 1.5 mol or less from the viewpoint of industrial production.
  • the reaction start temperature in the step (I) is not particularly limited as long as the reaction proceeds, and may be appropriately set according to the reaction species.
  • the lower limit of the reaction start temperature is usually 0 ° C. or higher, preferably 20 ° C. or higher, and more preferably 60 ° C. or higher from the viewpoint of reactivity.
  • the upper limit of the reaction start temperature is usually 150 ° C. or lower, preferably 120 ° C. or lower, and more preferably 100 ° C. or lower from the viewpoint of reactivity.
  • the means for adjusting the reaction start temperature is not particularly limited.
  • the reaction vessel into which the phosphoric acid ester and the raw material salt are charged can be cooled by ice or the like.
  • the reaction start temperature is controlled by heating so as to be within the above temperature range, it can be performed by an oil bath or the like set to an arbitrary temperature.
  • the reaction time of the step (I) is not particularly limited and may be appropriately set according to the reaction type.
  • the lower limit of the reaction time is usually 1 hour or more.
  • the upper limit of the reaction time is usually 10 hours or less, preferably 6 hours or less, and more preferably 4 hours or less from the viewpoint of industrial production.
  • step (I) can be carried out in a solvent-free or non-aqueous solvent.
  • the reaction of step (I) is carried out without a solvent, the phosphoric acid ester also functions as a reaction solvent.
  • the non-aqueous solvent is not particularly limited as long as it does not cause a problem of reacting with other reactants or products, but it is preferable to use an aprotic organic solvent.
  • the aprotic organic solvent is not particularly limited, and examples thereof include alcohols, nitriles, esters, ketones, ethers, halogenated hydrocarbons, and the like. These can be used alone or in combination of two or more.
  • the alcohols are not particularly limited, and for example, methanol, ethanol, propanol, 2-propanol, butanol, pentanol, hexanol, heptanol, octanol, 2-iodoethanol, 2-bromoethanol, 2-chloroethanol, 2-.
  • Fluoroethanol, 1,2-diiodoethanol, 1,2-dibromoethanol, 1,2-dichloroethanol, 1,2-difluoroethanol, 2,2-diiodoethanol, 2,2-dibromoethanol, 2,2 -Dichloroethanol, 2,2-difluoroethanol, 2,2,2-tribromoethanol, 2,2,2-trichloroethanol, 2,2,2-trifluoroethanol, hexafluoro-2-propanol and the like can be mentioned. .. These can be used alone or in combination of two or more.
  • nitriles are not particularly limited, and examples thereof include acetonitrile, propanenitrile, and the like. These can be used alone or in combination of two or more.
  • esters are not particularly limited, and examples thereof include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, methyl acetate, ethyl acetate, propyl acetate, and butyl acetate. These can be used alone or in combination of two or more.
  • the ketones are not particularly limited, and examples thereof include acetone, ethyl methyl ketone, isobutyl methyl ketone, cyclohexanone and the like. These can be used alone or in combination of two or more.
  • the ethers are not particularly limited, and examples thereof include diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane and the like. These can be used alone or in combination of two or more.
  • the halogenated hydrocarbon is not particularly limited, and examples thereof include dichloromethane, chloroform, 1,1,2,2-tetrachloroethane, chlorobenzene and the like. These can be used alone or in combination of two or more.
  • toluene N, N-dimethylformamide, dimethyl sulfoxide, nitromethane, nitroethane and the like can be mentioned.
  • non-aqueous solvents exemplified above, in the present invention, nitriles, esters, ketones, ethers and halogenated hydrocarbons are preferable from the viewpoint of solubility and availability of the reaction substrate.
  • the lower limit is preferably 1 mol or more, more preferably 10 mol or more, with respect to 1 mol of the phosphoric acid ester.
  • the upper limit of the amount of the non-aqueous solvent used is preferably 10,000 mol or less, more preferably 1000 mol or less, still more preferably 100 mol or less, based on 1 mol of the phosphoric acid ester.
  • the phosphate compound obtained in the step (I) may be isolated and purified according to its purity.
  • the method is not particularly limited, and a known method can be adopted. Specifically, atmospheric distillation, vacuum distillation, filtration, filtration, recrystallization, sublimation purification, silica gel column chromatography, preparative thin layer chromatography (PTLC), high performance liquid chromatography (HPLC), ion chromatography ( IC) and other methods can be mentioned.
  • the phosphoric acid ester can be obtained by a known production method using an acid anhydride or the like as a raw material.
  • the phosphoric acid compound represented by the chemical formula (D) is reacted with the silicon compound represented by the chemical formula (E) to carry out the chemical formula.
  • the silicon compound produced as a by-product in the step (I) can be reused as the silicon compound represented by the chemical formula (E).
  • the phosphate compound can be produced with extremely high production efficiency and reduced production cost.
  • the phosphoric acid compound is represented by the following chemical formula (D).
  • the M' is a hydrogen atom, an alkali metal, an alkaline earth metal, a primary hydrocarbon group having 1 to 10 carbon atoms, and a secondary hydrocarbon having 1 to 10 carbon atoms.
  • a primary hydrocarbon group having a hydrogen group, a number of carbon atoms in the range of 1 to 10 and having at least one of a halogen atom, a hetero atom or an unsaturated bond hereinafter, "primary having a halogen atom or the like”
  • a secondary hydrocarbon group hereinafter referred to as "hydrocarbon group” or a secondary hydrocarbon group having at least one of a halogen atom, a heteroatom or an unsaturated bond having a number of carbon atoms in the range of 1 to 10 (hereinafter referred to as "hydrocarbon group”). It represents a "secondary hydrocarbon group having an atom or the like").
  • Examples of the alkali metal in M'in include Li, Na, K, Rb, and Cs. Of these alkali metals, Li, Na and K are preferable from the viewpoint of availability.
  • the alkaline earth metal in M' is not particularly limited, and examples thereof include Be, Mg, Ca, Sr, and Ba. Of these alkaline earth metals, Mg, Ca and Ba are preferable from the viewpoint of availability and safety.
  • the primary hydrocarbon group having 1 to 10 carbon atoms in the M' is not particularly limited, and examples thereof include a primary alkyl group.
  • the secondary hydrocarbon group having 1 to 10 carbon atoms is not particularly limited, and examples thereof include a secondary alkyl group.
  • the primary alkyl group having 1 to 10 carbon atoms and the secondary alkyl group having 1 to 10 carbon atoms are not particularly limited, and for example, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and an n-butyl group.
  • Examples thereof include a chain alkyl group such as a group, a pentyl group, a hexyl group, a heptyl group and an octyl group, and a cyclic alkyl group such as a cyclopentyl group and a cyclohexyl group.
  • a chain alkyl group such as a group, a pentyl group, a hexyl group, a heptyl group and an octyl group
  • a cyclic alkyl group such as a cyclopentyl group and a cyclohexyl group.
  • the primary hydrocarbon group of 3 is more preferable.
  • the secondary hydrocarbon group having 1 to 10 carbon atoms in the M' the secondary hydrocarbon group having 1, 2, 3, 4, 5 and 6 carbon atoms is preferable, and the secondary hydrocarbon group having 1 carbon atom, 2 and 3 secondary hydrocarbon groups are more preferred.
  • the secondary hydrocarbon group is not particularly limited, and for example, 2-iodoethyl group, 2-bromoethyl group, 2-chloroethyl group, 2-fluoroethyl group, 1,2-diiodoethyl group, 1,2-dibromoethyl group, 1,2-Dichloroethyl group, 1,2-difluoroethyl group, 2,2-diiodoethyl group, 2,2-dibromoethyl group, 2,2-dichloroethyl group, 2,2-difluoroethyl group, 2,2 , 2-Tribromoethyl group, 2,2,2-trichloroethyl group, 2,2,2-trifluoroethyl group, hexafluoro-2-propyl group and other chain halogenated alkyl groups, 2-iodocyclohexyl Group, cyclic halogenated alkyl group such as 2-bromo
  • the primary hydrocarbon group having a halogen atom or the like having a carbon number in the range of 1 to 10 is a first hydrocarbon group having a halogen atom or the like having 1, 2, 3, 4, 5 and 6 carbon atoms.
  • a primary hydrocarbon group is preferable, and a primary hydrocarbon group having halogen atoms having 1, 2 and 3 carbon atoms is more preferable.
  • the secondary hydrocarbon group having a halogen atom or the like having a carbon number in the range of 1 to 10 in the M' a halogen atom or the like having a carbon number of 1, 2, 3, 4, 5 or 6 is used.
  • a secondary hydrocarbon group having is preferable, and a secondary hydrocarbon group having halogen atoms having 1, 2 and 3 carbon atoms is more preferable.
  • the unsaturated bond in M'means for example, a double bond or a triple bond between carbons.
  • the X 1 and X 2 are, each independently, an alkoxy group having 1 to 10 carbon atoms, wherein M 'is a hydrogen atom phosphodiester cases is, either one of the X 1 and X 2 is a fluorine atom and the other is an alkoxy group having 1 to 10 carbon atoms, fluorophosphate holic if the M 'is a hydrogen atom It is preferable that the acid ester and the difluorophosphoric acid when the X 1 and X 2 are fluorine atoms and the M'is a hydrogen atom.
  • phosphoric acid compound represented by the chemical formula (D) include dimethyl phosphate, diethyl phosphate, dipropyl phosphate, dibutyl phosphate, dipentyl phosphate, dihexyl phosphate, diphenyl phosphate and diallyl.
  • the silicon compound is represented by the following chemical formula (E).
  • the X 7 is a leaving group and represents a halogen atom, an alkoxy group having 1 to 10 carbon atoms, a haloacyloxy group, or a sulfonyloxy group.
  • halogen atom in X 7 examples include atoms of fluorine, chlorine, bromine, and iodine. Of these halogen atoms, chlorine atom, bromine atom and iodine atom are preferable from the viewpoint of high desorption ability and reuse of by-products.
  • the alkoxy group having 1 to 10 carbon atoms in X 7 is not particularly limited, and for example, a chain alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group and a hexoxy group, a cyclopentoxy group and Cyclic alkoxy groups such as cyclohexoxy groups, phenoxy groups, 3-methylphenoxy groups, 4-methylphenoxy groups, 3,5-dimethylphenoxy groups and the like can be mentioned.
  • Alkoxy group having 1 to 10 carbon atoms in the X 7 is preferably an alkoxy group having 1, 2, 3, 4 and 6 carbon atoms, more preferably an alkoxy group having 1, 2, and 3.
  • the haloacyloxy group in X 7 is not particularly limited, but a functional group having any one of 1 to 7 carbon atoms and having one or more hydrogen atoms substituted with halogen atoms is preferable.
  • Y is a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or at least one of a halogen atom, a hetero atom, or an unsaturated bond having a carbon number in the range of 1 to 10. Represents a hydrocarbon group having.
  • halogen atom in Y examples include fluorine, chlorine, bromine, and iodine atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms in Y is not particularly limited, and for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and the like. Examples thereof include chain alkyl groups such as pentyl group, hexyl group, heptyl group and octyl group, and cyclic alkyl groups such as cyclopentyl group and cyclohexyl group.
  • the hydrocarbon group having 1 to 10 carbon atoms in Y is preferably a hydrocarbon group having 1, 2, 3, 4, 5 and 6 carbon atoms, and more preferably a hydrocarbon group having 1, 2 and 3 carbon atoms. ..
  • the hydrocarbon group having a halogen atom having 1 to 10 carbon atoms in Y means a functional group in which a part or all of hydrogen in the hydrocarbon group is substituted with a halogen atom.
  • the halogen atom represents an atom of fluorine, chlorine, bromine, and iodine.
  • the hydrocarbon group having a halogen atom having 1 to 10 carbon atoms in Y is preferably a hydrocarbon group having a halogen atom having 1, 2, 3, 4, 5 and 6 carbon atoms, and has 1, 2 carbon atoms. And a hydrocarbon group having 3 halogen atoms is more preferred.
  • the hydrocarbon group having a heteroatom having 1 to 10 carbon atoms in Y means a functional group in which a part or all of hydrogen and carbon in the hydrocarbon group are substituted with a heteroatom.
  • the heteroatom represents an atom such as oxygen, nitrogen, and sulfur.
  • the hydrocarbon group having a heteroatom having 1 to 10 carbon atoms in Y is preferably a hydrocarbon group having a heteroatom having 1, 2, 3, 4, 5 and 6 carbon atoms, and the hydrocarbon group has 1, 1, Hydrocarbon groups having 2 and 3 heteroatoms are more preferred.
  • the hydrocarbon group having an unsaturated bond having a carbon number in the range of 1 to 10 in Y is, for example, a hydrocarbon group having a carbon number in the range of 1 to 10 and having a double carbon-carbon bond. It means a hydrocarbon group having a bond or a triple bond. Further, as the hydrocarbon group having the unsaturated bond, a hydrocarbon group having an unsaturated bond number of 1, 2, 3, 4 and 5 is preferable, and a hydrocarbon group having an unsaturated bond number of 1, 2 and 3 is preferable. More preferred.
  • hydrocarbon group having a halogen atom, a hetero atom or an unsaturated bond in the range of 1 to 10 carbon atoms in Y include, for example, an iodomethyl group, a bromomethyl group, and a chloromethyl group.
  • Cyclic such as chain alkenyl groups such as group, ethenyl group, 2-propenyl group, isopropenyl group, 2-butenyl group and 3-butenyl group, 2-cyclopentenyl group, 2-cyclohexenyl group and 3-cyclohexenyl group.
  • Chain alkynyl such as alkenyl group, ethynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-pentynyl group, 2-pentynyl group, 3-pentynyl group and 4-pentynyl group Group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3,5-dimethylphenyl group, 2,4,6-trimethylphenyl group, 2 -Aryl groups such as nitrophenyl group, 4-nitrophenyl group, 2,4-dinitrophenyl group and 2,6-dinitrophenyl group, 2-iodophenyl group, 2-bromophenyl group, 2-chlorophenyl group, 2- Fluorophenyl group, 3-iodophenyl group, 3-bromophenyl group, 3-chlor
  • the X 3 to X 5 are independently hydrocarbon groups having 1 to 6 carbon atoms, and the X 7 is a halogen atom. It is preferably a trialkylsilyl halide in the case of.
  • silicon compound represented by the chemical formula (E) include chlorodimethylsilane, chlorotrimethylsilane, chloro (ethyl) dimethylsilane, chlorotriethylsilane, diisopropylchlorosilane, chlorotriisopropylsilane, tributylchlorosilane, and tert.
  • reaction molar ratio in the step (II) is not particularly limited and may be appropriately set according to the reaction species.
  • the lower limit of the silicon compound is usually 1 mol or more with respect to 1 mol of the phosphoric acid compound.
  • the upper limit of the phosphoric acid compound is 5 mol or less, preferably 2.5 mol or less, and more preferably 1.5 mol or less from the viewpoint of industrial production.
  • the reaction start temperature in the step (II) is not particularly limited as long as the reaction proceeds, and may be appropriately set according to the reaction species.
  • the lower limit of the reaction start temperature is usually 0 ° C. or higher, preferably 20 ° C. or higher, and more preferably 40 ° C. or higher from the viewpoint of reactivity.
  • the upper limit of the reaction start temperature is usually 150 ° C. or lower, preferably 120 ° C. or lower, and more preferably 100 ° C. or lower from the viewpoint of reactivity.
  • the means for adjusting the reaction start temperature is not particularly limited.
  • the reaction vessel into which the phosphoric acid compound and the silicon compound are charged can be ice-cooled or the like.
  • the reaction start temperature is controlled by heating so as to be within the above temperature range, it can be performed by an oil bath or the like set to an arbitrary temperature.
  • the reaction time of the step (II) is not particularly limited and may be appropriately set according to the reaction type.
  • the lower limit of the reaction time is usually 1 hour or more.
  • the upper limit of the reaction time is usually 12 hours or less, preferably 6 hours or less, and more preferably 3 hours or less from the viewpoint of industrial production.
  • step (II) can be carried out in a solvent-free or non-aqueous solvent.
  • the silicon compound When the reaction of step (II) is carried out without a solvent, the silicon compound also functions as a reaction solvent.
  • the same non-aqueous solvent as described in the step (I) can be used. Therefore, the details will be omitted.
  • the lower limit is preferably 1 mol or more, more preferably 10 mol or more, with respect to 1 mol of the phosphoric acid compound.
  • the upper limit of the amount of the non-aqueous solvent used is preferably 10,000 mol or less, more preferably 1000 mol or less, still more preferably 100 mol or less, based on 1 mol of the phosphoric acid compound.
  • the phosphoric acid ester obtained in the step (II) may be isolated and purified according to its purity.
  • the method is not particularly limited, and a known method can be adopted. Specifically, atmospheric distillation, vacuum distillation, filtration, filtration, recrystallization, sublimation purification, silica gel column chromatography, preparative thin layer chromatography (PTLC), high performance liquid chromatography (HPLC), ion chromatography ( IC) and other methods can be mentioned.
  • the purity of the phosphate compound was calculated from anion analysis by ion chromatography.
  • the analyzer and measurement conditions are as follows. Equipment: 850 Professional IC Anion (manufactured by Metrohm) Column: Dionex IonPac AS23 2x250mm (Made by Thermo Fisher Scientific) Sample: 100 ppm sample aqueous solution flow rate: 1 mL / min Eluent: 4.5 mM Na 2 CO 3 H 2 O-acetonitrile (7: 3) mixture
  • Example 1 ⁇ Ethyl (2,2,2-trifluoroethyl) sodium phosphate (without solvent)> Sodium iodide (630 mg, 4.20 mmol, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as a raw material salt is placed in a 50 mL eggplant-shaped flask containing a stirrer, and then diethyl 2,2,2- as a phosphoric acid ester. Trifluoroethyl phosphate (1.18 g, 5.00 mmol) was added at room temperature. The mixed solution was heated at 120 ° C. for 4 hours under a nitrogen stream. After allowing the reaction mixture to cool to room temperature, the reaction mixture is filtered, and the residue is dried overnight at 120 ° C.
  • Example 2 ⁇ Bis (2,2,2-trifluoroethyl) copper (II) phosphate (without solvent)> Copper (II) chloride (980 mg, 7.29 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) as a raw material salt is placed in a 100 mL eggplant-shaped flask containing a stirrer, and then Tris (2,2,2) as a phosphoric acid ester is placed. -Trifluoroethyl) phosphate (50.0 g, 145 mmol) was added at room temperature. This mixed solution was heated and refluxed under a nitrogen stream at a hot water bath temperature of 155 ° C. for 6 hours.
  • the reaction mixture was concentrated using an evaporator, the obtained residue was filtered, and washed with a small amount of DMC (dimethyl carbonate).
  • the residue was dried at 120 ° C. for 1 hour using a dryer to obtain a white solid lithium difluorophosphate (27.4 g, 91.4%) as a phosphate compound.
  • the purity of lithium difluorophosphate was 99.4%.
  • a colorless liquid bis (2,2,2-trifluoroethyl) trimethylsilyl phosphate (21.2 g, 83.1%) as a phosphate ester by removing excess chlorotrimethylsilane from the reaction mixture by an evaporator. ) was obtained.
  • the purity of bis (2,2,2-trifluoroethyl) trimethylsilyl phosphate was 99.7%.
  • Example 8 ⁇ Synthesis of trimethylsilyldifluorophosphate 1 (without solvent)> After putting chlorotrimethylsilane (48.7 g, 448 mmol, manufactured by TCI) as a silicon compound in a 200 mL eggplant-shaped flask containing a stirrer, difluorophosphoric acid (45.7 g, 448 mmol) as a phosphoric acid compound. Was added dropwise at room temperature. The mixed solution was stirred at 50 ° C. for 6 hours under a nitrogen stream. The reaction mixture was distilled under atmospheric pressure to obtain a colorless liquid trimethylsilyldifluorophosphate (49.0 g, 62.7%) as a phosphoric acid ester. The purity of trimethylsilyldifluorophosphate was 95.6%.
  • Example 9 ⁇ Synthesis of trimethylsilyldifluorophosphate 2 (reuse of chlorotrimethylsilane as a by-product, without solvent)> After putting chlorotrimethylsilane ⁇ 7.16 g, 65.9 mmol ⁇ as a silicon compound in a 50 mL eggplant-shaped flask containing a stir bar, difluorophosphoric acid (6.71 g, 65.8 mmol) as a phosphoric acid compound. was added dropwise at room temperature. The mixed solution was stirred at 50 ° C. for 3 hours under a nitrogen stream.
  • the reaction mixture was distilled under atmospheric pressure to obtain a colorless liquid trimethylsilyldifluorophosphate (7.12 g, 62.2%) as a phosphoric acid ester.
  • the purity of trimethylsilyldifluorophosphate was 96.1%.
  • a by-product (by-product (E') of step (I)) produced as a by-product during the synthesis of lithium difluorophosphate of Example 5 was used.
  • Example 10 ⁇ Synthesis of dimethylvinylsilyldifluorophosphate (without solvent)> Chlorodimethylvinylsilane (10.1 g, 83.7 mmol, manufactured by TCI) as a silicon compound was placed in a 100 mL eggplant-shaped flask containing a stirrer, and then difluorophosphoric acid (8.14 g, manufactured by TCI) as a phosphoric acid compound. 79.8 mmol) was added dropwise at room temperature. The mixed solution was stirred at 60 ° C. for 3 hours under a nitrogen stream.
  • the reaction mixture was distilled under reduced pressure to obtain a colorless liquid dimethylvinylsilyldifluorophosphate (2.33 g, 15.7%) as a phosphoric acid ester.
  • the purity of dimethylvinylsilyldifluorophosphate was 97.9%.
  • Example 11 ⁇ Synthesis of dimethylphenylsilyldifluorophosphate (without solvent)> Chlorodimethylphenylsilane (16.8 g, 98.4 mmol, manufactured by TCI) as a silicon compound is placed in a 100 mL eggplant-shaped flask containing a stirrer, and then difluorophosphoric acid (10.1 g) as a phosphoric acid compound. , 99.0 mmol) was added dropwise at room temperature. The mixed solution was stirred at 60 ° C. for 3 hours under a nitrogen stream.
  • the reaction mixture was distilled under reduced pressure to obtain a colorless liquid dimethylphenylsilyldifluorophosphate (10.6 g, 45.6%) as a phosphoric acid ester.
  • the purity of dimethylphenylsilyldifluorophosphate was 97.5%.
  • Example 12 ⁇ Synthesis of triethylsilyldifluorophosphate (without solvent)> Chlorotriethylsilane (10.0 g, 66.3 mmol, manufactured by TCI) as a silicon compound was placed in a 50 mL eggplant-shaped flask containing a stirrer, and then difluorophosphoric acid (6.69 g, as a phosphoric acid compound) was placed. 65.6 mmol) was added dropwise at room temperature. The mixed solution was stirred at 60 ° C. for 4 hours under a nitrogen stream.
  • the reaction mixture was distilled under reduced pressure to obtain a colorless liquid triethylsilyldifluorophosphate (7.29 g, 51.4%) as a phosphoric acid ester.
  • the purity of triethylsilyldifluorophosphate was 98.3%.
  • the reaction mixture was distilled under reduced pressure to obtain a colorless liquid cyclohexyldimethylsilyldifluorophosphate (9.92 g, 61.0%) as a phosphoric acid ester.
  • the purity of cyclohexyldimethylsilyldifluorophosphate was 93.6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)

Abstract

【課題】極めて簡便な方法により、高純度のリン酸塩化合物を製造することが可能な新規のリン酸塩化合物の製造方法を提供する。 【解決手段】本発明に係るリン酸塩化合物の製造方法は、化学式(A)で表されるリン酸エステルと、化学式(B)で表される原料塩とを反応させて、化学式(C)で表されるリン酸塩化合物を生成する工程(I)を含むことを特徴とする。[反応式中、ZはC又はSiを表す。Mは、アルカリ金属等を表す。X及びXは、それぞれ独立して、ハロゲン原子等を表す。X~Xは、それぞれ独立して、炭素数が1~10の炭化水素基、炭素数が1~10のアルコキシ基等を表し、かつ、少なくとも1つは、炭素数1~10の炭化水素基又は炭素数1~10のアルコキシ基の何れかである。Xは、ハロゲン原子等を表す。nは、1~4の自然数を表す。]

Description

リン酸塩化合物の製造方法
 本発明は、リン酸塩化合物の製造方法に関する。より詳細には、リン酸エステルと原料塩との反応により、極めて簡便に、高純度のリン酸塩化合物の生成が可能なリン酸塩化合物の製造方法に関する。
 リン酸塩化合物の利用は、洗浄剤組成物における界面活性剤、医薬品、帯電防止剤、難燃剤、及び二次電池用添加剤など多岐にわたり(特許文献1~4)、各用途に応じて多様なリン酸塩化合物の製造方法が開発されている。
 例えば、特許文献5には、リン酸塩化合物としてのリン酸ジエステル塩の製造方法が開示されている。この製造方法によれば、水の存在下でリン酸トリエステルを加水分解してリン酸ジエステルを生成した後、当該リン酸ジエステルと、水酸化ナトリウムや水酸化カリウム等の水酸化物とを反応させて、リン酸ジエステル塩を生成させている。しかし、この製造方法では、未反応のリン酸トリエステルや、リン酸トリエステルの加水分解の際に副生するアルコール、及びリン酸トリエステルと水酸化物との反応の際に用いる反応溶媒を分離するための煩雑な工程が必要となる。また、出発原料であるリン酸トリエステルは、例えば、モノハロリン酸ジエステル等とヒドロキシ化合物とを、トリエチルアミン等の有機塩基の存在下で反応させることにより得られることが開示されているが、有機塩基の塩が副生するため、当該有機塩基の塩を除去するための工程も必要となる。従って、特許文献5に記載のリン酸ジエステル塩の製造方法では、精製・分離工程や廃棄物処理の観点から工業生産に於ける課題が多い。
 特許文献6には、モノハロゲノリン酸エステル塩又はリン酸ジエステル塩の製造方法が開示されている。この製造方法によれば、ジハロゲノリン酸塩と、アルコール類等と、アルカリ金属塩基等とを反応させて、モノハロゲノリン酸エステル塩等を生成させている。しかし、反応制御が容易ではない上、生成物としてはリン酸ジエステル塩との混合物が得られる。そのため、モノハロゲノリン酸エステル塩等の単離・精製が必要となるが、これらの工程は極めて困難となる。一方、リン酸ジエステル塩が得られる場合、反応基質によっては生成物にモノハロリン酸エステル塩やアルカリ金属塩を含むことがある。その場合、リン酸ジエステル塩の単離工程が必要になるが、製造プロセスが煩雑になる。また、反応基質及び溶媒として、過剰量のアルコールを用いるため、生成物からリン酸ジエステル塩を分離する際、真空乾燥や加熱乾燥等によって多量のアルコールを留去する必要がある。
特開2007-332355号公報 特開2008-231026号公報 WO2016/158258号公報 特開平8-138733号公報 特開2017-36273号公報 特開2019-135215号公報
 本発明は前記問題点に鑑みられたものであり、その目的は、極めて簡便な方法により、高純度のリン酸塩化合物を製造することが可能な新規のリン酸塩化合物の製造方法を提供することにある。
 本発明に係るリン酸塩化合物の製造方法は、前記の課題を解決するために、以下の化学式(A)で表されるリン酸エステルと、以下の化学式(B)で表される原料塩とを反応させて、以下の化学式(C)で表されるリン酸塩化合物を生成する工程(I)を少なくとも含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000007
[式中、前記Zは、炭素原子又はケイ素原子を表す。前記X及びXは、それぞれ独立して、ハロゲン原子、炭素数が1~10の炭化水素基、炭素数が1~10のアルコキシ基、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有するアルコキシ基を表す。前記X~Xは、それぞれ独立して、水素原子、ハロゲン原子、炭素数が1~10の炭化水素基、炭素数が1~10のアルコキシ基、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有するアルコキシ基を表し、かつ、前記X~Xの少なくとも1つは、前記炭素数1~10の炭化水素基又は前記炭素数1~10のアルコキシ基の何れかである。]
Figure JPOXMLDOC01-appb-C000008
[式中、前記Mは、アルカリ金属、アルカリ土類金属、アルミニウム、遷移金属、又はオニウムを表す。前記Xは、ハロゲン原子、炭素数1~10のアルコキシ基、ハロアシルオキシ基、スルホニルオキシ基(-SOY基:前記Yは、ハロゲン原子、炭素数1~10の炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)を表す。前記nは、1~4の自然数を表す。]
Figure JPOXMLDOC01-appb-C000009
[式中、前記Mは、前記化学式(B)と同一のカチオン種を表す。前記X及びXは、前記化学式(A)と同一の官能基を表す。前記nは、前記化学式(B)と同一の価数を表す。]
 前記の構成に於いては、前記化学式(A)に於ける前記Zがケイ素原子である場合、以下の化学式(D)で表されるリン酸化合物と、以下の化学式(E)で表されるケイ素化合物とを反応させて、以下の化学式(F)で表されるリン酸シリルエステルを生成する工程(II)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000010
[式中、前記M’は、水素原子、アルカリ金属、アルカリ土類金属、炭素数が1~10の第1級炭化水素基、炭素数が1~10の第2級炭化水素基、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する第1級炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する第2級炭化水素基を表す。前記X及びXは、前記化学式(A)と同一の官能基を表す。前記nは、前記化学式(B)と同一の価数を表す。]
Figure JPOXMLDOC01-appb-C000011
[式中、前記X~Xは、前記化学式(A)と同一の官能基を表す。前記Xは脱離基であって、ハロゲン原子、炭素数1~10のアルコキシ基、ハロアシルオキシ基、又はスルホニルオキシ基(-SOY基:前記Yは、ハロゲン原子、炭素数1~10の炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)を表す。]
Figure JPOXMLDOC01-appb-C000012
[式中、前記X~Xは、前記化学式(A)と同一の官能基を表す。]
 さらに前記の構成に於いては、前記化学式(E)で表されるケイ素化合物が、前記工程(I)で副生する副生物であることが好ましい。
 前記の構成に於いて、前記リン酸化合物は、前記化学式(D)に於ける前記X及びXが、それぞれ独立して、炭素数1~10のアルコキシ基であり、前記M’が水素原子である場合のリン酸ジエステルであることが好ましい。
 また前記の構成に於いて、前記リン酸化合物は、前記化学式(D)に於ける前記X及びXの何れか一方がフッ素原子であり、他方が炭素数1~10のアルコキシ基であり、前記M’が水素原子である場合のフルオロホスホリック酸エステルであることが好ましい。
 さらに、前記の構成に於いて、前記リン酸化合物は、前記化学式(D)に於ける前記X及びXがフッ素原子であり、前記M’が水素原子である場合のジフルオロホスホリック酸であることが好ましい。
 前記の構成に於いて、前記ケイ素化合物は、前記化学式(E)に於ける前記X~Xが、それぞれ独立して、炭素数1~6の炭化水素基であり、前記Xがハロゲン原子である場合のトリアルキルシリルハロゲン化物であることが好ましい。
 また、前記の構成に於いて、前記化学式(B)に於ける前記Mは、リチウム原子、ナトリウム原子、マグネシウム原子、1-メチル-1-プロピルピロリジニウム、又は1-エチル-3-メチルイミダゾリウムであることが好ましい。
 前記の構成に於いては、前記工程(I)及び工程(II)の少なくとも何れか一方を無溶媒下で行うことができる。
 また、前記の構成に於いては、前記工程(I)及び工程(II)の少なくとも何れか一方を非水溶媒中で行うこともできる。
 さらに、前記の構成に於いては、前記非水溶媒が非プロトン性有機溶媒であることが好ましい。
 本発明によれば、前記化学式(A)で表されるリン酸エステルと、前記化学式(B)で表される原料塩とを反応させることで、前記化学式(C)で表されるリン酸塩化合物を、従来の製造方法よりも極めて簡便に、かつ効率良く、高純度で製造することができる。
(リン酸塩化合物の製造方法)
 本実施の形態に係るリン酸塩化合物の製造方法について、以下に説明する。
 本実施の形態のリン酸塩化合物の製造方法は、以下に示す化学反応式の通り、化学式(A)で表されるリン酸エステルと、化学式(B)で表される原料塩とを反応させて、化学式(C)で表されるリン酸塩化合物を生成する工程(I)を少なくとも含む。
Figure JPOXMLDOC01-appb-C000013
 工程(I)の反応は、リン酸エステルのXZ-基と、原料塩のMとが交換されて、リン酸塩化合物を生成するというものであり、当該リン酸塩化合物と当モル量の副生物(E’)も生成する。
 <リン酸エステル>
 前記リン酸エステルは、以下の化学式(A)で表される。
Figure JPOXMLDOC01-appb-C000014
 前記化学式(A)に於いて、前記Zは炭素原子又はケイ素原子を表す。
 前記化学式(A)に於いて、前記X及びXは、それぞれ独立して、ハロゲン原子、炭素数が1~10の炭化水素基、炭素数が1~10のアルコキシ基、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基(以下、「ハロゲン原子等を有する炭化水素基」という場合がある。)、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有するアルコキシ基(以下、「ハロゲン原子等を有するアルコキシ基」という場合がある。)を表す。
 尚、本明細書に於いて官能基に於ける「炭素数」とは、特記しない限り、官能基の総炭素数を意味する。また本明細書に於いて、例えば、「炭素数が1~10の炭化水素基」とは、炭素数が1、2、3、・・・又は10の炭化水素基の総称を意味しており、このことは炭素数を規定した他の官能基に於いても特記しない限り、同様の意味を有する。
 前記X及びXに於ける炭素数が1~10の炭化水素基としては、例えば、炭素数1~10のアルキル基等が挙げられる。さらに、炭素数1~10のアルキル基としては特に限定されず、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基及びデシル基からなる鎖状アルキル基、シクロペンチル基及びシクロヘキシル基等の環状アルキル基等が挙げられる。前記X及びXに於ける炭素数が1~10の炭化水素基としては、炭素数1、2、3、4、5及び6の炭化水素基が好ましく、炭素数1、2及び3の炭化水素基がより好ましい。
 前記X及びXに於ける炭素数が1~10のアルコキシ基としては特に限定されず、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基及びヘキソキシ基等の鎖状アルコキシ基、シクロペントキシ基及びシクロヘキソキシ基等の環状アルコキシ基、フェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、3,5-ジメチルフェノキシ基等が挙げられる。前記X及びXに於ける炭素数が1~10のアルコキシ基としては、炭素数1、2、3、4、5及び6のアルコキシ基が好ましく、炭素数1、2及び3のアルコキシ基がより好ましい。
 前記X及びXに於ける、炭素数が1~10のハロゲン原子を有する炭化水素基とは、当該炭化水素基中の水素の一部又は全部がハロゲン原子で置換された官能基を意味する。前記ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の原子を表す。前記X及びXに於ける、炭素数が1~10のハロゲン原子を有する炭化水素基としては、炭素数1、2、3、4、5及び6のハロゲン原子を有する炭化水素基が好ましく、炭素数1、2及び3のハロゲン原子を有する炭化水素基がより好ましい。
 前記X及びXに於ける、炭素数が1~10のヘテロ原子を有する炭化水素基とは、当該炭化水素基中の水素及び炭素の一部又は全部がヘテロ原子で置換された官能基を意味する。前記ヘテロ原子は、酸素、窒素、及び硫黄等の原子を表す。前記X及びXに於ける、炭素数が1~10のヘテロ原子を有する炭化水素基としては、炭素数1、2、3、4、5及び6のヘテロ原子を有する炭化水素基が好ましく、炭素数1、2及び3のヘテロ原子を有する炭化水素基がより好ましい。
 前記X及びXに於けるハロゲン原子又はヘテロ原子を有する炭化水素基の具体例としては、例えば、ヨードメチル基、ブロモメチル基、クロロメチル基、フルオロメチル基、ジヨードメチル基、ジブロモメチル基、ジクロロメチル基、ジフルオロメチル基、トリヨードメチル基、トリブロモメチル基、トリクロロメチル基、トリフルオロメチル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基及びヘキサフルオロ-2-プロピル基等の鎖状含ハロゲン化アルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基及び2-フルオロシクロヘキシル基等の環状含ハロゲン化アルキル基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、2,6-ジヨードフェニル基、2,6-ジブロモフェニル基、2,6-ジクロロフェニル基、2,6-ジフルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基、ペンタヨードフェニル基、ペンタブロモフェニル基、ペンタクロロフェニル基及びペンタフルオロフェニル基等の含ハロゲン化アリール基、2-ニトロフェニル基、4-ニトロフェニル基、2,4-ジニトロフェニル基、2,6-ジニトロフェニル基及び3-アミノ-2-ナフチル基等の含ヘテロアリール基等が挙げられる。
 前記X及びXに於ける、炭素数が1~10の範囲であって、不飽和結合を有する炭化水素基とは、例えば、炭素数が1~10の範囲であって、炭素-炭素間に二重結合や三重結合を有する炭化水素基を意味する。さらに、当該不飽和結合を有する炭化水素基としては、不飽和結合数が1、2、3、4及び5の炭化水素基が好ましく、不飽和結合数が1、2及び3の炭化水素基がより好ましい。
 前記X及びXに於ける、炭素数が1~10の範囲であって、不飽和結合を有する炭化水素基の具体例としては、例えば、エテニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、2-メチル-2-プロペニル基、2-ブテニル基、3-ブテニル基、3-メチル-2-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、ペンタ-1,4-ジエニル基、ペンタ-2,4-ジエニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、ヘキサ-1,3-ジエニル基、ヘキサ-1,5-ジエニル基、ヘキサ-2,4-ジエニル基、ヘキサ-2,5-ジエニル基、ヘキサ-3,5-ジエニル基及び3-メチル-ヘキサ-2,4-ジエニル基等の鎖状アルケニル基、1-シクロペンテニル基、2-シクロペンテニル基、2,4-シクロペンタジエニル基、1-シクロヘキセニル基、2-シクロヘキセニル基及び3-シクロヘキセニル基等の環状アルケニル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基、1-ナフチル基及び2-ナフチル基等のアリール基、エチニル基、2-プロピニル基、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、3-ペンチニル基及び4-ペンチニル基等の鎖状アルキニル基等が挙げられる。
 前記X及びXに於ける、炭素数が1~10のハロゲン原子を有するアルコキシ基とは、当該アルコキシ基中の水素の一部又は全部がハロゲン原子で置換された官能基を意味する。ここで、ハロゲン原子とは、前述の場合と同様、フッ素、塩素、臭素、及びヨウ素の原子を意味する。前記X及びXに於ける、炭素数が1~10のハロゲン原子を有するアルコキシ基としては、炭素数1、2、3、4、5及び6のハロゲン原子を有するアルコキシ基が好ましく、炭素数1、2及び3のハロゲン原子を有するアルコキシ基がより好ましい。
 また、前記X及びXに於ける、炭素数が1~10のヘテロ原子を有するアルコキシ基とは、当該アルコキシ基中の水素及び炭素の一部又は全部がヘテロ原子で置換された官能基を意味する。ここで、ヘテロ原子とは、前述の場合と同様、酸素、窒素、及び硫黄等の原子を意味する。前記X及びXに於ける、炭素数が1~10のヘテロ原子を有するアルコキシ基としては、炭素数1、2、3、4、5及び6のヘテロ原子を有するアルコキシ基が好ましく、炭素数1、2及び3のヘテロ原子を有するアルコキシ基がより好ましい。
 前記X及びXに於けるハロゲン原子又はヘテロ原子を有するアルコキシ基の具体例としては、例えば、ヨードメトキシ基、ブロモメトキシ基、クロロメトキシ基、フルオロメトキシ基、ジヨードメトキシ基、ジブロモメトキシ基、ジクロロメトキシ基、ジフルオロメトキシ基、トリヨードメトキシ基、トリブロモメトキシ基、トリクロロメトキシ基、トリフルオロメトキシ基、2-ヨードエトキシ基、2-ブロモエトキシ基、2-クロロエトキシ基、2-フルオロエトキシ基、1,2-ジヨードエトキシ基、1,2-ジブロモエトキシ基、1,2-ジクロロエトキシ基、1,2-ジフルオロエトキシ基、2,2-ジヨードエトキシ基、2,2-ジブロモエトキシ基、2,2-ジクロロエトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリブロモエトキシ基、2,2,2-トリクロロエトキシ基、2,2,2-トリフルオロエトキシ基及びヘキサフルオロ-2-プロポキシ基等の鎖状含ハロゲン化アルコキシ基、2-ヨードシクロヘキシルオキシ基、2-ブロモシクロヘキシルオキシ基、2-クロロシクロヘキシルオキシ基及び2-フルオロシクロヘキシルオキシ基等の環状含ハロゲン化アルコキシ基、2-ヨードフェノキシ基、2-ブロモフェノキシ基、2-クロロフェノキシ基、2-フルオロフェノキシ基、3-ヨードフェノキシ基、3-ブロモフェノキシ基、3-クロロフェノキシ基、3-フルオロフェノキシ基、4-ヨードフェノキシ基、4-ブロモフェノキシ基、4-クロロフェノキシ基、4-フルオロフェノキシ基、2,6-ジヨードフェノキシ基、2,6-ジブロモフェノキシ基、2,6-ジクロロフェノキシ基、2,6-ジフルオロフェノキシ基、3,5-ジヨードフェノキシ基、3,5-ジブロモフェノキシ基、3,5-ジクロロフェノキシ基、3,5-ジフルオロフェノキシ基、ペンタヨードフェノキシ基、ペンタブロモフェノキシ基、ペンタクロロフェノキシ基及びペンタフルオロフェノキシ基等の含ハロゲン化アリール基、2-ニトロフェノキシ基、4-ニトロフェノキシ基、2,4-ジニトロフェノキシ基、2,6-ジニトロフェノキシ基及び3-アミノ-2-ナフトキシ基等の含ヘテロアリール基等が挙げられる。
 前記X及びXに於ける、炭素数が1~10の範囲であって、不飽和結合を有するアルコキシ基とは、例えば、炭素-炭素間に二重結合や三重結合を有するアルコキシ基を意味する。さらに、当該不飽和結合を有するアルコキシ基としては、不飽和結合数が1、2、3、4及び5のアルコキシ基が好ましく、不飽和結合数が1、2及び3のアルコキシ基がより好ましい。
 前記X及びXに於ける、炭素数が1~10の不飽和結合を有するアルコキシ基の具体例としては、例えば、エテニルオキシ基、1-プロペニルオキシ基、2-プロペニルオキシ基、イソプロペニルオキシ基、2-メチル-2-プロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、3-メチル-2-ブテニルオキシ基、1-ペンテニルオキシ基、2-ペンテニルオキシ基、3-ペンテニルオキシ基、4-ペンテニルオキシ基、ペンタ-1,4-ジエニルオキシ基、ペンタ-2,4-ジエニルオキシ基、1-ヘキセニルオキシ基、2-ヘキセニルオキシ基、3-ヘキセニルオキシ基、4-ヘキセニルオキシ基、5-ヘキセニルオキシ基、ヘキサ-1,3-ジエニルオキシ基、ヘキサ-1,5-ジエニルオキシ基、ヘキサ-2,4-ジエニルオキシ基、ヘキサ-2,5-ジエニルオキシ基、ヘキサ-3,5-ジエニルオキシ基及び3-メチル-ヘキサ-2,4-ジエニルオキシ基等の鎖状アルケニルオキシ基、1-シクロペンテニルオキシ基、2-シクロペンテニルオキシ基、2,4-シクロペンタジエニルオキシ基、1-シクロヘキセニルオキシ基、2-シクロヘキセニルオキシ基、3-シクロヘキセニルオキシ基等の環状アルケニルオキシ基、フェノキシ基、2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、2,6-ジメチルフェノキシ基、3,5-ジメチルフェノキシ基、2,4,6-トリメチルフェノキシ基、1-ナフトキシ基及び2-ナフトキシ基等のアリールオキシ基、エチニルオキシ基、2-プロピニルオキシ基、ブチニルオキシ基、2-ブチニルオキシ基、3-ブチニルオキシ基、ペンチニルオキシ基、2-ペンチニルオキシ基、3-ペンチニルオキシ基及び4-ペンチニルオキシ基等の鎖状アルキニルオキシ基等が挙げられる。
 前記X及びXは、同種でもよく相互に異なっていてもよい。また、前記X及びXとして前記に挙げた官能基は単なる例示に過ぎず、本実施の形態はこれらに限定されるものではない。
 前記化学式(A)に於けるX~Xは、それぞれ独立して、水素原子、ハロゲン原子、炭素数が1~10の炭化水素基、炭素数が1~10のアルコキシ基、ハロゲン原子等を有する炭化水素基、又は、ハロゲン原子等を有するアルコキシ基を表す。さらに、前記X~Xの少なくとも1つは、前記炭素数1~10の炭化水素基又は前記炭素数1~10のアルコキシ基の何れかである。
 前記炭素数が1~10の炭化水素基、炭素数が1~10のアルコキシ基、ハロゲン原子等を有する炭化水素基、及びハロゲン原子等を有するアルコキシ基は、前記X及びXで述べたのと同様である。従って、その詳細については省略する。
 前記X~Xは、同種でもよく相互に異なっていてもよい。また、前記X~Xとして前記に挙げた官能基は単なる例示に過ぎず、本実施の形態はこれらに限定されるものではない。
 前記化学式(A)で表されるリン酸エステルの具体例としては、例えば、トリメチルホスファート、トリエチルホスファート、トリプロピルホスファート、トリブチルホスファート、トリペンチルホスファート、トリヘキシルホスファート、2-エチルヘキシルジフェニルホスファート、トリアリルホスファート、トリプロパルギルホスファート、トリス(2-ブトキシエチル)ホスファート、トリス(2-クロロエチル)ホスファート、エチルビス(2,2,2-トリフルオロエチル)ホスファート、ジエチル2,2,2-トリフルオロエチルホスファート、トリス(2,2,2-トリフルオロエチル)ホスファート、トリス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)ホスファート、ジメチルフルオロホスファート、ジエチルフルオロホスファート、ジプロピルフルオロホスファート、ジブチルフルオロホスファート、ジペンチルフルオロホスファート、ジヘキシルフルオロホスファート、2-エチルヘキシルフェニルフルオロホスファート、ジアリルフルオロホスファート、ジプロパルギルフルオロホスファート、ビス(2-ブトキシエチル)フルオロホスファート、ビス(2-クロロエチル)フルオロホスファート、ビス(2,2,2-トリフルオロエチル)フルオロホスファート、ビス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)フルオロホスファート、メチルジフルオロホスファート、エチルジフルオロホスファート、プロピルジフルオロホスファート、アリルジフルオロホスファート、プロパルギルジフルオロホスファート、2-ブトキシエチルジフルオロホスファート、2-クロロエチルジフルオロホスファート、2,2,2-トリフルオロエチルジフルオロホスファート、1,1,1,3,3,3-ヘキサフルオロ-2-プロピルジフルオロホスファート、ジメチルトリメチルシリルホスファート、ジエチルトリメチルシリルホスファート、トリメチルシリルジプロピルホスファート、ジブチルトリメチルシリルホスファート、トリメチルシリルジペンチルホスファート、ジヘキシルトリメチルシリルホスファート、トリメチルシリルジフェニルホスファート、ジアリルトリメチルシリルホスファート、トリメチルシリルジプロパルギルホスファート、ビス(2-ブトキシエチル)トリメチルシリルホスファート、ビス(2-クロロエチル)トリメチルシリルホスファート、ビス(2,2,2-トリフルオロエチル)トリメチルシリルホスファート、ビス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)トリメチルシリルホスファート、メチルトリメチルシリルフルオロホスファート、エチルトリメチルシリルフルオロホスファート、トリメチルシリル(プロピル)フルオロホスファート、ブチルトリメチルシリルフルオロホスファート、トリメチルシリル(ペンチル)フルオロホスファート、ヘキシルトリメチルシリルフルオロホスファート、トリメチルシリル(フェニル)フルオロホスファート、アリルトリメチルシリルフルオロホスファート、トリメチルシリル(プロパルギル)フルオロホスファート、2-ブトキシエチルトリメチルシリルフルオロホスファート、2-クロロエチルトリメチルシリルフルオロホスファート、2,2,2-トリフルオロエチルトリメチルシリルフルオロホスファート、1,1,1,3,3,3-ヘキサフルオロ-2-プロピルトリメチルシリルフルオロホスファート、トリメチルシリルジフルオロホスファート、ジメチルビニルシリルジフルオロホスファート、ジメチルフェニルシリルジフルオロホスファート、トリエチルシリルジフルオロホスファート、シクロヘキシルジメチルシリルジフルオロホスファート、トリイソプロピルシリルジフルオロホスファート、メチルジフェニルシリルジフルオロホスファート等が挙げられる。但し、前記化学式(A)で表されるリン酸エステルは、これらの化合物群に限定されない。
 <原料塩>
 前記原料塩は、以下の化学式(B)で表される。
Figure JPOXMLDOC01-appb-C000015
 前記化学式(B)に於いて、前記Mはアルカリ金属、アルカリ土類金属、アルミニウム、遷移金属、又はオニウムを表す。
 前記アルカリ金属としては特に限定されず、Li、Na、K、Rb、Csが挙げられる。これらのアルカリ金属のうち、入手容易性の観点からは、Li、Na及びKが好ましく、リン酸塩化合物の汎用性の観点からは、Li及びNaがより好ましい。
 前記アルカリ土類金属としては特に限定されず、Be、Mg、Ca、Sr、Baが挙げられる。これらのアルカリ土類金属のうち、入手容易性及び安全性の観点からは、Mg、Ca及びBaが好ましく、リン酸塩化合物の汎用性の観点からは、Mgがより好ましい。
 前記遷移金属としては特に限定されず、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znが挙げられる。これらの遷移金属のうち、入手容易性の観点から、Ti、Mn、Fe、Co、Ni及びCuが好ましい。
 前記オニウムとしては特に限定されず、第1級アンモニウム、第2級アンモニウム、第3級アンモニウム、第4級アンモニウム、第4級ホスホニウム、スルホニウム等が挙げられる。
 前記第1級アンモニウムとしては特に限定されず、例えば、メチルアンモニウム、エチルアンモニウム、プロピルアンモニウム、イソプロピルアンモニウム等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記第2級アンモニウムとしては特に限定されず、例えば、ジメチルアンモニウム、ジエチルアンモニウム、ジプロピルアンモニウム、ジブチルアンモニウム、エチルメチルアンモニウム、メチルプロピルアンモニウム、ブチルメチルアンモニウム、ブチルプロピルアンモニウム、ジイソプロピルアンモニウム等が挙げられる。
 前記第3級アンモニウムとしては特に限定されず、例えば、トリメチルアンモニウム、トリエチルアンモニウム、トリプロピルアンモニウムアンモニウム、トリブチルアンモニウム、エチルジメチルアンモニウム、ジエチルメチルアンモニウム、トリイソプロピルアンモニウム、ジメチルイソプロピルアンモニウム、ジエチルイソプロピルアンモニウム、ジメチルプロピルアンモニウム、ブチルジメチルアンモニウム、1-メチルピロリジニウム、1-エチルピロリジニウム、1-プロピルピロリジニウム、1-ブチルプロピルピロリジニウム、1-メチルイミダゾリウム、1-エチルイミダゾリウム、1-プロピルイミダゾリウム、1-ブチルイミダゾリウム、ピラゾリウム、1-メチルピラゾリウム、1-エチルピラゾリウム、1-プロピルピラゾリウム、1-ブチルピラゾリウム、ピリジニウム等が挙げられる。
 前記第4級アンモニウムとしては特に限定されず、例えば、脂肪族4級アンモニウム類、イミダゾリウム類、ピリジニウム類、ピラゾリウム類、ピリダジニウム類等が挙げられる。
 さらに、前記脂肪族4級アンモニウム類としては特に限定されず、例えば、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトライソプロピルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルイソプロピルアンモニウム、テトラブチルアンモニウム、ブチルトリメチルアンモニウム、トリメチルペンチルアンモニウム、ヘキシルトリメチルアンモニウム、1-メチル-1-プロピルピロリジニウム、1-エチル-1-メチル-ピロリジニウム、1-ブチル-1-メチルピロリジニウム、1-エチル-1-メチル-ピペリジニウム、1-ブチル-1-メチルピペリジニウム等が挙げられる。
 前記イミダゾリウム類としては特に限定されず、例えば、1,3-ジメチル-イミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-n-プロピル-3-メチルイミダゾリウム、1-n-ブチル-3-メチルイミダゾリウム、1-n-ヘキシル-3-メチルイミダゾリウム等が挙げられる。
 前記ピリジニウム類としては特に限定されず、例えば、1-メチルピリジニウム、1-エチルピリジニウム、1-n-プロピルピリジニウム等が挙げられる。
 前記ピラゾリウム類としては特に限定されず、例えば、1,2-ジメチルピラゾリウム、2-エチル-1-メチルピラゾリウム、2-メチル-1-プロピルピラゾリウム、2-ブチル-1-メチルピラゾリウム、1-メチルピラゾリウム、3-メチルピラゾリウム、4-メチルピラゾリウム、4-ヨードピラゾリウム、4-ブロモピラゾリウム、4-ヨード-3-メチルピラゾリウム、4-ブロモー3-メチルピラゾリウム、3-トリフルオロメチルピラゾリウムが挙げられる。
 前記ピリダジニウム類としては特に限定されず、例えば、1-メチルピリダジニウム、1-エチルピリダジニウム、1-プロピルピリダジニウム、1-ブチルピリダジニウム、3-メチルピリダジニウム、4-メチルピリダジニウム、3-メトキシピリダジニウム、3,6-ジクロロピリダジニウム、3,6-ジクロロ-4-メチルピリダジニウム、3-クロロ-6-メチルピリダジニウム、3-クロロ-6-メトキシピリダジニウムが挙げられる。
 例示したオニウムのうち、入手容易性及び汎用性の観点からは、テトラエチルアンモニウム、トリエチルメチルアンモニウム、1-メチル-1-プロピルピロリジニウム、及び1-エチル-3-メチルイミダゾリウム等が好ましい。
 前記Xに於けるハロゲン原子としては、フッ素、塩素、臭素、及びヨウ素の原子が挙げられる。これらのハロゲン原子のうち、脱離能の高さや副生成物の再利用の観点からは、塩素原子、臭素原子及びヨウ素原子が好ましい。
 前記Xに於ける炭素数1~10のアルコキシ基としては特に限定されず、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基及びヘキソキシ基等の鎖状アルコキシ基、シクロペントキシ基及びシクロヘキソキシ基等の環状アルコキシ基、フェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、3,5-ジメチルフェノキシ基等が挙げられる。前記Xに於ける炭素数1~10のアルコキシ基としては、炭素数1、2、3、4、5及び6のアルコキシ基が好ましく、炭素数1、2及び3のアルコキシ基がより好ましい。
 前記Xに於けるハロアシルオキシ基としては特に限定されないが、1~7個の何れかの炭素原子を有し、かつ1個又はそれ以上の水素原子がハロゲン原子により置換された官能基が好ましい。具体的には、例えば、ヨードアセチル基、ブロモアセチル基、クロロアセチル基、フルオロアセチル基、ジヨードアセチル基、ジブロモアセチル基、ジクロロアセチル基、ジフルオロアセチル基、トリヨードアセチル基、トリブロモアセチル基、トリクロロアセチル基、トリフルオロアセチル基、3,3,3-トリヨードプロパノイル基、3,3,3-トリブロモプロパノイル基、3,3,3-トリクロロプロパノイル基、3,3,3-トリフルオロプロパノイル基、ペンタヨードプロパノイル基、ペンタブロモプロパノイル基、ペンタクロロプロパノイル基、ペンタフルオロプロパノイル基、4,4,4-トリヨードブタノイル基、4,4,4-トリブロモブタノイル基、4,4,4-トリクロロブタノイル基、4,4,4-トリフルオロブタノイル基、3,3,4,4,4-ペンタヨードブタノイル基、3,3,4,4,4-ペンタブロモブタノイル基、3,3,4,4,4-ペンタクロロブタノイル基、3,3,4,4,4-ペンタフルオロブタノイル基、ヘプタヨードブタノイル基、ヘプタブロモブタノイル基、ヘプタクロロブタノイル基、ヘプタフルオロプブタノイル基、ペンタヨードベンゾイル基、ペンタブロモベンゾイル基、ペンタクロロベンゾイル基及びペンタフルオロベンゾイル基等が挙げられる。前記ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素を表す。
 前記Xに於けるスルホニルオキシ基は、-SOY基で表される。ここで、前記Yは、ハロゲン原子、炭素数1~10の炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。
 前記Yに於けるハロゲン原子としては、フッ素、塩素、臭素、及びヨウ素の原子が挙げられる。
 前記Yに於ける炭素数1~10の炭化水素基としては特に限定されず、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基及びオクチル基等の鎖状アルキル基、シクロペンチル基及びシクロヘキシル基等の環状アルキル基等が挙げられる。前記Yに於ける炭素数1~10の炭化水素基としては、炭素数1、2、3、4、5及び6の炭化水素基が好ましく、炭素数1、2及び3の炭化水素基がより好ましい。
 前記Yに於ける炭素数が1~10のハロゲン原子を有する炭化水素基とは、当該炭化水素基中の水素の一部又は全部がハロゲン原子で置換された官能基を意味する。前記ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の原子を表す。前記Yに於ける炭素数が1~10のハロゲン原子を有する炭化水素基としては、炭素数1、2、3、4、5及び6のハロゲン原子を有する炭化水素基が好ましく、炭素数1、2及び3のハロゲン原子を有する炭化水素基がより好ましい。
 前記Yに於ける、炭素数が1~10のヘテロ原子を有する炭化水素基とは、当該炭化水素基中の水素及び炭素の一部又は全部がヘテロ原子で置換された官能基を意味する。前記ヘテロ原子は、酸素、窒素、及び硫黄等の原子を表す。前記Yに於ける、炭素数が1~10のヘテロ原子を有する炭化水素基としては、炭素数1、2、3、4、5及び6のヘテロ原子を有する炭化水素基が好ましく、炭素数1、2及び3のヘテロ原子を有する炭化水素基がより好ましい。
 前記Yに於ける、炭素数が1~10の範囲であって、ハロゲン原子又はヘテロ原子を有する炭化水素基の具体例としては、例えば、ヨードメチル基、ブロモメチル基、クロロメチル基、フルオロメチル基、ジヨードメチル基、ジブロモメチル基、ジクロロメチル基、ジフルオロメチル基、トリヨードメチル基、トリブロモメチル基、トリクロロメチル基、トリフルオロメチル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基及びヘキサフルオロ-2-プロピル基等の鎖状含ハロゲン化アルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基及び2-フルオロシクロヘキシル基等の環状含ハロゲン化アルキル基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、2,6-ジヨードフェニル基、2,6-ジブロモフェニル基、2,6-ジクロロフェニル基、2,6-ジフルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基、ペンタヨードフェニル基、ペンタブロモフェニル基、ペンタクロロフェニル基及びペンタフルオロフェニル基等の含ハロゲン化アリール基、2-ニトロフェニル基、4-ニトロフェニル基、2,4-ジニトロフェニル基、2,6-ジニトロフェニル基、及び3-アミノ-2-ナフチル基等の含ヘテロアリール基等が挙げられる。
 前記Yに於ける、炭素数が1~10の範囲であって、不飽和結合を有する炭化水素基とは、例えば、炭素数が1~10の範囲であって、炭素-炭素間に二重結合や三重結合を有する炭化水素基を意味する。さらに、当該不飽和結合を有する炭化水素基としては、不飽和結合数が1、2、3、4及び5の炭化水素基が好ましく、不飽和結合数が1、2及び3の炭化水素基がより好ましい。
 前記Yに於ける炭素数が1~10の範囲であって、不飽和結合を有する炭化水素基の具体例としては、例えば、エテニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、2-メチル-2-プロペニル基、2-ブテニル基、3-ブテニル基、3-メチル-2-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、ペンタ-1,4-ジエニル基、ペンタ-2,4-ジエニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、ヘキサ-1,3-ジエニル基、ヘキサ-1,5-ジエニル基、ヘキサ-2,4-ジエニル基、ヘキサ-2,5-ジエニル基、ヘキサ-3,5-ジエニル基及び3-メチル-ヘキサ-2,4-ジエニル基等の鎖状アルケニル基、1-シクロペンテニル基、2-シクロペンテニル基、2,4-シクロペンタジエニル基、1-シクロヘキセニル基、2-シクロヘキセニル基及び3-シクロヘキセニル基等の環状アルケニル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基、1-ナフチル基及び2-ナフチル基等のアリール基、エチニル基、2-プロピニル基、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、3-ペンチニル基及び4-ペンチニル基等の鎖状アルキニル基等が挙げられる。
 前記化学式(B)で表される原料塩の具体例としては、例えば、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウム、フッ化マグネシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、フッ化カルシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、フッ化アルミニウム、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム、塩化マンガン(II)、臭化マンガン(II)、ヨウ化マンガン(II)、塩化ニッケル(II)、臭化ニッケル(II)、ヨウ化ニッケル(II)、塩化コバルト(II)、臭化コバルト(II)、ヨウ化コバルト(II)、塩化銅(II)、臭化銅(II)、ヨウ化銅(II)、テトラエチルアンモニウムフルオリド、テトラエチルアンモニウムクロリド、テトラエチルアンモニウムブロミド、テトラエチルアンモニウムヨージド、トリエチルメチルアンモニウムフルオリド、トリエチルメチルアンモニウムクロリド、トリエチルメチルアンモニウムブロミド、トリエチルメチルアンモニウムヨージド、1-プロピル-1-メチルピロリジニウムフルオリド、1-プロピル-1-メチルピロリジニウムクロリド、1-プロピル-1-メチルピロリジニウムブロミド、1-プロピル-1-メチルピロリジニウムヨージド、1-エチル-3-メチルイミダゾリウムフルオリド、1-エチル-3-メチルイミダゾリウムクロリド、1-エチル-3-メチルイミダゾリウムブロミド、1-エチル-3-メチルイミダゾリウムヨージド等が挙げられる。但し、前記化学式(B)で表される原料塩は、これらの化合物群に限定されない。
 前記nは価数であり、1~4の自然数を表す。
 <リン酸塩化合物>
 前記リン酸塩化合物は、以下の化学式(C)で表される。
Figure JPOXMLDOC01-appb-C000016
 前記化学式(C)に於いて、前記Mは前記化学式(A)と同一のカチオン種を表す。また、前記X及びXは、前記化学式(A)と同一の官能基を表す。従って、これらの詳細については説明を省略する。
 前記化学式(C)で表されるリン酸塩化合物の具体例としては、例えば、ジエチルリン酸リチウム、ジエチルリン酸ナトリウム、ジエチルリン酸カリウム、ジエチルリン酸マグネシウム、ジエチルリン酸カルシウム、ジエチルリン酸アルミニウム、ジエチルリン酸マンガン(II)、ジエチルリン酸ニッケル(II)、ジエチルリン酸コバルト(II)、ジエチルリン酸銅(II)、テトラエチルアンモニウムジエチルホスファート、トリエチルメチルアンモニウムジエチルホスファート、1-プロピル-1-メチルピロリジニウムジエチルホスファート、1-エチル-3-メチルイミダゾリウムジエチルホスファート、ジプロピルリン酸リチウム、ジプロピルリン酸ナトリウム、ジプロピルリン酸カリウム、ジプロピルリン酸マグネシウム、ジプロピルリン酸カルシウム、ジプロピルリン酸アルミニウム、ジプロピルリン酸マンガン(II)、ジプロピルリン酸ニッケル(II)、ジプロピルリン酸コバルト(II)、ジプロピルリン酸銅(II)、テトラエチルアンモニウムジプロピルホスファート、トリエチルメチルアンモニウムジプロピルホスファート、1-プロピル-1-メチルピロリジニウムジプロピルホスファート、1-エチル-3-メチルイミダゾリウムジプロピルホスファート、ジブチルリン酸リチウム、ジブチルリン酸ナトリウム、ジブチルリン酸カリウム、ジブチルリン酸マグネシウム、ジブチルリン酸カルシウム、ジブチルリン酸アルミニウム、ジブチルリン酸マンガン(II)、ジブチルリン酸ニッケル(II)、ジブチルリン酸コバルト(II)、ジブチルリン酸銅(II)、テトラエチルアンモニウムジブチルホスファート、トリエチルメチルアンモニウムジブチルホスファート、1-プロピル-1-メチルピロリジニウムジブチルホスファート、1-エチル-3-メチルイミダゾリウムジブチルホスファート、ビス(2,2,2-トリフルオロエチル)リン酸リチウム、ビス(2,2,2-トリフルオロエチル)リン酸ナトリウム、ビス(2,2,2-トリフルオロエチル)リン酸カリウム、ビス(2,2,2-トリフルオロエチル)リン酸マグネシウム、ビス(2,2,2-トリフルオロエチル)リン酸カルシウム、ビス(2,2,2-トリフルオロエチル)リン酸アルミニウム、ビス(2,2,2-トリフルオロエチル)リン酸マンガン(II)、ビス(2,2,2-トリフルオロエチル)リン酸ニッケル(II)、ビス(2,2,2-トリフルオロエチル)リン酸コバルト(II)、ビス(2,2,2-トリフルオロエチル)リン酸銅(II)、テトラエチルアンモニウムビス(2,2,2-トリフルオロエチル)ホスファート、トリエチルメチルアンモニウムビス(2,2,2-トリフルオロエチル)ホスファート、1-プロピル-1-メチルピロリジニウムビス(2,2,2-トリフルオロエチル)ホスファート、1-エチル-3-メチルイミダゾリウムビス(2,2,2-トリフルオロエチル)ホスファート、エチル(2,2,2-トリフルオロエチル)リン酸リチウム、エチル(2,2,2-トリフルオロエチル)リン酸ナトリウム、エチル(2,2,2-トリフルオロエチル)リン酸カリウム、エチル(2,2,2-トリフルオロエチル)リン酸マグネシウム、エチル(2,2,2-トリフルオロエチル)リン酸カルシウム、エチル(2,2,2-トリフルオロエチル)リン酸アルミニウム、エチル(2,2,2-トリフルオロエチル)リン酸マンガン(II)、エチル(2,2,2-トリフルオロエチル)リン酸ニッケル(II)、エチル(2,2,2-トリフルオロエチル)リン酸コバルト(II)、エチル(2,2,2-トリフルオロエチル)リン酸銅(II)、テトラエチルアンモニウムエチル(2,2,2-トリフルオロエチル)ホスファート、トリエチルメチルアンモニウムエチル(2,2,2-トリフルオロエチル)ホスファート、1-プロピル-1-メチルピロリジニウムエチル(2,2,2-トリフルオロエチル)ホスファート、1-エチル-3-メチルイミダゾリウムエチル(2,2,2-トリフルオロエチル)ホスファート、リチウム2,2,2-トリフルオロエチルフルオロホスファート、ナトリウム2,2,2-トリフルオロエチルフルオロホスファート、カリウム2,2,2-トリフルオロエチルフルオロホスファート、マグネシウム2,2,2-トリフルオロエチルフルオロホスファート、カルシウム2,2,2-トリフルオロエチルフルオロホスファート、アルミニウム2,2,2-トリフルオロエチルフルオロホスファート、マンガン(II)2,2,2-トリフルオロエチルフルオロホスファート、ニッケル(II)2,2,2-トリフルオロエチルフルオロホスファート、コバルト(II)2,2,2-トリフルオロエチルフルオロホスファート、銅(II)2,2,2-トリフルオロエチルフルオロホスファート、テトラエチルアンモニウム2,2,2-トリフルオロエチルフルオロホスファート、トリエチルメチルアンモニウム2,2,2-トリフルオロエチルフルオロホスファート、1-プロピル-1-メチルピロリジニウム2,2,2-トリフルオロエチルフルオロホスファート、1-エチル-3-メチルイミダゾリウム2,2,2-トリフルオロエチルフルオロホスファート、リチウムジフルオロホスファート、ナトリウムジフルオロホスファート、カリウムジフルオロホスファート、セシウムジフルオロホスファート、マグネシウムジフルオロホスファート、カルシウムジフルオロホスファート、アルミニウムジフルオロホスファート、マンガン(II)ジフルオロホスファート、ニッケル(II)ジフルオロホスファート、コバルト(II)ジフルオロホスファート、銅(II)ジフルオロホスファート、テトラエチルアンモニウムジフルオロホスファート、トリエチルメチルアンモニウムジフルオロホスファート、1-プロピル-1-メチルピロリジニウムジフルオロホスファート、1-エチル-3-メチルイミダゾリウムジフルオロホスファート等が挙げられる。但し、前記化学式(C)で表されるリン酸塩化合物は、これらの化合物群に限定されない。
 <工程(I)の反応条件>
 前記工程(I)の反応モル比は、特に限定されず、反応種に応じて適宜設定すればよい。リン酸エステルと原料塩の反応モル比に於いて、通常は、リン酸エステルの下限値が、原料塩1モルに対し1モル以上である。また、リン酸エステルの上限値は、通常、2.5モル以下であり、工業生産の観点からは1.5モル以下が好ましい。
 前記工程(I)の反応開始温度は、当該反応が進行する限りに於いて特に限定されず、反応種に応じて適宜設定すればよい。反応開始温度の下限値は、通常は0℃以上であり、反応性の観点からは20℃以上が好ましく、60℃以上がより好ましい。また、反応開始温度の上限値は、通常は150℃以下であり、反応性の観点からは120℃以下が好ましく、100℃以下がより好ましい。尚、反応開始温度の下限値を0℃以上にすることにより、反応速度が著しく減衰するのを防止することができる。その一方、反応開始温度の上限値を150℃以下にすることにより、反応に使用する過剰なエネルギーを抑制することができる。
 反応開始温度の調整手段としては特に限定されない。例えば、反応開始温度を前記温度範囲内となる様に冷却して制御する場合には、リン酸エステルと原料塩が投入される反応容器を氷冷等により行うことができる。また、反応開始温度を前記温度範囲内となる様に加熱して制御する場合には、任意の温度に設定された油浴等により行うことができる。
 前記工程(I)の反応時間は、特に限定されず、反応種に応じて適宜設定すればよい。反応時間の下限値は、通常は1時間以上である。また、反応時間の上限値は、通常は10時間以下であり、工業生産の観点からは6時間以下が好ましく、4時間以下がより好ましい。
 前記工程(I)の反応は、無溶媒下又は非水溶媒中で行うことができる。工程(I)の反応を無溶媒下で行う場合、リン酸エステルが反応溶媒としての機能も果たす。
 前記非水溶媒としては、他の反応物や生成物と反応するような支障が生じない限り、特に限定されないが、非プロトン性有機溶媒を用いるのが好ましい。
 前記非プロトン性有機溶媒としては特に限定されず、例えば、アルコール類、ニトリル類、エステル類、ケトン類、エーテル類、ハロゲン化炭化水素類等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記アルコール類としては特に限定されず、例えば、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、2-ヨードエタノール、2-ブロモエタノール、2-クロロエタノール、2-フルオロエタノール、1,2-ジヨードエタノール、1,2-ジブロモエタノール、1,2-ジクロロエタノール、1,2-ジフルオロエタノール、2,2-ジヨードエタノール、2,2-ジブロモエタノール、2,2-ジクロロエタノール、2,2-ジフルオロエタノール、2,2,2-トリブロモエタノール、2,2,2-トリクロロエタノール、2,2,2-トリフルオロエタノール、ヘキサフルオロ-2-プロパノール等が挙げられる。これらは、一種単独、又は二種類以上を使用することができる。
 前記ニトリル類としては特に限定されず、例えば、アセトニトリル、プロパンニトリル等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記エステル類としては特に限定されず、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記ケトン類としては特に限定されず、例えば、アセトン、エチルメチルケトン、イソブチルメチルケトン、シクロヘキサノン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記エーテル類としては特に限定されず、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記ハロゲン化炭化水素としは特に限定されず、例えば、ジクロロメタン、クロロホルム、1,1,2,2-テトラクロロエタン、クロロベンゼン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 また、非水溶媒のその他の例として、トルエン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ニトロメタン、ニトロエタン等も挙げられる。
 以上に例示した非水溶媒のうち、本発明に於いては、反応基質の溶解性及び入手容易性の観点から、ニトリル類、エステル類、ケトン類、エーテル類及びハロゲン化炭化水素類が好ましい。
 前記非水溶媒の使用量に関し、その下限値は、前記リン酸エステル1モルに対し、1モル以上が好ましく、10モル以上がより好ましい。前記非水溶媒の使用量の上限値は、前記リン酸エステル1モルに対し、10000モル以下が好ましく、1000モル以下がより好ましく、100モル以下がさらに好ましい。非水溶媒の使用量の下限値を1モル以上にすることにより、リン酸エステルと原料塩との反応性が低下するのを防止し、リン酸塩化合物の収率やその純度の低下を抑制することができる。その一方、前記非水溶媒の使用量の上限値を10000モル以下にすることにより、これを留去する際のエネルギーを抑制し、工業的生産に於いて不利になるのを防止することができる。
 前記工程(I)で得られるリン酸塩化合物について、その純度に応じて単離・精製してもよい。その方法は特に限定されず、公知の方法を採用することができる。具体的には、常圧蒸留、減圧蒸留、濾過、濾取、再結晶、昇華精製、シリカゲルカラムクロマトグラフィー、分取薄層クロマトグラフィー(PTLC)、高速液体クロマトグラフィー(HPLC)、イオンクロマトグラフィー(IC)等の方法が挙げられる。
(リン酸エステルの製造方法)
 前記リン酸エステルは、前記Zがケイ素原子である場合、酸無水物等を原料として利用する公知の製造方法により得ることができる。但し、本実施の形態に於いては、以下に示す化学反応式の通り、化学式(D)で表されるリン酸化合物と、化学式(E)で表されるケイ素化合物とを反応させて、化学式(F)で表されるリン酸シリルエステルを生成する工程(II)を含むのが好ましい。これにより、リン酸エステルを効率的に得ることができる。
Figure JPOXMLDOC01-appb-C000017
 工程(II)の反応であると、前記化学式(E)で表されるケイ素化合物として、工程(I)で副生するケイ素化合物の再利用が可能になる。これにより、生産効率が極めて高く、かつ、製造コストを低減してリン酸塩化合物を製造することができる。
 <リン酸化合物>
 前記リン酸化合物は、以下の化学式(D)で表される。
Figure JPOXMLDOC01-appb-C000018
 前記化学式(D)に於いて、前記X及びXは、前記化学式(A)と同一の官能基を表す。従って、これらの詳細については説明を省略する。
 前記化学式(D)に於いて、前記M’は、水素原子、アルカリ金属、アルカリ土類金属、炭素数が1~10の第1級炭化水素基、炭素数が1~10の第2級炭化水素基、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する第1級炭化水素基(以下、「ハロゲン原子等を有する第1級炭化水素基」という。)、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する第2級炭化水素基(以下、「ハロゲン原子等を有する第2級炭化水素基」という。)を表す。
 前記M’に於けるアルカリ金属としては、Li、Na、K、Rb、Csが挙げられる。これらのアルカリ金属のうち、入手容易性の点からは、Li、Na及びKが好ましい。
 前記M’に於けるアルカリ土類金属としては特に限定されず、Be、Mg、Ca、Sr、Baが挙げられる。これらのアルカリ土類金属のうち、入手容易性及び安全性の観点からは、Mg、Ca及びBaが好ましい。
 前記M’に於ける炭素数1~10の第1級炭化水素基としては特に限定されず、例えば、第1級アルキル基等が挙げられる。また、前記炭素数1~10の第2級炭化水素基としては特に限定されず、例えば、第2級アルキル基等が挙げられる。炭素数1~10の第1級アルキル基及び炭素数1~10の第2級アルキル基としては特に限定されず、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、n-ブチル基、ペンチル基、ヘキシル基、ヘプチル基及びオクチル基等の鎖状アルキル基、シクロペンチル基及びシクロヘキシル基等の環状アルキル基等が挙げられる。前記M’に於ける炭素数1~10の第1級炭化水素基としては、炭素数1、2、3、4、5及び6の第1級炭化水素基が好ましく、炭素数1、2及び3の第1級炭化水素基がより好ましい。また、前記M’に於ける炭素数1~10の第2級炭化水素基としては、炭素数1、2、3、4、5及び6の第2級炭化水素基が好ましく、炭素数1、2及び3の第2級炭化水素基がより好ましい。
 前記M’に於ける、炭素数が1~10の範囲であって、ハロゲン原子等を有する第1級炭化水素基、及び炭素数が1~10の範囲であって、ハロゲン原子等を有する第2級炭化水素基としては特に限定されず、例えば、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基及びヘキサフルオロ-2-プロピル基等の鎖状含ハロゲン化アルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基、2-フルオロシクロヘキシル基等の環状含ハロゲン化アルキル基、2-プロペニル基、2-ブテニル基、3-ブテニル基等の鎖状アルケニル基、2-シクロペンテニル基、2-シクロヘキセニル基、3-シクロヘキセニル基等の環状アルケニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基等の鎖状アルキニル基等が挙げられる。前記M’に於ける、炭素数が1~10の範囲のハロゲン原子等を有する第1級炭化水素基としては、炭素数1、2、3、4、5及び6のハロゲン原子等を有する第1級炭化水素基が好ましく、炭素数1、2及び3のハロゲン原子等を有する第1級炭化水素基がより好ましい。また、前記M’に於ける、炭素数が1~10の範囲のハロゲン原子等を有する第2級炭化水素基としては、炭素数1、2、3、4、5及び6のハロゲン原子等を有する第2級炭化水素基が好ましく、炭素数1、2及び3のハロゲン原子等を有する第2級炭化水素基がより好ましい。
 前記M’に於ける不飽和結合とは、例えば、炭素-炭素間に於ける二重結合、又は三重結合を意味する。
 前記化学式(D)で表されるリン酸化合物は、より具体的には、前記X及びXが、それぞれ独立して、炭素数1~10のアルコキシ基であり、前記Mが水素原子である場合のリン酸ジエステル、前記X及びXの何れか一方がフッ素原子であり、他方が炭素数1~10のアルコキシ基であり、前記M’が水素原子である場合のフルオロホスホリック酸エステル、及び、前記X及びXがフッ素原子であり、前記M’が水素原子である場合のジフルオロホスホリック酸であることが好ましい。
 前記化学式(D)で表されるリン酸化合物の具体例としては、例えば、ジメチルホスファート、ジエチルホスファート、ジプロピルホスファート、ジブチルホスファート、ジペンチルホスファート、ジヘキシルホスファート、ジフェニルホスファート、ジアリルホスファート、ジプロパルギルホスファート、ビス(2-ブトキシエチル)ホスファート、ビス(2-クロロエチル)ホスファート、ビス(2,2,2-トリフルオロエチル)ホスファート、ビス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)ホスファート、メチルフルオロホスファート、エチルフルオロホスファート、プロピルフルオロホスファート、ブチルフルオロホスファート、ペンチルフルオロホスファート、ヘキシルフルオロホスファート、フェニルフルオロホスファート、アリルフルオロホスファート、プロパルギルフルオロホスファート、2-ブトキシエチルフルオロホスファート、2-クロロエチルフルオロホスファート、2,2,2-トリフルオロエチルフルオロホスファート、1,1,1,3,3,3-ヘキサフルオロ-2-プロピルフルオロホスファート、ジフルオロホスホリック酸等が挙げられる。但し、前記化学式(D)で表されるリン酸化合物は、これらの化合物群に限定されない。
 <ケイ素化合物>
 前記ケイ素化合物は、以下の化学式(E)で表される。
Figure JPOXMLDOC01-appb-C000019
 前記化学式(E)に於いて、前記X~Xは、前記化学式(A)と同一の官能基を表す。従って、これらの詳細については説明を省略する。
 前記Xは脱離基であって、ハロゲン原子、炭素数1~10のアルコキシ基、ハロアシルオキシ基、又はスルホニルオキシ基を表す。
 前記Xに於けるハロゲン原子としては、フッ素、塩素、臭素、及びヨウ素の原子が挙げられる。これらのハロゲン原子のうち、脱離能の高さや副生成物の再利用の観点からは、塩素原子、臭素原子及びヨウ素原子が好ましい。
 前記Xにおける炭素数1~10のアルコキシ基としては特に限定されず、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基及びヘキソキシ基等の鎖状アルコキシ基、シクロペントキシ基及びシクロヘキソキシ基等の環状アルコキシ基、フェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、3,5-ジメチルフェノキシ基等が挙げられる。前記Xにおける炭素数1~10のアルコキシ基は、炭素数1、2、3、4、5及び6のアルコキシ基が好ましく、1、2及び3のアルコキシ基がより好ましい。
 前記Xにおけるハロアシルオキシ基としては、特に限定されないが、1~7個の何れかの炭素原子を有し、かつ1個又はそれ以上の水素原子がハロゲン原子により置換された官能基が好ましい。具体的には、例えば、ヨードアセチル基、ブロモアセチル基、クロロアセチル基、フルオロアセチル基、ジヨードアセチル基、ジブロモアセチル基、ジクロロアセチル基、ジフルオロアセチル基、トリヨードアセチル基、トリブロモアセチル基、トリクロロアセチル基、トリフルオロアセチル基、3,3,3-トリヨードプロパノイル基、3,3,3-トリブロモプロパノイル基、3,3,3-トリクロロプロパノイル基、3,3,3-トリフルオロプロパノイル基、ペンタヨードプロパノイル基、ペンタブロモプロパノイル基、ペンタクロロプロパノイル基、ペンタフルオロプロパノイル基、4,4,4-トリヨードブタノイル基、4,4,4-トリブロモブタノイル基、4,4,4-トリクロロブタノイル基、4,4,4-トリフルオロブタノイル基、3,3,4,4,4-ペンタヨードブタノイル基、3,3,4,4,4-ペンタブロモブタノイル基、3,3,4,4,4-ペンタクロロブタノイル基、3,3,4,4,4-ペンタフルオロブタノイル基、ヘプタヨードブタノイル基、ヘプタブロモブタノイル基、ヘプタクロロブタノイル基、ヘプタフルオロブタノイル基、ペンタヨードベンゾイル基、ペンタブロモベンゾイル基、ペンタクロロベンゾイル基、ペンタフルオロベンゾイル基等が挙げられる。前記ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素を表す。
 前記Xに於けるスルホニルオキシ基は、-SOY基で表される。ここで、前記Yは、ハロゲン原子、炭素数1~10の炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。
 前記Yに於けるハロゲン原子としては、フッ素、塩素、臭素、及びヨウ素の原子が挙げられる。
 前記Yに於ける炭素数1~10の炭化水素基としては特に限定されず、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基及びオクチル基等の鎖状アルキル基、シクロペンチル基及びシクロヘキシル基等の環状アルキル基等が挙げられる。前記Yに於ける炭素数1~10の炭化水素基は、炭素数1、2、3、4、5及び6の炭化水素基が好ましく、炭素数1、2及び3の炭化水素基がより好ましい。
 前記Yに於ける炭素数が1~10のハロゲン原子を有する炭化水素基とは、当該炭化水素基中の水素の一部又は全部がハロゲン原子で置換された官能基を意味する。前記ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の原子を表す。前記Yに於ける炭素数が1~10のハロゲン原子を有する炭化水素基は、炭素数1、2、3、4、5及び6のハロゲン原子を有する炭化水素基が好ましく、炭素数1、2及び3のハロゲン原子を有する炭化水素基がより好ましい。
 前記Yに於ける、炭素数が1~10のヘテロ原子を有する炭化水素基とは、当該炭化水素基中の水素及び炭素の一部又は全部がヘテロ原子で置換された官能基を意味する。前記ヘテロ原子は、酸素、窒素、及び硫黄等の原子を表す。前記Yに於ける、炭素数が1~10のヘテロ原子を有する炭化水素基は、炭素数1、2、3、4、5及び6のヘテロ原子を有する炭化水素基が好ましく、炭素数1、2及び3のヘテロ原子を有する炭化水素基がより好ましい。
 前記Yに於ける、炭素数が1~10の範囲であって、不飽和結合を有する炭化水素基とは、例えば、炭素数が1~10の範囲であって、炭素-炭素間に二重結合や三重結合を有する炭化水素基を意味する。さらに、当該不飽和結合を有する炭化水素基としては、不飽和結合数が1、2、3、4及び5の炭化水素基が好ましく、不飽和結合数が1、2及び3の炭化水素基がより好ましい。
 前記Yに於ける、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子又は不飽和結合を有する炭化水素基の具体例としては、例えば、ヨードメチル基、ブロモメチル基、クロロメチル基、フルオロメチル基、ジヨードメチル基、ジブロモメチル基、ジクロロメチル基、ジフルオロメチル基、トリヨードメチル基、トリブロモメチル基、トリクロロメチル基、トリフルオロメチル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基及びヘキサフルオロ-2-プロピル基等の鎖状含ハロゲン化アルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基及び2-フルオロシクロヘキシル基等の環状含ハロゲン化アルキル基、エテニル基、2-プロペニル基、イソプロペニル基、2-ブテニル基及び3-ブテニル基等の鎖状アルケニル基、2-シクロペンテニル基、2-シクロヘキセニル基及び3-シクロヘキセニル基等の環状アルケニル基、エチニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基及び4-ペンチニル基等の鎖状アルキニル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基、2-ニトロフェニル基、4-ニトロフェニル基、2,4-ジニトロフェニル基及び2,6-ジニトロフェニル基等のアリール基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、2,6-ジヨードフェニル基、2,6-ジブロモフェニル基、2,6-ジクロロフェニル基、2,6-ジフルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基、ペンタヨードフェニル基、ペンタブロモフェニル基、ペンタクロロフェニル基及びペンタフルオロフェニル基等の含ハロゲン化アリール基、1-ナフチル基及び2-ナフチル基等のナフチル基等が挙げられる。
 前記化学式(E)で表されるケイ素化合物は、より具体的には、前記X~Xが、それぞれ独立して、炭素数1~6の炭化水素基であり、前記Xがハロゲン原子である場合のトリアルキルシリルハロゲン化物であることが好ましい。
 前記化学式(E)で表されるケイ素化合物の具体例としては、例えば、クロロジメチルシラン、クロロトリメチルシラン、クロロ(エチル)ジメチルシラン、クロロトリエチルシラン、ジイソプロピルクロロシラン、クロロトリイソプロピルシラン、トリブチルクロロシラン、tert-ブチルジメチルクロロシラン、クロロジメチルイソプロピルシラン、クロロジメチルビニルシラン、クロロジエチルイソプロピルシラン、クロロジメチルプロピルシラン、アリルクロロジメチルシラン、ブチルクロロジメチルシラン、クロロ(ヘキシル)ジメチルシラン、クロロトリヘキシルシラン、クロロ(シクロヘキシル)ジメチルシラン、クロロジメチルフェニルシラン、ベンジルクロロジメチルシラン、ジフェニルメチルクロロシラン、クロロトリフェニルシラン、クロロ(メチル)(フェニル)(ビニル)シラン、クロロ(メチル)ジフェニルシラン等が挙げられる。但し、前記化学式(E)で表されるケイ素化合物は、これらの化合物群に限定されない。
 <工程(II)の反応条件>
 前記工程(II)の反応モル比は、特に限定されず、反応種に応じて適宜設定すればよい。リン酸化合物とケイ素化合物の反応モル比に於いて、通常は、ケイ素化合物の下限値が、リン酸化合物1モルに対し1モル以上である。また、リン酸化合物の上限値は5モル以下であり、工業生産の観点からは2.5モル以下が好ましく、1.5モル以下がより好ましい。
 前記工程(II)の反応開始温度は、当該反応が進行する限りに於いて特に限定されず、反応種に応じて適宜設定すればよい。反応開始温度の下限値は、通常は0℃以上であり、反応性の観点からは20℃以上が好ましく、40℃以上がより好ましい。反応開始温度の上限値は、通常は150℃以下であり、反応性の観点からは120℃以下が好ましく、100℃以下がより好ましい。尚、反応開始温度の下限値を0℃以上にすることにより、反応速度が著しく減衰するのを防止することができる。その一方、反応開始温度の上限値を150℃以下にすることにより、反応に使用する過剰なエネルギーを抑制することができる。
 反応開始温度の調整手段としては特に限定されない。例えば、反応開始温度を前記温度範囲内となる様に冷却して制御する場合には、リン酸化合物とケイ素化合物が投入される反応容器を氷冷等により行うことができる。また、反応開始温度を前記温度範囲内となる様に加熱して制御する場合には、任意の温度に設定された油浴等により行うことができる。
 前記工程(II)の反応時間は、特に限定されず、反応種に応じて適宜設定すればよい。反応時間の下限値は、通常は1時間以上である。また、反応時間の上限値は、通常は12時間以下であり、工業生産の観点からは6時間以下が好ましく、3時間以下がより好ましい。
 前記工程(II)の反応は、無溶媒下又は非水溶媒中で行うことができる。工程(II)の反応を無溶媒下で行う場合、ケイ素化合物が反応溶媒としての機能も果たす。
 前記非水溶媒としては、前記工程(I)で述べた非水溶媒と同様のものを用いることができる。従って、その詳細については省略する。
 前記非水溶媒の使用量に関し、その下限値は、前記リン酸化合物1モルに対し、1モル以上が好ましく、10モル以上がより好ましい。前記非水溶媒の使用量の上限値は、前記リン酸化合物1モルに対し、10000モル以下が好ましく、1000モル以下がより好ましく、100モル以下がさらに好ましい。非水溶媒の使用量の下限値を1モル以上にすることにより、リン酸化合物とケイ素化合物との反応性が低下するのを防止し、リン酸シリルエステルの収率やその純度の低下を抑制することができる。その一方、前記非水溶媒の使用量の上限値を10000モル以下にすることにより、これを留去する際のエネルギーを抑制し、工業的生産に於いて不利になるのを防止することができる。
 前記工程(II)で得られるリン酸エステルについて、その純度に応じて単離・精製してもよい。その方法は特に限定されず、公知の方法を採用することができる。具体的には、常圧蒸留、減圧蒸留、濾過、濾取、再結晶、昇華精製、シリカゲルカラムクロマトグラフィー、分取薄層クロマトグラフィー(PTLC)、高速液体クロマトグラフィー(HPLC)、イオンクロマトグラフィー(IC)等の方法が挙げられる。
 以下に、本発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限り、この発明の範囲をそれらに限定する趣旨ではない。
 尚、以下の実施例に於いて、純度の決定や理化学的性質の測定は、以下の装置を用いて行った。
(純度)
 リン酸塩化合物の純度は、イオンクロマトグラフィーによるアニオン分析から算出した。分析装置及び測定条件は、以下の通りである。
装置:850 Professional IC Anion(Metrohm製)
カラム:Dionex IonPac AS23 2x250mm
(Thermo Fisher Scientific製)
試料:100ppmの試料水溶液
流量:1mL/min
溶離液:4.5mM NaCOのHO-アセトニトリル(7:3)混合溶液
(NMR測定)
 卓上核磁気共鳴装置:Spinsolve 60 ULTRA Phosphorus
(Magritek製)
 (実施例1)
<エチル(2,2,2-トリフルオロエチル)リン酸ナトリウム(無溶媒下)>
 攪拌子を入れた50mLナス型フラスコに、原料塩としてのヨウ化ナトリウム(630mg、4.20mmol、富士フイルム和光純薬社製)を入れたのち、リン酸エステルとしてのジエチル2,2,2-トリフルオロエチルホスファート(1.18g、5.00mmol)を室温で添加した。この混合溶液を、窒素気流下、120℃で4時間、加熱した。反応混合物を室温まで放冷した後、反応混合物を濾過し、窒素気流下、120℃で終夜、残渣を乾燥することで、リン酸塩化合物として、白色固体のエチル(2,2,2-トリフルオロエチル)リン酸ナトリウム(930mg、96.1%)を得た。エチル(2,2,2-トリフルオロエチル)リン酸ナトリウムの純度は99.6%であった。
 (実施例2)
<ビス(2,2,2-トリフルオロエチル)リン酸銅(II)(無溶媒下)>
 攪拌子を入れた100mLナス型フラスコに、原料塩としての塩化銅(II)(980mg、7.29mmol、和光純薬社製)を入れたのち、リン酸エステルとしてのトリス(2,2,2-トリフルオロエチル)ホスファート(50.0g、145mmol)を室温で加えた。この混合溶液を、窒素気流下、湯浴温度が155℃で6時間、加熱・還流した。反応混合物を室温まで放冷した後、反応混合物を濾過し、窒素気流下、120℃で終夜、残渣を乾燥することで、リン酸塩化合物として、淡青色固体のビス(2,2,2-トリフルオロエチル)リン酸銅(II)(4.06g、96.1%)を得た。ビス(2,2,2-トリフルオロエチル)リン酸銅(II)の純度は98.4%であった。
 (実施例3)
<1-エチル-3-メチルイミダゾリウムビス(2,2,2-トリフルオロエチル)ホスファート>
 攪拌子を入れた50mLナス型フラスコに、原料塩としての1-エチル-3-メチルイミダゾリウムブロミド(760mg、3.11mmol、TCI社製)を入れたのち、リン酸エステルとしてのエチルビス(2,2,2-トリフルオロエチル)ホスファート(905mg、3.12mmol)を室温で添加した。この混合溶液を、窒素気流下、120℃で4時間、加熱した。反応混合物を室温まで放冷した後、エバポレーターを用いて、反応混合物を濃縮し、引き続き60℃で1時間、液体を乾燥することで、リン酸塩化合物として、無色液体の1-エチル-3-メチルイミダゾリウムビス(2,2,2-トリフルオロエチル)ホスファート(1.49g、定量的)を得た。1-エチル-3-メチルイミダゾリウムビス(2,2,2-トリフルオロエチル)ホスファートの純度は99.1%であった。
 (実施例4)
<ビス(2,2,2-トリフルオロエチル)リン酸リチウムの合成(非水溶媒利用)>
 攪拌子を入れた50mLナス型フラスコに、原料塩としての塩化リチウム(0.634g、15.0mmol)と、非プロトン性有機溶媒としてのアセトニトリル(40.0g、974mmol、キシダ化学社製)を入れたのち、リン酸エステルとしてのビス(2,2,2-トリフルオロエチル)トリメチルシリルホスファート(5.00g、15.0mmol)を室温で添加した。この混合溶液を、窒素気流下、82℃で2時間、加熱・還流した。反応混合物を室温まで放冷した後、さらに0℃で冷却した際の析出物を濾過し、残渣を少量のアセトニトリルで洗浄した。エバポレーターを用いて、45℃で20分間、残渣を乾燥することで、リン酸塩化合物として、白色固体のビス(2,2,2-トリフルオロエチル)リン酸リチウム(2.28g、56.9%)を得た。ビス(2,2,2-トリフルオロエチル)リン酸リチウムの純度は99.9%であった。
 (実施例5)
<リチウムジフルオロホスファートの合成1(無溶媒下)>
 攪拌子を入れた50mLナス型フラスコに、リン酸エステルとしてのトリメチルシリルジフルオロホスファート(3.50g、20.1mmol)を窒素保護下で加えた後、原料塩としての塩化リチウム(568mg、13.4mmol)を室温で添加した。この混合物を、窒素気流下、80℃で1時間、加熱した。室温まで放冷したのち、反応混合物を濾過し、残渣を少量のDMC(ジメチルカーボネート)で洗浄した。乾燥機を用いて、120℃で15分間、残渣を乾燥することで、リン酸塩化合物として、白色固体のリチウムジフルオロホスファート(920mg、63.6%)を得た。リチウムジフルオロホスファートの純度は99.5%であった。
 (実施例6)
<リチウムジフルオロホスファートの合成2(非水溶媒利用)>
 攪拌子を入れた500mLナス型フラスコに、リン酸エステルとしてのトリメチルシリルジフルオロホスファート(50.0g、287mmol)を窒素保護下で加えた後、非プロトン性有機溶媒としてのアセトニトリル(150g、3.65mol、キシダ化学(株)製)で希釈した。さらに、原料塩としての塩化リチウム(11.8g、278mmol)を室温下で添加した。この混合物を、窒素気流下、82℃で5時間、加熱・還流した。室温まで放冷したのち、エバポレーターを用いて、反応混合物を濃縮し、得られた残渣を濾過し、少量のDMC(ジメチルカーボネート)で洗浄した。乾燥機を用いて、120℃で1時間、残渣を乾燥することで、リン酸塩化合物として、白色固体のリチウムジフルオロホスファート(27.4g、91.4%)を得た。リチウムジフルオロホスファートの純度は99.4%であった。
 (実施例7)
<ビス(2,2,2-トリフルオロエチル)トリメチルシリルホスファートの合成(無溶媒下)>
 攪拌子を入れた50mLナス型フラスコに、ケイ素化合物としてのクロロトリメチルシラン(16.6g、153mmol、TCI社製)を入れた後、リン酸化合物としてのビス(2,2,2-トリフルオロエチル)ホスファート(20.0g、76.3mmol)を室温で添加した。この混合溶液を、窒素気流下、80℃で6時間、加熱・還流した。エバポレーターによって、反応混合物から過剰のクロロトリメチルシランを除去することで、リン酸エステルとして、無色の液体のビス(2,2,2-トリフルオロエチル)トリメチルシリルホスファート(21.2g、83.1%)を得た。ビス(2,2,2-トリフルオロエチル)トリメチルシリルホスファートの純度は99.7%であった。
 得られたビス(2,2,2-トリフルオロエチル)トリメチルシリルホスファートの理化学的性質は以下の通りである。
H-NMR(CDCl、δ ppm):-0.06(s、9H)、4.02(dq、4H、JH-F=JH-P=8.3Hz);
19F-NMR(CDCl、δ ppm):-74.8(t、6F、JH-F=8.3Hz)。
31P-NMR(CDCl、δ ppm):-10.1(tt、1P、JH-P=8.3Hz)。
 (実施例8)
<トリメチルシリルジフルオロホスファートの合成1(無溶媒下)>
 攪拌子を入れた200mLナス型フラスコに、ケイ素化合物としてのクロロトリメチルシラン(48.7g、448mmol、TCI社製)を入れた後、リン酸化合物としてのジフルオロホスホリック酸(45.7g、448mmol)を室温で滴下により加えた。この混合溶液を、窒素気流下、50℃で6時間、撹拌した。反応混合物の常圧蒸留によって、リン酸エステルとして、無色の液体のトリメチルシリルジフルオロホスファート(49.0g、62.7%)を得た。トリメチルシリルジフルオロホスファートの純度は95.6%であった。
 (実施例9)
<トリメチルシリルジフルオロホスファートの合成2(副生物であるクロロトリメチルシランの再利用、無溶媒下)>
 攪拌子を入れた50mLナス型フラスコに、ケイ素化合物としてのクロロトリメチルシラン{7.16g、65.9mmol}を入れた後、リン酸化合物としてのジフルオロホスホリック酸(6.71g、65.8mmol)を室温で滴下により加えた。この混合溶液を、窒素気流下、50℃で3時間、撹拌した。反応混合物の常圧蒸留によって、リン酸エステルとして、無色の液体のトリメチルシリルジフルオロホスファート(7.12g、62.2%)を得た。トリメチルシリルジフルオロホスファートの純度は96.1%であった。尚、クロロトリメチルシランとして、実施例5のリチウムジフルオロホスファートの合成の際に副生した副生物(工程(I)の副生物(E’))を用いた。
 得られたトリメチルシリルジフルオロホスファートの理化学的性質は以下の通りである。
H-NMR(CDCl、δ ppm):0.33(s、9H); 
19F-NMR(CDCl、δ ppm):-80.4(d、2F、J=985.9Hz);
31P-NMR(CDCl、δ ppm):-29.1(dd、1P、J=985.9Hz)。
 (実施例10)
<ジメチルビニルシリルジフルオロホスファートの合成(無溶媒下)>
 攪拌子を入れた100mLナス型フラスコに、ケイ素化合物としてのクロロジメチルビニルシラン(10.1g、83.7mmol、TCI社製)を入れた後、リン酸化合物としてのジフルオロホスホリック酸(8.14g、79.8mmol)を室温で滴下により加えた。この混合溶液を、窒素気流下、60℃で3時間、撹拌した。反応混合物の減圧蒸留によって、リン酸エステルとして、無色の液体のジメチルビニルシリルジフルオロホスファート(2.33g、15.7%)を得た。ジメチルビニルシリルジフルオロホスファートの純度は97.9%であった。
 得られたジメチルビニルシリルジフルオロホスファートの理化学的性質は以下の通りである。
H-NMR(CDCl、δ ppm):0.44(s、7H)、6.02-6.13(m、2H);
19F-NMR(CDCl、δ ppm):-80.0(d、2F、J=990.3Hz);
31P-NMR(CDCl、δ ppm):-28.4(dd、1P、J=990.3Hz)。
 (実施例11)
<ジメチルフェニルシリルジフルオロホスファートの合成(無溶媒下)>
 攪拌子を入れた100mLナス型フラスコに、ケイ素化合物としてのクロロジメチルフェニルシラン(16.8g、98.4mmol、TCI社製)を入れたのち、リン酸化合物としてのジフルオロホスホリック酸(10.1g、99.0mmol)を室温で滴下により加えた。この混合溶液を、窒素気流下、60℃で3時間、撹拌した。反応混合物の減圧蒸留によって、リン酸エステルとして、無色の液体のジメチルフェニルシリルジフルオロホスファート(10.6g、45.6%)を得た。ジメチルフェニルシリルジフルオロホスファートの純度は97.5%であった。
 得られたジメチルフェニルシリルジフルオロホスファートの理化学的性質は以下の通りである。
H-NMR(CDCl、δ ppm):0.37(s、6H)、7.07-7.47(m、5H);
19F-NMR(CDCl、δ ppm):-79.7(d、2F、J=991.4Hz);
31P-NMR(CDCl、δ ppm):-30.0(dd、1P、J=991.4Hz)。
 (実施例12)
<トリエチルシリルジフルオロホスファートの合成(無溶媒下)>
 攪拌子を入れた50mLナス型フラスコに、ケイ素化合物としてのクロロトリエチルシラン(10.0g、66.3mmol、TCI社製)を入れた後、リン酸化合物としてのジフルオロホスホリック酸(6.69g、65.6mmol)を室温で滴下により加えた。この混合溶液を、窒素気流下、60℃で4時間、撹拌した。反応混合物の減圧蒸留によって、リン酸エステルとして、無色の液体のトリエチルシリルジフルオロホスファート(7.29g、51.4%)を得た。トリエチルシリルジフルオロホスファートの純度は98.3%であった。
 得られたトリエチルシリルジフルオロホスファートの理化学的性質は以下の通りである。
H-NMR(CDCl、δ ppm):0.40-1.11(m、15H);
19F-NMR(CDCl、δ ppm):-80.9(d、2F、J=986.4Hz);
31P-NMR(CDCl、δ ppm):-29.5(dd、1P、J=986.4Hz)。
 (実施例13)
<シクロヘキシルジメチルシリルジフルオロホスファートの合成(無溶媒下)>
 攪拌子を入れた50mLナス型フラスコに、ケイ素化合物としてのクロロ(シクロヘキシル)ジメチルシラン(12.0g、67.9mmol、TCI社製)を入れた後、リン酸化合物としてのジフルオロホスホリック酸(6.83g、67.0mmol)を室温で滴下により加えた。この混合溶液を、窒素気流下、60℃で4時間、撹拌した。反応混合物の減圧蒸留によって、リン酸エステルとして、無色の液体のシクロヘキシルジメチルシリルジフルオロホスファート(9.92g、61.0%)を得た。シクロヘキシルジメチルシリルジフルオロホスファートの純度は93.6%であった。
 得られたシクロヘキシルジメチルシリルジフルオロホスファートの理化学的性質は以下の通りである。
H-NMR(CDCl、δ ppm):0.29(s、6H)、0.92-1.67(br m、11H);
19F-NMR(CDCl、δ ppm):-79.8(d、2F、J=989.0Hz);
31P-NMR(CDCl、δ ppm):-29.5(dd、1P、J=989.0Hz)。
 (実施例14)
<ジメチルフェニルシリルジフルオロホスファートの合成(非水溶媒利用)>
 攪拌子を入れた50mLスクリューバイアルに、リン酸化合物としてのナトリウムジフルオロホスファート(5.01g、40.4mmol)と、非プロトン性有機溶媒としてのアセトニトリル(20.0g、487mmol、キシダ化学(株)製)を窒素保護下で加えた後、ケイ素化合物としてのクロロジメチルフェニルシラン(6.82g、40.0mmol、TCI社製)を室温で滴下により加えた。この混合溶液を、窒素雰囲気下、60℃で2時間、撹拌した。室温まで放冷した後、0.45μmメンブレンフィルターを用いて反応混合物をろ過した。窒素ガスで12時間、ろ液をバブリングし、アセトニトリルを除去した。0.45μmメンブレンフィルターを用いて残渣をろ過することによって、リン酸エステルとして、無色の液体のジメチルフェニルシリルジフルオロホスファート(7.79g、82.5%)を得た。ジメチルフェニルシリルジフルオロホスファートの純度は95.4%であった。
 (実施例15)
<トリイソプロピルシリルジフルオロホスファートの合成(非水溶媒利用)>
 攪拌子を入れた50mLスクリューバイアルに、リン酸化合物としてのナトリウムジフルオロホスファート(2.02g、16.3mmol)と、非プロトン性有機溶媒としてのアセトニトリル(9.13g、222mmol、キシダ化学(株)製)を窒素保護下で加えた後、ケイ素化合物としてのクロロトリイソプロピルシラン(3.14g、16.3mmol、TCI社製)を室温で滴下により加えた。この混合溶液を、窒素雰囲気下、60℃で2時間、撹拌した。室温まで放冷した後、0.45μmメンブレンフィルターを用いて反応混合物をろ過した。窒素ガスで12時間、ろ液をバブリングし、アセトニトリルを除去した。0.45μmメンブレンフィルターを用いて残渣をろ過することによって、リン酸エステルとして、無色の液体のトリイソプロピルシリルジフルオロホスファート(1.00g、23.7%)を得た。トリイソプロピルシリルジフルオロホスファートの純度は97.4%であった。
 得られたトリイソプロピルシリルジフルオロホスファートの理化学的性質は以下の通りである。
H-NMR(CDCl、δ ppm):0.98-1.27(m、21H);
19F-NMR(CDCl、δ ppm):-80.4(d、2F、J=983.5Hz);
31P-NMR(CDCl、δ ppm):-29.5(dd、1P、J=989.0Hz)。
 (実施例16)
<メチルジフェニルシリルジフルオロホスファートの合成(非水溶媒利用)>
 攪拌子を入れた50mLスクリューバイアルに、リン酸化合物としてのナトリウムジフルオロホスファート(3.01g、24.3mmol)と、非プロトン性有機溶媒としてのアセトニトリル(10.0g、244mmol、キシダ化学(株)製)を窒素保護下で加えた後、ケイ素化合物としてのクロロ(メチル)ジフェニルシラン(5.36g、23.0mmol、TCI社製)を室温で滴下により加えた。この混合溶液を、窒素雰囲気下、60℃で11時間、撹拌した。室温まで放冷した後、0.45μmメンブレンフィルターを用いて反応混合物をろ過した。窒素ガスで12時間、ろ液をバブリングし、アセトニトリルを除去した。0.45μmメンブレンフィルターを用いて残渣をろ過することによって、リン酸エステルとして、無色の液体のメチルジフェニルシリルジフルオロホスファート(5.22g、76.1%)を得た。メチルジフェニルシリルジフルオロホスファートの純度は88.0%であった。
 得られたメチルジフェニルシリルジフルオロホスファートの理化学的性質は以下の通りである。
H-NMR(CDCl、δ ppm):0.92(s、3H)、7.29-7.73(m、10H);
19F-NMR(CDCl、δ ppm):-78.8(d、2F、J=995.6Hz);
31P-NMR(CDCl、δ ppm):-30.3(dd、1P、J=995.6Hz)。

Claims (11)

  1.  以下の化学式(A)で表されるリン酸エステルと、以下の化学式(B)で表される原料塩とを反応させて、以下の化学式(C)で表されるリン酸塩化合物を生成する工程(I)を少なくとも含むリン酸塩化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、前記Zは、炭素原子又はケイ素原子を表す。前記X及びXは、それぞれ独立して、ハロゲン原子、炭素数が1~10の炭化水素基、炭素数が1~10のアルコキシ基、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有するアルコキシ基を表す。前記X~Xは、それぞれ独立して、水素原子、ハロゲン原子、炭素数が1~10の炭化水素基、炭素数が1~10のアルコキシ基、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有するアルコキシ基を表し、かつ、前記X~Xの少なくとも1つは、前記炭素数1~10の炭化水素基又は前記炭素数1~10のアルコキシ基の何れかである。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、前記Mは、アルカリ金属、アルカリ土類金属、アルミニウム、遷移金属、又はオニウムを表す。前記Xは、ハロゲン原子、炭素数1~10のアルコキシ基、ハロアシルオキシ基、スルホニルオキシ基(-SOY基:前記Yは、ハロゲン原子、炭素数1~10の炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)を表す。前記nは、1~4の自然数を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、前記Mは、前記化学式(B)と同一のカチオン種を表す。前記X及びXは、前記化学式(A)と同一の官能基を表す。前記nは、前記化学式(B)と同一の価数を表す。]
  2.  前記化学式(A)に於ける前記Zがケイ素原子である場合、
     以下の化学式(D)で表されるリン酸化合物と、以下の化学式(E)で表されるケイ素化合物とを反応させて、以下の化学式(F)で表されるリン酸シリルエステルを生成する工程(II)を含む請求項1に記載のリン酸塩化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式中、前記M’は、水素原子、アルカリ金属、アルカリ土類金属、炭素数が1~10の第1級炭化水素基、炭素数が1~10の第2級炭化水素基、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する第1級炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する第2級炭化水素基を表す。前記X及びXは、前記化学式(A)と同一の官能基を表す。前記nは、前記化学式(B)と同一の価数を表す。]
    Figure JPOXMLDOC01-appb-C000005
    [式中、前記X~Xは、前記化学式(A)と同一の官能基を表す。前記Xは脱離基であって、ハロゲン原子、炭素数1~10のアルコキシ基、ハロアシルオキシ基、又はスルホニルオキシ基(-SOY基:前記Yは、ハロゲン原子、炭素数1~10の炭化水素基、又は、炭素数が1~10の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)を表す。]
    Figure JPOXMLDOC01-appb-C000006
    [式中、前記X~Xは、前記化学式(A)と同一の官能基を表す。]
  3.  前記化学式(E)で表されるケイ素化合物が、前記工程(I)で副生する副生物である請求項2に記載のリン酸塩化合物の製造方法。
  4.  前記リン酸化合物は、前記化学式(D)に於ける前記X及びXが、それぞれ独立して、炭素数1~10のアルコキシ基であり、前記Mが水素原子である場合のリン酸ジエステルである請求項2又は3に記載のリン酸塩化合物の製造方法。
  5.  前記リン酸化合物は、前記化学式(D)に於ける前記X及びXの何れか一方がフッ素原子であり、他方が炭素数1~10のアルコキシ基であり、前記M’が水素原子である場合のフルオロホスホリック酸エステルである請求項2又は3に記載のリン酸塩化合物の製造方法。
  6.  前記リン酸化合物は、前記化学式(D)に於ける前記X及びXがフッ素原子であり、前記M’が水素原子である場合のジフルオロホスホリック酸である請求項2又は3に記載のリン酸塩化合物の製造方法。
  7.  前記ケイ素化合物は、前記化学式(E)に於ける前記X~Xが、それぞれ独立して、炭素数1~6の炭化水素基であり、前記Xがハロゲン原子である場合のトリアルキルシリルハロゲン化物である請求項2~6の何れか1項に記載のリン酸塩化合物の製造方法。
  8.  前記化学式(B)に於ける前記Mは、リチウム原子、ナトリウム原子、マグネシウム原子、1-メチル-1-プロピルピロリジニウム、又は1-エチル-3-メチルイミダゾリウムである請求項1~7の何れか1項に記載のリン酸塩化合物の製造方法。
  9.  前記工程(I)及び工程(II)の少なくとも何れか一方を無溶媒下で行う請求項2~8の何れか1項に記載のリン酸塩化合物の製造方法。
  10.  前記工程(I)及び工程(II)の少なくとも何れか一方を非水溶媒中で行う請求項2~8の何れか1項に記載のリン酸塩化合物の製造方法。
  11.  前記非水溶媒が非プロトン性有機溶媒である請求項10に記載のリン酸塩化合物の製造方法。
PCT/JP2021/008015 2020-03-13 2021-03-02 リン酸塩化合物の製造方法 WO2021182195A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180006821.4A CN114728992A (zh) 2020-03-13 2021-03-02 磷酸盐化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020043717 2020-03-13
JP2020-043717 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021182195A1 true WO2021182195A1 (ja) 2021-09-16

Family

ID=77670668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008015 WO2021182195A1 (ja) 2020-03-13 2021-03-02 リン酸塩化合物の製造方法

Country Status (3)

Country Link
JP (1) JP2021147391A (ja)
CN (1) CN114728992A (ja)
WO (1) WO2021182195A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979454A (zh) * 2021-11-23 2022-01-28 山东永浩新材料科技有限公司 一种氟磺酸碱金属盐的制备方法
CN114085170A (zh) * 2021-11-23 2022-02-25 山东永浩新材料科技有限公司 一种烷基硫酸锂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431794A (en) * 1987-07-13 1989-02-02 Ciba Geigy Ag Manufacture of metal salt of phosphoric acid ester and phosphonic acid ester
JPH08134086A (ja) * 1994-11-11 1996-05-28 Nippon Chem Ind Co Ltd ジベンジルホスフェート・アルカリ金属塩またはアルカリ土類金属塩の製造方法
WO2018040763A1 (zh) * 2016-08-29 2018-03-08 宁德时代新能源科技股份有限公司 一种添加剂,其制备方法及含有所述添加剂的锂离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431794A (en) * 1987-07-13 1989-02-02 Ciba Geigy Ag Manufacture of metal salt of phosphoric acid ester and phosphonic acid ester
JPH08134086A (ja) * 1994-11-11 1996-05-28 Nippon Chem Ind Co Ltd ジベンジルホスフェート・アルカリ金属塩またはアルカリ土類金属塩の製造方法
WO2018040763A1 (zh) * 2016-08-29 2018-03-08 宁德时代新能源科技股份有限公司 一种添加剂,其制备方法及含有所述添加剂的锂离子电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRUICE THOMAS C., BLASKO ANDREI, PETYAK MARK E.: "Participation of two carboxyl groups in phosphodiester hydrolysis. 1. dydrolysis of bis(2-carboxyphenyl) phosphate", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 117, no. 49, 1995, pages 12064 - 12069, XP055857050 *
WADA, TAKESHI ET AL.: "Chemical synthesis of oligodeoxyribonucleotides using N-unprotected H-phosphonate monomers and carbonium and phosphonium condensing reagents: O-selective phosphonylation and condensation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 119, no. 52, 1997, pages 12710 - 12721, XP002982631, DOI: 10.1021/ja9726015 *
ZERVAS, L ET AL.: "Dealkylation and debenzylation of triesters of phosphoric acid . Phosphorylation of hyd", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 77, 1955, pages 5354 - 5357, XP055857049 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979454A (zh) * 2021-11-23 2022-01-28 山东永浩新材料科技有限公司 一种氟磺酸碱金属盐的制备方法
CN114085170A (zh) * 2021-11-23 2022-02-25 山东永浩新材料科技有限公司 一种烷基硫酸锂的制备方法
CN113979454B (zh) * 2021-11-23 2023-09-26 山东永浩新材料科技有限公司 一种氟磺酸碱金属盐的制备方法

Also Published As

Publication number Publication date
JP2021147391A (ja) 2021-09-27
CN114728992A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2021182195A1 (ja) リン酸塩化合物の製造方法
JPS59184192A (ja) 含硫オルガノ珪素化合物の製法
EP1963340A1 (de) Verfahren zur herstellung von (mercaptoorganyl)alkylpolyethersilanen
KR0145066B1 (ko) 알킬아포스폰산디에스테르및/또는디알킬아포스핀산에스테르의제조방법
CN116925146A (zh) 一种1-丁基磷酸环酐的制备方法
JPH09309891A (ja) モノアルキルホスホニットを製造する方法
KR101249361B1 (ko) 고순도 트리스(트리알킬실릴)포스파이트의 제조 방법
CN110642885A (zh) 一种多取代苯酚磷酸酯盐及其制备方法和应用
US20230399349A1 (en) Method of preparing symmetrical phosphate-based compound
US9346838B2 (en) Process for the preparation of tris(perfluoroalkyl)phosphine oxides and bis(perfluoroalkyl)phosphinic acids
US8802883B2 (en) Method for the manufacture of dialkylphosphites
JP2022070145A (ja) 含フッ素カルボン酸塩の製造方法
JPS6411030B2 (ja)
KR101609404B1 (ko) 플루오르화 설포네이트 에스테르를 제조하기 위한 수성 방법
RU2528053C2 (ru) Способ получения диалкилфосфитов
TWI469991B (zh) 環狀伸烷基鹵代亞磷酸酯及環狀磷酸酯的製造方法
JP4884982B2 (ja) ビニルシランの製造方法
US6504065B1 (en) Method of making metal salts of 2,4,6-tri-t-butylphenol
US6894197B2 (en) Process for producing fluorinated alcohol
WO2024015263A1 (en) Process for preparing phosphonate esters
JP3915872B2 (ja) テトラキス(トリメチルシリル)シラン及びトリス(トリメチルシリル)シランの製造方法
Zhu et al. A convenient synthesis of N-perfluoroalkanesulfonylphosphoramidates
JP5926797B2 (ja) ビス(パーフルオロアルキル)ホスフィン酸無水物の調製方法
Christov et al. Hydration reactions of phosphorylated 1, 3-enynes
JPH11310587A (ja) メタノ―ル法によるリン酸ジアルキルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767960

Country of ref document: EP

Kind code of ref document: A1