WO2021181447A1 - 半導体素子チップの製造方法及び保護用組成物 - Google Patents

半導体素子チップの製造方法及び保護用組成物 Download PDF

Info

Publication number
WO2021181447A1
WO2021181447A1 PCT/JP2020/009972 JP2020009972W WO2021181447A1 WO 2021181447 A1 WO2021181447 A1 WO 2021181447A1 JP 2020009972 W JP2020009972 W JP 2020009972W WO 2021181447 A1 WO2021181447 A1 WO 2021181447A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid residue
protective film
base material
residue
carboxylic acid
Prior art date
Application number
PCT/JP2020/009972
Other languages
English (en)
French (fr)
Inventor
輝 榊原
伸哉 駒引
前田 浩司
秀彦 唐▲崎▼
Original Assignee
互応化学工業株式会社
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 互応化学工業株式会社, パナソニックIpマネジメント株式会社 filed Critical 互応化学工業株式会社
Priority to KR1020217008281A priority Critical patent/KR102315983B1/ko
Priority to CN202080005409.6A priority patent/CN113632204B/zh
Priority to JP2021517716A priority patent/JP6934614B1/ja
Priority to US17/280,185 priority patent/US11319458B2/en
Priority to PCT/JP2020/009972 priority patent/WO2021181447A1/ja
Priority to TW110107881A priority patent/TWI773170B/zh
Publication of WO2021181447A1 publication Critical patent/WO2021181447A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • C08G63/189Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6884Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6886Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • H01L21/30655Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • the present disclosure relates to a method for manufacturing a semiconductor device chip and a protective composition, and more specifically, a method for manufacturing a semiconductor device chip in which a base material is divided into a plurality of semiconductor device chips by dicing and a protection used in the method for manufacturing a semiconductor device chip.
  • a composition for use Regarding the composition for use.
  • Plasma dicing is one of the technologies for manufacturing a plurality of semiconductor element chips by forming an integrated circuit on a substrate such as a silicon wafer and then dicing.
  • a protective film may be used to protect the base material.
  • Patent Document 1 describes the formation of a protective film containing a water-soluble resin and fine particles of a metal oxide dispersed in the water-soluble resin and having an elongated shape having a long axis and a short axis orthogonal to the long axis.
  • Resin agents for use are disclosed.
  • a resin agent for forming a protective film is applied onto a wafer to form a protective film, and the protective film is irradiated with a laser beam to ablate the wafer, and the protective film can be used as an etching mask during plasma dicing. What you can do is also disclosed.
  • Polyvinyl alcohol and the like are also disclosed as water-soluble resins.
  • the wafer and the semiconductor device chip can be protected during laser ablation and plasma dicing, and the semiconductor device chip is manufactured from the wafer and then washed with water to protect the semiconductor device chip from the protective film. Can be removed.
  • the protective film is exposed to the laser during laser ablation or when the protective film is exposed to plasma during plasma dicing, the protective film is altered and its water solubility is impaired. It takes time to sufficiently remove the plasma element chip, which tends to reduce the manufacturing efficiency of the semiconductor device chip.
  • An object of the present disclosure is that a protective film can be easily produced in manufacturing a semiconductor device chip by a method including forming a protective film on a substrate and then irradiating the protective film with at least one of laser light and plasma.
  • a method for manufacturing a semiconductor device chip which can protect the base material and the semiconductor device chip with a protective film when irradiating at least one of laser light and plasma, and easily removes the protective film, and a protective composition used in this manufacturing method. To provide.
  • the method for manufacturing a semiconductor device chip is a method for manufacturing a semiconductor device chip that divides a base material into a plurality of semiconductor device chips, and is described by applying a protective composition to the base material.
  • a protective composition contains a water-soluble polyester resin (A) having a polyvalent carboxylic acid residue (a) and a polyhydric alcohol residue (b).
  • the polyvalent carboxylic acid residue (a) includes a polyvalent carboxylic acid residue (a1) having a metal sulfonate group and a naphthalenedicarboxylic acid residue (a2).
  • the ratio of the polyvalent carboxylic acid residue (a1) is 25 mol% or more and 70 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the ratio of the naphthalene dicarboxylic acid residue (a2) is 30 mol% or more and 75 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the protective composition according to one aspect of the present disclosure is used for manufacturing a semiconductor device chip.
  • the method for manufacturing a semiconductor device chip is a method for manufacturing a semiconductor device chip that divides a base material into a plurality of semiconductor device chips, and a protective film that covers the base material by applying a protective composition to the base material.
  • To prepare the protective film to irradiate the protective film with at least one of laser light and plasma, to divide the base material into the plurality of semiconductor element chips by cutting the base material, and to obtain the protective film. It includes removing from the substrate or the semiconductor device chip by contacting with an aqueous cleaning solution.
  • the protective composition contains a water-soluble polyester resin (A) having a polyvalent carboxylic acid residue (a) and a polyhydric alcohol residue (b).
  • the polyvalent carboxylic acid residue (a) includes a polyvalent carboxylic acid residue (a1) having a metal sulfonate group and a naphthalenedicarboxylic acid residue (a2).
  • the ratio of the polyvalent carboxylic acid residue (a1) is 25 mol% or more and 70 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the ratio of the naphthalene dicarboxylic acid residue (a2) is 30 mol% or more and 75 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • FIG. 1 is a plan view of a base material according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device chip according to the embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device chip according to the embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device chip according to the embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device chip according to the embodiment of the present disclosure.
  • the base material 2 is divided into a plurality of semiconductor element chips 1.
  • a protective film 3 covering the base material 2 is produced by applying the protective composition to the base material 2.
  • the protective film 3 is irradiated with at least one of laser light and plasma.
  • the protective film 3 is removed from the base material 2 or the semiconductor element chip 1 by bringing it into contact with the aqueous cleaning liquid.
  • the protective composition contains a water-soluble polyester resin (A) having a multivalent carboxylic acid residue (a) and a polyhydric alcohol residue (b).
  • the polyvalent carboxylic acid residue (a) includes a polyvalent carboxylic acid residue (a1) having a metal sulfonate group and a naphthalenedicarboxylic acid residue (a2).
  • the ratio of the polyvalent carboxylic acid residue (a1) is 25 mol% or more and 70 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the ratio of the naphthalene dicarboxylic acid residue (a2) is 30 mol% or more and 75 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the protective film 3 it is easy to produce the protective film 3 by using the protective composition. Further, the protective film 3 can protect the base material 2 or the semiconductor element chip 1 from at least one of laser light and plasma. Further, even if the protective film 3 is exposed to at least one of laser light and plasma, the water solubility of the protective film 3 is not easily impaired. Therefore, it is easy to remove the protective film 3 from the semiconductor device chip 1 by using an aqueous cleaning liquid. Therefore, it is easy to increase the manufacturing efficiency of the semiconductor element chip 1.
  • the protective film 3 may be irradiated with at least one of laser light and plasma.
  • the protective film 3 may be irradiated with at least one of laser light and plasma.
  • the protective film 3 may be removed from the base material 2 by laser ablation. In this case, the base material 2 can be protected by the protective film 3 during laser ablation.
  • the base material 2 may be divided by any method.
  • the base material 2 may be divided by irradiating the base material 2 with at least one of a laser beam and plasma different from the above, or the base material 2 may be divided by using a blade or the like.
  • the base material 2 may not be cut at the portion where the protective film 3 has been removed, but may be cut at a position sandwiched between the two portions from which the protective film 3 has been removed, for example.
  • the protective film 3 may be removed from the base material 2 by bringing the protective film 3 into contact with the aqueous cleaning liquid, and then the base material 2 may be divided using the blade.
  • the protective film 3 and the part of the base material 2 exposed by removing a part of the protective film 3 are irradiated with plasma.
  • the base material 2 may be divided into a plurality of semiconductor element chips 1. That is, the protective film 3 may be used as a mask in plasma dicing. In this case, the protective film 3 can protect the base material 2 from plasma. Further, even the protective film 3 irradiated with plasma can be easily removed with an aqueous cleaning solution. In this case, there is no particular limitation on the method of removing a part of the protective film 3 from the base material 2.
  • the protective film 3 may be irradiated with at least one of laser light and plasma. Further, a part of the protective film 3 may be removed from the base material 2 by a mechanical removal method such as scribe or a chemical method using a chemical solution.
  • the protective film 3 by irradiating the protective film 3 with at least one of laser light and plasma, a part of the protective film 3 is removed from the base material 2, and a part of the protective film 3 is further removed.
  • the base material 2 may be divided by irradiating the exposed portion of the base material 2.
  • a part of the protective film 3 is removed from the base material 2 by irradiating it with a laser beam. Subsequently, the protective film 3 and the portion of the base material 2 exposed by removing a part of the protective film 3 are irradiated with plasma to divide the base material 2 into a plurality of semiconductor element chips 1. ..
  • the present embodiment will be described in more detail with reference to FIGS. 2 to 5. The present disclosure is not limited to the following embodiments.
  • the protective film 3 is prepared to cover the base material 2, the protective film 3 is irradiated with laser light, and a part of the protective film 3 is removed from the base material 2 by laser ablation.
  • a groove 31 is formed in 3 to expose a part of the base material 2.
  • the base material 2 is cut at the position of the groove 31 by plasma dicing to divide the base material 2 into a plurality of semiconductor element chips 1.
  • the protective film 3 covering the semiconductor element chip 1 is removed from the semiconductor element chip 1 by contacting it with an aqueous cleaning liquid.
  • the semiconductor element chip 1 can be manufactured by forming the protective film 3 on the base material 2 and then performing laser ablation and plasma dicing. At this time, by using the protective composition, the protective film 3 can be easily produced. The base material 2 and the semiconductor element chip 1 can be protected by the protective film 3 during laser ablation and plasma dicing.
  • the base material 2 is divided into a plurality of semiconductor element chips 1 by dicing.
  • the base material 2 is, for example, a wafer. Wafers are made from semiconductors. Examples of wafer materials include silicon, gallium arsenide, gallium nitride, silicon carbide and the like.
  • the material of the wafer is not limited to the above.
  • the size of the wafer is not particularly limited, but for example, the diameter of the base material 2 is 50 mm or more and 450 mm or less, and the thickness is 1 ⁇ m or more and 800 ⁇ m or less.
  • the base material 2 is not limited to the semiconductor wafer as long as it is divided into a plurality of semiconductor element chips 1 by dicing.
  • the base material 2 may be a laminate in which a semiconductor wafer and a resin substrate, a metal substrate, a ceramic substrate, or the like are laminated.
  • the semiconductor element chip 1 is not limited to a chip made of semiconductor elements such as transistors and integrated circuits.
  • the semiconductor element chip 1 may be, for example, a laminate in which a semiconductor element and a material different from the semiconductor such as a metal layer, a resin layer, and a ceramic layer are laminated.
  • the semiconductor element chip 1 may be a laminate in which a semiconductor element and a functional element such as an optical element or a MEMS element are laminated.
  • the base material 2 has a first surface 21 and a second surface 22 facing in the direction opposite to the first surface 21 (see FIGS. 1 and 2). As shown in FIG. 1, the base material 2 has a plurality of chip regions 51 and a cutting region 52 between adjacent chip regions 51 on the first surface 21. An integrated circuit is formed in each chip region 51.
  • the base material 2 is covered with the protective film 3.
  • the base material 2 is held by the holding material 6 as shown in FIG. 2, for example.
  • the base material 2 may be held by the holding material 6 before forming the integrated circuit, or may be held by the holding material 6 after forming the integrated circuit.
  • the holding material 6 has a main body 61 and an adhesive layer 62 that covers one surface of the main body 61.
  • the main body 61 is made of a thermoplastic resin such as polyolefin or polyester.
  • the pressure-sensitive adhesive layer 62 is made of a pressure-sensitive adhesive such as, for example, a UV-curable acrylic pressure-sensitive adhesive.
  • the thickness of the adhesive layer 62 is, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the base material 2 is held by the holding material 6 by superimposing the second surface 22 of the base material 2 on the adhesive layer 62 of the holding material 6.
  • the protective film 3 can be produced by applying the protective composition to the first surface 21 of the base material 2 while being held by the holding material 6 and then drying it if necessary.
  • the protective composition can be applied by a spray coating method or a spin coating method, and the protective composition may be applied in combination with the spray coating method and the spin coating method.
  • the coating film of the protective composition is dried, for example, the coating film is heated at a temperature lower than the heat resistant temperature of the holding material 6, for example, at a temperature of 60 ° C. or lower.
  • the coating film may be dried under reduced pressure.
  • the thickness of the coating film is appropriately set and is not particularly limited.
  • a groove 31 is formed in the protective film 3 as shown in FIG.
  • Making a groove 31 by laser ablation is also referred to as laser grooving.
  • laser grooving for example, a portion of the protective film 3 that covers the cut region 52 of the base material 2 is irradiated with laser light to remove the portion from the base material 2.
  • a groove 31 that reaches the cut region 52 is formed in the protective film 3. That is, the cut region 52, which is a part of the first surface 21 of the base material 2, is exposed in the groove 31. Even if debris is generated by laser grooving, the chip region 51 of the first surface 21 of the base material 2 is covered with the protective film 3, so that the chip region 51 is protected.
  • the light source in the laser grooving is, for example, a nanosecond laser that emits a laser beam having a UV wavelength (for example, 355 nm).
  • the conditions for irradiating the laser beam are, for example, a pulse period of 50 kHz, an output of 0.1 W, and a moving speed of the laser beam irradiation position of 100 mm / sec, but are not limited thereto.
  • the base material 2 is divided into a plurality of semiconductor element chips 1 by plasma dicing.
  • the protective film 3 functions as a mask in plasma dicing.
  • a plasma processing device is used for plasma dicing.
  • the base material 2 is arranged in a state of being held by the holding material 6 on a stage provided in the chamber of the plasma processing apparatus.
  • plasma is generated in the chamber and exposed by the protective film 3 and the groove 31.
  • the cut region 52 is exposed to plasma.
  • the base material 2 can be cut by plasma etching at the position of the cutting region 52.
  • the chip region 51 is protected from plasma by the protective film 3.
  • a plurality of semiconductor element chips 1 can be obtained.
  • the chip region 51 of the semiconductor element chip 1 is covered with the protective film 3.
  • Plasma generation conditions are set according to the material of the base material 2.
  • the base material 2 contains silicon
  • the base material 2 can be processed using a Bosch process.
  • silicon is dug in the depth direction by sequentially repeating the deposition step, the deposition film etching step, and the Si etching step.
  • the deposition step for example, while supplying C 4 F 8 as a process gas at 150 sccm to 250 sccm, the pressure in the chamber is adjusted to 15 Pa to 25 Pa, the applied power to the coil is 1500 W to 2500 W, and the application is applied to the lower electrode.
  • the power is set to 0 W to 50 W, and the processing is performed for 2 seconds to 15 seconds.
  • the pressure in the chamber is adjusted to 5 Pa to 15 Pa, and the applied power to the coil is set to 1500 W to 2500 W and applied to the lower electrode.
  • the power is set to 300 W to 1000 W, and the processing is performed for 2 seconds to 10 seconds.
  • the Si etching step for example, while supplying SF 6 as a process gas at 200 sccm to 400 sccm, the pressure in the chamber is adjusted to 5 Pa to 15 Pa, the applied power to the coil is 1500 W to 2500 W, and the input power to the lower electrode is set to 1500 W to 2500 W. Is set to 50 W to 500 W, and the processing is performed for 10 seconds to 20 seconds.
  • the base material 2 containing silicon is etched in the depth direction at a rate of 10 ⁇ m / min to 20 ⁇ m / min.
  • the base material 2 is cut into a plurality of semiconductor element chips 1 while being held by the holding material 6.
  • the aqueous cleaning liquid may be water or a mixed solvent containing water and an organic solvent.
  • the organic solvent contains at least one selected from the group consisting of, for example, methanol, ethanol, acetone, methyl ethyl ketone, acetonitrile, dimethylacetamide and the like.
  • the example of the organic solvent is not limited to the above.
  • the aqueous cleaning solution may contain additives if necessary. Additives include, for example, acids, surfactants, metal corrosion inhibitors and the like.
  • the protective film 3 When the protective film 3 is brought into contact with the aqueous cleaning solution, the protective film 3 may be immersed in the aqueous cleaning solution, or the protective film 3 may be sprayed with the aqueous cleaning solution or the like. The protective film 3 may be brought into contact with the aqueous cleaning solution by a method other than the above. After removing the protective film 3, each semiconductor element chip 1 is removed from the holding material 6.
  • the protective composition will be described in more detail.
  • the protective composition contains a water-soluble polyester resin (A) having a multivalent carboxylic acid residue (a) and a multivalent alcohol residue (b).
  • the water-soluble polyester resin (A) is, for example, a polymerization product of a monomer component containing a polyvalent carboxylic acid component and a glycol component.
  • the water-soluble polyester resin (A) may have a polyvalent carboxylic acid residue (a) derived from the polyvalent carboxylic acid component and a polyhydric alcohol residue (b) derived from the glycol component. can.
  • the water-soluble polyester resin (A) is judged to be water-soluble based on common general technical knowledge.
  • the water-soluble polyester resin (A) dissolves in water without using a dispersion aid such as a hydrophilic organic solvent or a surfactant.
  • a dispersion aid such as a hydrophilic organic solvent or a surfactant.
  • the water-soluble polyester resin (A) and water at 90 ° C. are mixed at a mass ratio of 1: 3 and stirred at a sufficient speed for 2 hours while maintaining the temperature of the obtained liquid at 90 ° C., the water becomes water-soluble.
  • the polyester resin (A) is completely dissolved in water.
  • the polyvalent carboxylic acid component comprises at least one compound selected from a divalent or higher polyvalent carboxylic acid and an ester-forming derivative of the polyvalent carboxylic acid.
  • the ester-forming derivative of the polyvalent carboxylic acid is a derivative of the polyvalent carboxylic acid, for example, an anhydride of the polyvalent carboxylic acid, an ester, an acid chloride, a halide, etc., and reacts with a polyvalent alcohol component described later. It is a compound that forms an ester.
  • a polyvalent carboxylic acid has two or more carboxy groups per molecule.
  • the polyhydric alcohol component comprises at least one compound selected from a divalent or higher polyhydric alcohol and an ester-forming derivative of the polyhydric alcohol.
  • the ester-forming derivative of a polyhydric alcohol is a derivative of a polyhydric alcohol, for example, a diacetate compound corresponding to the polyhydric alcohol, and is a compound that reacts with a polyhydric carboxylic acid component to form an ester.
  • Polyhydric alcohols have more than one hydroxy group per molecule.
  • the monomer component contains a compound having a carboxy group or an ester-forming inducer thereof and a hydroxy group or an ester-forming inducer thereof, such as a hydroxy acid, an ester-forming derivative of a hydroxy acid, and a lactone. May be good.
  • the polyvalent carboxylic acid residue (a) preferably has no reactive functional group other than the carboxy group and its ester-forming inducing group.
  • the polyhydric alcohol residue (b) preferably has no reactive functional group other than the hydroxy group and its ester-forming inducing group.
  • the reactive functional group referred to here is, for example, a reactive group such as an ethylenically unsaturated bond, an amino group, an imino group, a hydradino group, a nitro group, an epoxy group, a cyano group or an azo group.
  • neither the polyvalent carboxylic acid residue (a) nor the polyhydric alcohol residue (b) has a reactive functional group.
  • the amount of the reactive functional groups of the water-soluble polyester resin (A) is reduced, or the water-soluble polyester resin (A) becomes non-reactive.
  • the water-soluble polyester resin (A) is applied to the base material 2 and then heated for drying, heated by being irradiated with a laser by laser ablation, or exposed to plasma in a plasma dicing step. Even if it is heated by the water-soluble polyester resin (A), the water solubility of the water-soluble polyester resin (A) is less likely to decrease.
  • the metal sulfonate group is not included in the above-mentioned reactive functional group.
  • the polyvalent carboxylic acid residue (a) includes a polyvalent carboxylic acid residue having a metal sulfonate group (a1) and a naphthalenedicarboxylic acid residue (a2).
  • the polyvalent carboxylic acid residue (a1) having a metal sulfonate group allows the water-soluble polyester (A) to have good water solubility, so that the protective film 3 is easily removed by the aqueous cleaning solution.
  • the naphthalene dicarboxylic acid residue (a2) makes it easy for the protective film 3 to absorb the laser beam, and therefore it is easy to form a groove 31 in the protective film 3 by laser ablation.
  • the naphthalene dicarboxylic acid residue (a2) makes it easy for the protective film 3 to have good plasma resistance, so that the semiconductor device chip 1 can be easily manufactured by plasma dicing. Further, since the water-soluble polyester resin (A) does not have a reactive functional group, the water-soluble polyester resin (A) is less likely to discolor the metal portion of the base material 2.
  • the polyvalent carboxylic acid residue (a1) having a metal sulfonate group is, for example, a residue of an alkali metal salt of 5-sulfoisophthalic acid, a residue of an alkali metal salt of 2-sulfoisophthalic acid, or an alkali of 4-sulfoisophthalic acid. It contains at least one selected from the group consisting of metal salt residues, alkali metal salt residues of sulfoterephthalic acid, alkali metal salt residues of 4-sulfonaphthalene-2,6-dicarboxylic acid and the like.
  • the alkali metal is preferably sodium, potassium or lithium.
  • the polyvalent carboxylic acid residue having a metal sulfonate group contains a sodium 5-sulfoisophthalate residue (for example, a dimethyl sodium 5-sulfoisophthalate residue or a sodium 5-sulfoisophthalate residue), a water-soluble polyester
  • the sodium sulfonate group effectively remains in the resin (A), which imparts excellent water solubility to the water-soluble polyester resin (A).
  • the ratio of the polyvalent carboxylic acid residue (a1) having a metal sulfonate group is 25 mol% or more and 70 mol% or less with respect to the polyvalent carboxylic acid residue (a). Therefore, the protective film 3 is removed by the aqueous cleaning solution. This ratio is more preferably 30 mol% or more and 65 mol% or less, and further preferably 35 mol% or more and 60 mol% or less.
  • the ratio of the naphthalene dicarboxylic acid residue (a2) is 30 mol% or more and 75 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the absorption of laser light having a wavelength of about 355 nm of the protective film 3 becomes particularly high, so that the efficiency of laser grooving tends to increase even if the protective composition does not contain a laser light absorber. Therefore, the manufacturing efficiency of the semiconductor element chip 1 tends to be effectively improved.
  • the protective composition does not contain the laser light absorber, the stability of the protective composition is likely to be enhanced, and problems such as bleeding out of the laser absorber from the protective film 3 do not occur.
  • This ratio is more preferably 35 mol% or more and 70 mol% or less, and further preferably 40 mol% or more and 65 mol% or less.
  • the polyvalent carboxylic acid residue (a) may contain only the polyvalent carboxylic acid residue (a1) having a metal sulfonate group and the naphthalenedicarboxylic acid residue (a2), but other polyvalent carboxylic acids. It may contain a residue (a3).
  • the polyvalent carboxylic acid residue (a3) contains a dicarboxylic acid residue such as an aromatic dicarboxylic acid residue or an aliphatic dicarboxylic acid residue.
  • polyvalent carboxylic acid residues include aromatic dicarboxylic acid residues such as terephthalic acid residues and isophthalic acid residues, as well as succinic acid residues, adipic acid residues, sebacic acid residues, and dodecanedioic acid residues. It preferably contains at least one selected from residues of aliphatic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid residues. In this case, the durability of the water-soluble polyester resin (A) becomes good.
  • the polyvalent carboxylic acid residue (a3) is selected from the group consisting of succinic acid residue, adipic acid residue, sebacic acid residue, dodecanedioic acid residue, 1,4-cyclohexanedicarboxylic acid residue and the like.
  • the inclusion of at least one residue of an aliphatic dicarboxylic acid tends to reduce the glass transition temperature of the water-soluble polyester resin (A).
  • the naphthalenedicarboxylic acid residue (a2) tends to increase the glass transition temperature of the water-soluble polyester resin (A), but when the water-soluble polyester resin (A) further has a residue of an aliphatic dicarboxylic acid, the water-soluble polyester resin (A) It is possible to prevent the glass transition temperature of A) from becoming excessively high.
  • the polyhydric alcohol residue preferably contains a glycol residue.
  • Glycol residues include ethylene glycol residues, diethylene glycol residues, polyethylene glycol residues, butanediol residues such as 1,4-butanediol residues, and hexanediols such as 1,6-hexanediol residues. It preferably contains at least one glycol residue selected from residues, neopentyl glycol residues and the like. In this case, the durability of the water-soluble polyester resin (A) becomes good, and the glass transition temperature of the water-soluble polyester resin (A) can be easily reduced.
  • the residues contained in the polyhydric alcohol residue are not limited to the above, and include, for example, residues of 1,4-cyclohexanedimethanol, bisphenol A residues, bisphenol fluorene residues, bisphenoloxyethanol fluorene residues, and the like. But it may be.
  • the ratio of the polyvalent carboxylic acid component to the polyhydric alcohol component is the carboxy group contained in the polyvalent carboxylic acid component and
  • the total number of ester-forming inducers and the total number of hydroxy groups contained in the polyhydric alcohol component and their ester-forming inducers are adjusted to be in the range of 1: 1.1 to 2.5 in terms of molar ratio. It is preferable to be.
  • the water-soluble polyester resin (A) is produced by polymerizing a polyvalent carboxylic acid component and a polyhydric alcohol component by a known polyester production method.
  • the polyvalent carboxylic acid component is a polyhydric carboxylic acid and the polyhydric alcohol component is a polyhydric alcohol
  • a direct esterification reaction in which the polyhydric carboxylic acid and the polyhydric alcohol are reacted in a one-step reaction. Is adopted.
  • the water-soluble polyester resin (A) may be produced through a first-stage reaction, which is an exchange reaction, and a second-stage reaction in which the reaction products of the first-stage reaction are transesterified.
  • the transesterification reaction which is the first-stage reaction
  • all the raw materials used for producing the water-soluble polyester resin (A) may be contained in the reaction system from the beginning.
  • the dicarboxylic acid diester and the polyhydric alcohol are held in the reaction vessel, they are gradually heated to 150 to 260 ° C. under an atmosphere of an inert gas such as nitrogen gas under normal pressure conditions.
  • the transesterification reaction proceeds.
  • the polycondensation reaction which is the second stage reaction, proceeds in a temperature range of 160 to 280 ° C. under a reduced pressure of, for example, 6.7 hPa (5 mmHg) or less.
  • titanium, antimony, lead, zinc, magnesium, calcium, manganese, alkali metal compounds and the like may be added to the reaction system at any time as a catalyst.
  • the number average molecular weight of the water-soluble polyester resin (A) is preferably 1000 or more and 50,000 or less. When the number average molecular weight is 1000 or more, the protective film 3 tends to have sufficient strength. When the number average molecular weight is 50,000 or less, the water solubility of the water-soluble polyester resin (A) becomes sufficiently high, and the water solubility of the protective film 3 is effectively improved. It is more preferable that the number average molecular weight is 2000 or more and 40,000 or less.
  • the number average molecular weight of the water-soluble polyester resin (A) is derived from the measurement result by gel permeation chromatography (polystyrene conversion).
  • the degree of water solubility of the water-soluble polyester resin (A) is the number average molecular weight of the water-soluble polyester resin (A) and the polyvalent carboxylic acid residue (a1) having a metal sulfonate group in the water-soluble polyester resin (A). Is adjusted by setting the ratio of the above in a well-balanced manner. That is, the number average molecular weight of the water-soluble polyester resin (A) and the ratio of the polyvalent carboxylic acid residue (a1) having a metal sulfonate group so that the water-soluble polyester resin (A) becomes sufficiently water-soluble. However, it is preferable that it is set appropriately.
  • the acid value of the water-soluble polyester resin (A) is preferably 10 mgKOH / g or less. When the acid value is 10 mgKOH / g or less, the water-soluble polyester resin (A) does not easily discolor the metal portion of the base material 2.
  • the glass transition temperature of the water-soluble polyester resin (A) is preferably 10 ° C. or higher and 100 ° C. or lower.
  • the glass transition temperature is 10 ° C. or higher, the protective film 3 is unlikely to have excessive adhesiveness, so that the handleability tends to be good.
  • the glass transition temperature is 100 ° C. or lower, the film-forming property is good, and the adhesion between the protective film 3 and the base material 2 tends to be good.
  • the glass transition temperature is 20 ° C. or higher and 80 ° C. or lower, and further preferably 40 ° C. or higher and 65 ° C. or lower.
  • the glass transition temperature is derived from the measurement result by differential scanning calorimetry.
  • the ratio of the water-soluble polyester resin (A) in the protective composition is preferably 1% by mass or more and 100% by mass or less with respect to the solid content (nonvolatile component) of the protective composition, which is 10% by mass. It is more preferable if it is 90% by mass or more, and further preferable if it is 15% by mass or more and 80% by mass or less.
  • the protective composition may further contain an aqueous resin other than the water-soluble polyester resin (A).
  • an aqueous resin other than the water-soluble polyester resin (A).
  • the aqueous resin contains at least one selected from the group consisting of, for example, polyvinyl alcohol, polyurethane, acrylic resin, cellulose derivative, modified polypropylene, modified polyethylene and the like.
  • the protective composition may contain an appropriate additive.
  • the additive contains at least one selected from the group consisting of, for example, a leveling agent, an antioxidant, an ultraviolet absorber, an antifoaming agent and the like.
  • the protective composition may contain at least one of water and a hydrophilic organic solvent.
  • Hydrophilic organic solvents include alcohols such as methanol, ethanol, 2-propanol and 1,2-propanediol; glycol ethers such as propylene glycol monomethyl ether, ethyl cellosolve and n-butyl cellosolve; and ketones such as acetone, methyl ethyl ketone and cyclohexanone. Contains at least one selected from the group consisting of.
  • the protective composition according to this embodiment is easily applied by a spray coating method or a spin coating method.
  • the viscosity of the protective composition at room temperature is preferably 0.5 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • the protective composition is particularly easy to apply to the base material 2, and by applying it, it is easy to form a film.
  • the protective composition is applied by a spray coating method or a spin coating method, it becomes particularly easy to apply.
  • the viscosity is measured by a vibrating viscometer.
  • the protective composition is applied by the spray coating method, it is more preferable that the viscosity is 0.5 mPa ⁇ s or more and 100 mPa ⁇ s or less.
  • the protective composition is applied by the spin coating method, it is more preferable that the viscosity is 20 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • a reaction vessel with a capacity of 1000 ml equipped with a stirrer, a nitrogen gas inlet, a thermometer, a rectification column and a cooling condenser was prepared.
  • the raw materials shown in the table and potassium titanium oxalate as a catalyst were placed in this reaction vessel to obtain a mixture.
  • the transesterification reaction was completed by raising the temperature of this mixture to 200 ° C. under normal pressure while stirring and mixing in a nitrogen atmosphere, and then gradually raising the temperature to 250 ° C. over 4 hours.
  • the mixture was gradually depressurized to 0.67 hPa (0.5 mmHg) at a temperature of 250 ° C., and then held in that state for 2 hours to allow the polycondensation reaction to proceed. As a result, a polyester resin was obtained.
  • the viscosity of the composition is adjusted to 0.5 mPa ⁇ s or more and 100 mPa ⁇ s or less, and when the composition is applied by the spin coating method, the viscosity of the composition is adjusted. The adjustment was made to 20 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • Acid Value The acid value of the polyester resin in the composition was measured by titration using an ethanol solution of potassium hydroxide.
  • a protective film having a thickness of 10 ⁇ m or 30 ⁇ m was prepared by applying the composition to a single crystal silicon substrate having a diameter of 300 nm by a spray coating method and then air-drying.
  • the coatability in this case was evaluated as follows by observing the surface with an optical microscope and measuring the film thickness distribution using a near-infrared light interference film thickness meter.
  • Adhesion A protective film having a thickness of 10 ⁇ m or 30 ⁇ m was prepared by applying the composition to a single crystal silicon substrate having a diameter of 300 nm by a spray coating method and then air-drying. The state of this protective film was observed with an optical microscope and evaluated as follows.
  • a protective film having a thickness of 10 ⁇ m or 30 ⁇ m was prepared by applying the composition to a single crystal silicon substrate having a diameter of 300 nm by a spray coating method and then air-drying the composition.
  • the protective film was irradiated with UV laser light (wavelength 355 nm) using a Q-switched laser, and laser ablation was performed to form a groove with a width of about 20 ⁇ m. From the results, the laser processability of the protective film was evaluated as follows.
  • a good processed shape is obtained, and no peeling is observed between the protective film and the base material.
  • a protective film having a thickness of 10 ⁇ m and 30 ⁇ m was prepared by applying the composition to a single crystal silicon substrate having a diameter of 300 mm by a spray coating method and then air-drying the composition. A groove was formed in this protective film by laser processing. Then, after carrying out the plasma dicing step for 20 minutes or more, the state of the protective film was observed with an electron microscope and evaluated as follows.
  • the plasma treatment for the plasma resistance evaluation and the removability evaluation described later is made under the same conditions as the plasma dicing process. Specifically, the deposition step, the deposition film etching step, and the Si etching step in the Bosch process are totaled. This was carried out by sequentially repeating the process until the processing time was 20 minutes or more.
  • the conditions of deposition step while supplying at 200sccm the C 4 F 8 as the process gas, to adjust the pressure in the chamber to 20 Pa, the power applied to the coil as 2000 W, 25W power applied to the lower electrode
  • the processing time was set to 8 seconds.
  • the conditions of the deposition film etching step are as follows: while supplying SF 6 as a process gas at 300 sccm, the pressure in the chamber is adjusted to 10 Pa, the applied power to the coil is 2000 W, and the applied power to the lower electrode is 650 W. , The processing time was set to 6 seconds.
  • the conditions of the Si etching step are that while supplying SF 6 as a process gas at 300 sccm, the pressure in the chamber is adjusted to 10 Pa, the applied power to the coil is 2000 W, and the input power to the lower electrode is 275 W. The processing time was 15 seconds.
  • the etching rate of the protective film in plasma dicing was sufficiently smaller than the etching rate of the silicon substrate (specifically, 1/10 or less).
  • a protective film having a thickness of 5 ⁇ m was prepared by applying the composition to a single crystal silicon substrate having a diameter of 300 mm in an atmosphere of 23 ° C. by a spray coating method and then air-drying the composition. After 90 seconds of two-fluid cleaning of the protective film under the conditions of a flow rate of 1.94 L / min and a water temperature of 30 ° C. using water as an aqueous cleaning solution, the appearance of the substrate was observed, and the results are as follows. Evaluated as.
  • a protective film having a thickness of 5 ⁇ m was prepared by applying the composition to a single crystal silicon substrate having a diameter of 300 mm in an atmosphere of 23 ° C. by a spray coating method and then air-drying the composition.
  • UV laser light wavelength 355 nm
  • Q-switched laser laser ablation processing was performed to form a groove having a width of about 20 ⁇ m.
  • the protective film was subjected to a plasma dicing step for 20 minutes or more.
  • the base material (2) is divided into a plurality of semiconductor device chips (1).
  • a method for manufacturing a semiconductor device chip (1) which comprises applying a protective composition to a base material (2) to prepare a protective film (3) that covers the base material (2), that is, the protective film (3). Is irradiated with at least one of laser light and plasma, the base material (2) is divided into a plurality of semiconductor element chips (1) by cutting the base material (2), and the protective film (3) is divided into a plurality of semiconductor element chips (1). It includes removing from the substrate (2) or the semiconductor device chip (1) by contacting it with an aqueous cleaning solution.
  • the protective composition contains a water-soluble polyester resin (A) having a multivalent carboxylic acid residue (a) and a polyhydric alcohol residue (b).
  • the polyvalent carboxylic acid residue (a) includes a polyvalent carboxylic acid residue (a1) having a metal sulfonate group and a naphthalenedicarboxylic acid residue (a2).
  • the ratio of the polyvalent carboxylic acid residue (a1) is 25 mol% or more and 70 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the ratio of the naphthalene dicarboxylic acid residue (a2) is 30 mol% or more and 75 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the protective composition by using the protective composition, it is easy to prepare the protective film (3), and the protective film (3) uses the base material (2) and the semiconductor device chip (1) as laser light and plasma. It can be protected from at least one, and it is easy to remove the protective film (3) from the base material (2) or the semiconductor device chip (1) using an aqueous cleaning solution.
  • the polyvalent carboxylic acid residue (a) is a succinic acid residue, an adipic acid residue, and a sebacic acid residue. It further comprises residues of at least one aliphatic dicarboxylic acid selected from the group consisting of groups, dodecanedioic acid residues, and 1,4-cyclohexanedicarboxylic acid residues.
  • the durability of the water-soluble polyester resin (A) is improved, and the glass transition temperature of the water-soluble polyester resin (A) can be easily reduced.
  • the polyhydric alcohol residue (b) is an ethylene glycol residue, a diethylene glycol residue, or polyethylene glycol. It contains at least one glycol residue selected from the group consisting of residues, 1,4-butanediol residues, 1,6-hexanediol residues, and neopentyl glycol residues.
  • the durability of the water-soluble polyester resin (A) is improved, and the glass transition temperature of the water-soluble polyester resin (A) can be easily reduced.
  • the acid value of the water-soluble polyester resin (A) in any one of the first to third aspects is 10 mgKOH / g or less. ..
  • the water-soluble polyester resin (A) does not easily discolor the metal.
  • the glass transition temperature of the water-soluble polyester resin (A) is 10 ° C. or higher and 100 ° C. or higher. It is below ° C.
  • the protective film (3) made of the water-soluble polyester resin (A) is less likely to have excessive adhesiveness, so that the handleability is good. Prone. When the glass transition temperature is 100 ° C. or lower, the film-forming property of the water-soluble polyester resin (A) becomes good, and the adhesion between the protective film 3 and the base material 2 tends to be good.
  • the protective film (3) is irradiated with a laser beam to obtain a protective film (1). At least a part of 3) is removed from the substrate (2) by laser ablation.
  • the water solubility of the protective film (3) is not easily impaired and it is easy to remove with an aqueous cleaning solution. ..
  • a part of the protective film (3) is removed from the base material (2). Then, by irradiating the protective film (3) and a part of the base material (2) exposed by removing a part of the protective film (3) with plasma, the base material (2) Remove at least part of the portion.
  • the protective film (3) irradiated with plasma can be easily removed with an aqueous cleaning solution.
  • a protective composition is applied to the base material (2) by a spray coating method or a spin. Apply by the coating method.
  • the viscosity of the protective composition at room temperature is 0.5 mPa ⁇ s or more. It is 1000 mPa ⁇ s or less.
  • the ninth aspect it is particularly easy to apply the protective composition to the base material (2).
  • the protective composition according to the tenth aspect of the present disclosure is used for manufacturing a semiconductor device chip (1) by dividing the base material (2) into a plurality of semiconductor device chips (1).
  • the method for manufacturing the semiconductor device chip (1) is to prepare a protective film (3) that covers the base material (2) by applying a protective composition to the base material (2), and to form the protective film (3). Irradiating at least one of laser light and plasma, dividing the base material (2) into a plurality of semiconductor device chips (1) by cutting the base material (2), and making the protective film (3) aqueous. It includes removing from the substrate (2) or the semiconductor device chip (1) by contacting with a cleaning liquid.
  • the protective composition contains a water-soluble polyester resin (A) having a multivalent carboxylic acid residue (a) and a polyhydric alcohol residue (b).
  • the polyvalent carboxylic acid residue (a) includes a polyvalent carboxylic acid residue (a1) having a metal sulfonate group and a naphthalenedicarboxylic acid residue (a2).
  • the ratio of the polyvalent carboxylic acid residue (a1) is 25 mol% or more and 70 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the ratio of the naphthalene dicarboxylic acid residue (a2) is 30 mol% or more and 75 mol% or less with respect to the polyvalent carboxylic acid residue (a).
  • the semiconductor element chip (1) is formed by forming the protective film (3) on the base material (2) and then irradiating the protective film (3) with at least one of laser light and plasma. Can be manufactured.
  • the protective composition by using the protective composition, the protective film (3) can be easily produced, and the protective film (3) protects the base material (2) and the semiconductor device chip (1) from at least one of laser light and plasma. Further, it is easy to remove the protective film (3) from the semiconductor device chip (1) by using an aqueous cleaning solution. Further, since the water solubility of the protective film (3) is not easily impaired, the manufacturing efficiency of the semiconductor element chip (1) can be improved.
  • the polyvalent carboxylic acid residue (a) is a succinic acid residue, an adipic acid residue, a sebacic acid residue, a dodecanedioic acid residue, and 1. Includes residues of at least one aliphatic dicarboxylic acid selected from the group consisting of 4-cyclohexanedicarboxylic acid residues.
  • the durability of the water-soluble polyester resin (A) is improved, and the glass transition temperature of the water-soluble polyester resin (A) can be easily reduced.
  • the polyhydric alcohol residue (b) is an ethylene glycol residue, a diethylene glycol residue, a polyethylene glycol residue, and the like. It contains at least one glycol residue selected from the group consisting of 1,4-butanediol residues, 1,6-hexanediol residues, and neopentyl glycol residues.
  • the durability of the water-soluble polyester resin (A) is improved, and the glass transition temperature of the water-soluble polyester resin (A) can be easily reduced.
  • the protective composition according to the thirteenth aspect of the present disclosure has an acid value of 10 mgKOH / g or less of the water-soluble polyester resin (A) in any one of the tenth to the twelfth aspects.
  • the water-soluble polyester resin (A) does not easily discolor the metal.
  • the glass transition temperature of the water-soluble polyester resin (A) is 10 ° C. or higher and 100 ° C. It is as follows.
  • the fourteenth aspect when the glass transition temperature is 10 ° C. or higher, excessive adhesiveness is unlikely to occur on the protective film (3), so that the handleability tends to be good.
  • the glass transition temperature is 100 ° C. or lower, the film-forming property of the water-soluble polyester resin (A) becomes good, and the adhesion between the protective film (3) and the base material (2) tends to be good.

Abstract

本開示の課題は、基材(2)上の保護膜(3)にレーザ光等を照射することを含む方法で半導体素子チップ(1)を製造するにあたり、保護膜(3)を作製しやすく、保護膜(3)で基材(2)及び半導体素子チップ(1)を保護でき、かつ保護膜(3)を除去しやすくすることである。本開示では、保護用組成物は、多価カルボン酸残基(a)と多価アルコール残基(b)とを有する水溶性ポリエステル樹脂(A)を含有する。多価カルボン酸残基(a)は、金属スルホネート基を有する多価カルボン酸残基(a1)と、ナフタレンジカルボン酸残基(a2)とを含む。多価カルボン酸残基(a1)の割合は、多価カルボン酸残基(a)に対して、25モル%以上70モル%以下である。ナフタレンジカルボン酸残基(a2)の割合は、多価カルボン酸残基(a)に対して、30モル%以上75モル%以下である。

Description

半導体素子チップの製造方法及び保護用組成物
 本開示は、半導体素子チップの製造方法及び保護用組成物に関し、詳しくは基材をダイシングにより複数の半導体素子チップに分割する半導体素子チップの製造方法及び半導体素子チップの製造方法に使用される保護用組成物に関する。
 シリコンウエハなどの基材に集積回路を形成してからダイシングして複数の半導体素子チップを製造する技術の一つに、プラズマダイシングがある。プラズマダイシングに当たっては、基材の保護のために保護膜を用いることがある。
 例えば特許文献1には、水溶性樹脂と、水溶性樹脂に分散され、断面が長軸と前記長軸に直交する短軸とを持つ細長形状を有する金属酸化物の微粒子とを含む保護膜形成用樹脂剤が開示されている。保護膜形成用樹脂剤をウエハ上に塗布して保護膜を形成し、保護膜にレーザビームを照射してウエハをアブレーション加工すること、及び保護膜をプラズマダイシングの際のエッチングマスクとして用いることができることも、開示されている。水溶性樹脂としてポリビニルアルコール等も開示されている。
 特許文献1に開示されている技術では、レーザアブレーション時及びプラズマダイシング時に、ウエハ及び半導体素子チップを保護でき、かつウエハから半導体素子チップを作製した後に水で洗浄することで半導体素子チップから保護膜を除去できる。しかし、レーザアブレーション時に保護膜がレーザに晒されたり、プラズマダイシング時に保護膜がプラズマに晒されたりすることで保護膜が変質して水溶性が損なわれ、水による洗浄により半導体素子チップから保護膜を十分に除去するには時間がかかってしまい、半導体素子チップの製造効率の低下を招きやすい。
特開2017-42786号公報
 本開示の課題は、基材上に保護膜を作製してから保護膜にレーザ光及びプラズマの少なくとも一方を照射することを含む方法で半導体素子チップを製造するにあたり、保護膜を作製しやすく、レーザ光及びプラズマの少なくとも一方を照射する時に保護膜で基材及び半導体素子チップを保護でき、かつ保護膜を除去しやすい半導体素子チップの製造方法、及びこの製造方法に使用する保護用組成物を提供することである。
 本開示の一態様に係る半導体素子チップの製造方法は、基材を複数の半導体素子チップに分割する半導体素子チップの製造方法であって、前記基材に保護用組成物を塗布することで前記基材を覆う保護膜を作製すること、前記保護膜にレーザ光及びプラズマの少なくとも一方を照射すること、前記基材を切断することで前記基材を前記複数の半導体素子チップに分割すること、及び前記半導体素子チップを覆う前記保護膜を、水性洗浄液に接触させることで前記基材又は前記半導体素子チップから除去することを含む。前記保護用組成物は、多価カルボン酸残基(a)と多価アルコール残基(b)とを有する水溶性ポリエステル樹脂(A)を含有する。前記多価カルボン酸残基(a)は、金属スルホネート基を有する多価カルボン酸残基(a1)と、ナフタレンジカルボン酸残基(a2)とを含む。前記多価カルボン酸残基(a1)の割合は、前記多価カルボン酸残基(a)に対して、25モル%以上70モル%以下である。前記ナフタレンジカルボン酸残基(a2)の割合は、前記多価カルボン酸残基(a)に対して、30モル%以上75モル%以下である。
 本開示の一態様に係る保護用組成物は、半導体素子チップを製造するために使用される。前記半導体素子チップの製造方法は、基材を複数の半導体素子チップに分割する半導体素子チップの製造方法であって、前記基材に保護用組成物を塗布することで前記基材を覆う保護膜を作製すること、前記保護膜にレーザ光及びプラズマの少なくとも一方を照射すること、前記基材を切断することで前記基材を前記複数の半導体素子チップに分割すること、及び前記保護膜を、水性洗浄液に接触させることで前記基材又は前記半導体素子チップから除去することを含む。前記保護用組成物は、多価カルボン酸残基(a)と多価アルコール残基(b)とを有する水溶性ポリエステル樹脂(A)を含有する。前記多価カルボン酸残基(a)は、金属スルホネート基を有する多価カルボン酸残基(a1)と、ナフタレンジカルボン酸残基(a2)とを含む。前記多価カルボン酸残基(a1)の割合は、前記多価カルボン酸残基(a)に対して、25モル%以上70モル%以下である。前記ナフタレンジカルボン酸残基(a2)の割合は、前記多価カルボン酸残基(a)に対して、30モル%以上75モル%以下である。
図1は、本開示の一実施形態における基材の平面図である。 図2は、本開示の一実施形態における半導体素子チップの製造工程を示す概略の断面図である。 図3は、本開示の一実施形態における半導体素子チップの製造工程を示す概略の断面図である。 図4は、本開示の一実施形態における半導体素子チップの製造工程を示す概略の断面図である。 図5は、本開示の一実施形態における半導体素子チップの製造工程を示す概略の断面図である。
 本開示の半導体素子チップ1の製造方法の概要について説明する。
 半導体素子チップ1の製造方法では、基材2を複数の半導体素子チップ1に分割する。この製造方法では、基材2に保護用組成物を塗布することで基材2を覆う保護膜3を作製する。保護膜3にレーザ光及びプラズマの少なくとも一方を照射する。基材2を切断することで基材2を複数の半導体素子チップ1に分割する。保護膜3を、水性洗浄液に接触させることで基材2又は半導体素子チップ1から除去する。保護用組成物は、多価カルボン酸残基(a)と多価アルコール残基(b)とを有する水溶性ポリエステル樹脂(A)を含有する。多価カルボン酸残基(a)は、金属スルホネート基を有する多価カルボン酸残基(a1)と、ナフタレンジカルボン酸残基(a2)とを含む。多価カルボン酸残基(a1)の割合は、多価カルボン酸残基(a)に対して、25モル%以上70モル%以下である。ナフタレンジカルボン酸残基(a2)の割合は、多価カルボン酸残基(a)に対して、30モル%以上75モル%以下である。
 この製造方法によると、保護用組成物を用いることで、保護膜3を作製しやすい。また、保護膜3が、レーザ光及びプラズマの少なくとも一方から基材2又は半導体素子チップ1を保護できる。さらに、保護膜3がレーザ光及びプラズマの少なくとも一方に晒されても、保護膜3の水溶性が損なわれにくい。そのため水性洗浄液を用いて半導体素子チップ1から保護膜3を除去しやすい。このため、半導体素子チップ1の製造効率を高めやすい。
 この製造方法において、保護膜3にレーザ光及びプラズマの少なくとも一方を照射する目的に、特に制限はない。例えば保護膜3の少なくとも一部を基材2上から除去するために、保護膜3にレーザ光及びプラズマの少なくとも一方を照射してよい。例えば、保護膜3にレーザ光を照射することで、保護膜3の少なくとも一部をレーザアブレーションにより基材2から除去してもよい。この場合、レーザアブレーション時に基材2を保護膜3で保護できる。またレーザアブレーションにより保護膜3に基材2の一部を露出させても、保護膜3の水溶性が損なわれにくく、保護膜3を水性洗浄液で除去しやすい。この場合、いかなる方法で基材2を分割してもよい。例えば前記とは異なるレーザ光及びプラズマの少なくとも一方を基材2に照射することで基材2を分割してもよく、ブレードなどを用いて基材2を分割してもよい。ブレードを用いる場合、基材2を保護膜3が除去された部分では切断せずに、例えば保護膜3が除去された二つの部分に挟まれた位置で切断してもよい。また、ブレードを用いる場合、保護膜3を水性洗浄液に接触させることで基材2から保護膜3を除去した後に、ブレードを用いて基材2を分割してもよい。
 また、例えば保護膜3の一部を基材2上から除去した後、保護膜3と、保護膜3の一部が除去されることで露出した基材2の部分とに、プラズマを照射することで、基材2を複数の半導体素子チップ1に分割してもよい。すなわち、保護膜3をプラズマダイシングにおけるマスクとして用いてもよい。この場合、保護膜3は基材2をプラズマから保護できる。また、プラズマに照射された保護膜3であっても水性洗浄液で除去しやすい。この場合の、保護膜3の一部を基材2上から除去する方法に、特に制限はない。例えば上記のように保護膜3の少なくとも一部を基材2上から除去するために、保護膜3にレーザ光及びプラズマの少なくとも一方を照射してよい。また、スクライブなどの機械的な除去方法又は薬液を用いた化学的な方法等で保護膜3の一部を基材2上から除去してもよい。
 また、例えば保護膜3にレーザ光及びプラズマの少なくとも一方を、保護膜3に照射することで保護膜3の一部を基材2上から除去し、更に保護膜3の一部が除去されることで露出した基材2の部分にも照射することで基材2を分割してもよい。
 本開示の好ましい一実施形態では、保護膜3の一部を、レーザ光を照射することで基材2上から除去する。続いて、保護膜3と、保護膜3の一部が除去されることで露出した基材2の部分とに、プラズマを照射することで、基材2を複数の半導体素子チップ1に分割する。以下、本実施形態について、図2から図5を参照して、より詳しく説明する。なお、本開示は以下の実施形態のみには制限されない。
 本実施形態では、基材2を覆う保護膜3を作製してから、保護膜3にレーザ光を照射し、保護膜3の一部をレーザアブレーションにより基材2から除去することで、保護膜3に基材2の一部を露出させる溝31を作製する。その後、プラズマダイシングにより基材2を溝31の位置で切断して基材2を複数の半導体素子チップ1に分割する。この時、溝31に露出する基材2だけでなく、基材2の溝31以外の部分を覆う保護膜3にもプラズマが照射される。その後、半導体素子チップ1を覆う保護膜3を、水性洗浄液に接触させることで半導体素子チップ1から除去する。
 本実施形態によると、基材2上に保護膜3を作製してからレーザアブレーション及びプラズマダイシングを行うことで半導体素子チップ1を製造できる。このとき、保護用組成物を用いることで、保護膜3を作製しやすい。レーザアブレーション時及びプラズマダイシング時に保護膜3で基材2及び半導体素子チップ1を保護できる。
 本実施形態による半導体素子チップ1の製造工程について、より詳しく説明する。
 基材2を準備する。基材2は、ダイシングによって複数の半導体素子チップ1に分割される。基材2は、例えばウエハである。ウエハは半導体から作製される。ウエハの材質の例は、シリコン、ガリウム砒素、窒化ガリウム及び炭化ケイ素等を含む。なお、ウエハの材質は前記のみに制限されない。ウエハのサイズに特に制限はないが、例えば基材2の径は50mm以上450mm以下、厚みは1μm以上800μm以下である。なお、基材2は、ダイシングによって複数の半導体素子チップ1に分割されるのであれば、半導体ウエハに限られない。例えば基材2は、半導体ウエハと、樹脂基板、金属基板、又はセラミック基板等とが積層した積層体であってもよい。また、半導体素子チップ1は、トランジスタや集積回路等の半導体素子からなるチップに限られない。半導体素子チップ1は、例えば、半導体素子と、金属層、樹脂層、セラミック層などの半導体とは異なる材料とが積層した積層体であってもよい。また、半導体素子チップ1は、半導体素子と、光学素子又はMEMS素子などの機能素子とを積層した積層体であってもよい。
 基材2は、第一面21と、第一面21とは反対方向を向く第二面22とを有する(図1及び図2参照)。基材2は、図1に示すように、第一面21に、複数のチップ領域51と、隣り合うチップ領域51間にある切断領域52とを有する。各チップ領域51には集積回路が形成されている。
 この基材2を保護膜3で覆う。保護膜3を作製する際には、基材2を例えば図2に示すように、保持材6に保持させる。基材2を、集積回路を形成する前に保持材6に保持させてもよく、集積回路を形成した後に保持材6に保持させてもよい。保持材6は、本体61と、本体61の一つの面を覆う粘着層62とを有する。本体61は、例えばポリオレフィン、ポリエステル等の熱可塑性樹脂から作製される。粘着層62は、例えばUV硬化型アクリル粘着剤などの粘着剤から作製される。粘着層62の厚みは例えば5μm以上20μm以下である。基材2の第二面22が保持材6の粘着層62に重ねられることで、基材2が保持材6に保持される。
 保持材6に保持された状態で、基材2の第一面21に保護用組成物を塗布してから、必要に応じて乾燥することで、保護膜3を作製できる。
 保護用組成物を塗布する方法に特に制限はない。例えば、保護用組成物をスプレーコート法又はスピンコート法で塗布することができ、保護用組成物をスプレーコート法とスピンコート法とを併用して塗布してもよい。保護用組成物の塗膜を乾燥する場合には、例えば塗膜を保持材6の耐熱温度より低い温度、例えば60℃以下の温度で、加熱する。減圧下で塗膜を乾燥してもよい。塗膜の厚みは適宜設定され、特に制限はない。
 次に、保護膜3の一部をレーザアブレーションにより基材2から除去することで、図3に示すように、保護膜3に溝31を作製する。レーザアブレーションにより溝31を作製することを、レーザグルービングともいう。レーザグルービングに当たっては、例えば保護膜3のうち基材2の切断領域52を覆う部分にレーザ光を照射して、前記の部分を基材2から除去する。これにより、保護膜3に切断領域52まで達する溝31が作製される。すなわち、基材2の第一面21の一部である切断領域52が、溝31で露出する。レーザグルービングによりデブリが発生しても、基材2の第一面21のチップ領域51は保護膜3で覆われているので、チップ領域51が保護される。
 レーザグルービングにおける光源は、例えば、UV波長(例えば355nm)のレーザ光を発するナノ秒レーザである。レーザ光を照射する条件は、例えばパルス周期50kHz、出力0.1W、レーザ光の照射位置の移動速度100mm/秒であるが、これに制限されない。
 次に、プラズマダイシングにより、図4に示すように、基材2を複数の半導体素子チップ1に分割する。保護膜3は、プラズマダイシングにおけるマスクとして機能する。プラズマダイシングに当たっては、プラズマ処理装置が用いられる。例えば、プラズマ源としてコイルを備える誘導結合型のプラズマ処理装置を用いる場合、プラズマ処理装置のチャンバ内に設けられたステージ上に基材2を保持材6に保持された状態で配置する。チャンバ内にプロセスガスを供給し、チャンバに設けられたコイルやステージに内蔵された下部電極に高周波電力を供給することにより、チャンバ内にプラズマを発生させ、保護膜3及び溝31で露出している切断領域52をプラズマに曝露する。これにより、基材2を切断領域52の位置でプラズマエッチングにより切断することができる。プラズマダイシングの際には、チップ領域51は保護膜3によってプラズマから保護される。これにより、複数の半導体素子チップ1が得られる。基材2を切断した時点では、半導体素子チップ1のチップ領域51は保護膜3で覆われている。
 プラズマの発生条件は、基材2の材質などに応じて設定される。例えば、基材2がシリコンを含む場合、基材2は、ボッシュプロセスを用いて加工することができる。ボッシュプロセスでは、堆積ステップと、堆積膜エッチングステップと、Siエッチングステップとを順次繰り返すことにより、シリコンを深さ方向に掘り進む。
 堆積ステップは、例えば、プロセスガスとしてCを150sccm~250sccmで供給しながら、チャンバ内の圧力を15Pa~25Paに調整し、コイルへの印加電力を1500W~2500Wとして、下部電極への印加電力を0W~50Wとして、2秒間~15秒間、処理する条件で行われる。
 堆積膜エッチングステップは、例えば、プロセスガスとしてSFを200sccm~400sccmで供給しながら、チャンバ内の圧力を5Pa~15Paに調整し、コイルへの印加電力を1500W~2500Wとして、下部電極への印加電力を300W~1000Wとして、2秒間~10秒間、処理する条件で行われる。
 Siエッチングステップは、例えば、プロセスガスとしてSFを200sccm~400sccmで供給しながら、チャンバ内の圧力を5Pa~15Paに調整し、コイルへの印加電力を1500W~2500Wとして、下部電極への投入電力を50W~500Wとして、10秒間~20秒間、処理する条件で行われる。
 上記のような条件で、堆積ステップ、堆積膜エッチングステップ、および、Siエッチングステップを繰り返すことにより、シリコンを含む基材2は、10μm/分~20μm/分の速度で深さ方向にエッチングされ、切断領域52における基材2が保持材6に達するまでエッチングされることにより、保持材6に保持された状態で基材2が複数の半導体素子チップ1に切断される。
 次に、各半導体素子チップ1を覆う保護膜3を、水性洗浄液に接触させることで、図5に示すように、半導体素子チップ1から除去する。水性洗浄液は、水でもよく、水と有機溶剤とを含む混合溶媒でもよい。有機溶剤は、例えばメタノール、エタノール、アセトン、メチルエチルケトン、アセトニトリル及びジメチルアセトアミドなどからなる群から選択される少なくとも一種を含有する。なお有機溶剤の例は前記のみには限られない。水性洗浄液は、必要に応じて添加剤を含有してもよい。添加剤は、例えば酸、界面活性剤、メタル防食剤などである。保護膜3を水性洗浄液に接触させるにあたっては、保護膜3を水性洗浄液に浸漬してもよく、保護膜3に水性洗浄液をスプレーなどで吹き付けてもよい。前記以外の方法で保護膜3を水性洗浄液に接触させてもよい。保護膜3を除去した後、各半導体素子チップ1を保持材6から取り外す。
 保護用組成物について、更に詳しく説明する。
 上記のとおり、保護用組成物は、多価カルボン酸残基(a)と多価アルコール残基(b)とを有する水溶性ポリエステル樹脂(A)を含有する。
 水溶性ポリエステル樹脂(A)は、例えば多価カルボン酸成分とグリコール成分とを含むモノマー成分の重合生成物である。この場合、水溶性ポリエステル樹脂(A)は、多価カルボン酸成分に由来する多価カルボン酸残基(a)と、グリコール成分に由来する多価アルコール残基(b)とを、有することができる。
 なお、水溶性ポリエステル樹脂(A)が水溶性を有することは、技術常識に基づいて判断される。特に、親水性有機溶剤や界面活性剤等の分散補助剤を使用しなくても、水溶性ポリエステル樹脂(A)が水に溶解することが好ましい。例えば、水溶性ポリエステル樹脂(A)と90℃の水とを1:3の質量比で混合し、得られた液の温度を90℃に保持したまま、十分な速度で2時間撹拌すると、水溶性ポリエステル樹脂(A)が水に全て溶解することが好ましい。
 多価カルボン酸成分は、二価以上の多価カルボン酸と多価カルボン酸のエステル形成性誘導体とから選択される、少なくとも一種の化合物から成る。多価カルボン酸のエステル形成性誘導体とは、多価カルボン酸の誘導体、例えば多価カルボン酸の無水物、エステル、酸クロライド、ハロゲン化物等、であって、後述する多価アルコール成分と反応してエステルを形成する化合物である。多価カルボン酸は、一分子あたり二以上のカルボキシ基を有する。
 多価アルコール成分は、二価以上の多価アルコールと多価アルコールのエステル形成性誘導体とから選択される、少なくとも一種の化合物から成る。多価アルコールのエステル形成性誘導体とは、多価アルコールの誘導体、例えば多価アルコールに対応するジアセテート化合物等、であって、多価カルボン酸成分と反応してエステルを形成する化合物である。多価アルコールは、一分子あたり二以上のヒドロキシ基を有する。
 また、モノマー成分は、ヒドロキシ酸、ヒドロキシ酸のエステル形成性誘導体、及びラクトン等の、カルボキシ基又はそのエステル形成性誘導基と、ヒドロキシ基又はそのエステル形成性誘導基とを有する化合物を含有してもよい。
 多価カルボン酸残基(a)は、カルボキシ基とそのエステル形成性誘導基以外に、反応性の官能基を有しないことが好ましい。また、多価アルコール残基(b)は、ヒドロキシ基とそのエステル形成性誘導基以外に、反応性の官能基を有しないことが好ましい。ここでいう反応性の官能基とは、例えばエチレン性不飽和結合、アミノ基、イミノ基、ヒドラジノ基、ニトロ基、エポキシ基、シアノ基、アゾ基等の反応基である。
 特に多価カルボン酸残基(a)と多価アルコール残基(b)とが、いずれも反応性の官能基を有しないことが好ましい。これらの場合、水溶性ポリエステル樹脂(A)の反応性の官能基の量が低減し、或いは水溶性ポリエステル樹脂(A)が反応性を備えなくなる。そうすると、水溶性ポリエステル樹脂(A)が基材2に塗布された後で乾燥のために加熱されたり、レーザアブレーションでレーザが照射されることにより加熱されたり、プラズマダイシング工程でプラズマに晒されることにより加熱されたりしても、水溶性ポリエステル樹脂(A)の水溶性が低下しにくくなる。なお、金属スルホネート基は、前記の反応性の官能基には含まれない。
 多価カルボン酸残基(a)は、上述のとおり、金属スルホネート基を有する多価カルボン酸残基(a1)と、ナフタレンジカルボン酸残基(a2)とを含む。金属スルホネート基を有する多価カルボン酸残基(a1)によって、水溶性ポリエステル(A)は良好な水溶性を有することができ、そのため保護膜3が水性洗浄液によって除去されやすい。また、ナフタレンジカルボン酸残基(a2)によって、保護膜3はレーザ光を吸収しやすく、そのためレーザアブレーションにより保護膜3に溝31を作製しやすい。さらに、ナフタレンジカルボン酸残基(a2)によって、保護膜3は良好な耐プラズマ性を有しやすく、そのためプラズマダイシングにより半導体素子チップ1を作製しやすい。また、水溶性ポリエステル樹脂(A)が反応性の官能基を備えないことによって、水溶性ポリエステル樹脂(A)は、基材2の金属部分を変色させにくい。
 金属スルホネート基を有する多価カルボン酸残基(a1)は、例えば5-スルホイソフタル酸のアルカリ金属塩の残基、2-スルホイソフタル酸のアルカリ金属塩の残基、4-スルホイソフタル酸のアルカリ金属塩の残基、スルホテレフタル酸のアルカリ金属塩の残基、及び4-スルホナフタレン-2,6-ジカルボン酸のアルカリ金属塩の残基等からなる群から選択される少なくとも一種を含む。水溶性ポリエステル樹脂(A)に良好な水溶性が付与されるためには、アルカリ金属がナトリウム、カリウム又はリチウムであることが好ましい。特に金属スルホネート基を有する多価カルボン酸残基が5-スルホイソフタル酸ナトリウム残基(例えば5-スルホイソフタル酸ジメチルナトリウム残基又は5-スルホイソフタル酸ナトリウム残基等)を含むと、水溶性ポリエステル樹脂(A)中にスルホン酸ナトリウム基が有効に残存し、このため水溶性ポリエステル樹脂(A)に優れた水溶性が付与される。
 金属スルホネート基を有する多価カルボン酸残基(a1)の割合は、多価カルボン酸残基(a)に対して、25モル%以上70モル%以下である。このため、保護膜3が水性洗浄液によって除去されすい。この割合は、30モル%以上65モル%以下であればより好ましく、35モル%以上60モル%以下であれば更に好ましい。
 ナフタレンジカルボン酸残基(a2)の割合は、多価カルボン酸残基(a)に対して、30モル%以上75モル%以下である。これにより、保護膜3の波長355nm程度のレーザ光の吸収性が特に高くなるため、保護用組成物がレーザ光吸収剤を含有しなくても、レーザグルービングの効率が高まりやすい。そのため、半導体素子チップ1の製造効率が効果的に向上しやすい。また、保護用組成物がレーザ光吸収剤を含有しなければ、保護用組成物の安定性が高まりやすく、かつ保護膜3からのレーザ吸収剤のブリードアウト等の問題が生じない。この割合は、35モル%以上70モル%以下であればより好ましく、40モル%以上65モル%以下であれば更に好ましい。
 多価カルボン酸残基(a)は、金属スルホネート基を有する多価カルボン酸残基(a1)及びナフタレンジカルボン酸残基(a2)のみを含有してもよいが、これら以外の多価カルボン酸残基(a3)を含有してもよい。
 多価カルボン酸残基(a3)は、例えば芳香族ジカルボン酸残基、脂肪族ジカルボン酸残基等の、ジカルボン酸残基を含有する。特に多価カルボン酸残基は、テレフタル酸残基、イソフタル酸残基等の芳香族ジカルボン酸類の残基、並びにコハク酸残基、アジピン酸残基、セバシン酸残基、ドデカン二酸残基、1,4-シクロヘキサンジカルボン酸残基等の脂肪族ジカルボン酸類の残基から選ばれる少なくとも一種を含有することが好ましい。この場合、水溶性ポリエステル樹脂(A)の耐久性が良好となる。特に、多価カルボン酸残基(a3)がコハク酸残基、アジピン酸残基、セバシン酸残基、ドデカン二酸残基、及び1,4-シクロヘキサンジカルボン酸残基等からなる群から選ばれる少なくとも一種の脂肪族ジカルボン酸類の残基を含有すると、水溶性ポリエステル樹脂(A)のガラス転移温度を低減させやすい。ナフタレンジカルボン酸残基(a2)は水溶性ポリエステル樹脂(A)のガラス転移温度を高めやすいが、水溶性ポリエステル樹脂(A)が更に脂肪族ジカルボン酸類の残基を有すると、水溶性ポリエステル樹脂(A)のガラス転移温度が過度に高くなりにくくできる。
 多価アルコール残基は、グリコール残基を含むことが好ましい。グリコール残基は、エチレングリコール残基、ジエチレングリコール残基、ポリエチレングリコール残基、1,4-ブタンジオール残基等のブタンジオール類の残基、1,6-ヘキサンジオール残基等のヘキサンジオール類の残基、及びネオペンチルグリコール残基等から選ばれる、少なくとも一種のグリコール残基を含むことが好ましい。この場合、水溶性ポリエステル樹脂(A)の耐久性が良好となり、また、水溶性ポリエステル樹脂(A)のガラス転移温度を低減させやすい。多価アルコール残基に含まれる残基は前記のみには制限されず、例えば1,4-シクロヘキサンジメタノール類の残基、ビスフェノールA残基、ビスフェノールフルオレン残基、ビスフェノキシエタノールフルオレン残基等を含んでもよい。
 多価カルボン酸成分と多価アルコール成分とから水溶性ポリエステル樹脂(A)を合成する場合、多価カルボン酸成分と多価アルコール成分との割合は、多価カルボン酸成分に含まれるカルボキシ基及びそのエステル形成性誘導基の総数と、多価アルコール成分に含まれるヒドロキシ基及びそのエステル形成性誘導基の総数とが、モル比率で1:1.1~2.5の範囲となるように調整されることが好ましい。
 水溶性ポリエステル樹脂(A)は、公知のポリエステル製造方法により多価カルボン酸成分及び多価アルコール成分を重合させて生成される。
 多価カルボン酸成分が多価カルボン酸であり、且つ多価アルコール成分が多価アルコールである場合には、例えば多価カルボン酸と多価アルコールとを一段階の反応で反応させる直接エステル化反応が採用される。
 多価カルボン酸成分が多価カルボン酸のエステル形成性誘導体であり、且つ多価アルコール成分が多価アルコールである場合には、例えば多価カルボン酸のエステル形成性誘導体と多価アルコールとのエステル交換反応である第一段反応と、第一段反応による反応生成物が重縮合する第二段反応とを経て、水溶性ポリエステル樹脂(A)が製造されてもよい。
 第一段反応と第二段反応とを経る水溶性ポリエステル樹脂(A)の製造方法について、更に具体的に説明する。第一段反応であるエステル交換反応においては、反応系中に水溶性ポリエステル樹脂(A)の製造に供される全ての原料が最初から含有されていてよい。例えばジカルボン酸ジエステルと多価アルコールとが反応容器に保持された状態で、窒素ガス等の不活性ガス雰囲気下、常圧条件下で、150~260℃まで徐々に昇温加熱されることで、エステル交換反応が進行する。
 第二段反応である重縮合反応は、例えば6.7hPa(5mmHg)以下の減圧下、160~280℃の温度範囲内で進行する。
 第一段反応及び第二段反応において、任意の時期に、反応系中に触媒として、チタン、アンチモン、鉛、亜鉛、マグネシウム、カルシウム、マンガン、アルカリ金属化合物等が添加されてもよい。
 水溶性ポリエステル樹脂(A)の数平均分子量は1000以上50000以下であることが好ましい。数平均分子量が1000以上であれば、保護膜3が十分な強度を有しやすい。数平均分子量が50000以下であれば、水溶性ポリエステル樹脂(A)の水溶性が十分に高くなり、保護膜3の水溶性が効果的に向上する。数平均分子量が2000以上40000以下であればより好ましい。
 なお、水溶性ポリエステル樹脂(A)の数平均分子量は、ゲル浸透クロマトグラフィ(ポリスチレン換算)による測定結果から導出される。
 水溶性ポリエステル樹脂(A)の水溶性の程度は、水溶性ポリエステル樹脂(A)の数平均分子量と、水溶性ポリエステル樹脂(A)中の金属スルホネート基を有する多価カルボン酸残基(a1)の割合とが、バランスよく設定されることで、調整される。すなわち、水溶性ポリエステル樹脂(A)の水溶性が十分に高くなるように、水溶性ポリエステル樹脂(A)の数平均分子量と、金属スルホネート基を有する多価カルボン酸残基(a1)の割合とが、適宜設定されることが好ましい。また、水溶性ポリエステル樹脂(A)の酸価は、10mgKOH/g以下であることが好ましい。酸価が10mgKOH/g以下であれば、水溶性ポリエステル樹脂(A)は、基材2の金属部分を変色させにくい。
 水溶性ポリエステル樹脂(A)のガラス転移温度は、10℃以上100℃以下であることが好ましい。ガラス転移温度が10℃以上であれば、保護膜3に過度な粘着性が生じにくいため、取り扱い性が良好になりやすい。ガラス転移温度が100℃以下であれば、造膜性が良好となり、保護膜3と基材2との密着性が良好になりやすい。ガラス転移温度が20℃以上80℃以下であればより好ましく、40℃以上65℃以下であれば更に好ましい。なお、ガラス転移温度は、示差走査熱量測定による測定結果から導出される。
 保護用組成物中での水溶性ポリエステル樹脂(A)の割合は、保護用組成物の固形分(不揮発性成分)に対して1質量%以上100質量%以下であることが好ましく、10質量%以上90質量%以下であればより好ましく、15質量%以上80質量%以下であれば更に好ましい。
 保護用組成物は、水溶性ポリエステル樹脂(A)以外の水性樹脂を更に含有してもよい。水性樹脂によって、例えば保護用組成物の粘度を調整して保護用組成物の塗布性を高めることができる。水性樹脂は、例えばポリビニルアルコール、ポリウレタン、アクリル樹脂、セルロース誘導体、変性ポリプロピレン及び変性ポリエチレン等からなる群から選択される少なくとも一種を含有する。
 保護用組成物は、適宜の添加剤を含有してもよい。添加剤は、例えばレベリング剤、酸化防止剤、紫外線吸収剤、及び消泡剤等からなる群から選択される少なくとも一種を含有する。
 保護用組成物は、水と親水性有機溶剤とのうち少なくとも一方を含有してもよい。この場合、例えば保護用組成物の粘度を調整することで、保護用組成物の塗布性を高めることができる。親水性有機溶剤は、例えばメタノール、エタノール、2-プロパノール、1,2-プロパンジオール等のアルコール;プロピレングリコールモノメチルエーテル、エチルセロソルブ、n-ブチルセロソルブ等のグリコールエーテル;及びアセトン、メチルエチルケトン、シクロヘキサノン等のケトンからなる群から選択される、少なくとも一種を含有する。
 本実施形態に係る保護用組成物は、特にスプレーコート法又はスピンコート法で、容易に塗布しやすい。
 保護用組成物の、室温における粘度は、0.5mPa・s以上1000mPa・s以下であることが好ましい。この場合、保護用組成物を基材2に特に塗布しやすく、かつ塗布することで膜状に成形しやすい。特に、保護用組成物をスプレーコート法又はスピンコート法で塗布する場合に、特に容易に塗布しやすくなる。なお、粘度は、振動式粘度計により測定される。保護用組成物をスプレーコート法で塗布する場合には、粘度が0.5mPa・s以上100mPa・s以下であればより好ましい。保護用組成物をスピンコート法で塗布する場合には、粘度が20mPa・s以上1000mPa・s以下であればより好ましい。
 以下、本実施形態の具体的な実施例を提示する。なお、本実施形態は、以下の実施例のみには制限されない。
 1.組成物の調製
 攪拌機、窒素ガス導入口、温度計、精留塔及び冷却コンデンサーを備える容量1000mlの反応容器を準備した。この反応容器内に、表に示す原料と、触媒であるシュウ酸チタンカリウムとを入れて、混合物を得た。この混合物を、常圧下、窒素雰囲気中で攪拌混合しながら200℃に昇温し、続いて4時間かけて250℃にまで徐々に昇温することで、エステル交換反応を完了させた。次に、この混合物を250℃の温度下で0.67hPa(0.5mmHg)まで徐々に減圧してから、その状態で2時間保持することで、重縮合反応を進行させた。これにより、ポリエステル樹脂を得た。
 このポリエステル樹脂50質量部と、水150質量部とを混合し、これらを攪拌しながら90℃の温度下に2時間保持することで、ポリエステル樹脂濃度25質量%の組成物を得た。
 組成物をスプレーコート法で塗布する場合には、組成物の粘度を0.5mPa・s以上100mPa・s以下に調整し、組成物をスピンコート法で塗布する場合には、組成物の粘度を20mPa・s以上1000mPa・s以下に調整した。
 2.物性評価
 (1)数平均分子量
 組成物の数平均分子量を、ゲル浸透クロマトグラフィ(ポリスチレン換算)による測定結果から導出した。
 (2)ガラス転移温度
 組成物中のポリエステル樹脂のガラス転移温度を、示差走査熱量測定による測定結果から導出した。
 (3)酸価
 組成物中のポリエステル樹脂の酸価を、水酸化カリウムのエタノール溶液を用いた滴定により、測定した。
 3.特性評価
 (1)塗布性
 直径300nmの単結晶シリコン基材に組成物をスプレーコート法で塗布してから、自然乾燥することで、厚み10μmもしくは30μmの保護膜を作製した。この場合の塗布性を、光学顕微鏡による表面観察と、近赤外光干渉膜厚計を用いた膜厚分布の測定により、以下のように評価した。
 組成物の塗布法をスピンコート法に変更した場合についても、同様の評価を行った。
A:塗布ムラは観察されず、膜厚の面内均一性は10%未満である。
B:一部で塗布ムラが観察されたが、膜厚の面内均一性は10%未満である。
C:大半で塗布ムラが観察され、膜厚の面内均一性は10%以上である。
 (2)密着性
 直径300nmの単結晶シリコン基材に組成物をスプレーコート法で塗布してから、自然乾燥することで、厚み10μmもしくは30μmの保護膜を作製した。この保護膜の状態を光学顕微鏡で観察し、以下のように評価した。
 組成物の塗布法をスピンコート法に変更した場合についても、同様の評価を行った。
A:保護膜に割れや剥離が観察されない。
B:保護膜の一部に割れや剥離が観察される。
C:保護膜の大半に割れや剥離が観察される。
 (3)レーザ加工性
 直径300nmの単結晶シリコン基材に組成物をスプレーコート法で塗布してから、自然乾燥することで、厚み10μmもしくは30μmの保護膜を作製した。
 保護膜にQスイッチレーザを用いてUVレーザ光(波長355nm)を照射して、幅約20μmの溝を形成するレーザアブレーションを施した。その結果から、保護膜のレーザ加工性を以下のように評価した。
 組成物の塗布法をスピンコート法に変更した場合についても、同様の評価を行った。
A:良好な加工形状が得られ、保護膜と基材の間で剥離が観察されない。
B:良好な加工形状が得られたが、保護膜と基材の間で一部剥離が観察される。
C:良好な加工形状が得られず、保護膜と基材の間で剥離が観察される。
 (4)耐プラズマ性
 直径300mmの単結晶シリコン基材に組成物をスプレーコート法で塗布してから、自然乾燥することで、厚み10μmと30μmの保護膜を作製した。この保護膜にレーザ加工を行って溝を形成した。その後、プラズマダイシング工程を20分以上実施してから、保護膜の状態を電子顕微鏡で観察し、以下のように評価した。
 組成物の塗布法をスピンコート法に変更した場合についても、同様の評価を行った。
A:保護膜と基材の間に剥離は観察されず、保護膜の焼けも観察されない。
B:一部で、保護膜と基材の間の剥離、及び焼けが観察される。
C:大半で、保護膜と基材の間の剥離、及び焼けが観察される。
 なお、耐プラズマ性評価および後述する除去性評価のためのプラズマ処理は、プラズマダイシング加工と同等の条件とし、具体的には、ボッシュプロセスにおける堆積ステップと堆積膜エッチングステップとSiエッチングステップとを合計の処理時間が20分以上になるまで順次繰り返すことにより行った。ここで、堆積ステップの条件は、プロセスガスとしてCを200sccmで供給しながら、チャンバ内の圧力を20Paに調整し、コイルへの印加電力を2000Wとして、下部電極への印加電力を25Wとして、処理時間を8秒間とした。また、堆積膜エッチングステップの条件は、プロセスガスとしてSFを300sccmで供給しながら、チャンバ内の圧力を10Paに調整し、コイルへの印加電力を2000Wとして、下部電極への印加電力を650Wとして、処理時間を6秒間とした。また、Siエッチングステップの条件は、プロセスガスとしてSFを300sccmで供給しながら、チャンバ内の圧力を10Paに調整し、コイルへの印加電力を2000Wとして、下部電極への投入電力を275Wとして、処理時間を15秒間とした。
 また、Aの評価において、プラズマダイシングにおける保護膜のエッチング速度がシリコン基材のエッチング速度よりも十分に小さかった(具体的には1/10以下)。
 (5)除去性-1
 23℃の雰囲気下で、直径300mmの単結晶シリコン基材に組成物をスプレーコート法で塗布してから、自然乾燥することで、厚み5μmの保護膜を作製した。水性洗浄液として水を用い、流量1.94L/min、水温30℃の条件で、保護膜の二流体洗浄を90秒間行った後の、基材の外観の様子を観察し、その結果を以下のように評価した。
 組成物の塗布法をスピンコート法に変更した場合についても、同様の評価を行った。
A:基材上に保護膜の残存が認められない。
B:基材上の一部で保護膜の残存が認められる。
C:基材上の大半の部分で保護膜の残存が認められる。
 (6)除去性-2
 23℃の雰囲気下で、直径300mmの単結晶シリコン基材に組成物をスプレーコート法で塗布してから、自然乾燥することで、厚み5μmの保護膜を作製した。この保護膜に対し、Qスイッチレーザを用いてUVレーザ光(波長355nm)を照射することで、幅約20μmの溝を形成するレーザアブレーション加工を行った。続いて、保護膜に20分以上のプラズマダイシング工程を施した。続いて、水性洗浄液として水を用い、流量1.94L/min、水温30℃の条件で、保護膜の二流体洗浄90秒間行った後の、基材の外観の様子を観察し、その結果を以下のように評価した。
 組成物の塗布法をスピンコート法に変更した場合についても、同様の評価を行った。
A:基材上に保護膜の残存が認められない。
B:基材上の一部で保護膜の残存が認められる。
C:基材上の大半の部分で保護膜の残存が認められる。
Figure JPOXMLDOC01-appb-T000001
 以上の実施形態及び実施例から明らかなように、本開示の第一の態様に係る半導体素子チップ(1)の製造方法は、基材(2)を複数の半導体素子チップ(1)に分割する半導体素子チップ(1)の製造方法であって、基材(2)に保護用組成物を塗布することで基材(2)を覆う保護膜(3)を作製すること、保護膜(3)にレーザ光及びプラズマの少なくとも一方を照射すること、基材(2)を切断することで基材(2)を複数の半導体素子チップ(1)に分割すること、及び保護膜(3)を、水性洗浄液に接触させることで基材(2)又は半導体素子チップ(1)から除去することを、含む。保護用組成物は、多価カルボン酸残基(a)と多価アルコール残基(b)とを有する水溶性ポリエステル樹脂(A)を含有する。多価カルボン酸残基(a)は、金属スルホネート基を有する多価カルボン酸残基(a1)と、ナフタレンジカルボン酸残基(a2)とを含む。多価カルボン酸残基(a1)の割合は、多価カルボン酸残基(a)に対して、25モル%以上70モル%以下である。ナフタレンジカルボン酸残基(a2)の割合は、多価カルボン酸残基(a)に対して、30モル%以上75モル%以下である。
 第一の態様によると、保護用組成物を用いることで、保護膜(3)を作製しやすく、保護膜(3)が基材(2)及び半導体素子チップ(1)をレーザ光及びプラズマの少なくとも一方から保護でき、更に、水性洗浄液を用いて基材(2)又は半導体素子チップ(1)から保護膜(3)を除去しやすい。
 本開示の第二の態様に係る半導体素子チップ(1)の製造方法では、第一の態様において、多価カルボン酸残基(a)は、コハク酸残基、アジピン酸残基、セバシン酸残基、ドデカン二酸残基、及び1,4-シクロヘキサンジカルボン酸残基からなる群から選ばれる少なくとも一種の脂肪族ジカルボン酸類の残基を更に含む。
 第二の態様によると、水溶性ポリエステル樹脂(A)の耐久性が良好となり、また、水溶性ポリエステル樹脂(A)のガラス転移温度を低減させやすい。
 本開示の第三の態様に係る半導体素子チップ(1)の製造方法では、第一又は第二の態様において、多価アルコール残基(b)は、エチレングリコール残基、ジエチレングリコール残基、ポリエチレングリコール残基、1,4-ブタンジオール残基、1,6-ヘキサンジオール残基、及びネオペンチルグリコール残基からなる群から選ばれる少なくとも一種のグリコール残基を含む。
 第三の態様によると、水溶性ポリエステル樹脂(A)の耐久性が良好となり、また、水溶性ポリエステル樹脂(A)のガラス転移温度を低減させやすい。
 本開示の第四の態様に係る半導体素子チップ(1)の製造方法では、第一から第三のいずれか一の態様において水溶性ポリエステル樹脂(A)の酸価は、10mgKOH/g以下である。
 第四の態様によると、水溶性ポリエステル樹脂(A)は、金属を変色させにくい。
 本開示の第五の態様に係る半導体素子チップ(1)の製造方法では、第一から第四のいずれか一の態様において、水溶性ポリエステル樹脂(A)のガラス転移温度は、10℃以上100℃以下である。
 第五の態様によると、ガラス転移温度が10℃以上であることで、水溶性ポリエステル樹脂(A)から作製される保護膜(3)に過度な粘着性が生じにくいため、取り扱い性が良好になりやすい。ガラス転移温度が100℃以下であることで、水溶性ポリエステル樹脂(A)の造膜性が良好となり、保護膜3と基材2との密着性が良好になりやすい。
 本開示の第六の態様に係る半導体素子チップ(1)の製造方法では、第一から第五のいずれか一の態様において、保護膜(3)にレーザ光を照射することで、保護膜(3)の少なくとも一部をレーザアブレーションにより基材(2)から除去する。
 第六の態様によると、レーザアブレーションにより保護膜(3)に基材(2)を露出させる溝を作製しても、保護膜(3)の水溶性が損なわれにくく、水性洗浄液で除去しやすい。
 本開示の第七の態様に係る半導体素子チップ(1)の製造方法では、第一から第六のいずれか一の態様において、保護膜(3)の一部を基材(2)から除去してから、保護膜(3)と、保護膜(3)の一部が除去されることで露出した基材(2)の一部とに、プラズマを照射することにより、基材(2)の部分の少なくとも一部を除去する。
 第七の態様によると、プラズマに照射された保護膜(3)であっても水性洗浄液で除去しやすい。
 本開示の第八の態様に係る半導体素子チップ(1)の製造方法では、第一から第七のいずれか一の態様において、基材(2)に保護用組成物を、スプレーコート法又はスピンコート法で塗布する。
 第八の態様によると、基材(2)に保護用組成物を特に塗布しやすい。
 本開示の第九の態様に係る半導体素子チップ(1)の製造方法では、第一から第八のいずれか一の態様において、保護用組成物の、室温における粘度は、0.5mPa・s以上1000mPa・s以下である。
 第九の態様によると、基材(2)に保護用組成物を特に塗布しやすい。
 本開示の第十の態様に係る保護用組成物は、基材(2)を複数の半導体素子チップ(1)に分割して、半導体素子チップ(1)を製造するために使用される。この半導体素子チップ(1)の製造方法は、基材(2)に保護用組成物を塗布することで基材(2)を覆う保護膜(3)を作製すること、保護膜(3)にレーザ光及びプラズマの少なくとも一方を照射すること、基材(2)を切断することで基材(2)を複数の半導体素子チップ(1)に分割すること、及び保護膜(3)を、水性洗浄液に接触させることで基材(2)又は半導体素子チップ(1)から除去することを、含む。保護用組成物は、多価カルボン酸残基(a)と多価アルコール残基(b)とを有する水溶性ポリエステル樹脂(A)を含有する。多価カルボン酸残基(a)は、金属スルホネート基を有する多価カルボン酸残基(a1)と、ナフタレンジカルボン酸残基(a2)とを含む。多価カルボン酸残基(a1)の割合は、多価カルボン酸残基(a)に対して、25モル%以上70モル%以下である。ナフタレンジカルボン酸残基(a2)の割合は、多価カルボン酸残基(a)に対して、30モル%以上75モル%以下である。
 第十の態様によると、基材(2)上に保護膜(3)を作製してから、保護膜(3)にレーザ光及びプラズマの少なくとも一方を照射することにより半導体素子チップ(1)を製造できる。このとき、保護用組成物を用いることで、保護膜(3)を作製しやすく、保護膜(3)で基材(2)及び半導体素子チップ(1)をレーザ光及びプラズマの少なくとも一方から保護でき、更に、水性洗浄液を用いて半導体素子チップ(1)から保護膜(3)を除去しやすい。また、保護膜(3)の水溶性が損なわれにくいため、半導体素子チップ(1)の製造効率を高めることができる。
 本開示の第十一の態様に係る保護用組成物は、多価カルボン酸残基(a)は、コハク酸残基、アジピン酸残基、セバシン酸残基、ドデカン二酸残基、及び1,4-シクロヘキサンジカルボン酸残基からなる群から選択される少なくとも一種の脂肪族ジカルボン酸類の残基を含む。
 第十一の態様によると、水溶性ポリエステル樹脂(A)の耐久性が良好となり、また、水溶性ポリエステル樹脂(A)のガラス転移温度を低減させやすい。
 本開示の第十二の態様に係る保護用組成物は、第十又は第十一の態様において、多価アルコール残基(b)は、エチレングリコール残基、ジエチレングリコール残基、ポリエチレングリコール残基、1,4-ブタンジオール残基、1,6-ヘキサンジオール残基、及びネオペンチルグリコール残基からなる群から選択される少なくとも一種のグリコール残基を含む。
 第十二の態様によると、水溶性ポリエステル樹脂(A)の耐久性が良好となり、また、水溶性ポリエステル樹脂(A)のガラス転移温度を低減させやすい。
 本開示の第十三の態様に係る保護用組成物は、第十から第十二のいずれか一の態様において、水溶性ポリエステル樹脂(A)の酸価は、10mgKOH/g以下である。
 第十三の態様によると、水溶性ポリエステル樹脂(A)は、金属を変色させにくい。
 本開示の第十四の態様に係る保護用組成物は、第十から第十三のいずれか一の態様におおいて、水溶性ポリエステル樹脂(A)のガラス転移温度は、10℃以上100℃以下である。
 第十四の態様によると、ガラス転移温度が10℃以上であることで、保護膜(3)に過度な粘着性が生じにくいため、取り扱い性が良好になりやすい。ガラス転移温度が100℃以下であることで、水溶性ポリエステル樹脂(A)の造膜性が良好となり、保護膜(3)と基材(2)との密着性が良好になりやすい。
 1  半導体素子チップ
 2  基材
 3  保護膜

Claims (14)

  1. 基材を複数の半導体素子チップに分割する半導体素子チップの製造方法であって、
    前記基材に保護用組成物を塗布することで前記基材を覆う保護膜を作製すること、
    前記保護膜にレーザ光及びプラズマの少なくとも一方を照射すること、
    前記基材を切断することで前記基材を前記複数の半導体素子チップに分割すること、及び
    前記保護膜を、水性洗浄液に接触させることで前記基材又は前記半導体素子チップから除去することを含み、
    前記保護用組成物は、多価カルボン酸残基(a)と多価アルコール残基(b)とを有する水溶性ポリエステル樹脂(A)を含有し、
    前記多価カルボン酸残基(a)は、金属スルホネート基を有する多価カルボン酸残基(a1)と、ナフタレンジカルボン酸残基(a2)とを含み、
    前記多価カルボン酸残基(a1)の割合は、前記多価カルボン酸残基(a)に対して、25モル%以上70モル%以下であり、
    前記ナフタレンジカルボン酸残基(a2)の割合は、前記多価カルボン酸残基(a)に対して、30モル%以上75モル%以下である、
    半導体素子チップの製造方法。
  2. 前記多価カルボン酸残基(a)は、コハク酸残基、アジピン酸残基、セバシン酸残基、ドデカン二酸残基、及び1,4-シクロヘキサンジカルボン酸残基からなる群から選ばれる少なくとも一種の脂肪族ジカルボン酸類の残基を更に含む、
    請求項1に記載の半導体素子チップの製造方法。
  3. 前記多価アルコール残基(b)は、エチレングリコール残基、ジエチレングリコール残基、ポリエチレングリコール残基、1,4-ブタンジオール残基、1,6-ヘキサンジオール残基、及びネオペンチルグリコール残基からなる群から選ばれる少なくとも一種のグリコール残基を含む、
    請求項1又は2に記載の半導体素子チップの製造方法。
  4. 前記水溶性ポリエステル樹脂(A)の酸価は、10mgKOH/g以下である、
    請求項1から3のいずれか1項に記載の半導体素子チップの製造方法。
  5. 前記水溶性ポリエステル樹脂(A)のガラス転移温度は、10℃以上100℃以下である、
    請求項1から4のいずれか1項に記載の半導体素子チップの製造方法。
  6. 前記保護膜に前記レーザ光を照射することで、前記保護膜の少なくとも一部をレーザアブレーションにより前記基材から除去する、
    請求項1から5のいずれか一項に記載の半導体素子チップの製造方法。
  7. 前記保護膜の一部を前記基材から除去してから、前記保護膜と、前記保護膜の一部が除去されることで露出した前記基材の部分とに、前記プラズマを照射することにより、前記基材の部分の少なくとも一部を除去する、
    請求項1から6のいずれか一項に記載の半導体素子チップの製造方法。
  8. 前記基材に前記保護用組成物を、スプレーコート法又はスピンコート法で塗布する、
    請求項1から7のいずれか1項に記載の半導体素子チップの製造方法。
  9. 前記保護用組成物の、室温における粘度は、0.5mPa・s以上1000mPa・s以下である、
    請求項1から8のいずれか1項に記載の半導体素子チップの製造方法。
  10. 基材を複数の半導体素子チップに分割して、半導体素子チップを製造するために使用される保護用組成物であり、
    前記半導体素子チップの製造方法は、
    前記基材に保護用組成物を塗布することで前記基材を覆う保護膜を作製すること、
    前記保護膜にレーザ光及びプラズマの少なくとも一方を照射すること、
    前記基材を切断することで前記基材を前記複数の半導体素子チップに分割すること、及び
    前記保護膜を、水性洗浄液に接触させることで前記基材又は前記半導体素子チップから除去することを含み、
    前記保護用組成物は、多価カルボン酸残基(a)と多価アルコール残基(b)とを有する水溶性ポリエステル樹脂(A)を含有し、
    前記多価カルボン酸残基(a)は、金属スルホネート基を有する多価カルボン酸残基(a1)と、ナフタレンジカルボン酸残基(a2)とを含み、
    前記多価カルボン酸残基(a1)の割合は、前記多価カルボン酸残基(a)に対して、25モル%以上70モル%以下であり、
    前記ナフタレンジカルボン酸残基(a2)の割合は、前記多価カルボン酸残基(a)に対して、30モル%以上75モル%以下である、
    保護用組成物。
  11. 前記多価カルボン酸残基(a)は、コハク酸残基、アジピン酸残基、セバシン酸残基、ドデカン二酸残基、及び1,4-シクロヘキサンジカルボン酸残基からなる群から選択される少なくとも一種の脂肪族ジカルボン酸類の残基を含む、
    請求項10に記載の保護用組成物。
  12. 前記多価アルコール残基(b)は、エチレングリコール残基、ジエチレングリコール残基、ポリエチレングリコール残基、1,4-ブタンジオール残基、1,6-ヘキサンジオール残基、及びネオペンチルグリコール残基からなる群から選択される少なくとも一種のグリコール残基を含む、
    請求項10又は11に記載の保護用組成物。
  13. 前記水溶性ポリエステル樹脂(A)の酸価は、10mgKOH/g以下である、
    請求項10から12のいずれか1項に記載の保護用組成物。
  14. 前記水溶性ポリエステル樹脂(A)のガラス転移温度は、10℃以上100℃以下である、
    請求項10から13のいずれか1項に記載の保護用組成物。
PCT/JP2020/009972 2020-03-09 2020-03-09 半導体素子チップの製造方法及び保護用組成物 WO2021181447A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217008281A KR102315983B1 (ko) 2020-03-09 2020-03-09 반도체 소자 칩의 제조 방법 및 보호용 조성물
CN202080005409.6A CN113632204B (zh) 2020-03-09 2020-03-09 用于制造半导体器件芯片的方法和保护性组合物
JP2021517716A JP6934614B1 (ja) 2020-03-09 2020-03-09 半導体素子チップの製造方法及び保護用組成物
US17/280,185 US11319458B2 (en) 2020-03-09 2020-03-09 Method for fabricating semiconductor device chips and protective composition
PCT/JP2020/009972 WO2021181447A1 (ja) 2020-03-09 2020-03-09 半導体素子チップの製造方法及び保護用組成物
TW110107881A TWI773170B (zh) 2020-03-09 2021-03-05 用於製造半導體裝置晶片的方法及保護性組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009972 WO2021181447A1 (ja) 2020-03-09 2020-03-09 半導体素子チップの製造方法及び保護用組成物

Publications (1)

Publication Number Publication Date
WO2021181447A1 true WO2021181447A1 (ja) 2021-09-16

Family

ID=77657839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009972 WO2021181447A1 (ja) 2020-03-09 2020-03-09 半導体素子チップの製造方法及び保護用組成物

Country Status (6)

Country Link
US (1) US11319458B2 (ja)
JP (1) JP6934614B1 (ja)
KR (1) KR102315983B1 (ja)
CN (1) CN113632204B (ja)
TW (1) TWI773170B (ja)
WO (1) WO2021181447A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140311A (ja) * 2004-11-12 2006-06-01 Tokyo Ohka Kogyo Co Ltd レーザーダイシング用保護膜剤及び該保護膜剤を用いたウエーハの加工方法
JP2016207737A (ja) * 2015-04-17 2016-12-08 株式会社ディスコ 分割方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082076A (ja) * 2001-09-07 2003-03-19 Unitika Ltd 共重合ポリエステル
JP2006152013A (ja) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd 太陽電池裏面保護膜用易接着性ポリエステルフィルムおよびそれを用いた太陽電池裏面保護膜
JP4865406B2 (ja) * 2006-05-29 2012-02-01 パナソニック株式会社 半導体素子実装構造体
US8703581B2 (en) 2011-06-15 2014-04-22 Applied Materials, Inc. Water soluble mask for substrate dicing by laser and plasma etch
US8835283B2 (en) * 2011-10-21 2014-09-16 Win Semiconductors Corp. Fabrication method for producing semiconductor chips with enhanced die strength
JP6092035B2 (ja) * 2013-07-30 2017-03-08 日東電工株式会社 表面保護フィルムおよび光学部材
KR102313134B1 (ko) 2013-12-27 2021-10-18 도레이 카부시키가이샤 적층 폴리에스테르 필름
CN106715612B (zh) * 2014-09-16 2019-10-11 互应化学工业株式会社 底漆组合物和层合材料
JP6614696B2 (ja) 2015-08-26 2019-12-04 株式会社ディスコ 保護膜形成用樹脂剤及びレーザ加工方法
CN111433252B (zh) * 2017-12-08 2022-06-14 东洋纺株式会社 聚酯树脂、聚酯树脂水分散体和聚酯树脂水分散体的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140311A (ja) * 2004-11-12 2006-06-01 Tokyo Ohka Kogyo Co Ltd レーザーダイシング用保護膜剤及び該保護膜剤を用いたウエーハの加工方法
JP2016207737A (ja) * 2015-04-17 2016-12-08 株式会社ディスコ 分割方法

Also Published As

Publication number Publication date
TW202136360A (zh) 2021-10-01
TWI773170B (zh) 2022-08-01
US11319458B2 (en) 2022-05-03
CN113632204B (zh) 2023-03-28
KR102315983B1 (ko) 2021-10-20
US20210324226A1 (en) 2021-10-21
CN113632204A (zh) 2021-11-09
JPWO2021181447A1 (ja) 2021-09-16
JP6934614B1 (ja) 2021-09-15
KR20210116416A (ko) 2021-09-27

Similar Documents

Publication Publication Date Title
JP5511799B2 (ja) ウエハーダイシング用保護膜組成物
JP6502824B2 (ja) ウエハ加工体、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
JP6287190B2 (ja) 仮固定用樹脂組成物、仮固定用樹脂フィルム及び仮固定用樹脂フィルムシート
TWI454523B (zh) 用於微電子基板之濕蝕刻加工之旋轉保護塗層
CN110501876A (zh) 感光性树脂组合物、感光性干膜和图案形成方法
WO2017061416A1 (ja) 接着剤
JP6533149B2 (ja) 半導体レーザーダイシング用保護剤及びそれを用いた半導体の製造方法
JP6934614B1 (ja) 半導体素子チップの製造方法及び保護用組成物
JPWO2016035821A1 (ja) 仮固定用樹脂組成物、仮固定用樹脂フィルム、仮固定用樹脂フィルムシート及び半導体ウェハの加工方法
JP2021116416A (ja) レーザにより離型可能な組成物、その積層体及びレーザによる離型方法
JP7161371B2 (ja) 保護膜形成用組成物
KR101638655B1 (ko) 박리용 조성물 및 박리 방법
JP7096625B2 (ja) 保護用組成物
JP2016039176A (ja) 仮固定用樹脂組成物、仮固定用樹脂フィルム、仮固定用樹脂フィルムシート及び半導体ウェハの加工方法
JP2017048266A (ja) 半導体ウェハの仮固定用樹脂組成物及び半導体ウェハの加工方法
KR101539762B1 (ko) 웨이퍼 다이싱용 보호막 조성물
TW200915006A (en) Composition for antireflection film formation and method for resist pattern formation using the composition
WO2006116032A2 (en) Radiation curable polymer films having improved laser ablation properties and radiation curable sensitizers therefor
JP2016139690A (ja) レーザーダイシング用保護膜組成物及びその応用
JP2016219512A (ja) 半導体ウェハの加工方法及び半導体装置の製造方法
EP4325291A1 (en) Wafer edge protection film forming method, patterning process, and composition for forming wafer edge protection film
WO2023182238A1 (ja) 仮接着剤、及び前記仮接着剤を用いた半導体ウエハ積層体の製造方法
JP2023103684A (ja) ポリシラザン含有組成物、硬化膜、および物品
JP2020532881A (ja) ダイシング工程用保護コーティング剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517716

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924432

Country of ref document: EP

Kind code of ref document: A1