WO2021180252A1 - 一种透明质酸片段的新应用及制造方法 - Google Patents

一种透明质酸片段的新应用及制造方法 Download PDF

Info

Publication number
WO2021180252A1
WO2021180252A1 PCT/CN2021/093207 CN2021093207W WO2021180252A1 WO 2021180252 A1 WO2021180252 A1 WO 2021180252A1 CN 2021093207 W CN2021093207 W CN 2021093207W WO 2021180252 A1 WO2021180252 A1 WO 2021180252A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
hyaluronidase
human
acid fragment
molecular weight
Prior art date
Application number
PCT/CN2021/093207
Other languages
English (en)
French (fr)
Inventor
郭田田
王家麒
李鑫荣
贾潇潇
吴书音
惠鑫瑶
桐辉
崔家友
张之辉
丛振昱
王起飞
王凤舞
宋琳
惠觅宙
Original Assignee
青岛农业大学
青岛惠诺德生物科技有限公司
绍兴惠荟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010169163.8A external-priority patent/CN111249302A/zh
Application filed by 青岛农业大学, 青岛惠诺德生物科技有限公司, 绍兴惠荟科技有限公司 filed Critical 青岛农业大学
Publication of WO2021180252A1 publication Critical patent/WO2021180252A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase

Definitions

  • the present invention relates to the field of biomedicine, in particular to a new application and manufacturing method of hyaluronic acid fragments.
  • Hyaluronic acid fragments with an average molecular weight of 35kDa extracted from human colostrum are cut and manufactured by hyaluronidase in female breasts.
  • the female breast is the gonad, and its hyaluronidase is the sperm acrosomal hyaluronidase PH20 of the male gonad testis.
  • the present inventors used recombinant human hyaluronidase PH206 hours to enzymolyze hyaluronic acid raw materials with a molecular weight of 300-1600kDa, and produced a biologically active hyaluronic acid fragment B-HA with an average molecular weight of 35kDa.
  • the inventors also used the bioactive hyaluronic acid fragment B-HA as a raw material to manufacture a Class 1 medical device B-HA product (LUQIN Food Drug Medical Device registration number: 20190021). These Class 1 medical device B-HA products have been used for off-instruction clinical studies and the clinical manifestations are inflammation of the skin and mucous membranes with redness, swelling and pain.
  • the technical problem to be solved by the present invention is to provide a new application of hyaluronic acid fragments manufactured by a special manufacturing method and a manufacturing method thereof.
  • the present invention mainly uses hyaluronidase PH20 to fully enzymatically hydrolyze high or medium molecular weight hyaluronic acid raw materials, and studies the production of hyaluronic acid fragment B-HA with an average molecular weight of 35 ⁇ 8KDa.
  • the stable manufacturing method and manufacturing principle The present invention also studies the biological activity mechanism and potential new applications of the hyaluronic acid fragment B-HA with an average molecular weight of 35 ⁇ 8KDa.
  • the present invention provides a new application of hyaluronic acid fragments.
  • the hyaluronic acid fragments are: using recombinant human hyaluronidase PH20 or extracting bovine hyaluronidase PH20, which is sufficient or lightly excessive.
  • a hyaluronic acid fragment with an average molecular weight of 35 ⁇ 8KDa which is manufactured from raw materials of high or medium molecular weight hyaluronic acid and can pass through a 0.22 ⁇ m (220nm) pore size filter membrane; the application is: the hyaluronic acid fragment is used as Application of human mononuclear cell removal promoter; and/or application of said hyaluronic acid fragment as an immunomodulator of human lymphocytes and fluid reflux and lymphocytes by subcutaneous or intravenous injection; and/or said hyaluronic acid Application of fragments as inhibitors of human neutrophil removal.
  • the present invention also provides a new application of hyaluronic acid fragments
  • the hyaluronic acid fragments are: using recombinant human hyaluronidase PH20 or extracting bovine hyaluronidase PH20, sufficient or slightly excessive
  • a hyaluronic acid fragment with an average molecular weight of 35 ⁇ 8KDa which is manufactured by fully enzymatically hydrolyzing high or medium molecular weight hyaluronic acid raw materials, can pass through a 0.22 ⁇ m (220nm) pore filter membrane, and has an average molecular weight of 35 ⁇ 8KDa
  • the application is: the hyaluronic acid
  • the application of the fragments in the preparation of drugs for the treatment of inflammatory diseases related to human mononuclear cell removal, or the application of the preparation of human mononuclear cell removal promoters; and/or, the hyaluronic acid fragments are prepared under the skin or intravenously The application of an injected
  • the human mononuclear cells are mainly lymphocytes, and may also include a small amount of macrophage precursor monocytes; the hyaluronic acid fragment is at a higher concentration (150-300 ⁇ g /mL) inhibit the removal of human neutrophils.
  • the present invention also provides a method for manufacturing hyaluronic acid fragments, using recombinant human hyaluronidase PH20 or extracting bovine hyaluronidase PH20, sufficient or light excessive amounts to fully enzymatically hydrolyze high or medium molecular weight transparent
  • the raw material of uronic acid produces hyaluronic acid fragments with an average molecular weight of 35 ⁇ 8KDa.
  • the fragment can pass through a 0.22 ⁇ m (220 nm) pore size filter membrane; the enzymatic hydrolysis time is 2-6 hours.
  • recombinant human hyaluronidase PH20 or extracted bovine hyaluronidase PH20 injection is mixed with high or medium molecular weight hyaluronic acid injection, and enzymatic hydrolysis is used to produce hyaluronic acid fragment injection with an average molecular weight of 35 ⁇ 8KDa.
  • the enzymolysis time is 10-20 minutes.
  • the full or light excess enzymatic hydrolysis is as follows: (1) The molecular weight of the hyaluronic acid fragment produced by the sufficient or light excess enzymatic hydrolysis and neutralization of the polymer hyaluronic acid raw material in 10-20 minutes and 1 The molecular weight of hyaluronic acid fragments produced by full enzymatic hydrolysis and neutralization of high-molecular hyaluronic acid raw materials in -6 hours is basically the same, and the coefficient of variation CV ⁇ 15%; (2)>99% high or medium molecular hyaluronic acid The low-molecular-weight hyaluronic acid fragment products that are fully enzymatically hydrolyzed by the acid raw materials in sufficient or light excess are all smoothly filtered by the 0.22um pore filter membrane; (3) Hyaluronidase activity is fully enzymatically hydrolyzed by sufficient or light excess After that, there is almost no residue or a small amount of residue, and the residual amount is less than 15%, and it can be completely inactiv
  • the present invention also provides a method for manufacturing hyaluronic acid fragments for the production of hyaluronic acid fragments with different molecular weights.
  • the method is: using different molecular weight recombinant hyaluronidase or extracting hyaluronidase Hyaluronidase, enzymatically cleaves high-molecular hyaluronic acid raw materials to produce hyaluronic acid fragments with different molecular weights.
  • the recombinant hyaluronidase or extracted hyaluronidase of different molecular weights is: full-length, partial and fused recombinant hyaluronidase or extracted hyaluronidase of a variety of different species.
  • the present invention establishes a stable manufacturing method of hyaluronic acid fragment B-HA with an average molecular weight of 35 ⁇ 8KDa, and discovers its manufacturing principle and new mechanism of action.
  • the present invention discovered the biological characteristics of this hyaluronic acid fragment quickly entering the lymph nodes and lymphatic organs and spleen after subcutaneous and intravenous injection, and developed new applications based on this characteristic.
  • the present invention has discovered that this hyaluronic acid fragment promotes the removal of human mononuclear cells (mainly human lymphocytes and a small amount of human monocytes), suggesting that this hyaluronic acid fragment carries water together with human mononuclear cells from inflammation Tissue enters lymphatic drainage and immune regulation of lymphocytes.
  • human mononuclear cells mainly human lymphocytes and a small amount of human monocytes
  • the present invention found that the intravenous injection of this hyaluronic acid fragment is safe; human hyaluronidase PH20 and bovine hyaluronidase PH20 10 minutes, 20 minutes, 40 minutes, 1 hour, 2 hours, 3 hours,
  • the molecular weight measured by the electrophoresis gel of the hyaluronic acid fragments of the final product hyaluronic acid fragments of 4 hours, 5 hours and 6 hours fully or slightly excessively full enzymatic hydrolysis of polymer hyaluronic acid raw materials are all 35kDa; among them, 2 hours, 3 hours, 4 hours, 5 hours and 6 hours are 35kDa hyaluronic acid fragments with basically the same molecular weight, which can be filtered with a 0.22 ⁇ m (220nm) pore filter membrane to ensure good tissue permeability and support its good tissue permeability.
  • the present invention has discovered a method of producing hyaluronic acid fragments by directly mixing hyaluronidase PH20 injection extracted from commercial bovine testicles with commercial polymer hyaluronic acid injection, and found that it can promote inflammatory edema. Lymphatic fluid and cell reflux and the application of local anti-inflammatory drugs. Among them, the hyaluronidase PH20 injection extracted from bovine testis requires human allergy test skin test before it can be used clinically to produce hyaluronic acid fragments.
  • the present invention has discovered a method that uses a variety of different species of full-length, partial, and fused recombinant and extracted hyaluronidase to enzymatically cut high molecular weight hyaluronic acid raw materials to produce different molecular weight materials.
  • the method of hyaluronic acid fragments is characterized by different biological effects of hyaluronic acid fragments with different molecular weights.
  • Figure 1 shows the recombinant human hyaluronidase PH20 produced in CHO cells using GC-rich animal cell expression vectors through QFF chromatography column, Phenyl HP hydrophobic chromatography column, CHT I ceramic hydroxyapatite chromatography column and SPHP cations Exchange the results of SDS-PAGE electrophoresis detection of recombinant human PH20 obtained after 4 steps of purification by the chromatography column.
  • Figure 2 shows the use of sufficient or slightly excessive recombinant human hyaluronidase PH20 10 minutes (Lane-1), 20 minutes (Lane-2), 40 minutes (Lane-3), 1 hour (Lane-4), 2 Hours (Lane-5), 3 hours (Lane-6), 4 hours (Lane-7), 5 hours (Lane-8), and 6 hours (Lane-9) Results of gel electrophoresis of the final product of the acid fragment. Lane-10 and Lane-11 are 24kDa and 35kDa hyaluronic acid fragment standards, respectively.
  • Figure 3 shows the use of hyaluronidase extracted from sufficient or slightly excessive amounts of cows. 2 hours (Lane-5), 3 hours (Lane-6), 4 hours (Lane-7), 5 hours (Lane-8) and 6 hours (Lane-9) are manufactured by enzymatically cutting high polymer hyaluronic acid raw materials The result of gel electrophoresis of the final product of hyaluronic acid fragment. Lane-10 and Lane-11 are 24kDa and 35kDa hyaluronic acid fragment standards, respectively.
  • Figure 4 shows the use of sufficient or slightly excessive amounts of non-PH20 recombinant leech hyaluronidase for 10 minutes (Lane-1), 20 minutes (Lane-2), 40 minutes (Lane-3), 1 hour (Lane-4), 2 hours (Lane-5), 3 hours (Lane-6), 4 hours (Lane-7), 5 hours (Lane-8) and 6 hours (Lane-9) are manufactured by enzymatically cutting high polymer hyaluronic acid raw materials The result of gel electrophoresis of the final product of hyaluronic acid fragment. Lane-10 and Lane-11 are 24kDa and 35kDa hyaluronic acid fragment standards, respectively.
  • Figure 5 shows the results of gel electrophoresis molecular weight determination of hyaluronic acid fragment B-HA products of 6 different production batches.
  • the molecular weights of the 6 different batches of B-HA products marked in the figure are determined by GPC-RI-MALLS. Results (see Table 3).
  • Figure 6 shows the main distribution of 99mTc-B-HA after 5 minutes of intravenous injection; the main distribution is in the spleen after 5 minutes, indicating that 99mTc-B-HA has affinity for lymphatic tissue; 99mTc-B-HA is also mainly after 5 minutes of intravenous injection Distributed in the liver; 99mTc-B-HA is also distributed in the bladder 5 minutes after intravenous injection.
  • Figure 7 is a plane image collected 5 minutes after subcutaneous injection of mice; among them, each C57BL/6J mouse is injected subcutaneously with 20-25 ⁇ Ci of 125I-B-HA at the end of the lower extremity, and passes 5,10 Plane images were collected every 30 and 140 minutes, and the results collected in 5 minutes showed that 125I-B-HA was injected into the lymph nodes and lymphatic organs spleen quickly within 5 minutes by subcutaneous injection of C57BL/6J mouse lower extremities.
  • Figure 8 is a columnar comparison diagram of different substances promoting the removal of mononuclear cells; among them, the higher concentration (300 ⁇ g/mL) of 35kDa hyaluronic acid B-HA and 1600kDa hyaluronic acid HA promote fresh extraction of mononuclear cells (mainly lymphocytes) And a small amount of macrophage precursor monocytes) removed; 35kDa hyaluronic acid fragment B-HA mixed with 1600kDa hyaluronic acid HA further promote the removal of freshly extracted mononuclear cells.
  • Figure 9 is a columnar comparison diagram of different substances promoting the removal of mononuclear cells; among them, the endotoxin LPS promotes the removal of freshly extracted human mononuclear cells.
  • the higher concentration (300 ⁇ g/mL) of hyaluronic acid HA further promotes the removal of freshly extracted human mononuclear cells triggered by the endotoxin LPS (1ng/mL).
  • the higher concentration (300 ⁇ g/mL) hyaluronic acid fragment B-HA did not significantly affect the removal of freshly extracted human mononuclear cells triggered by the endotoxin LPS (1ng/mL).
  • Figure 10 is a columnar comparison chart of different substances inhibiting neutrophil removal; among them, the higher concentration (300 ⁇ g/mL) 35kDa hyaluronic acid fragment B-HA, 1600kDa hyaluronic acid HA and B-HA mixed HA all inhibited freshness
  • the neutrophils were extracted and removed, suggesting that HA and B-HA have the same affinity and biological effects on the hyaluronic acid receptor CD44 and Siglec-9 of neutrophils.
  • Figure 11 is a columnar comparison chart of different substances inhibiting neutrophil removal; among them, the higher concentration (300 ⁇ g/mL) 35kDa hyaluronic acid fragment B-HA, 1600kDa hyaluronic acid HA and B-HA mixed HA all significantly inhibited the internal
  • the toxin LPS (1ng/mL) triggered the removal of freshly extracted human neutrophils.
  • hyaluronic acid and hyaluronic acid fragments interact with a variety of human hyaluronic acid receptors, including LYVE-1, CD44, RHAMM, Siglec-9, HARE, TLR2, CEMIP and TMEM2, Participate in the regulation of a variety of functions in the body, such as lymphocyte traffic, white blood cell inflammatory factor secretion, tumor immune regulation, cardiovascular and cerebrovascular tissue renewal, etc.
  • Clinical research is completely different.
  • the clinical effect of the bioactive hyaluronic acid fragment B-HA with good tissue permeability and average molecular weight of about 35kDa on the human body is the comprehensive result of the binding of different cells and different tissues and organs to multiple receptors.
  • the cDNA of artificially synthesized recombinant human hyaluronidase PH20 was inserted into the GC-rich pMH3 vector to construct the pMH3-PH20 expression vector; then the pMH3-PH20 expression vector was transferred into CHO -S cell line, select the CHO-S cell line with high expression of PH20, and scale it up and large-scale culture in a rapid flow animal cell reactor; filter the harvest liquid containing PH20 through a 0.22 ⁇ m filter membrane and pass it through a QFF chromatography column, Phenyl HP hydrophobic chromatography column, CHT I ceramic hydroxyapatite chromatography column and SP HP cation exchange chromatography column are purified in 4 steps, and then filtered through a 0.22 ⁇ m membrane filter to produce sterile saccharification with a purity of greater than 98.5%
  • the recombinant human hyaluronidase PH20 [50,51].
  • Human hyaluronidase PH20 is a sperm acrosomal hyaluronidase produced in the testis of men [43] and also produced in the breast of women [52].
  • Human colostrum contains 35kDa hyaluronic acid fragment B-HA with certain anti-inflammatory activity, which is made by PH20 cutting polymer hyaluronic acid[53-57]. This study uses a clean and sterilized enzymatic hydrolysis reaction with a working volume of 25 liters The device produces hyaluronic acid fragment B-HA.
  • Dissolve 0.3g agarose in 30mL TBE solution heat it in a microwave oven to boil for more than three times, cool it slightly, and pour it into a rubber-making board with a rubber-making comb, and wait for the glue to cool and solidify.
  • Take 15 ⁇ L of the standard and add 45 ⁇ L of ultrapure water to prepare the standard solution and take 5 ⁇ L of the sample to be tested and add 15 ⁇ L of ultrapure water to prepare the sample solution.
  • the final concentration of the standard and the sample are both 5mg/mL.
  • the standard and sample are respectively connected to the sample buffer according to the loading buffer. Mix in 4:1 ratio. Place the prepared gel plate in an electrophoresis tank containing 1 ⁇ TBE, add 20 ⁇ L of standard and sample to each gel hole in sequence, adjust the electrophoresis instrument voltage to 80v, and perform electrophoresis for 20 minutes.
  • GPC Gel permeation chromatography
  • RI differential detection
  • MALLS eighteen-angle laser light scattering
  • Hyaluronic acid raw materials Huaxi Freda Biotechnology Co., Ltd. with an average molecular weight of 300kDa (medium molecule) and 1600kDa (polymer) and 20mg/2m sodium hyaluronic acid injection (trade name) with an average molecular weight of 1600kDa Speter) (Bausch & Lomb).
  • Recombinant human hyaluronidase PH20 (Shaoxing Huihui Technology Co., Ltd.), recombinant human soluble hyaluronidase PH20-IgG2Fc (Hangzhou Anruipu Biopharmaceutical Research Co., Ltd.), extracted bovine testicular hyaluronidase PH20 (1500u/branch) , H31022111, Shanghai No. 1 Biochemical Pharmaceutical Factory), recombinant leech hyaluronidase (Jiangnan University).
  • the above hyaluronidase activity determination method is different, the present invention is based on the activity label provided by the supplier.
  • PH20 human hyaluronidase PH20
  • PH20-IgG2Fc IgG2 Fc fusion protein
  • extraction of bovine testicular hyaluronidase PH20 and recombinant leech transparent Sufficient or slightly excessive amount of plasminase is used for full enzymatic hydrolysis, and then it is manufactured.
  • Hyaluronidase is defined as: (1) In 10-20 minutes, the molecular weight and the molecular weight of the hyaluronic acid fragment produced by the sufficient or light excessive enzymatic hydrolysis and the high-molecular hyaluronic acid raw material In 1-6 hours, the molecular weight of hyaluronic acid fragments produced by full enzymatic hydrolysis and neutralization of high-molecular hyaluronic acid raw materials is basically the same (coefficient of variation CV ⁇ 15%); (2)>99% high or medium molecular weight The low-molecular-weight hyaluronic acid fragment products that are fully enzymatically hydrolyzed by the raw material of hyaluronic acid are smoothly filtered by the 022um filter membrane; (3) Hyaluronidase activity is fully enzymatically hydrolyzed by sufficient or light excess There is almost no residue or a small amount of residue ( ⁇ 15%) afterwards, and all are inactivated at 80 degrees and 45 minutes.
  • the time points for the enzymatic production of various hyaluronic acid include: 10 minutes, 20 minutes, 40 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, and 6 hours enzymatic hydrolysis.
  • the enzymatic hydrolysis reaction of recombinant human hyaluronidase PH20 and extracted bovine testicular hyaluronidase pH20 used pH 7.4.
  • Recombinant leech hyaluronidase uses pH 6.5.
  • Human hyaluronidase PH20 (15000 units) ( Figure 2), bovine hyaluronidase PH20 (20000 units) ( Figure 3) and recombinant leech hyaluronidase (150000 units) ( Figure 4) Mix 140mmol/L NaCl and 1mmol/L MgCl solution, and incubate at 37°C for 10 minutes, 20 minutes, 40 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours and 6 hours respectively.
  • the optimal enzymatic hydrolysis time of acid enzyme PH20 and bovine hyaluronidase PH20 are both 2, 3, 4 and 5 hours, and the molecular weight of the final enzymatic hydrolysis product is 35kDa (35 ⁇ 8KDa).
  • the dosage unit for using sufficient or light excess human hyaluronidase PH20, bovine-extracted hyaluronidase PH20 (20,000 units) and recombinant leech hyaluronidase is derived from preliminary experiments.
  • Table 1 Use 0.22 ⁇ m filter membrane to filter human hyaluronidase PH20 10 minutes, 20 minutes, 40 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours and 6 hours.
  • the hyaluronic acid fragment solution of each group is tested for the tissue permeability of each group of hyaluronic acid fragment solution and whether it can be filtered and sterilized by 0.22m ⁇ filter membrane.
  • the research results in Table 1 also show that 2 hours, 3 hours, 4 hours, 5 hours and 6 hours use sufficient or light excessive amounts of human hyaluronidase PH20 to fully enzymatically hydrolyze high molecular weight hyaluronic acid raw materials with average molecular weight hyaluronic acid
  • the fragment solution can be completely filtered with a 0.22 ⁇ m filter membrane without obvious resistance, indicating that there is no hyaluronic acid fragment with a large molecular weight that cannot pass through the tissue gap of the 220nm pore size in the hyaluronic acid fragment solution.
  • the 0.22m ⁇ filter membrane filtering the hyaluronic acid fragment solution is a detection method for judging whether the average molecular weight hyaluronic acid fragment produced by the human hyaluronidase PH20 enzymatically hydrolyzes the polymer hyaluronic acid raw material is sufficient, and it is also a judgment A method for detecting whether the hyaluronic acid fragment solution can be filtered and sterilized with a 0.22 m ⁇ filter membrane.
  • Table 2 shows the full-length, partial, and fused recombinant and extracted hyaluronidase of different species.
  • the results in Table 2 suggest that the full-length, partial, and fusion of a variety of different species of hyaluronic acid fragments produced by enzymatically cutting high-molecular hyaluronic acid raw materials using recombinant and extracted hyaluronidase have different molecular three-dimensional structures and molecular weights. .
  • the receptor binding capacity and biological effects of hyaluronic acid fragments produced by enzymatic cleavage of these three-dimensional structures and molecular weights are also different.
  • the three-dimensional structure of human and bovine hyaluronidase PH20 and the number of base acids are similar, and the molecular weight of hyaluronic acid fragments produced by enzymatically cutting high-molecular hyaluronic acid raw materials is the same.
  • Table 2 Full-length, partial, and fused recombinant and extracted hyaluronidase of different species.
  • the gel electrophoresis measurement results of the hyaluronic acid fragment B-HA products produced in 6 different batches are shown in Figure 3.
  • the molecular weight of the product marked in the figure is the result of the GPC-RI-MALLS measurement in Table 3.
  • the gel electrophoresis result It is basically consistent with the GPC-RI-MALLS measurement result, and the average molecular weight distribution is about 35kDa.
  • Table 3 The average molecular weight of 6 different production batches of hyaluronic acid fragment B-HA products determined by GPC-RI-MALLS
  • Table 5 The 10-100kDa molecular weight distribution results of 6 different batches of hyaluronic acid fragment B-HA products determined by GPC-RI-MALLS
  • the results of the present invention show for the first time that using different hyaluronidase (recombinant human hyaluronidase PH20, recombinant human soluble hyaluronidase PH20-IgG2Fc, extracted bovine hyaluronidase PH20 and recombinant leech hyaluronidase) is sufficient or light
  • hyaluronidase recombinant human hyaluronidase PH20, recombinant human soluble hyaluronidase PH20-IgG2Fc, extracted bovine hyaluronidase PH20 and recombinant leech hyaluronidase
  • the molecular weight of hyaluronic acid fragments produced by the excessive and sufficient enzymatic hydrolysis of high-molecular hyaluronic acid raw materials is obviously different (Table 2, Figure 2, 3, 4), suggesting that the use of different hyaluroni
  • 0.22m ⁇ filter membrane filtration is a method to determine whether sufficient or light excess human hyaluronidase PH20 enzymatically hydrolyzes polymer hyaluronic acid raw materials to produce hyaluronic acid fragments with an average molecular weight of 35kDa is sufficient and thorough. It is also a judgment. A method for detecting whether the hyaluronic acid fragment can be filtered and sterilized with a 0.22 m ⁇ filter membrane.
  • hyaluronidase PH20 is the only hyaluronidase that reacts under neutral pH conditions. It has a special structure and has two binding points, namely the N-terminal hyaluronic acid binding point and C-terminal zona pellucida junction. In other words, PH20 is the binding protein of hyaluronic acid and zona pellucida (or zona pellucida).
  • the molecular weight of hyaluronic acid fragments produced by hyaluronidase from different sources in sufficient or light excess amounts is also related to biological activity and receptor binding activity (Cyphert JM, Trempus CS,
  • Investigationziotis S Size matters: molecular weight specificity of hyaluronan effects in cell biology (Review Article). Int J Cell Biol 2015, 2015:1-8.).
  • the recombinant human hyaluronidase PH20 and the extracted bovine hyaluronidase PH20 are defined as: (1) 10-20 minutes for full enzymatic hydrolysis in a short time to neutralize the transparent polymer.
  • the molecular weights of hyaluronic acid fragments made from raw materials are basically the same as those determined by gel electrophoresis (coefficient of variation CV ⁇ 15%).
  • the present invention establishes a stable recombinant human hyaluronidase PH20 method for producing hyaluronic acid fragment B-HA with an average molecular weight of 35kDa by cutting the hyaluronic acid raw material with an average molecular weight of 1600kDa, and clarifies its manufacturing principle.
  • this application reports for the first time that the average molecular weight of the enzymatic hydrolysate produced by using human and bovine hyaluronidase PH20 to fully enzymatically cut hyaluronic acid raw materials is 35kDa with little fluctuation.
  • B-HA or HA35 hyaluronic acid fragment
  • B-HA or HA35 an average molecular weight of 35kDa
  • 99mTc 35kDa
  • Experimental reagents injection grade hyaluronic acid raw materials with average molecular weight of 1600kDa, ordinary average molecular weight of 300kDa hyaluronic acid raw materials and average molecular weight of 24kDa hyaluronic acid fragments were purchased from Huaxi Freda Biomedical Co., Ltd., with an average molecular weight of 60kDa hyaluronic acid fragments Purchased from Liyang Biotechnology Co., Ltd., Fetal Bovine Serum (FBS) was purchased from Zhejiang Tianhang Biotechnology Co., Ltd., Penicillin-Streptomycin Solution was purchased from Hyclone (U.S.), anti-CD44 antibody, rabbit IgG was purchased from Abcam Company (UK), Cy5.5 fluorescent dye, lipopolysaccharide (LPS), agarose (Agarose), phorbol ester (PMA), chemokine (fMLP) were purchased from Beijing Soleibao Technology Co., Ltd., RPMI-1640
  • Cytometer (BD Bioscience, U.S.) was provided by the Central Laboratory of Qingdao Agricultural University, the inverted microscope was purchased from Nanjing Jiangnan Yongxin Optical Co., Ltd., the 18-angle laser scatterometer was purchased from Wyatt Technology (U.S.), and the differential detector was purchased From Wyatt Technology (USA), the 2016 black background microscope was purchased from Harbin Kangbang Black Background Optical Instrument Co., Ltd.
  • Animal red blood cell samples Venous blood from Beagle dogs, BALB/c mice, Inner Mongolian goats and Inner Mongolian cattle were provided by the Animal Hospital of Qingdao Agricultural University. The blood sampling of animals was approved by the Animal Ethics Committee of Qingdao Agricultural University.
  • Experimental animals Experimental C57BL/6J mice and Beagle dogs were provided by Arizona State University and Qingdao Agricultural University Animal Hospital. The animal experiment methods were approved by Arizona State University and Qingdao Agricultural University Animal Ethics Committee.
  • the new iQID gamma camera developed by the University of Arizona was used to dynamically collect three-hour 99mTc-B-HA whole body tissue distribution images. After the iQID image collection, samples of blood and tissues and organs of mice were collected for radioactivity content determination. The distribution of 99mTc-B-HA in mouse tissues and organs is expressed as a percentage of the total injected dose (%ID/g).
  • 125-I labeling and molecular imaging study of hyaluronic acid fragment B-HA In this study, 125I and 35kDa hyaluronic acid fragment B-HA were covalently connected using the Iodogen method, and the 125I-B-HA produced was purified by a molecular sieve column After eluted with PBS, it is reserved.
  • Each C57BL/6J mouse was injected subcutaneously with 20-25 ⁇ Ci of 125I-B-HA into the end of the lower extremity, and the plane image was collected every 5, 10, 30, and 140 minutes by small animal PET-CT, and the gama radioactivity count was collected for 5 minutes each time. .
  • the data is expressed as Mean ⁇ SD, and the statistical software Graph prism 6.0 is used for statistical analysis of the data.
  • the group t test is used to compare the results, p>0.05 (ns) is considered to be not statistically significant, and p ⁇ 0.05 (*) is considered to be statistical Scientific significance, p ⁇ 0.01(**) or p ⁇ 0.001(***) is considered to be highly statistically significant.
  • 125 IB-HA was injected subcutaneously at the end of the lower extremities of C57BL/6J mice into the lymph nodes and the spleen of lymphatic organs within 5 minutes.
  • B-HA has a special affinity with the lymphatic system after subcutaneous and intravenous injection, suggesting that it carries water along with human mononuclear cells from inflamed tissues into lymphatic drainage.
  • the effect of B-HA on lymphatic reflux has a certain effect on the normalization of lymphocytes and related immune regulation.
  • the content of hyaluronic acid and hyaluronic acid fragments is at least 85-180 times higher in the chest lymph nodes and thymic chyle ducts than in the serum (0.01-0.1 ⁇ g/g tissue) [1], suggesting a higher concentration of hyaluronic acid and hyaluronic acid Fragments are concentrated by the lymphatic system and have an effect in the lymphatic system.
  • Related literature suggests that an adult has 10-100mg hyaluronic acid and hyaluronic acid fragments into the blood through the lymphatic system every day [1-3,7,46-47].
  • B-HA has the same function of carrying water as HA, which promotes the reflow of lymphocytes and the reabsorption of extracellular fluid in inflamed tissues.
  • Relevant literature supports that the skin and mucosal inflammation that is clinically manifested as redness, swelling, heat and pain disappears through the effect of lymphatic drainage [1,4,5,6,8,9,10,14-19,48].
  • LYVE-1 macrovascular endothelial cells
  • CD44 red blood cells, white blood cells, and bone marrow cells
  • RHAMM leukocytes, microglia, endothelial cells and muscle cells
  • Siglec-9 neutralils, monocytes, DC cells
  • TLR2 macrophages, DC cells, T cells, B cells, Monocytes, microglia
  • HARE sinusoidal endothelial cells of the liver, lymph nodes and spleen
  • CEMIP fibroblasts, epithelial cells, and various tumor cells
  • TMEM2 multiple tumor cells
  • a Beagle with an average weight of 15 kg has about 1000 ml of blood, and the B-HA concentration in the blood is up to 100 ⁇ g/mL, although it is greater than 0.15% (1500 ⁇ g/mL) and greater than The high concentration of 0.08% (800 ⁇ g/mL) hyaluronic acid fragment B-HA all caused significant red blood cell aggregation and elevated erythrocyte sedimentation rate, but during the experiment, the Beagle did not inject local pain, blood vessel blockage, or allergic reactions. Struggle, dodge and die (Table 7).
  • the hyaluronic acid fragment B-HA injection in this article is designed for people with an average weight of 70 kg to inject 100 mg of deep subcutaneous fat or diseased pain points each time.
  • a person with an average weight of 70 kg has about 7 liters of blood.
  • the concentration of hyaluronic acid fragment B-HA in the blood is as high as 14.2 ⁇ g/mL (0.0014%), which is not enough to cause obvious human red blood cell aggregation and erythrocyte sedimentation rate. Therefore, the hyaluronic acid fragment B-HA injection is safe to use.
  • Purpose Use commercial bovine extract hyaluronidase PH20 injection and polymer hyaluronic acid injection to produce B-HA or HA35 with an average molecular weight of 35.4kDa in a short time to treat local large areas of redness, swelling and pain caused by mosquito bites. Inflammation.
  • bovine testicular hyaluronidase PH20 (1500u/branch, H31022111, Shanghai No. 1 Biochemical Pharmaceutical Factory) and sodium hyaluronic acid (hyaluronic acid) injection with an average molecular weight of 1600kDa (trade name Speter) (20mg/ 2ml)
  • hyaluronidase 20000U/g hyaluronic acid 37°C for 20 minutes, full enzymatic hydrolysis to produce B-HA or HA35 with an average molecular weight of 35.4kDa (refer to Example 1 Figure 3) .
  • Table 8 Use commercial hyaluronidase PH20 injection and polymer hyaluronic acid injection to produce hyaluronic acid fragment B-HA or HA35 with an average molecular weight of 35.4kDa in a short time to quickly treat the mosquito bite caused by local injection A condition of hypersensitivity inflammation with large areas of redness, swelling and pain.
  • This rapid therapeutic effect may be related to the role of hyaluronic acid fragment B-HA in promoting inflammatory edema lymph and lymphocyte reflux and local anti-inflammatory effects.
  • Hyaluronidase PH20 injection extracted from commercial bovine testicles is directly mixed with commercial polymer hyaluronic acid injection to produce hyaluronic acid fragments to quickly treat local large areas of redness, swelling and pain caused by mosquito (mosquito or bumblebee) bites
  • mosquito mosquito
  • Hyaluronan in the lymphatics The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol, 2019, 78-79: 219-235.
  • Hyaluronidase 2 deficiency is a molecular cause of cor triatriatum sinister in mice. Int J Cardiol, 2016, 209: 281-3.
  • Receptor for hyaluronan mediated motility (RHAMM/HMMR) is a novel target for promoting subcutaneous adipogenesis.Integr Biol(Camb), 2017, 9(3): 223-237.
  • sperm surface protein PH-20 is biological: one activity is a hyaluronidase and a second, distinct activity is required in secondary, sperm-zona binding, Biology of production 55: Re 80, 1996 -86.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种透明质酸片段作为人单个核细胞移走促进剂的应用、通过皮下或静脉注射作为人淋巴细胞和液体回流和淋巴细胞的免疫调节剂的应用以及作为人中性粒细胞移走抑制剂的应用;透明质酸片段为使用PH20充分酶解透明质酸原料制造而成、能通过0.22μm滤膜、平均分子量为35±8KDa的透明质酸片段。本发明还公开了上述透明质酸片段在制备治疗人单个核细胞、中性粒细胞移走相关炎症性疾病药物中的应用,以及在制备治疗人淋巴细胞和液体回流相关炎症性疾病药物中的应用。本发明还公开了上述透明质酸片段的制造方法以及制造分子量大小不一的透明质酸片段的方法。本发明发现了透明质酸片段的新制造方法、作用机制和应用,为透明质酸片段的药学研究奠定了基础。

Description

一种透明质酸片段的新应用及制造方法 技术领域
本发明涉及生物医学领域,特别是涉及一种透明质酸片段的新应用及制造方法。
背景技术
目前,科学社会对于人体细胞外基质透明质酸的生理功能和药学功效还是没有统一的看法。最早的透明质酸产品都是平均分子量大于1200kDa的治疗关节炎的注射液,如Durolane and Synvisc。文献研究表明透明质酸的生理和药学功效于其分子量大小有关。文献研究还表明人初乳提取的平均分子量35kDa的透明质酸片段有多种生理功能和药学功效。人初乳提取的平均分子量35kDa的透明质酸片段在女性乳房由透明质酸酶切割制造。女性乳房是性腺,其透明质酸酶是男性性腺睾丸的精子顶体透明质酸酶PH20。
本发明人使用重组人透明质酸酶PH206小时酶解分子量300-1600kDa的透明质酸原料,制造了平均分子量35kDa的有生物活性的透明质酸片段B-HA。本发明人还使用生物活性透明质酸片段B-HA做原料,制造了1类医疗器械B-HA产品(LUQIN Food Drug Medical Device registration number:20190021)。这些1类医疗器械B-HA产品曾被用来进行说明书外临床研究临床表现为红肿硬痛的皮肤粘膜炎症。这些皮肤粘膜外用的临床研究结果表明生物活性透明质酸片段B-HA有明确抑制临床上皮肤粘膜红肿硬痛的活性),为其临床皮肤粘膜抗炎活性提供了事实依据,其临床研究结果在地方杂志进行了发表和申报了专利。
上述现有技术对生物活性透明质酸片段B-HA的稳定制造方法、制造原 理、生物活性的作用机制和新的生物活性以及潜在新临床应用的研究还有限,还需进一步研究和开发。
发明内容
本发明要解决的技术问题是提供一种采用特殊制造方法制造的透明质酸片段的新应用及其制造方法。
为解决上述技术问题,本发明主要使用透明质酸酶PH20足量或轻度过量充分酶解高或中分子量的透明质酸原料,研究了制造平均分子量35±8KDa的透明质酸片段B-HA的稳定制造方法和制造原理。本发明还研究了这种平均分子量35±8KDa的透明质酸片段B-HA的生物活性的作用机制以及潜在的新应用。
基于上述研究获得如下技术方案:
一方面,本发明提供了一种透明质酸片段的新应用,所述透明质酸片段为:使用重组人透明质酸酶PH20或提取牛透明质酸酶PH20,足量或轻度过量充分酶解高或中分子量透明质酸原料制造而成的、能通过0.22μm(220nm)孔径滤膜的、平均分子量为35±8KDa的透明质酸片段;所述应用为:所述透明质酸片段作为人单个核细胞移走促进剂的应用;和/或所述透明质酸片段通过皮下或静脉注射作为人淋巴细胞和液体回流和淋巴细胞的免疫调节剂的应用;和/或所述透明质酸片段作为人中性粒细胞移走抑制剂的应用。
另一方面,本发明还提供了一种透明质酸片段的新应用,所述透明质酸片段为:使用重组人透明质酸酶PH20或提取牛透明质酸酶PH20,足量或轻度过量充分酶解高或中分子量透明质酸原料制造而成的、能通过0.22μm(220nm)孔径滤膜的、平均分子量为35±8KDa的透明质酸片段;所述应用为:所述透明质酸片段在制备治疗人单个核细胞移走相关炎症性疾病药物中的应用,或在制备人单个核细胞移走促进剂中的应用;和/或,所述透明 质酸片段在制备通过皮下或静脉注射的、治疗人淋巴细胞和液体回流相关炎症性疾病药物中的应用,或在制备通过皮下或静脉注射的、人淋巴细胞和液体回流和淋巴细胞的免疫调节剂中的应用;和/或,所述透明质酸片段在制备治疗人中性粒细胞移走相关炎症性疾病药物中的应用,或在制备治疗人中性粒细胞移走抑制剂中的应用。
进一步地,所述人单个核细胞(人新鲜提取的单个核细胞)主要为淋巴细胞,还可包括少量巨噬细胞前体单核细胞;所述透明质酸片段在较高浓度(150-300μg/mL)的浓度下抑制人中性粒细胞移走。
再一方面,本发明还提供了一种透明质酸片段的制造方法,使用重组人透明质酸酶PH20或提取牛透明质酸酶PH20,足量或轻度过量充分酶解高或中分子量透明质酸原料制造平均分子量为35±8KDa的透明质酸片段。
进一步地,所述片段能通过0.22μm(220nm)孔径滤膜;所述酶解时间为2-6小时。
进一步地,使用重组人透明质酸酶PH20或提取牛透明质酸酶PH20注射液混合高或中分子量透明质酸注射液,酶解制造平均分子量为35±8KDa的透明质酸片段注射液。
进一步地,酶解时间为10-20分钟。
进一步地,所述足量或轻度过量充分酶解为:(1)10-20分钟足量或轻度过量充分酶解中和高分子透明质酸原料制造的透明质酸片段的分子量和1-6小时足量或轻度过量充分酶解中和高分子透明质酸原料制造的透明质酸片段的分子量基本一致,变异系数CV<15%;(2)>99%高或中分子透明质酸原料被足量或轻度过量充分酶解的低分子透明质酸片段产物被0.22um孔径滤膜全部顺利滤过;(3)透明质酸酶活性经足量或轻度过量充分酶解反应后基本没有残留或少量残留,残留量<15%,80度45分钟可全部灭活。
再一方面,本发明还提供了一种透明质酸片段的制造方法,用于制造分子量大小不一的透明质酸片段,所述方法为:使用不同分子量大小的重组透明质酸酶或提取的透明质酸酶,酶解切割高分子透明质酸原料制造分子量大小不一的透明质酸片段。
进一步地,所述不同分子量大小的重组透明质酸酶或提取的透明质酸酶为:多种不同种属的全长、部分和融合的重组透明质酸酶或提取的透明质酸酶。
本发明具有如下有益效果:
1、本发明建立了一种平均分子量35±8KDa的透明质酸片段B-HA的稳定制造方法,发现了其制造原理和新作用机制。
2、本发明发现了这种透明质酸片段在皮下和静脉注射后快速进入淋巴结和淋巴器官脾脏的生物特性,并基于该特性开拓了其新应用。
3、本发明发现了这种透明质酸片段促进了人单个核细胞(主要为人淋巴细胞和少量人单核细胞)移走,提示这种透明质酸片段携带水分与人单个核细胞一起从炎症组织进入淋巴回流和淋巴细胞的免疫调节。
4、本发明发现了这种透明质酸片段在较高浓度的情况下明显抑制中性粒细胞的移走,提示这种透明质酸片段局部使用有抗炎作用。
5、本发明发现了这种透明质酸片段静脉注射安全性良好;人透明质酸酶PH20和牛提取的透明质酸酶PH20 10分钟、20分钟、40分钟、1小时、2小时、3小时、4小时、5小时和6小时足量或轻度过量充分酶解高分子透明质酸原料的最终产物透明质酸片段的电泳凝胶测定的分子量均为35kDa上下;其中,2小时、3小时、4小时、5小时和6小时制造的是分子量基本相同的35kDa透明质酸片段,其能使用0.22μm(220nm)孔径滤膜过滤保证较好的组织通透性,支持其良好的组织渗透性。
6、本发明发现了商品化的牛睾丸提取的透明质酸酶PH20注射液直接混合商品化的高分子透明质酸注射液制造透明质酸片段的方法,并发现了其 在制造促进炎症性水肿淋巴液和细胞回流和局部抗炎药物中的应用,其中,牛睾丸提取的透明质酸酶PH20注射液需人过敏实验皮试才能临床使用制造透明质酸片段。
7、本发明发现了一种使用多种不同种属的全长、部分和融合的重组和提取的分子量大小不一的透明质酸酶酶解切割高分子透明质酸原料制造分子量大小不一的透明质酸片段的方法,其特点是分子量大小不一的透明质酸片段的生物效应也不一样。
附图说明
上述仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,以下结合附图与具体实施方式对本发明作进一步的详细说明。
图1为使用富含GC动物细胞表达载体在CHO细胞生产的重组人透明质酸酶PH20经QFF层析柱、Phenyl HP疏水层析柱、CHT I型陶瓷羟基磷灰石层析柱和SPHP阳离子交换层析柱4步纯化后获得的重组人PH20的SDS-PAGE电泳检测的结果。
图2为使用足量或轻度过量重组人透明质酸酶PH20 10分钟(Lane-1)、20分钟(Lane-2)、40分钟(Lane-3)、1小时(Lane-4)、2小时(Lane-5)、3小时(Lane-6)、4小时(Lane-7)、5小时(Lane-8)和6小时(Lane-9)酶解切割高分子透明质酸原料制造的透明质酸片段终产物凝胶电泳结果。Lane-10和Lane-11分别为24kDa和35kDa透明质酸片段标准品。
图3为使用足量或轻度过量牛提取的透明质酸酶PH20 10分钟(Lane-1)、20分钟(Lane-2)、40分钟(Lane-3)、1小时(Lane-4)、2小时(Lane-5)、3小时(Lane-6)、4小时(Lane-7)、5小时(Lane-8)和6小时(Lane-9)酶解切割高分子透明质酸原料制造的透明质酸片段终产物凝胶电泳结果。Lane-10和Lane-11分别为24kDa和35kDa透明质酸片段标准品。
图4为使用足量或轻度过量非PH20重组水蛭透明质酸酶10分钟 (Lane-1)、20分钟(Lane-2)、40分钟(Lane-3)、1小时(Lane-4)、2小时(Lane-5)、3小时(Lane-6)、4小时(Lane-7)、5小时(Lane-8)和6小时(Lane-9)酶解切割高分子透明质酸原料制造的透明质酸片段终产物凝胶电泳结果。Lane-10和Lane-11分别为24kDa和35kDa透明质酸片段标准品。
图5为6个不同生产批次的透明质酸片段B-HA产品的凝胶电泳分子量测定结果,图中标注的6个不同批次的B-HA产品的分子量是GPC-RI-MALLS分子量测定结果(见表3)。
图6为99mTc-B-HA静脉注射5分钟后主要分布图;其中5分钟后主要分布在脾脏,提示99mTc-B-HA对淋巴组织有亲和力;99mTc-B-HA静脉注射5分钟后也主要分布在肝脏;99mTc-B-HA静脉注射5分钟后在膀胱也有分布。
图7为小鼠皮下注射后5分钟采集的平面图像;其中,每只C57BL/6J小鼠在下肢末端皮下注射20-25μCi的125I-B-HA,通过小动物PET-CT每5、10、30、140分钟采集一次平面图像,5分钟采集的结果表明125I-B-HA经C57BL/6J小鼠下肢末端皮下注射在5分钟内快速进入淋巴结和淋巴器官脾脏。
图8为不同物质促进单个核细胞移走柱状对比图;其中,较高浓度(300μg/mL)的35kDa透明质酸B-HA和1600kDa透明质酸HA促进新鲜提取单个核细胞(主要为淋巴细胞和少量巨噬细胞前体单核细胞)移走;35kDa透明质酸片段B-HA混合1600kDa透明质酸HA进一步促进新鲜提取单个核细胞移走。抗人CD44抗体、内毒素LPS和趋化因子fMLP也均促进新鲜提取单个核细胞移走。*两组比较p<0.05(n=4);**两组比较p<0.01(n=4);***两组比较p<0.001(n=4)。
图9为不同物质促进单个核细胞移走柱状对比图;其中,内毒素LPS促进人新鲜提取单个核细胞的移走。较高浓度(300μg/mL)透明质酸HA进 一步促进内毒素LPS(1ng/mL)引发的人新鲜提取的单个核细胞的移走。较高浓度(300μg/mL)透明质酸片段B-HA没有明显影响内毒素LPS(1ng/mL)引发的人新鲜提取的单个核细胞的移走。然而,较高浓度(300μg/mL)透明质酸片段B-HA明显抑制了内毒素LPS混合较高浓度(300μg/mL)透明质酸HA促进的人新鲜提取的单个核细胞的移走。*两组比较p<0.05(n=4),**两组比较p<0.01(n=4),ns两组p>0.05(n=4)。
图10为不同物质抑制中性粒细胞移走柱状对比图;其中,较高浓度(300μg/mL)35kDa透明质酸片段B-HA、1600kDa透明质酸HA和B-HA混合HA均抑制了新鲜提取中性粒细胞移走,提示HA和B-HA对中性粒细胞的透明质酸受体CD44和Siglec-9有相同的亲和力和生物效应。抗CD44抗体、内毒素LPS和趋化因子fMLP均不同程度上促进了新鲜提取中性粒细胞移走。*两组比较p<0.05(n=4),**两组比较p<0.01(n=4)。
图11为不同物质抑制中性粒细胞移走柱状对比图;其中,较高浓度(300μg/mL)35kDa透明质酸片段B-HA、1600kDa透明质酸HA和B-HA混合HA均明显抑制内毒素LPS(1ng/mL)引发的人新鲜提取的中性粒细胞移走。内毒素LPS和趋化因子fMLP促进人新鲜提取的中性粒细胞的移走。***两组比较p<0.001(n=4)。
具体实施方式
以下通过具体的实施例对本发明进行说明,此处所描述的实施例仅用于说明和解释本发明,并不用于限定本发明。
经申请人通过大量文献研究发现,透明质酸和透明质酸片段与人体多种透明质酸受体相互作用,包括LYVE-1、CD44、RHAMM、Siglec-9、HARE、TLR2、CEMIP和TMEM2,参与体内多种功能的调节,如淋巴细胞交通、白细胞炎症因子分泌、肿瘤免疫调节、心脑血管组织更新等。这里值得提出注射使用(接触各种组织和器官)和皮肤粘膜外用(只从外面有限渗透接触皮肤粘膜)组织渗透性好的平均分子量35kDa左右的、有生物活性的透明 质酸片段B-HA的临床研究完全不同。注射使用组织渗透性好的平均分子量35kDa左右的、有生物活性的透明质酸片段B-HA对人体的临床作用是在不同细胞和不同组织器官与多种受体结合的综合结果。
因此,开发一种组织渗透性好的透明质酸片段B-HA注射液,并进一步明确这个透明质酸片段被人体吸收后与不同细胞、组织和器官中的多种透明质酸受体产生的作用机制和综合作用有重要药学和临床意义。
实施例1
目的:研究使用不同透明质酸酶足量或轻度过量充分酶解高分子透明质酸原料生产不同低分子量的透明质酸片段的制造方法。
方法:
1、重组人透明质酸酶PH20的生产
以参考文献[49]中记载的方法为基础,将人工合成重组人透明质酸酶PH20的cDNA插入富含GC的pMH3载体,构建pMH3-PH20表达载体;再将pMH3-PH20表达载体转入CHO-S细胞系,筛选高表达PH20的CHO-S细胞系,并在激流式动物细胞反应器进行放大和大规模培养;将含有PH20的丰收液经0.22μm滤膜过滤后经QFF层析柱、Phenyl HP疏水层析柱、CHT I型陶瓷羟基磷灰石层析柱和SP HP阳离子交换层析柱4步纯化,再经0.22μm滤膜过滤后制成纯度大于98.5%的无菌的有糖化的重组人透明质酸酶PH20[50,51]。
2、透明质酸片段B-HA的生产
人透明质酸酶PH20是在男性睾丸制造的精子顶体透明质酸酶[43],也在女性乳房制造[52]。人初乳中含有PH20切割高分子透明质酸制造的有一定抗炎活性的35kDa透明质酸片段B-HA[53-57].本研究使用工作体积25升的已清洁灭菌的酶解反应器生产透明质酸片段B-HA。首先准备平均分子量为1600kDa的注射级透明质酸原料,将透明质酸原料一次或分多次加入注射用水,再依次加入氯化钠(终浓度80-90mmol/L)、镁离子(终浓度 1mmol/L)、重组人透明质酸酶(终浓度15000单位/克),充分混合,在37℃分别反应30分钟、1小时、2小时、3小时和4小时,取样测定酶解产物分子量,将透明质酸片段平均分子量达到预计的35kDa的作为最佳酶解时间。再加入氯化钠(35-45mmol/L)将渗透压调至280-300毫渗量/升(mOsm/L),经85℃加热15分钟热灭活残留的重组人透明质酸酶PH20,再经0.22μm滤膜过滤得到2%(20mg/mL)的透明质酸片段B-HA溶液,送样进行内毒素含量、残留蛋白、残留核酸、葡萄糖醛酸含量检测和细菌培养.
3、透明质酸片段B-HA的分子量测定
(1)琼脂糖凝胶电泳方法测定
取0.3g琼脂糖溶于30mL TBE溶液中,微波炉中加热沸腾三次以上,稍冷却倒入插有制胶梳的制胶板中,待胶冷却凝固。取15μL标准品加入45μL超纯水制备标准品溶液,取5μL待测样品加入15μL超纯水制备样品溶液,标准品和样品终浓度均为5mg/mL.标准品和样品分别与上样buffer按4:1比例混匀。将制备好的凝胶板放置于含1×TBE的电泳槽中,每个胶孔里按顺序各加入20μL的标准品和样品,调节电泳仪电压为80v,电泳20分钟。
(2)GPC-RI-MALLS方法测定
采用凝胶渗透色谱法(GPC)--示差检测(RI)十八角度激光散射仪(MALLS)联用在线检测方法分析样品的分子量.(1)色谱条件:仪器:高效液相色谱仪(配RI检测器);Shodex SB-804HQ凝胶柱(Φ8mm×300mm);流动相:0.02%叠氮钠水溶液;流速:1mL/min;进样量:100μL;温度:40℃;检测器:示差检测器、十八角激光散射检测器。(2)样品相对分子质量测定:称取适量样品,用流动相溶解配成1mg/mL多糖样品溶液,用0.22μm滤器过滤后进样,进行高效液相分析。(3)分子质量分布检测采用RID和激光检测器分别记录供试品质量浓度和供试品在不同角度的光散射强度,折光指数增加量(dn/dc)值为0.138,通过数据处理软件ASTRA获取供试样品的分子质量分布图。
4、透明质酸原料
平均分子量300kDa(中分子)、1600kDa(高分子)的透明质酸原料(华西福瑞达生物科技有限公司)和平均分子量1600kDa的20mg/2m l的玻璃酸钠或透明质酸注射液(商品名施沛特)(博士伦公司)。
5、透明质酸酶
重组人透明质酸酶PH20(绍兴惠荟科技有限公司)、重组人可溶性透明质酸酶PH20-IgG2Fc(杭州安瑞普生物制药研究有限公司)、提取牛睾丸透明质酸酶PH20(1500u/支,H31022111,上海第一生化制药厂)、重组水蛭透明质酸酶(江南大学)。以上透明质酸酶的活性测定方法不同,本发明按供应商提供的活性标记。重组水蛭透明质酸酶详见参考文献Yuan Panhong,Kang Zhen,Jin Peng,Liu Long,Zhu Guocheng,Chen Jian,Preparation of small hyaluronan by enzymatic hydrolysis in vitro(Chinese),Journal of Food Science and Technology,2016,34(2):51-55;Peng Jin,Zhen Kang,Na Zhang,Guoheng Du,and Jian Chen,High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers,Scientific Reports,DOI:10.1038/srep04471(2014)。
6、足量或轻度过量充分酶解制造低分子透明质酸片段的方法
先采用预实验确定重组人透明质酸酶PH20(以下称PH20)、重组人透明质酸酶PH20和IgG2 Fc融合蛋白(以下称PH20-IgG2Fc)、提取牛睾丸透明质酸酶PH20和重组水蛭透明质酸酶足量或轻度过量充分酶解的酶使用量,然后再生产制造。透明质酸酶足量或轻度过量充分酶解的定义为:(1)10-20分钟足量或轻度过量充分酶解中和高分子透明质酸原料制造的透明质酸片段的分子量和1-6小时足量或轻度过量充分酶解中和高分子透明质酸原料制造的透明质酸片段的分子量基本一致(变异系数CV<15%);(2)>99%高或中分子透明质酸原料被足量或轻度过量充分酶解的低分子透明质酸片段产物被022um滤膜全部顺利滤过;(3)透明质酸酶活性经足量或轻度过 量充分酶解反应后基本没有残留或少量残留(<15%),80度45分钟全部灭活。各种透明质酸酶解制造的时间点包括:10分钟、20分钟、40分钟、1小时、2小时、3小时、4小时、5小时、6小时酶解。重组人透明质酸酶PH20和提取牛睾丸透明质酸酶pH20酶解反应使用pH7.4。重组水蛭透明质酸酶使用pH 6.5。
结果:
1、使用富含GC动物细胞表达载体生产的重组人透明质酸酶PH20经纯化后的SDS-PAGE电泳结果如图1所示。重组人PH20经分子排阻色谱-高效液相色谱法(SEC-HPLC)检测纯度大于98.5%,经Human HAase Elisa试剂盒检测比活性为56802±508IU/mg(n=3)。
2、人透明质酸酶PH20(15000单位)(图2)、牛提取的透明质酸酶PH20(20000单位)(图3)和重组水蛭透明质酸酶(150000单位)(图4)在含有140mmol/L NaCl和1mmol/L MgCl的溶液中混合,37℃分别培养10分钟、20分钟、40分钟、1小时、2小时、3小时、4小时、5小时和6小时,结果提示人透明质酸酶PH20和牛提取的透明质酸酶PH20的最佳酶解时间均为2、3、4和5小时,酶解终产物分子量均为35kDa上下(35±8KDa)。注:使用足量或轻度过量人透明质酸酶PH20、牛提取的透明质酸酶PH20(20000单位)和重组水蛭透明质酸酶的剂量单位由预实验得出。
表1使用0.22μm滤膜过滤人透明质酸酶PH20 10分钟、20分钟、40分钟、1小时、2小时、3小时、4小时、5小时和6小时酶解切割高分子透明质酸原料制造的透明质酸片段溶液,检测各组透明质酸片段溶液的组织通透性和能否使用0.22mμ滤膜过滤除菌。表1的研究结果表明人透明质酸酶PH20 10分钟、20分钟、40分钟和1小时使用足量或轻度过量充分酶解高分子透明质酸原料制造的平均分子量35kDa透明质酸片段溶液不能在无明显阻力的情况下全部完成0.22mμ滤膜过滤,提示有部分较大分子量不能通过220nm孔径组织间隙的透明质酸片段存在。表1的研究结果还表明2 小时、3小时、4小时、5小时和6小时使用足量或轻度过量人透明质酸酶PH20充分酶解高分子透明质酸原料制造的平均分子量透明质酸片段溶液能在无明显阻力的情况下全部完成0.22μm滤膜过滤,提示透明质酸片段溶液中没有较大分子量不能通过220nm孔径组织间隙的透明质酸片段存在。以上研究结果提示0.22mμ滤膜过滤所述透明质酸片段溶液是一种判断人透明质酸酶PH20酶解高分子透明质酸原料制造的平均分子量透明质酸片段是否充分的检测方法,也是判断所述透明质酸片段溶液能否使用0.22mμ滤膜过滤除菌的检测方法。
Figure PCTCN2021093207-appb-000001
Figure PCTCN2021093207-appb-000002
表2是不同种属的全长、部分和融合的重组和提取的透明质酸酶足量或轻度过量充分酶解高分子透明质酸原料制造的透明质酸片段的分子立体结构特点、分子量和氨基酸数。表2的结果提示使用多种不同种属的全长、部分和融合的重组和提取的透明质酸酶酶解切割高分子透明质酸原料制造的透明质酸片段分子立体结构和分子量大小不一。这些立体结构和分子量大小不一的酶解切割制造的透明质酸片段的受体结合能力和生物效应也不一样。人和牛透明质酸酶PH20的分子立体结构和基酸数量类似,酶解切割高分子透明质酸原料制造的透明质酸片段的分子量大小一样。表2的结果还表明使用水蛭透明质酸酶酶解切割高分子透明质酸原料制造的透明质酸片段的分子量大小和人透明质酸酶PH20酶解切割高分子透明质酸原料制造的透明质酸片段的分子量大小明显不一样(图2,3,4)。表2的结果进一步表明使用重组人可溶性人透明质酸酶PH20-IgG2Fc酶解切割高分子透明质酸原料制造的透明质酸片段的分子量大小也和人透明质酸酶PH20酶解切割高分子透明质酸原料制造的透明质酸片段的分子量大小明显不一样。
表2不同种属的全长、部分和融合的重组和提取的透明质酸酶足量或轻度过量充分酶解高分子透明质酸原料制造的透明质酸片段的分子立体结构特点、分子量和氨基酸数结果
Figure PCTCN2021093207-appb-000003
3、透明质酸片段B-HA的分子量测定
(1)琼脂糖凝胶电泳测定
6个不同批次生产的透明质酸片段B-HA产品的凝胶电泳测定结果如图3所示,图中标注的产品分子量是表3中GPC-RI-MALLS测定的结果,凝胶电泳结果与GPC-RI-MALLS测定结果基本一致,平均分子量分布在35kDa左右.
(2)GPC-RI-MALLS测定
6个不同生产批次的透明质酸片段B-HA产品使用GPC-RI-MALLS测定平均分子量(表3),结果表明6个样品的平均分子量为35±8kDa,其批间变异CV=22%(n=6),与文献报导的人初乳提取的透明质酸片段分子量一致[51-55]。
表3 GPC-RI-MALLS测定的6个不同生产批次透明质酸片段B-HA产品的平均分子量
Figure PCTCN2021093207-appb-000004
6个不同生产批次的透明质酸片段B-HA产品使用GPC-RI-MALLS测定分子量分布(表4、表5),结果表明92.75±2.42%的B-HA分布在10-70kDa之间,96.92±2.34%的B-HA分布在10-100kDa之间,其分布范围相对较小。
表4 GPC-RI-MALLS测定的6个不同批次透明质酸片段B-HA产品的10-70kDa分子量分布结果
Figure PCTCN2021093207-appb-000005
表5 GPC-RI-MALLS测定的6个不同批次透明质酸片段B-HA产品的10-100kDa分子量分布结果
Figure PCTCN2021093207-appb-000006
讨论:
本发明结果首次表明使用不同透明质酸酶(重组人透明质酸酶PH20、重组人可溶性透明质酸酶PH20-IgG2Fc、提取牛透明质酸酶PH20和重组水蛭透明质酸酶)足量或轻度过量充分酶解高分子透明质酸原料制造的透明质酸片段分子量大小明显不同(表2,图2,3,4),提示使用不同透明质酸酶足量或轻度过量充分酶解高分子透明质酸原料制造的透明质酸片段分子量大小和功能都不同。以上发现进一步提示人体内多种透明质酸酶(包括分子立体结构、分子量和氨基酸数量和品种都不完全一样PH20或Hyal-5或SPAM1、Hyal-1、Hyal-2、Hyal-3和Hyal-4)酶解切割制造的透明质酸片段分子量大小和生物效应也不完全一样。
图2,3,4的研究结果还首次表明透明质酸酶足量或轻度过量充分酶解高分子透明质酸原料的时间长短与制造的透明质酸片段分子量大小关系不密切,10-20分钟短时间充分酶解高分子透明质酸原料制造的透明质酸片段的分子量和1-6小时长时间充分酶解高分子透明质酸原料制造的透明质酸片段的分子量基本一致(凝胶电泳测定结果)。这个发现表明使用重组人透明质酸酶PH20足量或轻度过量充分酶解高分子透明质酸原料可以稳定制造平均分子量35kDa或接近的透明质酸片段(图5,表3,4,5)。
表1的研究结果首次表明人透明质酸酶PH20 10分钟、20分钟、40分钟和1小时足量或轻度过量酶解高分子透明质酸原料制造的平均分子量35kDa透明质酸片段溶液不能在无明显阻力的情况下全部完成0.22mμ滤膜过滤,提示所制造的透明质酸片段溶液有较大分子量不能通过220nm孔径组织间隙的透明质酸片段存在。表1的研究结果还首次表明人透明质酸酶PH20 2小时、3小时、4小时、5小时和6小时足量或轻度过量充分酶解高分子透明质酸原料制造的平均分子量35kDa的透明质酸片段溶液能在无明显阻力的情况下全部完成0.22mμ滤膜过滤,提示所制造的透明质酸片段溶液没有较大分子量不能通过220nm孔径组织间隙的透明质酸片段存在。以上研究结果提示0.22mμ滤膜过滤是一种判断足量或轻度过量人透明质酸酶PH20酶解高分子透明质酸原料制造平均分子量35kDa透明质酸片段是 否充分彻底的检测方法,也是判断所述透明质酸片段能否能用0.22mμ滤膜过滤除菌的检测方法。
在所有已知的透明质酸酶中,透明质酸酶PH20是唯一在中性pH条件下反应的透明质酸酶,其结构特殊,具有两个结合点,既N端透明质酸结合点和C端卵子透明带结合点。换句话说,PH20即是透明质酸也是卵子透明带(或zona pellucida)的结合蛋白。表2的发现提示使用多种不同种属的全长、部分和融合的重组和提取的透明质酸酶酶解切割高分子透明质酸原料制造的透明质酸片段分子立体结构、分子量大小不一和生物效应不完全一样。人和牛透明质酸酶PH20的分子立体结构、分子量和基酸数量类似,其酶解切割高分子透明质酸原料制造的透明质酸片段的受体结合和生物效应也可能一样。例如,不同来源的透明质酸酶足量或轻度过量充分酶解制造的透明质酸片段的分子量大小还与生物活性和受体结合活性有关(Cyphert JM,Trempus CS,Garantziotis S:Size matters:molecular weight specificity of hyaluronan effects in cell biology(Review Article).Int J Cell Biol 2015,2015:1-8.)。
综上所述,重组人透明质酸酶PH20和提取牛透明质酸酶PH20足量或轻度过量充分酶解方定义为:(1)10-20分钟短时间充分酶解中和高分子透明质酸原料制造的透明质酸片段的分子量和1-6小时长时间充分酶解中和高分子透明质酸原料制造的透明质酸片段的凝胶电泳测定分子量基本一致(变异系数CV<15%);(2)>99%中和高分子透明质酸原料被足量或轻度过量充分酶解成可以被0.22um滤膜有效滤过的低分子透明质酸片段产物;(3)透明质酸酶活性经足量或轻度过量充分酶解反应后基本没有或很少残留
(<15%),80度45分钟可以全部灭活。
文献研究表明人初乳提取的透明质酸片段平均分子量35kDa,最大可能由男性性腺睾丸的精子顶体透明质酸酶PH20制造。本发明表明这种由女性乳房制造的平均分子量35kDa的透明质酸片段可以由重组人男性性腺睾丸的精子顶体透明质酸酶PH20和牛睾丸提取的透明质酸酶PH20足量或轻度 过量充分酶解分子量1600kDa的透明质酸原料稳定获得(图2,3)。本发明结果表明在一定的时间范围内使用PH20足量或轻度过量充分酶解分子量1600kDa透明质酸原料均得到上下变动不大的平均分子量35kDa的透明质酸片段(图5;表3)。因此,本发明建立了稳定的重组人透明质酸酶PH20切割平均分子量1600kDa的透明质酸原料制造平均分子量35kDa的透明质酸片段B-HA方法,明确了其制造原理。换句话说,本申请首次报道了使用人和牛透明质酸酶PH20足量或轻度过量充分酶解切割透明质酸原料制造的酶解产物的平均分子量都是上下变动不大的35kDa。
结论:1.人透明质酸酶PH20和牛提取的透明质酸酶PH20 10分钟、20分钟、40分钟、1小时、2小时、3小时、4小时、5小时和6小时足量或轻度过量酶解高分子透明质酸原料的绝终产物透明质酸片段的电泳凝胶测定的分子量均为35kDa上下(35±8KDa);2.使用人透明质酸酶PH20酶解切割平均分子量1600kDa的高分子透明质酸原料2小时、3小时、4小时和5小时稳定制造的分子量基本相同的35kDa透明质酸片段,表现为可以全部通过0.22mμ滤膜过滤;3.使用0.22mμ滤膜过滤稳定制造的35kDa透明质酸片段验证和保证了其组织通透性;4.使用多种不同种属的全长、部分和融合的重组和提取的透明质酸酶酶解切割高分子透明质酸原料制造分子量大小不一,其生物效应也可能不一样。
实施例2
目的:研究平均分子量35kDa的透明质酸片段(以下称B-HA或HA35)125-I和99mTc标记后小鼠皮下和静脉注射体内快速吸收的途径,并进一步使用活体分子成像技术和人新鲜提取的人中性粒细胞和单个核细胞(主要为淋巴细胞和少量单核细胞)研究其新的治疗作用和新作用机制。
实验试剂、设备、人和动物血细胞样本和实验动物:
1、实验试剂:注射级平均分子量1600kDa透明质酸原料、普通平均分子量300kDa透明质酸原料和平均分子量24kDa透明质酸片段购自华熙 福瑞达生物医药有限公司,平均分子量60kDa透明质酸片段购自丽阳生物科技有限公司,胎牛血清(FBS)购自浙江天杭生物科技股份有限公司,青链霉素(Penicillin-Streptomycin Solution)购自Hyclone公司(美国),anti-CD44 antibody、rabbit IgG购自Abcam公司(英国),Cy5.5荧光染料、脂多糖(LPS)、琼脂糖(Agarose)、佛波酯(PMA)、趋化因子(fMLP)购自北京索莱宝科技有限公司,RPMI-1640培养基、PBS缓冲液购自Sigma-Aldrich公司(美国),人中性粒细胞分离试剂盒购自天津灏洋生物制品科技有限公司,TNF-α ElisaKit购自R&DSystems公司(美国),Human HAase Elisa Kit购自上海酶联生物科技有限公司,SDS-PAGE凝胶制备试剂盒购自康为世纪生物公司。
2、实验仪器:酶解反应器(杭州安普生物工程有限公司)、渗透压摩尔浓度测定仪(天河医疗仪器有限公司)、激流式动物细胞反应器由绍兴惠荟生物科技有限公司提供,重组人透明质酸酶PH20纯化用QFF层析柱、Phenyl HP疏水层析柱、CHT I型陶瓷羟基磷灰石层析柱、SP HP阳离子交换层析柱由军事医学科学院生物工程研究所提供,流式细胞仪(BD Bioscience公司,美国)由青岛农业大学中心实验室提供,倒置显微镜购自南京江南永新光学有限公司,十八角度激光散射仪购自Wyatt Technology公司(美国),示差检测器购自Wyatt Technology公司(美国),黑背景2016型显微镜购自哈尔滨康邦黑背景光学仪器有限公司。
3、人血细胞样本:健康志愿者共12人,年龄24±4岁,静脉采血经长春嘉和外科医院医学伦理委员会批准和本人同意。
4、动物红细胞样本:比格犬、BALB/c小鼠、内蒙古山羊和内蒙古黄牛的静脉血由青岛农业大学动物医院提供.动物静脉采血经青岛农业大学动物伦理委员会批准。
5、实验动物:实验用C57BL/6J小鼠、比格犬分别由Arizona State University和青岛农业大学动物医院提供.动物实验方法分别经Arizona State University和青岛农业大学动物伦理委员会批准。
方法:
1、透明质酸片段B-HA的99mTc和125-I标记以及和组织分布和分子成像研究
(1)透明质酸片段B-HA的99mTc标记和组织分布研究:使用SnCl2把Tc(V)还原成[TcOCl4]-,并与B-HA的羧基结合,形成99mTc标记的B-HA稳定化合物(以下称99mTc-B-HA)。经SEC-HPLC纯化分析后,获得纯度大于98%的注射用99mTc-B-HA。通过预置导管,年龄6-8周的健康C57BL/6J小鼠(The Jackson Laboratory,USA)给与静脉注射纯化的99mTc-B-HA。应用亚利桑那大学研发的新型iQID伽马相机,动态采集三小时99mTc-B-HA全身组织分布影像。iQID影像采集结束后,收集小鼠血和组织器官样本进行放射性含量测定。小鼠组织器官的99mTc-B-HA分布表达为总注射剂量的百分含量(%ID/g)。
(2)透明质酸片段B-HA的125-I标记和分子成像研究:本研究使用Iodogen方法共价连接125I和35kDa透明质酸片段B-HA,制造的125I-B-HA经分子筛柱纯化和PBS洗脱后备用。每只C57BL/6J小鼠在下肢末端皮下注射20-25μCi的125I-B-HA,通过小动物PET-CT每5、10、30、140分钟采集一次平面图像,每次采集5分钟gama放射性计数。
2、较高浓度透明质酸片段B-HA对淋巴液中的人中性粒和单个核细胞移走的作用
(1)较高浓度透明质酸片段B-HA对人新鲜提取的单个核细胞(主要为淋巴细胞和少量巨噬细胞前体单核细胞)移走的作用:使用新鲜提取的人单个核细胞,用1×RPMI-1640培养基重悬,调整细胞密度至3×108个/mL。将0.8%琼脂糖灭菌溶液置37℃水浴,取等量琼脂糖溶液与含20%FBS和1%青链霉素的2×RPMI-1640培养基混合,分别取等量上述混合液与单个核细胞悬液混合,置37℃水浴。取-20℃预冷的96孔板,各孔加入2μL单个核细胞琼脂糖混合液,要求在孔底中心形成直径约为2mm的胶滴。将铺好胶滴的96孔板放置4℃,15分钟。配制含10%FBS、1μg/mL Anti-CD44  antibody+10%FBS、300μg/mL B-HA+10%FBS、300μg/mL HA+10%FBS、300μg/mL B-HA+300μg/mL HA+10%FBS、1ng/mL LPS+10%FBS、1nmol/L fMLP+10%FBS的RPMI-1640培养基,待孔内琼脂糖胶滴凝固后,将100μL上述试剂分别加入各孔,每组4个平行。将96孔板置37℃恒温培养箱培养3小时后取出,置倒置显微镜下观察迁移结果并拍照记录,运用图像处理软件Image j计算细胞迁移的面积。每次采集3个不同志愿者的静脉血排除个体差异和确保实验可重复。
(2)较高浓度透明质酸片段B-HA对LPS诱导的人单个核细胞(主要为淋巴细胞和少量巨噬细胞前体单核细胞)移走的作用:使用新鲜提取的人单个核细胞,用1×RPMI-1640培养基重悬,调整细胞密度至3×108个/mL。将0.8%琼脂糖灭菌溶液置37℃水浴,取等量琼脂糖溶液与含20%FBS和1%青链霉素的2×RPMI-1640培养基混合,分别取等量上述混合液与单个核细胞悬液混合,置37℃水浴。取-20℃预冷的96孔板,各孔加入2μL单个核细胞琼脂糖混合液,要求在孔底中心形成直径约为2mm的胶滴。将铺好胶滴的96孔板放置4℃,15分钟。配制含10%FBS、300μg/mL B-HA+1ng/mL LPS+10%FBS、300μg/mL HA+1ng/mL LPS+10%FBS、300μg/mL B-HA+300μg/mL HA+1ng/mL LPS+10%FBS、1ng/mL LPS+10%FBS、1nmol/L fMLP+10%FBS的RPMI-1640培养基,待孔内琼脂糖胶滴凝固后,将100μL上述试剂分别加入各孔,每组4个平行。将96孔板置37℃恒温培养箱培养3小时后取出,置倒置显微镜下观察迁移结果并拍照记录,运用图像处理软件Image j计算细胞迁移的面积。每次采集3个不同志愿者的静脉血排除个体差异和确保实验可重复。
(3)较高浓度透明质酸片段B-HA对人新鲜提取的中性粒细胞移走的作用:按照人静脉血中性粒细胞分离试剂盒说明获得中性粒和单个核细胞,人中性粒细胞用1×RPMI-1640培养基重悬,调整细胞密度至3×10-8个/mL。将0.8%琼脂糖灭菌溶液置37℃水浴,取等量琼脂糖溶液与含20%FBS和1%青链霉素的2×RPMI-1640培养基混合,分别取等量上述混合液与中性粒细胞悬液混合,置37℃水浴。取-20℃预冷的96孔板,各孔加入2μL中性粒细胞琼脂糖混合液,要求在孔底中心形成直径约为2mm的胶滴。将铺好胶滴的96孔板放置4℃,15分钟.配制含10%FBS、1μg/mL Anti-CD44antibody+10%FBS、300μg/mL B-HA+10%FBS、300μg/mL HA+10%FBS、300μg/mL B-HA+300μg/mL HA+10%FBS、1ng/mL LPS+10%FBS、1nmol/L fMLP+10%FBS的RPMI-1640培养基,待孔内琼脂糖胶滴凝固后,将100μL上述试剂分别加入各孔,每组4个平行。将96孔板置37℃恒温培养箱培养3小时后取出,置倒置显微镜下观察迁移结果并拍照记录,运用图像处理软件Imagej计算细胞迁移的面积。每次采集3个不同志愿者的静脉血排除个体差异和确保实验可重复。
(4)较高浓度透明质酸片段B-HA对LPS诱导的人中性粒细胞移走的作用:按照人静脉血中性粒细胞分离试剂盒说明获得中性粒和单个核细胞,人中性粒细胞用1×RPMI-1640培养基重悬,调整细胞密度至3×10-8个/mL.将0.8%琼脂糖灭菌溶液置37℃水浴,取等量琼脂糖溶液与含20%FBS和1%青链霉素的2×RPMI-1640培养基混合,分别取等量上述混合液与中性粒细胞悬液混合,置37℃水浴.取-20℃预冷的96孔板,各孔加入2μL中性粒细胞琼脂糖混合液,要求在孔底中心形成直径约为2mm的胶滴。将铺好胶滴的96孔板放置4℃,15分钟.配制含10%FBS、300μg/mL B-HA+1ng/mL LPS+10%FBS、300μg/mL HA+1ng/mL LPS+10%FBS、300μg/mL B-HA+300μg/mL HA+1ng/mL LPS+10%FBS、1ng/mL LPS+10%FBS、1nmol/L fMLP+10%FBS的RPMI-1640培养基,待孔内琼脂糖胶滴凝固后,将 100μl上述试剂分别加入各孔,每组4个平行。将96孔板置37℃恒温培养箱培养3小时后取出,置倒置显微镜下观察迁移结果并拍照记录,运用图像处理软件Image j计算细胞迁移的面积。每次采集3个不同志愿者的静脉血排除个体差异和确保实验可重复。
3、比格犬静脉注射透明质酸片段B-HA的安全性研究
30只健康比格犬分别静脉注射pH 6.5-7.5的无菌透明质酸片段B-HA注射液20mg/mL(内毒素<0.1EU/mL),7天后重复一次实验,观察注射时和注射后比格犬是否安静、是否有疼痛相关躲避挣扎和嚎叫、是否有注射后疲惫、发抖、抽搐、倒地不起、死亡.
4、统计学分析
数据以Mean±SD表示,用统计学软件Graph prism 6.0进行数据统计分析.使用成组t检验比较结果,p>0.05(ns)被认为没有统计学意义,p<0.05(*)被认为具有统计学意义,p<0.01(**)或p<0.001(***)被认为具有高度统计学意义。
结果:
1、透明质酸片段B-HA的99mTc和125-I标记以及和组织分布和分子成像研究
(1)透明质酸片段B-HA的99mTc标记和组织分布研究
99mTc-B-HA静脉注射后小鼠全身组织分布的iQID动态影像学如图6所示,在主要脏器组织的定量分布如表6所示。结果显示,99mTc-B-HA静脉注射5分钟后快速分布到脾脏、肝脏,其次分布在肺脏。部分99mTc-B-HA通过肾脏排除,分布到膀胱。动态显像证明,99mTc-B-HA在血液中被快速清除,血液半衰期约5分钟。3小时后,仅低于20%的初始99mTc-B-HA存留在循环血液中。相对于其它组织,99mTc-B-HA的血液浓度低,表明99mTc-B-HA组织吸收非常快。
表6. 99mTc-B-HA静脉注射后在主要脏器组织的定量分布表
Figure PCTCN2021093207-appb-000007
(2)透明质酸片段B-HA的125-I标记和分子成像研究
125I-B-HA经C57BL/6J小鼠下肢末端皮下注射5分钟内进入淋巴结和淋巴器官脾脏。这个结果惊奇地表明B-HA皮下和静脉注射后和淋巴系统有特殊的亲和力,提示其携带水分与人单个核细胞一起从炎症组织进入淋巴回流的作用。这个B-HA对淋巴回流的作用对淋巴细胞及其相关免疫调节的正常化有一定作用。
讨论:
本申请首次发现99mTc-B-HA皮下和静脉注射5分钟后已经分布到淋巴结和淋巴器官脾脏(图6,7;表6),提示99mTc-B-HA静脉注射后通过透明质酸受体LYVE-1在淋巴结和淋巴器官脾脏快速吸收[1,2,3,8,9,48,58,59]。本研究未发表的研究结果也支持相关文献表明的透明质酸和透明质酸片段皮下注射后快速经淋巴系统吸收和产生炎症区组织液吸收和转运的作用[48,58,59].
结论:
(1)本研究未发表的研究结果也支持相关文献表明的透明质酸和透明质酸片段皮下注射后特别快速经淋巴系统吸收和产生炎症区组织液吸收和转运的作用;(2)本文结果表明标记的B-HA皮下和静脉注射后特别快速进入淋巴结和淋巴器官脾脏,提示其参与淋巴和单核细胞免疫调节功能。
2、较高浓度透明质酸片段B-HA对淋巴液中的人中性粒和单个核细胞(主要为人淋巴细胞和少量人单核细胞)移走的作用
(1)较高浓度透明质酸片段B-HA对人新鲜提取的单个核细胞移走的作用
本研究使用新鲜提取单个核细胞(主要为淋巴细胞和少量巨噬细胞前体单核细胞),图8结果表明较高浓度(300μg/mL)的35kDa透明质酸B-HA和1600kDa透明质酸HA促进新鲜提取单个核细胞(主要为淋巴细胞和少量巨噬细胞前体单核细胞)移走,B-HA(300μg/mL)混合HA(300μg/mL)进一步促进新鲜提取单个核细胞移走,抗CD44抗体、LPS和fMLP均促进新鲜提取单个核细胞移走(图8),表明方法可靠。本结果提示B-HA注射进入已有高浓度透明质酸HA的淋巴系统进一步促进了单个核细胞(主要为淋巴细胞和少量巨噬细胞前体单核细胞)移走和返回血液循环。
(2)较高浓度透明质酸片段B-HA对LPS诱导的人单个核细胞移走的作用
本研究使用新鲜提取单个核细胞(主要为淋巴细胞和少量巨噬细胞前体单核细胞),LPS和fMLP都促进人新鲜提取的单个核细胞的移走(图9),表明本研究方法可靠。结果表明较高浓度(300μg/mL)35kDa透明质酸片段B-HA没有明显影响LPS(1ng/mL)引发的人新鲜提取的单个核细胞的移走,较高浓度(300μg/mL)1600kDa透明质酸HA明显促进LPS(1ng/mL)引发的人新鲜提取的单个核细胞的移走,较高浓度(300μg/mL)B-HA混合较高浓度(300μg/mL)HA明显抑制了LPS促进的人新鲜提取的单个核细胞的移走(图9)。
(3)较高浓度透明质酸片段B-HA对人新鲜提取的中性粒细胞移走的作用
本研究结果表明较高浓度(300μg/mL)1600kDa透明质酸HA和35kDa透明质酸片段B-HA正常情况下(即在没有内毒素LPS的情况下)对人新鲜提取的中性粒细胞的移走有抑制作用且作用程度基本相同(图10),提示HA和 B-HA对中性粒细胞的透明质酸受体CD44有相同的亲和力和生物效应。使用抗人CD44抗体促进人新鲜提取的中性粒细胞移走(图10)。本结果结合地塞米松抑制中性粒细胞移走的结果(未发表资料),提示人体局部(特别是透明质酸含量较高的神经组织和淋巴组织)使用较高浓度透明质酸片段B-HA注射抑制中性粒细胞移走,有抗炎作用。
(4)较高浓度透明质酸片段B-HA对LPS诱导的人中性粒细胞移走的作用
本研究结果表明较高浓度(300μg/mL)35kDa透明质酸片段B-HA、1600kDa透明质酸HA和B-HA混合HA明显抑制了内毒素LPS(1ng/mL)引发的人新鲜提取的中性粒细胞的移走(图11),提示HA和B-HA对中性粒细胞的透明质酸受体CD44和Siglec-9有相相似的亲和力和生物效应。LPS和fMLP促进人新鲜提取的中性粒细胞的移走,证明本方法的可靠性。
综上所述,以上本研究结果图8,9结合图10,11表明在有和无LPS存在的情况下较高浓度(300μg/mL)B-HA和HA对人新鲜提取的单个核细胞移走和中性粒细胞移走的作用均不一样或相反。
讨论:
透明质酸和透明质酸片段含量在胸部淋巴结和胸腺乳糜管处比血清中(0.01-0.1μg/g组织)至少高85-180倍[1],提示较高浓度透明质酸和透明质酸片段被淋巴系统浓缩,并在淋巴系统产生作用。相关文献提示一个成人每天有10-100mg透明质酸和透明质酸片段通过淋巴系统进入血液[1-3,7,46-47]。本文结果图8,9,10,11表明在有和无内毒素LPS存在的情况下较高浓度(300μg/mL)透明质酸片段B-HA和透明质酸HA对人新鲜提取的单个核细胞移走和中性粒细胞移走的作用完全不一样。本文首次发现较高浓度(300μg/mL)的透明质酸片段B-HA促进了单个核细胞(主要为淋巴细胞和少量巨噬细胞前体单核细胞)移走(homing),即在淋巴管内 返回血液循环(图8,9)[4,5,6,9,10,48]。本文还不清楚透明质酸片段B-HA以上这些作用是通过透明质酸受体LYVE-1单独还是和CD44共同介导[1,4,5,8,48]。B-HA和HA一样具有携带水的功能,促进淋巴细胞回流的同时促进炎症组织内细胞外液再吸收。相关文献支持临床上表现为红肿热痛的皮肤粘膜炎症通过淋巴回流的作用消失[1,4,5,6,8,9,10,14-19,48].本文发现较高浓度(300μg/mL)的透明质酸片段B-HA、透明质酸HA和B-HA混合HA在有和无内毒素LPS存在的情况下均抑制人中性粒细胞的移走(图10,11)。本研究未发表结果使用地塞米松也有抑制中性粒细胞移走的作用.本文作者之前在地方杂志和专利申请中报道过含有高浓度1-2%(10-20mg/mL)的透明质酸片段B-HA的商业化产品有治疗局部人皮肤和人口咽粘膜炎症性红肿热痛的作用[14-19]。因此,以上结果支持皮肤粘膜外用较高浓度的透明质酸片段B-HA有治疗皮肤粘膜炎症性红肿热痛的作用以及进一步支持在透明质酸浓度较高的淋巴系统内很少发现有中性粒细胞进入这个生理现象(图10,11)。另外,相关文献表明透明质酸和透明质酸片段含量在中枢神经组织比血清中(0.01-0.1μg/g组织)至少高330-1150倍,提示较高浓度35kDa透明质酸片段B-HA在脑组织也有作用[1]。
渗透性好的透明质酸片段B-HA注射后与人体多种细胞受体相互作用,包括LYVE-1(巨噬细胞、DC细胞、T细胞、B细胞)、CD44(红细胞、白细胞和骨髓细胞)、RHAMM(白细胞、小胶质细胞、内皮细胞和肌肉细胞)、Siglec-9(中性粒细胞、单核细胞、DC细胞)、TLR2(巨噬细胞、DC细胞、T细胞、B细胞、单核细胞、小胶质细胞)和HARE(肝脏、淋巴结和脾脏的窦内皮细胞)、CEMIP(成纤维细胞、上皮细胞和多种肿瘤细胞)和TMEM2(多种肿瘤细胞),参与体内多种功能的调节[1,4-6,8-30],也在不老神兽裸鼹鼠体内发挥重要功能[31-37]。本文研究结果和相关文献都表明透明质酸片段B-HA注射液对人体的临床作用只能是在不同细胞和不同组织器官与多种受体结合的综合结果,支持进一步大剂量动物实验或直接人体综合临床作用研究。
结论:
1、本文研究结果(图8,9,10,11)表明在有和无LPS存在的情况下较高浓度(300μg/mL)B-HA和HA对人新鲜提取的单个核细胞移走和中性粒细胞移走的作用均不一样或相反;2、本文结果表明较高浓度(300μg/mL)的35kDa的透明质酸片段B-HA促进了新鲜提取的人单个核细胞(以淋巴细胞为主和少量人单核细胞)移走,提示透明质酸片段B-HA和其所携带的水分与人单个核细胞一起从炎症组织进入淋巴系统回流;3、本文结果还进一步表明较高浓度透明质酸片段B-HA在有和没有内毒素LPS存在的情况下均明显抑制中性粒细胞的移走,提示局部组织使用较高浓度透明质酸片段B-HA有抗炎作用;4、本文研究结果和文献研究提示35kDa的透明质酸片段B-HA注射液对人体的临床作用只能是在不同细胞和不同组织器官与多种受体结合的综合结果,支持透明质酸片段B-HA注射液进一步的人体综合临床作用研究。
3.比格犬静脉注射透明质酸片段B-HA的安全性研究
30只比格犬每次静脉注射pH 6.5-7.5的无菌B-HA注射液20mg/mL(内毒素<0.1EU/mL),没有观察到注射局部疼痛和血管堵塞以及过敏反应引发的体症。
表7 比格犬静脉注射透明质酸片段B-HA的安全性研究
Figure PCTCN2021093207-appb-000008
讨论:
比格犬每次注射B-HA注射液100mg,平均体重15公斤的比格犬约有血液1000毫升,血中B-HA浓度最高达l00μg/mL,虽然大于0.15%(1500μg/mL)和大于0.08%(800μg/mL)的高浓度透明质酸片段B-HA均引发明显的红细胞聚集和血沉升高,但实验过程中比格犬没有注射局部疼痛和血管 堵塞以及过敏反应引发的比格犬挣扎、躲闪和死亡(表7)。本文的透明质酸片段B-HA注射液设计平均体重70公斤的人每次100mg皮下深层脂肪或患病疼痛处注射.平均体重70公斤的人约有血液7升,假设透明质酸片段B-HA注射液100mg皮下深层脂肪注射在7升血液中马上全部吸收,血液中透明质酸片段B-HA浓度最高达14.2μg/mL(0.0014%),不足以引发明显人红细胞聚集和血沉升高。因此,透明质酸片段B-HA注射使用安全.
结论:
本文结果表明比格犬静脉注射平均分子量35kDa透明质酸片段B-HA注射液安全性良好。
实施例3
目的:使用商品化的牛提取透明质酸酶PH20注射液和高分子透明质酸注射液短时间制造平均分子量为35.4kDa的B-HA或HA35治疗蚊虫叮咬造成的局部大面积红肿硬痛的高敏炎症反应。
方法:
蚊虫(蚊子或大黄蜂)叮咬的高敏反应(有快速产生的叮咬局部大面积红肿硬痛)病人12例。说明书外使用以下37度20分钟混合两种注射液患处注射,然后观察治疗后叮咬局部大面积红肿硬痛的变化情况。
注射前将提取牛睾丸透明质酸酶PH20(1500u/支,H31022111,上海第一生化制药厂)和平均分子量1600kDa的玻璃酸钠(透明质酸)注射液(商品名施沛特)(20mg/2ml)按透明质酸酶20000U/g透明质酸比例混合,37度20分钟,足量或轻度过量充分酶解制造平均分子量为35.4kDa的B-HA或HA35(参考实施例1图3)。经皮试后使用所制造的平均分子量为35.4kDa的B-HA或HA35在蚊虫或蜂叮咬红肿硬处注射。注:以上实施例1图3制造的混合液留样使用凝胶电泳和18角度激光测定其平均分子量为35.4kDa。
结果:
使用商品化的透明质酸酶PH20注射液和高分子透明质酸注射液短时间制造平均分子量为35.4kDa的B-HA或HA35患处局部注射快速治疗蚊虫叮咬造成的局部大面积红肿硬痛的高敏炎症反应。
表8.使用商品化的透明质酸酶PH20注射液和高分子透明质酸注射液短时间制造平均分子量为35.4kDa的透明质酸片段B-HA或HA35患处局部注射快速治疗蚊虫叮咬造成的局部大面积红肿硬痛的高敏炎症反应的情况。
Figure PCTCN2021093207-appb-000009
讨论:
这个快速治疗作用可能与透明质酸片段B-HA促进炎症性水肿淋巴液和淋巴细胞回流和局部抗炎的作用有关。
结论:
商品化的牛睾丸提取的透明质酸酶PH20注射液直接混合商品化的高分子透明质酸注射液制造透明质酸片段快速治疗蚊虫(蚊子或大黄蜂)叮咬造成的局部大面积红肿硬痛的高敏炎症反应的方法和制造药物中的应用。
参考文献:
1 Jackson D G.Hyaluronan in the lymphatics:The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking.Matrix Biol,2019,78-79:219-235.
2 McDonald B,Kubes P.Interactions between CD44and Hyaluronan in Leukocyte Trafficking.Front Immunol,2015,6:68.
3 Jackson D G.Leucocyte Trafficking via the Lymphatic Vasculature-Mechanisms and Consequences.Front Immunol,2019,10:471.
4 Fraser J R E,Laurent T C,Laurent U B G.Hyaluronan:its nature,distribution,functions and turnover.Journal Internal Medicine,1997,242(1):27-33.
5 Lena,Lebel.Clearance of hyaluronan from the circulation.Advanced Drug Delivery Reviews,1991,7:221-235.
6 Laurent U B G,Reed R K.Turnover of hyaluronan in the tissues.Advanced Drug Delivery Reviews,1991,7(2):237-256.
7 Laurent U B G,Laurent T C.On the origin of hyaluronan in blood.Biochemistry International,1981,2(2):195-199.
8 Tengblad A,Laurent U B G,Lilja K,et al.Concentration and relative molecular mass of hyaluronate in lymph and blood.Biochemical Journal,1986,236(2):521-525.
9 Fraser J R,Kimpton W G,Laurent T C,et al.Uptake and degradation of hyaluronan in lymphatic tissue.Biochemical Journal,1988,256(1):153.
10 Reed R K,Laurent U B,Fraser J R,et al.Removal rate of[3H]hyaluronan injected subcutaneously in rabbits.American Journal of Physiology Heart&Circulatory Physiology,1990,259(2):H532-H535.
11 Ji R R,Chamessian A,Zhang Y Q.Pain regulation by non-neuronal cells and inflammation.Science,2016,354(6312):572-577.
12 Chen G,Zhang Y Q,Qadri Y J,et al.Microglia in Pain:Detrimental and Protective Roles in Pathogenesis and Resolution of Pain.Neuron,2018,100(6):1292-1311.
13 Haight E S,Forman T E,Cordonnier S A,et al.Microglial Modulation as a Target for Chronic Pain:From the Bench to the Bedside and Back.Anesth Analg,2019,128(4):737-746.
14 Wang M J,Kuo J S,Lee W W,et al.Translational event mediates differential production of tumor necrosis factor-alpha in hyaluronan-stimulated microglia and macrophages.J Neurochem,2006,97(3):857-71.
15 Austin J W,Gilchrist C,Fehlings M G.High molecular weight hyaluronan  reduces lipopolysaccharide mediated microglial activation.J Neurochem,2012,122(2):344-55.
16 Jensen G,Holloway J L,Stabenfeldt S E.Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine.Cells,2020,9(9):2113.
17 Shen M Q,Liu X,Wei C,et al.Clinical study of 35kDa hyaluronan fragment B-HA on laser-induced inflammatory skin wound.Progress in Modern Biomedicine,2015,15(7):1300-1304.
18 Hui M Z.Expert opinion:clinical effect of inflammation control by frozen cold pack,ozonated water and hyaluronan fragment on wound healing.E-Journal of General Surgery,2015,3(4):8-11.
19 Zhao H D,Hui M Z.Preliminary study of 35kDa hyaluronan fragment B-HA on chronic pharyngitis.Clinical Journal of Medical Officers,2014,42(8):864-867.
20 Zhao H D,Hui M Z.Preliminary study of 35kDa hyaluronan fragment B-HA on laryngopharyngeal reflux disease.E-Journal of Clinical Medical Literature,2016,3(24):4898-4899.
21 Zhang H W,Wei W R,Cheng X F,et al.Clinical study of 35kDa hyaluronan fragment B-HA tooth brush gel on gingivitis.E-Journal of Clinical Medical Literature,2015,2(23):4808-4809.
22 Huang P F,Feng P,Shuang B,et al.Clinical study of 35kDa hyaluronan fragment B-HA tooth brush gel on puberty gingivitis.Medical Journal of Air Force,2020,36(1):71-74.
23 Chanmee T,Ontong P,Itano N.Hyaluronan:A modulator of the tumor microenvironment.Cancer Lett,2016,375(1):20-30.
24 Turley E A,Wood D K,McCarthy J B.Carcinoma Cell Hyaluronan as a"Portable"Cancerized Prometastatic Microenvironment.Cancer Res,2016,76(9):2507-12.
25 Kuang D M,Wu Y,Chen N,et al.Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes.Blood,2007,110(2):587-95.
26 Zhang G,Guo L,Yang C,et al.A novel role of breast cancer-derived  hyaluronan on inducement of M2-like tumor-associated macrophages formation.Oncoimmunology,2016,5(6):e1172154.
27 Kobayashi N,Miyoshi S,Mikami T,et al.Hyaluronan deficiency in tumor stroma impairs macrophage traffickingand tumor neovascularization.Cancer Res,2010,70(18):7073-83.
28 Lim H Y,Lim S Y,Tan C K,et al.Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen.Immunity,2018,49(2):326-341.
29 Wang N,Liu C,Wang X,et al.Hyaluronic Acid Oligosaccharides Improve Myocardial Function Reconstruction and Angiogenesis against Myocardial Infarction by Regulation of Macrophages.Theranostics,2019,9(7):1980-1992.
30 Kerfoot S M,McRae K,Lam F,et al.A novel mechanism of erythrocyte capture from circulation in humans.Exp Hematol,2008,36(2):111-8.
31 Secundino I,Lizcano A,Roup é K M,et al.Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation.J Mol Med(Berl),2016,94(2):219-33.
32 Lizcano A,Secundino I,
Figure PCTCN2021093207-appb-000010
S,et al.Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation.Blood,2017,129(23):3100-3110.
33 Kiser Z M,Lizcano A,Nguyen J,et al.Decreased erythrocyte binding of Siglec-9 increases neutrophil activation in sickle cell disease.Blood Cells Mol Dis,2020,81:102399.
34 Smith E S,
Figure PCTCN2021093207-appb-000011
D,Lechner S G,et al.The molecular basis of acid insensitivity in the African naked mole-rat.Science,2011,334(6062):1557-60.
35 Kulaberoglu Y,Bhushan B,Hadi F,et al.The material properties of naked mole-rat hyaluronan.Sci Rep,2019,9(1):6632.
36 Seluanov A,Gladyshev V N,Vijg J,et al.Mechanisms of cancer resistance in long-lived mammals.Nat Rev Cancer,2018,18(7):433-441.
37 Tian X,Azpurua J,Hine C,et al.High-molecular-mass hyaluronan mediates  the cancer resistance of the naked mole rat.Nature,2013,499(7458):346-9.
38 Takasugi M,Firsanov D,Tombline G,et al.Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties.Nat Commun,2020,11(1):2376.
39 Cowman M K,Lee H G,Schwertfeger K L,et al.The Content and Size of Hyaluronan in Biological Fluids and Tissues.Front Immunol,2015,6:261.
40 Kobayashi T,Chanmee T,Itano N.Hyaluronan:Metabolism and Function.Biomolecules,2020,10(11):1525.
41 Chowdhury B,Hemming R,Hombach-Klonisch S,et al.Murine hyaluronidase 2 deficiency results in extracellular hyaluronan accumulation and severe cardiopulmonary dysfunction.J Biol Chem,2013,288(1):520-8.
42 Chowdhury B,Xiang B,Muggenthaler M,et al.Hyaluronidase 2 deficiency is a molecular cause of cor triatriatum sinister in mice.Int J Cardiol,2016,209:281-3.
43 Chowdhury B,Xiang B,Liu M,et al.Hyaluronidase 2 Deficiency Causes Increased Mesenchymal Cells,Congenital Heart Defects,and Heart Failure.Circ Cardiovasc Genet,2017,10(1):e001598.
44 Matsumoto K,Li Y,Jakuba C,et al.Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth,patterning,chondrocyte maturation and joint formation in the developing limb.Development,2009,136(16):2825-35.
45 Huang Y,Askew E B,Knudson C B,et al.CRISPR/Cas9 knockout of HAS2 in rat chondrosarcoma chondrocytes demonstrates the requirement of hyaluronan for aggrecan retention.Matrix Biol,2016,56:74-94.
46 Shimoda M,Yoshida H,Mizuno S,et al.Hyaluronan-Binding Protein Involved in Hyaluronan Depolymerization Controls Endochondral Ossification through Hyaluronan Metabolism.Am J Pathol,2017,187(5):1162-1176.
47 Homann S,Grandoch M,Kiene L S,et al.Hyaluronan synthase 3 promotes plaque inflammation and atheroprogression.Matrix Biol,2018,66:67-80.
48 Bahrami S B,Tolg C,Peart T,et al.Receptor for hyaluronan mediated motility(RHAMM/HMMR)is a novel target for promoting subcutaneous  adipogenesis.Integr Biol(Camb),2017,9(3):223-237.
49 Rishton G,HUI M Z.A“GC-rich”method for mammalian gene expression:A dominant role of non-coding DNA GC content in the regulation of mammalian gene expression.Science China(Life Sciences),2010,53(01):94-100.
50 Hunnicutt G R,Primakoff P,Myles D G.Sperm surface protein PH-20 is bifunctional:one activity is a hyaluronidase and a second,distinct activity is required in secondary sperm-zona binding,Biology of Reproduction,1996,55:80-86.
51 Locke K W,Maneval D C,LaBarre M J.
Figure PCTCN2021093207-appb-000012
drug delivery technology:a novel approach to subcutaneous administration using recombinant human hyaluronidase PH20.Drug Deliv,2019,26(1):98-106.
52 Beech D J,Madan A K,Deng N.Expression of PH-20 in Normal and Neoplastic Breast Tissue.Journal of Surgical Research,2002,103:203–207.
53 David R Hill,Sean P Kessler,Hyunjin K Rho,et al.Specific-sized hyaluronan fragments promote expression of human beta-defensin 2 in intestinal epithelium.The Journal of Biological Chemistry,2013,287(36):30610-30624.
54 Hil D Rl,Rho H K,Kessler S P,et al.Human milk hyaluronan enhances innate defense of the intestinal epithelium.The Journal of Biological Chemistry,2013,288(40):29090-2914.
55 Kessler S P,Obery D R,Nickerson K P,et al.Multifunctional role of 35 kilodalton hyaluronan in promoting defense of the intestinal epithelium.Journal of Histochemistry&Cytochemistry,2018,66(4):273-287.
56 Kim Y,Kessler S P,OberyD R,et al.Hyaluronan 35kDa treatment protects mice from citrobacter rodentium in fection and induces epithelial tight junctional protein ZO-1 in vivo.Matrix Biology,2017,62:28-39.
57 Gunasekaran A,Eckert J,Burge K,et al.Hyaluronan 35kDa enhances epithelial barrier function and protects against the development of murine necrotizing enterocolitis.Pediatric Research,2019,87(7):1177-1184.
58 Laznicek M,Laznickova A,Cozikova D,Velebny V:Preclinical pharmacokinetics of radiolabelled hyaluronan.Pharmacol Rep2012, 64(2):428-437.
59 Huang C,Chen F,Zhang L,Yang Y,Yang X,Pan W:(99m)Tc Radiolabeled HA/TPGS-Based Curcumin-Loaded Nanoparticle for Breast Cancer Synergistic Theranostics:Design,in vitro and in vivo Evaluation.Int J Nanomedicine 2020,15:2987-2998.
60 Luquita A,Urli L,Svetaz M J,et al.In vitro and ex vivo effect of hyaluronic acid on erythrocyte flow properties.J Biomed Sci,2010,17(1):8.
61 Melder R J,Yuan J,Munn L L,et al.Erythrocytes enhance lymphocyte rolling and arrest in vivo.Microvasc Res,2000,59(2):316-22.
62 Ke Z H.Stem Cell Maintenance in Naked Mole Rats and other Longevity Mechanisms in Rodents”.PhD Thesis,University of Rochester Rochester,2018.
63 
Figure PCTCN2021093207-appb-000013
L,Mendichi R,KoganG,et al.Degradative Action of Reactive Oxygen Species on Hyaluronan.Biomacromolecules,2006,7(3):659-668.
64 Wright H L,Moots R J,Bucknall R C,et al.Neutrophil function in inflammation and inflammatory diseases.Rheumatology(Oxford),2010,49(9):1618-31.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本发明的保护范围内。

Claims (10)

  1. 一种透明质酸片段的新应用,其特征在于,所述透明质酸片段为:使用重组人透明质酸酶PH20或提取牛透明质酸酶PH20,足量或轻度过量充分酶解高或中分子量透明质酸原料制造而成的、能通过0.22μm孔径滤膜的、平均分子量为35±8KDa的透明质酸片段;
    所述应用为:
    所述透明质酸片段作为人单个核细胞移走促进剂的应用;
    和/或,所述透明质酸片段通过皮下或静脉注射作为人淋巴细胞和液体回流和淋巴细胞的免疫调节剂的应用;
    和/或,所述透明质酸片段作为人中性粒细胞移走抑制剂的应用。
  2. 一种透明质酸片段的新应用,其特征在于,所述透明质酸片段为:使用重组人透明质酸酶PH20或提取牛透明质酸酶PH20,足量或轻度过量充分酶解高或中分子量透明质酸原料制造而成的、能通过0.22μm孔径滤膜的、平均分子量为35±8KDa的透明质酸片段;
    所述应用为:
    所述透明质酸片段在制备治疗人单个核细胞移走相关炎症性疾病药物中的应用,或在制备人单个核细胞移走促进剂中的应用;
    和/或,所述透明质酸片段在制备通过皮下或静脉注射的、治疗人淋巴细胞和液体回流相关炎症性疾病药物中的应用,或在制备通过皮下或静脉注射的、人淋巴细胞和液体回流和淋巴细胞的免疫调节剂中的应用;
    和/或,所述透明质酸片段在制备治疗人中性粒细胞移走相关炎症性疾病药物中的应用,或在制备治疗人中性粒细胞移走抑制剂中的应用。
  3. 根据权利要求1或2所述的透明质酸片段的新应用,其特征在于,所述人单个核细胞为淋巴细胞;
    所述透明质酸片段在150-300μg/mL的浓度下抑制人中性粒细胞移走。
  4. 一种透明质酸片段的制造方法,其特征在于,使用重组人透明质酸酶PH20或提取牛透明质酸酶PH20,足量或轻度过量充分酶解高或中分子量透明质酸原料制造平均分子量为35±8KDa的透明质酸片段。
  5. 根据权利要求4所述的透明质酸片段的制造方法,其特征在于,所述片段能通过0.22μm孔径滤膜;所述酶解时间为2-6小时。
  6. 根据权利要求4所述的透明质酸片段的制造方法,其特征在于,使用重组人透明质酸酶PH20或提取牛透明质酸酶PH20注射液混合高或中分子量透明质酸注射液,酶解制造平均分子量为35±8KDa的透明质酸片段注射液。
  7. 根据权利要求4或6所述的透明质酸片段的制造方法,其特征在于,酶解时间为10-20分钟。
  8. 根据权利要求1-3任一项所述的新应用,或权利要求4-7任一项所述的制造方法,其特征在于,所述足量或轻度过量充分酶解为:
    (1)10-20分钟足量或轻度过量充分酶解中和高分子透明质酸原料制造的透明质酸片段的分子量和1-6小时足量或轻度过量充分酶解中和高分子透明质酸原料制造的透明质酸片段的分子量基本一致,变异系数CV<15%;
    (2)>99%高或中分子透明质酸原料被足量或轻度过量充分酶解的低分子透明质酸片段产物被0.22um孔径滤膜全部顺利滤过;
    (3)透明质酸酶活性经足量或轻度过量充分酶解反应后基本没有残留或少量残留,残留量<15%,80度45分钟可全部灭活。
  9. 一种透明质酸片段的制造方法,其特征在于,用于制造分子量大小不一的透明质酸片段,所述方法为:使用不同分子量大小的重组透明质酸酶或提取的透明质酸酶,酶解切割高分子透明质酸原料制造分子量大小不一的透明质酸片段。
  10. 根据权利要求9所述的透明质酸片段的制造方法,其特征在于,所述不同分子量大小的重组透明质酸酶或提取的透明质酸酶为:多种不同种属的全长、部分和融合的重组透明质酸酶或提取的透明质酸酶。
PCT/CN2021/093207 2020-03-12 2021-05-12 一种透明质酸片段的新应用及制造方法 WO2021180252A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010169163.8A CN111249302A (zh) 2020-03-12 2020-03-12 一种透明质酸片段的新应用及稳定制造方法
CN202010169163.8 2020-03-12
CN202110270013.0A CN114848667A (zh) 2020-03-12 2021-03-12 一种透明质酸片段的新应用及制造方法
CN202110270013.0 2021-03-12

Publications (1)

Publication Number Publication Date
WO2021180252A1 true WO2021180252A1 (zh) 2021-09-16

Family

ID=77671208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093207 WO2021180252A1 (zh) 2020-03-12 2021-05-12 一种透明质酸片段的新应用及制造方法

Country Status (1)

Country Link
WO (1) WO2021180252A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107303271A (zh) * 2016-04-25 2017-10-31 惠觅宙 一种含有小分子透明质酸的注射液及其用途
CN107898806A (zh) * 2017-12-21 2018-04-13 惠觅宙 一种具有强抗炎活性的组合物及其应用
CN108721320A (zh) * 2017-04-24 2018-11-02 惠觅宙 小分子透明质酸片段的应用
CN111249302A (zh) * 2020-03-12 2020-06-09 李鑫荣 一种透明质酸片段的新应用及稳定制造方法
CN111334468A (zh) * 2020-03-12 2020-06-26 李鑫荣 一种低分子量透明质酸片段诱发血红细胞钱串状聚集的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107303271A (zh) * 2016-04-25 2017-10-31 惠觅宙 一种含有小分子透明质酸的注射液及其用途
CN108721320A (zh) * 2017-04-24 2018-11-02 惠觅宙 小分子透明质酸片段的应用
CN107898806A (zh) * 2017-12-21 2018-04-13 惠觅宙 一种具有强抗炎活性的组合物及其应用
CN111249302A (zh) * 2020-03-12 2020-06-09 李鑫荣 一种透明质酸片段的新应用及稳定制造方法
CN111334468A (zh) * 2020-03-12 2020-06-26 李鑫荣 一种低分子量透明质酸片段诱发血红细胞钱串状聚集的应用

Similar Documents

Publication Publication Date Title
JP5728234B2 (ja) 骨関節疾患の治療又は予防において使用するための医薬組成物
JP7090026B2 (ja) 脂肪組織由来間葉系間質細胞条件培地およびそれを作製および使用する方法
CN114848667A (zh) 一种透明质酸片段的新应用及制造方法
US10040821B2 (en) Compositions containing HC-HA/PTX3 complexes and methods of use thereof
Götte Syndecans in inflammation
Yang et al. Curcumin-mediated bone marrow mesenchymal stem cell sheets create a favorable immune microenvironment for adult full-thickness cutaneous wound healing
KR102056172B1 (ko) 줄기세포 유래 엑소좀 함유 배양액을 유효성분으로 포함하는 관절염의 예방 또는 치료용 조성물
CA2995610C (en) New medicines for topic use based on sulfated hyaluronic acid as activating or inhibiting agent of the cytokine activity
CA2065744A1 (en) Wound healing preparations containing heparanase
US11458166B2 (en) Formulations involving solvent/detergent-treated plasma (S/D plasma) and uses thereof
KR20180043834A (ko) 세포 신장 방법들 및 치료 조성물들
CA2962289A1 (en) Method and composition for producing enhanced anti-inflammatory/ anti-catabolic and regenerative agents from autologous physiological fluid
JPWO2013136871A1 (ja) 過硫酸化コンドロイチン組成物
WO2021180221A1 (zh) 一种低分子量透明质酸片段诱发血红细胞钱串状聚集的应用
Jia et al. Anti-inflammatory effects of the 35kDa hyaluronic acid fragment (B-HA/HA35)
Suzuka et al. Therapeutic effects of adipose-derived mesenchymal stem/stromal cells with enhanced migration ability and hepatocyte growth factor secretion by low-molecular-weight heparin treatment in bleomycin-induced mouse models of systemic sclerosis
WO2021180252A1 (zh) 一种透明质酸片段的新应用及制造方法
JP6259208B2 (ja) ヒアルロン酸産生促進剤
JP3742955B2 (ja) ヒアルロン酸および動脈狭窄を防止するための製剤
Pereira et al. The use of lectin gel in the treatment of thermal burns in rats immunocompromised
JP6522286B2 (ja) ヒアルロン酸産生促進剤
JPH02209812A (ja) 乾癬治療用医薬組成物
Akamatsu et al. Effects of roxithromycin on adhesion molecules expressed on endothelial cells of the dermal microvasculature
JP4463510B2 (ja) グリア瘢痕形成抑制剤
JP2008519032A (ja) Fgf−20の調合物、生成方法および使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768206

Country of ref document: EP

Kind code of ref document: A1