WO2021179807A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2021179807A1
WO2021179807A1 PCT/CN2021/073366 CN2021073366W WO2021179807A1 WO 2021179807 A1 WO2021179807 A1 WO 2021179807A1 CN 2021073366 W CN2021073366 W CN 2021073366W WO 2021179807 A1 WO2021179807 A1 WO 2021179807A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
pixel
shape type
display panel
Prior art date
Application number
PCT/CN2021/073366
Other languages
English (en)
French (fr)
Inventor
楼均辉
张露
蔡世星
吴勇
葛林
籍亚男
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2021179807A1 publication Critical patent/WO2021179807A1/zh
Priority to US17/682,329 priority Critical patent/US11910683B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present disclosure relates to the field of display panel technology, for example, to a display panel and a display device.
  • the under-screen camera technology came into being, that is, the area where the camera is set in the display screen can still be used for display, or the area where the camera is set in the display screen is still set with pixels.
  • regular slits will be formed between the opaque metal structures in the pixels, and external light will diffract when passing through the area where the camera is installed in the display panel, which will seriously affect the shooting of the camera. Effect.
  • the present disclosure provides a display panel and a display device, which can improve the transparency of a transparent display area while reducing the influence of diffraction.
  • a display panel including: a transparent display area;
  • a plurality of sub-pixels are arranged in the transparent display area, and the plurality of sub-pixels are arranged in a straight line along at least one direction. In each row of sub-pixels arranged in at least one direction, at least some of the adjacent sub-pixels are adjacent to each other.
  • the bottom electrode of one sub-pixel in the sub-pixel is in the first shape type, and the bottom electrode of the other sub-pixel is in the second shape type.
  • the first shape type includes a circle or an ellipse
  • the second shape type is similar to that of the other sub-pixel.
  • the shape of the light-emitting area is the same.
  • the bottom electrodes of a part of the sub-pixels in the first shape type and the bottom electrodes of the other part of the sub-pixels in the second shape type it is possible to effectively avoid the formation of regular slits between the bottom electrodes between the sub-pixels, thereby reducing the effect of diffraction and improving
  • the photographing effect of the photosensitive device such as the camera, and the area utilization rate of the lower electrode is improved, thereby increasing the transparency of the transparent display area.
  • each row of sub-pixels arranged along at least one direction is divided to obtain a plurality of first repeating units, each first repeating unit has three consecutively arranged sub-pixels, and at least two of the first repeating units are The lower electrode of the adjacent sub-pixel is in the first shape type, and the lower electrode of the other sub-pixel is in the second shape type.
  • the bottom electrodes of the other part of the sub-pixels are of the second shape type, and the two types of bottom electrodes are evenly arranged to increase the light transmittance of various parts of the transparent display area and improve the diffraction phenomenon of various parts of the transparent display area.
  • the sub-pixels in which the bottom electrode is in the second shape type are green sub-pixels. Since the light-emitting area size of the green sub-pixel is the largest among the red sub-pixel, the green sub-pixel and the blue sub-pixel, setting the bottom electrode of the green sub-pixel to the second shape type can improve the area utilization of the bottom electrode of the green sub-pixel , Reduce the area of the area where the lower electrode and the light-emitting area do not overlap, and improve the transparency of the transparent display area.
  • each row of sub-pixels arranged along at least one direction is divided to obtain a plurality of first repeating units, each first repeating unit has three consecutively arranged sub-pixels, and at least two of the first repeating units are The lower electrode of the adjacent sub-pixel is in the second shape type, and the lower electrode of the other sub-pixel is in the first shape type.
  • the bottom electrodes of the other part of the sub-pixels are of the second shape type, and the two types of bottom electrodes are evenly arranged to increase the light transmittance of various parts of the transparent display area and improve the diffraction phenomenon of various parts of the transparent display area.
  • the two sub-pixels whose lower electrodes are in the second shape type are a green sub-pixel and a blue sub-pixel. Since the size of the light-emitting area of the green sub-pixel and the blue sub-pixel is larger than the size of the light-emitting area of the red sub-pixel, setting the lower electrodes of the green sub-pixel and the blue sub-pixel to the second shape type can improve the green sub-pixel and the blue sub-pixel.
  • the area utilization rate of the lower electrode of the pixel reduces the area of the area where the lower electrode does not overlap the light-emitting area, and improves the transparency of the transparent display area.
  • the sub-pixels with the bottom electrode in the first shape type and the sub-pixels with the bottom electrode in the second shape type are alternately arranged to increase the light transmission throughout the transparent display area. It can improve the diffraction phenomenon everywhere in the transparent display area.
  • the vertices of the triangles corresponding to the two pixels adjacently arranged in the first direction along the second direction are directed oppositely; wherein the first direction is perpendicular to the second direction.
  • the arrangement structure of the internal sub-pixels is the same as the arrangement structure of the sub-pixels in adjacent pixels in the same row. Pixels are arranged more closely, which is beneficial to reduce the pixel pitch and improve the resolution of the display device.
  • the sub-pixels are arranged in a matrix, and along the row direction and column direction of the sub-pixel arrangement, the sub-pixels with the bottom electrode in the first shape type and the sub-pixels with the bottom electrode in the second shape type are alternately arranged to increase the transparent display area.
  • the light transmittance everywhere improves the diffraction phenomenon in the transparent display area.
  • a display device including: the display panel as described above, and a photosensitive member disposed under the transparent display area of the display panel.
  • the display panel in the technical solution of the present disclosure includes: a transparent display area; a plurality of sub-pixels are arranged in the transparent display area, and the sub-pixels are arranged in a straight line along at least one direction.
  • a transparent display area In each row of sub-pixels arranged in at least one direction, at least two The bottom electrode of one sub-pixel in every two adjacent sub-pixels in two adjacent sub-pixels is in the first shape type, and the bottom electrode of the other sub-pixel is in the second shape type.
  • the first shape type includes a circular shape. Or elliptical, the bottom electrode of the sub-pixel with the second shape type has the same shape as the light-emitting area.
  • the bottom electrodes of a part of the sub-pixels By arranging the bottom electrodes of a part of the sub-pixels in the first shape type, it is possible to effectively avoid the gap between the bottom electrodes between the sub-pixels.
  • Regular slits are formed to reduce the effect of diffraction and improve the photographing effect of photosensitive devices such as cameras; the lower electrodes of the other part of the sub-pixels are in the second shape type, which is conducive to saving the area occupied by the lower electrodes and improving the area utilization of the transparent display area, thereby Improve the transparency of the transparent display area.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment
  • FIG. 2 is a schematic diagram of a partial structure of a transparent display area of a display panel provided by an embodiment
  • FIG. 3 is a schematic diagram of a partial cross-sectional structure of a transparent display area of a display panel provided by an embodiment
  • FIG. 4 is a schematic diagram of a partial structure of another transparent display area of a display panel provided by an embodiment
  • FIG. 5 is a schematic diagram of a partial structure of another transparent display area of a display panel provided by an embodiment
  • FIG. 6 is a schematic diagram of a partial structure of another transparent display area of a display panel provided by an embodiment
  • FIG. 7 is a schematic diagram of a partial structure of another transparent display area of a display panel provided by an embodiment
  • FIG. 8 is a schematic diagram of a partial structure of another transparent display area of a display panel provided by an embodiment
  • FIG. 9 is a schematic diagram of a partial structure of another transparent display area of a display panel provided by an embodiment.
  • FIG. 10 is a schematic structural diagram of yet another display panel provided by an embodiment
  • FIG. 11 is a schematic structural diagram of a display device provided by an embodiment.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment.
  • 2 is a schematic diagram of a partial structure of a transparent display area of a display panel provided by an embodiment.
  • 3 is a schematic diagram of a partial cross-sectional structure of a transparent display area of a display panel provided by an embodiment. As shown in FIG. 1 to FIG. 3, the display panel includes: a transparent display area 10.
  • a plurality of sub-pixels 11 are arranged in the transparent display area 10, and the plurality of sub-pixels 11 are arranged in a straight line along at least one direction.
  • each row of sub-pixels 11 arranged in at least one direction each of at least a part of two adjacent sub-pixels 11
  • the lower electrode 111 of one sub-pixel 11 of the two adjacent sub-pixels 11 is in the first shape type
  • the lower electrode 111 of the other sub-pixel 11 is in the second shape type.
  • the first shape type includes a circle or an ellipse
  • the lower electrode 111 of the sub-pixel 11 in the second shape type has the same shape as the light-emitting region 112 thereof.
  • the entire display area of the display panel may be partially transparent or fully transparent, and the size of the transparent display area can be set as required, which is not limited in this embodiment.
  • FIG. 1 exemplarily shows a case where the entire display area of the display panel is a transparent display area.
  • FIG. 2 exemplarily shows that the sub-pixels 11 in the partial area 101 of the transparent display area 10 are arranged in a straight line along the first direction Y, and the sub-pixels 11 may also be arranged in a straight line along the second direction X. This is not limited.
  • the pixel arrangement in other areas of the transparent display area 10 is the same as or similar to the pixel arrangement in the local area 101.
  • the shape of the light-emitting area 112 of the sub-pixel 11 includes at least one of the following: a triangle, a square, a pentagon, a circle, an ellipse, a rectangle, and a rounded rectangle.
  • the second shape type includes at least one of the following: triangle, square, pentagon, circle, ellipse, and rounded rectangle.
  • the shapes of the light-emitting regions 112 of all the sub-pixels 11 in the transparent display area 10 may be the same or different.
  • the shapes of the first shape type and the second shape type may be the same or different.
  • FIG. 2 exemplarily shows a case where the shapes of the light-emitting regions 112 of all the sub-pixels 11 are the same.
  • the plurality of sub-pixels 11 may include a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B.
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a sub-pixel along the A1A2 direction in FIG. 2.
  • the display panel further includes a substrate 40, a driving circuit layer located on the substrate 40, and a light emitting unit located on the side of the driving circuit layer away from the substrate 40.
  • the light emitting unit may be an organic light emitting diode.
  • the light-emitting unit includes a lower electrode 111, a light-emitting function layer (that is, a light-emitting region 112 ), and an upper electrode 113 stacked in a direction away from the substrate 40.
  • the lower electrode 111 of the sub-pixel 11 may be an anode.
  • the driving circuit layer may include a stacked active layer 114, a plurality of conductive layers, and a plurality of inorganic insulating layers to form thin film transistors, storage capacitors and other devices in the pixel driving circuit, as well as scan lines, data lines, light-emitting control lines, etc. .
  • the thin film transistor may include a semiconductor active layer 114, a gate insulating layer 115, a gate electrode 116, an interlayer insulating layer 117, a source electrode 118, and a drain electrode 119.
  • the sub-pixel 11 may include a pixel driving circuit and a light-emitting unit, and the lower electrode 111 of the light-emitting unit is electrically connected to the drain 119 of the thin film transistor through a via hole penetrating the planarization layer 60.
  • the pixel driving circuit is electrically connected to the corresponding scan lines, data lines, and light-emitting control lines to receive scan signals, data signals, and light-emitting control signals, etc., and then output driving current to the light-emitting unit to control the light-emitting brightness and brightness of the corresponding light-emitting unit. Time and so on.
  • the display panel also includes a buffer layer 50, which is located between the substrate 40 and the semiconductor active layer 114.
  • the driving circuit layer also includes a pixel defining layer 70, which is located on the side of the planarization layer 60 and the lower electrode 111 away from the substrate 40.
  • the pixel defining layer 70 is provided with pixel openings that expose the lower electrode 111, the light-emitting function layer and the upper electrode 113. Cover the pixel opening.
  • One pixel opening can correspond to one light-emitting unit.
  • One light-emitting unit can correspond to one sub-pixel 11.
  • the light-emitting area 112 of the sub-pixel 11 is the area where the light-emitting function layer is located.
  • the projection of the light-emitting area 112 of the sub-pixel 11 on the lower electrode 111 is located in the lower electrode 111.
  • the direction Z may be perpendicular to the first direction Y.
  • the direction Z may be perpendicular to the second direction X.
  • the first direction Y may be perpendicular to the second direction X.
  • the light-emitting area 112 of the sub-pixel 11 may be located in the middle area of the lower electrode 111 of the sub-pixel 11.
  • the lower electrode 111 is a non-transparent material.
  • the area where the lower electrode 111 of the sub-pixel 11 is not covered by the light-emitting functional layer (i.e., the light-emitting area 112) neither emits light nor is transparent, so the area where the lower electrode 111 of the sub-pixel 11 is not covered by the light-emitting functional layer (i.e., the light-emitting area 112)
  • the lower electrode 111 of the sub-pixel 11 is of the second shape type, which means that the lower electrode 111 of the sub-pixel 11 has the same shape as the light-emitting area 112, and the area S1 of the light-emitting area 112 of the sub-pixel 11 and the area S2 of the lower electrode 111 are the same.
  • the ratio S1/S2 is very large.
  • the area ratio S1/S2 of the light-emitting area 112 of the sub-pixel 11 with the bottom electrode 111 in the first shape type to its lower electrode 111 is less than or equal to the light-emitting area 112 of the sub-pixel 11 with the bottom electrode 111 in the second shape type and its The area ratio of the lower electrode 111 is S1/S2.
  • the area utilization rate of the lower electrode 111 of the sub-pixel 11 in which the lower electrode 111 is in the first shape type is less than or equal to the area utilization rate of the lower electrode 111 in the sub-pixel 11 in which the lower electrode 111 is in the second shape type.
  • the openings on the fine metal mask (Fine Metal Mask, FMM) for making the light-emitting functional layer of the organic light-emitting diode can be designed to be close to square or nearly circular.
  • the light-emitting area 112 of the sub-pixel 11 can also be designed to Nearly square or nearly round.
  • the bottom electrode 111 of the sub-pixel 11 is in the first shape type, for example, it can be circular or elliptical, which can effectively avoid the formation of long traces or regular slits between the bottom electrodes between the sub-pixels, causing external light to pass through the transparent display. Diffraction occurs in the zone, thereby reducing the effect of diffraction and improving the photographing effect of photosensitive devices such as cameras. If the lower electrode 111 of the sub-pixel 11 is of the second shape type, the area of the lower electrode 111 of the sub-pixel 11 that is not covered by the light-emitting function layer is small, which is beneficial to improve the transparency of the transparent display area 10.
  • the bottom electrodes 111 of a part of the sub-pixels 11 in the first shape type and the bottom electrodes 111 of the other part of the sub-pixels 11 in the second shape type it is possible to effectively avoid the formation of regular slits between the bottom electrodes between the sub-pixels, thereby reducing
  • the effect of diffraction improves the photographing effect of photosensitive devices such as cameras, and increases the area utilization rate of the lower electrode, thereby increasing the transparency of the transparent display area 10.
  • the display panel in the technical solution of this embodiment includes: a transparent display area; a plurality of sub-pixels are arranged in the transparent display area, and the plurality of sub-pixels are arranged in a straight line along at least one direction.
  • the bottom electrode of one sub-pixel in every two adjacent sub-pixels is in the first shape type
  • the bottom electrode of the other sub-pixel is in the second shape type.
  • the first shape type includes Round or elliptical
  • the bottom electrode of the sub-pixel with the second shape type has the same shape as the light-emitting area.
  • the bottom electrodes of a part of the sub-pixels are in the first shape type.
  • Two shape types which can effectively avoid the formation of regular slits between the lower electrodes between sub-pixels, thereby reducing the effect of diffraction, improving the photographing effect of photosensitive devices such as cameras, and increasing the area utilization of the lower electrodes, thereby increasing the transparency of the transparent display area .
  • This embodiment also provides a display panel.
  • each row of sub-pixels 11 arranged in at least one direction is divided to obtain a plurality of first repeating units 12, and each first repeating unit 12 has three consecutively arranged sub-pixels. 111.
  • At least part of the lower electrodes 111 of the two adjacent sub-pixels 11 in each first repeating unit 12 in the first repeating unit 12 are in the first shape type, and the lower electrode 111 of the other sub-pixel 11 is in the second shape. Shape type.
  • FIG. 2 exemplarily marks a plurality of first repeating units 12, and the remaining first repeating units can be determined sequentially according to the arrangement order and shape of the sub-pixels 11, and the number of the first repeating units 12 is not limited in this embodiment.
  • every three sub-pixels 11 form a first repeating unit 12, and six sub-pixels 11 in two adjacent first repeating units 12 are successively arranged next to each other.
  • the two adjacent sub-pixels 11 with the lower electrode 111 in the first shape type may be any two of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B.
  • the two types of lower electrodes are uniformly arranged 111, to increase the light transmittance of the transparent display area 10 and improve the diffraction phenomenon of the transparent display area 10.
  • the sub-pixel 11 in which the lower electrode 111 is in the second shape type is the green sub-pixel G.
  • FIG. 2 exemplarily shows a case where the lower electrode 11 of the green sub-pixel G is in the second shape type, and the lower electrode 111 of the red sub-pixel R and the lower electrode 111 of the blue sub-pixel B are in the first shape type. Since among the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B, the light-emitting area 112 of the green sub-pixel G has the largest size, setting the lower electrode 111 of the green sub-pixel G to the second shape type can increase the size of the green sub-pixel.
  • the area utilization rate of the lower electrode 111 of G reduces the area of the area where the lower electrode 111 does not overlap the light-emitting area 112, and improves the transparency of the transparent display area 10.
  • FIG. 4 is a schematic structural diagram of another transparent display area of a display panel provided by an embodiment.
  • each row of sub-pixels 11 arranged in at least one direction is divided to obtain a plurality of first repeating units 12, and each first repeating unit 12 has three consecutively arranged sub-pixels 11, at least partially
  • the lower electrodes 111 of two adjacent sub-pixels 11 in each first repeating unit 12 in each first repeating unit 12 are in the second shape type, and the lower electrode 111 of the other sub-pixel 11 is in the first shape type.
  • the two adjacent sub-pixels 11 in the first repeating unit 12 with the lower electrode 111 in the second shape type may be any two of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B.
  • FIG. 4 exemplarily draws a case where the shape of the light-emitting area 112 of all the sub-pixels 11 is a rounded rectangle, and the second shape type is a rounded rectangle.
  • the technical solution of FIG. 4 can improve the transparency of the transparent display area 10.
  • the technical solution of FIG. 2 can reduce the influence of diffraction.
  • the two sub-pixels 11 with the second shape type of the lower electrode 111 are the green sub-pixel G and the blue sub-pixel B, respectively.
  • FIG. 4 exemplarily shows that the light-emitting areas 112 of all sub-pixels 11 are approximately rectangular, the lower electrode 111 of the green sub-pixel G and the lower electrode 111 of the blue sub-pixel B are approximately rectangular, and the lower electrode 111 of the red sub-pixel R is approximately rectangular. Approximately circular situation.
  • the size of the light-emitting area 112 of the green sub-pixel G and the blue sub-pixel B is larger than the size of the light-emitting area 112 of the red sub-pixel R, the green sub-pixel G and The lower electrode 111 of the blue sub-pixel B is set to the second shape type, which can increase the area utilization of the lower electrode 111 of the green sub-pixel G and the blue sub-pixel B, and reduce the area where the lower electrode 111 and the light-emitting region 112 do not overlap. Area to increase the transparency of the transparent display area 10.
  • FIG. 5 is a schematic diagram of a partial structure of a transparent display area of another display panel provided by an embodiment.
  • the sub-pixels 11 with the lower electrode 111 in the first shape type and the sub-pixels 11 with the lower electrode 111 in the second shape type are alternately arranged.
  • FIG. 5 exemplarily draws a case where the shape of the light-emitting area 112 of all the sub-pixels 11 is a rounded rectangle, and the second shape type is a rounded rectangle.
  • the technical solution of FIG. 5 can improve the transparency of the transparent display area 10.
  • the technical solution of FIG. 2 can reduce the influence of diffraction.
  • the technical solution of FIG. 5 can reduce the influence of diffraction.
  • the technical solution of FIG. 4 can improve the transparency of the transparent display area 10.
  • the shape of the lower electrode 111 of the sub-pixel 11 can be set as needed to balance the effect of diffraction and transparency.
  • a plurality of sub-pixels 11 are arranged in a straight line along the first direction Y, and the plurality of sub-pixels 11 form a plurality of pixels 13, and each pixel 13 includes Three sub-pixels 11 with different light-emitting colors, two sub-pixels 11 in each pixel 13 are arranged along the first direction Y, and the connection of the virtual centers of the three sub-pixels 11 in each pixel 13 forms a triangle.
  • the three sub-pixels 11 with different emission colors may include a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B.
  • the virtual center of the sub-pixel 11 may be the geometric center of the sub-pixel 11.
  • the light-emitting area 112 of the sub-pixel 11 is rectangular, and the virtual center of the sub-pixel 11 is the geometric center of the rectangular light-emitting area 112.
  • the triangles corresponding to the two pixels 13 adjacently arranged along the first direction Y have opposite directions along the apex angles of the second direction X; Wherein, the first direction Y is perpendicular to the second direction X.
  • the pixel 13-1 is adjacent to the pixel 13-2 along the first direction Y, the triangle corresponding to the pixel 13-1 points to the right along the apex of the second direction X, and the pixel 13 The apex of the triangle corresponding to -2 along the second direction X points to the left.
  • the arrangement structure of the internal sub-pixels 11 of each pixel 13 after being turned 180° along the first direction Y is the same as the sub-pixels in the adjacent pixels 13 in the same row
  • the arrangement structure of 11 is the same, and the pixel arrangement is closer, which is beneficial to reduce the pixel pitch and improve the resolution of the display device.
  • FIG. 6 is a schematic diagram of a partial structure of a transparent display area of another display panel provided by an embodiment.
  • the plurality of sub-pixels 11 are arranged in a matrix.
  • the lower electrode 111 is in the first shape type and the lower electrode 111 is in the second shape type.
  • the sub-pixels 11 are alternately arranged.
  • the first direction Y may be a column direction
  • the second direction X may be a row direction.
  • FIG. 6 exemplarily draws a case where the shape of the light-emitting area 112 of all the sub-pixels 11 is a rounded rectangle, and the second shape type is a rounded rectangle.
  • FIG. 6 exemplarily shows a case where the lower electrode 111 of the green sub-pixel G is in the first shape type, and the lower electrode 111 of the red sub-pixel R and the lower electrode 111 of the blue sub-pixel B are in the second shape type. As shown in FIG.
  • the lower electrode 111 is the red sub-pixel R of the second shape type and the lower electrode 111 is the green sub-pixel of the first shape type.
  • G is arranged alternately; in the even-numbered row of sub-pixels 11, the green sub-pixels G with the lower electrode 111 in the first shape type and the blue sub-pixels B with the lower electrode 111 in the second shape type are alternately arranged.
  • the red sub-pixels R with the lower electrode 111 in the second shape type and the green sub-pixels G with the lower electrode 111 in the first shape type are alternately arranged;
  • the green sub-pixels G with the lower electrode 111 in the first shape type and the blue sub-pixels B with the lower electrode 111 in the second shape type are alternately arranged.
  • FIG. 7 is a schematic diagram of a partial structure of a transparent display area of another display panel provided by an embodiment.
  • FIG. 7 exemplarily draws a case where the shape of the light-emitting area 112 of all the sub-pixels 11 is a rounded rectangle, and the second shape type is a rounded rectangle.
  • FIG. 7 exemplarily shows a case where the lower electrode 111 of the green sub-pixel G is in the second shape type, and the lower electrode 111 of the red sub-pixel R and the lower electrode 111 of the blue sub-pixel B are in the first shape type. As shown in FIG.
  • the lower electrode 111 is the red sub-pixel R of the first shape type and the lower electrode 111 is the green sub-pixel of the second shape type.
  • G is arranged alternately; in the even-numbered row of sub-pixels 11, the green sub-pixels G with the lower electrode 111 in the second shape type and the blue sub-pixels B with the lower electrode 111 in the first shape type are alternately arranged.
  • the red sub-pixels R with the lower electrode 111 in the first shape type and the green sub-pixels G with the lower electrode 111 in the second shape type are alternately arranged;
  • the green sub-pixels G with the lower electrode 111 in the second shape type and the blue sub-pixels B with the lower electrode 111 in the first shape type are alternately arranged.
  • FIG. 8 is a partial structural diagram of another transparent display area of a display panel provided by an embodiment, and the lower electrode 111 is the lower electrode 111 of the sub-pixel 11 of the first shape type.
  • the shape of the light-emitting area 112 is the same.
  • the technical solution of FIG. 8 can improve the transparency of the transparent display area 10.
  • FIG. 8 exemplarily shows a situation where the shapes of the light-emitting areas 112 of all sub-pixels 11 are not completely the same, where the light-emitting areas 112 of the first part of the sub-pixels 11 are rounded rectangles, and the light-emitting areas 112 of the second part of the sub-pixels 11 are It is circular, and the light-emitting area 112 of the third part of the sub-pixel 11 is elliptical.
  • FIG. 9 is a partial structural diagram of another transparent display area of a display panel provided by an embodiment, and the lower electrode 111 is the lower electrode 111 of the sub-pixel 11 of the second shape type. It is round or oval.
  • the technical solution of FIG. 9 can increase the transparency of the transparent display area 10 and reduce the influence of diffraction.
  • FIG. 9 exemplarily draws a case where the light-emitting regions 112 of all the sub-pixels 11 have the same shape and are in the first shape type.
  • FIG. 10 is a schematic structural diagram of still another display panel provided by an embodiment.
  • the display panel further includes: a main display area 20 arranged around at least a part of the transparent display area 10, a plurality of sub-pixels are arranged in the main display area 20, and lower electrodes of the sub-pixels in the main display area 20 In the second shape type.
  • the light transmittance of the main display area 20 is less than the light transmittance of the transparent display area 10.
  • the transparent display area 10 is correspondingly provided with a photosensitive member 30, and the photosensitive member 30 is configured to collect light passing through the transparent display area 10.
  • the photosensitive component 30 may include at least one of the following: a camera photosensitive component, a fingerprint recognition sensor, or the like.
  • the transparent display area 10 can not only realize the display function, but also has sufficient light transmittance to ensure the accuracy of photosensitive recognition by the photosensitive member.
  • the main display area 20 is a normal display area in the display panel, and is set to realize the normal display of the area where the display panel is not provided with photosensitive components.
  • FIG. 10 only exemplarily shows the transparent display area 10 at the edge of the display panel, and this embodiment does not limit the position of the transparent display area 10 in the display panel.
  • FIG. 11 is a schematic structural diagram of a display device provided by an embodiment.
  • the display device 1 includes: a display panel provided in any embodiment, and a photosensitive member 30 arranged under the transparent display area 10.
  • the display device 1 may include: a mobile phone, a tablet computer, a notebook computer, and the like.
  • the display device provided in this embodiment includes the display panel in the above-mentioned embodiment, so the display device provided in this embodiment also has the effects described in the above-mentioned embodiment, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本文公开一种显示面板及显示装置。所述显示面板包括:透明显示区;透明显示区内设置有多个子像素,多个子像素沿至少一个方向呈直线排列,沿至少一个方向排列的每排子像素中,至少部分两两相邻的子像素中的每两两相邻的子像素中的一个子像素的下电极呈第一形状类型,另一个子像素的下电极呈第二形状类型,第一形状类型包括圆形或椭圆形,第二形状类型与另一个子像素的发光区域的形状相同。

Description

显示面板及显示装置
本申请要求在2020年03月10日提交中国专利局、申请号为202010161496.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示面板技术领域,例如涉及一种显示面板及显示装置。
背景技术
随着电子设备的快速发展,用户对屏占比的要求越来越高,使得电子设备的全面屏显示受到业界越来越多的关注。电子设备如手机、平板电脑等,由于需要集成诸如前置摄像头、听筒以及红外感应元件等器件,故需要在显示屏上开槽(Notch),在开槽区域设置摄像头、听筒以及红外感应元件等,但是这些电子设备均不是真正意义上的全面屏,并不能在整个屏幕的每个区域均进行显示,如在摄像头区域不能显示画面。
为实现真正的全面屏,屏下摄像头技术应运而生,即显示屏中设置有摄像头的区域仍可以用于显示,或者说显示屏中设置有摄像头的区域仍设置有像素。但是对于显示屏中设置有摄像头的区域,像素中不透光的金属结构之间会形成有规律的狭缝,外界光线通过显示面板中设置有摄像头的区域时会发生衍射,严重影响摄像头的拍摄效果。
发明内容
本公开提供一种显示面板及显示装置,可以提升透明显示区域的透明度,同时降低衍射影响。
提供了一种显示面板,包括:透明显示区;
透明显示区内设置有多个子像素,多个子像素沿至少一个方向呈直线排列,沿至少一个方向排列的每排子像素中,至少部分两两相邻的子像素中的每两两相邻的子像素中的一个子像素的下电极呈第一形状类型,另一个子像素的下电极呈第二形状类型,第一形状类型包括圆形或椭圆形,第二形状类型与另一个子像素的发光区域的形状相同。通过将一部分子像素的下电极设置呈第一形状类型,另一部分子像素的下电极呈第二形状类型,可以有效避免子像素间的下电极之间形成规律狭缝,从而降低衍射影响,提升摄像头等感光器件的拍照效果,并提高下电极的面积利用率,从而提高透明显示区的透明度。
可选地,对沿至少一个方向排列的每排子像素进行划分,得到多个第一重复单元,每个第一重复单元具有连续排列的三个子像素,至少部分第一重复单元中的两个相邻的子像素的下电极呈第一形状类型,另一个子像素的下电极呈第二形状类型,通过将每个第一重复单元中的一部分子像素的下电极设置呈第一形状类型,另一部分子像素的下电极呈第二形状类型,以均匀排布两种类型的下电极,以提高透明显示区各处的透光率,改善透明显示区各处的衍射现象。
可选地,下电极呈第二形状类型的子像素为绿色子像素。由于红色子像素、绿色子像素和蓝色子像素中,绿色子像素的发光区域尺寸最大,将绿色子像素的下电极设置为第二形状类型,可以提高绿色子像素的下电极的面积利用率,减少下电极与发光区域不重叠的区域的面积,提高透明显示区的透明度。
可选地,对沿至少一个方向排列的每排子像素进行划分,得到多个第一重复单元,每个第一重复单元具有连续排列的三个子像素,至少部分第一重复单元中的两个相邻的子像素的下电极呈第二形状类型,另一个子像素的下电极呈第一形状类型,通过将每个第一重复单元中的一部分子像素的下电极设置呈第一形状类型,另一部分子像素的下电极呈第二形状类型,以均匀排布两种类型的下电极,以提高透明显示区各处的透光率,改善透明显示区各处的衍射现象。
可选地,下电极呈第二形状类型的两个子像素为绿色子像素和蓝色子像素。由于绿色子像素和蓝色子像素的发光区域尺寸大于红色子像素的发光区域尺寸,将绿色子像素和蓝色子像素的下电极设置为第二形状类型,可以提高绿色子像素和蓝色子像素的下电极的面积利用率,减少下电极与发光区域不重叠的区域的面积,提高透明显示区的透明度。
可选地,沿至少一个方向排列的一排子像素中,下电极呈第一形状类型的子像素和下电极呈第二形状类型的子像素交替排列,以提高透明显示区各处的透光率,改善透明显示区各处的衍射现象。
可选地,沿第一方向相邻设置的两个像素对应的三角形沿第二方向的顶点的指向相反;其中,第一方向与第二方向垂直。沿第一方向相邻设置的两个像素中,每个像素沿第一方向翻转180°后其内部子像素的排布结构与同一排中相邻的像素内的子像素的排布结构相同,像素排布更紧密,有利于减小像素间距,提高显示装置的分辨率。
可选地,子像素呈矩阵排列,沿子像素排列的行方向和列方向,下电极呈第一形状类型的子像素和下电极呈第二形状类型的子像素交替排列,以提高透明显示区各处的透光率,改善透明显示区各处的衍射现象。
还提供了一种显示装置,包括:如上所述的显示面板,及设置于所述显示 面板的透明显示区下方的感光部件。通过将一部分子像素的下电极设置呈第一形状类型,另一部分子像素的下电极呈第二形状类型,可以有效避免子像素间的下电极之间形成规律狭缝,从而降低衍射影响,提升摄像头等感光器件的拍照效果,并提高下电极的面积利用率,从而提高透明显示区的透明度。
本公开的技术方案中的显示面板包括:透明显示区;透明显示区内设置有多个子像素,子像素沿至少一个方向呈直线排列,沿至少一个方向排列的每排子像素中,至少部分两两相邻的子像素中的每两两相邻的子像素中的一个子像素的下电极呈第一形状类型,另一个子像素的下电极呈第二形状类型,第一形状类型包括圆形或椭圆形,下电极呈第二形状类型的子像素的下电极与其发光区域的形状相同,通过将一部分子像素的下电极设置呈第一形状类型,可以有效避免子像素间的下电极之间形成规律狭缝,从而降低衍射影响,提升摄像头等感光器件的拍照效果;另一部分子像素的下电极呈第二形状类型,有利于节省下电极占用面积,提高透明显示区的面积利用率,从而提高透明显示区的透明度。
附图说明
图1为一实施例提供的一种显示面板的结构示意图;
图2为一实施例提供的一种显示面板的透明显示区的局部结构示意图;
图3为一实施例提供的一种显示面板的透明显示区的局部剖面结构示意图;
图4为一实施例提供的又一种显示面板的透明显示区的局部结构示意图;
图5为一实施例提供的又一种显示面板的透明显示区的局部结构示意图;
图6为一实施例提供的又一种显示面板的透明显示区的局部结构示意图;
图7为一实施例提供的又一种显示面板的透明显示区的局部结构示意图;
图8为一实施例提供的又一种显示面板的透明显示区的局部结构示意图;
图9为一实施例提供的又一种显示面板的透明显示区的局部结构示意图;
图10为一实施例提供的又一种显示面板的结构示意图;
图11为一实施例提供的一种显示装置的结构示意图。
具体实施方式
下面结合附图和实施例对本公开作说明。
本实施例提供一种显示面板。图1为一实施例提供的一种显示面板的结构示意图。图2为一实施例提供的一种显示面板的透明显示区的局部结构示意图。 图3为一实施例提供的一种显示面板的透明显示区的局部剖面结构示意图。结合图1至图3所示,该显示面板包括:透明显示区10。
透明显示区10内设置有多个子像素11,多个子像素11沿至少一个方向呈直线排列,沿至少一个方向排列的每排子像素11中,至少部分两两相邻的子像素11中的每两两相邻的子像素11中的一个子像素11的下电极111呈第一形状类型,另一个子像素11的下电极111呈第二形状类型,第一形状类型包括圆形或椭圆形,下电极111呈第二形状类型的子像素11的下电极111与其发光区域112的形状相同。
显示面板的整个显示区可以是部分透明或是全部透明,可根据需要设置透明显示区的大小,本实施例对此不做限定。图1示例性的画出显示面板的整个显示区为透明显示区的情况。图2示例性地示出了透明显示区10的局部区域101内的子像素11沿第一方向Y呈直线排列的情况,子像素11还可以沿第二方向X呈直线排列,本实施例对此不做限定。透明显示区10的其他区域的像素排布与局部区域101内的像素排布相同或类似。可选的,子像素11的发光区域112的形状包括下述至少一种:三角形、正方形、五边形、圆形、椭圆形、长方形和圆角矩形。可选的,第二形状类型包括下述至少一种:三角形、方形、五边形、圆形、椭圆形和圆角矩形。透明显示区10内的所有子像素11的发光区域112的形状可以相同或不同。第一形状类型和第二形状类型的形状可以相同或不同。图2示例性的画出所有子像素11的发光区域112的形状为相同的情况。图2示例性的画出所有子像素11的发光区域112的形状为圆角矩形,第二形状类型为圆角矩形的情况。多个子像素11可包括红色子像素R、绿色子像素G和蓝色子像素B。
图3为一子像素沿图2中A1A2方向的剖面结构示意图。如图3所示,显示面板还包括衬底40、位于衬底40上的驱动线路层以及位于驱动线路层远离衬底40一侧的发光单元。发光单元可以是有机发光二极管。发光单元包括沿远离衬底40的方向层叠设置的下电极111、发光功能层(即发光区域112)和上电极113。子像素11的下电极111可以是阳极。驱动线路层可包括层叠设置的有源层114、多个导电层和多个无机绝缘层,以形成像素驱动电路中的薄膜晶体管、存储电容等器件,以及扫描线、数据线和发光控制线等。薄膜晶体管可包括半导体有源层114、栅极绝缘层115、栅极116、层间绝缘层117、源极118和漏极119。子像素11可包括像素驱动电路和发光单元,发光单元的下电极111通过贯穿平坦化层60的过孔与薄膜晶体管的漏极119电连接。像素驱动电路与对应的扫描线、数据线和发光控制线等电连接,以接收扫描信号、数据信号和发光控制信号等,进而输出驱动电流至发光单元,以控制对应的发光单元的发光亮度和时间等。显示面板还包括缓冲层50,缓冲层50位于衬底40和半导体有 源层114之间。驱动线路层还包括像素限定层70,位于平坦化层60和下电极111远离衬底40的一侧,像素限定层70设置有像素开口,像素开口暴露下电极111,发光功能层和上电极113覆盖像素开口。一个像素开口可对应一个发光单元。一个发光单元可对应一个子像素11。子像素11的发光区域112即为发光功能层所在区域。可选的,沿显示面板的厚度方向Z,子像素11的发光区域112在其下电极111上的投影位于下电极111内。方向Z可垂直于第一方向Y。方向Z可垂直于第二方向X。第一方向Y可垂直于第二方向X。子像素11的发光区域112可位于子像素11的下电极111的中间区域。
下电极111为非透明材料。子像素11的下电极111未被发光功能层(即发光区域112)覆盖的区域,既不发光也不透明,故子像素11的下电极111未被发光功能层(即发光区域112)覆盖的区域越小,不透明区域占比越小,透明区域占比越大,即子像素11的发光区域112与其下电极111的面积比值S1/S2越大。子像素11的下电极111呈第二形状类型,则说明子像素11的下电极111与其发光区域112的形状相同,则说明子像素11的发光区域112的面积S1与其下电极111的面积S2的比值S1/S2很大。可选的,下电极111呈第一形状类型的子像素11的发光区域112与其下电极111的面积比值S1/S2小于或等于下电极111呈第二形状类型的子像素11的发光区域112与其下电极111的面积比值S1/S2。下电极111呈第一形状类型的子像素11的下电极111的面积利用率小于或等于下电极111呈第二形状类型的子像素11的下电极111的面积利用率。制作有机发光二极管的发光功能层的精密金属掩膜版(Fine Metal Mask,FMM)上的开口可设计成接近方形或近圆形,为了提升开口率,子像素11的发光区域112也可设计成接近方形或近圆形。
若子像素11的下电极111呈第一形状类型,例如可以是圆形或椭圆形,可以有效避免子像素间的下电极之间容易形成长条走线或规律狭缝,导致外界光线通过透明显示区时发生衍射,从而降低衍射影响,提升摄像头等感光器件的拍照效果。若子像素11的下电极111呈第二形状类型,使得子像素11的下电极111未被发光功能层覆盖的区域较小,有利于提高透明显示区10的透明度。通过将一部分子像素11的下电极111设置呈第一形状类型,另一部分子像素11的下电极111呈第二形状类型,可以有效避免子像素间的下电极之间形成规律狭缝,从而降低衍射影响,提升摄像头等感光器件的拍照效果,并提高下电极的面积利用率,从而提高透明显示区10的透明度。
本实施例的技术方案中的显示面板包括:透明显示区;透明显示区内设置有多个子像素,多个子像素沿至少一个方向呈直线排列,沿至少一个方向排列的每排子像素中,至少部分两两相邻的子像素中的每两两相邻的子像素中的一个子像素的下电极呈第一形状类型,另一个子像素的下电极呈第二形状类型, 第一形状类型包括圆形或椭圆形,下电极呈第二形状类型的子像素的下电极与其发光区域的形状相同,通过将一部分子像素的下电极设置呈第一形状类型,另一部分子像素的下电极呈第二形状类型,可以有效避免子像素间的下电极之间形成规律狭缝,从而降低衍射影响,提升摄像头等感光器件的拍照效果,并提高下电极的面积利用率,从而提高透明显示区的透明度。
本实施例还提供一种显示面板。在上述实施例的基础上,参见图2,对沿至少一个方向排列的每排子像素11进行划分,得到多个第一重复单元12,每个第一重复单元12具有连续排列的三个子像素111,至少部分第一重复单元12中的每个第一重复单元12中的两个相邻的子像素11的下电极111呈第一形状类型,另一个子像素11的下电极111呈第二形状类型。
图2示例性地标出了多个第一重复单元12,其余第一重复单元可按子像素11的排列次序和形状依次确定,本实施例对第一重复单元12的个数不做限定。沿至少一个方向排列的每排子像素11,每三个子像素11形成一个第一重复单元12,相邻的两个第一重复单元12中的六个子像素11依次相邻连续排列。两个相邻的且下电极111呈第一形状类型的子像素11可以是红色子像素R、绿色子像素G和蓝色子像素B中的任意两种。图2示例性的画出两个相邻的且下电极111呈第一形状类型的子像素11为红色子像素R和蓝色子像素B的情况。通过将每个第一重复单元12中的一部分子像素11的下电极111设置呈第一形状类型,另一部分子像素11的下电极111呈第二形状类型,均匀排布两种类型的下电极111,以提高透明显示区10的透光率,改善透明显示区10的衍射现象。
可选的,在上述实施例的基础上,参见图2,至少部分第一重复单元12中,下电极111呈第二形状类型的子像素11为绿色子像素G。图2示例性的画出绿色子像素G的下电极11呈第二形状类型,红色子像素R的下电极111和蓝色子像素B的下电极111呈第一形状类型的情况。由于红色子像素R、绿色子像素G和蓝色子像素B中,绿色子像素G的发光区域112尺寸最大,将绿色子像素G的下电极111设置为第二形状类型,可以提高绿色子像素G的下电极111的面积利用率,减少下电极111与发光区域112不重叠的区域的面积,提高透明显示区10的透明度。
本实施例还提供一种显示面板。图4为一实施例提供的又一种显示面板的透明显示区的结构示意图。在上述实施例的基础上,对沿至少一个方向排列的每排子像素11进行划分,得到多个第一重复单元12,每个第一重复单元12具有连续排列的三个子像素11,至少部分第一重复单元12中的每个第一重复单元12中的两个相邻的子像素11的下电极111呈第二形状类型,另一个子像素11的下电极111呈第一形状类型。
第一重复单元12中的两个相邻且下电极111呈第二形状类型的子像素11可以是红色子像素R、绿色子像素G和蓝色子像素B中的任意两种。图4示例性的画出所有子像素11的发光区域112的形状为圆角矩形,第二形状类型为圆角矩形的情况。图4的技术方案相比于图2的技术方案,可以提高透明显示区10的透明度。图2的技术方案相比于图4的技术方案,可以降低衍射影响。
可选的,在上述实施例的基础上,参见图4,至少部分第一重复单元12中,下电极111呈第二形状类型的两个子像素11分别为绿色子像素G和蓝色子像素B。图4示例性的画出所有子像素11的发光区域112呈近似矩形,绿色子像素G的下电极111和蓝色子像素B的下电极111呈近似矩形,红色子像素R的下电极111呈近似圆形的情况。由于红色子像素R、绿色子像素G和蓝色子像素B中,绿色子像素G和蓝色子像素B的发光区域112尺寸大于红色子像素R的发光区域112尺寸,将绿色子像素G和蓝色子像素B的下电极111设置为第二形状类型,可以提高绿色子像素G和蓝色子像素B的下电极111的面积利用率,减少下电极111与发光区域112不重叠的区域的面积,提高透明显示区10的透明度。
本实施例还提供一种显示面板。图5为一实施例提供的又一种显示面板的透明显示区的局部结构示意图。在上述实施例的基础上,沿至少一个方向排列的一排子像素11中,下电极111呈第一形状类型的子像素11和下电极111呈第二形状类型的子像素11交替排列。
图5示例性的画出所有子像素11的发光区域112的形状为圆角矩形,第二形状类型为圆角矩形的情况。图5的技术方案相比于图2的技术方案,可以提高透明显示区10的透明度。图2的技术方案相比于图5的技术方案,可以降低衍射影响。图5的技术方案相比于图4的技术方案,可以降低衍射影响。图4的技术方案相比于图5的技术方案,可以提高透明显示区10的透明度。下电极111呈第一形状类型的子像素11的数量越多,越有利于降低衍射影响;下电极111呈第二形状类型的子像素11的数量越多,越有利于提高透明显示区10的透明度。可根据需要设置子像素11的下电极111的形状,平衡衍射影响和透明度。
可选的,在上述实施例的基础上,参见图2、图4和图5,多个子像素11沿第一方向Y呈直线排列,多个子像素11形成多个像素13,每个像素13包括三个发光颜色不同的子像素11,每个像素13内的两个子像素11沿第一方向Y排列,每个像素13内的三个子像素11的虚拟中心的连线构成三角形。
三个发光颜色不同的子像素11可包括红色子像素R、绿色子像素G和蓝色子像素B。通过控制每个像素13中的三种发光颜色不同的子像素11发出的光的亮度,可以混合形成任意颜色,以使显示面板显示所需画面。子像素11的虚拟 中心可为子像素11的几何中心,示例性的,子像素11的发光区域112呈矩形,则子像素11的虚拟中心为矩形发光区域112的几何中心。
可选的,在上述实施例的基础上,参见图2、图4和图5,沿第一方向Y相邻设置的两个像素13对应的三角形沿第二方向X的顶角的指向相反;其中,第一方向Y与第二方向X垂直。
示例性的,如图2所示,像素13-1与像素13-2沿第一方向Y相邻,像素13-1对应的三角形沿第二方向X的顶角的指向为右侧,像素13-2对应的三角形沿第二方向X的顶角的指向为左侧。沿第一方向Y相邻设置的两个像素13中,每个像素13沿第一方向Y翻转180°后其内部子像素11的排布结构与同一排中相邻的像素13内的子像素11的排布结构相同,像素排布更紧密,有利于减小像素间距,提高显示装置的分辨率。
本实施例还提供一种显示面板。图6为一实施例提供的又一种显示面板的透明显示区的局部结构示意图。在上述实施例的基础上,多个子像素11呈矩阵排列。
可选的,在上述实施例的基础上,参见图6,沿多个子像素11排列的行方向和列方向,下电极111呈第一形状类型的子像素11和下电极111呈第二形状类型的子像素11交替排列。
第一方向Y可以是列方向,第二方向X可以是行方向。图6示例性的画出所有子像素11的发光区域112的形状为圆角矩形,第二形状类型为圆角矩形的情况。图6示例性的画出绿色子像素G的下电极111呈第一形状类型,红色子像素R的下电极111和蓝色子像素B的下电极111呈第二形状类型的情况。如图6所示,沿子像素11排列的行方向X,第奇数行子像素11中,下电极111呈第二形状类型的红色子像素R和下电极111呈第一形状类型的绿色子像素G交替排列;第偶数行子像素11中,下电极111呈第一形状类型的绿色子像素G和下电极111呈第二形状类型的蓝色子像素B交替排列。沿子像素11排列的列方向Y,第奇数列子像素11中,下电极111呈第二形状类型的红色子像素R和下电极111呈第一形状类型的绿色子像素G交替排列;第偶数列子像素11中,下电极111呈第一形状类型的绿色子像素G和下电极111呈第二形状类型的蓝色子像素B交替排列。
图7为一实施例提供的又一种显示面板的透明显示区的局部结构示意图。图7示例性的画出所有子像素11的发光区域112的形状为圆角矩形,第二形状类型为圆角矩形的情况。图7示例性的画出绿色子像素G的下电极111呈第二形状类型,红色子像素R的下电极111和蓝色子像素B的下电极111呈第一形状类型的情况。如图7所示,沿子像素11排列的行方向X,第奇数行子像素11 中,下电极111呈第一形状类型的红色子像素R和下电极111呈第二形状类型的绿色子像素G交替排列;第偶数行子像素11中,下电极111呈第二形状类型的绿色子像素G和下电极111呈第一形状类型的蓝色子像素B交替排列。沿子像素11排列的列方向Y,第奇数列子像素11中,下电极111呈第一形状类型的红色子像素R和下电极111呈第二形状类型的绿色子像素G交替排列;第偶数列子像素11中,下电极111呈第二形状类型的绿色子像素G和下电极111呈第一形状类型的蓝色子像素B交替排列。
可选的,在上述实施例的基础上,图8为一实施例提供的又一种显示面板的透明显示区的局部结构示意图,下电极111呈第一形状类型的子像素11的下电极111与其发光区域112的形状相同。图8的技术方案相比于图2的技术方案,可以提高透明显示区10的透明度。
图8示例性的画出所有子像素11的发光区域112的形状不完全相同的情况,其中,第一部分子像素11的发光区域112呈圆角矩形,第二部分子像素11的发光区域112呈圆形,第三部分子像素11的发光区域112呈椭圆形。
可选的,在上述实施例的基础上,图9为一实施例提供的又一种显示面板的透明显示区的局部结构示意图,下电极111呈第二形状类型的子像素11的下电极111呈圆形或椭圆形。图9的技术方案相比于图8的技术方案,可以提高透明显示区10的透明度,降低衍射影响。
图9示例性的画出所有子像素11的发光区域112的形状相同且呈第一形状类型的情况。
图10为一实施例提供的又一种显示面板的结构示意图。在上述实施例的基础上,该显示面板还包括:围绕至少部分透明显示区10设置的主显示区20,主显示区20内设置有多个子像素,主显示区20内的子像素的下电极呈第二形状类型。
主显示区20的透光率小于透明显示区10的透光率。透明显示区10对应设置有感光部件30,感光部件30设置为采集透过透明显示区10的光线。感光部件30可以包括下述至少一种:摄像头感光部件或者指纹识别传感器等。透明显示区10既可以实现显示功能,又具有足够的光线透过率以确保感光部件进行感光识别的精度。主显示区20为显示面板中的正常显示区域,设置为实现显示面板未设置感光部件区域的正常显示。图10仅示例性地示出了透明显示区10在显示面板的边缘,本实施例对透明显示区10在显示面板中的位置不作限定。
本实施例提供一种显示装置。图11为一实施例提供的一种显示装置的结构示意图。该显示装置1包括:任意实施例提供的显示面板,及设置于透明显示 区10下方的感光部件30。
该显示装置1可包括:手机、平板电脑、笔记本电脑等。本实施例提供的显示装置包括上述实施例中的显示面板,因此本实施例提供的显示装置也具备上述实施例中所描述的效果,此处不再赘述。

Claims (19)

  1. 一种显示面板,包括:透明显示区;
    所述透明显示区内设置有多个子像素,所述多个子像素沿至少一个方向呈直线排列;沿所述至少一个方向排列的每排子像素中,至少部分两两相邻的子像素中的每两两相邻的子像素中的一个子像素的下电极呈第一形状类型,另一个子像素的下电极呈第二形状类型,所述第一形状类型包括圆形或椭圆形,所述第二形状类型与所述另一个子像素的发光区域的形状相同。
  2. 根据权利要求1所述的显示面板,其中,对沿所述至少一个方向排列的所述每排子像素进行划分,得到多个第一重复单元,每个第一重复单元具有三个不同的子像素,至少部分所述第一重复单元中的每个第一重复单元中的两个相邻的子像素的下电极呈所述第一形状类型,另一个所述子像素的下电极呈所述第二形状类型。
  3. 根据权利要求2所述的显示面板,其中,所述第一重复单元中的下电极呈所述第二形状类型的子像素为绿色子像素。
  4. 根据权利要求1所述的显示面板,其中,对沿所述至少一个方向排列的所述每排子像素进行划分,得到多个第一重复单元,每个第一重复单元具有三个不同的子像素,至少部分所述第一重复单元中的每个第一重复单元中的两个相邻的子像素的下电极呈所述第二形状类型,另一个子像素的下电极呈所述第一形状类型。
  5. 根据权利要求4所述的显示面板,其中,所述第一重复单元中的下电极呈所述第二形状类型的两个子像素为绿色子像素和蓝色子像素。
  6. 根据权利要求1所述的显示面板,其中,沿所述至少一个方向排列的每排子像素中,下电极呈所述第一形状类型的子像素和下电极呈所述第二形状类型的子像素交替排列。
  7. 根据权利要求1所述的显示面板,其中,所述多个子像素沿第一方向呈直线排列,所述多个子像素形成多个像素,每个像素包括三个发光颜色不同的子像素,所述每个像素内的两个子像素沿所述第一方向排列,且每个所述像素内的三个子像素的虚拟中心的连线构成三角形。
  8. 根据权利要求7所述的显示面板,其中,沿所述第一方向相邻设置的两个像素对应的两个三角形沿第二方向的顶角的指向相反;其中,所述第一方向与所述第二方向垂直。
  9. 根据权利要求1所述的显示面板,其中,所述多个子像素呈矩阵排列,沿所述矩阵的行方向和列方向,下电极呈所述第一形状类型的子像素和下电极呈所述第二形状类型的子像素交替排列。
  10. 根据权利要求9所述的显示面板,其中,所述子像素的发光区域的形状包括下述至少一种:三角形、方形、五边形、圆形、椭圆形和圆角矩形。
  11. 根据权利要求9所述的显示面板,其中,所述第二形状类型包括下述至少一种:三角形、方形、五边形、圆形、椭圆形和圆角矩形。
  12. 根据权利要求1所述的显示面板,其中,沿所述显示面板的厚度方向,所述子像素的发光区域在所述子像素的下电极上的投影位于所述下电极内;下电极呈所述第一形状类型的子像素的发光区域与下电极的面积比值小于下电极呈所述第二形状类型的子像素的发光区域与下电极的面积比值。
  13. 根据权利要求1所述的显示面板,还包括:围绕至少部分透明显示区设置的主显示区,所述主显示区内设置有多个子像素,所述主显示区内的子像素的下电极呈所述第二形状类型。
  14. 根据权利要求1所述的显示面板,其中,所述多个子像素的发光区域的形状相同。
  15. 根据权利要求1所述的显示面板,其中,所述多个子像素的发光区域的形状不同。
  16. 根据权利要求1所述的显示面板,其中,所述第一形状类型和所述第二形状类型不同。
  17. 根据权利要求13所述的显示面板,其中,所述子像素的发光区域位于所述子像素的下电极的中间区域。
  18. 根据权利要求13所述的显示面板,其中,所述主显示区的透光率小于所述透明显示区的透光率。
  19. 一种显示装置,包括如权利要求1-18任一项所述的显示面板,及设置于所述显示面板的透明显示区下方的感光部件。
PCT/CN2021/073366 2020-03-10 2021-01-22 显示面板及显示装置 WO2021179807A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/682,329 US11910683B2 (en) 2020-03-10 2022-02-28 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010161496.6 2020-03-10
CN202010161496.6A CN111341936B (zh) 2020-03-10 2020-03-10 一种显示面板及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/682,329 Continuation US11910683B2 (en) 2020-03-10 2022-02-28 Display panel and display device

Publications (1)

Publication Number Publication Date
WO2021179807A1 true WO2021179807A1 (zh) 2021-09-16

Family

ID=71187341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073366 WO2021179807A1 (zh) 2020-03-10 2021-01-22 显示面板及显示装置

Country Status (3)

Country Link
US (1) US11910683B2 (zh)
CN (1) CN111341936B (zh)
WO (1) WO2021179807A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072678A1 (en) 2015-10-26 2017-05-04 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
CN116583131A (zh) 2017-04-26 2023-08-11 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
JP7390739B2 (ja) 2019-03-07 2023-12-04 オーティーアイ ルミオニクス インコーポレーテッド 核生成抑制コーティングを形成するための材料およびそれを組み込んだデバイス
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
WO2020261191A1 (en) 2019-06-26 2020-12-30 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
CN114342068A (zh) 2019-08-09 2022-04-12 Oti照明公司 包含辅助电极和分区的光电子装置
CN111341936B (zh) * 2020-03-10 2021-11-12 昆山国显光电有限公司 一种显示面板及显示装置
CN111816788B (zh) * 2020-06-30 2022-09-13 昆山国显光电有限公司 一种显示面板及显示装置
CN112436032B (zh) * 2020-07-01 2022-10-18 昆山国显光电有限公司 显示面板及显示装置
CN112002749B (zh) * 2020-09-17 2022-09-23 云谷(固安)科技有限公司 显示面板及显示装置
CN112116874B (zh) * 2020-10-09 2022-07-15 京东方科技集团股份有限公司 显示面板及显示装置
CN114373784A (zh) * 2020-10-14 2022-04-19 Oppo广东移动通信有限公司 显示装置及电子设备
CN112233560B (zh) * 2020-10-30 2022-12-06 厦门天马微电子有限公司 显示面板及显示装置
WO2022123431A1 (en) 2020-12-07 2022-06-16 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
CN112864211B (zh) * 2021-01-27 2022-10-04 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN113113550B (zh) * 2021-03-16 2023-01-10 武汉华星光电半导体显示技术有限公司 Oled显示面板和oled显示装置
CN113594215B (zh) * 2021-07-28 2024-05-07 京东方科技集团股份有限公司 透明显示基板及透明显示装置
WO2023245614A1 (zh) * 2022-06-24 2023-12-28 京东方科技集团股份有限公司 显示基板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887252B2 (en) * 2015-10-19 2018-02-06 Samsung Display Co., Ltd. Transparent display apparatus
CN110767139A (zh) * 2019-03-29 2020-02-07 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN110767708A (zh) * 2019-01-31 2020-02-07 昆山国显光电有限公司 阵列基板、掩模板、显示面板和显示装置
CN110767720A (zh) * 2019-06-05 2020-02-07 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN111341936A (zh) * 2020-03-10 2020-06-26 昆山国显光电有限公司 一种显示面板及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184784B1 (ko) * 2014-06-30 2020-11-30 엘지디스플레이 주식회사 투명 유기 발광 표시 장치
JP2017151339A (ja) * 2016-02-26 2017-08-31 株式会社ジャパンディスプレイ 表示装置
KR102515963B1 (ko) * 2016-03-04 2023-03-30 삼성디스플레이 주식회사 유기 발광 표시 장치
WO2019242510A1 (zh) * 2018-06-20 2019-12-26 京东方科技集团股份有限公司 显示基板及其驱动方法和显示装置
CN110767672B (zh) 2018-08-06 2020-11-17 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110189639B (zh) 2019-06-28 2020-12-04 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN110323259B (zh) * 2019-06-28 2022-04-15 云谷(固安)科技有限公司 像素结构、掩膜板及显示面板
CN115347033A (zh) * 2019-11-27 2022-11-15 武汉天马微电子有限公司 一种显示面板及显示装置
CN113363282B (zh) * 2020-03-05 2023-04-18 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887252B2 (en) * 2015-10-19 2018-02-06 Samsung Display Co., Ltd. Transparent display apparatus
CN110767708A (zh) * 2019-01-31 2020-02-07 昆山国显光电有限公司 阵列基板、掩模板、显示面板和显示装置
CN110767139A (zh) * 2019-03-29 2020-02-07 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN110767720A (zh) * 2019-06-05 2020-02-07 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN111341936A (zh) * 2020-03-10 2020-06-26 昆山国显光电有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN111341936B (zh) 2021-11-12
CN111341936A (zh) 2020-06-26
US11910683B2 (en) 2024-02-20
US20220190055A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2021179807A1 (zh) 显示面板及显示装置
US11943986B2 (en) Display substrate, display panel and display device
US11645966B2 (en) Display panel and display device
WO2020238343A1 (zh) 显示基板、显示面板及显示装置
US20220190051A1 (en) Display panel and display apparatus
US20220310705A1 (en) Display panel and display device
US20210351255A1 (en) Array substrate, display panel and display apparatus
JP2022514274A (ja) 表示基板、表示パネル及び表示装置
WO2021036285A1 (zh) 显示面板及显示装置
US20220028900A1 (en) Transparent display substrates, transparent display panels and display devices
US11387281B2 (en) Array substrate, display panel and display device, enabling full screen display with transparent and non-transparent display areas
US11374078B2 (en) Array substrate, display panel, and display device with pixel arrangement
CN113410257A (zh) 阵列基板、显示面板及显示装置
CN114582949A (zh) 显示基板和显示装置
US20230337494A1 (en) Display panel and display apparatus
CN114242759B (zh) 显示面板及显示装置
CN216623636U (zh) 显示面板及显示装置
KR20230028200A (ko) 디스플레이 기판 및 디스플레이 장치
WO2022087848A1 (zh) 显示面板和显示装置
US20240107829A1 (en) Display panel and display device
US20240078936A1 (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767350

Country of ref document: EP

Kind code of ref document: A1