WO2023245614A1 - 显示基板和显示装置 - Google Patents

显示基板和显示装置 Download PDF

Info

Publication number
WO2023245614A1
WO2023245614A1 PCT/CN2022/101076 CN2022101076W WO2023245614A1 WO 2023245614 A1 WO2023245614 A1 WO 2023245614A1 CN 2022101076 W CN2022101076 W CN 2022101076W WO 2023245614 A1 WO2023245614 A1 WO 2023245614A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
opening
openings
Prior art date
Application number
PCT/CN2022/101076
Other languages
English (en)
French (fr)
Inventor
何庆
袁晓敏
陈文波
燕青青
潘向南
王格
蒋志亮
龙再勇
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/042,472 priority Critical patent/US20230422571A1/en
Priority to CN202280001869.0A priority patent/CN117652227A/zh
Priority to PCT/CN2022/101076 priority patent/WO2023245614A1/zh
Publication of WO2023245614A1 publication Critical patent/WO2023245614A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate and a display device.
  • OLED Organic Light Emitting Display
  • the structure of an OLED display device mainly includes a substrate and sub-pixels arranged in an array on the substrate.
  • a display substrate including: a substrate substrate; a plurality of sub-pixels, the plurality of sub-pixels are arranged in an array on the substrate substrate along a first arrangement direction and a second arrangement direction, and the plurality of sub-pixels are arranged in an array along a first arrangement direction and a second arrangement direction.
  • the sub-pixel includes a plurality of light-emitting areas; a first electrode layer located on the base substrate, the first electrode layer including a plurality of anode structures; and a pixel defining layer located on the first electrode A side of the layer away from the base substrate, the pixel defining layer includes a plurality of openings to define the plurality of light emitting areas, wherein, for at least some of the plurality of sub-pixels, each sub-pixel
  • the orthographic projection of the opening on the base substrate falls within the orthographic projection of the anode structure of the sub-pixel on the base substrate, and the orthographic projection of the opening of each sub-pixel on the base substrate is a pattern
  • the shape of the orthographic projection of the anode structure of the sub-pixel on the base substrate is different; and the number of symmetry axes of the orthographic projection of the anode structure of each sub-pixel on the base substrate is greater than the The number of the symmetry axis of the orthographic projection of the sub-pixel opening on the base substrate.
  • an orthographic projection of the anode structure of each sub-pixel on the base substrate is at a position relative to an opening of the sub-pixel.
  • the orthographic projected graphics on the base substrate are not enlarged in equal proportions.
  • the geometric center of the orthographic projection of the anode structure of each sub-pixel on the base substrate is consistent with the center of the sub-pixel.
  • the geometric centers of the orthographic projections of the openings on the base substrate do not coincide with each other.
  • the geometric center of the orthographic projection of the anode structure of at least one sub-pixel on the base substrate is relative to the sub-pixel.
  • the geometric center of the orthographic projection of the opening on the base substrate is offset in the first arrangement direction; and/or, the anode structure of at least one sub-pixel is on the orthographic projection of the pattern on the base substrate.
  • the geometric center is offset in the second arrangement direction relative to the geometric center of the orthographic projection of the opening of the sub-pixel on the base substrate.
  • the geometric center of the orthographic projection of the anode structure of at least one sub-pixel on the base substrate is relative to the sub-pixel.
  • the geometric center of the orthographic projection of the opening on the base substrate is offset in a first direction, and the first direction is equal to each of the first arrangement direction and the second arrangement direction.
  • the geometric center of the orthographic projection of the anode structure of at least one sub-pixel on the base substrate is relative to the opening of the sub-pixel
  • the geometric center of the orthographic projection on the base substrate is offset in a second direction that is tilted relative to each of the first arrangement direction and the second arrangement direction, There is an included angle between the second direction and the first direction.
  • an orthographic projection of the opening of the sub-pixel on the base substrate has a first axis of symmetry, a first vertex and a second vertex, and the first vertex and the second vertex
  • the vertices are all located on the first symmetry axis, and the first vertex and the second vertex are arranged oppositely; the orthographic projection of the first symmetry axis and the anode structure of the sub-pixel on the substrate substrate
  • the graph has a first intersection point adjacent to the first vertex and a second intersection point adjacent to the second vertex; and in an extension direction of the first axis of symmetry, the third intersection point is adjacent to the first vertex.
  • a first distance between a vertex and the first intersection is not equal to a second distance between the second vertex and the second intersection.
  • the pixel defining layers on both sides of the opening of the sub-pixel respectively cover a part of the anode structure of the sub-pixel, and the anode structure is surrounded by the opening of the sub-pixel.
  • the width of the portion covered by the pixel defining layer on one side is not equal to the width of the other portion of the anode structure covered by the pixel defining layer on the other side of the opening of the sub-pixel, wherein the first cross section is perpendicular to the first
  • the electrode layer contacts the surface of the pixel defining layer, and the first axis of symmetry is located within the first section.
  • the plurality of sub-pixels include an n-th row of sub-pixels and an n+2-th row of sub-pixels, and the n-th row of sub-pixels and the n+2-th row of sub-pixels are along the second arrangement direction. arrangement; and the n-th row of sub-pixels includes a first sub-pixel, the n+2-th row of sub-pixels includes a second sub-pixel, and the second sub-pixel is a plurality of sub-pixels of the n+2-th row of sub-pixels.
  • a sub-pixel among the pixels that is closest to the first sub-pixel in the first arrangement direction and has the same color as the first sub-pixel, the orthographic projection of the opening of the first sub-pixel on the base substrate The pattern and the orthographic projection of the opening of the second sub-pixel on the base substrate are non-translationally coincident, and the orthographic projection of the anode structure of the first sub-pixel on the base substrate is consistent with the pattern.
  • the orthographic projection graphics of the anode structure of the second sub-pixel on the base substrate are translationally coincident.
  • the openings of the sub-pixels are orthogonally projected on the substrate substrate.
  • the graphics of the orthographic projection of the openings of another part of the sub-pixels on the base substrate are non-translationally coincident, and the orthographic projections of the anode structures of all sub-pixels on the base substrate are translationally coincident.
  • the plurality of sub-pixels include an m-th column of sub-pixels and an m+2-th column of sub-pixels, the m-th column of sub-pixels and the m+2-th column of sub-pixels are arranged along the first arrangement direction; and the The m-th column sub-pixel includes a third sub-pixel, the m+2-th column sub-pixel includes a fourth sub-pixel, and the fourth sub-pixel is a plurality of sub-pixels in the m+2-th column sub-pixel in the second arrangement direction.
  • a sub-pixel that is closest to the third sub-pixel and has the same color as the third sub-pixel, and the orthographic projection of the opening of the third sub-pixel on the base substrate is consistent with the fourth sub-pixel.
  • the orthographic projection pattern of the opening of the pixel on the base substrate is non-translationally coincident, and the orthographic projection pattern of the anode structure of the third sub-pixel on the base substrate is consistent with that of the fourth sub-pixel.
  • the orthographic projection graphics of the anode structure on the base substrate are translationally coincident.
  • the openings of the sub-pixels are orthogonally projected graphics on the substrate substrate.
  • the orthographic projection patterns of the openings of another part of the sub-pixels on the base substrate are non-translationally coincident, and the orthographic projection patterns of the anode structures of all sub-pixels on the base substrate are translationally coincident.
  • the orthographic projection of the openings of the plurality of sub-pixels of the same color on the base substrate is at the first
  • the arrangement pitch in one arrangement direction is the first arrangement pitch
  • the arrangement pitch of the orthographic projection pattern of the anode structures of the plurality of sub-pixels of the same color on the substrate in the first arrangement direction is a second arrangement pitch, the first arrangement pitch being greater than the second arrangement pitch; and/or, for at least one sub-pixel of the same color among the plurality of sub-pixels, a plurality of the same-color sub-pixels
  • the arrangement pitch of the orthographic projection of the openings of the sub-pixels on the substrate in the second arrangement direction is the third arrangement pitch
  • the anode structures of the plurality of sub-pixels of the same color are arranged on the substrate.
  • the arrangement pitch of the orthographic projection graphics on the substrate in the second arrangement direction is a fourth arrangement pitch, and the third arrangement pitch is greater than the fourth arrangement pitch; and/or, for the plurality of sub-pixels
  • the arrangement pitch of the orthographic projection graphics of the openings of the multiple sub-pixels of the same color on the substrate in the first direction is the first pitch
  • the arrangement pitch of orthographic projection patterns of the plurality of sub-pixels of the same color on the base substrate in the first direction is a second pitch, and the first pitch is greater than the second pitch.
  • the arrangement pitch is the third pitch
  • the arrangement pitch of the orthographic projection pattern of the plurality of same-color sub-pixel anode structures on the base substrate in the second direction is the fourth pitch
  • the third pitch is greater than the fourth pitch
  • the first arrangement pitch is m times the second arrangement pitch, m is greater than or equal to 1.5; and/or the third arrangement pitch is the fourth arrangement pitch. n times the pitch, n is greater than or equal to 1.5; and/or, the first pitch is p times the second pitch, p is greater than or equal to 1.5; and/or, the third pitch is the Q times of four pitches, q is greater than or equal to 1.5.
  • the orthographic projection of the opening of each sub-pixel on the substrate is a polygon with at least one vertex angle cut off.
  • the shape of the orthographic projection of the anode structure of each sub-pixel on the base substrate is the polygon or circle.
  • the figure of the opening having a polygonal shape with at least one vertex corner truncated includes a plurality of corner portions, the plurality of corner portions including a first corner portion and a second corner portion, said The first corner is a corner formed by cutting off a vertex angle between two sides of the polygon, and the second corner is a corner opposite to the first corner.
  • the figure of the opening having the shape of a polygon with at least one vertex angle truncated has a first axis of symmetry, a first vertex and a second vertex, the first vertex being the first symmetry
  • the point where the axis intersects the first corner, and the second vertex is the point where the first symmetry axis intersects the second corner
  • the first symmetry axis intersects the anode structure of the sub-pixel at
  • the orthographic projection on the base substrate has a first intersection point adjacent to the first vertex and a second intersection point adjacent to the second vertex; and at the first In the extension direction of the symmetry axis, the first distance between the first vertex and the first intersection point is greater than the second distance between the second vertex and the second intersection point.
  • the opening having the first corner is configured to define a light-emitting area of at least one color sub-pixel.
  • the opening having the first corner and configured to define a light-emitting area of the same color sub-pixel includes at least two types of openings, and among the different types of openings, the first corner
  • the apexes of the portions point in different directions from the apexes of the opposite corner portions; and the orthographic projections of the respective anode structures covering different types of openings on the base substrate are translationally coincident.
  • the at least two types of openings include a first type of opening, a second type of opening, a third type of opening, and a fourth type of opening; wherein the first type of opening and the second type of opening The apex of the first corner points in the direction opposite to the apex of the second corner, and the apex of the first corner in the third type opening and the fourth type opening points to the second The directions of the vertices of the corners are opposite; and the orthographic projection patterns of the respective anode structures covering the first type opening, the second type opening, the third type opening and the fourth type opening on the base substrate are translationally coincident.
  • the first type opening and the second type opening are in a first arrangement alternately arranged in the direction; in the n+2th row sub-pixel, the third type opening and the fourth type opening are alternately arranged in the first arrangement direction; and/or, for the m-th column sub-pixel and the m+-th For 2 columns of sub-pixels, in the m-th column of sub-pixels, the first type openings and the second type openings are alternately arranged in the second arrangement direction; in the m+2-th column of sub-pixels, the third type openings and the fourth type openings are alternately arranged in the second arrangement direction.
  • two openings adjacent to the first type opening in the first arrangement direction are second type openings, and the two openings adjacent to the first type opening in the second arrangement direction are second type openings.
  • the two openings adjacent to the first type opening are second type openings, the two openings adjacent to the first type opening in the first direction are third type openings, and the two openings adjacent to the first type opening in the second direction are The two adjacent openings are the fourth type openings.
  • the opening of each sub-pixel includes a main part and an auxiliary part, and the main part of the opening is on the substrate
  • the orthographic projection on the substrate is circular, and the orthographic projection of the auxiliary part of the opening on the substrate substrate protrudes in a second direction relative to the circular shape; and the cover has the main part and the auxiliary part
  • the open anode structure includes a main part and two auxiliary parts.
  • the orthographic projection of the main part of the anode structure on the substrate is circular, and the two auxiliary parts of the anode structure are on the substrate.
  • the orthographic projections on the substrate respectively protrude in opposite directions in the second direction relative to the circle.
  • the openings of the at least some first color sub-pixels include at least two types of openings, and in different types of openings, the auxiliary portion of the opening protrudes relative to the main portion of the opening.
  • the orthographic projections of the anode structures with different directions and covering different types of openings on the base substrate are translationally coincident.
  • the at least two types of openings include a first type opening and a second type opening; a protruding direction of the auxiliary portion in the first type opening and the second type opening relative to the main body portion On the contrary; and the orthographic projection graphics of each anode structure covering the first type opening and the second type opening on the substrate substrate are translationally coincident.
  • the opening of each sub-pixel includes a main part and an auxiliary part, and the main part of the opening is on the substrate
  • the orthographic projection on the substrate is circular, and the orthographic projection of the auxiliary part of the opening on the substrate protrudes in a first direction relative to the circular shape; and the cover has the main part and the auxiliary part
  • the open anode structure includes a main part and two auxiliary parts.
  • the orthographic projection of the main part of the anode structure on the substrate is circular, and the two auxiliary parts of the anode structure are on the substrate.
  • the orthographic projections on the substrate respectively protrude in opposite directions in the first direction relative to the circle.
  • the openings of the at least some third color sub-pixels include at least two types of openings, and in different types of openings, the auxiliary portion of the opening protrudes relative to the main portion of the opening.
  • the orthographic projections of the anode structures with different directions and covering different types of openings on the base substrate are translationally coincident.
  • the at least two types of openings include a third type opening and a fourth type opening; a protruding direction of the auxiliary portion in the third type opening and the fourth type opening relative to the main body portion On the contrary; and the orthographic projection graphics of each anode structure covering the third type opening and the fourth type opening on the substrate substrate are translationally coincident.
  • all first color sub-pixels in the n-th row of sub-pixels include the first type opening, and the n+2-th row of sub-pixels
  • All first color sub-pixels in the pixel include openings of the second type; and/or, for the m-th column sub-pixel and the m+2-th column sub-pixel, all first color sub-pixels in the m-th column sub-pixel include the first type openings, all first color subpixels in the m+2th column of subpixels include second type openings; and/or, in at least one row of first color subpixels arranged along the second direction, the first type openings and the second The type openings are alternately arranged along the second direction.
  • all third color sub-pixels in the n-th row of sub-pixels include third type openings, and the n+2-th row of sub-pixels
  • All third-color sub-pixels in the pixel include a fourth type opening; and/or, for the m-th column sub-pixel and the m+2-th column sub-pixel, all third-color sub-pixels in the m-th column sub-pixel include a third type opening openings, all third-color sub-pixels in the m+2th column sub-pixels include fourth-type openings; and/or, in at least one row of third-color sub-pixels arranged along the first direction, the third-type openings and the fourth-type openings
  • the type openings are alternately arranged along the first direction.
  • an orthographic projection of at least one of the first type opening and the second type opening on the substrate substrate is only relative to a first symmetry axis extending along the second direction. Symmetry; the orthographic projection of the respective anode structure covering the first type opening and the second type opening on the substrate substrate is relative to a first axis of symmetry extending along the second direction and extending along the first direction.
  • the second symmetry axes are all symmetrical; and/or, the orthographic projection of at least one of the third type opening and the fourth type opening on the substrate substrate is only relative to the direction extending along the first direction.
  • the second axis of symmetry is symmetrical; the orthographic projection pattern of each anode structure covering the third type opening and the fourth type opening on the substrate is relative to the second axis of symmetry extending along the first direction and along the The first symmetry axes extending in the second direction are all symmetrical.
  • the orthographic projection of the opening of each sub-pixel on the substrate is a polygon, and the polygon has a first A vertex angle and a first side, the first side is opposite to the first vertex angle; the orthographic projection of the anode structure of each sub-pixel on the base substrate is a rectangular shape.
  • the openings having the first top angle and configured to define the light-emitting area of the sub-pixel of the same color include at least two types of openings, and among the different types of openings, the first top angle The apex of the angle points in different directions to the first side opposite to it; and the orthographic projection graphics of each anode structure covering different types of openings on the base substrate are translationally coincident.
  • the same type of openings among at least two types of openings is in the first arrangement direction.
  • the other of the at least two types of openings of the same type is arranged in the first arrangement direction; and for the n-th row of sub-pixels and the n+1-th row of sub-pixels Specifically, the orthographic projection patterns of the anode structures of two sub-pixels in the same column on the base substrate are translationally coincident.
  • the opening of each sub-pixel presents two sub-openings arranged in a mirror image, and the anode structure of the sub-pixel is on the front side of the substrate.
  • the projection covers the orthographic projection of the two sub-openings arranged in a mirror image on the substrate; the orthographic projection of each of the two sub-openings on the substrate is a polygon, and the polygon has A first vertex angle and a first side, the first side being opposite to the first vertex angle.
  • the openings having the first top angle and configured to define the light-emitting area of the sub-pixel of the same color include at least two types of openings, and among the different types of openings, the first top angle The apex of the angle points in different directions to the first side opposite to it; and the orthographic projection graphics of each anode structure covering different types of openings on the base substrate are translationally coincident.
  • the same type of opening among at least two types of openings is in the first arrangement direction.
  • the other of the at least two types of openings of the same type is arranged in the first arrangement direction; and for the n-th row of sub-pixels and the n+2-th row of sub-pixels Specifically, the orthographic projection patterns of the anode structures of two sub-pixels in the same column on the base substrate are translationally coincident.
  • a display device wherein the display device includes the display substrate as described above.
  • FIG. 1A is a schematic plan view of a display device according to some exemplary embodiments of the present disclosure, schematically showing a planar structure of a display substrate included in the display device.
  • FIG. 1B is a schematic cross-sectional view of a display device taken along line AA' in FIG. 1A according to some exemplary embodiments of the present disclosure.
  • FIG. 2A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to some exemplary embodiments of the present disclosure.
  • FIG. 2B is an enlarged view of a single sub-pixel in FIG. 2A.
  • Fig. 2C is a schematic cross-sectional view taken along line BB' in Fig. 2B.
  • Figure 3 schematically shows the simulation results of interference fringes under the embodiment shown in Figure 2A.
  • FIG. 4A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to some exemplary embodiments of the present disclosure.
  • FIG. 4B is an enlarged view of a single sub-pixel in FIG. 4A.
  • Figure 4C is a schematic cross-sectional view taken along line CC' in Figure 4B.
  • FIG. 5 is an enlarged view of the opening of a single sub-pixel shown in FIG. 4A.
  • FIG. 6 schematically shows the simulation results of interference fringes under the embodiment shown in FIG. 4A.
  • FIG. 7 is a partial schematic diagram schematically showing a specific structure of a display substrate anode according to some exemplary embodiments of the present disclosure.
  • FIG. 8A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to other exemplary embodiments of the present disclosure.
  • 8B to 8D are respectively enlarged views of a single sub-pixel of the display substrate in the display area according to other exemplary embodiments of the present disclosure.
  • FIG. 9A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to further exemplary embodiments of the present disclosure.
  • FIG. 9B is an enlarged view of a single sub-pixel in FIG. 9A.
  • FIG. 10A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to further exemplary embodiments of the present disclosure.
  • FIG. 10B is an enlarged view of a single sub-pixel in FIG. 10A.
  • FIG. 11A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to further exemplary embodiments of the present disclosure.
  • FIG. 11B is an enlarged view of a single sub-pixel in FIG. 11A.
  • FIG. 12 is a schematic cross-sectional view taken along line AA' in FIG. 1 , schematically showing a specific structure of a display substrate according to some exemplary embodiments of the present disclosure.
  • FIG. 13 is an equivalent circuit diagram of a pixel driving circuit of a display substrate according to some exemplary embodiments of the present disclosure.
  • connection may refer to a physical connection, an electrical connection, a communication connection, and/or a fluid connection.
  • the X-axis, Y-axis, and Z-axis are not limited to the three axes of the rectangular coordinate system and can be interpreted in a broader meaning.
  • the X, Y, and Z axes may be perpendicular to each other, or may represent different directions that are not perpendicular to each other.
  • X, Y, and Z and "at least one selected from the group consisting of X, Y, and Z” may be interpreted as only X, only Y, only Z, or Any combination of two or more of X, Y and Z such as XYZ, XY, YZ and XZ.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • first”, “second”, etc. may be used herein to describe various components, components, elements, regions, layers and/or sections, these components, components, elements, regions, layers and/or parts shall not be limited by these terms. Rather, these terms are used to distinguish one part, component, element, region, layer and/or section from another.
  • a first component, first component, first element, first region, first layer and/or first section discussed below could be termed a second component, second component, second element, second region , second layer and/or second portion without departing from the teachings of the present disclosure.
  • spatially relative terms such as “upper,” “lower,” “left,” “right,” etc. may be used herein to describe one element or feature in relation to another element or feature as illustrated in the figures. relation. It will be understood that the spatially relative terms are intended to cover different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” or “above” the other elements or features.
  • the expression “repeating unit” may mean that at least two or more units are provided in the display substrate and these units are closely repeated.
  • the repeating unit may represent a combination of multiple sub-pixels, for example, a combination of multiple sub-pixels used to display one pixel, and multiple "repeating units" are repeatedly arranged in an array on the substrate.
  • a repeating unit may include at least one pixel, and may include 2, 3, 4, or more sub-pixels.
  • the repeating unit located in the first display area is called a first repeating unit
  • the repeating unit located in the second display area is called a second repeating unit.
  • the expression “repeating unit” may also be referred to as "pixel structure".
  • pixel density means the number of repeating units or sub-pixels per unit area.
  • distributed density represents the number of components (eg, repeating units, sub-pixels, spacers, etc.) per unit area.
  • opening means an opening of the pixel defining layer in each sub-pixel, which opening exposes at least a portion of the anode structure of the light-emitting device of the sub-pixel, and at least a portion of the light-emitting layer of the light-emitting device. It is also located in the opening, that is, the opening corresponds to the light-emitting area of the sub-pixel.
  • center of the opening means the geometric center or centroid of the orthographic projection of the opening on the substrate.
  • the center of the opening is the center of the circle;
  • the center of the opening is the center of the ellipse, that is, the intersection of the major axis and the minor axis of the ellipse;
  • the center of the opening is the center of the rectangle, that is, the intersection of the two diagonals of the rectangle.
  • the expression "A and B are substantially located on the same straight line extending parallel to the first arrangement direction” includes the following situations: A and B are located on the same straight line extending parallel to the first arrangement direction; A There is a certain error in the position of and B in the direction perpendicular to the first arrangement direction, and the error is less than or equal to ⁇ 5 microns.
  • the distance between the first opening and the second opening and other similar expressions refer to the distance between the center of the first opening and the center of the second opening, and “the distance between the first opening and the second opening” Similar expressions such as “the separation distance between the second openings” represent the distance between the edge of the first opening closest to the second opening and the edge of the second opening closest to the first opening.
  • translation of a figure means: moving a figure a certain distance in a certain direction in a plane. Such movement of a figure is called translation. After a figure is translated, a new figure is obtained. This figure can overlap with the original figure, but the position has changed. In other words, in a plane, one figure and another figure can overlap each other only through translational motion, and the two figures can be considered to be translationally coincident. Correspondingly, in a plane, one figure and another figure cannot coincide with each other through translational movement alone, and the two figures can be considered to be non-translationally coincident.
  • Graphic rotation means: rotating a graph by an angle in a certain direction around a fixed point in a plane. This kind of graphic movement is called the rotation of the graph. This fixed point is called the center of rotation, and the angle of rotation is called the angle of rotation. Rotation does not change the shape and size of the graphic. In a plane, one figure and another figure can overlap each other through translation and rotation. It can be considered that the two figures are not translationally coincident, but rotationally coincident.
  • the shapes of the figures are different means that the shapes of the two figures are different; if the shapes of the two figures are the same but have different areas, it does not belong to the situation of "the shapes of the figures are different". For example, two figures are neither translationally coincident nor rotationally coincident.
  • first arrangement direction “second arrangement direction”, “first direction” and “second direction”
  • first arrangement direction X “th "Second arrangement direction Y”
  • first direction M1 “second direction M2”
  • first arrangement direction X and the second arrangement direction Y can be used to represent the arrangement direction of each sub-pixel.
  • the arrangement direction may The direction of the line connecting the geometric centers of the light-emitting areas of two adjacent sub-pixels may or may not be parallel.
  • the first arrangement direction intersects the second arrangement direction.
  • the angle between the first arrangement direction and the second arrangement direction may be 80-100 degrees.
  • the angle between the first arrangement direction and the second arrangement direction may be 85-95 degrees.
  • the first arrangement direction and the second arrangement direction may be perpendicular, but are not limited thereto, and may not be perpendicular.
  • the first arrangement direction and the second arrangement direction may be interchanged.
  • the first direction M1 and the second direction M2 can be used to represent the direction intersecting the first arrangement direction X and the second arrangement direction Y. It should be understood that the first direction M1 and the second direction M2 can also be used to represent the direction of each sub-pixel.
  • Arrangement direction which may or may not be parallel to the direction connecting the geometric centers of the light-emitting areas of two adjacent sub-pixels. For example, the first direction intersects the second direction.
  • the angle between the first direction and the second direction may be 80-100 degrees.
  • the angle between the first direction and the second direction may be 85-95 degrees.
  • the first direction and the second direction may be perpendicular, but are not limited thereto, and may not be perpendicular.
  • the first direction and the second direction may be interchanged.
  • the first arrangement direction and they form an included angle of about 45° with the first arrangement direction X and the second arrangement direction Y respectively.
  • Embodiments of the present disclosure provide a display substrate, which includes: a base substrate; a plurality of sub-pixels, the plurality of sub-pixels are arranged in an array on the base substrate along a first arrangement direction and a second arrangement direction.
  • the plurality of sub-pixels include a plurality of light-emitting areas; a first electrode layer located on the base substrate, the first electrode layer including a plurality of anode structures; and a pixel defining layer located on A side of the first electrode layer away from the base substrate, and the pixel defining layer includes a plurality of openings to define the plurality of light-emitting areas, wherein for at least some of the plurality of sub-pixels , the orthographic projection of the opening of each sub-pixel on the base substrate falls within the orthographic projection of the anode structure of the sub-pixel on the base substrate, and the opening of each sub-pixel is on the base substrate
  • designing the corresponding anode structures to have the same shape can reduce the arrangement period (ie, arrangement pitch) of the anode structures, making the interference fringes invisible to the human eye. , which can significantly improve the use experience of the display substrate.
  • FIG. 1A is a schematic plan view of a display device according to some exemplary embodiments of the present disclosure, schematically showing a planar structure of a display substrate included in the display device.
  • FIG. 1B is a schematic cross-sectional view of a display device taken along line AA' in FIG. 1A according to some exemplary embodiments of the present disclosure.
  • a display device includes a display substrate 10 .
  • the display substrate 10 includes a display area, and the display area may include a display area AA.
  • the shape of the display area AA may be circular, elliptical, or rectangular, but embodiments of the present disclosure are not limited thereto.
  • the shape of the display area AA may be a rectangle, a rounded rectangle, or other suitable shapes.
  • the display substrate 10 may include a base substrate 1 and a plurality of pixel units disposed on the base substrate 1 , and each pixel unit may include a plurality of sub-pixels.
  • OLED display technology can be used. Because OLED display substrates have the advantages of wide viewing angle, high contrast, fast response, low power consumption, foldability, flexibility, etc., they are increasingly used in display products.
  • the display substrate 10 may further include a driving circuit layer, a light emitting device layer and an encapsulation layer provided on the base substrate 1 .
  • the pixel driving circuit layer 3, the light emitting device layer 4 and the packaging layer 5 are schematically shown in FIG. 1B.
  • the pixel driving circuit layer 3 includes a pixel driving circuit structure, and the light emitting device layer 4 includes a light emitting device such as an OLED.
  • the pixel driving circuit structure controls the light-emitting devices of each sub-pixel to emit light to achieve display functions.
  • the pixel driving circuit structure includes thin film transistors, storage capacitors and various signal lines.
  • the various signal lines include gate lines, data lines, ELVDD power lines, ELVSS power lines, etc., in order to provide various signals such as control signals, data signals, and power supply voltages for the pixel driving circuit in each sub-pixel.
  • FIG. 2A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to some exemplary embodiments of the present disclosure.
  • FIG. 2B is an enlarged view of a single sub-pixel in FIG. 2A.
  • Fig. 2C is a schematic cross-sectional view taken along line BB' in Fig. 2B.
  • Figure 3 schematically shows the simulation results of interference fringes under the embodiment shown in Figure 2A.
  • the display substrate 10 includes a plurality of sub-pixels.
  • the plurality of sub-pixels include a plurality of first-color sub-pixels SP1, a plurality of second-color sub-pixels SP2, and a plurality of third-color sub-pixels SP3.
  • a plurality of first color sub-pixels SP1 and a plurality of third color sub-pixels SP3 are alternately arranged along the first arrangement direction (the X direction as shown in FIG. 2A, also called the row direction) to form a first pixel row 01.
  • the second color sub-pixels SP2 are arranged along the first arrangement direction
  • the Y direction shown (also called the column direction) is alternately arranged and staggered from each other in the first arrangement direction X.
  • first color sub-pixels SP1 and second color sub-pixels SP2 are arranged along a first direction M1, and the first direction M1 intersects both the first arrangement direction X and the second arrangement direction Y.
  • first direction M1 intersects both the first arrangement direction X and the second arrangement direction Y.
  • a plurality of first color sub-pixels SP1 and a plurality of third color sub-pixels SP3 are alternately arranged along the second arrangement direction Y to form a plurality of first pixel columns 03
  • a plurality of second color sub-pixels SP2 are arranged along the second arrangement direction Y.
  • the first arrangement direction An arrangement direction
  • the second pixel column 04 where the pixel SP2 is located is located between two adjacent first pixel columns 03 .
  • the display substrate includes a plurality of repeating units A arranged in an array.
  • Each repeating unit A includes two rows and four columns of sub-pixels. That is, each repeating unit A includes one first color sub-pixel SP1, one The third color sub-pixel SP3 and the two second color sub-pixels SP2, the first color sub-pixel SP1 and the third color sub-pixel SP3 are common sub-pixels.
  • the four sub-pixels can realize the two virtual pixel units. show. For example, in the same row of repeating units, the first color subpixel SP1 in the second repeating unit, the third color subpixel SP3 in the first repeating unit, and the first color subpixel SP3 in the first repeating unit that is close to the second repeating unit.
  • the two-color sub-pixel SP2 forms a virtual pixel unit.
  • the first-color sub-pixel SP1 in the second repeating unit also repeats with the third-color sub-pixel SP3 in the repeating unit and with the adjacent first color sub-pixel SP3 in the repeating unit.
  • the second color sub-pixel SP2 of the unit forms a virtual pixel unit; in addition, the third color sub-pixel SP3 in the second repeating unit is also connected with another second color sub-pixel SP2 in the repeating unit and the third repeating unit
  • the first color sub-pixel SP1 forms a virtual pixel unit, thereby effectively improving the resolution of the display substrate.
  • the sub-pixel in the embodiment of the present disclosure refers to the light-emitting device structure, and the first color sub-pixel, the second color sub-pixel and the third color sub-pixel are sub-pixels that emit light of different colors.
  • the first color sub-pixel is a red sub-pixel
  • the second color sub-pixel is a green sub-pixel
  • the third color sub-pixel is a blue sub-pixel.
  • the fact that the first color sub-pixel is a red sub-pixel, the second color sub-pixel is a green sub-pixel and the third color sub-pixel is a blue sub-pixel does not limit the scope of protection of the embodiments of the present disclosure.
  • the first color sub-pixel SP1 and the third color sub-pixel SP3 are common sub-pixels, and according to their emission spectra, the area of the light-emitting area of both is larger than the area of the second color sub-pixel SP2.
  • the area of the light-emitting area of at least one blue sub-pixel is greater than the area of the light-emitting area of at least one red sub-pixel, and the area of the light-emitting area of at least one red sub-pixel is greater than the area of the light-emitting area of at least one green sub-pixel, so as to extend the display The service life of the substrate.
  • the areas of the light-emitting areas of sub-pixels of the same color are substantially equal.
  • the innermost figure represents the opening or light-emitting area of the sub-pixel, which is larger than the area of the opening or light-emitting area of the sub-pixel and basically surrounds the opening.
  • the outline is the outline of the anode structure of the sub-pixel.
  • each sub-pixel includes a light emitting area 200.
  • the display substrate 10 includes a pixel defining layer 8 (see FIG. 12 ) disposed on the base substrate 1 , and the shape of the light-emitting area 200 of each sub-pixel is defined by the opening in the pixel defining layer 8 , then the light-emitting area of each sub-pixel The shape of 200 is approximately the same as the shape of the opening of the pixel defining layer 8 .
  • the pixel definition layer 8 includes a plurality of first openings 101 , a plurality of second openings 102 and a plurality of third openings 103 .
  • the first opening 101 defines the first light-emitting area of the first color sub-pixel SP1
  • the second opening 102 defines the second light-emitting area of the second color sub-pixel SP2
  • the third opening 103 defines the third light-emitting area of the third color sub-pixel SP3.
  • the display substrate includes a base substrate, on which each sub-pixel and the pixel definition layer 8 are disposed.
  • Each sub-pixel includes an organic light-emitting element.
  • the organic light-emitting element includes a stacked first electrode, a light-emitting layer, and a second electrode.
  • the first electrode is located on a side of the light-emitting layer facing the base substrate.
  • at least part of the first electrode is located on a side of the pixel defining layer facing the base substrate.
  • the first electrode and the second electrode located on both sides of the light-emitting layer can drive the light-emitting layer in the opening of the pixel defining layer 8 to emit light.
  • a functional layer is further disposed between at least one of the light-emitting layer and the first electrode and between the light-emitting layer and the second electrode.
  • the functional layer includes any one of a hole injection layer, a hole transport layer, an electron transport layer, a hole blocking layer, an electron blocking layer, an electron injection layer, an auxiliary light emitting layer, an interface improvement layer, an antireflection layer, etc., or Multiple layers.
  • the display substrate 10 includes a first electrode layer 41 located on the base substrate 1 , and the first electrode layer 41 includes a plurality of anode structures. .
  • the anode structure constitutes the main part of the anode of the organic light-emitting element.
  • the anode structure included in the organic light-emitting element of the first color sub-pixel SP1 can be called the first anode structure 401
  • the anode structure included in the organic light-emitting element of the second color sub-pixel SP2 can be called the second anode structure 402.
  • the anode structure included in the organic light-emitting element of the third color sub-pixel SP3 is called the third anode structure 403.
  • the orthographic projection of the opening of the pixel defining layer on the base substrate is located within the orthographic projection of the corresponding luminescent layer on the base substrate, that is, the luminescent layer covers the opening of the pixel defining layer.
  • the orthographic projection of the opening of each sub-pixel on the substrate falls within the orthographic projection of the respective anode structure on the substrate.
  • the orthographic projection of the first opening 101 of the first color sub-pixel SP1 on the substrate 1 falls within the orthographic projection of the first anode structure 401 of the first color sub-pixel SP1 on the substrate 1, and the second color
  • the orthographic projection of the second opening 102 of the sub-pixel SP2 on the substrate 1 falls within the orthographic projection of the second anode structure 402 of the second color sub-pixel SP2 on the substrate 1, and the third color sub-pixel SP3
  • the orthographic projection of the three openings 103 on the base substrate 1 falls within the orthographic projection of the third anode structure 403 of the third color sub-pixel SP3 on the base substrate 1 .
  • the area of the anode structure is larger than the area of the opening, which is beneficial to ensuring that the organic light-emitting material in the opening of the sub-pixel emits uniform light.
  • the orthographic projection of the anode structure of each sub-pixel on the base substrate and the orthographic projection of the respective opening on the base substrate have the same shape, with only different areas.
  • the shape of the opening of each sub-pixel is a figure including rounded corners
  • the shape of the light-emitting area of each sub-pixel is also a figure including rounded corners
  • the shape of the opening of each sub-pixel is a figure including rounded corners
  • the shape of the anode structure may also be a figure including rounded corners.
  • the pattern of the opening of the pixel defining layer may include four straight edges, and at least two adjacent straight edges are connected by a curved segment forming a rounded corner.
  • embodiments of the present disclosure are not limited thereto.
  • the pattern of the light-emitting area of each sub-pixel may also include three straight edges, five straight edges, or six straight edges, and the number of vertex corners included in the light-emitting area will also change accordingly.
  • the orthographic projection of the first opening 101 of the first color sub-pixel SP1 on the substrate 1 has the shape of a rounded rectangle.
  • the first opening 101 of the first color sub-pixel SP1 The orthographic projection of an anode structure 401 on the base substrate 1 also has a rounded rectangular shape.
  • the orthographic projection of the second opening 102 of the second color sub-pixel SP2 on the substrate 1 has a rounded rectangular shape.
  • the orthographic projection of the second anode structure 402 of the second color sub-pixel SP2 on the substrate 1 The projection also has the shape of a rounded rectangle.
  • the orthographic projection of the third opening 103 of the third color sub-pixel SP3 on the substrate 1 has an irregular shape (for example, a rectangle with one vertex corner cut off).
  • the third anode of the third color sub-pixel SP3 The orthographic projection of the structure 403 on the base substrate 1 also has this irregular shape (for example, a rectangle with one corner truncated).
  • the anode structure of each sub-pixel is proportionally enlarged relative to its respective opening.
  • the orthographic projection of the third opening 103 of the third color sub-pixel SP3 on the substrate 1 and the orthographic projection of the third anode structure 403 of the third color sub-pixel SP3 on the substrate 1 Having the shape of an irregular polygon, for example, referring to FIG. 5 , the irregular polygon may have at least one first vertex corner 301 cut off to form at least one first corner 1011 , and the irregular polygon may further include a second corner 1012 , the second corner portion 1012 is opposite to the first corner portion 1011 .
  • the third color sub-pixel SP3 may include at least two types of sub-pixels.
  • the vertex of the first corner 1011 points in the direction of the vertex of the second corner 1012 opposite to it; in the other type of sub-pixel, the direction is D1;
  • the direction in which the vertex of the first corner 1011 points to the vertex of the opposite second corner 1012 is D4, and the two directions are different.
  • the direction D1 and the direction D4 may be parallel and opposite, but are not limited thereto, and the two directions may also intersect.
  • the third color sub-pixel SP3 includes two different types of sub-pixels.
  • One type of sub-pixel has the first corner 1011 facing right, and the other type of sub-pixel has the first corner 1011 facing right.
  • the orientation is to the left.
  • orientations of the first corners of the two different types of sub-pixels in the third color sub-pixel can also be upward and downward, or upward and left, or upward and right, respectively. Or down and to the right, or down and to the left.
  • the embodiments of the present disclosure are not limited to the third color sub-pixel including two different types. It is also possible that at least one of the first color sub-pixel and the second color sub-pixel includes two different types of sub-pixels, and the same color sub-pixel
  • the judgment criteria for different types of sub-pixels in the third color sub-pixel may refer to the above-mentioned judgment criteria for different types of sub-pixels in the third color sub-pixel.
  • two sub-pixels adjacent along at least one of the first arrangement direction and the second arrangement direction are sub-pixels of different types.
  • the orientations of the first corners 1011 in two adjacent third color sub-pixels SP3 arranged along the first arrangement direction are different, for example, to the left and to the right respectively, but are not limited to this. It can be up and down, or up and left, or up and right, or down and right, or down and left.
  • the orientations of the first corners 1011 in two adjacent third color sub-pixels SP3 arranged along the second arrangement direction are different, such as upward and downward respectively, but are not limited to this, and may also be Left and right, or up and left, or up and right, or down and right, or down and left.
  • the embodiments of the present disclosure are not limited thereto.
  • the above-mentioned at least one color sub-pixel may also include three types of sub-pixels, and the orientation of the first corners of the three different types of sub-pixels may include upward, downward, left and right. Any three of them, and the sub-pixels located in the same row (or the same column) may include the same type of sub-pixels, or may include at least two types of sub-pixels, in at least one of the first arrangement direction and the second arrangement direction. Two sub-pixels adjacent in the direction can be the same type of sub-pixels or different types of sub-pixels, which can be set according to actual product requirements.
  • one color sub-pixel may also include the above three types of sub-pixels, each of the two color sub-pixels may include the above-mentioned three types of sub-pixels, or each of the three color sub-pixels may include Each pixel includes the above three types of sub-pixels, which are not limited in this embodiment of the disclosure.
  • the above-mentioned at least one color sub-pixel includes four different types of sub-pixels, such as a first type sub-pixel 1001, a second type sub-pixel 1002, a third type sub-pixel 1003 and a fourth type sub-pixel. 1004.
  • the directions from the vertices of the first corner 1011 to the vertices of the second corner 1012 are different.
  • the positions of the first corner 1011 are different in different types of sub-pixels.
  • the first corner portion 1011 has different orientations in different types of sub-pixels.
  • each type of sub-pixel has the same shape or the same area.
  • each type of sub-pixel has the same shape and area.
  • the number of different types of subpixels is roughly the same.
  • the number ratio of any two types of sub-pixels is 0.8 ⁇ 1.2.
  • the number ratio of the first type sub-pixel 1001 to the second type sub-pixel 1002 is 0.8-1.2
  • the number ratio of the third-type sub-pixel 1003 to the fourth type sub-pixel 1004 is 0.8-1.2. 1.2.
  • the number ratio of any two types of sub-pixels is 0.9 ⁇ 1.1.
  • the vertex of the first corner 1011 points to the second corner 1012
  • the directions of the vertices are direction D2, direction D3, direction D4 and direction D1 respectively.
  • the direction in which the vertex of the first corner 1011 points to the vertex of the second corner 1012 is direction D2; in the opening of the second type sub-pixel 1002, the vertex of the first corner 1011 points in the direction D2.
  • the direction pointing to the vertex of the second corner 1012 is direction D3; in the opening of the third type sub-pixel 1003, the direction pointing the vertex of the first corner 1011 to the vertex of the second corner 1012 is direction D4; the fourth type sub-pixel In the opening of 1004, the direction in which the vertex of the first corner portion 1011 points to the vertex of the second corner portion 1012 is direction D1.
  • the apex of the first corner 1011 points in the opposite direction to the apex of the second corner 1012 opposite to it, for example, parallel to the second Arrangement direction Y; in the third type sub-pixel 1003 and the fourth type sub-pixel 1004, the apex of the first corner 1011 points in the opposite direction to the apex of the second corner 1012 opposite to it, for example, parallel to the first arrangement direction X.
  • direction D2 is opposite to direction D3
  • direction D4 is opposite to direction D1.
  • the third color sub-pixel includes four different types of sub-pixels, but is not limited thereto. It is also possible that at least one color sub-pixel of the first color sub-pixel and the second color sub-pixel includes the above four types. sub-pixels of different types.
  • the direction in which the vertex of the first corner of the sub-pixels of different types in other color sub-pixels points to the vertex of the second corner can be parallel to the first arrangement direction or the second arrangement direction, or can also be parallel to the first arrangement direction. direction or the second alignment direction.
  • the display substrate provided by the embodiment of the present disclosure four different types of sub-pixels are provided, which is beneficial to improving the color shift problem during display of the display substrate.
  • the shapes of the four corners included in the opening areas of sub-pixels of different colors are all the same.
  • the display substrate provided by the embodiment of the present disclosure is configured with the above four different types of sub-pixels. , which is beneficial to reducing the graininess that occurs when the display substrate is displayed.
  • the anode structure of each sub-pixel is enlarged in proportion to the respective opening. That is to say, in the first type sub-pixel 1001, the second type sub-pixel 1002, the third type sub-pixel 1003 and the fourth type sub-pixel 1004, in terms of the anode structure of the sub-pixel, the vertex of the first corner portion 1011
  • the directions pointing to the vertex of the second corner portion 1012 are direction D2, direction D3, direction D4 and direction D1 respectively.
  • the direction in which the vertex of the first corner 1011 points to the vertex of the second corner 1012 is direction D2; in the opening of the second type sub-pixel 1002, the vertex of the first corner 1011 points in the direction D2.
  • the direction pointing to the vertex of the second corner 1012 is direction D3; in the opening of the third type sub-pixel 1003, the direction pointing the vertex of the first corner 1011 to the vertex of the second corner 1012 is direction D4; the fourth type sub-pixel In the opening of 1004, the direction in which the vertex of the first corner portion 1011 points to the vertex of the second corner portion 1012 is direction D1.
  • the anode structure of each sub-pixel forms a periodic irregular pattern arrangement.
  • the inventor found through research that when the anode structure of each sub-pixel forms a periodic irregular pattern arrangement, the light diffraction and reflection paths of different rows and/or columns are different, and periodic stripes will appear (refer to Figure 3, schematically shows the interference fringes under the embodiment shown in Figure 2A), which greatly affects the user experience.
  • FIG. 4A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to some exemplary embodiments of the present disclosure.
  • FIG. 4B is an enlarged view of a single sub-pixel in FIG. 4A.
  • Figure 4C is a schematic cross-sectional view taken along line CC' in Figure 4B.
  • FIG. 5 is an enlarged view of the opening of a single sub-pixel shown in FIG. 4A.
  • FIG. 6 schematically shows the simulation results of interference fringes under the embodiment shown in FIG. 4A.
  • 7 is a partial schematic diagram schematically showing a specific structure of a display substrate anode according to some exemplary embodiments of the present disclosure.
  • FIG. 8A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to other exemplary embodiments of the present disclosure.
  • 8B to 8D are respectively enlarged views of a single sub-pixel of the display substrate in the display area according to other exemplary embodiments of the present disclosure.
  • FIG. 9A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to further exemplary embodiments of the present disclosure.
  • FIG. 9B is an enlarged view of a single sub-pixel in FIG. 9A.
  • FIG. 10A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to further exemplary embodiments of the present disclosure.
  • FIG. 10A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to further exemplary embodiments of the present disclosure.
  • FIG. 10B is an enlarged view of a single sub-pixel in FIG. 10A.
  • FIG. 11A is a partial schematic diagram schematically illustrating the arrangement of sub-pixels of a display substrate in a display area according to further exemplary embodiments of the present disclosure.
  • FIG. 11B is an enlarged view of a single sub-pixel in FIG. 11A.
  • part of the content may refer to the above description of FIGS. 2A to 2C , and the following mainly describes content that is different from FIGS. 2A to 2C . Accordingly, in order to avoid confusion, components, elements or portions having the same or similar structure are designated with the same reference numerals, and components, elements or portions having different structures or shapes are designated with different reference numerals.
  • the display substrate 10 includes a plurality of sub-pixels.
  • the plurality of sub-pixels include a plurality of first-color sub-pixels SP1, a plurality of second-color sub-pixels SP2, and a plurality of third-color sub-pixels SP3.
  • a plurality of first color sub-pixels SP1 and a plurality of third color sub-pixels SP3 are alternately arranged along the first arrangement direction (the X direction as shown in FIG. 4A, also called the row direction) to form a first pixel row 01.
  • the second color sub-pixels SP2 are arranged along the first arrangement direction
  • the Y direction shown (also called the column direction) is alternately arranged and staggered from each other in the first arrangement direction X.
  • first color sub-pixels SP1 and second color sub-pixels SP2 are arranged along a first direction M1, and the first direction M1 intersects both the first arrangement direction X and the second arrangement direction Y.
  • first direction M1 intersects both the first arrangement direction X and the second arrangement direction Y.
  • a plurality of first color sub-pixels SP1 and a plurality of third color sub-pixels SP3 are alternately arranged along the second arrangement direction Y to form a plurality of first pixel columns 03
  • a plurality of second color sub-pixels SP2 are arranged along the second arrangement direction Y.
  • the first arrangement direction An arrangement direction
  • the second pixel column 04 where the pixel SP2 is located is located between two adjacent first pixel columns 03 .
  • the display substrate includes a plurality of repeating units A arranged in an array.
  • Each repeating unit A includes two rows and four columns of sub-pixels. That is, each repeating unit A includes one first color sub-pixel SP1, one The third color sub-pixel SP3 and the two second color sub-pixels SP2, the first color sub-pixel SP1 and the third color sub-pixel SP3 are common sub-pixels.
  • the four sub-pixels can realize the two virtual pixel units. show. For example, in the same row of repeating units, the first color subpixel SP1 in the second repeating unit, the third color subpixel SP3 in the first repeating unit, and the first color subpixel SP3 in the first repeating unit that is close to the second repeating unit.
  • the two-color sub-pixel SP2 forms a virtual pixel unit.
  • the first-color sub-pixel SP1 in the second repeating unit also repeats with the third-color sub-pixel SP3 in the repeating unit and with the adjacent first color sub-pixel SP3 in the repeating unit.
  • the second color sub-pixel SP2 of the unit forms a virtual pixel unit; in addition, the third color sub-pixel SP3 in the second repeating unit is also connected with another second color sub-pixel SP2 in the repeating unit and the third repeating unit
  • the first color sub-pixel SP1 forms a virtual pixel unit, thereby effectively improving the resolution of the display substrate.
  • each sub-pixel includes a light emitting area 200.
  • the display substrate 10 includes a pixel defining layer 8 (see FIG. 12 ) disposed on the base substrate 1 , and the shape of the light-emitting area 200 of each sub-pixel is defined by the opening in the pixel defining layer 8 , then the light-emitting area of each sub-pixel The shape of 200 is approximately the same as the shape of the opening of the pixel defining layer 8 .
  • the pixel definition layer 8 includes a plurality of first openings 101 , a plurality of second openings 102 and a plurality of third openings 103 .
  • the first opening 101 defines the first light-emitting area of the first color sub-pixel SP1
  • the second opening 102 defines the second light-emitting area of the second color sub-pixel SP2
  • the third opening 103 defines the third light-emitting area of the third color sub-pixel SP3.
  • FIG. 12 is a schematic cross-sectional view taken along line AA' in FIG. 1 , schematically showing a specific structure of a display substrate according to some exemplary embodiments of the present disclosure.
  • the display substrate 10 includes a pixel driving circuit layer sequentially stacked on the base substrate 1, where the pixel driving circuit layer may include a thin film transistor T, an insulating layer 31, a flat film layer 32 and organic light-emitting element 41.
  • the organic light-emitting element 41 includes a first electrode (eg, anode) 41A located in the first electrode layer, a second electrode (eg, cathode) 41C located in the second electrode layer, and an electrode located between the first electrode 41A and the second electrode 41C.
  • Light emitting layer 41B is a schematic cross-sectional view taken along line AA' in FIG. 1 , schematically showing a specific structure of a display substrate according to some exemplary embodiments of the present disclosure.
  • the display substrate 10 includes a pixel driving circuit layer sequentially stacked on the
  • the first electrode 41A of the organic light-emitting element 41 is electrically connected to the transistor through the anode connection hole VH1 penetrating the planarization layer 32 .
  • the pixel driving circuit layer may include a semiconductor layer, a first insulating layer, a first gate layer, a second insulating layer, a second gate layer, an interlayer insulating layer, a source and drain metal layer, etc.
  • the pixel driving circuit may include 7 thin film transistors (such as driving transistors, data writing transistors, compensation transistors, reset transistors, light emitting control transistors, etc.), and a storage capacitor, wherein at least one thin film transistor and a light emitting device Direct connection, such as a light-emitting control transistor.
  • the thin film transistor T at least includes an active layer located in the semiconductor layer, a source contact portion, a drain contact portion, a gate located in the first gate layer, and a source contact portion. Source and drain electrodes in the drain metal layer.
  • via or “connection hole” is used to electrically connect components located in different conductive layers.
  • via or “via” “Connection holes” may also take other alternative forms, for example, instead of said vias or connection holes, “grooves” may be used to electrically connect components located in different conductive layers.
  • the first electrode 41A may include transparent conductive materials such as ITO.
  • the embodiments of the present disclosure do not limit the specific material of the first electrode 41A.
  • the second electrode 41C may be a structure formed on the entire surface of the display substrate 10 (for example, at least covering the entire display area).
  • the second electrode 41C may include, for example, lithium (Li), aluminum (Al), magnesium (Mg), Silver (Ag) and other metal materials.
  • the second electrode 41C can be formed as a very thin layer, the second electrode 41C has good light transmittance.
  • the display substrate 10 may further include a pixel defining layer 8 .
  • the pixel defining layer 8 may have a plurality of openings. For example, some openings are located in the display area AA, and each opening exposes a portion of the first electrode of the organic light emitting element 41 .
  • the first electrode 41A includes an anode structure 413 and an anode connecting portion 422, at least a portion of which has a thickness different from that of the anode structure 413.
  • the anode connection portion 422 of the first electrode is connected to the source or drain of the thin film transistor below. Therefore, at least a portion of the anode connection portion 422 has a thickness greater than the anode structure. 413 thickness.
  • the anode structure 413 is the main part of the anode (ie, the first electrode), and the anode connection part 422 is the auxiliary part of the anode (ie, the first electrode), which is designed to facilitate the placement of the via VH1.
  • FIG. 7 schematically shows the overall structure of the anode.
  • the main body part of the anode ie, the anode structure
  • the pattern of the anode of each sub-pixel is represented using the orthographic projection of the anode structure on the base substrate.
  • FIG. 13 is an equivalent circuit diagram of a pixel driving circuit of a display substrate according to some exemplary embodiments of the present disclosure.
  • the 7T1C pixel driving circuit is taken as an example to describe the structure of the pixel driving circuit in detail.
  • the embodiments of the present disclosure are not limited to the 7T1C pixel driving circuit. In the absence of conflict, other known pixels can be used. All driving circuit structures can be applied to embodiments of the present disclosure.
  • the pixel driving circuit may include: a plurality of thin film transistors and a storage capacitor Cst.
  • the pixel driving circuit is used to drive organic light emitting diodes (ie, OLEDs).
  • the plurality of thin film transistors include a first transistor T1, a second transistor T2, a third transistor T3, a fourth transistor T4, a fifth transistor T5, a sixth transistor T6, and a seventh transistor T7.
  • Each transistor includes a gate, source, and drain.
  • the display substrate may also include a plurality of signal lines.
  • the plurality of signal lines include: a scanning signal line 61 for transmitting the scanning signal Sn, and a scanning signal line 61 for transmitting the reset control signal RESET (ie, the scanning signal of the previous row).
  • Reset signal line 62 light-emitting control line 63 for transmitting the light-emitting control signal En
  • data line 64 for transmitting the data signal Dm
  • driving voltage line 65 for transmitting the driving voltage VDD
  • initializing voltage for transmitting the initializing voltage Vint.
  • Line 66, and power line 67 for transmitting VSS voltage.
  • the gate G1 of the first transistor T1 is electrically connected to one end Cst1 of the storage capacitor Cst.
  • the source S1 of the first transistor T1 is electrically connected to the driving voltage line 65 via the fifth transistor T5.
  • the drain D1 of the first transistor T1 is electrically connected to the drive voltage line 65 via the sixth transistor T5.
  • Transistor T6 is electrically connected to the anode of the OLED.
  • the first transistor T1 receives the data signal Dm according to the switching operation of the second transistor T2 to supply the driving current Id to the OLED.
  • the gate G2 of the second transistor T2 is electrically connected to the scanning signal line 61 , the source S2 of the second transistor T2 is electrically connected to the data line 64 , and the drain D2 of the second transistor T2 is electrically connected to the driving voltage line via the fifth transistor T5 65, and is electrically connected to the source S1 of the first transistor T1.
  • the second transistor T2 is turned on according to the scan signal Sn transmitted through the scan signal line 61 to perform a switching operation to transmit the data signal Dm transmitted to the data line 64 to the source S1 of the first transistor T1.
  • the gate G3 of the third transistor T3 is electrically connected to the scanning signal line 61 .
  • the source S3 of the third transistor T3 is electrically connected to the anode of the OLED via the sixth transistor T6 and to the drain D1 of the first transistor T1 .
  • the drain D3 of the third transistor T3 is electrically connected to one end of the storage capacitor Cst (ie, the first capacitor electrode) Cst1, the drain D4 of the fourth transistor T4, and the gate G1 of the first transistor T1.
  • the third transistor T3 is turned on according to the scan signal Sn transmitted through the scan signal line 61 to connect the gate G1 and the drain D1 of the first transistor T1 to each other, thereby performing diode connection of the first transistor T1 .
  • the gate G4 of the fourth transistor T4 is electrically connected to the reset control signal line 62
  • the source S4 of the fourth transistor T4 is electrically connected to the initialization voltage line 66
  • the drain D4 of the fourth transistor T4 is electrically connected to one end Cst1 of the storage capacitor Cst, the drain D3 of the third transistor T3 and the gate G1 of the first transistor T1.
  • the fourth transistor T4 is turned on according to the reset control signal Sn-1 transmitted through the reset control signal line 62 to transmit the initialization voltage Vint to the gate G1 of the first transistor T1, thereby performing an initialization operation to change the gate electrode of the first transistor T1.
  • the voltage of pole G1 is initialized.
  • the gate G5 of the fifth transistor T5 is electrically connected to the light emitting control line 63
  • the source S5 of the fifth transistor T5 is electrically connected to the driving voltage line 65
  • the drain D5 of the fifth transistor T5 is electrically connected to the source S1 of the first transistor T1 and the drain D2 of the second transistor T2.
  • the gate G6 of the sixth transistor T6 is electrically connected to the light emitting control line 63
  • the source S6 of the sixth transistor T6 is electrically connected to the drain D1 of the first transistor T1 and to the source S3 of the third transistor T3 .
  • the drain D6 of the sixth transistor T6 is electrically connected to the anode of the OLED.
  • the fifth transistor T5 and the sixth transistor T6 are turned on concurrently (for example, simultaneously) according to the light emission control signal En transmitted through the light emission control line 63 to transmit the driving voltage ELVDD to the OLED, thereby allowing the driving current Id to flow into the OLED.
  • the seventh transistor T7 includes: a gate G7 connected to the reset control signal line 62 ; a source S7 connected to the drain D6 of the sixth transistor T6 and the anode of the OLED; and a drain D7 connected to the initialization voltage line 66 .
  • the seventh transistor T7 transmits the reset control signal Sn-1 from the reset control signal line 62 to the gate G7.
  • the other end Cst2 of the storage capacitor Cst is electrically connected to the driving voltage line 65, and the cathode of the OLED is electrically connected to the power supply line 67 to receive the common voltage ELVSS. Accordingly, the OLED receives the driving current Id from the first transistor T1 to emit light, thereby displaying an image.
  • each of the thin film transistors T1 , T2 , T3 , T4 , T5 , T6 and T7 is a p-channel field effect transistor.
  • the thin film transistors T1 and T2 , T3, T4, T5, T6 and T7 may be n-channel field effect transistors.
  • the reset control signal Sn-1 having a low level is supplied through the reset control signal line 62.
  • the initialization thin film transistor T4 is turned on based on the low level of the reset control signal Sn-1, and the initialization voltage Vint from the initialization voltage line 66 is transmitted to the gate G1 of the driving thin film transistor T1 through the initialization thin film transistor T4. Therefore, the driving thin film transistor T1 is initialized due to the initializing voltage Vint.
  • the scan signal Sn having a low level is supplied through the scan signal line 61 .
  • the switching thin film transistor T2 and the compensation thin film transistor T3 are turned on based on the low level of the scanning signal Sn. Therefore, the driving thin film transistor T1 is placed in a diode-connected state through the turned-on compensation thin film transistor T3 and is biased in the forward direction.
  • a compensation voltage Dm+Vth (for example, Vth is a negative value) obtained by subtracting the threshold voltage Vth of the driving thin film transistor T1 from the data signal Dm supplied via the data line 64 is applied to the gate G1 of the driving thin film transistor T1.
  • the driving voltage ELVDD and the compensation voltage Dm+Vth are applied to both terminals of the storage capacitor Cst, so that charges corresponding to the voltage difference between the corresponding terminals are stored in the storage capacitor Cst.
  • the light-emitting control signal En from the light-emitting control line 63 changes from high level to low level.
  • the first light emission control thin film transistor T5 and the second light emission control thin film transistor T6 are turned on based on the low level of the light emission control signal En.
  • a driving current is generated based on the difference between the voltage of the gate G1 of the driving thin film transistor T1 and the driving voltage ELVDD.
  • the driving current Id corresponding to the difference between the driving current and the bypass current is supplied to the OLED through the second light emission control thin film transistor T6.
  • the gate-source voltage of the driving thin film transistor T1 is maintained at (Dm+Vth)-ELVDD due to the storage capacitor Cst.
  • the drive current Id is proportional to (Dm-ELVDD)2. Therefore, the driving current Id may not be affected by changes in the threshold voltage Vth of the driving thin film transistor T1.
  • the substrate substrate 1 can be a glass substrate, a quartz substrate, a metal substrate, a resin substrate, etc., and can be a rigid substrate or a flexible substrate, which is not limited in the embodiments of the present disclosure.
  • the display substrate 10 includes a first electrode layer located on the base substrate 1, and the first electrode layer includes a plurality of anode structures.
  • the anode structure constitutes the main part of the anode of the organic light-emitting element.
  • the anode structure included in the organic light-emitting element of the first color sub-pixel SP1 can be called the first anode structure 401
  • the anode structure included in the organic light-emitting element of the second color sub-pixel SP2 can be called the second anode structure 402.
  • the anode structure included in the organic light-emitting element of the third color sub-pixel SP3 is called the third anode structure 403.
  • the orthographic projection of the opening of the pixel definition layer on the substrate is located within the orthographic projection of the corresponding luminescent layer on the substrate, that is, the luminescent layer covers Pixels define the opening of the layer.
  • the orthographic projection of the opening of each sub-pixel on the substrate falls within the orthographic projection of the respective anode structure on the substrate.
  • the orthographic projection of the first opening 101 of the first color sub-pixel SP1 on the substrate 1 falls within the orthographic projection of the first anode structure 401 of the first color sub-pixel SP1 on the substrate 1, and the second color
  • the orthographic projection of the second opening 102 of the sub-pixel SP2 on the substrate 1 falls within the orthographic projection of the second anode structure 402 of the second color sub-pixel SP2 on the substrate 1, and the third color sub-pixel SP3
  • the orthographic projection of the three openings 103 on the base substrate 1 falls within the orthographic projection of the third anode structure 403 of the third color sub-pixel SP3 on the base substrate 1 .
  • the area of the anode structure is larger than the area of the opening, which is beneficial to ensuring that the organic light-emitting material in the opening of the sub-pixel emits uniform light.
  • each sub-pixel The shape of the orthographic projection of the opening of the pixel on the base substrate is different from the shape of the orthographic projection of the anode structure of the sub-pixel on the base substrate; and the anode structure of each sub-pixel is on the substrate.
  • the number of symmetry axes of the orthographic pattern on the base substrate is greater than the number of symmetry axes of the orthographic pattern of the opening of the sub-pixel on the base substrate.
  • the orthographic projection of the first opening 101 of the first color sub-pixel SP1 on the substrate 1 has the shape of a rounded rectangle.
  • the first color sub-pixel SP1 The orthographic projection of the first anode structure 401 of SP1 on the base substrate 1 also has a rounded rectangular shape.
  • the orthographic projection of the second opening 102 of the second color sub-pixel SP2 on the substrate 1 has a rounded rectangular shape.
  • the orthographic projection of the second anode structure 402 of the second color sub-pixel SP2 on the substrate 1 The projection also has the shape of a rounded rectangle.
  • the orthographic projection of the third opening 103 of the third color sub-pixel SP3 on the substrate 1 has an irregular shape, for example, a rectangular shape with one vertex corner cut off.
  • the orthographic projection of the third anode structure 403 of the third color sub-pixel SP3 on the base substrate 1 has a regular shape, for example, a rectangle or a rounded rectangle.
  • the orthographic projection of the third opening 103 of the third color sub-pixel SP3 on the base substrate 1 has an irregular shape, for example, a rectangle with one vertex corner cut off.
  • the orthographic projection of the third anode structure 403 of the third color sub-pixel SP3 on the base substrate 1 has a regular shape, for example, a circle.
  • the shape of the opening of each sub-pixel is a figure including rounded corners
  • the shape of the light-emitting area of each sub-pixel is also a figure including rounded corners
  • each The shape of the anode structure of the sub-pixel may also be a pattern including rounded corners.
  • the pattern of the opening of the pixel defining layer may include four straight edges, and at least two adjacent straight edges are connected by a curved segment forming a rounded corner.
  • embodiments of the present disclosure are not limited thereto.
  • the pattern of the light-emitting area of each sub-pixel may also include three straight edges, five straight edges, or six straight edges, and the number of vertex corners included in the light-emitting area will also change accordingly.
  • the orthographic projection pattern of the anode structure of each sub-pixel on the substrate is relative to The orthographic projection of the opening of the sub-pixel on the base substrate is non-proportionally enlarged.
  • FIG. 5 is a schematic diagram of the shape of a light-emitting area shown in FIG. 4A or 8A.
  • each side of each light-emitting area 200 or its extension line is connected in sequence to form a polygon 300 , and the plurality of vertex corners 301 of the polygon 300 of at least some sub-pixels exist and correspond to The area N0 in which the multiple corners 001 of the light-emitting area 200 do not overlap; the multiple corners 001 of the light-emitting area 200 of at least one sub-pixel include at least a first corner 1011, and the first corner 1011 and The area N0 of the region N0 in which the corresponding vertices 301 of the polygon 300 do not overlap is larger than that of at least part of the other corners 001.
  • Each corner 001 and the vertex 301 of the polygon 300 corresponding to the corner 001 do not.
  • FIG. 5 schematically shows that all vertex corners of the polygon 300 have a region N0 that does not overlap with the corresponding corner 001 of the corresponding light-emitting area 200.
  • it is not limited to this. It can also be a partial vertex corner of the polygon and There are non-overlapping areas in the corresponding corners of the light-emitting area, and some vertex corners completely overlap with the corresponding corners of the light-emitting area.
  • the shape of the light-emitting area 200 is the shape of the polygon 300 after cutting off at least one first vertex angle 301,
  • the section line 302 used to cut off the first vertex angle 301 of the polygon 300 may include a regular-shaped line segment such as a curve or a straight line, or may be an irregular-shaped line segment.
  • the embodiment of the present disclosure schematically shows that the polygon 300 is a quadrilateral.
  • the shape of the polygon corresponding to at least one color sub-pixel can be a rhombus, a rectangle, or a square, but is not limited thereto.
  • the polygon 300 can also be a triangle, Pentagon or hexagon, etc., the embodiment of the present disclosure does not limit this.
  • the angles of the vertices of a polygon can be equal or unequal.
  • the vertex corner of the light-emitting area (or opening) 101 includes a first corner 1011.
  • the first corner 1011 is a truncated polygon 300 sandwiched by two first sides 310.
  • the ratio of the truncated portion L1 of at least one of the two first sides 310 to the length of the first side 310 is 0.2 ⁇ 0.8.
  • the remaining portion L2 forms the side connecting the light-emitting area 200 of the first corner 1011.
  • the two ends of the first corner 1011 are respectively connected to the two ends of the light-emitting area 200.
  • the straight sides are connected, and at least one of the two straight sides is the remaining straight side after the first side 310 of the polygon 300 cuts off the first line segment L1.
  • polygon 300 may be truncated at least one first corner 301 to form at least one first corner 1011 .
  • a polygon 300 includes a plurality of first vertex angles 301 with equal degrees, and the shape, size and other parameters of the plurality of first corner portions 1011 formed after the plurality of first vertex angles 301 are truncated are all equal.
  • the ratio of the length of the first line segment L1 to the length of the first side 310 is 0.2 ⁇ 0.8.
  • the ratio of the length of the first line segment L1 to the length of the first side 310 is 0.3-0.7; for example, the ratio of the length of the first line segment L1 to the length of the first side 310 is 0.4-0.6; for example, the first The ratio of the length of the line segment L1 to the length of the first side 310 is 0.5.
  • the ratio of the length of the first line segment L1 to the length of the remaining portion L2 is 0.25 ⁇ 4.
  • the ratio of the length of the first line segment L1 to the length of the remaining portion L2 is 1 ⁇ 3.
  • the ratio of the length of the first line segment L1 to the length of the remaining portion L2 is 0.5 ⁇ 2.
  • the number of the first corner portions 1011 in the at least two different color sub-pixels is different.
  • the different numbers of first corner portions 1011 in two sub-pixels of different colors may mean: the number of first corner portions in sub-pixels of the same color is the same, and in two sub-pixels of different colors, the number of first corners 1011 in one sub-pixel is the same. The number of corners is different from the number of first corners in another sub-pixel of a different color.
  • the different numbers of first corner portions 1011 in two sub-pixels of different colors can also mean that the number of first corner portions in sub-pixels of the same color is the same and the number of sub-pixels of different colors is different, then the sub-pixels of different colors include The total number of first corners is different.
  • the number of first corner portions 1011 in at least two different color sub-pixels is different, which is beneficial to adjusting the brightness center in at least part of the display area to make it more evenly distributed.
  • the areas of the light-emitting areas 200 of sub-pixels of the same color are the same, and the areas of the light-emitting areas 200 of sub-pixels of different colors are different.
  • the geometric center of the light-emitting area 200 is located far away from the midpoint of the vertex of the first vertex 301 and the line 303 connecting the vertices of the vertex opposite to the first corner 1011.
  • One side of the first corner portion 1011 whereby by adjusting the geometric center of at least part of the light-emitting area, the brightness center in at least part of the display area can be adjusted to make its distribution more uniform.
  • the shapes of the first color sub-pixel, the second color sub-pixel and the third color sub-pixel are adjusted.
  • the distance between the intersection point of two straight-sided extension lines connected to both ends of the first corner and the geometric center of the light-emitting area of the sub-pixel is equal to the distance between the intersection point and the light-emitting area of the sub-pixel that constitutes the light-emitting area opposite to the first corner.
  • the distance from the intersection of the two straight edges of the vertex or its extension to the geometric center of the light-emitting area of the sub-pixel is different to adjust the actual brightness center of each virtual pixel unit so that the actual brightness center distribution in the display substrate more even.
  • the number of first corner portions 1011 in one color sub-pixel is one, and the number of first corner portions 1011 in another color sub-pixel is greater than one, for example, it can be two, three or four.
  • the number of first corner portions 1011 in one color sub-pixel may be two, and the number of first corner portions 1011 in another color sub-pixel may be three or four.
  • the number of first corner portions 1011 in a sub-pixel of one color may be three, and the number of first corner portions 1011 in a sub-pixel of another color may be four.
  • the number of first corners is not limited and can be set according to actual product requirements.
  • the first corner 1011 includes a vertex P1, which can be on the connecting line 303, and a curve formed by the intersection of the two sides connected to the two ends of the first corner 1011 extending toward the vertex P1 (i.e., the third The outer edge of a corner) so that the first corner 1011 becomes rounded.
  • the first corner 1011 can be a range of x microns from the vertex P1 as the center along the contour, and the value of x can be 2 ⁇ 7 microns.
  • the intersection point of the extension lines of the two straight sides connected to both ends of the first corner is The distance from the geometric center O1 of the light-emitting area 200 is greater than the distance from the intersection point of the extension lines of the two straight sides constituting the vertex angle opposite the first corner to the geometric center O1.
  • the above-mentioned "round chamfer” is the vertex angle formed by a curve.
  • the curve can be an arc or an irregular curve, such as a curve intercepted from an ellipse, a wavy line, etc.
  • the embodiment of the present disclosure schematically shows that the curve has a shape that is convex outward relative to the geometric center O1 of the light-emitting area 200, but is not limited thereto.
  • the curve may also have a shape that is concave relative to the geometric center O1 of the light-emitting area 200. shape.
  • the central angle of the arc may range from 10° to 150°.
  • the central angle of the arc may range from 60° to 120°.
  • the range of the central angle of the arc may be 90°.
  • the curve length of the rounded chamfer included in the first corner portion 1011 may be 10 to 60 microns.
  • the radius of curvature may be 5 to 20 microns.
  • the orthographic projection pattern of the anode structure of each sub-pixel on the base substrate is the same as Orthographically projected patterns of the openings of the sub-pixels on the base substrate have different numbers of symmetry axes.
  • the anode structure of each sub-pixel is on the substrate.
  • the number of symmetry axes of the orthographic pattern is greater than the number of symmetry axes of the orthographic pattern of the sub-pixel openings on the base substrate.
  • the orthographic projection of the opening 103 of the third color sub-pixel SP3 on the substrate has one axis of symmetry, and the orthographic projection of the anode structure of the third color sub-pixel SP3 on the substrate. Have at least 2 axes of symmetry.
  • the orthographic projection of the opening 103 of the third color sub-pixel SP3 on the base substrate has one axis of symmetry, and the anode structure of the third color sub-pixel SP3 is located therein.
  • the orthographic projection pattern on the substrate has infinite axes of symmetry.
  • the third sub-pixel SP3 includes 4 types. For convenience of description, they are respectively called the first type sub-pixel 1001, the second type sub-pixel 1002, the third type sub-pixel 1003 and the third type sub-pixel SP3.
  • the direction in which the vertex of the first corner portion 1011 points to the vertex of the second corner portion 1012 is respectively a direction. D2, direction D3, direction D4 and direction D1.
  • the direction in which the vertex of the first corner 1011 points to the vertex of the second corner 1012 is direction D2; in the opening of the second type sub-pixel 1002, the vertex of the first corner 1011 points in the direction D2.
  • the direction pointing to the vertex of the second corner 1012 is direction D3; in the opening of the third type sub-pixel 1003, the direction pointing the vertex of the first corner 1011 to the vertex of the second corner 1012 is direction D4; the fourth type sub-pixel In the opening of 1004, the direction in which the vertex of the first corner portion 1011 points to the vertex of the second corner portion 1012 is direction D1.
  • the openings of the first type sub-pixel 1001 are called first-type openings
  • the openings of the second-type sub-pixels 1002 are called second-type openings
  • the openings of the third-type sub-pixel 1003 are called
  • the openings of the fourth type sub-pixel 1004 are called third type openings
  • the openings of the fourth type sub-pixel 1004 are called fourth type openings, and so on.
  • the two openings adjacent to the first type opening in the first arrangement direction X are second type openings
  • the two openings adjacent to the first type opening in the second arrangement direction Y are The two openings adjacent to the first type opening are second type openings
  • the two openings adjacent to the first type opening in the first direction M1 are third type openings
  • the two openings adjacent to the first type opening in the second direction M2 are third type openings.
  • Two adjacent openings of one type of opening are fourth type openings.
  • the orthographic projection of at least one of the first type opening and the second type opening on the substrate 1 is symmetrical only with respect to the first symmetry axis AX1 extending along the second arrangement direction Y.
  • the orthographic projection of each anode structure 413 covering the first type opening and the second type opening on the substrate substrate 1 is relative to the first symmetry axis AX1 extending along the second arrangement direction Y and along the second arrangement direction Y.
  • a second symmetry axis AX2 extending in the arrangement direction X is symmetrical.
  • the orthographic projection of at least one of the third type opening and the fourth type opening on the substrate 1 is symmetrical only with respect to the second symmetry axis AX2 extending along the first arrangement direction X.
  • the orthographic projection pattern of each anode structure 413 covering the third type opening and the fourth type opening on the substrate substrate 1 is relative to the second symmetry axis AX2 extending along the first arrangement direction X and along the first arrangement direction X.
  • the first symmetry axis AX1 extending in the two arrangement directions X is both symmetrical.
  • the geometric center of the orthographic projection of the anode structure of each sub-pixel on the base substrate and the opening of the sub-pixel are on the base substrate.
  • the geometric centers of the orthographic projection figures do not coincide.
  • the anode structure 403 of the third color sub-pixel SP3 is on the positive side of the base substrate.
  • the projected graphics are regular graphics, for example, the regular graphics are rectangles, rounded rectangles or circles.
  • the geometric center O2 of the orthographic projection of the anode structure 403 of the third color sub-pixel SP3 on the base substrate is the intersection of two diagonals of the rectangle.
  • the geometric center O2 of the orthographic projection of the anode structure 403 of the third color sub-pixel SP3 on the substrate 1 and the geometric center of the orthographic projection of the opening 103 of the sub-pixel on the substrate 1 O1 does not overlap.
  • the orthographic projection of the anode structure 413 of at least one sub-pixel (for example, the third color sub-pixel SP3) on the substrate 1 is offset in the first arrangement direction
  • the geometric center O2 of the orthographic projection of the anode structure 413 of the third color sub-pixel SP3) on the substrate 1 is relative to the orthographic projection of the opening 103 of the sub-pixel on the substrate 1
  • the geometric center O1 of is offset in the second arrangement direction Y.
  • the geometric center O2 of the orthographic projection of the anode structure 413 on the base substrate 1 is relative to the orthographic projection of the opening 103 of the sub-pixel on the base substrate 1
  • the geometric center O1 is shifted along the direction D3, that is, shifted downward along the second arrangement direction Y.
  • the geometric center O2 of the orthographic projection of the anode structure 413 on the base substrate 1 is relative to the orthographic projection of the opening 103 of the sub-pixel on the base substrate 1
  • the geometric center O1 is shifted along the direction D2, that is, shifted upward along the second arrangement direction Y.
  • the geometric center O2 of the orthographic projection of the anode structure 413 on the substrate 1 is relative to the orthographic projection of the opening 103 of the sub-pixel on the substrate 1
  • the geometric center O1 is shifted along the direction D1, that is, shifted to the left along the first arrangement direction X.
  • the geometric center O2 of the orthographic projection of the anode structure 413 on the substrate substrate 1 is relative to the orthographic projection of the opening 103 of the sub-pixel on the substrate 1
  • the geometric center O1 is shifted along the direction D4, that is, shifted to the right along the first arrangement direction X.
  • the orthographic projection of the opening 103 of part of the third color sub-pixel SP3 on the substrate 1 has a first symmetry axis AX1, a first vertex P1 and the second vertex P2, the first vertex P1 and the second vertex P2 are all located on the first axis of symmetry AX1, and the first vertex P1 and the second vertex P2 are arranged oppositely.
  • the first vertex P1 is the vertex at the first corner 1011
  • the second vertex P2 is the vertex at the second corner 1012.
  • the orthographic projection of the first axis of symmetry AX1 and the anode structure 413 of the sub-pixel on the substrate 1 has a first intersection Q1 and a second intersection Q2, and the first intersection Q1 is adjacent to the first intersection Q1.
  • a vertex P1, the second intersection point Q2 is adjacent to the second vertex P2.
  • the first distance sd1 between the first vertex P1 and the first intersection Q1 and the second distance sd1 between the second vertex P2 and the second intersection Q2 is not equal.
  • the first distance sd1 between the first vertex P1 and the first intersection Q1 is greater than the distance between the second vertex P2 and the second intersection Q2.
  • the ratio of the first distance sd1 to the second distance sd2 is greater than 1.2, such as between 1.2 and 5, between 1.2 and 4, between 1.3 and 3, and between 1.4 and 2.
  • the pixel defining layers 8 on both sides of the opening 103 of the sub-pixel respectively cover a part of the anode structure 413 of the sub-pixel, and the anode structure 413 is surrounded by the opening 103 of the sub-pixel.
  • the width of the part covered by the pixel defining layer 8 on one side is not equal to the width of the other part of the anode structure 413 covered by the pixel defining layer 8 on the other side of the opening of the sub-pixel (for example, sd2),
  • the first cross section is perpendicular to the surface of the first electrode layer contacting the pixel definition layer, and the first symmetry axis AX1 is located in the first cross section.
  • the plurality of sub-pixels includes an n-th row of sub-pixels 011 and an n+2-th row of sub-pixels 012.
  • the plurality of sub-pixels may further include an n+1-th row of sub-pixels 02.
  • the n-th row of sub-pixels 011 and the n+2-th row of sub-pixels 012 may include a plurality of same-color sub-pixels (such as first-color sub-pixels SP1 or third-color sub-pixels SP3) arranged along the first arrangement direction X. ), the n-th row sub-pixels 011 and the n+2-th row sub-pixels 012 are arranged along the second arrangement direction Y.
  • the n-th row of sub-pixels 011 may include first-color sub-pixels SP1 and third-color sub-pixels SP3 alternately arranged along the first arrangement direction X
  • the n+1-th row of sub-pixels 02 may include The second color sub-pixels SP2 arranged in the first arrangement direction
  • the n-th row of sub-pixels 011 includes a first sub-pixel (such as a third color sub-pixel SP3)
  • the n+2-th row of sub-pixels 012 includes a second sub-pixel (such as a third color sub-pixel SP3)
  • the second sub-pixel is one of the plurality of sub-pixels in the n+2th row of sub-pixels that is closest to the first sub-pixel in the first arrangement direction and has the same color as the first sub-pixel.
  • the orthographic projection of the opening 103 of the first sub-pixel on the substrate 1 and the orthographic projection of the opening 103 of the second sub-pixel on the substrate are non-translationally coincident.
  • the orthographic projection of the anode structure 401 of the first sub-pixel on the base substrate 1 and the orthographic projection of the anode structure 402 of the second sub-pixel on the base substrate 1 are: Translation overlap.
  • the orthographic projection of the openings 103 of at least a part of the sub-pixels on the substrate 1 is different from that of the other sub-pixels.
  • the orthographic projection patterns of the openings 103 of some sub-pixels on the base substrate 1 are non-translationally overlapping, and the orthographic projection patterns of the anode structures 413 of all sub-pixels on the base substrate are translationally overlapping.
  • the plurality of sub-pixels includes the m-th column sub-pixel 031 and the m+2-th column sub-pixel 032.
  • the plurality of sub-pixels may also include the m+1-th column sub-pixel 04.
  • the m-th column of sub-pixels 031 and the second sub-pixels 032 may include a plurality of same-color sub-pixels (for example, first-color sub-pixels SP1 or third-color sub-pixels SP3) arranged along the second arrangement direction Y, and the The m-th column of sub-pixels 031 and the second sub-pixels 032 are arranged along the first arrangement direction X.
  • the m-th column sub-pixel 031 may include first color sub-pixels SP1 and third color sub-pixels SP3 alternately arranged along the second arrangement direction Y
  • the m+1-th column sub-pixel 04 may include first color sub-pixels SP1 and third color sub-pixels SP3 alternately arranged along the second arrangement direction Y
  • the m+2-th column sub-pixel 032 may include the first color sub-pixel SP1 and the third color sub-pixel SP3 alternately arranged along the second arrangement direction Y.
  • the m-th column sub-pixel 031 includes a third sub-pixel (for example, a third color sub-pixel SP3), the m+2-th column sub-pixel includes a fourth sub-pixel (for example, another third color sub-pixel SP3), the The fourth subpixel is a subpixel among the subpixels in the m+2th column of subpixels that is closest to the third subpixel in the second arrangement direction and has the same color as the third subpixel, and the The orthographic projection of the opening 103 of the third sub-pixel on the base substrate 1 and the orthographic projection of the opening 103 of the fourth sub-pixel on the base substrate are non-translationally coincident.
  • the orthographic projection pattern of the anode structure 413 of the third sub-pixel on the base substrate and the orthographic projection pattern of the anode structure 413 of the fourth sub-pixel on the base substrate are translationally coincident.
  • the orthographic projection of the opening 103 of at least a part of the sub-pixels on the substrate 1 is the same as that of another part of the sub-pixels.
  • the orthographic projection patterns of the openings 103 of the pixels on the base substrate 1 are non-translationally overlapping, and the orthographic projection patterns of the anode structures 413 of all sub-pixels onto the base substrate 1 are translationally overlapping.
  • the first type opening and the second type opening are in the first arrangement direction. Alternately arranged on X; in the n+2th row sub-pixel 012, the third type openings and the fourth type openings are alternately arranged in the first arrangement direction.
  • the first type openings and the second type openings are alternately arranged in the second arrangement direction; in the m+2-th column sub-pixel In the pixel, the third type openings and the fourth type openings are alternately arranged in the second arrangement direction.
  • the openings 103 of the plurality of sub-pixels of the same color are located on the substrate 1
  • the arrangement pitch of the orthographic projection pattern in the first arrangement direction is the second arrangement pitch pt2, and the first arrangement pitch pt1 is greater than the second arrangement pitch pt2.
  • the expression "second arrangement pitch” means that the orthographic projection pattern of the anode structure with the same shape (that is, translationally overlapping) on the substrate is in the first arrangement direction X
  • the sub-pixels belonging to anode structures with the same shape can be located in different sub-pixel rows.
  • the second arrangement pitch pt2 is the anode structure of one first color sub-pixel in the n-th row sub-pixel 011 and another first-color sub-pixel in the n+2-th row sub-pixel 012.
  • the orthographic projection of the openings 103 of the plurality of sub-pixels of the same color on the base substrate 1 is the third arrangement pitch pt3, and the orthographic projection graphics of the anode structures 413 of the plurality of sub-pixels of the same color on the substrate 1 are in the second arrangement.
  • the arrangement pitch in the direction is the fourth arrangement pitch pt4, and the third arrangement pitch pt3 is greater than the fourth arrangement pitch pt4.
  • the expression "fourth arrangement pitch” means that the orthographic projection pattern of the anode structure with the same shape (that is, translationally overlapping) on the substrate is in the second arrangement direction Y
  • the sub-pixels belonging to anode structures with the same shape can be located in different sub-pixel columns.
  • the fourth arrangement pitch pt4 is the anode structure of one first color sub-pixel in the m-th column sub-pixel 031 and another first-color sub-pixel in the m+2-th column sub-pixel 032.
  • the orthographic projection of the openings 103 of the plurality of sub-pixels of the same color on the base substrate 1 is the first pitch pt11, and the orthographic projection graphics of the anode structures 413 of the plurality of sub-pixels of the same color on the substrate 1 are in the first direction M1
  • the arrangement pitch is the second pitch pt12, and the first pitch pt11 is greater than the second pitch pt12.
  • the orthographic projection of the openings 103 of the plurality of sub-pixels of the same color on the base substrate 1 is the third pitch pt13, and the orthographic projection graphics of the anode structures 413 of the plurality of sub-pixels of the same color on the substrate 1 are in the second direction M2.
  • the arrangement pitch is the fourth pitch pt14, and the third pitch pt13 is greater than the fourth pitch pt14.
  • the first arrangement pitch pt1 is m times the second arrangement pitch pt2, and m is greater than or equal to 1.5.
  • the first arrangement pitch pt1 is approximately 4 times the second arrangement pitch pt2.
  • the first arrangement pitch pt1 is approximately 2 times the second arrangement pitch pt2.
  • the third arrangement pitch pt3 is n times the fourth arrangement pitch pt4, and n is greater than or equal to 1.5.
  • the third arrangement pitch pt3 is approximately 4 times the fourth arrangement pitch pt4.
  • the third arrangement pitch pt3 is approximately 2 times the fourth arrangement pitch pt4.
  • the first pitch pt11 is p times the second pitch pt12, and p is greater than or equal to 1.5.
  • the first pitch pt11 is approximately 2 times the second pitch pt12 .
  • the third pitch pt13 is q times the fourth pitch pt14, and q is greater than or equal to 1.5.
  • the third pitch pt13 is approximately twice the fourth pitch pt14 .
  • the anode structure corresponding to the opening or light-emitting area with a special shape is designed into a regular shape, such as a rectangle, a circle, etc., which can reduce the arrangement period (ie, arrangement pitch) of the anode structure, causing interference
  • the stripes are invisible to the human eye, see Figure 6. In this way, the use experience of the display substrate can be significantly improved.
  • the orthographic projection of the openings of at least some sub-pixels (eg, the third color sub-pixel SP3) on the base substrate 1 has an irregular shape, such as a D-shape.
  • the orthographic projection of the third anode structure 403 of the third color sub-pixel SP3 on the base substrate 1 has a regular shape, for example, a rectangle or a rounded rectangle.
  • the orthographic projection of the openings of at least some sub-pixels (for example, the third color sub-pixel SP3) on the base substrate 1 has an irregular shape, for example, a D-shape.
  • the orthographic projection of the third anode structure 403 of the third color sub-pixel SP3 on the base substrate 1 has a regular shape, for example, a circle.
  • FIG. 8C and FIG. 8D should have the same advantages as the embodiment shown in FIG. 4A or FIG. 8A , which will not be described again here.
  • FIGS. 9A to 11B Some exemplary embodiments of the present disclosure will be described in more detail with reference to FIGS. 9A to 11B . It should be noted that the following will mainly describe the differences from the above embodiments. In the absence of conflict, the above The embodiments described herein may be combined in any combination with the following embodiments.
  • the orthographic projection of the opening on the base substrate is in the shape of a water drop
  • the orthographic projection of the anode structure on the base substrate is in the shape of a water drop.
  • the at least some sub-pixels include the first color sub-pixel SP1.
  • the opening (ie, the first opening) 101 of each sub-pixel includes a main part 101A and an auxiliary part 101B, and the main part 101A of the opening is on the base substrate 1
  • the orthographic projection is circular, and the orthographic projection of the auxiliary portion 101B of the opening on the base substrate 1 protrudes in the second direction M2 relative to the circular shape.
  • the anode structure (ie, the first anode structure) 401 covering the opening with the main body portion 101A and the auxiliary portion 101B includes one main body portion 401A and two auxiliary portions 401B.
  • the main body portion 401A of the anode structure is located on the lining.
  • the orthographic projection on the base substrate 1 is circular, and the orthographic projections of the two auxiliary parts 401B of the anode structure on the base substrate 1 face opposite directions in the second direction M2 relative to the circular shape. protrude.
  • the openings of the at least some first color sub-pixels SP1 include at least two types of openings, and in different types of openings, the protruding directions of the auxiliary portion 101B of the opening relative to the main body portion 101A of the opening are different.
  • the at least two types of openings include a first type of opening 1101 and a second type of opening 1102.
  • the protruding directions of the auxiliary portion 101B in the first type opening 1101 and the second type opening 1102 relative to the main portion 101A are opposite. For example, referring to FIG.
  • the protruding direction of the auxiliary part 101B relative to the main body part 101A is toward the lower right direction; in the second type opening 1102 , the protruding direction of the auxiliary part 101B relative to the main part 101A Towards the upper left direction.
  • the orthographic projections of the respective anode structures covering different types of openings on the base substrate 1 are translationally coincident.
  • the orthographic projection graphics of each anode structure covering the first type opening 1101 and the second type opening 1101 on the substrate are translationally coincident.
  • the at least some sub-pixels include third color sub-pixels SP3.
  • the opening (ie, the third opening) 103 of each sub-pixel includes a main part 103A and an auxiliary part 103B, and the main part 103A of the opening is on the base substrate 1
  • the orthographic projection is circular, and the orthographic projection of the auxiliary portion 103B of the opening on the base substrate 1 protrudes in the first direction M1 relative to the circular shape.
  • the anode structure (ie, the third anode structure) 403 covering the opening with the main body portion 103A and the auxiliary portion 103B includes one main body portion 403A and two auxiliary portions 403B.
  • the main body portion 403A of the anode structure is located on the lining.
  • the orthographic projection on the base substrate 1 is circular, and the orthographic projections of the two auxiliary parts 403B of the anode structure on the base substrate 1 face opposite directions in the first direction M1 relative to the circular shape. protrude.
  • the openings of the at least some third color sub-pixels SP3 include at least two types of openings, and in different types of openings, the protruding directions of the auxiliary portion 101B of the opening relative to the main body portion 101A of the opening are different.
  • the at least two types of openings include third type openings 1103 and fourth type openings 1104.
  • the auxiliary portion 103B in the third type opening 1103 and the fourth type opening 1104 protrudes in opposite directions relative to the main portion 103A.
  • the protruding direction of the auxiliary part 103B relative to the main body part 103A is toward the lower left direction; in the fourth type opening 1104, the protruding direction of the auxiliary part 103B relative to the main part 103A is Toward the upper right direction.
  • the orthographic projections of the respective anode structures covering different types of openings on the base substrate 1 are translationally coincident.
  • the orthographic projection graphics of each anode structure covering the third type opening 1103 and the fourth type opening 1104 on the substrate are translationally coincident.
  • all first color sub-pixels SP1 in the n-th row of sub-pixels include the first type opening 1101, and in the n+2-th row of sub-pixels All first color sub-pixels SP1 include second type openings 1102 .
  • all the first-color sub-pixels SP1 in the m-th column sub-pixel include the first type opening 1101, and all the first-color sub-pixels SP1 in the m+2-th column sub-pixel A second type of opening 1102 is included.
  • first type openings 1101 and the second type openings 1102 are alternately arranged along the second direction M2.
  • all the third color sub-pixels SP3 in the n-th row sub-pixel include the third type opening 1103, and all the third-color sub-pixels SP3 in the n+2-th row sub-pixel Color subpixel SP3 includes a fourth type opening 1104 .
  • all the third-color sub-pixels SP3 in the m-th column sub-pixel include the third type opening 1103, and all the third-color sub-pixels SP3 in the m+2-th column sub-pixel
  • a fourth type of opening 1104 is included.
  • the third type openings 1103 and the fourth type openings 1104 are alternately arranged along the first direction M1.
  • the orthographic projection of at least one of the first type opening 1101 and the second type opening 1102 on the substrate 1 is symmetrical only with respect to the first symmetry extending along the second direction M2
  • Axis AX1 is symmetrical.
  • the orthographic projection of each anode structure covering the first type opening 1101 and the second type opening 1102 on the base substrate 1 is relative to the first symmetry axis AX1 extending along the second direction M2 and along the second direction M2.
  • the second symmetry axis AX2 extending in one direction M1 is symmetrical.
  • the orthographic projection of at least one of the third type opening 1103 and the fourth type opening 1104 on the substrate 1 is symmetrical only with respect to the second symmetry axis AX2 extending along the first direction M1.
  • the orthographic projection of each anode structure covering the third type opening 1103 and the fourth type opening 1104 on the base substrate 1 is relative to the second symmetry axis AX2 extending along the first direction M1 and along the first direction M1. Both first symmetry axes AX1 extending in the direction M2 are symmetrical.
  • the geometric center of the orthographic projection of the anode structure of each sub-pixel on the base substrate and the opening of the sub-pixel are on the base substrate.
  • the geometric centers of the orthographic projection figures do not coincide.
  • the geometric center O2 of the orthographic projection of the anode structure on the base substrate is 2-line symmetry.
  • the geometric center O1 of the teardrop-shaped opening does not coincide with the intersection O2 of the symmetry axes AX1 and AX2.
  • the geometry of the orthographic projection of the anode structure of at least one sub-pixel (for example, the first color sub-pixel SP1 ) on the substrate 1 The center O2 is offset in the second direction M2 relative to the geometric center O1 of the orthographic projection of the opening 101 of the sub-pixel on the substrate 1; and/or, at least one sub-pixel (for example, a third color sub-pixel)
  • the geometric center O2 of the orthographic projection of the anode structure of the pixel SP3) on the base substrate 1 is at the third position relative to the geometric center O1 of the orthographic projection of the opening 103 of the sub-pixel on the base substrate 1.
  • One direction is offset upward towards M1.
  • the openings 101 of the plurality of same-color sub-pixels, 103 The arrangement pitch of the orthographic projection pattern on the base substrate 1 in the second arrangement direction Y is the third arrangement pitch pt3, and the anode structures 401 and 403 of the plurality of sub-pixels of the same color are located therein.
  • the arrangement pitch of the orthographic projection graphics on the base substrate 1 in the second arrangement direction Y is a fourth arrangement pitch pt4, and the third arrangement pitch pt3 is greater than the fourth arrangement pitch pt4.
  • the orthographic projection of the openings 103 of the plurality of sub-pixels of the same color on the base substrate 1 is the first pitch pt11, and the orthographic projection graphics of the anode structures 403 of the plurality of sub-pixels of the same color on the substrate 1 are in the first direction M1
  • the arrangement pitch is the second pitch pt12, and the first pitch pt11 is greater than the second pitch pt12.
  • the orthographic projection of the openings 101 of the plurality of sub-pixels of the same color on the substrate 1 is The arrangement pitch of the graphics in the second direction M2 is the third pitch pt13, and the orthographic projection graphics of the anode structures 401 of the plurality of sub-pixels of the same color on the substrate 1 are in the second direction M2.
  • the arrangement pitch is the fourth pitch pt14, and the third pitch pt13 is greater than the fourth pitch pt14.
  • the third arrangement pitch pt3 is n times the fourth arrangement pitch pt4, and n is greater than or equal to 1.5.
  • the third arrangement pitch pt3 is approximately twice the fourth arrangement pitch pt4.
  • the first pitch pt11 is p times the second pitch pt12, and p is greater than or equal to 1.5.
  • the first pitch pt11 is approximately 2 times the second pitch pt12.
  • the third pitch pt13 is q times the fourth pitch pt14, and q is greater than or equal to 1.5.
  • the third pitch pt13 is approximately twice the fourth pitch pt14 .
  • designing the corresponding anode structures to have the same shape can reduce the arrangement period (ie, arrangement pitch) of the anode structures, making the interference fringes invisible to the human eye. , which can significantly improve the use experience of the display substrate.
  • the orthographic projection of the opening on the substrate is polygonal, and the orthographic projection of the anode structure on the substrate is rectangular.
  • the orthographic projection of the opening of each sub-pixel on the substrate is a polygon 500, such as a pentagon, and the polygon has a first The vertex 501 and the first side 502, the first side 502 is opposite to the first vertex 501.
  • the orthographic projection of the anode structure of each sub-pixel on the base substrate is a rectangular shape.
  • the at least some sub-pixels include a first color sub-pixel SP1, a second color sub-pixel SP2 and a third color sub-pixel SP3.
  • the openings having the first vertex angle 501 and configured to define the light-emitting area of the same color sub-pixel include at least two types of openings. In different types of openings, the apex of the first vertex angle 501 is directed opposite thereto. The direction of the first side 502 is different.
  • the first color sub-pixel SP1 it includes a first type opening 5001 and a second type opening 5002.
  • the first type opening 5001 the direction in which the vertex of the first vertex angle 501 points to the first side 501 opposite thereto is upward along the second arrangement direction Y.
  • the second type opening 5002 the direction in which the vertex of the first vertex 501 points to the first side 501 opposite to it is downward along the second arrangement direction Y.
  • the second color sub-pixel SP2 or the third color sub-pixel SP3 has a similar configuration.
  • the orthographic projection patterns of each anode structure covering different types of openings on the base substrate 1 are translationally coincident.
  • At least one of the two types of openings is the same type of opening (for example, the first type of opening 5001) are arranged in the first arrangement direction Arrange in direction X.
  • two types of openings 5001 and 5002 of adjacent sub-pixels of the same color present a mirror image arrangement. Since the first color sub-pixel SP1, the second color sub-pixel SP2 and the third color sub-pixel SP3 form a regular arrangement, and the same color sub-pixels are very close in position, after the anode structures are completed respectively, the same color sub-pixels Sub-pixels in adjacent rows can be formed by evaporation using the same opening in the same metal mask.
  • the orthographic projection patterns of the anode structures of the two sub-pixels in the same column on the base substrate are translationally coincident.
  • the geometric center of the first color sub-pixel SP1 in the same row or the same column is located on the same straight line
  • the geometric center of the second color sub-pixel SP2 in the same row or the same column is located on the same straight line
  • the geometric center of the third color sub-pixel SP3 in the same row or the same column is located on the same straight line.
  • the orthographic projection of the openings 101 , 102 , and 103 of the plurality of sub-pixels of the same color on the substrate 1 is the third arrangement pitch pt3.
  • the orthographic projection patterns of the anode structures 401, 402, and 403 of the plurality of sub-pixels of the same color on the substrate 1 are at The arrangement pitch in the second arrangement direction Y is the fourth arrangement pitch pt4, and the third arrangement pitch pt3 is greater than the fourth arrangement pitch pt4.
  • the third arrangement pitch pt3 is n times the fourth arrangement pitch pt4, and n is greater than or equal to 1.5.
  • the third arrangement pitch pt3 is approximately twice the fourth arrangement pitch pt4.
  • designing the corresponding anode structures to have the same shape can reduce the arrangement period (ie, arrangement pitch) of the anode structures, making the interference fringes invisible to the human eye. , which can significantly improve the use experience of the display substrate.
  • the openings include two sub-openings arranged in a mirror image, and the orthographic projection of each sub-opening on the substrate is a polygon, for example Triangular; the orthographic projection of the anode structure on the substrate is polygonal, such as a quadrilateral, a rhombus, or a rhombus-like shape.
  • the orthographic projection of each sub-opening on the base substrate is a polygon, such as a triangle.
  • the polygon has a first vertex angle 601 and a first side 602.
  • the first side 602 is connected to the first vertex angle. 601 relative.
  • the at least some sub-pixels include the first color sub-pixel SP1.
  • the openings having the first vertex angle 601 and configured to define the light-emitting area of the same color sub-pixel include at least two types of openings. In different types of openings, the apex of the first vertex angle 601 is directed opposite thereto. The direction of the first side 602 is different. For example, for the first color sub-pixel SP1, it includes a first type opening 6001 and a second type opening 6002.
  • the first type of opening 6001 includes two sub-openings 60011 and 60012.
  • the apex of the first vertex 601 of one sub-opening 60011 points in the direction of the first side 602 opposite to it, which is downward along the second arrangement direction Y.
  • the direction in which the vertex of the first vertex 601 of the other sub-opening 60012 points toward the first side 601 opposite to it is upward along the second arrangement direction Y.
  • the two sub-openings 60011 and 60012 are mirror symmetrical with respect to the first symmetry axis AX1 extending along the first arrangement direction X.
  • the second type opening 6002 includes two sub-openings 60013 and 60014.
  • the apex of the first vertex 601 of one sub-opening 60013 points to the opposite first side 602 to the right along the first arrangement direction X.
  • the direction in which the vertex of the first vertex 601 of the other sub-opening 60014 points to the opposite first side 601 is to the left along the first arrangement direction X.
  • the two sub-openings 60013 and 60014 are mirror symmetrical with respect to the second symmetry axis AX2 extending along the second arrangement direction Y.
  • the orthographic projection patterns of each anode structure covering different types of openings on the base substrate 1 are translationally coincident.
  • the same type of opening for example, the first type opening 6001 of at least two types of openings is in Arranged in the first arrangement direction .
  • the orthographic projection patterns of the anode structures of the two sub-pixels in the same column on the base substrate are translationally coincident.
  • the orthographic projection pattern of the openings 101 of the plurality of sub-pixels of the same color on the substrate 1 is in the second arrangement.
  • the arrangement pitch in the direction Y is the third arrangement pitch pt3, and the orthographic projection of the anode structures 401 of the plurality of sub-pixels of the same color on the substrate 1 is arranged in the second arrangement direction Y.
  • the pitch is the fourth arrangement pitch pt4, and the third arrangement pitch pt3 is greater than the fourth arrangement pitch pt4.
  • the third arrangement pitch pt3 is n times the fourth arrangement pitch pt4, and n is greater than or equal to 1.5.
  • the third arrangement pitch pt3 is approximately twice the fourth arrangement pitch pt4.
  • designing the corresponding anode structures to have the same shape can reduce the arrangement period (ie, arrangement pitch) of the anode structures, making the interference fringes invisible to the human eye. , which can significantly improve the use experience of the display substrate.
  • the display device may include the display substrate as described above.
  • the display device may include any device or product with a display function.
  • the display device may be a smartphone, a mobile phone, an e-book reader, a desktop computer (PC), a laptop PC, a netbook PC, a personal digital assistant (PDA), a portable multimedia player (PMP), a digital audio Players, mobile medical devices, cameras, wearable devices (such as head-mounted devices, electronic clothing, electronic bracelets, electronic necklaces, electronic accessories, electronic tattoos, or smart watches), televisions, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种显示基板和显示装置。显示基板包括多个子像素,沿第一排列方向和第二排列方向成阵列地设置于衬底基板上,多个子像素包括多个发光区;第一电极层,位于所述衬底基板上,第一电极层包括多个阳极结构;以及像素界定层,位于第一电极层远离衬底基板的一侧,像素界定层包括多个开口以限定多个发光区。对于多个子像素中的至少一些子像素而言,每一个子像素的开口在衬底基板上的正投影落入该子像素的阳极结构在衬底基板上的正投影内,每一个子像素的开口在衬底基板上的正投影的图形与子像素的阳极结构在衬底基板上的正投影的图形形状不同。每一个子像素的阳极结构在衬底基板上的正投影的图形的对称轴线的数量大于该子像素的开口在衬底基板上的正投影的图形的对称轴线的数量。

Description

显示基板和显示装置 技术领域
本公开涉及显示技术领域,并且具体地涉及一种显示基板和显示装置。
背景技术
有机发光显示器件(Organic Light Emitting Display,缩写为OLED)是一种具有低能耗、自发光、高亮度、全视角、响应速度快、可柔性显示等一系列优点的自发光器件。近年来,OLED显示器件在手表、手机、电脑、电视等不同尺寸的显示装置上得到了广泛应用。OLED显示器件的结构主要包括衬底基板以及在衬底基板上呈阵列排列的子像素。
在本部分中公开的以上信息仅用于对本公开的技术构思的背景的理解,因此,以上信息可包含不构成现有技术的信息。
发明内容
在一个方面,提供一种显示基板,包括:衬底基板;多个子像素,所述多个子像素沿第一排列方向和第二排列方向成阵列地设置于所述衬底基板上,所述多个子像素包括多个发光区;第一电极层,所述第一电极层位于所述衬底基板上,所述第一电极层包括多个阳极结构;以及像素界定层,位于所述第一电极层远离所述衬底基板的一侧,所述像素界定层包括多个开口以限定所述多个发光区,其中,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口在所述衬底基板上的正投影落入该子像素的阳极结构在所述衬底基板上的正投影内,每一个子像素的开口在所述衬底基板上的正投影的图形与所述子像素的阳极结构在所述衬底基板上的正投影的图形形状不同;以及每一个子像素的阳极结构在所述衬底基板上的正投影的图形的对称轴线的数量大于该子像素的开口在所述衬底基板上的正投影的图形的对称轴线的数量。
根据一些示例性的实施例,对于所述多个子像素中的至少一些子像素而言,每一个子像素的阳极结构在所述衬底基板上的正投影的图形相对于该子像素的开口在所述衬底基板上的正投影的图形是非等比例放大的。
根据一些示例性的实施例,对于所述多个子像素中的至少一些子像素而言,每一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心与该子像素的开口在所述衬底基板上的正投影的图形的几何中心不重合。
根据一些示例性的实施例,对于所述多个子像素中的至少一些子像素而言,至少一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心相对于该子像素的开口在所述衬底基板上的正投影的图形的几何中心在第一排列方向上偏移;和/或,至少一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心相对于该子像素的开口在所述衬底基板上的正投影的图形的几何中心在第二排列方向上偏移。
根据一些示例性的实施例,对于所述多个子像素中的至少一些子像素而言,至少一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心相对于该子像素的开口在所述衬底基板上的正投影的图形的几何中心在第一方向上偏移,所述第一方向相对于所述第一排列方向和所述第二排列方向中的每一个均倾斜;和/或,对于所述多个子像素中的至少一些子像素而言,至少一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心相对于该子像素的开口在所述衬底基板上的正投影的图形的几何中心在第二方向上偏移,所述第二方向相对于所述第一排列方向和所述第二排列方向中的每一个均倾斜,所述第二方向与所述第一方向之间具有夹角。
根据一些示例性的实施例,所述子像素的开口在所述衬底基板上的正投影的图形具有第一对称轴线、第一顶点和第二顶点,所述第一顶点和所述第二顶点均位于所述第一对称轴线上,所述第一顶点和所述第二顶点相对设置;所述第一对称轴线与所述子像素的阳极结构在所述衬底基板上的正投影的图形具有第一交点和第二交点,所述第一交点邻近所述第一顶点,所述第二交点邻近所述第二顶点;以及在所述第一对称轴线的延伸方向上,所述第一顶点和所述第一交点之间的第一距离与所述第二顶点和所述第二交点之间的第二距离不相等。
根据一些示例性的实施例,在第一截面图中,所述子像素的开口两侧的像素界定层分别覆盖所述子像素的阳极结构的一部分,所述阳极结构被所述子像素的开口一侧的像素界定层覆盖的部分的宽度与所述阳极结构被所述子像素的开口另一侧的像素界定层覆盖的另一部分的宽度不相等,其中,第一截面垂直于所述第一电极层接触所述像素界定层的表面,且所述第一对称轴线位于所述第一截面内。
根据一些示例性的实施例,所述多个子像素包括第n行子像素和第n+2行子像素,所述第n行子像素和所述第n+2行子像素沿第二排列方向排列;以及所述第n行子像 素包括第一子像素,所述第n+2行子像素包括第二子像素,所述第二子像素为所述第n+2行子像素的多个子像素中在第一排列方向上最邻近所述第一子像素且与所述第一子像素同颜色的一个子像素,所述第一子像素的开口在所述衬底基板上的正投影的图形与所述第二子像素的开口在所述衬底基板上的正投影的图形为非平移重合的,所述第一子像素的阳极结构在所述衬底基板上的正投影的图形与所述第二子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,在所述第n行子像素和所述第n+2行子像素的同颜色的子像素中,至少一部分子像素的开口在所述衬底基板上的正投影的图形与另一部分子像素的开口在所述衬底基板上的正投影的图形为非平移重合的,全部子像素的阳极结构在所述衬底基板上的正投影的图形均为平移重合的。
根据一些示例性的实施例,所述多个子像素包括第m列子像素和第m+2列子像素,所述第m列子像素和所述第m+2列子像素沿第一排列方向排列;以及所述第m列子像素包括第三子像素,所述第m+2列子像素包括第四子像素,所述第四子像素为所述第m+2列子像素的多个子像素中在第二排列方向上最邻近所述第三子像素且与所述第三子像素同颜色的一个子像素,所述第三子像素的开口在所述衬底基板上的正投影的图形与所述第四子像素的开口在所述衬底基板上的正投影的图形为非平移重合的,所述第三子像素的阳极结构在所述衬底基板上的正投影的图形与所述第四子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,在所述第m列子像素和所述第m+2列子像素的同颜色的子像素中,至少一部分子像素的开口在所述衬底基板上的正投影的图形与另一部分子像素的开口在所述衬底基板上的正投影的图形为非平移重合的,全部子像素的阳极结构在所述衬底基板上的正投影的图形均为平移重合的。
根据一些示例性的实施例,对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口在所述衬底基板上的正投影的图形在第一排列方向上的排列节距为第一排列节距,所述多个同颜色的子像素的阳极结构在所述衬底基板上的正投影的图形在第一排列方向上的排列节距为第二排列节距,所述第一排列节距大于所述第二排列节距;和/或,对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口在所述衬底基板上的正投影的图形在第二排列方向上的排列节距为第三排列节距,所述多个同颜色的子像素的阳极结构在所述衬底基板上的正投影的图形在第二排列方向上的排列节距为第四排列节距,所述第三排列节距大于所 述第四排列节距;和/或,对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口在所述衬底基板上的正投影的图形在第一方向上的排列节距为第一节距,所述多个同颜色的子像素的阳极结构在所述衬底基板上的正投影的图形在第一方向上的排列节距为第二节距,所述第一节距大于所述第二节距;和/或,对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口在所述衬底基板上的正投影的图形在第二方向上的排列节距为第三节距,所述多个同颜色的子像素的阳极结构在所述衬底基板上的正投影的图形在第二方向上的排列节距为第四节距,所述第三节距大于所述第四节距。
根据一些示例性的实施例,所述第一排列节距为所述第二排列节距的m倍,m大于等于1.5;和/或,所述第三排列节距为所述第四排列节距的n倍,n大于等于1.5;和/或,所述第一节距为所述第二节距的p倍,p大于等于1.5;和/或,所述第三节距为所述第四节距的q倍,q大于等于1.5。
根据一些示例性的实施例,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口在所述衬底基板上的正投影的图形为多边形截去至少一个顶角后的形状;所述每一个子像素的阳极结构在所述衬底基板上的正投影的图形为所述多边形或圆形。
根据一些示例性的实施例,具有多边形截去至少一个顶角后的形状的所述开口的图形包括多个角部,所述多个角部包括第一角部和第二角部,所述第一角部为所述多边形被截去由两条边所夹的一顶角后形成的角部,所述第二角部为与所述第一角部相对的角部。
根据一些示例性的实施例,具有多边形截去至少一个顶角后的形状的所述开口的图形具有第一对称轴线、第一顶点和第二顶点,所述第一顶点为所述第一对称轴线与所述第一角部相交的点,所述第二顶点为所述第一对称轴线与所述第二角部相交的点;所述第一对称轴线与所述子像素的阳极结构在所述衬底基板上的正投影的图形具有第一交点和第二交点,所述第一交点邻近所述第一顶点,所述第二交点邻近所述第二顶点;以及在所述第一对称轴线的延伸方向上,所述第一顶点和所述第一交点之间的第一距离大于所述第二顶点和所述第二交点之间的第二距离。
根据一些示例性的实施例,具有所述第一角部的开口被配置为限定至少一种颜色子像素的发光区。
根据一些示例性的实施例,具有所述第一角部且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,在不同类型开口中,所述第一角部的顶点指向与其相对的角部的顶点的方向不同;以及覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,所述至少两种类型开口包括第一类型开口、第二类型开口、第三类型开口和第四类型开口;所述第一类型开口和所述第二类型开口中的所述第一角部的顶点指向所述第二角部的顶点的方向相反,所述第三类型开口和所述第四类型开口中的所述第一角部的顶点指向所述第二角部的顶点的方向相反;以及覆盖第一类型开口、第二类型开口、第三类型开口和第四类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,对于第n行子像素和第n+2行子像素而言,在第n行子像素中,所述第一类型开口和所述第二类型开口在第一排列方向上交替排列;在第n+2行子像素中,所述第三类型开口和所述第四类型开口在第一排列方向上交替排列;和/或,对于第m列子像素和第m+2列子像素而言,在第m列子像素中,所述第一类型开口和所述第二类型开口在第二排列方向上交替排列;在第m+2列子像素中,所述第三类型开口和所述第四类型开口在第二排列方向上交替排列。
根据一些示例性的实施例,对于至少一个第一类型开口而言,在第一排列方向上与该第一类型开口相邻的两个开口为第二类型开口,在第二排列方向上与该第一类型开口相邻的两个开口为第二类型开口,在第一方向上与该第一类型开口相邻的两个开口为第三类型开口,在第二方向上与该第一类型开口相邻的两个开口为第四类型开口。
根据一些示例性的实施例,对于所述多个子像素中的至少一些第一颜色子像素而言,每一个子像素的开口包括主体部分和辅助部分,所述开口的主体部分在所述衬底基板上的正投影呈圆形,所述开口的辅助部分在所述衬底基板上的正投影相对于所述圆形在第二方向上突出;以及覆盖具有所述主体部分和所述辅助部分的开口的阳极结构包括一个主体部分和两个辅助部分,所述阳极结构的主体部分在所述衬底基板上的正投影呈圆形,所述阳极结构的两个辅助部分在所述衬底基板上的正投影相对于所述圆形在第二方向上分别朝着相反的朝向突出。
根据一些示例性的实施例,所述至少一些第一颜色子像素的所述开口包括至少两种类型开口,在不同类型开口中,所述开口的辅助部分相对于所述开口的主体部分的 突出方向不同,以及覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,所述至少两种类型开口包括第一类型开口和第二类型开口;所述第一类型开口和所述第二类型开口中的辅助部分相对于主体部分的突出方向相反;以及覆盖所述第一类型开口和所述第二类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,对于所述多个子像素中的至少一些第三颜色子像素而言,每一个子像素的开口包括主体部分和辅助部分,所述开口的主体部分在所述衬底基板上的正投影呈圆形,所述开口的辅助部分在所述衬底基板上的正投影相对于所述圆形在第一方向上突出;以及覆盖具有所述主体部分和所述辅助部分的开口的阳极结构包括一个主体部分和两个辅助部分,所述阳极结构的主体部分在所述衬底基板上的正投影呈圆形,所述阳极结构的两个辅助部分在所述衬底基板上的正投影相对于所述圆形在第一方向上分别朝着相反的朝向突出。
根据一些示例性的实施例,所述至少一些第三颜色子像素的所述开口包括至少两种类型开口,在不同类型开口中,所述开口的辅助部分相对于所述开口的主体部分的突出方向不同,以及覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,所述至少两种类型开口包括第三类型开口和第四类型开口;所述第三类型开口和所述第四类型开口中的辅助部分相对于主体部分的突出方向相反;以及覆盖所述第三类型开口和所述第四类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,对于第n行子像素和第n+2行子像素而言,第n行子像素中的所有第一颜色子像素包括第一类型开口,第n+2行子像素中的所有第一颜色子像素包括第二类型开口;和/或,对于第m列子像素和第m+2列子像素而言,第m列子像素中的所有第一颜色子像素包括第一类型开口,第m+2列子像素中的所有第一颜色子像素包括第二类型开口;和/或,在沿第二方向排列的至少一排第一颜色子像素中,第一类型开口和第二类型开口沿第二方向交替排列。
根据一些示例性的实施例,对于第n行子像素和第n+2行子像素而言,第n行子像素中的所有第三颜色子像素包括第三类型开口,第n+2行子像素中的所有第三颜色子像素包括第四类型开口;和/或,对于第m列子像素和第m+2列子像素而言,第m 列子像素中的所有第三颜色子像素包括第三类型开口,第m+2列子像素中的所有第三颜色子像素包括第四类型开口;和/或,在沿第一方向排列的至少一排第三颜色子像素中,第三类型开口和第四类型开口沿第一方向交替排列。
根据一些示例性的实施例,所述第一类型开口和所述第二类型开口中的至少一个在所述衬底基板上的正投影的图形仅相对于沿第二方向延伸的第一对称轴线对称;覆盖所述第一类型开口和所述第二类型开口的各个阳极结构在所述衬底基板上的正投影的图形相对于沿第二方向延伸的第一对称轴线和沿第一方向延伸的第二对称轴线均对称;和/或,所述第三类型开口和所述第四类型开口中的至少一个在所述衬底基板上的正投影的图形仅相对于沿第一方向延伸的第二对称轴线对称;覆盖所述第三类型开口和所述第四类型开口的各个阳极结构在所述衬底基板上的正投影的图形相对于沿第一方向延伸的第二对称轴线和沿第二方向延伸的第一对称轴线均对称。
根据一些示例性的实施例,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口在所述衬底基板上的正投影的图形为多边形,所述多边形具有第一顶角和第一边,所述第一边与所述第一顶角相对;所述每一个子像素的阳极结构在所述衬底基板上的正投影的图形为矩形。
根据一些示例性的实施例,具有所述第一顶角且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,在不同类型开口中,所述第一顶角的顶点指向与其相对的第一边的方向不同;以及覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,对于第n行子像素和第n+1行子像素而言,在第n行子像素中,至少两种类型开口中同一种类型的开口在第一排列方向上排列;在第n+1行子像素中,所述至少两种类型开口中另一种同一类型的开口在第一排列方向上排列;以及对于第n行子像素和第n+1行子像素而言,同一列的两个子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口呈现镜像排列的两个子开口,该子像素的阳极结构在衬底基板上的正投影覆盖所述呈现镜像排列的两个子开口在所述衬底基板上的正投影;所述两个子开口中的每一个在所述衬底基板上的正投影的图形为多边形,所述多边形具有第一顶角和第一边,所述第一边与所述第一顶角相对。
根据一些示例性的实施例,具有所述第一顶角且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,在不同类型开口中,所述第一顶角的顶点指向与其相对的第一边的方向不同;以及覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
根据一些示例性的实施例,对于第n行子像素和第n+2行子像素而言,在第n行子像素中,至少两种类型开口中同一种类型的开口在第一排列方向上排列;在第n+2行子像素中,所述至少两种类型开口中另一种同一类型的开口在第一排列方向上排列;以及对于第n行子像素和第n+2行子像素而言,同一列的两个子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
在又一方面,提供一种显示装置,其中,所述显示装置包括如上所述的显示基板。
附图说明
通过参照附图详细描述本公开的示例性实施例,本公开的特征及优点将变得更加明显。
图1A是根据本公开的一些示例性实施例的显示装置的平面示意图,其中示意性示出了显示装置包括的显示基板的平面结构。
图1B是根据本公开的一些示例性实施例的显示装置沿图1A中的线AA’截取的截面示意图。
图2A为示意性示出根据本公开的一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。
图2B为图2A中的单个子像素的放大图。
图2C为沿图2B中的线BB’截取的示意截面图。
图3示意性示出了图2A所示的实施例下的干涉条纹的仿真结果。
图4A为示意性示出根据本公开的一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。
图4B为图4A中的单个子像素的放大图。
图4C为沿图4B中的线CC’截取的示意截面图。
图5为图4A中所示的单个子像素的开口的放大图。
图6示意性示出了图4A所示的实施例下的干涉条纹的仿真结果。
图7为示意性示出根据本公开的一些示例性实施例的显示基板阳极的具体结构的 局部示意图。
图8A为示意性示出根据本公开的另一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。
图8B至图8D分别为根据本公开的另一些示例性实施例的显示基板在显示区域中的单个子像素的放大图。
图9A为示意性示出根据本公开的又一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。
图9B为图9A中的单个子像素的放大图。
图10A为示意性示出根据本公开的又一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。
图10B为图10A中的单个子像素的放大图。
图11A为示意性示出根据本公开的又一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。
图11B为图11A中的单个子像素的放大图。
图12为沿图1中的线AA’截取的剖面示意图,其示意性示出了根据本公开的一些示例性实施例的显示基板的具体结构。
图13是根据本公开的一些示例性实施例的显示基板的一个像素驱动电路的等效电路图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开的保护范围。
需要说明的是,在附图中,为了清楚和/或描述的目的,可以放大元件的尺寸和相对尺寸。如此,各个元件的尺寸和相对尺寸不必限于图中所示的尺寸和相对尺寸。在说明书和附图中,相同或相似的附图标号指示相同或相似的部件。
当元件被描述为“在”另一元件“上”、“连接到”另一元件或“结合到”另一元件时,所述元件可以直接在所述另一元件上、直接连接到所述另一元件或直接结合到所述另一元件,或者可以存在中间元件。然而,当元件被描述为“直接在”另一元件 “上”、“直接连接到”另一元件或“直接结合到”另一元件时,不存在中间元件。用于描述元件之间的关系的其他术语和/或表述应当以类似的方式解释,例如,“在……之间”对“直接在……之间”、“相邻”对“直接相邻”或“在……上”对“直接在……上”等。此外,术语“连接”可指的是物理连接、电连接、通信连接和/或流体连接。此外,X轴、Y轴和Z轴不限于直角坐标系的三个轴,并且可以以更广泛的含义解释。例如,X轴、Y轴和Z轴可彼此垂直,或者可代表彼此不垂直的不同方向。出于本公开的目的,“X、Y和Z中的至少一个”和“从由X、Y和Z构成的组中选择的至少一个”可以被解释为仅X、仅Y、仅Z、或者诸如XYZ、XY、YZ和XZ的X、Y和Z中的两个或更多个的任何组合。如文中所使用的,术语“和/或”包括所列相关项中的一个或多个的任何组合和所有组合。
需要说明的是,虽然术语“第一”、“第二”等可以在此用于描述各种部件、构件、元件、区域、层和/或部分,但是这些部件、构件、元件、区域、层和/或部分不应受到这些术语限制。而是,这些术语用于将一个部件、构件、元件、区域、层和/或部分与另一个相区分。因而,例如,下面讨论的第一部件、第一构件、第一元件、第一区域、第一层和/或第一部分可以被称为第二部件、第二构件、第二元件、第二区域、第二层和/或第二部分,而不背离本公开的教导。
为了便于描述,空间关系术语,例如,“上”、“下”、“左”、“右”等可以在此被使用,来描述一个元件或特征与另一元件或特征如图中所示的关系。应理解,空间关系术语意在涵盖除了图中描述的取向外,装置在使用或操作中的其它不同取向。例如,如果图中的装置被颠倒,则被描述为“在”其它元件或特征“之下”或“下面”的元件将取向为“在”其它元件或特征“之上”或“上面”。
在本文中,表述“重复单元”可以表示显示基板中设置有至少两个或两个以上单元并且这些单元紧邻重复。所述重复单元可以表示多个子像素的组合,例如,用来显示一个像素点的多个子像素的组合,多个“重复单元”在衬底基板上成阵列地重复排列。例如,一个重复单元可以包括至少一个像素,例如可以包括2个、3个、4个、或更多个子像素。此外,在本文中,为了描述方便,将位于第一显示区域中的重复单元称为第一重复单元,将位于第二显示区域中的重复单元称为第二重复单元。在本文中,表述“重复单元”也可以称为“像素结构”。
在本文中,表述“像素密度”表示单位面积内的重复单元或子像素的个数。类似地,表述“分布密度”表示单位面积内的部件(例如重复单元、子像素、隔垫物等) 的个数。
在本文中,除非另有特别说明,表述“开口”表示像素界定层在每一个子像素中的开口,该开口暴露子像素的发光器件的阳极结构的至少一部分,发光器件的发光层的至少一部分也位于该开口中,即,该开口对应子像素的发光区域。
在本文中,除非另有特别说明,表述“开口的中心”表示该开口在衬底基板上的正投影的几何中心或形心。例如,在开口为圆形的情况下,开口的中心为该圆形的圆心;在开口为椭圆的情况下,开口的中心为该椭圆的中心,即椭圆的长轴和短轴的交点;在开口为矩形的情况下,开口的中心为该矩形的中心,即矩形的两条对角线的交点。
在本文中,除非另有特别说明,表述“A和B基本位于平行于第一排列方向延伸的同一直线上”包括以下情况:A和B位于平行于第一排列方向延伸的同一直线上;A和B的位置在垂直于第一排列方向的方向上存在一定的误差,该误差小于等于±5微米。
在本文中,除非另有特别说明,“第一开口与第二开口之间的距离”等类似表述表示的是第一开口的中心与第二开口的中心之间的距离,“第一开口与第二开口之间的间隔距离”等类似表述表示的是第一开口最靠近第二开口的边缘与第二开口最靠近第一开口的边缘之间的距离。
应该理解,“图形的平移”表示:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移。一个图形经过平移后得到一个新的图形,这个图形能与原图形相互重合,只是位置发生了变化。换句话说,在平面内,一个图形和另一个图形仅通过平移运动能相互重合,可以认为这两个图形是平移重合的。相应地,在平面内,一个图形和另一个图形仅通过平移运动不能相互重合,可以认为这两个图形是非平移重合的。
“图形的旋转”表示:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为图形的旋转。这个定点被称为旋转中心,转动的角称为旋转角。旋转不改变图形的形状和大小。在平面内,一个图形和另一个图形通过平移和旋转运动能相互重合,可以认为这两个图形是非平移重合的,而是旋转重合的。
在本文中,除非另有特别说明,“图形形状不同”表示:两个图形的形状是不同的;如果两个图形的形状相同、但面积不同,不属于“图形形状不同”的情形。例如,两个图形既不是平移重合的,又不是旋转重合的。
在本文中,为了方便描述,使用方向性表述“第一排列方向”、“第二排列方向”、“第一方向”、“第二方向”,例如,“第一排列方向X”、“第二排列方向Y”、“第一方向M1”、“第二方向M2”,示例性地,第一排列方向X和第二排列方向Y可以用于表示各个子像素的排列方向,该排列方向可能与相邻两个子像素的发光区的几何中心连线方向平行,也可能不平行。例如,第一排列方向与第二排列方向相交。例如,第一排列方向与第二排列方向之间的夹角可以为80-100度。例如,第一排列方向与第二排列方向之间的夹角可以为85-95度。例如,第一排列方向和第二排列方向可以垂直,但不限于此,也可以不垂直。在本公开的实施例中,第一排列方向和第二排列方向可以互换。第一方向M1和第二方向M2可以用于表示与第一排列方向X和第二排列方向Y相交的方向,应该理解,第一方向M1和第二方向M2也可以用于表示各个子像素的排列方向,该排列方向可能与相邻两个子像素的发光区的几何中心连线方向平行,也可能不平行。例如,第一方向与第二方向相交。例如,第一方向与第二方向之间的夹角可以为80-100度。例如,第一方向与第二方向之间的夹角可以为85-95度。例如,第一方向和第二方向可以垂直,但不限于此,也可以不垂直。在本公开的实施例中,第一方向和第二方向可以互换。例如,在本公开的实施例中,示例性的,第一排列方向X和第二排列方向Y可以分别表示行方向和列方向,二者彼此垂直;第一方向M1和第二方向M2彼此垂直,且它们分别与第一排列方向X和第二排列方向Y成约45°的夹角。
本公开的实施例提供一种显示基板,所述显示基板包括:衬底基板;多个子像素,所述多个子像素沿第一排列方向和第二排列方向成阵列地设置于所述衬底基板上,所述多个子像素包括多个发光区;第一电极层,所述第一电极层位于所述衬底基板上,所述第一电极层包括多个阳极结构;以及像素界定层,位于所述第一电极层远离所述衬底基板的一侧,所述像素界定层包括多个开口以限定所述多个发光区,其中,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口在所述衬底基板上的正投影落入该子像素的阳极结构在所述衬底基板上的正投影内,每一个子像素的开口在所述衬底基板上的正投影的图形与所述子像素的阳极结构在所述衬底基板上的正投影的图形形状不同;以及每一个子像素的阳极结构在所述衬底基板上的正投影的图形的对称轴线的数量大于该子像素的开口在所述衬底基板上的正投影的图形的对称轴线的数量。在本公开的实施例中,对于具有异形形状的开口或发光区,将其对应的阳极结构设计为同一形状,能够缩小阳极结构的排列周期(即排列节距),使得干涉条纹人 眼不可见,从而能够显著改善显示基板的使用体验。
图1A是根据本公开的一些示例性实施例的显示装置的平面示意图,其中示意性示出了显示装置包括的显示基板的平面结构。图1B是根据本公开的一些示例性实施例的显示装置沿图1A中的线AA’截取的截面示意图。
如图1A所示,根据本公开实施例的显示装置包括显示基板10。该显示基板10包括显示区域,所述显示区域可以包括显示区域AA。例如,显示区域AA的形状可以为圆形、椭圆形或矩形,但本公开的实施例不限于此。又例如,显示区域AA的形状可以为矩形、圆角矩形或者其它合适的形状。
如图1B所示,所述显示基板10可以包括衬底基板1和设置在衬底基板1上的多个像素单元,每个像素单元可以包括多个子像素。
在图1A至图1B所示的显示基板中,可以采用OLED显示技术。由于OLED显示基板具有广视角、高对比度、快响应、低功耗、可折叠、柔性等优势,在显示产品中得到越来越广泛地应用。
例如,所述显示基板10还可以包括设置在衬底基板1上的驱动电路层、发光器件层和封装层。例如,图1B中示意性地示出了像素驱动电路层3、发光器件层4和封装层5。像素驱动电路层3包括像素驱动电路结构,发光器件层4包括例如OLED的发光器件。所述像素驱动电路结构控制各个子像素的发光器件发光,以实现显示功能。该像素驱动电路结构包括薄膜晶体管、存储电容器以及各种信号线。所述各种信号线包括栅线、数据线、ELVDD电源线和ELVSS电源线等,以便为每个子像素中的像素驱动电路提供控制信号、数据信号、电源电压等各种信号。
图2A为示意性示出根据本公开的一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。图2B为图2A中的单个子像素的放大图。图2C为沿图2B中的线BB’截取的示意截面图。图3示意性示出了图2A所示的实施例下的干涉条纹的仿真结果。
如图2A所示,显示基板10包括多个子像素。例如,多个子像素包括多个第一颜色子像素SP1、多个第二颜色子像素SP2以及多个第三颜色子像素SP3。多个第一颜色子像素SP1和多个第三颜色子像素SP3沿第一排列方向(如图2A所示的X方向,又称为行方向)交替设置以形成第一像素行01,多个第二颜色子像素SP2沿第一排列方向X排列以形成第二像素行02,第一像素行01和第二像素行02沿与第一排列方向X交叉的第二排列方向(如图2A所示的Y方向,又称为列方向)交替设置且在第一 排列方向X上彼此错开。例如,相邻的第一颜色子像素SP1和第二颜色子像素SP2沿第一方向M1排列,第一方向M1与第一排列方向X和第二排列方向Y均相交。如图2A所示,多个第一颜色子像素SP1和多个第三颜色子像素SP3沿第二排列方向Y交替设置以形成多个第一像素列03,多个第二颜色子像素SP2沿第一排列方向X和第二排列方向Y均阵列排布以形成多个第二像素行02和多个第二像素列04,多个第一像素列03和多个第二像素列04沿第一排列方向X交替设置且在第二排列方向Y上彼此错开,即一个第二颜色子像素SP2所在第二像素行02位于相邻两个第一像素行01之间,且该第二颜色子像素SP2所在第二像素列04位于相邻两个第一像素列03之间。
如图2A所示,显示基板包括呈阵列排布的多个重复单元A,每个重复单元A包括两行四列子像素,也即每个重复单元A中包括一个第一颜色子像素SP1、一个第三颜色子像素SP3和两个第二颜色子像素SP2,第一颜色子像素SP1和第三颜色子像素SP3为共用子像素,通过虚拟算法,可以使得四个子像素实现两个虚拟像素单元的显示。例如,同一行重复单元中,第二个重复单元中的第一颜色子像素SP1、第一个重复单元中的第三颜色子像素SP3以及第一个重复单元中靠近第二个重复单元的第二颜色子像素SP2形成一个虚拟像素单元,同时第二个重复单元中的第一颜色子像素SP1还与该重复单元中的第三颜色子像素SP3以及与该重复单元中的靠近第一个重复单元的第二颜色子像素SP2形成一个虚拟像素单元;另外,第二个重复单元中的第三颜色子像素SP3还与该重复单元中的另一个第二颜色子像素SP2以及第三个重复单元中的第一颜色子像素SP1形成一个虚拟像素单元,从而可以有效的提高该显示基板的分辨率。
本公开实施例中的子像素指发光器件结构,第一颜色子像素、第二颜色子像素和第三颜色子像素为发出不同颜色光的子像素。本公开实施例以第一颜色子像素为红色子像素,第二颜色子像素为绿色子像素,第三颜色子像素为蓝色子像素为例进行说明。但第一颜色子像素为红色子像素,第二颜色子像素为绿色子像素以及第三颜色子像素为蓝色子像素并不构成对本公开实施例保护范围的限制。
例如,第一颜色子像素SP1和第三颜色子像素SP3为共用子像素,根据二者发光光谱,这两者的发光区的面积均大于第二颜色子像素SP2的面积。
例如,至少一个蓝色子像素的发光区的面积大于至少一个红色子像素的发光区的面积,至少一个红色子像素的发光区的面积大于至少一个绿色子像素的发光区的面积,以延长显示基板的使用寿命。例如,相同颜色子像素的发光区的面积基本相等。
需要说明的是,在图2A以及下文类似的图中,位于最里面的图形表示子像素的开口或发光区,比所述子像素的开口或发光区的图形的面积大且基本包围所述开口的轮廓为子像素的阳极结构的轮廓线。
如图2A所示,每个子像素包括发光区200。例如,显示基板10包括设置在衬底基板1上的像素界定层8(参照图12),各子像素的发光区200的形状由像素界定层8中的开口限定,则各子像素的发光区200的形状与像素界定层8的开口的形状大致相同。
例如,结合参照图2A和图12,像素界定层8包括多个第一开口101、多个第二开口102以及多个第三开口103。第一开口101限定了第一颜色子像素SP1的第一发光区,第二开口102限定了第二颜色子像素SP2的第二发光区,第三开口103限定了第三颜色子像素SP3的第三发光区。
例如,显示基板包括衬底基板,各子像素以及像素界定层8设置在衬底基板上。各子像素包括有机发光元件,有机发光元件包括层叠设置的第一电极、发光层以及第二电极,第一电极位于发光层面向衬底基板的一侧。例如,第一电极的至少部分位于像素界定层面向衬底基板的一侧。当发光层形成在上述像素界定层8中的开口中时,位于发光层两侧的第一电极和第二电极能够驱动像素界定层8的开口中的发光层进行发光。例如,发光层与第一电极之间以及发光层与第二电极之间的至少之一中还设置有功能层。例如,功能层包括空穴注入层,空穴传输层,电子传输层,空穴阻挡层,电子阻挡层,电子注入层,辅助发光层,界面改善层,增透层等中的任意一层或多层。
例如,结合参照图2A和图12,所述显示基板10包括第一电极层41,所述第一电极层41位于所述衬底基板1上,所述第一电极层41包括多个阳极结构。该阳极结构构成所述有机发光元件的阳极的主体部分。为了描述方便,可以将第一颜色子像素SP1的有机发光元件包括的阳极结构称为第一阳极结构401,将第二颜色子像素SP2的有机发光元件包括的阳极结构称为第二阳极结构402,将第三颜色子像素SP3的有机发光元件包括的阳极结构称为第三阳极结构403。
例如,像素界定层的开口在衬底基板上的正投影位于相应的发光层在衬底基板上的正投影内,即发光层覆盖了像素界定层的开口。各子像素的开口在衬底基板上的正投影分别落入各自的阳极结构在衬底基板上的正投影内。例如,第一颜色子像素SP1的第一开口101在衬底基板1上的正投影落入第一颜色子像素SP1的第一阳极结构401在衬底基板1上的正投影内,第二颜色子像素SP2的第二开口102在衬底基板1上的 正投影落入第二颜色子像素SP2的第二阳极结构402在衬底基板1上的正投影内,第三颜色子像素SP3的第三开口103在衬底基板1上的正投影落入第三颜色子像素SP3的第三阳极结构403在衬底基板1上的正投影内。在本公开的实施例中,阳极结构的面积比开口的面积大,有利于保证子像素的开口中的有机发光材料均匀发光。
结合参照图2A至图2C,各子像素的阳极结构在衬底基板上的正投影和各自的开口在衬底基板上的正投影具有相同的形状,二者仅面积不同。
在图2A所示的实施例中,示意性示出各子像素的开口的形状为包括圆角的图形,则各子像素的发光区的形状也为包括圆角的图形,例如各子像素的阳极结构的形状也可以为包括圆角的图形。像素界定层的开口的图形可以包括四条直边,至少两条相邻直边通过曲线段连接,该曲线段形成了圆角。但本公开的实施例不限于此,各子像素的发光区的图形还可以包括三条直边、五条直边或者六条直边,则发光区包括的顶角的数量也随之变化。
例如,在图2A所示的实施例中,第一颜色子像素SP1的第一开口101在衬底基板1上的正投影具有圆角矩形的形状,相应地,第一颜色子像素SP1的第一阳极结构401在衬底基板1上的正投影也具有圆角矩形的形状。第二颜色子像素SP2的第二开口102在衬底基板1上的正投影具有圆角矩形的形状,相应地,第二颜色子像素SP2的第二阳极结构402在衬底基板1上的正投影也具有圆角矩形的形状。第三颜色子像素SP3的第三开口103在衬底基板1上的正投影具有不规则的形状(例如,矩形被截去一个顶角),相应地,第三颜色子像素SP3的第三阳极结构403在衬底基板1上的正投影也具有该不规则的形状(例如,矩形被截去一个顶角)。
例如,各子像素的阳极结构相对于各自的开口为等比例放大的。参照图2C,在任一子像素的开口的相对侧,该子像素的阳极结构超出开口的轮廓边缘的宽度相等,例如,wd1=wd2。
在本公开的实施例中,第三颜色子像素SP3的第三开口103在衬底基板1上的正投影和第三颜色子像素SP3的第三阳极结构403在衬底基板1上的正投影具有不规则多边形的形状,例如,参照图5,该不规则多边形可以被截去至少一个第一顶角301以形成至少一个第一角部1011,该不规则多边形还可以包括第二角部1012,该第二角部1012与第一角部1011相对。
参照图2A,第三颜色子像素SP3可以包括至少两种类型子像素,一种类型子像素中,第一角部1011的顶点指向与其相对的第二角部1012的顶点的方向为D1;另一种 类型子像素中,第一角部1011的顶点指向与其相对的第二角部1012的顶点的方向为D4,两个方向不同。
例如,如图2A所示,方向D1与方向D4可以平行且相反,但不限于此,两个方向也可以相交。
例如,如图2A所示,第三颜色子像素SP3包括两种不同类型子像素,一种类型子像素的第一角部1011的朝向向右,另一种类型子像素的第一角部1011的朝向向左。
本公开实施例不限于此,例如,第三颜色子像素中的两种不同类型子像素中第一角部的朝向还可以分别向上和向下,或者向上和向左,或者向上和向右,或者向下和向右,或者向下和向左。
当然,本公开实施例不限于第三颜色子像素包括两种不同类型,还可以第一颜色子像素和第二颜色子像素的至少之一包括两种不同类型子像素,且同种颜色子像素中不同类型子像素的判断标准可参考上述第三颜色子像素中不同类型子像素的判断标准。
例如,具有不同类型子像素的同一种颜色子像素中,沿第一排列方向和第二排列方向的至少之一的方向相邻的两个子像素为不同类型子像素。
例如,如图2A所示,沿第一排列方向排列的相邻两个第三颜色子像素SP3中的第一角部1011的朝向不同,例如分别向左和向右,但不限于此,还可以分别向上和向下,或者向上和向左,或者向上和向右,或者向下和向右,或者向下和向左。
例如,如图2A所示,沿第二排列方向排列的相邻两个第三颜色子像素SP3中的第一角部1011的朝向不同,例如分别向上和向下,但不限于此,还可以分别向左和向右,或者向上和向左,或者向上和向右,或者向下和向右,或者向下和向左。
本公开实施例不限于此,上述至少一种颜色子像素还可以包括三种类型子像素,三种不同类型子像素的第一角部的朝向可以包括向上、向下、向左和向右之中的任意三者,且位于同一行(或同一列)的子像素可以包括同种类型子像素,也可以包括至少两种类型子像素,在第一排列方向和第二排列方向至少之一的方向相邻的两个子像素可以为同种类型子像素,也可以为不同类型子像素,可以根据实际产品需求进行设置。例如,还可以一种颜色子像素包括上述三种类型子像素、两种颜色子像素中的每种颜色子像素均包括上述三种类型子像素,或者三种颜色子像素中的每种颜色子像素均包括上述三种类型子像素,本公开实施例对此不作限制。
例如,如图2A所示,上述至少一种颜色子像素包括四种不同类型子像素,如第 一类型子像素1001、第二类型子像素1002、第三类型子像素1003和第四类型子像素1004,不同类型子像素中,第一角部1011的顶点指向第二角部1012的顶点的方向不同。例如,不同类型子像素中第一角部1011的位置不同。例如,不同类型子像素中第一角部1011的朝向不同。
例如,各类型子像素的形状相同,或面积相同。例如,各类型子像素的形状和面积均相同。例如,不同类型子像素的数量大致相同。例如,第一类型子像素1001、第二类型子像素1002、第三类型子像素1003以及第四类型子像素1004中,任意两种类型子像素的数量比为0.8~1.2。例如,所述第一类型子像素1001和所述第二类型子像素1002的数量比为0.8~1.2,所述第三类型子像素1003和所述第四类型子像素1004的数量比为0.8~1.2。例如,第一类型子像素1001、第二类型子像素1002、第三类型子像素1003以及第四类型子像素1004中,任意两种类型子像素的数量比为0.9~1.1。
例如,如图2A所示,第一类型子像素1001、第二类型子像素1002、第三类型子像素1003和第四类型子像素1004中,第一角部1011的顶点指向第二角部1012的顶点的方向分别为方向D2、方向D3、方向D4和方向D1。例如,第一类型子像素1001的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D2;第二类型子像素1002的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D3;第三类型子像素1003的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D4;第四类型子像素1004的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D1。
例如,如图2A所示,第一类型子像素1001和第二类型子像素1002中,第一角部1011的顶点指向与其相对的第二角部1012的顶点的方向相反,例如平行于第二排列方向Y;第三类型子像素1003和第四类型子像素1004中,第一角部1011的顶点指向与其相对的第二角部1012的顶点的方向相反,例如平行于第一排列方向X。由此,方向D2和方向D3相反,且方向D4和方向D1相反。
本公开实施例示意性的示出第三颜色子像素包括四种不同类型子像素,但不限于此,还可以第一颜色子像素和第二颜色子像素的至少一种颜色子像素包括上述四种不同类型子像素,其他颜色子像素中不同类型子像素的第一角部的顶点指向第二角部的顶点的方向可以平行于第一排列方向或者第二排列方向,也可以与第一排列方向或第二排列方向相交。
本公开实施例提供的显示基板中,通过设置四种不同类型子像素,有利于改善该 显示基板显示时的色偏问题。此外,一般显示基板中,各不同颜色子像素的开口区包括的四个角部的形状均相同,相对于这种显示基板,本公开实施例提供的显示基板通过设置上述四种不同类型子像素,有利于减少显示基板显示时出现的颗粒感。
在图2A所示的实施例中,各个子像素的阳极结构相对于各自的开口是等比例放大的。也就是说,在第一类型子像素1001、第二类型子像素1002、第三类型子像素1003和第四类型子像素1004中,就子像素的阳极结构而言,第一角部1011的顶点指向第二角部1012的顶点的方向分别为方向D2、方向D3、方向D4和方向D1。例如,第一类型子像素1001的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D2;第二类型子像素1002的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D3;第三类型子像素1003的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D4;第四类型子像素1004的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D1。这样,各子像素的阳极结构形成了周期性的不规则图形排布。发明人经研究发现,当各子像素的阳极结构形成周期性的不规则图形排布时,不同行和/或列的光衍射和反射的路径不同,会出现周期性的条纹(参照图3,示意性示出了图2A所示的实施例下的干涉条纹),极大影响用户的使用体验。
图4A为示意性示出根据本公开的一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。图4B为图4A中的单个子像素的放大图。图4C为沿图4B中的线CC’截取的示意截面图。图5为图4A中所示的单个子像素的开口的放大图。图6示意性示出了图4A所示的实施例下的干涉条纹的仿真结果。图7为示意性示出根据本公开的一些示例性实施例的显示基板阳极的具体结构的局部示意图。图8A为示意性示出根据本公开的另一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。图8B至图8D分别为根据本公开的另一些示例性实施例的显示基板在显示区域中的单个子像素的放大图。图9A为示意性示出根据本公开的又一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。图9B为图9A中的单个子像素的放大图。图10A为示意性示出根据本公开的又一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。图10B为图10A中的单个子像素的放大图。图11A为示意性示出根据本公开的又一些示例性实施例的显示基板在显示区域中的子像素排布方式的局部示意图。图11B为图11A中的单个子像素的放大图。
需要说明的是,在下面的描述中,部分内容可以参考上文针对图2A至图2C的描述,下面主要描述区别于图2A至图2C的内容。相应地,为了避免混淆,具有相同或相似结构的部件、元件或部分采用相同的附图标记表示,具有不同结构或形状的部件、元件或部分采用不同的附图标记表示。
如图4A所示,显示基板10包括多个子像素。例如,多个子像素包括多个第一颜色子像素SP1、多个第二颜色子像素SP2以及多个第三颜色子像素SP3。多个第一颜色子像素SP1和多个第三颜色子像素SP3沿第一排列方向(如图4A所示的X方向,又称为行方向)交替设置以形成第一像素行01,多个第二颜色子像素SP2沿第一排列方向X排列以形成第二像素行02,第一像素行01和第二像素行02沿与第一排列方向X交叉的第二排列方向(如图4A所示的Y方向,又称为列方向)交替设置且在第一排列方向X上彼此错开。例如,相邻的第一颜色子像素SP1和第二颜色子像素SP2沿第一方向M1排列,第一方向M1与第一排列方向X和第二排列方向Y均相交。如图4A所示,多个第一颜色子像素SP1和多个第三颜色子像素SP3沿第二排列方向Y交替设置以形成多个第一像素列03,多个第二颜色子像素SP2沿第一排列方向X和第二排列方向Y均阵列排布以形成多个第一像素列03和多个第二像素列04,多个第一像素列03和多个第二像素列04沿第一排列方向X交替设置且在第二排列方向Y上彼此错开,即一个第二颜色子像素SP2所在第二像素行02位于相邻两个第一像素行01之间,且该第二颜色子像素SP2所在第二像素列04位于相邻两个第一像素列03之间。
如图4A所示,显示基板包括呈阵列排布的多个重复单元A,每个重复单元A包括两行四列子像素,也即每个重复单元A中包括一个第一颜色子像素SP1、一个第三颜色子像素SP3和两个第二颜色子像素SP2,第一颜色子像素SP1和第三颜色子像素SP3为共用子像素,通过虚拟算法,可以使得四个子像素实现两个虚拟像素单元的显示。例如,同一行重复单元中,第二个重复单元中的第一颜色子像素SP1、第一个重复单元中的第三颜色子像素SP3以及第一个重复单元中靠近第二个重复单元的第二颜色子像素SP2形成一个虚拟像素单元,同时第二个重复单元中的第一颜色子像素SP1还与该重复单元中的第三颜色子像素SP3以及与该重复单元中的靠近第一个重复单元的第二颜色子像素SP2形成一个虚拟像素单元;另外,第二个重复单元中的第三颜色子像素SP3还与该重复单元中的另一个第二颜色子像素SP2以及第三个重复单元中的第一颜色子像素SP1形成一个虚拟像素单元,从而可以有效的提高该显示基板的分辨率。
如图4A所示,每个子像素包括发光区200。例如,显示基板10包括设置在衬底基板1上的像素界定层8(参照图12),各子像素的发光区200的形状由像素界定层8中的开口限定,则各子像素的发光区200的形状与像素界定层8的开口的形状大致相同。
例如,结合参照图4A和图12,像素界定层8包括多个第一开口101、多个第二开口102以及多个第三开口103。第一开口101限定了第一颜色子像素SP1的第一发光区,第二开口102限定了第二颜色子像素SP2的第二发光区,第三开口103限定了第三颜色子像素SP3的第三发光区。
图12为沿图1中的线AA’截取的剖面示意图,其示意性示出了根据本公开的一些示例性实施例的显示基板的具体结构。结合参照图1、图2、图4A和图12,显示基板10包括依次叠置在衬底基板1上的像素驱动电路层,其中,像素驱动电路层可以包括薄膜晶体管T、绝缘层31、平坦化层32和有机发光元件41。有机发光元件41包括位于第一电极层中的第一电极(例如阳极)41A、位于第二电极层中的第二电极(例如阴极)41C以及位于第一电极41A与第二电极41C之间的发光层41B。有机发光元件41的第一电极41A通过贯穿平坦化层32的阳极连接孔VH1与晶体管电连接。其中,像素驱动电路层可以包括半导体层,第一绝缘层,第一栅极层,第二绝缘层,第二栅极层,层间绝缘层,源漏金属层等。在一些实施例中,像素驱动电路可以包括7个薄膜晶体管(例如驱动晶体管,数据写入晶体管,补偿晶体管,复位晶体管,发光控制晶体管等),和一个存储电容,其中至少一个薄膜晶体管和发光器件直接连接,例如发光控制晶体管。图12只是示意性示出一个薄膜晶体管T,薄膜晶体管T至少包括位于半导体层中的有源层,以及源极接触部分,漏极接触部分,位于第一栅极层中的栅极,位于源漏金属层中的源极和漏极。
需要说明的是,在本文中,除非另有说明,“过孔”或“连接孔”用于电连接位于不同的导电层中的部件,在本公开的实施例中,“过孔”或“连接孔”还可以采用其他替代形式,例如,可以用于电连接位于不同的导电层中的部件的“凹槽”来替代所述过孔或连接孔。
例如,第一电极41A可以包括ITO等透明导电材料,本公开的实施例对第一电极41A的具体材料不做限定。例如,第二电极41C可以为显示基板10上整个表面上形成的结构(例如至少全部覆盖整个显示区),第二电极41C例如可以包括锂(Li)、铝(Al)、镁(Mg)、银(Ag)等金属材料。例如,由于第二电极41C可以形成为很薄的一层, 因此第二电极41C具有良好的透光性。
所述显示基板10还可以包括像素界定层8。例如,所述像素界定层8可以具有多个开口。例如,一些开口位于显示区域AA中,每一个开口暴露有机发光元件41的第一电极的一部分。
结合参照图7和图12,第一电极41A包括阳极结构413和阳极连接部422,所述阳极连接部422的至少一部分的厚度与所述阳极结构413的厚度不同。具体地,在所述过孔VH1处,第一电极的阳极连接部422连接至下方的薄膜晶体管的源极或漏极,所以,所述阳极连接部422的至少一部分的厚度大于所述阳极结构413的厚度。
应该理解,阳极结构413为阳极(即第一电极)的主体部分,阳极连接部422为阳极(即第一电极)的辅助部分,它是为了方便设置过孔VH1而设计的。在本公开的实施例中,仅图7示意性示出了阳极的整体结构,在其他附图中,使用阳极的主体部分(即阳极结构)表示阳极的主体轮廓。也就是说,在本文中,除非另有说明,使用阳极结构在衬底基板上的正投影表示各个子像素的阳极的图案。
图13是根据本公开的一些示例性实施例的显示基板的一个像素驱动电路的等效电路图。
下面,以7T1C像素驱动电路为例,对所述像素驱动电路的结构进行详细描述,但是,本公开的实施例并不局限于7T1C像素驱动电路,在不冲突的情况下,其它已知的像素驱动电路结构都可以应用于本公开的实施例中。
如图13所示,所述像素驱动电路可以包括:多个薄膜晶体管以及一个存储电容器Cst。所述像素驱动电路用于驱动有机发光二极管(即OLED)。多个薄膜晶体管包括第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6和第七晶体管T7。每一个晶体管均包括栅极、源极和漏极。
所述显示基板还可以包括多根信号线,例如,所述多根信号线包括:用于传输扫描信号Sn的扫描信号线61,用于传输复位控制信号RESET(即前一行的扫描信号)的复位信号线62,用于传输发光控制信号En的发光控制线63,用于传输数据信号Dm的数据线64,用于传输驱动电压VDD的驱动电压线65,用于传输初始化电压Vint的初始化电压线66,以及用于传输VSS电压的电源线67。
第一晶体管T1的栅极G1电连接至存储电容器Cst的一端Cst1,第一晶体管T1的源极S1经由第五晶体管T5电连接至驱动电压线65,第一晶体管T1的漏极D1经由第六晶体管T6电连接至OLED的阳极。第一晶体管T1根据第二晶体管T2的开关 操作接收数据信号Dm,以向OLED供应驱动电流Id。
第二晶体管T2的栅极G2电连接至扫描信号线61,第二晶体管T2的源极S2电连接至数据线64,第二晶体管T2的漏极D2经由第五晶体管T5电连接至驱动电压线65,同时电连接至第一晶体管T1的源极S1。第二晶体管T2根据通过扫描信号线61传输的扫描信号Sn导通,以执行开关操作来将被传输至数据线64的数据信号Dm传输至第一晶体管T1的源极S1。
第三晶体管T3的栅极G3电连接至扫描信号线61,第三晶体管T3的源极S3经由第六晶体管T6电连接至OLED的阳极,同时电连接至第一晶体管T1的漏极D1。并且第三晶体管T3的漏极D3与存储电容器Cst的一端(即第一电容电极)Cst1、第四晶体管T4的漏极D4以及第一晶体管T1的栅极G1电连接在一起。第三晶体管T3根据通过扫描信号线61传输的扫描信号Sn导通,以将第一晶体管T1的栅极G1和漏极D1彼此连接,从而执行第一晶体管T1的二极管连接。
第四晶体管T4的栅极G4电连接至复位控制信号线62,第四晶体管T4的源极S4电连接至初始化电压线66。并且第四晶体管T4的漏极D4与存储电容器Cst的一端Cst1、第三晶体管T3的漏极D3以及第一晶体管T1的栅极G1电连接。第四晶体管T4根据通过复位控制信号线62传输的复位控制信号Sn-1导通,以将初始化电压Vint传输至第一晶体管T1的栅极G1,从而执行初始化操作来将第一晶体管T1的栅极G1的电压初始化。
第五晶体管T5的栅极G5电连接至发光控制线63,第五晶体管T5的源极S5电连接至驱动电压线65。并且第五晶体管T5的漏极D5与第一晶体管T1的源极S1和第二晶体管T2的漏极D2电连接。
第六晶体管T6的栅极G6电连接至发光控制线63,第六晶体管T6的源极S6电连接至第一晶体管T1的漏极D1且电连接至第三晶体管T3的源极S3。并且第六晶体管T6的漏极D6电连接至OLED的阳极。第五晶体管T5和第六晶体管T6根据通过发光控制线63传输的发光控制信号En并发(例如同时)导通,以将驱动电压ELVDD传输至OLED,从而允许驱动电流Id流进OLED中。
第七晶体管T7包括:栅极G7,连接至复位控制信号线62;源极S7,连接至第六晶体管T6的漏极D6和OLED的阳极;以及漏极D7,连接至初始化电压线66。第七晶体管T7将复位控制信号Sn-1从复位控制信号线62传送至栅极G7。
存储电容器Cst的另一端Cst2电连接至驱动电压线65,并且OLED的阴极电连接 至电源线67,以接收公共电压ELVSS。相应地,OLED从第一晶体管T1接收驱动电流Id来发光,从而显示图像。
需要说明的是,在图13中,各个薄膜晶体管T1、T2、T3、T4、T5、T6和T7是p沟道场效应晶体管,但是,本公开的实施例不局限于此,薄膜晶体管T1、T2、T3、T4、T5、T6和T7中的至少一些可以是n沟道场效应晶体管。
在操作中,在初始化阶段期间,具有低电平的复位控制信号Sn-1通过复位控制信号线62供应。随后,初始化薄膜晶体管T4基于复位控制信号Sn-1的低电平导通,并且来自初始化电压线66的初始化电压Vint通过初始化薄膜晶体管T4传送至驱动薄膜晶体管T1的栅极G1。因此,驱动薄膜晶体管T1由于初始化电压Vint而被初始化。
在数据编程阶段期间,具有低电平的扫描信号Sn通过扫描信号线61供应。随后,开关薄膜晶体管T2和补偿薄膜晶体管T3基于扫描信号Sn的低电平导通。因此,驱动薄膜晶体管T1通过导通的补偿薄膜晶体管T3被置于二极管连接状态并且在正方向上偏置。
随后,通过从经由数据线64供应的数据信号Dm中减去驱动薄膜晶体管T1的阈值电压Vth获得的补偿电压Dm+Vth(例如,Vth是负值)施加至驱动薄膜晶体管T1的栅极G1。随后,驱动电压ELVDD和补偿电压Dm+Vth施加至存储电容器Cst的两个端子,使得与相应端子之间的电压差对应的电荷存储在存储电容器Cst中。
在发光阶段期间,来自发光控制线63的发光控制信号En从高电平变为低电平。随后,在发光阶段期间,第一发光控制薄膜晶体管T5和第二发光控制薄膜晶体管T6基于发光控制信号En的低电平导通。
随后,基于驱动薄膜晶体管T1的栅极G1的电压与驱动电压ELVDD之间的差生成驱动电流。与驱动电流和旁路电流之间的差对应的驱动电流Id通过第二发光控制薄膜晶体管T6供应给OLED。
在发光阶段期间,基于驱动薄膜晶体管T1的电流-电压关系,驱动薄膜晶体管T1的栅源电压由于存储电容器Cst而保持在(Dm+Vth)-ELVDD处。驱动电流Id与(Dm-ELVDD)2成比例。因此,驱动电流Id可以不受驱动薄膜晶体管T1的阈值电压Vth变动的影响。
例如,在本公开的各个实施例中,衬底基板1可以为玻璃基板、石英基板、金属基板或树脂类基板等,可以是刚性基板或柔性基板,本公开的实施例对此不作限制。
例如,结合参照图4A和图12,所述显示基板10包括第一电极层,所述第一电极 层位于所述衬底基板1上,所述第一电极层包括多个阳极结构。该阳极结构构成所述有机发光元件的阳极的主体部分。为了描述方便,可以将第一颜色子像素SP1的有机发光元件包括的阳极结构称为第一阳极结构401,将第二颜色子像素SP2的有机发光元件包括的阳极结构称为第二阳极结构402,将第三颜色子像素SP3的有机发光元件包括的阳极结构称为第三阳极结构403。
结合参照图4A、图8A、图9A、图10A和图11A,像素界定层的开口在衬底基板上的正投影位于相应的发光层在衬底基板上的正投影内,即发光层覆盖了像素界定层的开口。各子像素的开口在衬底基板上的正投影分别落入各自的阳极结构在衬底基板上的正投影内。例如,第一颜色子像素SP1的第一开口101在衬底基板1上的正投影落入第一颜色子像素SP1的第一阳极结构401在衬底基板1上的正投影内,第二颜色子像素SP2的第二开口102在衬底基板1上的正投影落入第二颜色子像素SP2的第二阳极结构402在衬底基板1上的正投影内,第三颜色子像素SP3的第三开口103在衬底基板1上的正投影落入第三颜色子像素SP3的第三阳极结构403在衬底基板1上的正投影内。在本公开的实施例中,阳极结构的面积比开口的面积大,有利于保证子像素的开口中的有机发光材料均匀发光。
结合参照图4A至图4C、图8A至图8D、图9A至图9B、图10A至图10B和图11A至图11B,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口在所述衬底基板上的正投影的图形与所述子像素的阳极结构在所述衬底基板上的正投影的图形形状不同;以及每一个子像素的阳极结构在所述衬底基板上的正投影的图形的对称轴线的数量大于该子像素的开口在所述衬底基板上的正投影的图形的对称轴线的数量。
例如,在图4A和图8A所示的实施例中,第一颜色子像素SP1的第一开口101在衬底基板1上的正投影具有圆角矩形的形状,相应地,第一颜色子像素SP1的第一阳极结构401在衬底基板1上的正投影也具有圆角矩形的形状。第二颜色子像素SP2的第二开口102在衬底基板1上的正投影具有圆角矩形的形状,相应地,第二颜色子像素SP2的第二阳极结构402在衬底基板1上的正投影也具有圆角矩形的形状。
参照图4A,第三颜色子像素SP3的第三开口103在衬底基板1上的正投影具有不规则的形状,例如,矩形被截去一个顶角,可以参照图5。不同地,第三颜色子像素SP3的第三阳极结构403在衬底基板1上的正投影具有规则的形状,例如,矩形或圆角矩形。
参照图8A,第三颜色子像素SP3的第三开口103在衬底基板1上的正投影具有不规则的形状,例如,矩形被截去一个顶角,可以参照图5。不同地,第三颜色子像素SP3的第三阳极结构403在衬底基板1上的正投影具有规则的形状,例如,圆形。
在图4A和图8A所示的实施例中,示意性示出各子像素的开口的形状为包括圆角的图形,则各子像素的发光区的形状也为包括圆角的图形,例如各子像素的阳极结构的形状也可以为包括圆角的图形。像素界定层的开口的图形可以包括四条直边,至少两条相邻直边通过曲线段连接,该曲线段形成了圆角。但本公开的实施例不限于此,各子像素的发光区的图形还可以包括三条直边、五条直边或者六条直边,则发光区包括的顶角的数量也随之变化。
结合参照图4A和图4B以及图8A和图8B,对于所述多个子像素中的至少一些子像素而言,每一个子像素的阳极结构在所述衬底基板上的正投影的图形相对于该子像素的开口在所述衬底基板上的正投影的图形是非等比例放大的。
图5为图4A或图8A所示的一个发光区的形状示意图。如图4A、图8A和图5所示,各个发光区200的每条边或其延长线依次连接形成多边形300,且至少部分子像素的所述多边形300的多个顶角301存在与对应的发光区200的多个角部001不交叠的区域N0;至少一个子像素的所述发光区200的多个角部001中,至少包括第一角部1011,所述第一角部1011和与其对应的所述多边形300的顶角301不交叠的区域N0的面积大于其他角部001的至少部分角部001中各角部001和与该角部001对应的多边形300的顶角301不交叠的区域N0的面积。
例如,图5示意性的示出多边形300的所有顶角均存在与对应的发光区200的相应的角部001不交叠的区域N0,但不限于此,还可以为多边形的部分顶角与发光区相应角部存在不交叠的区域,部分顶角与发光区相应角部完全交叠。
例如,如图4A和图5所示,至少两种不同颜色子像素中(例如第一颜色子像素和第二颜色子像素,或者第一颜色子像素和第三颜色子像素,或者第二颜色子像素和第三颜色子像素,或者第一颜色子像素、第二颜色子像素和第三颜色子像素),发光区200的形状为多边形300截去至少一个第一顶角301后的形状,例如用于截去多边形300的第一顶角301的截线302可以包括曲线、直线等具有规则形状的线段,也可以为不规则形状的线段。
例如,本公开实施例示意性的示出多边形300为四边形,例如,对应于至少一种颜色子像素的多边形的形状可以为菱形、矩形或者正方形,但不限于此,多边形300 还可以为三角形、五边形或者六边形等,本公开实施例对此不作限制。例如,多边形的各顶角的角度可以相等,也可以不等。
如图4A、图4B和图5所示,发光区(或开口)101的顶角包括第一角部1011,第一角部1011为多边形300被截去由两条第一边310所夹的第一顶角301后形成的角部。例如,所述两条第一边310至少之一被截去的部分L1与第一边310的长度之比为0.2~0.8。多边形300的第一边310被截去第一线段L1后剩余部分L2形成连接第一角部1011的发光区200的边,例如第一角部1011的两端分别与发光区200的两条直边连接,这两条直边的至少一条直边为多边形300的第一边310截去第一线段L1后剩余的直线边。
例如,多边形300可以被截去至少一个第一顶角301以形成至少一个第一角部1011。例如,一个多边形300包括的多个第一顶角301度数相等,且该多个第一顶角301被截去后形成的多个第一角部1011的形状和尺寸等参数均相等。
第一线段L1的长度与第一边310的长度之比为0.2~0.8。例如,第一线段L1的长度与第一边310的长度之比为0.3~0.7;例如,第一线段L1的长度与第一边310的长度之比为0.4~0.6;例如,第一线段L1的长度与第一边310的长度之比为0.5。
例如,第一线段L1的长度与剩余部分L2的长度之比为0.25~4。例如,第一线段L1的长度与剩余部分L2的长度之比为1~3。第一线段L1的长度与剩余部分L2的长度之比为0.5~2。
例如,所述至少两种不同颜色子像素中的所述第一角部1011的数量不同。例如,两种不同颜色子像素中的第一角部1011的数量不同可以指:相同颜色子像素中的第一角部的数量相同,两个不同颜色子像素中,一个子像素中的第一角部的数量与另一个颜色不同的子像素中的第一角部的数量不同。例如,两种不同颜色子像素中的第一角部1011的数量不同还可以指:相同颜色子像素中的第一角部的数量相同,不同颜色子像素的数量不同,则不同颜色子像素包括第一角部的总数量不同。
例如,至少两种不同颜色子像素中的第一角部1011的数量不同,有利于调节至少部分显示区中的亮度中心以使其分布更均匀。
例如,如图4A所示,相同颜色的子像素的发光区200的面积相同,不同颜色子像素的发光区200的面积不同。
例如,在发光区200包括一个第一角部1011时,该发光区200的几何中心位于第一顶角301的顶点和与第一角部1011相对的顶角的顶点连线303的中点远离第一角部 1011的一侧,由此通过调节至少部分发光区的几何中心,可以调节至少部分显示区中的亮度中心以使其分布更均匀。
例如,如图4A和图5所示,本公开实施例提供的显示基板中,通过对部分子像素的形状进行调整,使得第一颜色子像素、第二颜色子像素和第三颜色子像素的至少两种颜色子像素中,与第一角部的两端连接的两条直边的延长线的交点到该子像素的发光区的几何中心的距离与构成与第一角部相对的发光区的顶角的两条直边或其延长线的交点到该子像素的发光区的几何中心的距离不同,以调整每个虚拟像素单元的实际亮度中心,使得该显示基板中各个实际亮度中心分布更加均匀。
例如,一种颜色子像素中的第一角部1011的数量为一个,另一种颜色子像素的第一角部1011的数量大于一,例如可以为两个,三个或者四个。例如,一种颜色子像素中的第一角部1011的数量可以为两个,另一种颜色子像素中的第一角部1011的数量可以为三个或者四个。例如,一种颜色子像素中的第一角部1011的数量可以为三个,另一种颜色子像素中的第一角部1011的数量可以为四个,本公开实施例对于不同颜色子像素的第一角部的数量不作限制,可根据实际产品需求进行设置。
例如,第一角部1011包括一顶点P1,该顶点可以在连线303上,与第一角部1011的两端连接的两条边向其顶点P1延伸交汇的部分形成的一段曲线(即第一角部的外侧边缘)以使得该第一角部1011成为圆倒角,此时,该第一角部1011可为从该顶点P1为中心沿轮廓x微米的范围,x的值可以为2~7微米。在第一角部为圆倒角,发光区的形状中与第一角部相对的顶角为直角或锐角时,与第一角部的两端连接的两条直边的延长线的交点到该发光区200的几何中心O1的距离大于构成与第一角部相对的顶角的两条直边的延长线的交点到该几何中心O1的距离。
上述“圆倒角”为一段曲线形成的顶角,该曲线可以为圆弧,也可以为非规则的曲线,例如椭圆形中截取的曲线、波浪线等。本公开实施例示意性的示出该曲线具有相对于发光区200的几何中心O1向外凸的形状,但不限于此,该曲线也可以具有相对于发光区200的几何中心O1向内凹的形状。例如,曲线为向外凸的圆弧时,该圆弧的圆心角的范围可以为10°~150°。例如,该圆弧的圆心角的范围可以为60°~120°。例如,该圆弧的圆心角的范围可以为90°。例如,第一角部1011包括的圆倒角的曲线长度可以为10~60微米。
例如,第一角部1011为圆倒角时,其曲率半径可以为5~20微米。
参照图4A,对于所述多个子像素中的至少一些子像素(例如至少部分第三颜色子 像素SP3)而言,每一个子像素的阳极结构在所述衬底基板上的正投影的图形与该子像素的开口在所述衬底基板上的正投影的图形具有不同数量的对称轴线。在图4A所示的实施例中,对于所述多个子像素中的至少一些子像素(例如至少部分第三颜色子像素SP3)而言,每一个子像素的阳极结构在所述衬底基板上的正投影的图形的对称轴线的数量大于该子像素的开口在所述衬底基板上的正投影的图形的对称轴线的数量。例如,第三颜色子像素SP3的开口103在所述衬底基板上的正投影的图形具有1条对称轴线,第三颜色子像素SP3的阳极结构在所述衬底基板上的正投影的图形具有至少2条对称轴线。在图8A所示的实施例中,例如,第三颜色子像素SP3的开口103在所述衬底基板上的正投影的图形具有1条对称轴线,第三颜色子像素SP3的阳极结构在所述衬底基板上的正投影的图形具有无穷条对称轴线。
例如,如图4A和图8A所示,第三子像素SP3包括4种类型,为了描述方便,分别称为第一类型子像素1001、第二类型子像素1002、第三类型子像素1003和第四类型子像素1004。在第一类型子像素1001、第二类型子像素1002、第三类型子像素1003和第四类型子像素1004中,第一角部1011的顶点指向第二角部1012的顶点的方向分别为方向D2、方向D3、方向D4和方向D1。例如,第一类型子像素1001的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D2;第二类型子像素1002的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D3;第三类型子像素1003的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D4;第四类型子像素1004的开口中,第一角部1011的顶点指向第二角部1012的顶点的方向为方向D1。
在本文中,为了方便描述,将第一类型子像素1001具有的开口称为第一类型开口,将第二类型子像素1002具有的开口称为第二类型开口,将第三类型子像素1003具有的开口称为第三类型开口,将第四类型子像素1004具有的开口称为第四类型开口,以此类推。
参照图4A和图8A,对于至少一个第一类型开口而言,在第一排列方向X上与该第一类型开口相邻的两个开口为第二类型开口,在第二排列方向Y上与该第一类型开口相邻的两个开口为第二类型开口,在第一方向M1上与该第一类型开口相邻的两个开口为第三类型开口,在第二方向M2上与该第一类型开口相邻的两个开口为第四类型开口。
所述第一类型开口和所述第二类型开口中的至少一个在所述衬底基板1上的正投 影的图形仅相对于沿第二排列方向Y延伸的第一对称轴线AX1对称。覆盖所述第一类型开口和所述第二类型开口的各个阳极结构413在所述衬底基板1上的正投影的图形相对于沿第二排列方向Y延伸的第一对称轴线AX1和沿第一排列方向X延伸的第二对称轴线AX2均对称。
所述第三类型开口和所述第四类型开口中的至少一个在所述衬底基板1上的正投影的图形仅相对于沿第一排列方向X延伸的第二对称轴线AX2对称。覆盖所述第三类型开口和所述第四类型开口的各个阳极结构413在所述衬底基板1上的正投影的图形相对于沿第一排列方向X延伸的第二对称轴线AX2和沿第二排列方向X延伸的第一对称轴线AX1均对称。
对于所述多个子像素中的至少一些子像素而言,每一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心与该子像素的开口在所述衬底基板上的正投影的图形的几何中心不重合。例如,结合参照图4A、图4B、图5、图8A和图8B,对于至少一些第三颜色子像素SP3而言,第三颜色子像素SP3的阳极结构403在所述衬底基板上的正投影的图形为规则图形,例如,该规则图形为矩形、圆角矩形或圆形。在此情况下,第三颜色子像素SP3的阳极结构403在所述衬底基板上的正投影的图形的几何中心O2为矩形的2条对角线的交点。第三颜色子像素SP3的阳极结构403在所述衬底基板1上的正投影的图形的几何中心O2与该子像素的开口103在所述衬底基板1上的正投影的图形的几何中心O1不重合。
参照图4A和图8A,对于所述多个子像素中的至少一些子像素而言,至少一个子像素(例如第三颜色子像素SP3)的阳极结构413在所述衬底基板1上的正投影的图形的几何中心O2相对于该子像素的开口103在所述衬底基板1上的正投影的图形的几何中心O1在第一排列方向X上偏移;和/或,至少一个子像素(例如第三颜色子像素SP3)的阳极结构413在所述衬底基板1上的正投影的图形的几何中心O2相对于该子像素的开口103在所述衬底基板1上的正投影的图形的几何中心O1在第二排列方向Y上偏移。
在第一类型子像素1001中,阳极结构413在所述衬底基板1上的正投影的图形的几何中心O2相对于该子像素的开口103在所述衬底基板1上的正投影的图形的几何中心O1沿方向D3偏移,即沿第二排列方向Y向下偏移。在第二类型子像素1002中,阳极结构413在所述衬底基板1上的正投影的图形的几何中心O2相对于该子像素的开口103在所述衬底基板1上的正投影的图形的几何中心O1沿方向D2偏移,即沿第 二排列方向Y向上偏移。在第三类型子像素1003中,阳极结构413在所述衬底基板1上的正投影的图形的几何中心O2相对于该子像素的开口103在所述衬底基板1上的正投影的图形的几何中心O1沿方向D1偏移,即沿第一排列方向X向左偏移。在第四类型子像素1004中,阳极结构413在所述衬底基板1上的正投影的图形的几何中心O2相对于该子像素的开口103在所述衬底基板1上的正投影的图形的几何中心O1沿方向D4偏移,即沿第一排列方向X向右偏移。
结合参照图4B、图4C、图5、图8A和图8B,部分第三颜色子像素SP3的开口103在所述衬底基板1上的正投影的图形具有第一对称轴线AX1、第一顶点P1和第二顶点P2,所述第一顶点P1和所述第二顶点P2均位于所述第一对称轴线AX1上,所述第一顶点P1和所述第二顶点P2相对设置。例如,第一顶点P1为第一角部1011处的顶点,第二顶点P2为第二角部1012处的顶点。
所述第一对称轴线AX1与所述子像素的阳极结构413在所述衬底基板1上的正投影的图形具有第一交点Q1和第二交点Q2,所述第一交点Q1邻近所述第一顶点P1,所述第二交点Q2邻近所述第二顶点P2。
在所述第一对称轴线AX1的延伸方向上,所述第一顶点P1和所述第一交点Q1之间的第一距离sd1与所述第二顶点P2和所述第二交点Q2之间的第二距离sd2不相等。例如,在所述第一对称轴线AX1的延伸方向上,所述第一顶点P1和所述第一交点Q1之间的第一距离sd1大于所述第二顶点P2和所述第二交点Q2之间的第二距离sd2。例如,第一距离sd1与第二距离sd2之比在1.2以上,例如在1.2~5之间,在1.2~4之间,在1.3~3之间,在1.4~2之间。
参照图4C,在第一截面图中,所述子像素的开口103两侧的像素界定层8分别覆盖所述子像素的阳极结构413的一部分,所述阳极结构413被所述子像素的开口一侧的像素界定层8覆盖的部分的宽度(例如sd1)与所述阳极结构413被所述子像素的开口另一侧的像素界定层8覆盖的另一部分的宽度(例如sd2)不相等,其中,第一截面垂直于所述第一电极层接触所述像素界定层的表面,且所述第一对称轴线AX1位于所述第一截面内。
参照图4A,所述多个子像素包括第n行子像素011和第n+2行子像素012,例如,所述多个子像素还可以包括第n+1行子像素02。所述第n行子像素011和所述第n+2行子像素012可以包括沿第一排列方向X排列的多个同颜色子像素(例如第一颜色子像素SP1或第三颜色子像素SP3),所述第n行子像素011和所述第n+2行子像素012 沿第二排列方向Y排列。例如,在该实施例中,第n行子像素011可以包括沿第一排列方向X交替排列的第一颜色子像素SP1和第三颜色子像素SP3,第n+1行子像素02可以包括沿第一排列方向X排列的第二颜色子像素SP2,第n+2行子像素011可以包括沿第一排列方向X交替排列的第一颜色子像素SP1和第三颜色子像素SP3。
所述第n行子像素011包括第一子像素(例如一个第三颜色子像素SP3),所述第n+2行子像素012包括第二子像素(例如一个第三颜色子像素SP3),所述第二子像素为所述第n+2行子像素的多个子像素中在第一排列方向上最邻近所述第一子像素且与所述第一子像素的颜色相同的的一个子像素,所述第一子像素的开口103在所述衬底基板1上的正投影的图形与所述第二子像素的开口103在所述衬底基板上的正投影的图形为非平移重合的,所述第一子像素的阳极结构401在所述衬底基板1上的正投影的图形与所述第二子像素的阳极结构402在所述衬底基板1上的正投影的图形为平移重合的。
在所述第n行子像素011和所述第n+2行子像素012的同颜色的子像素中,至少一部分子像素的开口103在所述衬底基板1上的正投影的图形与另一部分子像素的开口103在所述衬底基板1上的正投影的图形为非平移重合的,全部子像素的阳极结构413在所述衬底基板上的正投影的图形均为平移重合的。
继续参照图4A,所述多个子像素包括第m列子像素031和第m+2列子像素032,例如,所述多个子像素还可以包括第m+1列子像素04。所述第m列子像素031和所述第二子像素032可以包括沿第二排列方向Y排列的多个同颜色子像素(例如第一颜色子像素SP1或第三颜色子像素SP3),所述第m列子像素031和所述第二子像素032沿第一排列方向X排列。例如,在该实施例中,第m列子像素031可以包括沿第二排列方向Y交替排列的第一颜色子像素SP1和第三颜色子像素SP3,第m+1列子像素04可以包括沿第二排列方向Y排列的第二颜色子像素SP2,第m+2列子像素032可以包括沿第二排列方向Y交替排列的第一颜色子像素SP1和第三颜色子像素SP3。
所述第m列子像素031包括第三子像素(例如一个第三颜色子像素SP3),所述第m+2列子像素包括第四子像素(例如另一个第三颜色子像素SP3),所述第四子像素为所述第m+2列子像素的多个子像素中在第二排列方向上最邻近所述第三子像素且与所述第三子像素的颜色相同的一个子像素,所述第三子像素的开口103在所述衬底基板1上的正投影的图形与所述第四子像素的开口103在所述衬底基板上的正投影的图形为非平移重合的,所述第三子像素的阳极结构413在所述衬底基板上的正投影的图形 与所述第四子像素的阳极结构413在所述衬底基板上的正投影的图形为平移重合的。
在所述第m列子像素031和所述第m+2列子像素032的同颜色的子像素中,至少一部分子像素的开口103在所述衬底基板1上的正投影的图形与另一部分子像素的开口103在所述衬底基板1上的正投影的图形为非平移重合的,全部子像素的阳极结构413在所述衬底基板1上的正投影的图形均为平移重合的。
参照图4A,对于第n行子像素011和第n+2行子像素012而言,在第n行子像素011中,所述第一类型开口和所述第二类型开口在第一排列方向X上交替排列;在第n+2行子像素012中,所述第三类型开口和所述第四类型开口在第一排列方向上交替排列。
对于第m列子像素和第m+2列子像素而言,在第m列子像素中,所述第一类型开口和所述第二类型开口在第二排列方向上交替排列;在第m+2列子像素中,所述第三类型开口和所述第四类型开口在第二排列方向上交替排列。
继续参照图4A,对于所述多个子像素中的至少一种同颜色的子像素(例如第三颜色子像素SP3)而言,多个同颜色的子像素的开口103在所述衬底基板1上的正投影的图形在第一排列方向X上的排列节距为第一排列节距pt1,所述多个同颜色的子像素的阳极结构413在所述衬底基板1上的正投影的图形在第一排列方向X上的排列节距为第二排列节距pt2,所述第一排列节距pt1大于所述第二排列节距pt2。
需要说明的是,在本文中,除非另有特别说明,表述“排列节距”、“节距”等用于表示周期性排列的结构、元件或部件在某一方向上的排列周期,该排列周期可以用在该某一方向上相邻的两个结构、元件或部件的中心距表示。
需要说明的是,在本文中,表述“第二排列节距”表示具有相同的形状(即为平移重合的)的阳极结构在所述衬底基板上的正投影的图形在第一排列方向X上的最小中心距,例如,具有相同的形状(即为平移重合的)的阳极结构所属的子像素可以位于不同的子像素行。例如,在图4A所示的示例中,第二排列节距pt2为第n行子像素011中的一个第一颜色子像素的阳极结构与第n+2行子像素012中的另一个第一颜色子像素的阳极结构在所述衬底基板上的正投影的图形在第一排列方向X上的最小中心距。
对于所述多个子像素中的至少一种同颜色的子像素(例如第三颜色子像素SP3)而言,多个同颜色的子像素的开口103在所述衬底基板1上的正投影的图形在第二排列方向Y上的排列节距为第三排列节距pt3,所述多个同颜色的子像素的阳极结构413 在所述衬底基板1上的正投影的图形在第二排列方向上的排列节距为第四排列节距pt4,所述第三排列节距pt3大于所述第四排列节距pt4。
需要说明的是,在本文中,表述“第四排列节距”表示具有相同的形状(即为平移重合的)的阳极结构在所述衬底基板上的正投影的图形在第二排列方向Y上的最小中心距,例如,具有相同的形状(即为平移重合的)的阳极结构所属的子像素可以位于不同的子像素列。例如,在图4A所示的示例中,第四排列节距pt4为第m列子像素031中的一个第一颜色子像素的阳极结构与第m+2列子像素032中的另一个第一颜色子像素的阳极结构在所述衬底基板上的正投影的图形在第二排列方向Y上的最小中心距。
对于所述多个子像素中的至少一种同颜色的子像素(例如第三颜色子像素SP3)而言,多个同颜色的子像素的开口103在所述衬底基板1上的正投影的图形在第一方向M1上的排列节距为第一节距pt11,所述多个同颜色的子像素的阳极结构413在所述衬底基板1上的正投影的图形在第一方向M1上的排列节距为第二节距pt12,所述第一节距pt11大于所述第二节距pt12。
对于所述多个子像素中的至少一种同颜色的子像素(例如第三颜色子像素SP3)而言,多个同颜色的子像素的开口103在所述衬底基板1上的正投影的图形在第二方向M2上的排列节距为第三节距pt13,所述多个同颜色的子像素的阳极结构413在所述衬底基板1上的正投影的图形在第二方向M2上的排列节距为第四节距pt14,所述第三节距pt13大于所述第四节距pt14。
在本公开的实施例中,所述第一排列节距pt1为所述第二排列节距pt2的m倍,m大于等于1.5。例如,在图4A所示的实施例中,所述第一排列节距pt1为所述第二排列节距pt2的约4倍。在其他实施例中,所述第一排列节距pt1为所述第二排列节距pt2的约2倍。
所述第三排列节距pt3为所述第四排列节距pt4的n倍,n大于等于1.5。例如,在图4A所示的实施例中,所述第三排列节距pt3为所述第四排列节距pt4的约4倍。在其他实施例中,所述第三排列节距pt3为所述第四排列节距pt4的大约2倍。
所述第一节距pt11为所述第二节距pt12的p倍,p大于等于1.5。例如,在图4A所示的实施例中,所述第一节距pt11为所述第二节距pt12的约2倍。
所述第三节距pt13为所述第四节距pt14的q倍,q大于等于1.5。例如,在图4A所示的实施例中,所述第三节距pt13为所述第四节距pt14的约2倍。
在本公开的实施例中,将具有异形形状的开口或发光区对应的阳极结构设计为规则形状,例如矩形、圆形等形状,能够缩小阳极结构的排列周期(即排列节距),使得干涉条纹人眼不可见,参照图6。以此方式,能够显著改善显示基板的使用体验。
例如,参照图8C,至少一些子像素(例如第三颜色子像素SP3)的开口在衬底基板1上的正投影具有不规则的形状,例如,D字形。不同地,第三颜色子像素SP3的第三阳极结构403在衬底基板1上的正投影具有规则的形状,例如,矩形或圆角矩形。
例如,参照图8D,至少一些子像素(例如第三颜色子像素SP3)的开口在衬底基板1上的正投影具有不规则的形状,例如,D字形。不同地,第三颜色子像素SP3的第三阳极结构403在衬底基板1上的正投影具有规则的形状,例如,圆形。
应该理解,图8C和图8D所示的实施例应该具有与图4A或图8A所示的实施例相同的优点,在此不再赘述。
下面,将结合图9A至图11B对本公开的一些示例性实施例进行更详细地描述,需要说明的是,下面将主要描述区别于上述实施例的不同之处,在不冲突的情况下,上文中描述的实施例可以与下面的实施例进行任意组合。
参照图9A和图9B,对于所述多个子像素中的至少一些子像素而言,所述开口在衬底基板上的正投影呈水滴形,所述阳极结构在衬底基板上的正投影呈橄榄球形。
例如,在图9A所示的实施例中,所述至少一些子像素包括第一颜色子像素SP1。对于至少一些第一颜色子像素SP1而言,每一个子像素的开口(即第一开口)101包括主体部分101A和辅助部分101B,所述开口的主体部分101A在所述衬底基板1上的正投影呈圆形,所述开口的辅助部分101B在所述衬底基板1上的正投影相对于所述圆形在第二方向M2上突出。覆盖具有所述主体部分101A和所述辅助部分101B的开口的阳极结构(即第一阳极结构)401包括一个主体部分401A和两个辅助部分401B,所述阳极结构的主体部分401A在所述衬底基板1上的正投影呈圆形,所述阳极结构的两个辅助部分401B在所述衬底基板1上的正投影相对于所述圆形在第二方向M2上分别朝着相反的朝向突出。
例如,所述至少一些第一颜色子像素SP1的所述开口包括至少两种类型开口,在不同类型开口中,所述开口的辅助部分101B相对于所述开口的主体部分101A的突出方向不同。例如,所述至少两种类型开口包括第一类型开口1101和第二类型开口1102。所述第一类型开口1101和所述第二类型开口1102中的辅助部分101B相对于主体部分101A的突出方向相反。例如,参照图9A,在第一类型开口1101中,辅助部分101B 相对于主体部分101A的突出方向为朝向右下方向;在第二类型开口1102中,辅助部分101B相对于主体部分101A的突出方向为朝向左上方向。
同样地,覆盖不同类型开口的各个阳极结构在所述衬底基板1上的正投影的图形为平移重合的。例如,覆盖所述第一类型开口1101和所述第二类型开口1101的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
继续参照图9A和图9B,所述至少一些子像素包括第三颜色子像素SP3。对于至少一些第三颜色子像素SP3而言,每一个子像素的开口(即第三开口)103包括主体部分103A和辅助部分103B,所述开口的主体部分103A在所述衬底基板1上的正投影呈圆形,所述开口的辅助部分103B在所述衬底基板1上的正投影相对于所述圆形在第一方向M1上突出。覆盖具有所述主体部分103A和所述辅助部分103B的开口的阳极结构(即第三阳极结构)403包括一个主体部分403A和两个辅助部分403B,所述阳极结构的主体部分403A在所述衬底基板1上的正投影呈圆形,所述阳极结构的两个辅助部分403B在所述衬底基板1上的正投影相对于所述圆形在第一方向M1上分别朝着相反的朝向突出。
例如,所述至少一些第三颜色子像素SP3的所述开口包括至少两种类型开口,在不同类型开口中,所述开口的辅助部分101B相对于所述开口的主体部分101A的突出方向不同。例如,所述至少两种类型开口包括第三类型开口1103和第四类型开口1104。所述第三类型开口1103和所述第四类型开口1104中的辅助部分103B相对于主体部分103A的突出方向相反。例如,参照图9A,在第三类型开口1103中,辅助部分103B相对于主体部分103A的突出方向为朝向左下方向;在第四类型开口1104中,辅助部分103B相对于主体部分103A的突出方向为朝向右上方向。
同样地,覆盖不同类型开口的各个阳极结构在所述衬底基板1上的正投影的图形为平移重合的。例如,覆盖所述第三类型开口1103和所述第四类型开口1104的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
参照图9A,对于第n行子像素和第n+2行子像素而言,第n行子像素中的所有第一颜色子像素SP1包括第一类型开口1101,第n+2行子像素中的所有第一颜色子像素SP1包括第二类型开口1102。
对于第m列子像素和第m+2列子像素而言,第m列子像素中的所有第一颜色子像素SP1包括第一类型开口1101,第m+2列子像素中的所有第一颜色子像素SP1包括第二类型开口1102。
在沿第二方向M2排列的至少一排第一颜色子像素SP1中,第一类型开口1101和第二类型开口1102沿第二方向M2交替排列。
对于第n行子像素和第n+2行子像素而言,第n行子像素中的所有第三颜色子像素SP3包括第三类型开口1103,第n+2行子像素中的所有第三颜色子像素SP3包括第四类型开口1104。
对于第m列子像素和第m+2列子像素而言,第m列子像素中的所有第三颜色子像素SP3包括第三类型开口1103,第m+2列子像素中的所有第三颜色子像素SP3包括第四类型开口1104。
在沿第一方向M1排列的至少一排第三颜色子像素SP3中,第三类型开口1103和第四类型开口1104沿第一方向M1交替排列。
继续参照图9A,所述第一类型开口1101和所述第二类型开口1102中的至少一个在所述衬底基板1上的正投影的图形仅相对于沿第二方向M2延伸的第一对称轴线AX1对称。覆盖所述第一类型开口1101和所述第二类型开口1102的各个阳极结构在所述衬底基板1上的正投影的图形相对于沿第二方向M2延伸的第一对称轴线AX1和沿第一方向M1延伸的第二对称轴线AX2均对称。
所述第三类型开口1103和所述第四类型开口1104中的至少一个在所述衬底基板1上的正投影的图形仅相对于沿第一方向M1延伸的第二对称轴线AX2对称。覆盖所述第三类型开口1103和所述第四类型开口1104的各个阳极结构在所述衬底基板1上的正投影的图形相对于沿第一方向M1延伸的第二对称轴线AX2和沿第二方向M2延伸的第一对称轴线AX1均对称。
对于所述多个子像素中的至少一些子像素而言,每一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心与该子像素的开口在所述衬底基板上的正投影的图形的几何中心不重合。例如,结合参照图9A,对于至少一些第一颜色子像素SP1和至少一些第三颜色子像素SP3而言,阳极结构在所述衬底基板上的正投影的图形的几何中心O2为2条对称轴线AX1和AX2的交点。水滴形的开口的几何中心O1与该对称轴线AX1和AX2的交点O2不重合。
参照图9A,对于所述多个子像素中的至少一些子像素而言,至少一个子像素(例如第一颜色子像素SP1)的阳极结构在所述衬底基板1上的正投影的图形的几何中心O2相对于该子像素的开口101在所述衬底基板1上的正投影的图形的几何中心O1在第二方向M2上偏移;和/或,至少一个子像素(例如第三颜色子像素SP3)的阳极结 构在所述衬底基板1上的正投影的图形的几何中心O2相对于该子像素的开口103在所述衬底基板1上的正投影的图形的几何中心O1在第一方向M1上偏移。
参照图9A,对于所述多个子像素中的至少一种同颜色的子像素(例如第一颜色子像素SP1和第三颜色子像素SP3)而言,多个同颜色的子像素的开口101、103在所述衬底基板1上的正投影的图形在第二排列方向Y上的排列节距为第三排列节距pt3,所述多个同颜色的子像素的阳极结构401、403在所述衬底基板1上的正投影的图形在第二排列方向Y上的排列节距为第四排列节距pt4,所述第三排列节距pt3大于所述第四排列节距pt4。
对于所述多个子像素中的至少一种同颜色的子像素(例如第三颜色子像素SP3)而言,多个同颜色的子像素的开口103在所述衬底基板1上的正投影的图形在第一方向M1上的排列节距为第一节距pt11,所述多个同颜色的子像素的阳极结构403在所述衬底基板1上的正投影的图形在第一方向M1上的排列节距为第二节距pt12,所述第一节距pt11大于所述第二节距pt12。
对于所述多个子像素中的至少一种同颜色的子像素(例如第一颜色子像素SP1)而言,多个同颜色的子像素的开口101在所述衬底基板1上的正投影的图形在第二方向M2上的排列节距为第三节距pt13,所述多个同颜色的子像素的阳极结构401在所述衬底基板1上的正投影的图形在第二方向M2上的排列节距为第四节距pt14,所述第三节距pt13大于所述第四节距pt14。
在本公开的实施例中,所述第三排列节距pt3为所述第四排列节距pt4的n倍,n大于等于1.5。例如,在图9A所示的实施例中,所述第三排列节距pt3为所述第四排列节距pt4的约2倍。
所述第一节距pt11为所述第二节距pt12的p倍,p大于等于1.5。例如,在图9A所示的实施例中,所述第一节距pt11为所述第二节距pt12的约2倍。
所述第三节距pt13为所述第四节距pt14的q倍,q大于等于1.5。例如,在图9A所示的实施例中,所述第三节距pt13为所述第四节距pt14的约2倍。
在本公开的实施例中,对于具有异形形状的开口或发光区,将其对应的阳极结构设计为同一形状,能够缩小阳极结构的排列周期(即排列节距),使得干涉条纹人眼不可见,从而能够显著改善显示基板的使用体验。
参照图10A和图10B,对于所述多个子像素中的至少一些子像素而言,所述开口在衬底基板上的正投影呈多边形,所述阳极结构在衬底基板上的正投影呈矩形。例如, 对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口在所述衬底基板上的正投影的图形为多边形500,例如五边形,所述多边形具有第一顶角501和第一边502,所述第一边502与所述第一顶角501相对。所述每一个子像素的阳极结构在所述衬底基板上的正投影的图形为矩形。
例如,所述至少一些子像素包括第一颜色子像素SP1、第二颜色子像素SP2和第三颜色子像素SP3。
具有所述第一顶角501且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,在不同类型开口中,所述第一顶角501的顶点指向与其相对的第一边502的方向不同。例如,对于第一颜色子像素SP1而言,其包括第一类型开口5001和第二类型开口5002。在第一类型开口5001中,第一顶角501的顶点指向与其相对的第一边501的方向为沿第二排列方向Y向上。在第二类型开口5002中,第一顶角501的顶点指向与其相对的第一边501的方向为沿第二排列方向Y向下。第二颜色子像素SP2或第三颜色子像素SP3具有类似的配置。
覆盖不同类型开口的各个阳极结构在所述衬底基板1上的正投影的图形为平移重合的。
例如,对于第n行子像素011’和第n+1行子像素012’而言,在第n行子像素011’中,至少两种类型开口中同一种类型的开口(例如第一类型开口5001)在第一排列方向X上排列;在第n+1行子像素012’中,所述至少两种类型开口中另一种同一类型的开口(例如第二类型开口5002)在第一排列方向X上排列。
例如,相邻同一颜色子像素的两种类型开口5001、5002呈现镜像排列。由于第一颜色子像素SP1、第二颜色子像素SP2和第三颜色子像素SP3形成有规律的排列,而且同一颜色子像素在位置上非常靠近,因此在分别完成阳极结构后,相同颜色的相邻行的子像素能用同一金属掩模板的同一开孔蒸镀形成。
对于第n行子像素011’和第n+1行子像素012’而言,同一列的两个子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
例如,在图10A所示的实施例中,处于同一行或同一列的第一颜色子像素SP1的几何中心位于同一直线上,处于同一行或同一列的第二颜色子像素SP2的几何中心位于同一直线上,处于同一行或同一列的第三颜色子像素SP3的几何中心位于同一直线上。基于这样的设置,能够实现颜色各不相同的子像素在整个显示面板的均匀分布,保证显示效果的均匀性,获得更高品质的画面显示,同时简化该像素结构的制备工艺。
参照图10A,对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口101、102、103在所述衬底基板1上的正投影的图形在第二排列方向Y上的排列节距为第三排列节距pt3,所述多个同颜色的子像素的阳极结构401、402、403在所述衬底基板1上的正投影的图形在第二排列方向Y上的排列节距为第四排列节距pt4,所述第三排列节距pt3大于所述第四排列节距pt4。
在本公开的实施例中,所述第三排列节距pt3为所述第四排列节距pt4的n倍,n大于等于1.5。例如,在图10A所示的实施例中,所述第三排列节距pt3为所述第四排列节距pt4的约2倍。
在本公开的实施例中,对于具有异形形状的开口或发光区,将其对应的阳极结构设计为同一形状,能够缩小阳极结构的排列周期(即排列节距),使得干涉条纹人眼不可见,从而能够显著改善显示基板的使用体验。
参照图11A和图11B,对于所述多个子像素中的至少一些子像素而言,开口包括呈现镜像排列的两个子开口,每一个子开口在所述衬底基板上的正投影呈多边形,例如三角形;所述阳极结构在衬底基板上的正投影呈多边形,例如四边形、菱形、或类菱形。例如,每一个子开口在所述衬底基板上的正投影呈多边形,例如三角形,所述多边形具有第一顶角601和第一边602,所述第一边602与所述第一顶角601相对。
例如,所述至少一些子像素包括第一颜色子像素SP1。
具有所述第一顶角601且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,在不同类型开口中,所述第一顶角601的顶点指向与其相对的第一边602的方向不同。例如,对于第一颜色子像素SP1而言,其包括第一类型开口6001和第二类型开口6002。
在第一类型开口6001中,包括两个子开口60011、60012,一个子开口60011的第一顶角601的顶点指向与其相对的第一边602的方向为沿第二排列方向Y向下。另一个子开口60012的第一顶角601的顶点指向与其相对的第一边601的方向为沿第二排列方向Y向上。两个子开口60011、60012相对于沿第一排列方向X延伸的第一对称轴线AX1镜像对称。
在第二类型开口6002中,包括两个子开口60013、60014,一个子开口60013的第一顶角601的顶点指向与其相对的第一边602的方向为沿第一排列方向X向右。另一个子开口60014的第一顶角601的顶点指向与其相对的第一边601的方向为沿第一排列方向X向左。两个子开口60013、60014相对于沿第二排列方向Y延伸的第二对 称轴线AX2镜像对称。
覆盖不同类型开口的各个阳极结构在所述衬底基板1上的正投影的图形为平移重合的。
例如,对于第n行子像素011和第n+2行子像素012而言,在第n行子像素011中,至少两种类型开口中同一种类型的开口(例如第一类型开口6001)在第一排列方向X上排列;在第n+2行子像素012中,所述至少两种类型开口中另一种同一类型的开口(例如第二类型开口6002)在第一排列方向X上排列。
对于第n行子像素011和第n+2行子像素012而言,同一列的两个子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
参照图11A,对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口101在所述衬底基板1上的正投影的图形在第二排列方向Y上的排列节距为第三排列节距pt3,所述多个同颜色的子像素的阳极结构401在所述衬底基板1上的正投影的图形在第二排列方向Y上的排列节距为第四排列节距pt4,所述第三排列节距pt3大于所述第四排列节距pt4。
在本公开的实施例中,所述第三排列节距pt3为所述第四排列节距pt4的n倍,n大于等于1.5。例如,在图11A所示的实施例中,所述第三排列节距pt3为所述第四排列节距pt4的约2倍。
在本公开的实施例中,对于具有异形形状的开口或发光区,将其对应的阳极结构设计为同一形状,能够缩小阳极结构的排列周期(即排列节距),使得干涉条纹人眼不可见,从而能够显著改善显示基板的使用体验。
返回参照图1和图2,本公开的至少一些实施例还提供一种显示装置。该显示装置可以包括如上所述的显示基板。
所述显示装置可以包括任何具有显示功能的设备或产品。例如,所述显示装置可以是智能电话、移动电话、电子书阅读器、台式电脑(PC)、膝上型PC、上网本PC、个人数字助理(PDA)、便携式多媒体播放器(PMP)、数字音频播放器、移动医疗设备、相机、可穿戴设备(例如头戴式设备、电子服饰、电子手环、电子项链、电子配饰、电子纹身、或智能手表)、电视机等。
虽然本公开的总体技术构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离所述总体技术构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (37)

  1. 一种显示基板,包括:
    衬底基板;
    多个子像素,所述多个子像素沿第一排列方向和第二排列方向成阵列地设置于所述衬底基板上,所述多个子像素包括多个发光区;
    第一电极层,所述第一电极层位于所述衬底基板上,所述第一电极层包括多个阳极结构;以及
    像素界定层,位于所述第一电极层远离所述衬底基板的一侧,所述像素界定层包括多个开口以限定所述多个发光区,
    其中,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口在所述衬底基板上的正投影落入该子像素的阳极结构在所述衬底基板上的正投影内,每一个子像素的开口在所述衬底基板上的正投影的图形与所述子像素的阳极结构在所述衬底基板上的正投影的图形形状不同;以及每一个子像素的阳极结构在所述衬底基板上的正投影的图形的对称轴线的数量大于该子像素的开口在所述衬底基板上的正投影的图形的对称轴线的数量。
  2. 根据权利要求1所述的显示基板,其中,对于所述多个子像素中的至少一些子像素而言,每一个子像素的阳极结构在所述衬底基板上的正投影的图形相对于该子像素的开口在所述衬底基板上的正投影的图形是非等比例放大的。
  3. 根据权利要求1或2所述的显示基板,其中,对于所述多个子像素中的至少一些子像素而言,每一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心与该子像素的开口在所述衬底基板上的正投影的图形的几何中心不重合。
  4. 根据权利要求3所述的显示基板,其中,对于所述多个子像素中的至少一些子像素而言,至少一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心相对于该子像素的开口在所述衬底基板上的正投影的图形的几何中心在第一排列方向上偏移;和/或,至少一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何 中心相对于该子像素的开口在所述衬底基板上的正投影的图形的几何中心在第二排列方向上偏移。
  5. 根据权利要求4所述的显示基板,其中,对于所述多个子像素中的至少一些子像素而言,至少一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心相对于该子像素的开口在所述衬底基板上的正投影的图形的几何中心在第一方向上偏移,所述第一方向相对于所述第一排列方向和所述第二排列方向中的每一个均倾斜;和/或,
    对于所述多个子像素中的至少一些子像素而言,至少一个子像素的阳极结构在所述衬底基板上的正投影的图形的几何中心相对于该子像素的开口在所述衬底基板上的正投影的图形的几何中心在第二方向上偏移,所述第二方向相对于所述第一排列方向和所述第二排列方向中的每一个均倾斜,所述第二方向与所述第一方向之间具有夹角。
  6. 根据权利要求5所述的显示基板,其中,所述子像素的开口在所述衬底基板上的正投影的图形具有第一对称轴线、第一顶点和第二顶点,所述第一顶点和所述第二顶点均位于所述第一对称轴线上,所述第一顶点和所述第二顶点相对设置;
    所述第一对称轴线与所述子像素的阳极结构在所述衬底基板上的正投影的图形具有第一交点和第二交点,所述第一交点邻近所述第一顶点,所述第二交点邻近所述第二顶点;以及
    在所述第一对称轴线的延伸方向上,所述第一顶点和所述第一交点之间的第一距离与所述第二顶点和所述第二交点之间的第二距离不相等。
  7. 根据权利要求6所述的显示基板,其中,在第一截面图中,所述子像素的开口两侧的像素界定层分别覆盖所述子像素的阳极结构的一部分,所述阳极结构被所述子像素的开口一侧的像素界定层覆盖的部分的宽度与所述阳极结构被所述子像素的开口另一侧的像素界定层覆盖的另一部分的宽度不相等,其中,第一截面垂直于所述第一电极层接触所述像素界定层的表面,且所述第一对称轴线位于所述第一截面内。
  8. 根据权利要求3所述的显示基板,其中,所述多个子像素包括第n行子像素和第n+2行子像素,所述第n行子像素和所述第n+2行子像素沿第二排列方向排列;以及
    所述第n行子像素包括第一子像素,所述第n+2行子像素包括第二子像素,所述第二子像素为所述第n+2行子像素的多个子像素中在第一排列方向上最邻近所述第一子像素且与所述第一子像素同颜色的一个子像素,所述第一子像素的开口在所述衬底基板上的正投影的图形与所述第二子像素的开口在所述衬底基板上的正投影的图形为非平移重合的,所述第一子像素的阳极结构在所述衬底基板上的正投影的图形与所述第二子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  9. 根据权利要求8所述的显示基板,其中,在所述第n行子像素和所述第n+2行子像素的同颜色的子像素中,至少一部分子像素的开口在所述衬底基板上的正投影的图形与另一部分子像素的开口在所述衬底基板上的正投影的图形为非平移重合的,全部子像素的阳极结构在所述衬底基板上的正投影的图形均为平移重合的。
  10. 根据权利要求8或9所述的显示基板,其中,所述多个子像素包括第m列子像素和第m+2列子像素,所述第m列子像素和所述第m+2列子像素沿第一排列方向排列;以及
    所述第m列子像素包括第三子像素,所述第m+2列子像素包括第四子像素,所述第四子像素为所述第m+2列子像素的多个子像素中在第二排列方向上最邻近所述第三子像素且与所述第三子像素同颜色的一个子像素,所述第三子像素的开口在所述衬底基板上的正投影的图形与所述第四子像素的开口在所述衬底基板上的正投影的图形为非平移重合的,所述第三子像素的阳极结构在所述衬底基板上的正投影的图形与所述第四子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  11. 根据权利要求10所述的显示基板,其中,在所述第m列子像素和所述第m+2列子像素的同颜色的子像素中,至少一部分子像素的开口在所述衬底基板上的正投影的图形与另一部分子像素的开口在所述衬底基板上的正投影的图形为非平移重合的,全部子像素的阳极结构在所述衬底基板上的正投影的图形均为平移重合的。
  12. 根据权利要求11所述的显示基板,其中,对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口在所述衬底基板上的正投影的图形在第一排列方向上的排列节距为第一排列节距,所述多个同颜色的子像素的阳极结构在所述衬底基板上的正投影的图形在第一排列方向上的排列节距为第二排列节距,所述第一排列节距大于所述第二排列节距;和/或,
    对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口在所述衬底基板上的正投影的图形在第二排列方向上的排列节距为第三排列节距,所述多个同颜色的子像素的阳极结构在所述衬底基板上的正投影的图形在第二排列方向上的排列节距为第四排列节距,所述第三排列节距大于所述第四排列节距;和/或,
    对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口在所述衬底基板上的正投影的图形在第一方向上的排列节距为第一节距,所述多个同颜色的子像素的阳极结构在所述衬底基板上的正投影的图形在第一方向上的排列节距为第二节距,所述第一节距大于所述第二节距;和/或,
    对于所述多个子像素中的至少一种同颜色的子像素而言,多个同颜色的子像素的开口在所述衬底基板上的正投影的图形在第二方向上的排列节距为第三节距,所述多个同颜色的子像素的阳极结构在所述衬底基板上的正投影的图形在第二方向上的排列节距为第四节距,所述第三节距大于所述第四节距。
  13. 根据权利要求12所述的显示基板,其中,所述第一排列节距为所述第二排列节距的m倍,m大于等于1.5;和/或,
    所述第三排列节距为所述第四排列节距的n倍,n大于等于1.5;和/或,
    所述第一节距为所述第二节距的p倍,p大于等于1.5;和/或,
    所述第三节距为所述第四节距的q倍,q大于等于1.5。
  14. 根据权利要求4所述的显示基板,其中,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口在所述衬底基板上的正投影的图形为多边形截去至少一个顶角后的形状;所述每一个子像素的阳极结构在所述衬底基板上的正投影的图形为所述多边形或圆形。
  15. 根据权利要求14所述的显示基板,其中,具有多边形截去至少一个顶角后的形状的所述开口的图形包括多个角部,所述多个角部包括第一角部和第二角部,所述第一角部为所述多边形被截去由两条边所夹的一顶角后形成的角部,所述第二角部为与所述第一角部相对的角部。
  16. 根据权利要求15所述的显示基板,其中,具有多边形截去至少一个顶角后的形状的所述开口的图形具有第一对称轴线、第一顶点和第二顶点,所述第一顶点为所述第一对称轴线与所述第一角部相交的点,所述第二顶点为所述第一对称轴线与所述第二角部相交的点;
    所述第一对称轴线与所述子像素的阳极结构在所述衬底基板上的正投影的图形具有第一交点和第二交点,所述第一交点邻近所述第一顶点,所述第二交点邻近所述第二顶点;以及
    在所述第一对称轴线的延伸方向上,所述第一顶点和所述第一交点之间的第一距离大于所述第二顶点和所述第二交点之间的第二距离。
  17. 根据权利要求15或16所述的显示基板,其中,具有所述第一角部的开口被配置为限定至少一种颜色子像素的发光区。
  18. 根据权利要求17所述的显示基板,其中,具有所述第一角部且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,在不同类型开口中,所述第一角部的顶点指向与其相对的角部的顶点的方向不同;以及
    覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  19. 根据权利要求18所述的显示基板,其中,所述至少两种类型开口包括第一类型开口、第二类型开口、第三类型开口和第四类型开口;
    所述第一类型开口和所述第二类型开口中的所述第一角部的顶点指向所述第二角部的顶点的方向相反,所述第三类型开口和所述第四类型开口中的所述第一角部的顶点指向所述第二角部的顶点的方向相反;以及
    覆盖第一类型开口、第二类型开口、第三类型开口和第四类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  20. 根据权利要求19所述的显示基板,其中,
    对于第n行子像素和第n+2行子像素而言,在第n行子像素中,所述第一类型开口和所述第二类型开口在第一排列方向上交替排列;在第n+2行子像素中,所述第三类型开口和所述第四类型开口在第一排列方向上交替排列;和/或,
    对于第m列子像素和第m+2列子像素而言,在第m列子像素中,所述第一类型开口和所述第二类型开口在第二排列方向上交替排列;在第m+2列子像素中,所述第三类型开口和所述第四类型开口在第二排列方向上交替排列。
  21. 根据权利要求20所述的显示基板,其中,对于至少一个第一类型开口而言,在第一排列方向上与该第一类型开口相邻的两个开口为第二类型开口,在第二排列方向上与该第一类型开口相邻的两个开口为第二类型开口,在第一方向上与该第一类型开口相邻的两个开口为第三类型开口,在第二方向上与该第一类型开口相邻的两个开口为第四类型开口。
  22. 根据权利要求4所述的显示基板,其中,对于所述多个子像素中的至少一些第一颜色子像素而言,每一个子像素的开口包括主体部分和辅助部分,所述开口的主体部分在所述衬底基板上的正投影呈圆形,所述开口的辅助部分在所述衬底基板上的正投影相对于所述圆形在第二方向上突出;以及
    覆盖具有所述主体部分和所述辅助部分的开口的阳极结构包括一个主体部分和两个辅助部分,所述阳极结构的主体部分在所述衬底基板上的正投影呈圆形,所述阳极结构的两个辅助部分在所述衬底基板上的正投影相对于所述圆形在第二方向上分别朝着相反的朝向突出。
  23. 根据权利要求22所述的显示基板,其中,所述至少一些第一颜色子像素的所述开口包括至少两种类型开口,在不同类型开口中,所述开口的辅助部分相对于所述开口的主体部分的突出方向不同,以及覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  24. 根据权利要求23所述的显示基板,其中,所述至少两种类型开口包括第一类型开口和第二类型开口;
    所述第一类型开口和所述第二类型开口中的辅助部分相对于主体部分的突出方向相反;以及
    覆盖所述第一类型开口和所述第二类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  25. 根据权利要求24所述的显示基板,其中,对于所述多个子像素中的至少一些第三颜色子像素而言,每一个子像素的开口包括主体部分和辅助部分,所述开口的主体部分在所述衬底基板上的正投影呈圆形,所述开口的辅助部分在所述衬底基板上的正投影相对于所述圆形在第一方向上突出;以及
    覆盖具有所述主体部分和所述辅助部分的开口的阳极结构包括一个主体部分和两个辅助部分,所述阳极结构的主体部分在所述衬底基板上的正投影呈圆形,所述阳极结构的两个辅助部分在所述衬底基板上的正投影相对于所述圆形在第一方向上分别朝着相反的朝向突出。
  26. 根据权利要求25所述的显示基板,其中,所述至少一些第三颜色子像素的所述开口包括至少两种类型开口,在不同类型开口中,所述开口的辅助部分相对于所述开口的主体部分的突出方向不同,以及覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  27. 根据权利要求26所述的显示基板,其中,所述至少两种类型开口包括第三类型开口和第四类型开口;
    所述第三类型开口和所述第四类型开口中的辅助部分相对于主体部分的突出方向相反;以及
    覆盖所述第三类型开口和所述第四类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  28. 根据权利要求27所述的显示基板,其中,对于第n行子像素和第n+2行子像素而言,第n行子像素中的所有第一颜色子像素包括第一类型开口,第n+2行子像素中的所有第一颜色子像素包括第二类型开口;和/或,
    对于第m列子像素和第m+2列子像素而言,第m列子像素中的所有第一颜色子像素包括第一类型开口,第m+2列子像素中的所有第一颜色子像素包括第二类型开口;和/或,
    在沿第二方向排列的至少一排第一颜色子像素中,第一类型开口和第二类型开口沿第二方向交替排列。
  29. 根据权利要求28所述的显示基板,其中,对于第n行子像素和第n+2行子像素而言,第n行子像素中的所有第三颜色子像素包括第三类型开口,第n+2行子像素中的所有第三颜色子像素包括第四类型开口;和/或,
    对于第m列子像素和第m+2列子像素而言,第m列子像素中的所有第三颜色子像素包括第三类型开口,第m+2列子像素中的所有第三颜色子像素包括第四类型开口;和/或,
    在沿第一方向排列的至少一排第三颜色子像素中,第三类型开口和第四类型开口沿第一方向交替排列。
  30. 根据权利要求29所述的显示基板,其中,所述第一类型开口和所述第二类型开口中的至少一个在所述衬底基板上的正投影的图形仅相对于沿第二方向延伸的第一对称轴线对称;覆盖所述第一类型开口和所述第二类型开口的各个阳极结构在所述衬底基板上的正投影的图形相对于沿第二方向延伸的第一对称轴线和沿第一方向延伸的第二对称轴线均对称;和/或,
    所述第三类型开口和所述第四类型开口中的至少一个在所述衬底基板上的正投影的图形仅相对于沿第一方向延伸的第二对称轴线对称;覆盖所述第三类型开口和所述第四类型开口的各个阳极结构在所述衬底基板上的正投影的图形相对于沿第一方向延伸的第二对称轴线和沿第二方向延伸的第一对称轴线均对称。
  31. 根据权利要求4所述的显示基板,其中,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口在所述衬底基板上的正投影的图形为多边形,所述多 边形具有第一顶角和第一边,所述第一边与所述第一顶角相对;所述每一个子像素的阳极结构在所述衬底基板上的正投影的图形为矩形。
  32. 根据权利要求31所述的显示基板,其中,具有所述第一顶角且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,在不同类型开口中,所述第一顶角的顶点指向与其相对的第一边的方向不同;以及
    覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  33. 根据权利要求32所述的显示基板,其中,
    对于第n行子像素和第n+1行子像素而言,在第n行子像素中,至少两种类型开口中同一种类型的开口在第一排列方向上排列;在第n+1行子像素中,所述至少两种类型开口中另一种同一类型的开口在第一排列方向上排列;以及
    对于第n行子像素和第n+1行子像素而言,同一列的两个子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  34. 根据权利要求4所述的显示基板,其中,对于所述多个子像素中的至少一些子像素而言,每一个子像素的开口呈现镜像排列的两个子开口,该子像素的阳极结构在衬底基板上的正投影覆盖所述呈现镜像排列的两个子开口在所述衬底基板上的正投影;
    所述两个子开口中的每一个在所述衬底基板上的正投影的图形为多边形,所述多边形具有第一顶角和第一边,所述第一边与所述第一顶角相对。
  35. 根据权利要求34所述的显示基板,其中,具有所述第一顶角且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,在不同类型开口中,所述第一顶角的顶点指向与其相对的第一边的方向不同;以及
    覆盖不同类型开口的各个阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  36. 根据权利要求35所述的显示基板,其中,
    对于第n行子像素和第n+2行子像素而言,在第n行子像素中,至少两种类型开口中同一种类型的开口在第一排列方向上排列;在第n+2行子像素中,所述至少两种类型开口中另一种同一类型的开口在第一排列方向上排列;以及
    对于第n行子像素和第n+2行子像素而言,同一列的两个子像素的阳极结构在所述衬底基板上的正投影的图形为平移重合的。
  37. 一种显示装置,其中,所述显示装置包括根据权利要求1至36中任一项所述的显示基板。
PCT/CN2022/101076 2022-06-24 2022-06-24 显示基板和显示装置 WO2023245614A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/042,472 US20230422571A1 (en) 2022-06-24 2022-06-24 Display substrate and display device
CN202280001869.0A CN117652227A (zh) 2022-06-24 2022-06-24 显示基板和显示装置
PCT/CN2022/101076 WO2023245614A1 (zh) 2022-06-24 2022-06-24 显示基板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101076 WO2023245614A1 (zh) 2022-06-24 2022-06-24 显示基板和显示装置

Publications (1)

Publication Number Publication Date
WO2023245614A1 true WO2023245614A1 (zh) 2023-12-28

Family

ID=89322827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101076 WO2023245614A1 (zh) 2022-06-24 2022-06-24 显示基板和显示装置

Country Status (3)

Country Link
US (1) US20230422571A1 (zh)
CN (1) CN117652227A (zh)
WO (1) WO2023245614A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160071910A1 (en) * 2014-09-10 2016-03-10 Japan Display Inc. Display device
US20170005286A1 (en) * 2015-07-02 2017-01-05 Samsung Display Co., Ltd. Organic light emitting diode display
CN108538884A (zh) * 2017-03-02 2018-09-14 三星显示有限公司 有机发光显示装置
CN111341936A (zh) * 2020-03-10 2020-06-26 昆山国显光电有限公司 一种显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160071910A1 (en) * 2014-09-10 2016-03-10 Japan Display Inc. Display device
US20170005286A1 (en) * 2015-07-02 2017-01-05 Samsung Display Co., Ltd. Organic light emitting diode display
CN108538884A (zh) * 2017-03-02 2018-09-14 三星显示有限公司 有机发光显示装置
CN111341936A (zh) * 2020-03-10 2020-06-26 昆山国显光电有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
US20230422571A1 (en) 2023-12-28
CN117652227A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
CN108933155B (zh) 有机发光显示装置
CN215933610U (zh) 显示基板以及显示装置
KR101698718B1 (ko) 유기 발광 표시 장치
KR101700558B1 (ko) 유기 발광 표시 장치
JP7299223B2 (ja) 表示基板および表示装置
CN111831172B (zh) 触控结构及触控显示面板、电子装置
JP2022187997A (ja) エレクトロルミネセント表示パネル、及び表示装置
CN108231845B (zh) 一种显示面板、电子设备
JP2022550492A (ja) 表示基板及び表示装置
CN113097277B (zh) 显示面板和显示装置
KR20150042009A (ko) 유기 발광 표시 장치 및 그 제조 방법
CN114730800A (zh) 像素阵列及显示装置
JP7454421B2 (ja) 表示装置
WO2023245614A1 (zh) 显示基板和显示装置
CN217134376U (zh) 显示基板和显示装置
CN218158982U (zh) 触控结构、触控显示面板以及显示装置
WO2020103224A1 (zh) 显示面板及显示装置
WO2022110040A1 (zh) 显示基板、掩模板和显示装置
CN113257882B (zh) 显示基板和显示装置
KR20170124071A (ko) 유기 발광 표시 장치
KR20170120488A (ko) 유기 발광 표시 장치
CN217933802U (zh) 显示基板和显示装置
WO2023024901A1 (zh) 显示基板和显示装置
WO2022134015A1 (zh) 显示基板和显示面板
US20230276676A1 (en) Display device