WO2021179344A1 - 一种马达的评估方法、存储介质及计算机终端 - Google Patents

一种马达的评估方法、存储介质及计算机终端 Download PDF

Info

Publication number
WO2021179344A1
WO2021179344A1 PCT/CN2020/080346 CN2020080346W WO2021179344A1 WO 2021179344 A1 WO2021179344 A1 WO 2021179344A1 CN 2020080346 W CN2020080346 W CN 2020080346W WO 2021179344 A1 WO2021179344 A1 WO 2021179344A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
evaluation
frequency response
curve
user
Prior art date
Application number
PCT/CN2020/080346
Other languages
English (en)
French (fr)
Inventor
秦英明
桑成艳
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021179344A1 publication Critical patent/WO2021179344A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the present invention relates to the field of motor technology, and in particular to a motor evaluation method, storage medium and computer terminal.
  • the purpose of the present invention is to provide a motor evaluation method, a storage medium and a computer terminal, aiming to solve the problem of high complexity in the simulation calculation of the motor in the related art.
  • the present invention provides a motor evaluation method, which is executed by an evaluation tool, and is characterized in that the motor evaluation method includes:
  • the evaluation tool stores the initial parameters of the motor as a frequency response array, which is named by the user;
  • the evaluation tool calls the initial parameter values in the frequency response array, calculates the output parameters, saves them in the frequency response array, and saves them in the multiple selection area in a form named by the user;
  • the evaluation tool When the evaluation tool detects that the user triggers the display instruction, it generates the frequency response curve of the motor to be tested selected by the user to the curve display of the evaluation tool according to the parameter values stored in the read frequency response array Area.
  • step S6 further includes: if the frequency response array cannot be read, clearing the curve display area.
  • the initial parameters of the motor to be tested include motor voice coil impedance, motor vibrator mass, electromagnetic force coefficient, tooling mass, spring stiffness coefficient, mechanical damping of the damper, and rated voltage.
  • the frequency response curve includes a curve of relative vibration volume with frequency, a curve of absolute vibration volume with frequency, a curve of human body perception intensity with frequency, and a curve of motor displacement with frequency after equalization.
  • step S6 further includes:
  • the output parameter is displayed in the output parameter area of the evaluation tool.
  • the output parameters include undamped natural frequency, damped intrinsic frequency, acceleration resonance frequency, mechanical damping coefficient, resistive coefficient, and total damping coefficient.
  • the present invention provides a storage medium, the storage medium is a computer-readable storage medium, the storage medium stores a motor evaluation program, and the motor evaluation program is executed when the processor is running. On the one hand, the steps of the motor evaluation method.
  • the present invention provides a computer terminal, the computer terminal includes a memory and a processor, the memory stores an evaluation program of a motor running on the processor, and the evaluation program of the motor is The processor implements the steps of the motor evaluation method as described in the first aspect when executed.
  • the present invention provides a motor evaluation method, storage medium and computer terminal.
  • the method is executed by an evaluation tool.
  • the evaluation tool stores the initial parameters To a self-named frequency response array, and then the evaluation tool calculates the output parameters according to the initial parameters, and then stores the output parameters in the corresponding frequency response array.
  • the check area of the evaluation tool will display all self-named motors.
  • a user-triggered motor check command is detected, a number of corresponding frequency response arrays are read, and then if a user-triggered display command is detected, it will be based on a number of A corresponding frequency response array shows all frequency response curves. It can be seen that the user only needs to select the motor that needs to be simulated and evaluated in the check box, and the evaluation tool can complete the simulation evaluation of the motor and display the frequency response curve to the user for viewing, which is very convenient.
  • FIG. 1 is a flowchart of a motor evaluation method provided by Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the motor testing equipment in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of the structure of a computer terminal provided by Embodiment 2 of the present invention.
  • the evaluation method of a motor provided in this embodiment is executed by an evaluation tool that can be run on a computer terminal. Please refer to FIG. 1.
  • the evaluation method of the motor includes:
  • the evaluation tool stores the initial parameters of the motor as a frequency response array, which is named by the user.
  • the initial parameters of the test voice coil motor includes a motor impedance R e, Mada Zhen sub mass M1, the electromagnetic force coefficient BL, tooling mass M2, the spring stiffness coefficient k m, R m mechanical damping of the damper and the rated voltage V rms .
  • the initial parameters cannot be directly obtained, so it is necessary to use the motor test equipment to test the initial parameters of the motor to be tested.
  • Figure 2 is a specific structure diagram of the motor test equipment. The following briefly introduces how to obtain the initial parameters of the motor to be tested:
  • the PC 110 controls the signal acquisition device 120 to send an excitation signal, and then the excitation signal drives the motor 140 to vibrate through the power amplifier 130, where the excitation signal type is chirp or step sweep signal;
  • the high-precision resistor 170 can be the resistance value 1 ohm resistance;
  • the evaluation tool stores the initial parameters in a frequency response array, and the frequency response array is named by the user.
  • the evaluation tool calls the initial parameter values in the frequency response array, calculates the output parameters, saves them in the frequency response array, and saves them in the multiple selection area in a form named by the user.
  • the output parameters include undamped natural frequency F n , damped intrinsic frequency F 0 ′, acceleration resonance frequency F 0 , mechanical damping coefficient Xi 0 , resistive coefficient Xi′, and total damping coefficient Xi. Since the evaluation tool has a compiled formula script, the evaluation tool can calculate the corresponding output parameters according to the initial parameters of the motor to be tested, and save the output parameters to the frequency response array. At the same time, it is saved to the check area of the evaluation tool in the manner of user self-naming. In this way, the check area will display the named motor to be tested.
  • the mechanical damping coefficient Xi 0 can be calculated by the following formula.
  • the mechanical damping coefficient Xi 0 and the resistive coefficient Xi', the damped intrinsic frequency F 0 ', the acceleration resonance frequency F 0 , and the total damping coefficient Xi can be respectively calculated by the following formulas .
  • multiple motors can be tested, and the frequency response arrays corresponding to multiple motors can be stored.
  • the frequency response arrays corresponding to multiple motors can be stored.
  • multiple motors are stored in the check box of the evaluation tool in a self-named manner, there are many Two motors cannot have the same name. In this way, multiple named motors to be tested will be displayed in the check box.
  • the check area has displayed all the motors to be evaluated.
  • the motor check command will be triggered, and the evaluation tool will read all the selected motors.
  • the evaluation tool When the evaluation tool detects that the user triggers the display instruction, it generates the frequency response curve of the motor to be tested selected by the user to the curve display of the evaluation tool according to the parameter values stored in the read frequency response array Area.
  • the evaluation tool will display all the frequency response curves of the motors to be evaluated in the curve display area according to all the frequency response arrays read in step S5.
  • the frequency response curve of one motor Including the curve of relative vibration with frequency, the curve of absolute vibration with frequency, the curve of human perception intensity with frequency, and the curve of motor displacement with frequency after equalization.
  • the curve display area can display a frequency response curve of a motor itself, that is, a motor only displays one frequency response curve at the same time, but if you need to view other frequency response curves, you can switch to view it in the curve display area.
  • the evaluation tool can complete the simulation evaluation of the motor and provide the user with the frequency response curve for viewing. It can be seen that the user only needs to check the motor that needs to be simulated and evaluated in the check box, and the evaluation tool can complete the simulation evaluation of the motor and display the frequency response curve to the user for viewing, which is very convenient.
  • step S6 also includes: if the frequency response array cannot be read, clearing the curve display area.
  • any frequency response array cannot be read, it means that the user has not checked in the check area, and the frequency response curve displayed in the current curve display area is cleared.
  • step S6 further includes: displaying the output parameter in the output parameter area of the evaluation tool.
  • the evaluation tool displays the frequency response curve in the curve display area, in order to facilitate the user to view the various parameters of the motor to be evaluated, all output parameters of the motor to be evaluated are displayed in the output parameter area of the evaluation tool.
  • the method for evaluating a motor is executed by an evaluation tool.
  • the evaluation tool stores the initial parameters in a free In the named frequency response array, after the evaluation tool calculates the output parameters according to the initial parameters, the output parameters are also stored in the corresponding frequency response array.
  • the check area of the evaluation tool will display all self-named motors.
  • a user-triggered motor check command is detected, a number of corresponding frequency response arrays are read, and then if a user-triggered display command is detected, it will be A corresponding frequency response array shows all frequency response curves. It can be seen that the user only needs to select the motor to be simulated and evaluated in the check box, and the evaluation tool can complete the simulation evaluation of the motor and display the frequency response curve to the user for viewing, which is very convenient.
  • the embodiment of the present invention also provides a storage medium and a computer terminal corresponding to the above-mentioned motor evaluation method. Because the principle of the storage medium and the computer terminal in the embodiment of the present invention to solve the problem is the same as that of the first embodiment of the present invention.
  • the evaluation methods of the motors are similar, so the specific implementation can refer to the implementation of the aforementioned motor evaluation methods, and the repetition will not be repeated.
  • the storage medium is a computer-readable storage medium
  • the storage medium stores an evaluation program of a motor
  • the evaluation program of the motor is executed by a processor as described in the first embodiment.
  • the steps of the motor evaluation method please refer to method embodiment 1, which will not be repeated here.
  • this embodiment also provides a computer terminal.
  • the computer terminal includes a processor 21 and a memory 22.
  • the memory 22 stores an evaluation program of a motor running on the processor 21. 23.
  • FIG. 3 only shows part of the components of the computer terminal.
  • the memory 22 may be an internal storage unit of the computer terminal, such as a hard disk or memory of the computer terminal. In other embodiments, the memory 22 may also be an external storage device of the computer terminal, such as a plug-in hard disk equipped on the computer terminal, a smart memory card (Smart Media Card, SMC), and a secure digital (Secure Digital). Digital, SD) card, flash card (Flash Card), etc. Further, the memory 22 may also include both an internal storage unit of the computer terminal and an external storage device. The memory 22 is used to store application software and various data installed in the computer terminal. The memory 22 can also be used to temporarily store data that has been output or will be output. In an embodiment, a motor evaluation program 23 is stored in the memory 22, and the program 23 can be executed by the processor 21.
  • a motor evaluation program 23 is stored in the memory 22, and the program 23 can be executed by the processor 21.
  • the processor 21 may be a central processing unit (CPU), microprocessor or other data processing chip in some embodiments, and is used to run the program code or process data stored in the memory 22.
  • CPU central processing unit
  • microprocessor or other data processing chip in some embodiments, and is used to run the program code or process data stored in the memory 22.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

一种马达的评估方法、存储介质及计算机终端,该方法由一评估工具执行,通过马达测试设备分别测试每一个待测马达的初始参数后,评估工具将初始参数存储到一个自命名的频响数组中,接着评估工具根据初始参数计算得到输出参数后,将输出参数也存储至对应的频响数组中。如此,评估工具的复选区会显示所有自命名的马达,当检测到用户触发的马达复选指令,读取若干个相对应的频响数组,接着若检测到用户触发显示指令时,则根据若干个相对应的频响数组显示出所有频响曲线。可以看出,用户只需在复选区勾选所需要进行仿真评估的马达,评估工具即可完成对马达的仿真评估并将频响曲线显示给用户查看,极具便利性。

Description

一种马达的评估方法、存储介质及计算机终端 【技术领域】
本发明涉及马达技术领域,尤其涉及一种马达的评估方法、存储介质及计算机终端。
【背景技术】
现如今马达的应用越来越广泛,因此在一些生产和应用场景下,需要先对马达进行仿真计算。相关技术中多采用Matlab或Excel等对马达进行仿真计算,不仅与用户的交互性差且用户操作起来较为复杂,存在复杂性高的问题。
【发明内容】
鉴于上述现有技术的不足,本发明的目的在于提供一种马达的评估方法、存储介质及计算机终端,旨在解决相关技术中对于马达的仿真计算存在复杂性高的问题。
第一方面,本发明提供了一种马达的评估方法,由一评估工具执行,其特征在于,所述马达的评估方法包括:
S1、运行马达测试设备测试待测马达,所述测试设备将所述待测马达的初始参数存储入所述评估工具;
S2、所述评估工具将马达的初始参数存储为一个频响数组,并由用户命名;
S3、所述评估工具调用所述频响数组中的初始参数值,计算得到输出参数,保存至所述频响数组,并以用户命名的形式保存至复选区;
S4、重复上述步骤1-3,直至测试完所有待测马达;
S5、当所述评估工具检测到用户触发马达复选指令时,读取由用户命名对应的频响数组;
S6、当所述评估工具检测到用户触发显示指令时,根据所读取的频响 数组中存储的参数值,生成用户所复选的待测马达的频响曲线至所述评估工具的曲线显示区。
进一步地,所述步骤S6还包括:若读取不到频响数组,则清空所述曲线显示区。
进一步地,所述待测马达的初始参数包括马达音圈阻抗、马达振子质量、电磁力系数、工装质量、弹簧劲度系数、阻尼器机械阻尼以及额定电压。
进一步地,所述频响曲线包括相对振动量随频率变化的曲线、绝对振动量随频率变化的曲线、人体感知强度随频率变化的曲线以及均衡后马达位移随频率变化的曲线。
进一步地,所述不同的频响曲线在所述曲线显示区切换查看。
进一步地,所述步骤S6还包括:
将所述输出参数显示在所述评估工具的输出参数区。
进一步地,所述输出参数包括无阻尼自然频率、有阻尼本征频率、加速度共振频率、机械阻尼系数、电阻尼系数和总阻尼系数。
第二方面,本发明提供了一种存储介质,所述存储介质是计算机可读存储介质,所述存储介质上存储有马达的评估程序,所述马达的评估程序被处理器运行时执行如第一方面所述的马达的评估方法的步骤。
第三方面,本发明提供了一种计算机终端,所述计算机终端包括存储器和处理器,所述存储器上存储有在所述处理器上运行的马达的评估程序,所述马达的评估程序被所述处理器执行时实现如第一方面所述的马达的评估方法的步骤。
有益效果:本发明提供了一种马达的评估方法、存储介质及计算机终端,该方法由一评估工具执行,通过马达测试设备分别测试每一个待测马达的初始参数后,评估工具将初始参数存储到一个自命名的频响数组中,接着评估工具根据初始参数计算得到输出参数后,将输出参数也存储至对用的频响数组中。如此,评估工具的复选区会显示所有自命名的马达,当检测到用户触发的马达复选指令,读取若干个相对应的频响数组,接着若 检测到用户触发显示指令时,则根据若干个相对应的频响数组显示出所有频响曲线。可以看出,用户只需在复选区勾选所需要进行仿真评估的马达,评估工具即可完成对马达的仿真评估并将频响曲线显示给用户查看,极具便利性。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1所提供的马达的评估方法的流程图;
图2为本发明实施例1中马达测试设备的结构示意图;
图3为本发明实施例2所提供的计算机终端的结构示意图。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供的一种马达的评估方法,由一评估工具执行,该评估工具可在计算机终端上运行,请参阅图1,所述马达的评估方法包括:
S1、运行马达测试设备测试待测马达,所述测试设备将所述待测马达的初始参数存储入所述评估工具。
S2、所述评估工具将马达的初始参数存储为一个频响数组,并由用户命名。
具体来说,待测马达的初始参数包括马达音圈阻抗R e、马达振子质量M1、电磁力系数BL、工装质量M2、弹簧劲度系数k m、阻尼器机械阻尼 R m以及额定电压V rms。通常初始参数不能直接得出,因此需要使用马达测试设备测试出待测马达的初始参数。具体地,图2为马达测试设备的具体结构图,下面简单介绍下如何得到待测马达的初始参数:
(1)PC 110(即一计算机终端)控制信号采集设备120发出激励信号,然后激励信号通过功放130驱动马达140振动,其中,激励信号类型为chirp或者step扫频信号;
(2)通过加速度计150采集马达140振动时的加速度,通过信号采集放大器160的处理后送入信号采集设备120;
(3)采集马达140与高精度电阻170两端的电压值,同时,采集高精度电阻170两端电压值,以此计算出马达140两端的电流值,其中,高精度电阻170可为阻值为1欧姆的电阻;
(4)通过一马达电压与电流的模型,计算出马达140的初始参数,其中,初始参数中的工装质量可直接通过测量金属工装180的质量得出。
如此,在得到待测马达的初始参数之后,评估工具将该初始参数存储到一频响数组中,且此频响数组由用户自己命名。
S3、所述评估工具调用所述频响数组中的初始参数值,计算得到输出参数,保存至所述频响数组,并以用户命名的形式保存至复选区。
具体来说,输出参数包括无阻尼自然频率F n、有阻尼本征频率F 0'、加速度共振频率F 0、机械阻尼系数Xi 0、电阻尼系数Xi'和总阻尼系数Xi。由于评估工具中具有已编译好的公式脚本,因此评估工具可根据待测马达的初始参数分别计算出对应的输出参数,并将输出参数也保存至频响数组中。同时,以用户自命名的方式保存至评估工具的复选区,如此,复选区会显示已命名的待测马达。
以下简单介绍如何根据初始参数计算得到输出参数:
(1)根据弹性劲度系数k m和工装质量M2,通过以下公式可计算出无阻尼自然频率F n
Figure PCTCN2020080346-appb-000001
(2)根据阻尼器机械阻尼R m和无阻尼自然频率F n,通过以下公式可计算出机械阻尼系数Xi 0
Figure PCTCN2020080346-appb-000002
(3)根据电磁力系数BL、马达音圈阻抗R e和无阻尼自然频率F n,通过以下公式可计算出电阻尼系数Xi'。
Figure PCTCN2020080346-appb-000003
(4)根据无阻尼自然频率F n、机械阻尼系数Xi 0和电阻尼系数Xi',通过以下公式可分别计算出有阻尼本征频率F 0'、加速度共振频率F 0、和总阻尼系数Xi。
Figure PCTCN2020080346-appb-000004
Figure PCTCN2020080346-appb-000005
Xi=Xi 0+Xi′
S4、重复上述步骤1-3,直至测试完所有待测马达。
具体来说,可测试多个马达,并存储多个马达相对应的频响数组,但需要注意的是,虽然多个马达均是以用户自命名的方式保存至评估工具的复选区,但是多个马达间不能出现名字相同的情况。如此,复选区会显示出多个已命名的待测马达。
S5、当所述评估工具检测到用户触发马达复选指令时,读取由用户命名对应的频响数组。
具体来说,此时复选区已显示了所有的待评估马达,当用户在复选区勾选了若干个待评估马达时,就会触发马达复选指令,则评估工具读取所有被勾选的待评估马达相对应的频响数组。
S6、当所述评估工具检测到用户触发显示指令时,根据所读取的频响数组中存储的参数值,生成用户所复选的待测马达的频响曲线至所述评估 工具的曲线显示区。
具体来说,当用户触发了显示指令时,评估工具会根据步骤S5所读取的所有频响数组,在曲线显示区一起显示所有待评估马达的频响曲线,其中,一个马达的频响曲线包括相对振动量随频率变化的曲线、绝对振动量随频率变化的曲线、人体感知强度随频率变化的曲线以及均衡后马达位移随频率变化的曲线。
曲线显示区可以显示一个马达自身的一条频响曲线,即在同一时刻一个马达只显示一条频响曲线,但若需要查看其他频响曲线,可以在曲线显示区切换查看。如此,评估工具即可完成对马达的仿真评估,将频响曲线提供给用户查看。可以看出,用户只需在复选区勾选所需要进行仿真评估的马达,评估工具即可完成对马达的仿真评估并将频响曲线显示给用户查看,极具便利性。
进一步地,上述步骤S6还包括:若读取不到频响数组,则清空所述曲线显示区。
具体来说,若读取不到任意的频响数组,则表示用户没有在复选区进行勾选,则清空当前曲线显示区显示的频响曲线。
进一步地,上述步骤S6还包括:将所述输出参数显示在所述评估工具的输出参数区。
具体来说,评估工具在曲线显示区显示频响曲线的同时,为了方便用户查看待评估马达的各个参数,则在评估工具的输出参数区显示该待评估马达的所有输出参数。
综上所述,本实施例提供的一种马达的评估方法,该方法由一评估工具执行,通过马达测试设备分别测试每一个待测马达的初始参数后,评估工具将初始参数存储到一个自命名的频响数组中,接着评估工具根据初始参数计算得到输出参数后,将输出参数也存储至对用的频响数组中。如此,评估工具的复选区会显示所有自命名的马达,当检测到用户触发的马达复选指令,读取若干个相对应的频响数组,接着若检测到用户触发显示指令时,则根据若干个相对应的频响数组显示出所有频响曲线。可以看出,用 户只需在复选区勾选所需要进行仿真评估的马达,评估工具即可完成对马达的仿真评估并将频响曲线显示给用户查看,极具便利性。
基于同一发明构思,本发明实施例中还提供了与上述马达的评估方法相对应的存储介质和计算机终端,由于本发明实施例中的存储介质和计算机终端解决问题的原理与本发明实施例1所述的马达的评估方法相似,因此其具体实施可以参见前述马达的评估方法的实施,重复之处不再赘述。
实施例2
本实施例提供的存储介质,所述存储介质是计算机可读存储介质,所述存储介质上存储有马达的评估程序,所述马达的评估程序被处理器运行时执行如实施例1所述的马达的评估方法的步骤。具体实现可参见方法实施例1,在此不再赘述。
此外,请参阅图3,本实施例还提供了一种计算机终端,所述计算机终端包括处理器21和存储器22,所述存储器22上存储有在所述处理器21上运行的马达的评估程序23,图3仅示出了所述计算机终端的部分组件。
所述存储器22在一些实施例中可以是所述计算机终端的内部存储单元,例如计算机终端的硬盘或内存。所述存储器22在另一些实施例中也可以是所述计算机终端的外部存储设备,例如所述计算机终端上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器22还可以既包括所述计算机终端的内部存储单元也包括外部存储设备。所述存储器22用于存储安装于所述计算机终端的应用软件及各类数据。所述存储器22还可以用于暂时地存储已经输出或者将要输出的数据。在一实施例中,存储器22上存储有马达的评估程序23,该程序23可被处理器21所执行。
所述处理器21在一些实施例中可以是一中央处理器(Central Processing Unit,CPU),微处理器或其他数据处理芯片,用于运行所述存储器22中存储的程序代码或处理数据。
在本实施例中,当处理器21执行所述存储器22中存储的马达的评估程序23时执行上述实施例1描述的马达的评估方法的步骤。具体实现可参 见方法实施例1,在此不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (9)

  1. 一种马达的评估方法,由一评估工具执行,其特征在于,所述马达的评估方法包括:
    S1、运行马达测试设备测试待测马达,所述测试设备将所述待测马达的初始参数存储入所述评估工具;
    S2、所述评估工具将马达的初始参数存储为一个频响数组,并由用户命名;
    S3、所述评估工具调用所述频响数组中的初始参数值,计算得到输出参数,保存至所述频响数组,并以用户命名的形式保存至复选区;
    S4、重复上述步骤1-3,直至测试完所有待测马达;
    S5、当所述评估工具检测到用户触发马达复选指令时,读取由用户命名对应的频响数组;
    S6、当所述评估工具检测到用户触发显示指令时,根据所读取的频响数组中存储的参数值,生成用户所复选的待测马达的频响曲线至所述评估工具的曲线显示区。
  2. 根据权利要求1所述的马达的评估方法,其特征在于,所述步骤S6还包括:若读取不到频响数组,则清空所述曲线显示区。
  3. 根据权利要求1所述的马达的评估方法,其特征在于,所述待测马达的初始参数包括马达音圈阻抗、马达振子质量、电磁力系数、工装质量、弹簧劲度系数、阻尼器机械阻尼以及额定电压。
  4. 根据权利要求1所述的马达的评估方法,其特征在于,所述频响曲线包括相对振动量随频率变化的曲线、绝对振动量随频率变化的曲线、人 体感知强度随频率变化的曲线以及均衡后马达位移随频率变化的曲线。
  5. 根据权利要求1所述的马达的评估方法,其特征在于,所述不同的频响曲线在所述曲线显示区切换查看。
  6. 根据权利要求1所述的线性马达的评估方法,其特征在于,所述步骤S6还包括:
    将所述输出参数显示在所述评估工具的输出参数区。
  7. 根据权利要求1所述的马达的评估方法,其特征在于,所述输出参数包括无阻尼自然频率、有阻尼本征频率、加速度共振频率、机械阻尼系数、电阻尼系数和总阻尼系数。
  8. 一种存储介质,其特征在于,所述存储介质是计算机可读存储介质,所述存储介质上存储有马达的评估程序,所述马达的评估程序被处理器运行时执行如权利要求1-7任一项所述的马达的评估方法的步骤。
  9. 一种计算机终端,其特征在于,所述计算机终端包括存储器和处理器,所述存储器上存储有在所述处理器上运行的马达的评估程序,所述马达的评估程序被所述处理器执行时实现如权利要求1-7任一项所述的马达的评估方法的步骤。
PCT/CN2020/080346 2020-03-11 2020-03-20 一种马达的评估方法、存储介质及计算机终端 WO2021179344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010165366.X 2020-03-11
CN202010165366.XA CN111400887A (zh) 2020-03-11 2020-03-11 一种马达的评估方法、存储介质及计算机终端

Publications (1)

Publication Number Publication Date
WO2021179344A1 true WO2021179344A1 (zh) 2021-09-16

Family

ID=71430642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080346 WO2021179344A1 (zh) 2020-03-11 2020-03-20 一种马达的评估方法、存储介质及计算机终端

Country Status (2)

Country Link
CN (1) CN111400887A (zh)
WO (1) WO2021179344A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116341171A (zh) * 2021-12-24 2023-06-27 武汉市聚芯微电子有限责任公司 一种马达工装振动的评估方法及系统
CN115933941A (zh) * 2022-11-23 2023-04-07 瑞声开泰声学科技(上海)有限公司 马达的控制方法、终端设备及计算机存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2615675Y (zh) * 2003-03-08 2004-05-12 张振欣 智能型发电机组综合性能测试仪
DE102006047871A1 (de) * 2005-12-22 2007-07-05 Volkswagen Ag Verfahren und Vorrichtung zum Verarbeiten von Daten einer Mehrzahl von unterschiedlichen Produkten
CN101216371A (zh) * 2007-12-30 2008-07-09 重庆大学 发动机控制模块环境耐久性测试通用平台及测试方法
CN202886567U (zh) * 2012-11-08 2013-04-17 天津市詹佛斯科技发展有限公司 基于网络化虚拟仪器的特种电机测试装置
CN104198935A (zh) * 2014-06-30 2014-12-10 北京航天控制仪器研究所 一种动压电机参数监测系统及监测的方法
CN105093109A (zh) * 2015-07-10 2015-11-25 中国矿业大学 一种电机状态无线远程监测与互联系统及其方法
CN105370559A (zh) * 2015-12-03 2016-03-02 浙江工业大学 制冷压缩机往复运动机械机构空载转矩测量装置及测量方法
CN109116234A (zh) * 2018-09-11 2019-01-01 南通市产品质量监督检验所 电机监测方法、电子设备和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154158B (zh) * 2015-04-10 2019-06-14 小米科技有限责任公司 终端马达测试方法及装置
CN106157362A (zh) * 2016-06-30 2016-11-23 宇龙计算机通信科技(深圳)有限公司 一种产品说明书的虚拟展示方法及装置
CN106650059B (zh) * 2016-12-08 2020-05-08 南京越博动力系统股份有限公司 一种基于Matlab的汽车整车性能仿真与计算方法
CN110146810B (zh) * 2019-04-23 2021-09-10 瑞声科技(新加坡)有限公司 一种线性马达测试参数的确定方法及装置
WO2021000188A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 马达信息展示方法、装置和计算机设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2615675Y (zh) * 2003-03-08 2004-05-12 张振欣 智能型发电机组综合性能测试仪
DE102006047871A1 (de) * 2005-12-22 2007-07-05 Volkswagen Ag Verfahren und Vorrichtung zum Verarbeiten von Daten einer Mehrzahl von unterschiedlichen Produkten
CN101216371A (zh) * 2007-12-30 2008-07-09 重庆大学 发动机控制模块环境耐久性测试通用平台及测试方法
CN202886567U (zh) * 2012-11-08 2013-04-17 天津市詹佛斯科技发展有限公司 基于网络化虚拟仪器的特种电机测试装置
CN104198935A (zh) * 2014-06-30 2014-12-10 北京航天控制仪器研究所 一种动压电机参数监测系统及监测的方法
CN105093109A (zh) * 2015-07-10 2015-11-25 中国矿业大学 一种电机状态无线远程监测与互联系统及其方法
CN105370559A (zh) * 2015-12-03 2016-03-02 浙江工业大学 制冷压缩机往复运动机械机构空载转矩测量装置及测量方法
CN109116234A (zh) * 2018-09-11 2019-01-01 南通市产品质量监督检验所 电机监测方法、电子设备和存储介质

Also Published As

Publication number Publication date
CN111400887A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
US20210025940A1 (en) Method And Apparatus For Testing Nonlinear Parameter of Motor
WO2021179344A1 (zh) 一种马达的评估方法、存储介质及计算机终端
Volino et al. Comparing efficiency of integration methods for cloth simulation
Li et al. Detection of crack location and size in structures using wavelet finite element methods
CN110146810B (zh) 一种线性马达测试参数的确定方法及装置
WO2021174580A1 (zh) 一种振动控制方法、存储介质及设备
CN106802969B (zh) 阻尼材料动态特性的验证系统及其验证方法
CN104359549A (zh) 一种变压器铁芯振动噪声分析方法
TWI490465B (zh) 具有振動測試功能之電子裝置及用以建立振動測試演算法之方法
Thein et al. Damping ratio and power output prediction of an electromagnetic energy harvester designed through finite element analysis
CN111797483A (zh) 马达均衡电信号的修正方法及设备、计算机可读存储介质
CN111783030A (zh) 触觉体验的评估方法、装置和存储介质
US20210042519A1 (en) Method for evaluating vibrating sensation similarity, apparatus and storage medium
JP2015215698A (ja) 電磁界シミュレーションプログラム
JP2004045294A (ja) 構造物の損傷危険度判定システムおよびプログラム
CN116384031A (zh) 一种马达振动效果的仿真方法及装置
CN113507539B (zh) 一种获取终端设备跌落信息的方法和终端设备
Lütkenhöner What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker
CN111551847B (zh) 马达振子质量的估算方法、存储介质、测试终端及系统
JP6896349B2 (ja) シミュレーション方法、シミュレーション装置、及びプログラム
Lindsay et al. Improving tactile feedback with an impedance adapter
JP2006337029A (ja) 静電気放電分析装置及び方法
Benatar et al. FEM implementation of a magnetostrictive transducer
Jagiela et al. Action of torsion and axial moment in a new nonlinear cantilever-type vibration energy harvester
JP3504603B2 (ja) 液体封入式マウントの特性同定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924214

Country of ref document: EP

Kind code of ref document: A1