WO2021179271A1 - 显示基板及其制备方法、显示面板 - Google Patents

显示基板及其制备方法、显示面板 Download PDF

Info

Publication number
WO2021179271A1
WO2021179271A1 PCT/CN2020/079073 CN2020079073W WO2021179271A1 WO 2021179271 A1 WO2021179271 A1 WO 2021179271A1 CN 2020079073 W CN2020079073 W CN 2020079073W WO 2021179271 A1 WO2021179271 A1 WO 2021179271A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
passivation layer
oxygen
oxygen supplement
content
Prior art date
Application number
PCT/CN2020/079073
Other languages
English (en)
French (fr)
Inventor
胡合合
宁策
王利忠
董水浪
姚念琦
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/079073 priority Critical patent/WO2021179271A1/zh
Priority to CN202080000260.2A priority patent/CN113661574B/zh
Publication of WO2021179271A1 publication Critical patent/WO2021179271A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • This application relates to the field of display technology, and in particular to a display substrate, a preparation method thereof, and a display panel.
  • Oxide TFT has the advantages of high mobility, uniform device performance, suitable for large-area production, low preparation temperature, suitable for flexible display, forbidden bandwidth, transparent under visible light, and suitable for transparent display. It is considered to be the most promising replacement
  • the silicon-based material becomes the channel material of the thin film transistor.
  • Oxide TFT oxygen vacancies
  • Vo oxygen vacancies
  • the present application discloses a display substrate, a preparation method thereof, and a display panel, with the purpose of improving the structure of the display substrate, improving the characteristics of thin film transistors, and improving the yield of display products.
  • a display substrate includes:
  • Thin film transistors located on the base substrate are Thin film transistors located on the base substrate;
  • the first passivation layer is located on the side of the thin film transistor away from the base substrate;
  • the oxygen supplement layer is located on the side of the first passivation layer away from the base substrate and at least covers the channel region of the thin film transistor, and the oxygen content in the oxygen supplement layer is greater than that of the first passivation layer
  • the content of oxygen in the oxygen supplement layer is less than the content of hydrogen, nitrogen and water molecules in the first passivation layer.
  • the orthographic projection pattern of the oxygen supplement layer on the base substrate is the same or substantially the same as the orthographic projection pattern of the first passivation layer on the base substrate.
  • the material of the oxygen supplement layer includes aluminum oxide.
  • the material of the oxygen supplement layer includes silicon oxide.
  • the material of the first passivation layer includes silicon oxide, and the refractive index of the first passivation layer is greater than the refractive index of the oxygen supplement layer.
  • the display substrate further includes a second passivation layer located on a side of the oxygen supplement layer away from the base substrate; the oxygen content in the oxygen supplement layer is greater than that of the second passivation layer The oxygen content in the oxygen supplement layer is less than the content of hydrogen, nitrogen and water molecules in the second passivation layer.
  • the material of the oxygen supplement layer includes silicon oxide; the material of the second passivation layer includes silicon oxide, and the refractive index of the second passivation layer is greater than the refractive index of the oxygen supplement layer.
  • the oxygen diffusion performance of the first passivation layer is better than that of the second passivation layer.
  • the ratio of the thickness of the first passivation layer to the thickness of the oxygen supplement layer is 10-40; the ratio of the thickness of the second passivation layer to the thickness of the oxygen supplement layer is 20- 40.
  • a display panel includes any one of the above-mentioned display substrates.
  • a method for preparing a display substrate includes the following steps:
  • An oxygen supplement layer is prepared on the first passivation layer, the oxygen supplement layer covers at least the channel region of the thin film transistor, and the oxygen content in the oxygen supplement layer is greater than the oxygen in the first passivation layer
  • the content of hydrogen, nitrogen and water molecules in the oxygen supplement layer is smaller than the content of hydrogen, nitrogen and water molecules in the first passivation layer, respectively.
  • preparing a first passivation layer on the thin film transistor specifically includes:
  • PECVD power density is less than 0.25W/cm2;
  • High temperature annealing is carried out at a temperature above 300°C.
  • preparing an oxygen supplement layer on the first passivation layer specifically includes:
  • the target material includes Si, Al, SiOx, AlOx.
  • the method further includes:
  • the silicon oxide or silicon nitride film layer is deposited by the PECVD process to prepare and form the second passivation layer, and the film forming temperature condition of the silicon oxide or silicon nitride film layer is greater than 300°C.
  • FIG. 1 is a schematic diagram of a partial cross-sectional structure of a display substrate provided by an embodiment of the application;
  • FIG. 2 is a flowchart of a method for manufacturing a display substrate according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a partial cross-sectional structure of a display substrate when the first passivation layer is prepared according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of a partial cross-sectional structure of a display substrate when an oxygen supplement layer is prepared according to an embodiment of the application;
  • FIG. 5 is a schematic diagram of a partial cross-sectional structure of a display substrate when the second passivation layer is prepared according to an embodiment of the application.
  • oxide semiconductor thin film transistors such as IGZO TFT
  • the introduction of H, N, H 2 O and oxygen vacancies (Vo) can easily lead to deterioration of TFT stability.
  • the preparation route of conventional Oxide TFT is generally through plasma chemistry.
  • the vapor deposition process (PECVD) forms a SiO x passivation layer on the TFT to supplement oxygen to the TFT channel and reduce Vo.
  • the by-products of the SiO x film prepared by PECVD are relatively high, and H, N, and N are easily introduced during the film formation process. H 2 O, etc., therefore still cause deterioration of TFT stability, and cannot effectively improve TFT stability.
  • the embodiments of the present application disclose a display substrate and a preparation method thereof, a display panel, and a display device.
  • the purpose is to reduce the oxygen vacancy (Vo) defects in the TFT channel region by improving the structure of the display substrate, and at the same time reduce the defects due to H,
  • the introduction of N and H 2 O leads to poor TFTs, which in turn improves the characteristics of thin film transistors and improves the yield of display products.
  • an embodiment of the present application provides a display substrate, including:
  • the thin film transistor 2 is located on the base substrate 1;
  • the first passivation layer 3 is located on the side of the thin film transistor 2 away from the base substrate 1;
  • the oxygen supplement layer 4 (Add oxygen layer, AOL) is located on the side of the first passivation layer 3 away from the base substrate 1 and at least covers the channel region 20 of the thin film transistor 2.
  • the oxygen content in the oxygen supplement layer 4 is greater than that of the first passivation layer 3
  • the oxygen content in the passivation layer 3, and the content of hydrogen (H), nitrogen (N) and water molecules (H 2 O) in the oxygen supplement layer 4 are respectively less than the content of hydrogen, nitrogen and water molecules in the first passivation layer 3 .
  • a first passivation layer 3 and an oxygen supplement layer 4 are sequentially arranged above the thin film transistor 2 (TFT 2); the first passivation layer 3 can protect the thin film transistor (TFT) 2 and supplement
  • the oxygen layer 4 covers at least the channel region 20 of the thin film transistor 2, and the oxygen content in the oxygen supplement layer 4 is greater than the oxygen content in the first passivation layer 3, and the content of H, N, and H 2 O is less than that of the first passivation layer.
  • the above-mentioned display substrate can supplement oxygen elements in the channel region 20 of the TFT 2 by adding an oxygen supplement layer 4 above the thin film transistor (TFT) 2, effectively reducing oxygen vacancy (Vo) defects in the channel region 20 of the TFT 2. And it can reduce the defects of TFT 2 caused by the introduction of H, N and H 2 O, can effectively improve the characteristics and stability of TFT 2 and improve the yield of display products.
  • TFT thin film transistor
  • the thin film transistor 2 has a bottom-gate structure, and includes a gate 21, an active layer 22, a source 24 and a drain 23 arranged in sequence.
  • the first passivation layer 3 is located above the TFT 2 and directly covers the channel region 20 of the TFT 2.
  • the oxygen supplement layer 4 is located on the first passivation layer 3, and the oxygen element of the oxygen supplement layer 4 can pass through the first passivation layer 3 Directly reach the TFT 2 channel region 20 to reduce the oxygen vacancy (Vo) of the TFT 2 channel region 20.
  • the thin film transistor 2 in the embodiment of the present application may also be a top-gate structure, which is not limited herein.
  • the orthographic projection pattern of the oxygen supplement layer 4 on the base substrate 1 is the same or substantially the same as the orthographic projection pattern of the first passivation layer 3 on the base substrate 1. "Approximately the same” means that the shapes of two patterns are the same or similar, and the pattern sizes are the same or similar.
  • the oxygen-supplementing layer 4 and the first passivation layer 3 may be the entire film layer covering the thin-film transistor 2, and a through-oxygen-supplementing layer 4 and Via hole of the first passivation layer 3.
  • the display substrate of the embodiment of the present application further includes a pixel electrode 7, a common electrode 8, and a common electrode connecting lead 9 and other structures.
  • the pixel electrode 7 and the common electrode connecting lead 9 are located above the oxygen supplement layer 4 and the first passivation layer 3;
  • the common electrode 8 is arranged between the base substrate 1 and the gate insulating layer 6, and may include an electrode portion 81 and an overlap
  • the portion 82 and the overlap portion 82 can be prepared in the same layer as the gate 21 of the TFT 2 and overlap the electrode portion 81.
  • the display substrate is provided with two via holes penetrating the oxygen supplement layer 4 and the first passivation layer 3, for example, the first via hole 101 and the second via hole 102, and the pixel electrode 7 passes through the first via hole 101 and The drain 23 of the TFT 2 is electrically connected, and the connecting lead 9 of the common electrode 8 is electrically connected to the overlap portion 82 of the common electrode 8 through the second via 102.
  • the material of the oxygen supplement layer 4 includes aluminum oxide.
  • the oxygen-supplementing layer may be an aluminum oxide film layer.
  • the aluminum oxide film layer generally contains a large amount of excess oxygen (exO, which is oxygen that is weakly bonded and easy to escape), elements such as N, H, and H 2 O. The content is very small.
  • exO excess oxygen
  • elements such as N, H, and H 2 O.
  • the content is very small.
  • the material of the oxygen supplement layer 4 includes silicon oxide.
  • the oxygen supplement layer may be a silicon oxide film layer, and the silicon oxide film layer may contain a large amount of excess oxygen (exO), and during the process of preparing the silicon oxide film layer, it is easy for some oxygen elements to enter the trench of the TFT. In the channel region, oxygen compensation is performed on the channel region of the TFT to reduce oxygen vacancies.
  • the selection of the preparation process can prevent the introduction of N, H, H 2 O, etc. during the preparation of the silicon oxide film layer, and can make the final formed silicon oxide film layer contain very little N, H, H 2 O .
  • the material of the oxygen supplement layer 4 includes silicon oxide
  • the material of the first passivation layer 3 includes silicon oxide
  • the oxygen supplement layer 4 is a silicon oxide film layer
  • the first passivation layer 3 is a silicon oxide film layer.
  • the film characteristics of the oxygen supplement layer 4 and the first passivation layer 3 are different, such as the refractive index of the film, the purity of the silicon oxide material in the film, and the excess oxygen in the film (exO ) And the contents of N, H, H 2 O, etc. are all different.
  • the refractive index of the first passivation layer 3 is greater than the refractive index of the oxygen supplement layer 4.
  • the refractive index of the oxygen supplement layer 4 is less than 1.45
  • the refractive index of the first passivation layer 3 is greater than 1.45.
  • the Si-O-Si stretching vibration peak in the oxygen supplement layer 4 material moves in the direction of high wave number, the half-height is narrower, and the purity of the silicon oxide material is higher.
  • the content of excess oxygen (exO) in the oxygen supplementing layer 4 is higher than that of the first passivation layer 3, and the content of H, N, H 2 O, etc. is much smaller than that of the first passivation layer 3.
  • the display substrate of the embodiments of the present application may further include a second passivation layer 5, and the second passivation layer 5 is located on the side of the oxygen supplement layer 4 away from the base substrate 1;
  • the oxygen content in the layer 4 is greater than the oxygen content in the second passivation layer 5, and the content of hydrogen, nitrogen, and water molecules in the oxygen supplement layer 4 is less than the content of hydrogen, nitrogen, and water molecules in the second passivation layer 5, respectively.
  • the process of preparing and forming the second passivation layer 5 can promote the excess oxygen in the oxygen supplement layer 4 to further diffuse into the channel region 20 of the TFT 2, thereby further reducing the content of Vo defects in the channel and improving the performance of the TFT 2. stability.
  • the material of the oxygen supplement layer 4 includes silicon oxide
  • the material of the second passivation layer 5 includes silicon oxide
  • the oxygen supplement layer 4 is a silicon oxide film layer; the second passivation layer 5 is a silicon oxide film layer. Similar to the first passivation layer 3, although the material used for the second passivation layer 5 and the oxygen supplement layer 4 is the same, the film characteristics of the second passivation layer 5 and the oxygen supplement layer 4 are different, such as film refraction The rate, the purity of the silicon oxide material in the film, the content of excess oxygen (exO) and N, H, H 2 O, etc. in the film are all different. E.g:
  • the refractive index of the second passivation layer 5 is greater than the refractive index of the oxygen supplement layer 4, and illustratively, the refractive index of the second passivation layer 5 is greater than 1.45.
  • the Si-O-Si stretching vibration peak in the material of the oxygen supplement layer 4 moves in the direction of high wave number, the half-height is narrower, and the purity of the oxygen supplement layer 4 material is higher.
  • the content of excess oxygen (exO) in the oxygen supplementing layer 4 is higher than that of the first passivation layer 3, and the content of H, N, H 2 O, etc. is much smaller than that of the first passivation layer 3.
  • the oxygen diffusion performance of the first passivation layer 3 is better than that of the second passivation layer 5. In this way, the excess oxygen in the oxygen supplementing layer 4 is easier to diffuse into the TFT 2 through the first passivation layer 3, thereby reducing the content of Vo defects in the channel region 20 and improving the performance stability of the TFT 2.
  • the first passivation layer and the second passivation layer can not only use silicon oxide materials, but also silicon nitride materials, or silicon nitride and silicon oxide composite materials, etc., which can be specifically based on actual needs. It depends, there is no limit here.
  • the material of the oxygen-supplementing layer is not limited to aluminum oxide or silicon oxide, and may also be other materials that can perform oxygen compensation for the TFT channel while the content of N, H, and H 2 O is very low, which is not limited here.
  • the ratio of the thickness of the first passivation layer 3 to the thickness of the oxygen supplement layer 4 may be 10-40; the ratio of the thickness of the second passivation layer 5 to the thickness of the oxygen supplement layer 4 may be 20-40 .
  • the thickness of the oxygen supplement layer 4 is greater than 10 nm.
  • the thickness of the first passivation layer 3 is 100 nm-400 nm.
  • the thickness of the second passivation layer 5 is 200 nm-400 nm.
  • An embodiment of the present application further provides a display panel, which includes the display substrate of any one of the above, and may also include an opposite substrate.
  • the above-mentioned display panel may be an LCD, the display substrate is an array substrate, and the counter substrate is a color filter substrate.
  • the above-mentioned display panel may also be an OLED, the display substrate is a drive backplane, and the counter substrate is a glass cover plate.
  • An embodiment of the present application also provides a display device, which includes the above-mentioned display panel.
  • the above-mentioned display device can be applied to various electronic devices such as televisions, monitors, tablet computers, and smart phones.
  • the present application also provides a method for preparing the display substrate. As shown in FIG. 2, the method includes the following steps:
  • Step 101 as shown in FIG. 3, a thin film transistor 2 is prepared on a base substrate 1;
  • Step 102 as shown in FIG. 3, prepare a first passivation layer 3 on the thin film transistor 2;
  • Step 103 as shown in FIG. 4, an oxygen supplement layer 4 is formed on the first passivation layer 3.
  • the oxygen supplement layer 4 covers at least the channel region 20 of the thin film transistor 2, and the oxygen content in the oxygen supplement layer 4 is greater than that in the first passivation layer 3.
  • the oxygen content in the chemical layer 3, the content of hydrogen, nitrogen, and water molecules in the oxygen supplement layer 4 are smaller than the content of hydrogen, nitrogen, and water molecules in the first passivation layer 3, respectively.
  • step 101 preparing a thin film transistor on a base substrate, may specifically include:
  • a gate 21, an active layer 22, a source 24 and a drain 23 are sequentially prepared on the base substrate 1 to form a thin film transistor 2.
  • step 102 preparing a first passivation layer on the thin film transistor, may specifically include:
  • PECVD plasma chemical vapor deposition
  • High temperature annealing is carried out at a temperature above 300°C.
  • using PECVD to deposit the first passivation layer 3 at a relatively low power can reduce damage to the channel region 20 of the TFT 2 and damage to the source 24 and drain 23 films. Oxidation of the layer and the first passivation layer 3 formed at the same time have better oxygen diffusion performance, which is beneficial to the diffusion of the excess oxygen (exO) in the oxygen supplement layer 4 to the channel region 20 of the TFT 2.
  • step 103 preparing an oxygen supplement layer on the first passivation layer, may specifically include:
  • the target material may include Si, Al, SiO x , AlO x and the like.
  • the thickness of the prepared oxide film layer may be greater than 10 nm.
  • the magnetron sputtering process is used for oxygen-enriched film formation.
  • the final prepared oxygen supplement layer 4 will contain a large amount of excess oxygen (exO) and a very small amount of N, H, H 2 O,
  • some excess oxygen (exO) will enter the channel region 20 of the TFT 2 under the action of plasma (Plasma) and temperature to supplement oxygen to the channel region 20 of the TFT 2, thereby reducing the channel region. 20 Vo defect content.
  • the method may further include:
  • the silicon oxide or silicon nitride film layer is deposited by the PECVD process to prepare the second passivation layer 5, and the film forming temperature condition of the silicon oxide or silicon nitride film layer is greater than 300°C.
  • the formation of the second passivation layer 5 under high temperature conditions greater than 300°C can promote the excess oxygen (exO) in the oxygen supplement layer 4 to further diffuse into the TFT 2 channel region 20, thereby further reducing
  • the Vo defect content of the channel region 20 improves the performance stability of the TFT 2.
  • the overall process of the manufacturing method of the display substrate provided by the embodiment of the present application may roughly include: as shown in FIG. 1, a gate 21 and a gate insulating layer (GI) are sequentially formed on the base substrate 1.
  • Active layer (Active) 22 and metal source 24 and drain (SD) 23 preparation of first passivation layer 3—preparation of oxygen supplement layer 4—preparation of second passivation layer 5—preparation of pixel electrode 7.
  • the active layer can be an oxide semiconductor, such as indium gallium zinc oxide (IGZO);
  • the gate electrode material can be Al, Cu, Au, Ag, Ti, Ta and other common metal materials; in order to prevent SD electrode etching solution
  • the SD electrode can be a multilayer composite structure, such as Mo/Cu/Mo, MoNb/Cu/MoNb, and so on.
  • the above-mentioned materials are only examples, and the materials of each layer are not limited thereto, and can be specifically determined according to actual needs.
  • the method for preparing the display substrate may further include more steps, which may be determined according to actual requirements.
  • the embodiments of the present disclosure do not limit this, and the detailed description and technology For the effect, please refer to the above description of the display substrate and the display panel, which will not be repeated here.
  • the specific process methods and preparation processes of steps 101, 102, and 103 are not limited to the foregoing embodiments, and other process methods and steps may also be used for preparation.
  • steps 101, 102, and 103 are not limited to the foregoing embodiments, and other process methods and steps may also be used for preparation.
  • please refer to the above The description of each layer structure in the display substrate will not be repeated here.

Landscapes

  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板及其制备方法、显示面板,目的是改善显示基板的结构,提高薄膜晶体管的特性,提高显示产品良率。其中,显示基板包括:衬底基板(1);薄膜晶体管(2),位于所述衬底基板(1)上;第一钝化层(3),位于所述薄膜晶体管(2)背离所述衬底基板(1)的一侧;补氧层(4),位于所述第一钝化层(3)背离所述衬底基板(1)的一侧,至少覆盖所述薄膜晶体管(2)的沟道区(20),所述补氧层(4)中的氧含量大于所述第一钝化层(3)中的氧含量,所述补氧层(4)中氢、氮和水分子的含量分别小于所述第一钝化层(3)中氢、氮和水分子的含量。

Description

显示基板及其制备方法、显示面板 技术领域
本申请涉及显示技术领域,特别涉及一种显示基板及其制备方法、显示面板。
背景技术
金属氧化物薄膜晶体管(Oxide TFT)具有迁移率高、器件性能均匀,适合大面积生产、制备温度低,适合柔性显示、禁带宽,可见光下透明,适合透明显示等优点,被认为最有希望取代硅基材料而成为薄膜晶体管的沟道材料。
在氧化物半导体薄膜晶体管(Oxide TFT)中,沟道区极易出现氧空位(Vo)从而导致TFT稳定性恶化,例如导致在温度及光照下TFT的负向偏压测试(NBTIS)稳定性较差。因此,减低沟道中Vo缺陷含量、提高TFT性能稳定是Oxide TFT的重要研究方向之一。
发明内容
本申请公开了一种显示基板及其制备方法、显示面板,目的是改善显示基板的结构,提高薄膜晶体管的特性,提高显示产品良率。
一种显示基板,包括:
衬底基板;
薄膜晶体管,位于所述衬底基板上;
第一钝化层,位于所述薄膜晶体管背离所述衬底基板的一侧;
补氧层,位于所述第一钝化层背离所述衬底基板的一侧,至少覆盖所述薄膜晶体管的沟道区,所述补氧层中的氧含量大于所述第一钝化层中的氧含量,所述补氧层中氢、氮和水分子的含量分别小于所述第一钝化层中氢、氮和水分子的含量。
可选的,所述补氧层在所述衬底基板上的正投影图案与所述第一钝化层在所述衬底基板上的正投影图案相同或大致相同。
可选的,所述补氧层的材料包括氧化铝。
可选的,所述补氧层的材料包括氧化硅。
可选的,所述第一钝化层的材料包括氧化硅,所述第一钝化层的折射率大于所述补氧层的折射率。
可选的,所述的显示基板还包括第二钝化层,位于所述补氧层背离所述衬底基板的一侧;所述补氧层中的氧含量大于所述第二钝化层中的氧含量,所述补氧层中氢、氮和水分子的含量分别小于所述第二钝化层中氢、氮和水分子的含量。
可选的,所述补氧层的材料包括氧化硅;所述第二钝化层的材料包括氧化硅,所述第二钝化层的折射率大于所述补氧层的折射率。
可选的,所述第一钝化层的氧扩散性能优于所述第二钝化层。
可选的,所述第一钝化层的厚度与所述补氧层的厚度之比为10-40;所述第二钝化层的厚度与所述补氧层的厚度之比为20-40。
一种显示面板,包括上述任一项所述的显示基板。
一种显示基板的制备方法,包括以下步骤:
在衬底基板上制备薄膜晶体管;
在所述薄膜晶体管上制备第一钝化层;
在所述第一钝化层上制备补氧层,所述补氧层至少覆盖所述薄膜晶体管的沟道区,所述补氧层中的氧含量大于所述第一钝化层中的氧含量,所述补氧层中氢、氮和水分子的含量分别小于所述第一钝化层中氢、氮和水分子的含量。
可选的,在所述薄膜晶体管上制备第一钝化层,具体包括:
采用PECVD工艺沉积氧化硅或者氮化硅膜层,PECVD功率密度小于0.25W/cm2;
采用300℃以上温度条件进行高温退火。
可选的,在所述第一钝化层上制备补氧层,具体包括:
以半导体、金属、半导体氧化物或者金属氧化物为靶材,通入含氧量大于50%的气体,将成膜基板的温度控制在大于100℃,通过磁控溅射的方式制备形成氧化物膜层。
可选的,所述靶材包括Si、Al、SiOx、AlOx。
可选的,在所述第一钝化层上制备补氧层之后,还包括:
采用PECVD工艺沉积氧化硅或者氮化硅膜层、以制备形成第二钝化层,所述氧化硅或者氮化硅膜层的成膜温度条件大于300℃。
附图说明
图1为本申请一实施例提供的一种显示基板的部分截面结构示意图;
图2为本申请一实施例提供的一种显示基板制备方法流程图;
图3为本申请一实施例的显示基板在制备第一钝化层时的部分截面结构示意图;
图4为本申请一实施例的显示基板在制备补氧层时的部分截面结构示意图;
图5为本申请一实施例的显示基板在制备第二钝化层时的部分截面结构示意图。
具体实施方式
在氧化物半导体薄膜晶体管(例如IGZO TFT)中,H、N、H 2O和氧空位(Vo)的引入均容易导致TFT稳定性恶化,目前,常规Oxide TFT的制备路线一般是通过等离子体化学气相沉积工艺(PECVD)在TFT上形成SiO x钝化层,以对TFT沟道进行补氧,降低Vo,但PECVD制备SiO x薄膜的副产物较高,成膜过程中易引入H、N、H 2O等,因此仍会导致TFT稳定性恶化,无法有效改善TFT稳定性。
鉴于上述问题,本申请实施例公开一种显示基板及其制备方法、显示面 板、显示装置,目的是通过改善显示基板的结构,降低TFT沟道区氧空位(Vo)缺陷,同时降低由于H、N和H 2O的引入而导致的TFT不良,进而提高薄膜晶体管的特性,提高显示产品良率。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请实施例提供一种显示基板,包括:
衬底基板1;
薄膜晶体管2,位于衬底基板1上;
第一钝化层3,位于薄膜晶体管2背离衬底基板1的一侧;
补氧层4(Add oxygen layer,AOL),位于第一钝化层3背离衬底基板1的一侧,至少覆盖薄膜晶体管2的沟道区20,补氧层4中的氧含量大于第一钝化层3中的氧含量,补氧层4中氢(H)、氮(N)和水分子(H 2O)的含量分别小于第一钝化层3中氢、氮和水分子的含量。
本申请实施例提供的显示基板中,在薄膜晶体管2(TFT 2)上方依次设有第一钝化层3和补氧层4;第一钝化层3可以保护薄膜晶体管(TFT)2,补氧层4至少覆盖薄膜晶体管2的沟道区20,且补氧层4中的氧含量大于第一钝化层3中的氧含量,H、N和H 2O的含量分别小于第一钝化层3中H、N和H 2O的含量,从而,补氧层4一方面可以给TFT 2沟道区20提供足够的氧元素,用于降低氧空位(Vo)缺陷量,另一方面也可以大大降低H、N和H 2O的引入,避免H、N、H 2O对TFT 2稳定性造成影响。
综上所述,上述显示基板通过在薄膜晶体管(TFT)2上方增设补氧层4,可以为TFT 2沟道区20补充氧元素,有效降低TFT 2沟道区20氧空位(Vo)缺陷,并且可降低由于H、N和H 2O的引入而导致的TFT 2不良,可有效提高TFT 2特性和稳定性,提高显示产品良率。
如图1所示,一些实施例中,薄膜晶体管2为底栅型结构,包括依次设 置的栅极21、有源层22以及源极24和漏极23。第一钝化层3位于TFT 2上方,直接覆盖TFT 2的沟道区20,补氧层4位于第一钝化层3上,补氧层4的氧元素透过第一钝化层3可以直接到达TFT 2沟道区20,以降低TFT 2沟道区20氧空位(Vo)。
当然,本申请实施例中的薄膜晶体管2也可以为顶栅型结构,在此不做限定。
如图1所示,一些实施例中,补氧层4在衬底基板1上的正投影图案与第一钝化层3在衬底基板1上的正投影图案相同或大致相同。‘大致相同’是指两个图案的形状相同或相近,且图案尺寸相同或相近。
示例性的,补氧层4与第一钝化层3可以是覆盖薄膜晶体管2的整层膜层,并且,在层与层之间需要电连接的位置处可以设有贯穿补氧层4与第一钝化层3的过孔。
例如,如图1所示,本申请实施例的显示基板还包括像素电极7、公共电极8以及公共电极连接引线9等结构。像素电极7和公共电极连接引线9位于补氧层4和第一钝化层3的上方;公共电极8设置于衬底基板1与栅极绝缘层6之间,可以包括电极部81和搭接部82,搭接部82可以与TFT 2的栅极21同层制备并搭接于电极部81上。具体的,显示基板设有贯穿补氧层4与第一钝化层3的两个过孔,例如可以为第一过孔101和第二过孔102,像素电极7通过第一过孔101与TFT 2的漏极23电连接,公共电极8的连接引线9通过第二过孔102与公共电极8的搭接部82电连接。
一些实施例中,补氧层4的材料包括氧化铝。
示例性的,补氧层可以为氧化铝膜层,氧化铝膜层中一般会含有大量的富余氧(exO,即键合弱易逸出的氧),N、H等元素以及H 2O的含量则非常少。制备氧化铝膜层的工艺过程中,很容易使得部分氧元素进入到TFT的沟道区中,对TFT的沟道区进行氧补偿,降低氧空位,并且不会引入N、H元素以及H 2O等。
一些实施例中,补氧层4的材料包括氧化硅。
示例性的,补氧层可以为氧化硅膜层,氧化硅膜层中可以含有大量的富余氧(exO),且制备氧化硅膜层的工艺过程中,容易使得部分氧元素进入到TFT的沟道区中,对TFT的沟道区进行氧补偿,降低氧空位。另外,通过制备工艺的选择,可以防止氧化硅膜层制备过程中引入N、H、H 2O等,并且可以使得最终形成的氧化硅膜层中N、H、H 2O的含量都非常少。
一种具体的实施例中,补氧层4的材料包括氧化硅,第一钝化层3的材料包括氧化硅。
示例性的,补氧层4为氧化硅膜层,第一钝化层3为氧化硅膜层。虽然都是氧化硅膜层,但是补氧层4和第一钝化层3的膜层特性却不同,例如膜层折射率、膜层中氧化硅材料纯度,还有膜层中富余氧(exO)以及N、H、H 2O等的含量均不同。例如:
具体的,第一钝化层3的折射率大于补氧层4的折射率。示例性的,补氧层4的折射率小于1.45,第一钝化层3的折射率大于1.45。
具体的,相较于第一钝化层3,补氧层4材料中的Si-O-Si伸缩振动峰向高波数方向移动,半高宽较窄,氧化硅材料的纯度更高。
具体的,补氧层4中的富余氧(exO)含量高于第一钝化层3,而H、N、H 2O等含量远远小于第一钝化层3。
如图1所示,一些实施例中,本申请实施例的显示基板还可以包括第二钝化层5,第二钝化层5位于补氧层4背离衬底基板1的一侧;补氧层4中的氧含量大于第二钝化层5中的氧含量,补氧层4中氢、氮和水分子的含量分别小于第二钝化层5中氢、氮和水分子的含量。
具体的,第二钝化层5制备成膜的工艺过程,可以促进补氧层4中的富余氧进一步向TFT 2的沟道区20扩散,从而进一步减低沟道中Vo缺陷含量,提高TFT 2性能稳定性。
一种具体的实施例中,补氧层4的材料包括氧化硅,第二钝化层5的材料包括氧化硅。
示例性的,补氧层4为氧化硅膜层;第二钝化层5为氧化硅膜层。与第 一钝化层3同理,虽然第二钝化层5与补氧层4采用的材料相同,但是第二钝化层5与补氧层4的膜层特性却不同,例如膜层折射率、膜层中氧化硅材料纯度,还有膜层中富余氧(exO)以及N、H、H 2O等的含量均不同。例如:
具体的,第二钝化层5的折射率大于补氧层4的折射率,示例性的,第二钝化层5的折射率大于1.45。
具体的,相较于第二钝化层5,补氧层4材料中的Si-O-Si伸缩振动峰向高波数方向移动,半高宽较窄,补氧层4材料的纯度更高。
具体的,补氧层4中的富余氧(exO)含量高于第一钝化层3,而H、N、H 2O等含量远远小于第一钝化层3。
一些实施例中,第一钝化层3的氧扩散性能优于第二钝化层5。这样,补氧层4中的富余氧更容易通过第一钝化层3向TFT 2扩散,从而减低沟道区20中Vo缺陷含量,提高TFT 2性能稳定性。
需要说明的是,第一钝化层和第二钝化层不仅可以采用氧化硅材料,也可以为氮化硅材料,或者也可以是氮化硅和氧化硅复合材料等,具体可以根据实际需求而定,在此不做限定。另外,补氧层的材料也不限于氧化铝或者氧化硅,也可以是其他能够对TFT沟道进行氧补偿同时N、H、H 2O的含量很低的材料,在此不做限定。
一些实施例中,第一钝化层3的厚度与补氧层4的厚度之比可以为10-40;第二钝化层5的厚度与补氧层4的厚度之比可以为20-40。
示例性的,补氧层4的厚度大于10nm。第一钝化层3的厚度为100nm-400nm。第二钝化层5的厚度为200nm-400nm。
本申请实施例还提供一种显示面板,该显示面板包括上述任一项的显示基板,还可以包括对向基板。
示例性的,上述显示面板可以为LCD,显示基板为阵列基板,对向基板为彩膜基板。
或者,上述显示面板也可以为OLED,显示基板为驱动背板,对向基板为玻璃盖板。
本申请实施例还提供一种显示装置,该显示装置包括上述显示面板。
具体的,上述显示装置可以应用于电视、显示器、平板电脑、智能手机等各种电子设备。
另外,基于本申请提供的显示基板,本申请还提供一种显示基板的制备方法,如图2所示,该方法包括以下步骤:
步骤101,如图3所示,在衬底基板1上制备薄膜晶体管2;
步骤102,如图3所示,在薄膜晶体管2上制备第一钝化层3;
步骤103,如图4所示,在第一钝化层3上制备补氧层4,补氧层4至少覆盖薄膜晶体管2的沟道区20,补氧层4中的氧含量大于第一钝化层3中的氧含量,补氧层4中氢、氮和水分子的含量分别小于第一钝化层3中氢、氮和水分子的含量。
一些实施例中,步骤101,在衬底基板上制备薄膜晶体管,具体可以包括:
如图3所示,在衬底基板1上依次制备栅极21、有源层22以及源极24和漏极23,以形成薄膜晶体管2。
一些实施例中,步骤102,在薄膜晶体管上制备第一钝化层,具体可以包括:
采用等离子体化学气相沉积(PECVD)工艺沉积氧化硅或者氮化硅膜层,PECVD功率密度小于0.25W/cm 2
采用300℃以上温度条件进行高温退火。
具体的,如图3所示,采用PECVD在较低的功率下进行第一钝化层3的膜层沉积,可以降低对TFT 2沟道区20的损伤及对源极24和漏极23膜层的氧化,同时制备形成的第一钝化层3膜层氧扩散性能也比较好,有利于补氧层4中的富余氧(exO)向TFT 2沟道区20的扩散。
另外,在第一钝化层3成膜完成后,采用300℃以上温度进行高温退火,在该高温条件下,第一钝化层3中的N、H、H 2O能够得以释放,可以使得膜层中的N、H、H 2O含量尽可能的少,但同时膜层中的富余氧(exO)也可能 被释放出去,因此需要设置补氧层4来对TFT 2沟道区20进行补氧。
一些实施例中,步骤103,在第一钝化层上制备补氧层,具体可以包括:
以半导体、金属、半导体氧化物或者金属氧化物为靶材,通入含氧量大于50%的气体,将成膜基板的温度控制在大于100℃,通过磁控溅射的方式制备形成氧化物膜层。
示例性的,靶材可以包括Si、Al、SiO x、AlO x等。制备形成的氧化物膜层的厚度可以大于10nm。
如图4所示,采用磁控溅射工艺进行富氧成膜,最终制备形成的补氧层4膜层中会含有大量的富余氧(exO)及非常少量的N、H、H 2O,并且在制备过程中会有部分富余氧(exO)在等离子体(Plasma)和温度的作用下进入到TFT 2的沟道区20,对TFT 2沟道区20进行补氧,从而降低沟道区20的Vo缺陷含量。
一些实施例中,步骤103之后,即在第一钝化层上制备补氧层之后,还可以包括:
如图5所示,采用PECVD工艺沉积氧化硅或者氮化硅膜层,以制备形成第二钝化层5,氧化硅或者氮化硅膜层的成膜温度条件大于300℃。
如图5所示,采用大于300℃高温条件进行第二钝化层5的成膜,可以促进补氧层4中的富余氧(exO)进一步扩散到TFT 2沟道区20中,从而进一步减少沟道区20的Vo缺陷含量,从而提高TFT 2性能稳定性。
示例性的,本申请实施例提供的显示基板的制备方法的整体流程大致可以包括:如图1所示,在衬底基板1上依次制作栅极(Gate)21、栅极绝缘层(GI)6、有源层(Active)22以及金属源极24和漏极(SD)23—制备第一钝化层3—制备补氧层4—制备第二钝化层5—制备像素电极7。
具体的,有源层可以采用氧化物半导体,例如氧化铟镓锌(IGZO);Gate电极材料可以选用Al、Cu、Au、Ag、Ti、Ta等常见的金属材质;为防止SD电极刻蚀液损伤氧化物半导体有源层,SD电极可以选用多层复合结构,例如可以为Mo/Cu/Mo、MoNb/Cu/MoNb等等。当然,上述材料仅是举例说明, 各层材料并不限于此,具体可以根据实际需要决定。
需要说明的是,本公开的一些实施例中,该显示基板的制备方法还可以包括更多的步骤,这可以根据实际需求而定,本公开的实施例对此不作限制,其详细说明和技术效果可以参考上文中关于显示基板和显示面板的描述,此处不再赘述。另外,本公开实施例提供的显示基板制备方法中,步骤101、102和103的具体工艺方法和制备过程并不限于上述实施例,也可以采用其他的工艺方式和步骤制备,具体可以参考上文中关于显示基板中对各层结构的描述,此处不再赘述。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种显示基板,包括:
    衬底基板;
    薄膜晶体管,位于所述衬底基板上;
    第一钝化层,位于所述薄膜晶体管背离所述衬底基板的一侧;
    补氧层,位于所述第一钝化层背离所述衬底基板的一侧,至少覆盖所述薄膜晶体管的沟道区,所述补氧层中的氧含量大于所述第一钝化层中的氧含量,所述补氧层中氢、氮和水分子的含量分别小于所述第一钝化层中氢、氮和水分子的含量。
  2. 如权利要求1所述的显示基板,其中,所述补氧层在所述衬底基板上的正投影图案与所述第一钝化层在所述衬底基板上的正投影图案相同或大致相同。
  3. 如权利要求1所述的显示基板,其中,所述补氧层的材料包括氧化铝。
  4. 如权利要求1所述的显示基板,其中,所述补氧层的材料包括氧化硅。
  5. 如权利要求4所述的显示基板,其中,所述第一钝化层的材料包括氧化硅,所述第一钝化层的折射率大于所述补氧层的折射率。
  6. 如权利要求1所述的显示基板,其中,还包括第二钝化层,位于所述补氧层背离所述衬底基板的一侧;所述补氧层中的氧含量大于所述第二钝化层中的氧含量,所述补氧层中氢、氮和水分子的含量分别小于所述第二钝化层中氢、氮和水分子的含量。
  7. 如权利要求6所述的显示基板,其中,所述补氧层的材料包括氧化硅;所述第二钝化层的材料包括氧化硅,所述第二钝化层的折射率大于所述补氧层的折射率。
  8. 如权利要求6所述的显示基板,其中,所述第一钝化层的氧扩散性 能优于所述第二钝化层。
  9. 如权利要求6-8任一项所述的显示基板,其中,所述第一钝化层的厚度与所述补氧层的厚度之比为10-40;所述第二钝化层的厚度与所述补氧层的厚度之比为20-40。
  10. 一种显示面板,包括如权利要求1-9任一项所述的显示基板。
  11. 一种显示基板的制备方法,包括以下步骤:
    在衬底基板上制备薄膜晶体管;
    在所述薄膜晶体管上制备第一钝化层;
    在所述第一钝化层上制备补氧层,所述补氧层至少覆盖所述薄膜晶体管的沟道区,所述补氧层中的氧含量大于所述第一钝化层中的氧含量,所述补氧层中氢、氮和水分子的含量分别小于所述第一钝化层中氢、氮和水分子的含量。
  12. 如权利要求11所述的制备方法,其中,在所述薄膜晶体管上制备第一钝化层,具体包括:
    采用PECVD工艺沉积氧化硅或者氮化硅膜层,PECVD功率密度小于0.25W/cm 2
    采用300℃以上温度条件进行高温退火。
  13. 如权利要求11所述的制备方法,其中,在所述第一钝化层上制备补氧层,具体包括:
    以半导体、金属、半导体氧化物或者金属氧化物为靶材,通入含氧量大于50%的气体,将成膜基板的温度控制在大于100℃,通过磁控溅射的方式制备形成氧化物膜层。
  14. 如权利要求13所述的制备方法,其中,所述靶材包括Si、Al、SiO x、AlO x
  15. 如权利要求11-14任一项所述的制备方法,其中,在所述第一钝化层上制备补氧层之后,还包括:
    采用PECVD工艺沉积氧化硅或者氮化硅膜层、以制备形成第二钝化层, 所述氧化硅或者氮化硅膜层的成膜温度条件大于300℃。
PCT/CN2020/079073 2020-03-12 2020-03-12 显示基板及其制备方法、显示面板 WO2021179271A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/079073 WO2021179271A1 (zh) 2020-03-12 2020-03-12 显示基板及其制备方法、显示面板
CN202080000260.2A CN113661574B (zh) 2020-03-12 2020-03-12 显示基板及其制备方法、显示面板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079073 WO2021179271A1 (zh) 2020-03-12 2020-03-12 显示基板及其制备方法、显示面板

Publications (1)

Publication Number Publication Date
WO2021179271A1 true WO2021179271A1 (zh) 2021-09-16

Family

ID=77671118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079073 WO2021179271A1 (zh) 2020-03-12 2020-03-12 显示基板及其制备方法、显示面板

Country Status (2)

Country Link
CN (1) CN113661574B (zh)
WO (1) WO2021179271A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640293A (zh) * 2009-11-27 2012-08-15 株式会社半导体能源研究所 半导体器件
CN103915346A (zh) * 2012-12-28 2014-07-09 业鑫科技顾问股份有限公司 薄膜晶体管及其制作方法与液晶显示面板
US20140306218A1 (en) * 2013-04-11 2014-10-16 Junichi Koezuka Display device and electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6500202B2 (ja) * 2014-12-08 2019-04-17 株式会社Joled 薄膜トランジスタ及び薄膜トランジスタの製造方法
KR20170027932A (ko) * 2015-09-02 2017-03-13 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
CN105448823A (zh) * 2015-12-28 2016-03-30 昆山龙腾光电有限公司 氧化物薄膜晶体管阵列基板及制作方法与液晶显示面板
CN107464850B (zh) * 2017-08-01 2020-05-15 上海天马微电子有限公司 一种薄膜晶体管及其制造方法、显示面板和显示装置
CN108550582B (zh) * 2018-05-09 2022-11-08 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640293A (zh) * 2009-11-27 2012-08-15 株式会社半导体能源研究所 半导体器件
CN103915346A (zh) * 2012-12-28 2014-07-09 业鑫科技顾问股份有限公司 薄膜晶体管及其制作方法与液晶显示面板
US20140306218A1 (en) * 2013-04-11 2014-10-16 Junichi Koezuka Display device and electronic device

Also Published As

Publication number Publication date
CN113661574B (zh) 2024-04-09
CN113661574A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
US9608127B2 (en) Amorphous oxide thin film transistor, method for manufacturing the same, and display panel
JP2024072846A (ja) 表示装置
US10615193B2 (en) Array substrate, method for manufacturing the same, display panel, and display device
EP2622632B1 (en) Method of making oxide thin film transistor array
JP6321356B2 (ja) 薄膜トランジスタ及びその製造方法、アレイ基板、ディスプレー装置
WO2018196087A1 (zh) 一种阵列基板、显示装置及其制作方法
US10658446B2 (en) Method for manufacturing OLED backplane comprising active layer formed of first, second, and third oxide semiconductor layers
US11217697B2 (en) Thin-film transistor and manufacturing method therefor, array substrate and display device
WO2018010214A1 (zh) 金属氧化物薄膜晶体管阵列基板的制作方法
WO2015043220A1 (zh) 薄膜晶体管及其制备方法、阵列基板和显示装置
JP2012182388A (ja) 薄膜トランジスタ及びその製造方法、表示装置
WO2018201560A1 (zh) 金属氧化物tft器件及其制作方法
US20210343753A1 (en) Display panel and display device
CN108364958A (zh) Tft基板及其制作方法与oled基板
US20160181290A1 (en) Thin film transistor and fabricating method thereof, and display device
US20180068855A1 (en) Method of Manufacturing Thin Film Transistor
WO2020047916A1 (zh) 有机发光二极管驱动背板制造方法
US9040988B2 (en) Thin film transistor and manufacturing method thereof, and array substrate
WO2018196289A1 (zh) 薄膜晶体管及其制备方法
CN105702622B (zh) 低温多晶硅tft基板的制作方法及低温多晶硅tft基板
WO2021179271A1 (zh) 显示基板及其制备方法、显示面板
WO2019100487A1 (zh) 背沟道蚀刻型tft基板及其制作方法
WO2014056252A1 (zh) 薄膜晶体管主动装置及其制作方法
US11217698B2 (en) Method of manufacturing a thin film transistor
US10580905B2 (en) Thin film transistor having etch stop multi-layer and method of preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924119

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20924119

Country of ref document: EP

Kind code of ref document: A1