WO2021176597A1 - 空気調和装置、及び空気調和装置の空気排出方法 - Google Patents

空気調和装置、及び空気調和装置の空気排出方法 Download PDF

Info

Publication number
WO2021176597A1
WO2021176597A1 PCT/JP2020/009167 JP2020009167W WO2021176597A1 WO 2021176597 A1 WO2021176597 A1 WO 2021176597A1 JP 2020009167 W JP2020009167 W JP 2020009167W WO 2021176597 A1 WO2021176597 A1 WO 2021176597A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
circulation circuit
operation mode
air
Prior art date
Application number
PCT/JP2020/009167
Other languages
English (en)
French (fr)
Inventor
和也 本田
直史 竹中
祐治 本村
仁隆 門脇
幸二 古谷
博紀 鷲山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022504843A priority Critical patent/JP7199594B2/ja
Priority to EP20923544.9A priority patent/EP4116638A4/en
Priority to US17/791,906 priority patent/US20220404061A1/en
Priority to PCT/JP2020/009167 priority patent/WO2021176597A1/ja
Publication of WO2021176597A1 publication Critical patent/WO2021176597A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger

Definitions

  • the present disclosure relates to an air conditioner including a refrigerant circulation circuit in which a refrigerant circulates and a heat medium circulation circuit in which a heat medium circulates. Further, the present disclosure relates to an air discharge method for discharging the air existing in the heat medium circulation circuit of the air conditioner configured as described above to the outside of the heat medium circulation circuit.
  • the direct expansion type air conditioner is equipped with a refrigerant circulation circuit in which the heat source side heat exchanger and the user side heat exchanger are connected by a pipe, and the refrigerant is transferred between the heat source side heat exchanger and the user side heat exchanger. Circulate.
  • the direct expansion type air conditioner when the refrigerant is filled in the refrigerant circulation circuit, the air in the refrigerant circulation circuit is discharged by evacuating the inside of the refrigerant circulation circuit before filling the refrigerant.
  • the indirect air conditioner includes a refrigerant circulation circuit in which a refrigerant circulates and a heat medium circulation circuit in which a heat medium circulates.
  • the heat medium is water, antifreeze, or the like, and is different from the refrigerant that circulates in the refrigerant circulation circuit.
  • the refrigerant circulation circuit includes a heat source side heat exchanger and generates cold heat and hot heat.
  • the cold heat and hot heat generated by the refrigerant circulation circuit are supplied to the heat medium of the heat medium circulation circuit via the intermediate heat exchanger.
  • the heat medium circulation circuit includes a user-side heat exchanger. Then, the cold heat and hot heat supplied from the refrigerant circulation circuit to the heat medium of the heat medium circulation circuit are used for air conditioning in the room by the user side heat exchanger.
  • an indirect air conditioner when a heat medium is filled in a heat medium circulation circuit, the filled heat medium pushes out the air in the heat medium circulation circuit.
  • air parcels may stay in the heat medium circulation circuit.
  • the heat medium circulation circuit for a long time, there arises a problem of accelerating the corrosion of the piping constituting the heat medium circulation circuit.
  • the pump that circulates the heat medium in the heat medium circulation circuit is damaged, and the life of the pump is shortened. Therefore, in the indirect air conditioner, it is preferable that the amount of air staying in the heat medium circulation circuit is as small as possible.
  • the air conditioner described in Patent Document 1 cannot discharge the air dissolved in the heat medium to the outside of the heat medium circulation circuit. Therefore, the air conditioner described in Patent Document 1 has a problem that the ability to discharge the air in the heat medium circulation circuit to the outside of the heat medium circulation circuit is not yet sufficient.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to obtain an air conditioner capable of discharging the air in the heat medium circulation circuit to the outside of the heat medium circulation circuit more than before. Further, the present disclosure has been made in order to solve the above-mentioned problems, and obtains an air discharge method for an air conditioner capable of discharging the air in the heat medium circulation circuit to the outside of the heat medium circulation circuit more than before. The purpose is.
  • the air exchanger has a first heat transfer section through which a refrigerant flows and a second heat transfer section through which a heat medium different from the refrigerant flows, and the first heat transfer section and the second heat transfer section.
  • a refrigerant circulation circuit having an intermediate heat exchanger for heat exchange with and a heat source side heat exchanger, the heat source side heat exchanger and the first heat transfer unit are connected by a pipe, and the refrigerant circulates inside.
  • a heat medium circulation circuit having a heat exchanger on the user side, the heat exchanger on the user side and the second heat transfer section are connected by a pipe, and the heat medium circulates inside, and the heat medium circulation circuit.
  • Air harmony which is provided in the above, has a discharge valve, and has a discharge mechanism for discharging air existing in the heat medium circulation circuit to the outside of the heat medium circulation circuit when the discharge valve is open.
  • the air discharge operation mode in which the air existing in the heat medium circulation circuit is discharged to the outside of the heat medium circulation circuit, the first operation mode and the second operation performed after the first operation mode are performed.
  • the refrigerant circulates in the refrigerant circulation circuit in a state where the heat source side heat exchanger functions as a radiator and the first heat transfer unit functions as an evaporator.
  • the heat source side heat exchanger functions as an evaporator. Then, in a state where the first heat transfer unit functions as a radiator, the refrigerant circulates in the refrigerant circulation circuit, and in a state where the discharge valve of the discharge mechanism is open, the heat medium circulates in the heat medium. This is an operation mode that circulates in the circuit.
  • the air discharge method of the air conditioner according to the present disclosure includes a first heat transfer section through which a refrigerant flows and a second heat transfer section through which a heat medium different from the refrigerant flows, and the first heat transfer section and the heat transfer section. It has an intermediate heat exchanger that exchanges heat with the second heat transfer section and a heat source side heat exchanger, and the heat source side heat exchanger and the first heat transfer section are connected by a pipe, and the inside is the refrigerant.
  • a heat medium circulation circuit that has a heat exchanger on the user side, the heat exchanger on the user side and the second heat transfer unit are connected by a pipe, and the heat medium circulates inside.
  • a discharge mechanism provided in the heat medium circulation circuit having a discharge valve, and discharging air existing in the heat medium circulation circuit to the outside of the heat medium circulation circuit when the discharge valve is open.
  • the air discharge method of the air conditioner including the above, wherein the air discharge method of the air conditioner is a method of discharging the air existing in the heat medium circulation circuit to the outside of the heat medium circulation circuit.
  • a first step and a second step performed after the first step are provided.
  • the heat source side heat exchanger functions as a radiator and the first heat transfer unit serves as an evaporator.
  • the second step is a step of circulating the refrigerant in the refrigerant circulation circuit in a functioning state and circulating the heat medium in the heat medium circulation circuit in a state where the discharge valve of the discharge mechanism is closed.
  • the heat source side heat exchanger functions as an evaporator and the first heat transfer unit functions as a radiator
  • the refrigerant is circulated in the refrigerant circulation circuit, and the discharge valve of the discharge mechanism is opened. This is a step of circulating the heat medium in the heat medium circulation circuit in this state.
  • the air conditioner according to the present disclosure can dissolve an air parcel in a heat medium circulation circuit in a heat medium in the first operation mode. Further, the air conditioner according to the present disclosure can discharge the air dissolved in the heat medium from the heat medium in the second operation mode, and discharge the air discharged from the heat medium from the heat medium circulation circuit. It can be discharged to the outside. Therefore, the air conditioner according to the present disclosure allows both the air mass in the heat medium circulation circuit and the air dissolved in the heat medium from the time of filling the heat medium circulation circuit to the outside of the heat medium circulation circuit. Can be discharged. Therefore, the air conditioner according to the present disclosure can discharge the air in the heat medium circulation circuit to the outside of the heat medium circulation circuit more than before.
  • the air parcel in the heat medium circulation circuit can be dissolved in the heat medium in the first step.
  • the air dissolved in the heat medium can be discharged from the heat medium, and the air discharged from the heat medium is heated from the discharge mechanism. It can be discharged to the outside of the medium circulation circuit. Therefore, in the air discharge method of the air conditioner according to the present disclosure, both the air mass in the heat medium circulation circuit and the air dissolved in the heat medium from the time of filling the heat medium circulation circuit are used as a heat medium. It can be discharged to the outside of the circulation circuit. Therefore, the air discharge method of the air conditioner according to the present disclosure can discharge the air in the heat medium circulation circuit to the outside of the heat medium circulation circuit more than before.
  • FIG. 1 It is a figure which schematically describes an example of the circuit structure of the air conditioner which concerns on Embodiment 1. It is a flowchart for demonstrating the air discharge operation mode of the air conditioner which concerns on Embodiment 1. It is a figure for demonstrating the determination method of the operation mode switching by the operation mode switching part of the control device included in the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which schematically describes an example of the circuit structure of the air conditioner which concerns on Embodiment 2. It is a figure which schematically describes an example of the circuit structure of the air conditioner which concerns on Embodiment 2. It is a figure which schematically describes an example of the circuit structure of the air conditioner which concerns on Embodiment 2. It is a figure which schematically describes an example of the circuit structure of the air conditioner which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a diagram schematically showing an example of a circuit configuration of an air conditioner according to the first embodiment.
  • the air conditioner 100 according to the first embodiment includes a heat source unit 1 and an indoor unit.
  • the heat source machine 1 is installed outside the room, for example.
  • the heat source machine 1 discharges the heat absorbed from the indoor air during the cooling operation to the outside of the room. Further, the heat source unit 1 supplies heat to the indoor unit during the heating operation.
  • the indoor unit supplies conditioned air to the room.
  • the air conditioner 100 includes an indoor unit 3a and an indoor unit 3b as indoor units.
  • the indoor unit 3a and the indoor unit 3b are connected in parallel to the heat source unit 1.
  • the number of indoor units included in the air conditioner 100 is not limited to two.
  • the air conditioner 100 may include one indoor unit or may include three or more indoor units.
  • the air conditioner 100 includes an intermediate heat exchanger 20, a refrigerant circulation circuit 110, and a heat medium circulation circuit 120.
  • the intermediate heat exchanger 20 has a first heat transfer section 21 through which a refrigerant flows, and a second heat transfer section 22 through which a heat medium different from the refrigerant flows. Further, the intermediate heat exchanger 20 exchanges heat between the first heat transfer unit 21 and the second heat transfer unit 22.
  • the heat medium is, for example, water, antifreeze, or the like.
  • the refrigerant circulation circuit 110 has a heat source side heat exchanger 13. Further, in the refrigerant circulation circuit 110, the heat source side heat exchanger 13 and the first heat transfer portion 21 of the intermediate heat exchanger 20 are connected by a pipe, and the refrigerant circulates inside.
  • the heat medium circulation circuit 120 has a user-side heat exchanger. Further, in the heat medium circulation circuit 120, the heat exchanger on the user side and the second heat transfer portion 22 of the intermediate heat exchanger 20 are connected by a pipe, and the heat medium circulates inside. As will be described later, the user-side heat exchanger is housed in the indoor unit. Further, as described above, the air conditioner 100 includes an indoor unit 3a and an indoor unit 3b as indoor units.
  • the user-side heat exchanger 31a housed in the indoor unit 3a and the user-side heat housed in the indoor unit 3b are used as the user-side heat exchangers. It is equipped with a exchanger 31b.
  • the user-side heat exchanger 31a and the user-side heat exchanger 31b are connected in parallel to the second heat transfer unit 22 of the intermediate heat exchanger 20.
  • the refrigerant circulation circuit 110 is configured as follows.
  • the refrigerant circulation circuit 110 includes a compressor 11, a flow path switching device 12, a heat source side heat exchanger 13, a throttle device 15, and an accumulator 19. Then, the compressor 11, the flow path switching device 12, the heat source side heat exchanger 13, the throttle device 15, the accumulator 19, and the first heat transfer section 21 of the intermediate heat exchanger 20 are connected by a pipe to form a refrigerant circulation circuit 110. Has been done.
  • the compressor 11 sucks in the refrigerant and compresses it to bring it into a high temperature and high pressure state.
  • the compressor 11 is, for example, an inverter compressor whose capacity can be controlled.
  • the compressor 11 may have a low-pressure shell structure or a high-pressure shell structure.
  • the compressor 11 having a low-pressure shell structure is a compressor 11 having a structure in which the inside of a closed container is filled with a low-pressure refrigerant and the low-pressure refrigerant in the closed container is sucked and compressed.
  • the compressor 11 having a high-pressure shell structure is a compressor having a structure in which the compression mechanism section sucks low-pressure refrigerant from a pipe connected to the compression mechanism section and the inside of the closed container is filled with the refrigerant compressed by the compression mechanism section. It is 11.
  • the flow path switching device 12 switches between the refrigerant flow path in the cooling operation and the refrigerant flow path in the heating operation. Specifically, during the cooling operation, the flow path switching device 12 is connected to the discharge port of the compressor 11 and the heat exchanger 13 on the heat source side as shown by the broken line in FIG. 1, and the suction port of the compressor 11 and the intermediate heat. It switches to a flow path to which the first heat transfer unit 21 of the exchanger 20 is connected. As a result, the heat source side heat exchanger 13 functions as a radiator, and the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as an evaporator.
  • the radiator When the refrigerant circulating in the refrigerant circulation circuit 110 is a refrigerant that condenses in the radiator, the radiator may be referred to as a condenser.
  • the discharge port of the compressor 11 and the first heat transfer unit 21 of the intermediate heat exchanger 20 are connected, and the compressor 11 is connected. It switches to a flow path to which the suction port and the heat source side heat exchanger 13 are connected.
  • the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as a radiator
  • the heat source side heat exchanger 13 functions as an evaporator.
  • the flow path switching device 12 is composed of a four-way valve or the like, but the flow path switching device 12 may be composed of a two-way valve or the like.
  • a fan 14 that supplies outdoor air to the heat source side heat exchanger 13 is arranged in the vicinity of the heat source side heat exchanger 13.
  • the refrigerant flowing through the heat source side heat exchanger 13 exchanges heat with the outdoor air supplied from the fan 14.
  • the throttle device 15 is provided between the heat source side heat exchanger 13 and the first heat transfer section 21 of the intermediate heat exchanger 20, and decompresses and expands the refrigerant flowing out of the radiator.
  • the accumulator 19 is provided between the suction port of the compressor 11 and the evaporator. The accumulator 19 stores excess refrigerant.
  • the surplus refrigerant is generated, for example, by the difference between the amount of refrigerant that circulates in the refrigerant circulation circuit 110 during the cooling operation and the amount of refrigerant that circulates in the refrigerant circulation circuit 110 during the heating operation. Further, for example, the surplus refrigerant is also generated due to a transient change in the operating state during the cooling operation and the heating operation.
  • the excess refrigerant stored in the accumulator 19 has a low pressure.
  • the refrigerant circulation circuit 110 may be provided with a receiver for storing high-pressure surplus refrigerant.
  • the heat medium circulation circuit 120 is configured as follows.
  • the heat medium circulation circuit 120 includes a pump 23, a user-side heat exchanger 31a, a user-side heat exchanger 31b, a flow rate adjusting valve 32a, and a flow rate adjusting valve 32b. Then, the pump 23, the user side heat exchanger 31a, the user side heat exchanger 31b, the flow rate adjusting valve 32a, the flow rate adjusting valve 32b, and the second heat transfer section 22 of the intermediate heat exchanger 20 are connected by a pipe to circulate the heat medium.
  • the circuit 120 is configured.
  • the pump 23 circulates the heat medium in the heat medium circulation circuit 120. That is, the pump 23 sucks and pressurizes the heat medium in the heat medium circulation circuit 120, and discharges the pressurized heat medium.
  • the pump 23 has a configuration in which the flow rate of the heat medium to be discharged can be changed by changing the drive frequency within a certain range, for example.
  • the pump 23 is provided on the inflow side of the heat medium of the intermediate heat exchanger 20. Specifically, a pipe 125 is connected to the inflow port of the heat medium in the second heat transfer section 22 of the intermediate heat exchanger 20.
  • the pump 23 is provided in the pipe 125. That is, in the first embodiment, the heat medium discharged from the pump 23 flows into the second heat transfer section 22 of the intermediate heat exchanger 20.
  • the user-side heat exchanger 31a and the user-side heat exchanger 31b generate conditioned air to be supplied to the room.
  • the inflow port of the heat medium in the heat exchanger 31a on the utilization side is connected to the outflow port of the heat medium in the second heat transfer section 22 of the intermediate heat exchanger 20 via the pipe 121, the pipe 122 and the pipe 123a.
  • the pipe 121 is a pipe that constitutes a portion of the pipe that connects the inflow port of the heat medium in the heat exchanger 31a on the utilization side and the outflow port of the heat medium in the second heat transfer unit 22 and is housed in the heat source machine 1.
  • the pipe 122 is arranged outside the heat source unit 1 and the indoor unit 3a among the pipes connecting the inflow port of the heat medium in the heat exchanger 31a on the utilization side and the outflow port of the heat medium in the second heat transfer unit 22.
  • the pipe 121 and the pipe 122 are connected by a joint provided in the heat source machine 1.
  • the pipe 123a is a pipe that constitutes a portion of the pipe that connects the inflow port of the heat medium in the heat exchanger 31a on the utilization side and the outflow port of the heat medium in the second heat transfer unit 22 and is housed in the indoor unit 3a. Is.
  • the pipe 123a and the pipe 122 are connected by a joint provided in the indoor unit 3a.
  • the outlet of the heat medium in the heat exchanger 31a on the utilization side is connected to the inlet of the heat medium in the second heat transfer section 22 of the intermediate heat exchanger 20 via the pipe 125, the pipe 126 and the pipe 127a.
  • the pipe 125 is a pipe that constitutes a portion of the pipe that connects the outlet of the heat medium in the heat exchanger 31a on the utilization side and the inlet of the heat medium in the second heat transfer unit 22 and is housed in the heat source machine 1.
  • the pipe 126 is arranged outside the heat source unit 1 and the indoor unit 3a among the pipes connecting the outlet of the heat medium in the heat exchanger 31a on the utilization side and the inflow of the heat medium in the second heat transfer unit 22.
  • the pipe 125 and the pipe 126 are connected by a joint provided in the heat source machine 1.
  • the pipe 127a is a pipe that constitutes a portion of the pipe that connects the outlet of the heat medium in the heat exchanger 31a on the utilization side and the inlet of the heat medium in the second heat transfer unit 22 and is housed in the indoor unit 3a. Is.
  • the pipe 127a and the pipe 126 are connected by a joint provided in the indoor unit 3a.
  • a fan 33a that supplies indoor air to the user-side heat exchanger 31a is arranged.
  • the refrigerant cooled by the second heat transfer unit 22 of the intermediate heat exchanger 20 flows into the user side heat exchanger 31a through the pipe 121, the pipe 122, and the pipe 123a.
  • the indoor air supplied from the fan 33a is cooled by the heat medium flowing through the utilization side heat exchanger 31a when passing through the utilization side heat exchanger 31a to become conditioned air, which flows out from the utilization side heat exchanger 31a to the room. Will return to.
  • the heat medium heated by the indoor air when flowing through the utilization side heat exchanger 31a returns to the second heat transfer section 22 of the intermediate heat exchanger 20 through the pipe 127a, the pipe 126 and the pipe 125. Become.
  • the refrigerant heated by the second heat transfer unit 22 of the intermediate heat exchanger 20 flows into the user side heat exchanger 31a through the pipe 121, the pipe 122 and the pipe 123a.
  • the indoor air supplied from the fan 33a is heated by the heat medium flowing through the utilization side heat exchanger 31a when passing through the utilization side heat exchanger 31a to become conditioned air, and flows out from the utilization side heat exchanger 31a to the room. Will return to.
  • the heat medium cooled by the indoor air when flowing through the utilization side heat exchanger 31a returns to the second heat transfer section 22 of the intermediate heat exchanger 20 through the pipe 127a, the pipe 126 and the pipe 125. Become.
  • the inflow port of the heat medium in the heat exchanger 31b on the utilization side is connected to the outflow port of the heat medium in the second heat transfer section 22 of the intermediate heat exchanger 20 via the pipe 121, the pipe 122 and the pipe 123b.
  • the pipe 123b is a pipe that constitutes a portion of the pipe that connects the inflow port of the heat medium in the heat exchanger 31b on the utilization side and the outflow port of the heat medium in the second heat transfer unit 22 and is housed in the indoor unit 3b. Is.
  • the pipe 123b and the pipe 122 are connected by a joint provided in the indoor unit 3b. Further, the pipe 123b and the pipe 123a are connected in parallel to the pipe 122.
  • the outlet of the heat medium in the heat exchanger 31b on the utilization side is connected to the inlet of the heat medium in the second heat transfer section 22 of the intermediate heat exchanger 20 via the pipe 125, the pipe 126 and the pipe 127b.
  • the pipe 127b is a pipe that constitutes a portion of the pipe that connects the heat medium outlet of the user-side heat exchanger 31b and the heat medium inlet of the second heat transfer unit 22 and is housed in the indoor unit 3b. Is.
  • the pipe 127b and the pipe 126 are connected by a joint provided in the indoor unit 3b. Further, the pipe 127b and the pipe 127a are connected in parallel to the pipe 126.
  • a fan 33b that supplies indoor air to the user-side heat exchanger 31b is arranged.
  • the refrigerant cooled by the second heat transfer unit 22 of the intermediate heat exchanger 20 flows into the user side heat exchanger 31b through the pipe 121, the pipe 122 and the pipe 123b.
  • the indoor air supplied from the fan 33b is cooled by the heat medium flowing through the utilization side heat exchanger 31b when passing through the utilization side heat exchanger 31b to become conditioned air, and flows out from the utilization side heat exchanger 31b to the room. Will return to.
  • the heat medium heated by the indoor air when flowing through the user side heat exchanger 31b returns to the second heat transfer section 22 of the intermediate heat exchanger 20 through the pipe 127b, the pipe 126 and the pipe 125. Become.
  • the refrigerant heated by the second heat transfer unit 22 of the intermediate heat exchanger 20 flows into the user side heat exchanger 31b through the pipe 121, the pipe 122 and the pipe 123b.
  • the indoor air supplied from the fan 33b is heated by the heat medium flowing through the utilization side heat exchanger 31b when passing through the utilization side heat exchanger 31b to become conditioned air, and flows out from the utilization side heat exchanger 31b to the room. Will return to.
  • the heat medium cooled by the indoor air when flowing through the utilization side heat exchanger 31b returns to the second heat transfer section 22 of the intermediate heat exchanger 20 through the pipe 127b, the pipe 126 and the pipe 125. Become.
  • the flow rate adjusting valve 32a adjusts the amount of the heat medium flowing through the user side heat exchanger 31a.
  • the flow rate adjusting valve 32a is, for example, a two-way valve capable of adjusting the opening degree of the valve.
  • the flow rate adjusting valve 32a is provided in the pipe 123a connected to the inflow port of the heat medium of the user side heat exchanger 31a.
  • the flow rate adjusting valve 32a may be provided in the pipe 127a connected to the outlet of the heat medium of the heat exchanger 31a on the utilization side.
  • the flow rate adjusting valve 32b adjusts the amount of the heat medium flowing through the utilization side heat exchanger 31b.
  • the flow rate adjusting valve 32b is, for example, a two-way valve capable of adjusting the opening degree of the valve.
  • the flow rate adjusting valve 32b is provided in the pipe 123b connected to the inflow port of the heat medium of the user side heat exchanger 31b.
  • the flow rate adjusting valve 32a may be provided in the pipe 127b connected to the outlet of the heat medium of the heat exchanger 31b on the utilization side.
  • the set of the user side heat exchanger 31a and the flow rate adjusting valve 32a and the set of the using side heat exchanger 31b and the flow rate adjusting valve 32b circulate the heat medium. They are connected in parallel in the circuit 120.
  • the air conditioner 100 includes a plurality of sets of a heat exchanger on the user side and a flow rate adjusting valve for adjusting the amount of the heat medium flowing through the heat exchanger on the user side. Then, these sets are connected in parallel in the heat medium circulation circuit 120.
  • the air conditioner 100 includes a supply mechanism 60 and a discharge mechanism 65.
  • the supply mechanism 60 is provided in the heat medium circulation circuit 120, and is used when the heat medium circulation circuit 120 is filled with the heat medium, such as when the air conditioner 100 is installed.
  • the supply mechanism 60 includes a supply pipe 61 and a supply valve 62.
  • the supply pipe 61 is connected to the heat medium circulation circuit 120.
  • the supply pipe 61 is connected to the heat medium supply source when the heat medium circulation circuit 120 is filled with the heat medium.
  • the supply pipe 61 is connected to the water supply.
  • the supply valve 62 is provided in the supply pipe 61 and is an on-off valve or the like capable of opening and closing the flow path in the supply pipe 61.
  • the supply valve 62 when the supply valve 62 is opened, the heat medium is filled in the heat medium circulation circuit 120 through the supply pipe 61. Further, by closing the supply valve 62, the filling of the heat medium circulation circuit 120 with the heat medium is completed.
  • the pipe 125 is connected to the inflow port of the heat medium in the second heat transfer section 22 of the intermediate heat exchanger 20.
  • the supply mechanism 60 is provided in the pipe 125. More specifically, in the first embodiment, the supply mechanism 60 is provided at a position on the pipe 125 on the suction side of the pump 23.
  • the discharge mechanism 65 is provided in the heat medium circulation circuit 120, and discharges the air existing in the heat medium circulation circuit 120 to the outside of the heat medium circulation circuit 120.
  • the discharge mechanism 65 includes a discharge pipe 66 and a discharge valve 67.
  • the discharge pipe 66 is connected to the heat medium circulation circuit 120.
  • the discharge valve 67 is provided in the discharge pipe 66, and is a valve capable of discharging the air that has flowed into the discharge pipe 66 from the heat medium circulation circuit 120. That is, when the discharge valve 67 opens, the air existing in the heat medium circulation circuit 120 is discharged to the outside of the heat medium circulation circuit 120 through the discharge pipe 66. Further, by closing the discharge valve 67, the discharge of air from the heat medium circulation circuit 120 is completed.
  • the discharge mechanism 65 discharges the air existing in the heat medium circulation circuit 120 to the outside of the heat medium circulation circuit 120 when the discharge valve 67 is open.
  • the pipe 121 is connected to the outlet of the heat medium in the second heat transfer section 22 of the intermediate heat exchanger 20.
  • the discharge mechanism 65 is provided in the pipe 121.
  • the components of the air conditioner 100 described above are housed in the heat source unit 1, the indoor unit 3a, or the indoor unit 3b.
  • the heat source machine 1 houses the components of the refrigerant circulation circuit 110.
  • the heat source machine 1 includes a compressor 11, a flow path switching device 12, a heat source side heat exchanger 13, a throttle device 15, and an accumulator 19.
  • the heat source machine 1 includes a fan 14, an intermediate heat exchanger 20, a supply mechanism 60, and a discharge mechanism 65.
  • the heat source machine 1 includes a pump 23 in the configuration of the heat medium circulation circuit 120. Further, among the configurations of the heat medium circulation circuit 120, the components other than the pump 23 are housed in the indoor unit 3a or the indoor unit 3b.
  • the indoor unit 3a includes a heat exchanger 31a on the user side and a flow rate adjusting valve 32a.
  • the indoor unit 3b houses a heat exchanger 31b on the user side and a flow rate adjusting valve 32b.
  • a fan 33a is housed in the indoor unit 3a, and a fan 33b is housed in the indoor unit 3b.
  • the air conditioner 100 includes various sensors and a control device 50 that controls the components of the air conditioner 100 based on the detected values of these sensors.
  • the air conditioner 100 includes a first temperature sensor 24, a second temperature sensor 25, a temperature sensor 41, a temperature sensor 42, a temperature sensor 43, a temperature sensor 44, a temperature sensor 45, a pressure sensor 46, and a heat source device 1.
  • a pressure sensor 47 is provided.
  • the first temperature sensor 24 is composed of, for example, a thermistor or the like, and detects the temperature of the heat medium flowing into the second heat transfer unit 22 of the intermediate heat exchanger 20.
  • the second temperature sensor 25 is composed of, for example, a thermistor or the like, and detects the temperature of the heat medium flowing out from the second heat transfer unit 22 of the intermediate heat exchanger 20.
  • the temperature sensor 41 is composed of, for example, a thermistor or the like, and detects the temperature of the refrigerant discharged from the compressor 11.
  • the temperature sensor 42 is composed of, for example, a thermistor or the like, and detects the temperature of the refrigerant sucked into the compressor 11.
  • the temperature sensor 43 is composed of, for example, a thermistor or the like, and detects the temperature of the outdoor air supplied to the heat source side heat exchanger 13.
  • the temperature sensor 44 is composed of, for example, a thermistor or the like.
  • the temperature sensor 44 detects the temperature of the refrigerant flowing out from the first heat transfer unit 21 of the intermediate heat exchanger 20 during the cooling operation. Further, the temperature sensor 44 detects the temperature of the refrigerant flowing into the first heat transfer unit 21 of the intermediate heat exchanger 20 during the heating operation.
  • the temperature sensor 45 is composed of, for example, a thermistor or the like.
  • the temperature sensor 45 detects the temperature of the refrigerant flowing into the first heat transfer unit 21 of the intermediate heat exchanger 20 during the cooling operation. Further, the temperature sensor 45 detects the temperature of the refrigerant flowing out from the first heat transfer unit 21 of the intermediate heat exchanger 20 during the heating operation.
  • the pressure sensor 46 detects the pressure of the refrigerant discharged from the compressor 11.
  • the pressure sensor 47 detects the pressure of the refrigerant sucked into the compressor 11.
  • the air conditioner 100 includes a temperature sensor 34a and a temperature sensor 35a in the indoor unit 3a.
  • the temperature sensor 34a is composed of, for example, a thermistor or the like, and detects the temperature of the heat medium flowing into the heat exchanger 31a on the user side.
  • the temperature sensor 35a is composed of, for example, a thermistor or the like, and detects the temperature of the heat medium flowing out from the user-side heat exchanger 31a.
  • the air conditioner 100 includes a temperature sensor 34b and a temperature sensor 35b in the indoor unit 3b.
  • the temperature sensor 34b is composed of, for example, a thermistor or the like, and detects the temperature of the heat medium flowing into the heat exchanger 31b on the user side.
  • the temperature sensor 35b is composed of, for example, a thermistor or the like, and detects the temperature of the heat medium flowing out from the heat exchanger 31b on the user side.
  • the control device 50 starts and stops the compressor 11, the drive frequency of the compressor 11, the flow path of the flow path switching device 12, and the fan based on the detection values of various sensors provided in the air conditioner 100.
  • And the opening degree of the discharge valve 67 are controlled.
  • the control device 50 is composed of dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory.
  • the CPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
  • control device 50 When the control device 50 is dedicated hardware, the control device 50 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each of the functional units realized by the control device 50 may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • each function executed by the control device 50 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory.
  • the CPU realizes each function of the control device 50 by reading and executing the program stored in the memory.
  • the memory is a non-volatile or volatile semiconductor memory such as, for example, RAM, ROM, flash memory, EPROM, or EEPROM.
  • control device 50 may be realized by dedicated hardware, and some may be realized by software or firmware. Further, in the first embodiment, the control device 50 is housed in the heat source machine 1, but the control device 50 may be housed in the indoor unit 3a or the indoor unit 3b. Further, the control device 50 may be divided and accommodated in at least two of the heat source unit 1, the indoor unit 3a and the indoor unit 3b.
  • the control device 50 includes an input unit 51, a receiving unit 52, a control unit 53, and an operation mode switching unit 54 as functional units.
  • the input unit 51 is a functional unit into which commands from a remote controller or the like (not shown) are input.
  • the operation mode required for the air conditioner 100 is input to the input unit 51 from a remote controller or the like (not shown).
  • the air conditioner 100 according to the first embodiment includes a cooling operation mode, a heating operation mode, and an air discharge operation mode, as will be described later. Further, the air conditioner 100 according to the first embodiment includes a first operation mode and a second operation mode performed after the first operation mode in the air discharge operation mode, as described later. ..
  • the receiving unit 52 is a functional unit that receives the detected values of various sensors provided in the air conditioner 100.
  • the control unit 53 starts and stops the compressor 11, the drive frequency of the compressor 11, and the flow rate based on the detection values of various sensors provided in the air conditioner 100 and the command input to the input unit 51.
  • the operation mode switching unit 54 is a functional unit that determines whether or not to switch from the first operation mode to the second operation mode in the operation of the air conditioner 100 in the air discharge operation mode. That is, the control device 50 according to the first embodiment can be said to be a control device capable of switching from the first operation mode to the second operation mode in the air discharge operation mode.
  • the cooling operation mode is an operation mode in which at least one of the indoor unit 3a and the indoor unit 3b cools the room. That is, the cooling operation mode is an operation mode in which the air conditioner 100 performs the cooling operation.
  • the cooling operation mode is an operation mode in which the air conditioner 100 performs the cooling operation.
  • the compressor 11 sucks in a low-temperature low-pressure gas refrigerant, compresses it, and discharges it as a high-temperature, high-pressure gas refrigerant.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source-side heat exchanger 13 that functions as a radiator through the flow path switching device 12.
  • the high-temperature, high-pressure gas refrigerant that has flowed into the heat source-side heat exchanger 13 is cooled by the outdoor air supplied from the fan 14, becomes a medium-temperature, high-pressure liquid refrigerant, and flows out of the heat source-side heat exchanger 13.
  • the refrigerant flowing out of the heat source side heat exchanger 13 may be a medium-temperature, high-pressure gas-liquid two-phase refrigerant.
  • the medium-temperature and high-pressure refrigerant flowing out of the heat source side heat exchanger 13 flows into the drawing device 15.
  • the medium-temperature, high-pressure refrigerant that has flowed into the drawing device 15 is decompressed by the drawing device 15, becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant, and flows out of the drawing device 15.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing out of the drawing device 15 flows into the first heat transfer section 21 of the intermediate heat exchanger 20 that functions as an evaporator.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the first heat transfer section 21 of the intermediate heat exchanger 20 is heated by the heat medium flowing through the second heat transfer section 22 of the intermediate heat exchanger 20, and is heated at a low temperature and low pressure.
  • the refrigerant flowing out from the first heat transfer unit 21 of the intermediate heat exchanger 20 may be a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature, low-pressure refrigerant flowing out of the first heat transfer unit 21 of the intermediate heat exchanger 20 flows into the accumulator 19 through the flow path switching device 12.
  • the low-temperature, low-pressure gas refrigerant is sucked into the compressor 11 again.
  • the heat medium discharged from the pump 23 flows into the second heat transfer section 22 of the intermediate heat exchanger 20.
  • the heat medium that has flowed into the second heat transfer section 22 of the intermediate heat exchanger 20 is cooled by the refrigerant flowing through the first heat transfer section 21 of the intermediate heat exchanger 20, and is cooled by the second heat transfer section 22 of the intermediate heat exchanger 20.
  • the heat medium flowing out from the second heat transfer section 22 of the intermediate heat exchanger 20 flows into the pipe 122 through the pipe 121.
  • a part of the heat medium that has flowed into the pipe 122 flows into the heat exchanger 31a on the utilization side through the pipe 123a and the flow rate adjusting valve 32a.
  • the remaining part of the heat medium that has flowed into the pipe 122 flows into the heat exchanger 31b on the utilization side through the pipe 123b and the flow rate adjusting valve 32b.
  • the heat medium that has flowed into the user-side heat exchanger 31a is heated when cooling the indoor air supplied from the fan 33a, and flows out of the user-side heat exchanger 31a.
  • the heat medium flowing out of the user-side heat exchanger 31a flows into the pipe 126 through the pipe 127a.
  • the heat medium that has flowed into the user-side heat exchanger 31b is heated when cooling the indoor air supplied from the fan 33b, and flows out of the user-side heat exchanger 31b.
  • the heat medium flowing out from the user-side heat exchanger 31b flows into the pipe 126 through the pipe 127b, and joins the heat medium flowing into the pipe 126 from the user-side heat exchanger 31a.
  • the heat medium that has flowed into the pipe 126 passes through the pipe 125 and is sucked into the pump 23 again.
  • the low temperature refrigerant flows into the first heat transfer section 21 of the intermediate heat exchanger 20.
  • the control unit 53 of the control device 50 performs control to prevent freezing of the heat medium based on the detection temperature of the first temperature sensor 24 and the detection temperature of the second temperature sensor 25.
  • the control unit 53 sets the drive frequency of the compressor 11. The temperature is lowered to raise the temperature of the refrigerant flowing into the first heat transfer section 21 of the intermediate heat exchanger 20.
  • the heating operation mode is an operation mode in which at least one of the indoor unit 3a and the indoor unit 3b heats the room. That is, the heating operation mode is an operation mode in which the air conditioner 100 performs the heating operation.
  • the heating operation mode is an operation mode in which the air conditioner 100 performs the heating operation.
  • the compressor 11 sucks in a low-temperature low-pressure gas refrigerant, compresses it, and discharges it as a high-temperature, high-pressure gas refrigerant.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 11 passes through the flow path switching device 12 and flows into the first heat transfer section 21 of the intermediate heat exchanger 20 that functions as a radiator.
  • the high-temperature, high-pressure gas refrigerant that has flowed into the first heat transfer section 21 of the intermediate heat exchanger 20 is cooled by the heat medium flowing through the second heat transfer section 22 of the intermediate heat exchanger 20, and becomes a medium-temperature, high-pressure liquid refrigerant. Then, it flows out from the first heat transfer section 21 of the intermediate heat exchanger 20.
  • the medium-temperature, high-pressure liquid refrigerant flowing out of the first heat transfer section 21 of the intermediate heat exchanger 20 flows into the drawing device 15.
  • the medium-temperature, high-pressure liquid refrigerant that has flowed into the drawing device 15 is depressurized by the drawing device 15, becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant, and flows out of the drawing device 15.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing out of the drawing device 15 flows into the heat source-side heat exchanger 13 that functions as an evaporator.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the heat source-side heat exchanger 13 is heated by the outdoor air supplied from the fan 14, becomes a low-temperature, low-pressure gas refrigerant, and flows out of the heat source-side heat exchanger 13. .
  • the refrigerant flowing out of the heat source side heat exchanger 13 may be a gas-liquid two-phase refrigerant having a low temperature and a low pressure.
  • the low-temperature, low-pressure refrigerant flowing out of the heat source-side heat exchanger 13 flows into the accumulator 19 through the flow path switching device 12.
  • the low-temperature, low-pressure gas refrigerant is sucked into the compressor 11 again.
  • the heat medium discharged from the pump 23 flows into the second heat transfer section 22 of the intermediate heat exchanger 20.
  • the heat medium that has flowed into the second heat transfer section 22 of the intermediate heat exchanger 20 is heated by the refrigerant flowing through the first heat transfer section 21 of the intermediate heat exchanger 20, and is heated by the second heat transfer section 22 of the intermediate heat exchanger 20.
  • the heat medium flowing out from the second heat transfer section 22 of the intermediate heat exchanger 20 flows into the pipe 122 through the pipe 121.
  • a part of the heat medium that has flowed into the pipe 122 flows into the heat exchanger 31a on the utilization side through the pipe 123a and the flow rate adjusting valve 32a.
  • the remaining part of the heat medium that has flowed into the pipe 122 flows into the heat exchanger 31b on the utilization side through the pipe 123b and the flow rate adjusting valve 32b.
  • the heat medium that has flowed into the user-side heat exchanger 31a is cooled when the indoor air supplied from the fan 33a is heated, and flows out of the user-side heat exchanger 31a.
  • the heat medium flowing out of the user-side heat exchanger 31a flows into the pipe 126 through the pipe 127a.
  • the heat medium that has flowed into the user-side heat exchanger 31b is cooled when the indoor air supplied from the fan 33b is heated, and flows out of the user-side heat exchanger 31b.
  • the heat medium flowing out from the user-side heat exchanger 31b flows into the pipe 126 through the pipe 127b, and joins the heat medium flowing into the pipe 126 from the user-side heat exchanger 31a.
  • the heat medium that has flowed into the pipe 126 passes through the pipe 125 and is sucked into the pump 23 again.
  • the air discharge operation mode is an operation mode in which the air existing in the heat medium circulation circuit 120 is discharged to the outside of the heat medium circulation circuit 120.
  • the air conditioner 100 includes a first operation mode and a second operation mode performed after the first operation mode in the air discharge operation mode.
  • the first operation mode is an operation mode in which the first step described later is performed.
  • the second operation mode is an operation mode in which the second step described later is performed.
  • FIG. 2 is a flowchart for explaining an air discharge operation mode of the air conditioner according to the first embodiment. That is, FIG. 2 is a flowchart showing the operation of the air conditioner 100 according to the first embodiment in the air discharge operation mode.
  • the control device 50 of the air conditioner 100 performs the first step in step S1. In other words, the control device 50 sets the operation mode of the air conditioner 100 as the first operation mode.
  • the first step is a step of circulating the refrigerant in the refrigerant circulation circuit 110 in a state where the heat source side heat exchanger 13 functions as a radiator and the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as an evaporator. be.
  • the first step is a step of circulating the heat medium in the heat medium circulation circuit 120 with the discharge valve of the discharge mechanism 65 closed.
  • the refrigerant operates the refrigerant circulation circuit 110 in a state where the heat source side heat exchanger 13 functions as a radiator and the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as an evaporator. It is a circulating operation mode.
  • the first operation mode is an operation mode in which the heat medium circulates in the heat medium circulation circuit 120 with the discharge valve 67 of the discharge mechanism 65 closed.
  • the operation of the air conditioner 100 in the first operation mode is basically the same as the operation of the air conditioner 100 in the cooling operation mode.
  • the control unit 53 of the control device 50 switches the flow path of the flow path switching device 12 to the same flow path as during the cooling operation. Further, the control unit 53 opens the flow rate adjusting valve 32a and the flow rate adjusting valve 32b. In this state, the control unit 53 starts the compressor 11, the fan 14, and the pump 23. Further, the control unit 53 controls the opening degree of the throttle device 15 to reduce the pressure of the refrigerant flowing out of the heat source side heat exchanger 13 and expand it.
  • the heat medium flowing through the second heat transfer section 22 of the intermediate heat exchanger 20 is cooled by the refrigerant flowing through the first heat transfer section 21 of the intermediate heat exchanger 20. Then, in the heat medium circulation circuit 120, the cooled heat medium circulates.
  • the lower the temperature of the heat medium the greater the amount of air dissolved in the heat medium. Therefore, by circulating the heat medium cooled in this way in the heat medium circulation circuit 120, the air parcel in the heat medium circulation circuit 120 can be dissolved in the heat medium.
  • the control unit 53 stops the fan 33a and the fan 33b. As a result, the speed at which the air parcel in the heat medium circulation circuit 120 is dissolved in the heat medium is improved, and the air parcel in the heat medium circulation circuit 120 can be efficiently dissolved in the heat medium.
  • the opening degree of the supply valve 62 of the supply mechanism 60 in the first operation mode is arbitrary.
  • the first step when the first step is performed in a state where the heat medium circulation circuit 120 is not completely filled with the heat medium, the first step may be performed in a state where the supply valve 62 of the supply mechanism 60 is opened. Further, for example, when the first step is performed in a state where the heat medium circulation circuit 120 is completely filled with the heat medium, the first step may be performed in a state where the supply valve 62 of the supply mechanism 60 is closed.
  • Step S2 is a step of determining whether or not to switch from the first step to the second step. That is, in step S2, the operation mode switching unit 54 of the control device 50 determines whether or not to switch from the first operation mode to the second operation mode. The operation mode switching unit 54 returns to step S1 until the air mass in the heat medium circulation circuit 120 is considered to have been completely dissolved in the heat medium. As a result, the first step is continued. In other words, the first operation mode is maintained. On the other hand, the operation mode switching unit 54 proceeds to step S3 when it is considered that the dissolution of the air parcel in the heat medium circulation circuit 120 into the heat medium is completed. That is, the operation mode switching unit 54 determines that the first operation mode is switched to the second operation mode.
  • FIG. 3 is a diagram for explaining a method of determining operation mode switching by the operation mode switching unit of the control device included in the air conditioner according to the first embodiment.
  • the horizontal axis of FIG. 3 shows the operating time of the air conditioner 100 in the first operation mode.
  • ⁇ T on the vertical axis of FIG. 3 is a temperature difference obtained by subtracting the detection temperature of the second temperature sensor 25 from the detection temperature of the first temperature sensor 24. That is, ⁇ T is a temperature difference obtained by subtracting the temperature of the heat medium flowing out from the second heat transfer section 22 of the intermediate heat exchanger 20 from the temperature of the heat medium flowing into the second heat transfer section 22 of the intermediate heat exchanger 20. Is.
  • the heat medium is not cooled in the second heat transfer section 22 of the intermediate heat exchanger 20, so ⁇ T is close to 0 ° C.
  • the heat medium is cooled in the second heat transfer unit 22 of the intermediate heat exchanger 20.
  • the temperature of the heat medium flowing out from the second heat transfer unit 22 of the intermediate heat exchanger 20 decreases, so that ⁇ T increases.
  • the fan 33a and the fan 33b are stopped so that the heat medium is not heated by the indoor air supplied from the fan 33a and the fan 33b.
  • the temperature of the heat medium flowing into the second heat transfer unit 22 of the intermediate heat exchanger 20 decreases.
  • the intermediate heat exchanger 20 becomes the first. 2
  • the temperature drop of the heat medium flowing out from the heat transfer unit 22 per unit time becomes small.
  • the operation mode switching unit 54 determines that the first operation mode is switched to the second operation mode after the ⁇ T is lowered and the change of the ⁇ T per unit time is within the specified temperature difference. In other words, the control device 50 switches from the first operation mode to the second operation mode after the ⁇ T decreases and the change of the ⁇ T per unit time is within the specified temperature difference.
  • step S3 after step S2, the second step is performed.
  • the control device 50 sets the operation mode of the air conditioner 100 as the second operation mode.
  • the second step is a step of circulating the refrigerant in the refrigerant circulation circuit 110 in a state where the heat source side heat exchanger 13 functions as an evaporator and the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as a radiator. be.
  • the second step is a step of circulating the heat medium in the heat medium circulation circuit 120 with the discharge valve 67 of the discharge mechanism 65 open.
  • the refrigerant operates the refrigerant circulation circuit 110 in a state where the heat source side heat exchanger 13 functions as an evaporator and the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as a radiator. It is a circulating operation mode.
  • the second operation mode is an operation mode in which the heat medium circulates in the heat medium circulation circuit 120 with the discharge valve 67 of the discharge mechanism 65 open.
  • the operation of the air conditioner 100 in the second operation mode is basically the same as the operation of the air conditioner 100 in the heating operation mode, except that the discharge valve 67 of the discharge mechanism 65 is open.
  • the control unit 53 of the control device 50 switches the flow path of the flow path switching device 12 to the same flow path as during the heating operation. Further, the control unit 53 opens the flow rate adjusting valve 32a and the flow rate adjusting valve 32b. In this state, the control unit 53 starts the compressor 11, the fan 14, and the pump 23. Further, the control unit 53 controls the opening degree of the throttle device 15 to depressurize and expand the refrigerant flowing out from the first heat transfer unit 21 of the intermediate heat exchanger 20.
  • the heat medium flowing through the second heat transfer section 22 of the intermediate heat exchanger 20 is heated by the refrigerant flowing through the first heat transfer section 21 of the intermediate heat exchanger 20.
  • the heat medium circulation circuit 120 the heated heat medium circulates.
  • the higher the temperature of the heat medium the lower the amount of air dissolved in the heat medium. Therefore, by circulating the heat medium heated in this way in the heat medium circulation circuit 120, the air dissolved in the heat medium can be discharged from the heat medium, and the air released from the heat medium is discharged. It can be discharged from the mechanism 65 to the outside of the heat medium circulation circuit 120.
  • both the air mass in the heat medium circulation circuit 120 and the air dissolved in the heat medium from the time of filling the heat medium circulation circuit 120 are combined. It can be discharged to the outside of the heat medium circulation circuit 120. Therefore, in the air discharge operation mode according to the first embodiment, the air in the heat medium circulation circuit 120 can be discharged to the outside of the heat medium circulation circuit 120 more than before.
  • the control unit 53 stops the fan 33a and the fan 33b. As a result, the speed at which the air dissolved in the heat medium is discharged from the heat medium is improved, and the operation time in the second operation mode can be reduced.
  • the opening degree of the supply valve 62 of the supply mechanism 60 in the second operation mode is arbitrary.
  • the second step may be performed with the supply valve 62 of the supply mechanism 60 closed.
  • the second step is performed with the supply valve 62 of the supply mechanism 60 opened and the heat medium circulation circuit 120 filled with the heat medium. Just do it.
  • Step S4 is a step of determining whether or not to end the second step.
  • the control device 50 determines that the second step is not completed until the specified time elapses from the start of the second step, and returns to step S3.
  • the control device 50 determines that the second step is completed when the specified time elapses after the second step is started. As a result, the operation of the air conditioner 100 in the air discharge operation mode is completed.
  • the first step determination of whether to switch from the first step to the second step, switching from the first step to the second step, the second step,
  • the control device 50 automatically determines the end of the second step. Not limited to this, at least one of these may be manually performed by the operator.
  • the air conditioner 100 includes an intermediate heat exchanger 20, a refrigerant circulation circuit 110, a heat medium circulation circuit 120, and a discharge mechanism 65.
  • the intermediate heat exchanger 20 has a first heat transfer section 21 through which a refrigerant flows and a second heat transfer section 22 through which a heat medium different from the refrigerant flows, and the first heat transfer section 21 and the second heat transfer section 22 It exchanges heat with.
  • the refrigerant circulation circuit 110 has a heat source side heat exchanger 13, and the heat source side heat exchanger 13 and the first heat transfer unit 21 are connected by a pipe, and the refrigerant circulates inside.
  • the heat medium circulation circuit 120 has a heat exchanger on the user side, and the heat exchanger on the user side and the second heat transfer unit 22 are connected by a pipe, and the heat medium circulates inside.
  • the discharge mechanism 65 is provided in the heat medium circulation circuit 120, has a discharge valve 67, and allows air existing in the heat medium circulation circuit 120 when the discharge valve 67 is open to flow out of the heat medium circulation circuit 120. It is to be discharged to.
  • the air conditioner 100 is a first operation mode and a second operation performed after the first operation mode in the air discharge operation mode in which the air existing in the heat medium circulation circuit 120 is discharged to the outside of the heat medium circulation circuit 120. It has a mode.
  • the refrigerant circulates in the refrigerant circulation circuit 110 in a state where the heat source side heat exchanger 13 functions as a radiator and the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as an evaporator.
  • the first operation mode is an operation mode in which the heat medium circulates in the heat medium circulation circuit 120 with the discharge valve 67 of the discharge mechanism 65 closed.
  • the second operation mode the refrigerant circulates in the refrigerant circulation circuit 110 in a state where the heat source side heat exchanger 13 functions as an evaporator and the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as a radiator.
  • the second operation mode is an operation mode in which the heat medium circulates in the heat medium circulation circuit 120 with the discharge valve 67 of the discharge mechanism 65 open.
  • both the air mass in the heat medium circulation circuit 120 and the air dissolved in the heat medium from the time of filling the heat medium circulation circuit 120 Can be discharged to the outside of the heat medium circulation circuit 120. Therefore, the air conditioner 100 configured in this way can discharge the air of the heat medium circulation circuit 120 to the outside of the heat medium circulation circuit 120 more than before.
  • the air discharge method of the air conditioner 100 is an air conditioner including an intermediate heat exchanger 20, a refrigerant circulation circuit 110, a heat medium circulation circuit 120, and a discharge mechanism 65.
  • the intermediate heat exchanger 20 has a first heat transfer section 21 through which a refrigerant flows and a second heat transfer section 22 through which a heat medium different from the refrigerant flows, and the first heat transfer section 21 and the second heat transfer section 22 It exchanges heat with.
  • the refrigerant circulation circuit 110 has a heat source side heat exchanger 13, and the heat source side heat exchanger 13 and the first heat transfer unit 21 are connected by a pipe, and the refrigerant circulates inside.
  • the heat medium circulation circuit 120 has a heat exchanger on the user side, and the heat exchanger on the user side and the second heat transfer unit 22 are connected by a pipe, and the heat medium circulates inside.
  • the discharge mechanism 65 is provided in the heat medium circulation circuit 120, has a discharge valve 67, and allows air existing in the heat medium circulation circuit 120 when the discharge valve 67 is open to flow out of the heat medium circulation circuit 120. It is to be discharged to.
  • the air discharge method of the air conditioner 100 according to the first embodiment is a method of discharging the air existing in the heat medium circulation circuit 120 to the outside of the heat medium circulation circuit 120, and is the first step and the method. It includes a second step performed after the first step.
  • the first step is a step of circulating the refrigerant in the refrigerant circulation circuit 110 in a state where the heat source side heat exchanger 13 functions as a radiator and the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as an evaporator. be.
  • the first step is a step of circulating the heat medium in the heat medium circulation circuit 120 with the discharge valve of the discharge mechanism 65 closed.
  • the second step is a step of circulating the refrigerant in the refrigerant circulation circuit 110 in a state where the heat source side heat exchanger 13 functions as an evaporator and the first heat transfer unit 21 of the intermediate heat exchanger 20 functions as a radiator. be.
  • the second step is a step of circulating the heat medium in the heat medium circulation circuit 120 with the discharge valve 67 of the discharge mechanism 65 open.
  • the air discharge method of the air conditioner 100 according to the first embodiment as described above, the air parcel in the heat medium circulation circuit 120 is dissolved in the heat medium from the time of filling the heat medium circulation circuit 120. Both of the existing air can be discharged to the outside of the heat medium circulation circuit 120. Therefore, the air discharge method of the air conditioner 100 according to the first embodiment can discharge the air of the heat medium circulation circuit 120 to the outside of the heat medium circulation circuit 120 more than before.
  • Embodiment 2 As described above, in the air conditioner 100 exemplified in the first embodiment, the combination of the utilization side heat exchanger and the flow rate adjusting valve for adjusting the amount of the heat medium flowing through the utilization side heat exchanger is heat. They are connected in parallel in the medium circulation circuit 120. In the case of the air conditioner 100 configured in this way, the air conditioner 100 may be operated as follows in the air discharge operation mode. That is, in the case of the air conditioner 100 configured in this way, the operation in the air discharge operation mode may be performed as follows. In the second embodiment, items not particularly described are the same as those in the first embodiment, and the same functions and configurations as those in the first embodiment are described by using the same reference numerals as those in the first embodiment. ..
  • FIGS. 4 and 5 are diagrams schematically showing an example of the circuit configuration of the air conditioner according to the second embodiment.
  • the flow rate adjusting valve 32a and the flow rate adjusting valve 32b are shown in white when they are open and in black when they are closed.
  • a set of a heat exchanger on the user side and a flow rate adjusting valve for adjusting the amount of heat medium flowing through the heat exchanger on the user side are arranged in parallel in the heat medium circulation circuit 120. It is connected to the. Then, the air conditioner 100 according to the second embodiment operates in the air discharge operation mode shown in the first embodiment in a state where only one of the plurality of flow rate adjusting valves is open. Further, after the operation in the air discharge operation mode is completed, only one of the plurality of flow rate adjusting valves, which is not opened in the operation in the air discharge operation mode, is opened, and the embodiment is performed. The operation is performed in the air discharge operation mode shown in 1. As described above, in the air conditioner 100 according to the second embodiment, the air discharge operation mode shown in the first embodiment is shown for each set in a state where only one of the plurality of flow rate adjusting valves is open. Drive in.
  • a set of the user side heat exchanger 31a and the flow rate adjusting valve 32a and a set of the using side heat exchanger 31b and the flow rate adjusting valve 32b circulate the heat medium. They are connected in parallel in the circuit 120.
  • the air discharge shown in the first embodiment is performed with the flow rate adjusting valve 32a open and the flow rate adjusting valve 32b closed. Operate in the operation mode. After that, as shown in FIG. 5, the operation is performed in the air discharge operation mode shown in the first embodiment in a state where the flow rate adjusting valve 32a is closed and the flow rate adjusting valve 32b is open.
  • the speed of the heat medium circulating in the heat medium circulation circuit 120 becomes slow, and the speed of the heat medium circulating in the heat medium circulation circuit 120 becomes slow.
  • the rate at which the air mass dissolves in the heat medium may decrease.
  • Embodiment 3 The determination as to whether or not to switch from the first step to the second step in step S2 of FIG. 2 may be performed, for example, as in the third embodiment.
  • items not particularly described are the same as those of the first embodiment or the second embodiment, and the same functions and configurations as those of the first embodiment or the second embodiment are the same as those of the first embodiment or the second embodiment. It will be described using the same reference numerals as those in the second embodiment.
  • FIG. 6 is a diagram schematically showing an example of the circuit configuration of the air conditioner according to the third embodiment.
  • the air conditioner 100 according to the third embodiment includes a first pressure sensor 36 and a second pressure sensor 37.
  • the first pressure sensor 36 detects the pressure of the heat medium discharged from the pump 23.
  • the first pressure sensor 36 is provided at a position on the pipe 125 on the discharge side of the pump 23.
  • the second pressure sensor 37 detects the pressure of the heat medium flowing into the pump 23.
  • the second pressure sensor 37 is provided at a position on the pipe 125 on the suction side of the pump 23.
  • the operation mode switching unit 54 of the control device 50 determines whether or not to switch from the first operation mode to the second operation mode in step S2 shown in FIG. Judgment is made as follows. The detected pressure of the first pressure sensor 36 and the detected pressure of the second pressure sensor 37 are received by the receiving unit 52 of the control device 50.
  • FIG. 7 is a diagram for explaining a method of determining operation mode switching by the operation mode switching unit of the control device included in the air conditioner according to the third embodiment.
  • the horizontal axis of FIG. 7 shows the operating time of the air conditioner 100 in the first operation mode.
  • ⁇ P on the vertical axis of FIG. 7 is a pressure difference obtained by subtracting the detected pressure of the second pressure sensor 37 from the detected pressure of the first pressure sensor 36. That is, ⁇ P is a pressure difference obtained by subtracting the pressure of the heat medium flowing into the pump 23 from the pressure of the heat medium discharged from the pump 23.
  • the operation mode switching unit 54 determines that the first operation mode is switched to the second operation mode after the ⁇ P is lowered and the change of the ⁇ P per unit time is within the specified pressure difference. In other words, the control device 50 switches from the first operation mode to the second operation mode after the ⁇ P decreases and the change of the ⁇ P per unit time is within the specified pressure difference.
  • the worker may observe ⁇ P and determine that the worker switches from the first operation mode to the second operation mode.
  • Embodiment 4 The determination as to whether or not to switch from the first step to the second step in step S2 of FIG. 2 may be performed, for example, as in the fourth embodiment.
  • items not particularly described are the same as those of the first to third embodiments, and the same functions and configurations as those of the first to third embodiments are implemented. It will be described using the same reference numerals as any of the first to third embodiments of the above.
  • FIG. 8 is a diagram schematically showing an example of the circuit configuration of the air conditioner according to the fourth embodiment.
  • the heat medium circulation circuit 120 of the air conditioner 100 according to the fourth embodiment includes a window 70 in which the heat medium in the heat medium circulation circuit 120 can be visually recognized.
  • the window 70 is provided at a position on the pipe 125 on the discharge side of the pump 23.
  • the window 70 is made of, for example, sight glass.
  • the air conditioner 100 according to the fourth embodiment includes a camera 71 that captures the heat medium in the heat medium circulation circuit 120 from the window 70, and an image processing device 72 that detects bubbles from the image captured by the camera 71. , Is equipped. The detection result of air bubbles by the image processing device 72 is received by the receiving unit 52 of the control device 50.
  • the air conditioner 100 in the air conditioner 100 according to the fourth embodiment, in the operation mode switching unit 54 of the control device 50, when the frequency of appearance of bubbles becomes less than or equal to the specified frequency, the air mass in the heat medium circulation circuit 120 heats up. Judge that it is sufficiently dissolved in the medium. That is, in step S2 shown in FIG. 2, the operation mode switching unit 54 determines that the first operation mode is switched to the second operation mode after the appearance frequency of bubbles becomes equal to or less than the specified frequency. In other words, the control device 50 of the air conditioner 100 according to the fourth embodiment switches from the first operation mode to the second operation mode after the frequency of appearance of bubbles becomes equal to or less than the specified frequency.
  • the appearance frequency of bubbles is, for example, the number of bubbles detected per unit time. In this case, after the number of bubbles detected per unit time is equal to or less than the specified number, the operation mode switching unit 54 determines that the first operation mode is switched to the second operation mode. Further, for example, the appearance frequency of bubbles is the time from the detection of a bubble to the detection of the next bubble. That is, the appearance frequency of bubbles is, for example, the time interval at which bubbles are detected. In this case, after the time interval in which bubbles are detected becomes equal to or longer than the specified time, the operation mode switching unit 54 determines that the first operation mode is switched to the second operation mode.
  • the air conditioner 100 having a configuration for switching from the first operation mode to the second operation mode may include a window 70. This is because the state of the heat medium circulating in the heat medium circulation circuit 120 can be visually confirmed.
  • Embodiment 5 The determination as to whether or not to switch from the first step to the second step in step S2 of FIG. 2 may be performed, for example, as in the fifth embodiment.
  • items not particularly described are the same as those of the first to fourth embodiments, and the same functions and configurations as those of the first to fourth embodiments are implemented. It will be described using the same reference numerals as any of the first to fourth embodiments of the above.
  • FIG. 9 is a diagram schematically showing an example of the circuit configuration of the air conditioner according to the fifth embodiment.
  • the air conditioner 100 according to the fifth embodiment includes a detector 75 that detects the amount of air dissolved in the heat medium in the heat medium circulation circuit 120.
  • the amount of air dissolved in the heat medium in the heat medium circulation circuit 120 will be referred to as the amount of dissolved air.
  • a detector having a sensor for detecting the amount of oxygen dissolved in a heat medium is known.
  • Such a detector detects the amount of oxygen dissolved in the heat medium by an optical or diaphragm electrode type sensor.
  • such a detector can be used as the detector 75.
  • the detector 75 is provided at a position on the pipe 125 on the discharge side of the pump 23.
  • the detector 75 may be fixed to the heat medium circulation circuit 120 or may be removable from the heat medium circulation circuit 120.
  • the operation mode switching unit 54 of the control device 50 is inside the heat medium circulation circuit 120 when the amount of dissolved air detected by the detector 75 exceeds the specified amount. It is judged that the air mass in the above is sufficiently dissolved in the heat medium. That is, the operation mode switching unit 54 determines in step S2 shown in FIG. 2 that the first operation mode is switched to the second operation mode after the amount of dissolved air detected by the detector 75 exceeds the specified amount. In other words, the control device 50 of the air conditioner 100 according to the fifth embodiment switches from the first operation mode to the second operation mode after the amount of dissolved air detected by the detector 75 exceeds the specified amount.
  • the operator may visually observe the detection result of the detector 75 and determine that the operator switches from the first operation mode to the second operation mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和装置は、冷媒循環回路を循環する冷媒と熱媒体循環回路を循環する熱媒体とが中間熱交換器で熱交換する構成となっている。前記熱媒体循環回路には、排出弁を有し、該排出弁が開いているときに前記熱媒体循環回路内に存在する空気を前記熱媒体循環回路外へ排出する排出機構が設けられている。空気調和装置は、前記熱媒体循環回路内に存在する前記空気を前記熱媒体循環回路外へ排出する空気排出運転モードにおいて、第1運転モードと、該第1運転モードの後に行われる第2運転モードとを備えている。前記第1運転モードは、前記排出弁が閉じている状態で冷房運転と同様の運転を行う運転モードである。前記第2運転モードは、前記排出弁が開いている状態で、暖房運転と同様の運転を行う運転モードである。

Description

空気調和装置、及び空気調和装置の空気排出方法
 本開示は、冷媒が循環する冷媒循環回路と、熱媒体が循環する熱媒体循環回路とを備えた空気調和装置に関する。また、本開示は、このように構成された空気調和装置の熱媒体循環回路内に存在する空気を熱媒体循環回路外へ排出させる空気排出方法に関する。
 従来の空気調和装置には、直膨式の空気調和装置が存在する。直膨式の空気調和装置は、熱源側熱交換器と利用側熱交換器とが配管で接続された冷媒循環回路を備え、熱源側熱交換器と利用側熱交換器との間で冷媒を循環させる。直膨式の空気調和装置では、冷媒循環回路内に冷媒を充填する際、冷媒充填前に冷媒循環回路内を真空引きすることにより、冷媒循環回路内の空気を排出させる。
 一方、従来の空気調和装置には、間接式の空気調和装置が存在する。間接式の空気調和装置は、冷媒が循環する冷媒循環回路と、熱媒体が循環する熱媒体循環回路とを備えている。熱媒体とは、水及び不凍液等であり、冷媒循環回路を循環する冷媒とは異なるものである。冷媒循環回路は、熱源側熱交換器を備えており、冷熱及び温熱を生成する。冷媒循環回路が生成した冷熱及び温熱は、中間熱交換器を介して、熱媒体循環回路の熱媒体に供給される。熱媒体循環回路は、利用側熱交換器を備えている。そして、冷媒循環回路から熱媒体循環回路の熱媒体に供給された冷熱及び温熱は、利用側熱交換器にて室内の空気調和に用いられる。
 従来、間接式の空気調和装置では、熱媒体循環回路に熱媒体を充填する際、充填される熱媒体で熱媒体循環回路内の空気を押し出す。しかしながら、この方法では、熱媒体循環回路内に、空気塊が滞留する場合がある。熱媒体循環回路内に空気が長時間滞留した場合、熱媒体循環回路を構成する配管の腐食を促進させるという課題が生じる。また、熱媒体循環回路内に滞留している空気が多い場合、熱媒体循環回路内で熱媒体を循環させるポンプが損傷し、ポンプの寿命が短くなるとい課題が発生する。このため、間接式の空気調和装置では、なるべく、熱媒体循環回路内に滞留する空気の量が少ない方が好ましい。そこで、従来の間接式の空気調和装置には、熱媒体循環回路に熱媒体を充填する際、ポンプの回転数及び回転方向を変化させて熱媒体を攪拌し、熱媒体循環回路内から空気塊を効率的に排出するものが提案されている(特許文献1参照)。
特開2001-336768号公報
 熱媒体循環回路内には、空気塊として存在する空気だけでなく、熱媒体循環回路への充填時より熱媒体に溶解している空気も存在している。ここで、特許文献1に記載の空気調和装置は、熱媒体に溶解している空気を熱媒体循環回路外へ排出させることができない。このため、特許文献1に記載の空気調和装置は、熱媒体循環回路内の空気を熱媒体循環回路外へ排出させる能力が未だ十分ではないという課題があった。
 本開示は、上述の課題を解決するためになされたもので、熱媒体循環回路内の空気を従来よりも熱媒体循環回路外へ排出させることができる空気調和装置を得ることを目的とする。また、本開示は、上述の課題を解決するためになされたもので、熱媒体循環回路内の空気を従来よりも熱媒体循環回路外へ排出させることができる空気調和装置の空気排出方法を得ることを目的とする。
 本開示に係る空気調和装置は、冷媒が流れる第1伝熱部、及び該冷媒とは異なる熱媒体が流れる第2伝熱部を有し、前記第1伝熱部と前記第2伝熱部とで熱交換する中間熱交換器と、熱源側熱交換器を有し、該熱源側熱交換器と前記第1伝熱部とが配管で接続され、内部を前記冷媒が循環する冷媒循環回路と、利用側熱交換器を有し、該利用側熱交換器と前記第2伝熱部とが配管で接続され、内部を前記熱媒体が循環する熱媒体循環回路と、前記熱媒体循環回路に設けられており、排出弁を有し、該排出弁が開いているときに前記熱媒体循環回路内に存在する空気を前記熱媒体循環回路外へ排出する排出機構と、を備えた空気調和装置であって、前記熱媒体循環回路内に存在する前記空気を前記熱媒体循環回路外へ排出する空気排出運転モードにおいて、第1運転モードと、該第1運転モードの後に行われる第2運転モードとを備え、前記第1運転モードは、前記熱源側熱交換器が放熱器として機能し、前記第1伝熱部が蒸発器として機能する状態で、前記冷媒が前記冷媒循環回路を循環し、前記排出機構の前記排出弁が閉じている状態で、前記熱媒体が前記熱媒体循環回路を循環する運転モードであり、前記第2運転モードは、前記熱源側熱交換器が蒸発器として機能し、前記第1伝熱部が放熱器として機能する状態で、前記冷媒が前記冷媒循環回路を循環し、前記排出機構の前記排出弁が開いている状態で、前記熱媒体が前記熱媒体循環回路を循環する運転モードである。
 また、本開示に係る空気調和装置の空気排出方法は、冷媒が流れる第1伝熱部、及び該冷媒とは異なる熱媒体が流れる第2伝熱部を有し、前記第1伝熱部と前記第2伝熱部とで熱交換する中間熱交換器と、熱源側熱交換器を有し、該熱源側熱交換器と前記第1伝熱部とが配管で接続され、内部を前記冷媒が循環する冷媒循環回路と、利用側熱交換器を有し、該利用側熱交換器と前記第2伝熱部とが配管で接続され、内部を前記熱媒体が循環する熱媒体循環回路と、前記熱媒体循環回路に設けられており、排出弁を有し、該排出弁が開いているときに前記熱媒体循環回路内に存在する空気を前記熱媒体循環回路外へ排出する排出機構と、を備えた空気調和装置の空気排出方法であって、当該空気調和装置の空気排出方法は、前記熱媒体循環回路内に存在する前記空気を前記熱媒体循環回路外へ排出させる方法であって、第1工程と、該第1工程の後に行われる第2工程とを備え、前記第1工程は、前記熱源側熱交換器が放熱器として機能し、前記第1伝熱部が蒸発器として機能する状態で、前記冷媒を前記冷媒循環回路で循環させ、前記排出機構の前記排出弁が閉じている状態で、前記熱媒体を前記熱媒体循環回路で循環させる工程であり、前記第2工程は、前記熱源側熱交換器が蒸発器として機能し、前記第1伝熱部が放熱器として機能する状態で、前記冷媒を前記冷媒循環回路で循環させ、前記排出機構の前記排出弁が開いている状態で、前記熱媒体を前記熱媒体循環回路で循環させる工程である。
 本開示に係る空気調和装置は、第1運転モードにおいて、熱媒体循環回路内の空気塊を、熱媒体に溶解させることができる。また、本開示に係る空気調和装置は、第2運転モードにおいて、熱媒体に溶解していた空気を熱媒体から放出させることができ、熱媒体から放出された空気を排出機構から熱媒体循環回路外へ排出することができる。このため、本開示に係る空気調和装置は、熱媒体循環回路内の空気塊と、熱媒体循環回路への充填時より熱媒体に溶解している空気との双方を、熱媒体循環回路外へ排出することができる。したがって、本開示に係る空気調和装置は、熱媒体循環回路内の空気を従来よりも熱媒体循環回路外へ排出させることができる。
 同様に、本開示に係る空気調和装置の空気排出方法は、第1工程において、熱媒体循環回路内の空気塊を、熱媒体に溶解させることができる。また、本開示に係る空気調和装置の空気排出方法は、第2工程において、熱媒体に溶解していた空気を熱媒体から放出させることができ、熱媒体から放出された空気を排出機構から熱媒体循環回路外へ排出することができる。このため、本開示に係る空気調和装置の空気排出方法は、熱媒体循環回路内の空気塊と、熱媒体循環回路への充填時より熱媒体に溶解している空気との双方を、熱媒体循環回路外へ排出することができる。したがって、本開示に係る空気調和装置の空気排出方法は、熱媒体循環回路内の空気を従来よりも熱媒体循環回路外へ排出させることができる。
本実施の形態1に係る空気調和装置の回路構成の一例を模式的に記載した図である。 本実施の形態1に係る空気調和装置の空気排出運転モードを説明するためのフローチャートである。 本実施の形態1に係る空気調和装置が備える制御装置の運転モード切替部による、運転モードの切り替えの判定方法を説明するための図である。 本実施の形態2に係る空気調和装置の回路構成の一例を模式的に記載した図である。 本実施の形態2に係る空気調和装置の回路構成の一例を模式的に記載した図である。 本実施の形態3に係る空気調和装置の回路構成の一例を模式的に記載した図である。 本実施の形態3に係る空気調和装置が備える制御装置の運転モード切替部による、運転モードの切り替えの判定方法を説明するための図である。 本実施の形態4に係る空気調和装置の回路構成の一例を模式的に記載した図である。 本実施の形態5に係る空気調和装置の回路構成の一例を模式的に記載した図である。
実施の形態1.
 図1は、本実施の形態1に係る空気調和装置の回路構成の一例を模式的に記載した図である。
 本実施の形態1に係る空気調和装置100は、熱源機1と室内機とを備えている。熱源機1は、例えば部屋の外部に設置されている。熱源機1は、冷房運転時に室内空気から吸収した熱を部屋の外部へ排出する。また、熱源機1は、暖房運転時、室内機に、熱を供給する。室内機は、室内に空調空気を供給するものである。図1に示す例では、空気調和装置100は、室内機として、室内機3a及び室内機3bを備えている。室内機3a及び室内機3bは、熱源機1に並列に接続されている。なお、空気調和装置100が備える室内機の数は2台に限定されない。空気調和装置100は、1台の室内機を備えていてもよいし、3台以上の室内機を備えていてもよい。
 空気調和装置100は、中間熱交換器20と、冷媒循環回路110と、熱媒体循環回路120とを備えている。中間熱交換器20は、冷媒が流れる第1伝熱部21、及び該冷媒とは異なる熱媒体が流れる第2伝熱部22を有している。また、中間熱交換器20は、第1伝熱部21と第2伝熱部22とで熱交換するものである。熱媒体とは、例えば、水及び不凍液等である。
 冷媒循環回路110は、熱源側熱交換器13を有している。また、冷媒循環回路110は、熱源側熱交換器13と中間熱交換器20の第1伝熱部21とが配管で接続され、内部を冷媒が循環するものである。熱媒体循環回路120は、利用側熱交換器を有している。また、熱媒体循環回路120は、利用側熱交換器と中間熱交換器20の第2伝熱部22とが配管で接続され、内部を熱媒体が循環するものである。後述のように、利用側熱交換器は、室内機に収容されている。また、上述のように、空気調和装置100は、室内機として、室内機3a及び室内機3bを備えている。このため、本実施の形態1に係る空気調和装置100は、利用側熱交換器として、室内機3aに収容されている利用側熱交換器31aと、室内機3bに収容されている利用側熱交換器31bとを備えている。利用側熱交換器31a及び利用側熱交換器31bは、中間熱交換器20の第2伝熱部22に、並列に接続されている。
 詳しくは、本実施の形態1では、冷媒循環回路110は、次のように構成されている。冷媒循環回路110は、圧縮機11、流路切替装置12、熱源側熱交換器13、絞り装置15、及びアキュムレータ19を備えている。そして、圧縮機11、流路切替装置12、熱源側熱交換器13、絞り装置15、アキュムレータ19及び中間熱交換器20の第1伝熱部21が配管で接続され、冷媒循環回路110が構成されている。
 圧縮機11は、冷媒を吸入して圧縮し、高温で高圧の状態にするものである。圧縮機11は、例えば、容量制御可能なインバータ圧縮機等である。圧縮機11は、低圧シェル構造のものでもよく、高圧シェル構造のものでもよい。低圧シェル構造の圧縮機11とは、密閉容器内が低圧の冷媒で満たされ、密閉容器内の低圧冷媒を吸入して圧縮する構造の圧縮機11である。高圧シェル構造の圧縮機11とは、圧縮機構部に接続された配管から該圧縮機構部が低圧の冷媒を吸入し、圧縮機構部で圧縮された冷媒で密閉容器内が満たされる構造の圧縮機11である。
 流路切替装置12は、冷房運転における冷媒流路と暖房運転における冷媒流路とを切り替えるものである。詳しくは、冷房運転時、流路切替装置12は、図1において破線で示すように、圧縮機11の吐出口と熱源側熱交換器13とが接続され、圧縮機11の吸入口と中間熱交換器20の第1伝熱部21とが接続される流路に切り替わる。これにより、熱源側熱交換器13が放熱器として機能し、中間熱交換器20の第1伝熱部21が蒸発器として機能する。なお、冷媒循環回路110を循環する冷媒が放熱器で凝縮する冷媒の場合、放熱器は、凝縮器と称される場合もある。また、暖房運転時、流路切替装置12は、図1において実線で示すように、圧縮機11の吐出口と中間熱交換器20の第1伝熱部21とが接続され、圧縮機11の吸入口と熱源側熱交換器13とが接続される流路に切り替わる。これにより、中間熱交換器20の第1伝熱部21が放熱器として機能し、熱源側熱交換器13が蒸発器として機能する。すなわち、冷房運転時、中間熱交換器20の第1伝熱部21を流れる冷媒は、中間熱交換器20の第2伝熱部22を流れる熱媒体から吸熱し、該第2伝熱部22を流れる熱媒体を冷却する。また、暖房運転時、中間熱交換器20の第1伝熱部21を流れる冷媒は、中間熱交換器20の第2伝熱部22を流れる熱媒体に放熱し、該第2伝熱部22を流れる熱媒体を加熱する。なお、本実施の形態1では流路切替装置12を四方弁等で構成しているが、流路切替装置12を二方弁等で構成してもよい。
 熱源側熱交換器13の近傍には、該熱源側熱交換器13に室外空気を供給するファン14が配置されている。熱源側熱交換器13を流れる冷媒は、ファン14から供給される室外空気と熱交換する。絞り装置15は、熱源側熱交換器13と中間熱交換器20の第1伝熱部21との間に設けられ、放熱器から流出した冷媒を減圧して膨張させるものである。アキュムレータ19は、圧縮機11の吸入口と蒸発器との間に設けられている。アキュムレータ19は、余剰冷媒を貯留するものである。余剰冷媒は、例えば、冷房運転時に冷媒循環回路110を循環する冷媒量と、暖房運転時に冷媒循環回路110を循環する冷媒量との差によって発生する。また例えば、余剰冷媒は、冷房運転時及び暖房運転時、過渡的な運転状態の変化によっても発生する。アキュムレータ19に貯留される余剰冷媒は、低圧となる。なお、アキュムレータ19に換えて、冷媒循環回路110に、高圧の余剰冷媒を貯留するレシーバーを設けてもよい。
 また、詳しくは、本実施の形態1では、熱媒体循環回路120は、次のように構成されている。熱媒体循環回路120は、ポンプ23、利用側熱交換器31a、利用側熱交換器31b、流量調整弁32a、及び流量調整弁32bを備えている。そして、ポンプ23、利用側熱交換器31a、利用側熱交換器31b、流量調整弁32a、流量調整弁32b及び中間熱交換器20の第2伝熱部22が配管で接続され、熱媒体循環回路120が構成されている。
 ポンプ23は、熱媒体循環回路120内の熱媒体を循環させるものである。すなわち、ポンプ23は、熱媒体循環回路120において、熱媒体を吸入して加圧し、加圧した熱媒体を吐出するものである。ポンプ23は、例えば、駆動周波数を一定の範囲内で変化させることで、吐出する熱媒体の流量を変化させることができる構成となっている。また、本実施の形態1では、ポンプ23は、中間熱交換器20の熱媒体の流入側に設けられている。詳しくは、中間熱交換器20の第2伝熱部22には、熱媒体の流入口に、配管125が接続されている。ポンプ23は、配管125に設けられている。すなわち、本実施の形態1では、ポンプ23から吐出された熱媒体が中間熱交換器20の第2伝熱部22に流入する構成となっている。
 利用側熱交換器31a及び利用側熱交換器31bは、室内に供給する空調空気を生成するものである。
 利用側熱交換器31aにおける熱媒体の流入口は、配管121、配管122及び配管123aを介して、中間熱交換器20の第2伝熱部22における熱媒体の流出口と接続されている。配管121は、利用側熱交換器31aにおける熱媒体の流入口と第2伝熱部22における熱媒体の流出口とを接続する配管のうち、熱源機1に収容されている部分を構成する配管である。配管122は、利用側熱交換器31aにおける熱媒体の流入口と第2伝熱部22における熱媒体の流出口とを接続する配管のうち、熱源機1及び室内機3aの外部に配置されている部分を構成する配管である。配管121と配管122とは、熱源機1に設けられた継手で接続されている。配管123aは、利用側熱交換器31aにおける熱媒体の流入口と第2伝熱部22における熱媒体の流出口とを接続する配管のうち、室内機3aに収容されている部分を構成する配管である。配管123aと配管122とは、室内機3aに設けられた継手で接続されている。
 また、利用側熱交換器31aにおける熱媒体の流出口は、配管125、配管126及び配管127aを介して、中間熱交換器20の第2伝熱部22における熱媒体の流入口と接続されている。配管125は、利用側熱交換器31aにおける熱媒体の流出口と第2伝熱部22における熱媒体の流入口とを接続する配管のうち、熱源機1に収容されている部分を構成する配管である。配管126は、利用側熱交換器31aにおける熱媒体の流出口と第2伝熱部22における熱媒体の流入口とを接続する配管のうち、熱源機1及び室内機3aの外部に配置されている部分を構成する配管である。配管125と配管126とは、熱源機1に設けられた継手で接続されている。配管127aは、利用側熱交換器31aにおける熱媒体の流出口と第2伝熱部22における熱媒体の流入口とを接続する配管のうち、室内機3aに収容されている部分を構成する配管である。配管127aと配管126とは、室内機3aに設けられた継手で接続されている。
 また、利用側熱交換器31aの近傍には、該利用側熱交換器31aに室内空気を供給するファン33aが配置されている。
 したがって、冷房運転時、中間熱交換器20の第2伝熱部22で冷却された冷媒は、配管121、配管122及び配管123aを通って、利用側熱交換器31aに流入することとなる。ファン33aから供給された室内空気は、利用側熱交換器31aを通過するときに利用側熱交換器31aを流れる熱媒体によって冷却されて空調空気となり、利用側熱交換器31aから流出して室内へ戻ることとなる。一方、利用側熱交換器31aを流れる際に室内空気によって加熱された熱媒体は、配管127a、配管126及び配管125を通って、中間熱交換器20の第2伝熱部22に戻ることとなる。
 また、暖房運転時、中間熱交換器20の第2伝熱部22で加熱された冷媒は、配管121、配管122及び配管123aを通って、利用側熱交換器31aに流入することとなる。ファン33aから供給された室内空気は、利用側熱交換器31aを通過するときに利用側熱交換器31aを流れる熱媒体によって加熱されて空調空気となり、利用側熱交換器31aから流出して室内へ戻ることとなる。一方、利用側熱交換器31aを流れる際に室内空気によって冷却された熱媒体は、配管127a、配管126及び配管125を通って、中間熱交換器20の第2伝熱部22に戻ることとなる。
 利用側熱交換器31bにおける熱媒体の流入口は、配管121、配管122及び配管123bを介して、中間熱交換器20の第2伝熱部22における熱媒体の流出口と接続されている。配管123bは、利用側熱交換器31bにおける熱媒体の流入口と第2伝熱部22における熱媒体の流出口とを接続する配管のうち、室内機3bに収容されている部分を構成する配管である。配管123bと配管122とは、室内機3bに設けられた継手で接続されている。また、配管123bと配管123aとは、配管122に並列に接続されている。
 また、利用側熱交換器31bにおける熱媒体の流出口は、配管125、配管126及び配管127bを介して、中間熱交換器20の第2伝熱部22における熱媒体の流入口と接続されている。配管127bは、利用側熱交換器31bにおける熱媒体の流出口と第2伝熱部22における熱媒体の流入口とを接続する配管のうち、室内機3bに収容されている部分を構成する配管である。配管127bと配管126とは、室内機3bに設けられた継手で接続されている。また、配管127bと配管127aとは、配管126に並列に接続されている。
 また、利用側熱交換器31bの近傍には、該利用側熱交換器31bに室内空気を供給するファン33bが配置されている。
 したがって、冷房運転時、中間熱交換器20の第2伝熱部22で冷却された冷媒は、配管121、配管122及び配管123bを通って、利用側熱交換器31bに流入することとなる。ファン33bから供給された室内空気は、利用側熱交換器31bを通過するときに利用側熱交換器31bを流れる熱媒体によって冷却されて空調空気となり、利用側熱交換器31bから流出して室内へ戻ることとなる。一方、利用側熱交換器31bを流れる際に室内空気によって加熱された熱媒体は、配管127b、配管126及び配管125を通って、中間熱交換器20の第2伝熱部22に戻ることとなる。
 また、暖房運転時、中間熱交換器20の第2伝熱部22で加熱された冷媒は、配管121、配管122及び配管123bを通って、利用側熱交換器31bに流入することとなる。ファン33bから供給された室内空気は、利用側熱交換器31bを通過するときに利用側熱交換器31bを流れる熱媒体によって加熱されて空調空気となり、利用側熱交換器31bから流出して室内へ戻ることとなる。一方、利用側熱交換器31bを流れる際に室内空気によって冷却された熱媒体は、配管127b、配管126及び配管125を通って、中間熱交換器20の第2伝熱部22に戻ることとなる。
 流量調整弁32aは、利用側熱交換器31aに流れる前記熱媒体の量を調整するものである。流量調整弁32aは、例えば、弁の開度を調整可能な二方弁である。本実施の形態1では、利用側熱交換器31aの熱媒体の流入口に接続された配管123aに、流量調整弁32aが設けられている。なお、利用側熱交換器31aの熱媒体の流出口に接続された配管127aに、流量調整弁32aが設けられていてもよい。流量調整弁32bは、利用側熱交換器31bに流れる前記熱媒体の量を調整するものである。流量調整弁32bは、例えば、弁の開度を調整可能な二方弁である。本実施の形態1では、利用側熱交換器31bの熱媒体の流入口に接続された配管123bに、流量調整弁32bが設けられている。なお、利用側熱交換器31bの熱媒体の流出口に接続された配管127bに、流量調整弁32aが設けられていてもよい。
 すなわち、本実施の形態1に係る空気調和装置100においては、利用側熱交換器31a及び流量調整弁32aの組と、利用側熱交換器31b及び流量調整弁32bの組とが、熱媒体循環回路120において並列に接続されている。換言すると、空気調和装置100は、利用側熱交換器と、該利用側熱交換器に流れる熱媒体の量を調整する流量調整弁との組を、複数備えている。そして、これらの組は、熱媒体循環回路120において並列に接続されている。
 また、空気調和装置100は、供給機構60及び排出機構65を備えている。供給機構60は、熱媒体循環回路120に設けられており、空気調和装置100の設置時等に、熱媒体循環回路120に熱媒体を充填する際に用いられるものである。供給機構60は、供給配管61と供給弁62とを備えている。供給配管61は、熱媒体循環回路120に接続されている。また、供給配管61は、熱媒体循環回路120に熱媒体を充填する際、熱媒体の供給源と接続される。例えば、熱媒体が水の場合、供給配管61は、水道に接続される。供給弁62は、供給配管61に設けられており、供給配管61内の流路を開閉可能な開閉弁等である。すなわち、供給弁62が開くことにより、供給配管61を通って、熱媒体が熱媒体循環回路120に充填されることとなる。また、供給弁62を閉じることにより、熱媒体循環回路120への熱媒体の充填が終了する。上述のように、中間熱交換器20の第2伝熱部22における熱媒体の流入口には、配管125が接続されている。本実施の形態1では、供給機構60は、配管125に設けられている。より詳しくは、本実施の形態1では、供給機構60は、配管125におけるポンプ23の吸入側となる位置に設けられている。
 排出機構65は、熱媒体循環回路120に設けられており、熱媒体循環回路120内に存在する空気を熱媒体循環回路120外へ排出するものである。排出機構65は、排出配管66と排出弁67とを備えている。排出配管66は、熱媒体循環回路120に接続されている。排出弁67は、排出配管66に設けられており、熱媒体循環回路120内から排出配管66内へ流れ込んだ空気を排出可能な弁である。すなわち、排出弁67が開くことにより、排出配管66を通って、熱媒体循環回路120内に存在する空気が熱媒体循環回路120外へ排出される。また、排出弁67を閉じることにより、熱媒体循環回路120からの空気の排出が終了する。すなわち、排出機構65は、排出弁67が開いているときに、熱媒体循環回路120内に存在する空気を熱媒体循環回路120外へ排出する。上述のように、中間熱交換器20の第2伝熱部22における熱媒体の流出口には、配管121が接続されている。本実施の形態1では、排出機構65は、配管121に設けられている。
 上述した空気調和装置100の構成部品は、熱源機1、室内機3a又は室内機3bに収容されている。熱源機1には、冷媒循環回路110の構成部品が収容されている。詳しくは、熱源機1には、圧縮機11、流路切替装置12、熱源側熱交換器13、絞り装置15及びアキュムレータ19が収容されている。また、熱源機1には、ファン14、中間熱交換器20、供給機構60及び排出機構65が収容されている。また、熱源機1には、熱媒体循環回路120の構成のうち、ポンプ23が収容されている。また、熱媒体循環回路120の構成のうち、ポンプ23以外の構成部品は、室内機3a又は室内機3bに収容されている。詳しくは、室内機3aには、利用側熱交換器31a及び流量調整弁32aが収容されている。室内機3bには、利用側熱交換器31b及び流量調整弁32bが収容されている。また、室内機3aにはファン33aが収容されており、室内機3bにはファン33bが収容されている。
 また、本実施の形態1に係る空気調和装置100は、各種のセンサーと、これらのセンサーの検出値に基づいて空気調和装置100の構成部品を制御する制御装置50とを備えている。
 例えば、空気調和装置100は、熱源機1に、第1温度センサー24、第2温度センサー25、温度センサー41、温度センサー42、温度センサー43、温度センサー44、温度センサー45、圧力センサー46、及び圧力センサー47を備えている。
 第1温度センサー24は、例えばサーミスタ等で構成されており、中間熱交換器20の第2伝熱部22に流入する熱媒体の温度を検出するものである。第2温度センサー25は、例えばサーミスタ等で構成されており、中間熱交換器20の第2伝熱部22から流出する熱媒体の温度を検出するものである。温度センサー41は、例えばサーミスタ等で構成されており、圧縮機11から吐出された冷媒の温度を検出するものである。温度センサー42は、例えばサーミスタ等で構成されており、圧縮機11に吸入される冷媒の温度を検出するものである。温度センサー43は、例えばサーミスタ等で構成されており、熱源側熱交換器13に供給される室外空気の温度を検出するものである。
 温度センサー44は、例えばサーミスタ等で構成されている。温度センサー44は、冷房運転時においては、中間熱交換器20の第1伝熱部21から流出する冷媒の温度を検出するものである。また、温度センサー44は、暖房運転時においては、中間熱交換器20の第1伝熱部21に流入する冷媒の温度を検出するものである。温度センサー45は、例えばサーミスタ等で構成されている。温度センサー45は、冷房運転時においては、中間熱交換器20の第1伝熱部21に流入する冷媒の温度を検出するものである。また、温度センサー45は、暖房運転時においては、中間熱交換器20の第1伝熱部21から流出する冷媒の温度を検出するものである。圧力センサー46は、圧縮機11から吐出された冷媒の圧力を検出するものである。圧力センサー47は、圧縮機11に吸入される冷媒の圧力を検出するものである。
 例えば、空気調和装置100は、室内機3aに、温度センサー34a及び温度センサー35aを備えている。温度センサー34aは、例えばサーミスタ等で構成されており、利用側熱交換器31aに流入する熱媒体の温度を検出するものである。温度センサー35aは、例えばサーミスタ等で構成されており、利用側熱交換器31aから流出する熱媒体の温度を検出するものである。例えば、空気調和装置100は、室内機3bに、温度センサー34b及び温度センサー35bを備えている。温度センサー34bは、例えばサーミスタ等で構成されており、利用側熱交換器31bに流入する熱媒体の温度を検出するものである。温度センサー35bは、例えばサーミスタ等で構成されており、利用側熱交換器31bから流出する熱媒体の温度を検出するものである。
 制御装置50は、空気調和装置100に設けられた各種センサーの検出値等に基づき、圧縮機11の起動及び停止と、圧縮機11の駆動周波数と、流路切替装置12の流路と、ファン14の起動及び停止と、ファン14の駆動時の回転数と、絞り装置15の開度と、ポンプ23の起動及び停止と、ポンプ23の駆動周波数と、流量調整弁32aの開度と、流量調整弁32bの開度と、ファン33aの起動及び停止と、ファン33aの駆動時の回転数と、ファン33bの起動及び停止と、ファン33bの駆動時の回転数と、供給弁62の開度と、排出弁67の開度と、を制御する。制御装置50は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit)で構成されている。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はプロセッサともいう。
 制御装置50が専用のハードウェアである場合、制御装置50は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御装置50が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
 制御装置50がCPUの場合、制御装置50が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置50の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、又はEEPROM等の、不揮発性又は揮発性の半導体メモリである。
 なお、制御装置50の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。また、本実施の形態1では、制御装置50が熱源機1に収納されているが、室内機3a又は室内機3bに制御装置50が収容されていてもよい。また、熱源機1、室内機3a及び室内機3bのうちの少なくとも2つに、制御装置50を分割して収容してもよい。
 制御装置50は、機能部として、入力部51、受信部52、制御部53、及び運転モード切替部54を備えている。
 入力部51は、図示せぬリモコン等からの指令が入力される機能部である。例えば、入力部51には、図示せぬリモコン等から、空気調和装置100に求められている運転モードが入力される。なお、本実施の形態1に係る空気調和装置100は、後述のように、冷房運転モード、暖房運転モード及び空気排出運転モードを備えている。また、本実施の形態1に係る空気調和装置100は、後述のように、空気排出運転モードにおいて、第1運転モードと、該第1運転モードの後に行われる第2運転モードとを備えている。
 受信部52は、空気調和装置100に設けられた各種センサーの検出値を受信する機能部である。
 制御部53は、空気調和装置100に設けられた各種センサーの検出値、及び入力部51に入力された指令等に基づき、圧縮機11の起動及び停止と、圧縮機11の駆動周波数と、流路切替装置12の流路と、ファン14の起動及び停止と、ファン14の駆動時の回転数と、絞り装置15の開度と、ポンプ23の起動及び停止と、ポンプ23の駆動周波数と、流量調整弁32aの開度と、流量調整弁32bの開度と、ファン33aの起動及び停止と、ファン33aの駆動時の回転数と、ファン33bの起動及び停止と、ファン33bの駆動時の回転数と、供給弁62の開度と、排出弁67の開度と、を制御する機能部である。
 運転モード切替部54は、空気調和装置100の空気排出運転モードでの運転において、第1運転モードから第2運転モードへ切り替えるか否かを判定する機能部である。すなわち、本実施の形態1に係る制御装置50は、空気排出運転モードにおいて第1運転モードから第2運転モードへ切り替えることも可能な制御装置ということができる。
 続いて、冷房運転モード、暖房運転モード及び空気排出運転モードにおける空気調和装置100の動作について説明する。
[冷房運転モード]
 冷房運転モードは、室内機3a及び室内機3bのうちの少なくとも一方が室内の冷房を行う運転モードである。すなわち、冷房運転モードは、空気調和装置100が冷房運転を行う運転モードである。以下では、室内機3a及び室内機3bの双方が室内の冷房を行う場合について、説明する。
 まず、冷媒循環回路110における冷媒の流れについて説明する。圧縮機11は、低温で低圧のガス冷媒を吸入して圧縮し、高温で高圧のガス冷媒として吐出する。圧縮機11から吐出された高温で高圧のガス冷媒は、流路切替装置12を通って、放熱器として機能する熱源側熱交換器13に流入する。熱源側熱交換器13に流入した高温で高圧のガス冷媒は、ファン14から供給された室外空気によって冷却され、中温で高圧の液冷媒となって熱源側熱交換器13から流出する。なお、熱源側熱交換器13から流出する冷媒は、中温で高圧の気液二相冷媒の場合もある。熱源側熱交換器13から流出した中温で高圧の冷媒は、絞り装置15に流入する。
 絞り装置15に流入した中温で高圧の冷媒は、絞り装置15で減圧され、低温で低圧の気液二相冷媒となって絞り装置15から流出する。絞り装置15から流出した低温で低圧の気液二相冷媒は、蒸発器として機能する中間熱交換器20の第1伝熱部21に流入する。中間熱交換器20の第1伝熱部21に流入した低温で低圧の気液二相冷媒は、中間熱交換器20の第2伝熱部22を流れる熱媒体によって加熱され、低温で低圧のガス冷媒となって中間熱交換器20の第1伝熱部21から流出する。なお、中間熱交換器20の第1伝熱部21から流出する冷媒は、低温で低圧の気液二相冷媒の場合もある。中間熱交換器20の第1伝熱部21から流出した低温で低圧の冷媒は、流路切替装置12を通って、アキュムレータ19に流入する。アキュムレータ19に流入した低温で低圧の冷媒のうち、低温で低圧のガス冷媒は、圧縮機11に再び吸入される。
 次に、熱媒体循環回路120における熱媒体の流れについて説明する。ポンプ23から吐出された熱媒体は、中間熱交換器20の第2伝熱部22に流入する。中間熱交換器20の第2伝熱部22に流入した熱媒体は、中間熱交換器20の第1伝熱部21を流れる冷媒によって冷却され、中間熱交換器20の第2伝熱部22から流出する。中間熱交換器20の第2伝熱部22から流出した熱媒体は、配管121を通って、配管122に流入する。配管122に流入した熱媒体の一部は、配管123a及び流量調整弁32aを通って、利用側熱交換器31aに流入する。また、配管122に流入した熱媒体の残りの一部は、配管123b及び流量調整弁32bを通って、利用側熱交換器31bに流入する。
 利用側熱交換器31aに流入した熱媒体は、ファン33aから供給された室内空気を冷却する際に加熱され、利用側熱交換器31aから流出する。利用側熱交換器31aから流出した熱媒体は、配管127aを通って配管126に流入する。また、利用側熱交換器31bに流入した熱媒体は、ファン33bから供給された室内空気を冷却する際に加熱され、利用側熱交換器31bから流出する。利用側熱交換器31bから流出した熱媒体は、配管127bを通って配管126に流入し、利用側熱交換器31aから配管126に流入した熱媒体と合流する。配管126に流入した熱媒体は、配管125を通って、再びポンプ23に吸入される。
 冷房運転モードでは、低温の冷媒が中間熱交換器20の第1伝熱部21へ流入する。この際、摂氏0℃以下の冷媒が中間熱交換器20の第1伝熱部21へ流入すると、中間熱交換器20の第2伝熱部22を流れる熱媒体が凍結する可能性がある。このため、制御装置50の制御部53は、第1温度センサー24の検出温度及び第2温度センサー25の検出温度に基づいて、熱媒体の凍結を防止する制御を実施する。具体的には、第1温度センサー24の検出温度及び第2温度センサー25の検出温度が熱媒体の凍結の可能性を示す温度となった場合、制御部53は、圧縮機11の駆動周波数を低下させ、中間熱交換器20の第1伝熱部21へ流入する冷媒の温度を上昇させる。
[暖房運転モード]
 暖房運転モードは、室内機3a及び室内機3bのうちの少なくとも一方が室内の暖房を行う運転モードである。すなわち、暖房運転モードは、空気調和装置100が暖房運転を行う運転モードである。以下では、室内機3a及び室内機3bの双方が室内の暖房を行う場合について、説明する。
 まず、冷媒循環回路110における冷媒の流れについて説明する。圧縮機11は、低温で低圧のガス冷媒を吸入して圧縮し、高温で高圧のガス冷媒として吐出する。圧縮機11から吐出された高温で高圧のガス冷媒は、流路切替装置12を通って、放熱器として機能する中間熱交換器20の第1伝熱部21に流入する。中間熱交換器20の第1伝熱部21に流入した高温で高圧のガス冷媒は、中間熱交換器20の第2伝熱部22を流れる熱媒体によって冷却され、中温で高圧の液冷媒となって中間熱交換器20の第1伝熱部21から流出する。中間熱交換器20の第1伝熱部21から流出した中温で高圧の液冷媒は、絞り装置15に流入する。
 絞り装置15に流入した中温で高圧の液冷媒は、絞り装置15で減圧され、低温で低圧の気液二相冷媒となって絞り装置15から流出する。絞り装置15から流出した低温で低圧の気液二相冷媒は、蒸発器として機能する熱源側熱交換器13に流入する。熱源側熱交換器13に流入した低温で低圧の気液二相冷媒は、ファン14から供給された室外空気によって加熱され、低温で低圧のガス冷媒となって熱源側熱交換器13から流出する。なお、熱源側熱交換器13から流出する冷媒は、低温で低圧の気液二相冷媒の場合もある。熱源側熱交換器13から流出した低温で低圧の冷媒は、流路切替装置12を通って、アキュムレータ19に流入する。アキュムレータ19に流入した低温で低圧の冷媒のうち、低温で低圧のガス冷媒は、圧縮機11に再び吸入される。
 次に、熱媒体循環回路120における熱媒体の流れについて説明する。ポンプ23から吐出された熱媒体は、中間熱交換器20の第2伝熱部22に流入する。中間熱交換器20の第2伝熱部22に流入した熱媒体は、中間熱交換器20の第1伝熱部21を流れる冷媒によって加熱され、中間熱交換器20の第2伝熱部22から流出する。中間熱交換器20の第2伝熱部22から流出した熱媒体は、配管121を通って、配管122に流入する。配管122に流入した熱媒体の一部は、配管123a及び流量調整弁32aを通って、利用側熱交換器31aに流入する。また、配管122に流入した熱媒体の残りの一部は、配管123b及び流量調整弁32bを通って、利用側熱交換器31bに流入する。
 利用側熱交換器31aに流入した熱媒体は、ファン33aから供給された室内空気を加熱する際に冷却され、利用側熱交換器31aから流出する。利用側熱交換器31aから流出した熱媒体は、配管127aを通って配管126に流入する。また、利用側熱交換器31bに流入した熱媒体は、ファン33bから供給された室内空気を加熱する際に冷却され、利用側熱交換器31bから流出する。利用側熱交換器31bから流出した熱媒体は、配管127bを通って配管126に流入し、利用側熱交換器31aから配管126に流入した熱媒体と合流する。配管126に流入した熱媒体は、配管125を通って、再びポンプ23に吸入される。
[空気排出運転モード]
 空気排出運転モードは、熱媒体循環回路120内に存在する空気を熱媒体循環回路120外へ排出する運転モードである。上述のように、空気調和装置100は、空気排出運転モードにおいて、第1運転モードと、該第1運転モードの後に行われる第2運転モードとを備えている。第1運転モードは、後述の第1工程を行う運転モードである。第2運転モードは、後述の第2工程を行う運転モードである。以下、図2を参照しながら、空気排出運転モードの具体的な流れについて説明する。
 図2は、本実施の形態1に係る空気調和装置の空気排出運転モードを説明するためのフローチャートである。すなわち、図2は、本実施の形態1に係る空気調和装置100の空気排出運転モードでの運転を示すフローチャートとなっている。
 制御装置50の入力部51に空気排出運転モードを行う指令が入力されると、空気調和装置100の制御装置50は、ステップS1において第1工程を行う。換言すると、制御装置50は、空気調和装置100の運転モードを第1運転モードとする。
 第1工程は、熱源側熱交換器13が放熱器として機能し、中間熱交換器20の第1伝熱部21が蒸発器として機能する状態で、冷媒を冷媒循環回路110で循環させる工程である。また、第1工程は、排出機構65の排出弁が閉じている状態で、熱媒体を熱媒体循環回路120で循環させる工程である。換言すると、第1運転モードは、熱源側熱交換器13が放熱器として機能し、中間熱交換器20の第1伝熱部21が蒸発器として機能する状態で、冷媒が冷媒循環回路110を循環する運転モードである。また、第1運転モードは、排出機構65の排出弁67が閉じている状態で、熱媒体が熱媒体循環回路120を循環する運転モードである。
 すなわち、第1運転モードにおける空気調和装置100の動作は、冷房運転モードにおける空気調和装置100の動作と、基本的には同様となる。具体的には、制御装置50の制御部53は、流路切替装置12の流路を、冷房運転時と同じ流路に切り替える。また、制御部53は、流量調整弁32a及び流量調整弁32bを開く。この状態で、制御部53は、圧縮機11、ファン14及びポンプ23を起動する。また、制御部53は、絞り装置15の開度を制御し、熱源側熱交換器13から流出した冷媒を減圧して膨張させる。
 これにより、中間熱交換器20の第2伝熱部22を流れる熱媒体は、中間熱交換器20の第1伝熱部21を流れる冷媒によって冷却される。そして、熱媒体循環回路120では、この冷却された熱媒体が循環することとなる。ここで、熱媒体の温度が低いほど、熱媒体に溶解する空気の量が増加する。このため、このように冷却された熱媒体を熱媒体循環回路120で循環させることにより、熱媒体循環回路120内の空気塊を熱媒体に溶解させることができる。
 ここで、第1運転モードにおいてファン33a及びファン33bが駆動していると、ファン33a及びファン33bから供給される室内空気によって、熱媒体循環回路120を循環する熱媒体が加熱され、該熱媒体の温度が上昇する。このように熱媒体の温度が上昇すると、熱媒体循環回路120内の空気塊を熱媒体に溶解させる速度が低下する。このため、本実施の形態1に係る空気調和装置100においては、第1運転モードでは、制御部53は、ファン33a及びファン33bを停止させている。これにより、熱媒体循環回路120内の空気塊を熱媒体に溶解させる速度が向上し、熱媒体循環回路120内の空気塊を効率的に熱媒体に溶解させることができる。
 なお、第1運転モードにおける供給機構60の供給弁62の開度は任意である。例えば、熱媒体循環回路120への熱媒体の充填が完了していない状態で第1工程を行う場合、供給機構60の供給弁62を開いた状態で、第1工程を行えばよい。また例えば、熱媒体循環回路120への熱媒体の充填が完了している状態で第1工程を行う場合、供給機構60の供給弁62を閉じた状態で、第1工程を行えばよい。
 ステップS1の後、制御装置50は、ステップS2に進む。ステップS2は、第1工程から第2工程へ切り替えるか否かを判定するステップである。すなわち、ステップS2において制御装置50の運転モード切替部54は、第1運転モードから第2運転モードへ切り替えるか否かを判定する。運転モード切替部54は、熱媒体循環回路120内の空気塊の熱媒体への溶解が完了したと思われる状態になるまで、ステップS1に戻る。この結果、第1工程が継続される。換言すると、第1運転モードが維持される。一方、運転モード切替部54は、熱媒体循環回路120内の空気塊の熱媒体への溶解が完了したと思われる状態になると、ステップS3に進む。すなわち、運転モード切替部54は、第1運転モードから第2運転モードへ切り替えると判定する。ここで、本実施の形態1では、次のように、第1運転モードから第2運転モードへ切り替えるか否かを判定している。
 図3は、本実施の形態1に係る空気調和装置が備える制御装置の運転モード切替部による、運転モードの切り替えの判定方法を説明するための図である。この図3の横軸は、第1運転モードでの空気調和装置100の運転時間を示している。また図3の縦軸のΔTは、第1温度センサー24の検出温度から第2温度センサー25の検出温度を減算した温度差である。すなわち、ΔTは、中間熱交換器20の第2伝熱部22に流入する熱媒体の温度から、中間熱交換器20の第2伝熱部22より流出する熱媒体の温度を減算した温度差である。
 第1運転モードの開始直後は、中間熱交換器20の第2伝熱部22において熱媒体が冷却されていないので、ΔTは0℃に近い。第1運転モードでの空気調和装置100の運転を継続していくと、中間熱交換器20の第2伝熱部22において熱媒体が冷却されていく。この結果、中間熱交換器20の第2伝熱部22より流出する熱媒体の温度が低下していくため、ΔTが大きくなっていく。上述のように、第1運転モードでは、ファン33a及びファン33bを停止させ、ファン33a及びファン33bから供給される室内空気によって熱媒体が加熱されないようにしている。このため、第1運転モードでの空気調和装置100の運転を継続していくにしたがって、中間熱交換器20の第2伝熱部22に流入する熱媒体の温度が低下していく。一方、中間熱交換器20の第2伝熱部22を流れる熱媒体の温度が中間熱交換器20の第1伝熱部21を流れる冷媒の温度に近づくにしたがって、中間熱交換器20の第2伝熱部22より流出する熱媒体の単位時間当たりの温度低下が小さくなる。
 このため、第1運転モードでの空気調和装置100の運転を継続していくと、ΔTが大きくなった後には、ΔTが低下していき、ΔTの単位時間当たりの変化が規定温度差以内となる。換言すると、第1運転モードでの空気調和装置100の運転を継続していくと、ΔTが低下していき、ΔTが略一定となる。このような状態は、十分に冷却された熱媒体が熱媒体循環回路120を循環している状態であり、熱媒体循環回路120内の熱媒体の温度が略均一になっている状態である。したがって、このような状態は、熱媒体循環回路120内の空気塊の熱媒体への溶解が完了したと思われる状態である。したがって、運転モード切替部54は、ΔTが低下し、該ΔTの単位時間当たりの変化が規定温度差以内となった後に、第1運転モードから第2運転モードへ切り替えると判定する。換言すると、制御装置50は、ΔTが低下し、該ΔTの単位時間当たりの変化が規定温度差以内となった後に、第1運転モードから第2運転モードへ切り替える。
 ステップS2の後のステップS3では、第2工程を行う。換言すると、制御装置50は、空気調和装置100の運転モードを第2運転モードとする。第2工程は、熱源側熱交換器13が蒸発器として機能し、中間熱交換器20の第1伝熱部21が放熱器として機能する状態で、冷媒を冷媒循環回路110で循環させる工程である。また、第2工程は、排出機構65の排出弁67が開いている状態で、熱媒体を熱媒体循環回路120で循環させる工程である。換言すると、第2運転モードは、熱源側熱交換器13が蒸発器として機能し、中間熱交換器20の第1伝熱部21が放熱器として機能する状態で、冷媒が冷媒循環回路110を循環する運転モードである。また、第2運転モードは、排出機構65の排出弁67が開いている状態で、熱媒体が熱媒体循環回路120を循環する運転モードである。
 すなわち、第2運転モードにおける空気調和装置100の動作は、排出機構65の排出弁67が開いていることを除き、暖房運転モードにおける空気調和装置100の動作と、基本的には同様となる。具体的には、制御装置50の制御部53は、流路切替装置12の流路を、暖房運転時と同じ流路に切り替える。また、制御部53は、流量調整弁32a及び流量調整弁32bを開く。この状態で、制御部53は、圧縮機11、ファン14及びポンプ23を起動する。また、制御部53は、絞り装置15の開度を制御し、中間熱交換器20の第1伝熱部21から流出した冷媒を減圧して膨張させる。
 これにより、中間熱交換器20の第2伝熱部22を流れる熱媒体は、中間熱交換器20の第1伝熱部21を流れる冷媒によって加熱される。そして、熱媒体循環回路120では、この加熱された熱媒体が循環することとなる。ここで、熱媒体の温度が高いほど、熱媒体に溶解する空気の量が低下する。このため、このように加熱された熱媒体を熱媒体循環回路120で循環させることにより、熱媒体に溶解していた空気を熱媒体から放出させることができ、熱媒体から放出された空気を排出機構65から熱媒体循環回路120外へ排出することができる。このため、本実施の形態1に係る空気排出運転モードは、熱媒体循環回路120内の空気塊と、熱媒体循環回路120への充填時より熱媒体に溶解している空気との双方を、熱媒体循環回路120外へ排出することができる。したがって、本実施の形態1に係る空気排出運転モードは、熱媒体循環回路120の空気を従来よりも熱媒体循環回路120外へ排出させることができる。
 ここで、第2運転モードにおいてファン33a及びファン33bが駆動していると、ファン33a及びファン33bから供給される室内空気によって、熱媒体循環回路120を循環する熱媒体が冷却され、該熱媒体の温度が低下する。このように熱媒体の温度が低下すると、熱媒体に溶解していた空気を熱媒体から放出させる速度が低下する。このため、本実施の形態1に係る空気調和装置100においては、第2運転モードでは、制御部53は、ファン33a及びファン33bを停止させている。これにより、熱媒体に溶解していた空気を熱媒体から放出させる速度が向上し、第2運転モードでの運転時間を低減することができる。
 なお、第2運転モードにおける供給機構60の供給弁62の開度は任意である。例えば、排出機構65が空気のみを排出できる構成である場合、供給機構60の供給弁62を閉じた状態で、第2工程を行えばよい。また例えば、排出機構65が空気と共に熱媒体も排出する構成である場合、供給機構60の供給弁62を開き、熱媒体循環回路120に熱媒体を充填している状態で、第2工程を行えばよい。
 ステップS3の後、制御装置50は、ステップS4に進む。ステップS4は、第2工程を終了するか否かを判定するステップである。本実施の形態1では、制御装置50は、第2工程が開始されてから規定時間が経過するまでは、第2工程を終了しないと判定し、ステップS3に戻る。一方、制御装置50は、第2工程が開始されてから規定時間が経過すると、第2工程を終了すると判定する。これにより、空気排出運転モードでの空気調和装置100の動作が終了する。
 なお、本実施の形態1に係る空気調和装置100においては、第1工程、第1工程から第2工程へ切り替えるか否かの判定、第1工程から第2工程への切り替え、第2工程、及び第2工程の終了の判定を、制御装置50が全て自動的に行った。これに限らず、これらのうちの少なくとも1つを、作業者が手動で行ってもよい。
 以上、本実施の形態1に係る空気調和装置100は、中間熱交換器20と、冷媒循環回路110と、熱媒体循環回路120と、排出機構65とを備えている。中間熱交換器20は、冷媒が流れる第1伝熱部21、及び該冷媒とは異なる熱媒体が流れる第2伝熱部22を有し、第1伝熱部21と第2伝熱部22とで熱交換するものである。冷媒循環回路110は、熱源側熱交換器13を有し、該熱源側熱交換器13と第1伝熱部21とが配管で接続され、内部を冷媒が循環するものである。熱媒体循環回路120は、利用側熱交換器を有し、該利用側熱交換器と第2伝熱部22とが配管で接続され、内部を熱媒体が循環するものである。排出機構65は、熱媒体循環回路120に設けられており、排出弁67を有し、該排出弁67が開いているときに熱媒体循環回路120内に存在する空気を熱媒体循環回路120外へ排出するものである。空気調和装置100は、熱媒体循環回路120内に存在する空気を熱媒体循環回路120外へ排出する空気排出運転モードにおいて、第1運転モードと、該第1運転モードの後に行われる第2運転モードとを備えている。第1運転モードは、熱源側熱交換器13が放熱器として機能し、中間熱交換器20の第1伝熱部21が蒸発器として機能する状態で、冷媒が冷媒循環回路110を循環する運転モードである。また、第1運転モードは、排出機構65の排出弁67が閉じている状態で、熱媒体が熱媒体循環回路120を循環する運転モードである。第2運転モードは、熱源側熱交換器13が蒸発器として機能し、中間熱交換器20の第1伝熱部21が放熱器として機能する状態で、冷媒が冷媒循環回路110を循環する運転モードである。また、第2運転モードは、排出機構65の排出弁67が開いている状態で、熱媒体が熱媒体循環回路120を循環する運転モードである。
 このように構成された空気調和装置100においては、上述のように、熱媒体循環回路120内の空気塊と、熱媒体循環回路120への充填時より熱媒体に溶解している空気との双方を、熱媒体循環回路120外へ排出することができる。したがって、このように構成された空気調和装置100は、熱媒体循環回路120の空気を従来よりも熱媒体循環回路120外へ排出させることができる。
 また、本実施の形態1に係る空気調和装置100の空気排出方法は、中間熱交換器20と、冷媒循環回路110と、熱媒体循環回路120と、排出機構65とを備えている空気調和装置100の空気排出方法である。中間熱交換器20は、冷媒が流れる第1伝熱部21、及び該冷媒とは異なる熱媒体が流れる第2伝熱部22を有し、第1伝熱部21と第2伝熱部22とで熱交換するものである。冷媒循環回路110は、熱源側熱交換器13を有し、該熱源側熱交換器13と第1伝熱部21とが配管で接続され、内部を冷媒が循環するものである。熱媒体循環回路120は、利用側熱交換器を有し、該利用側熱交換器と第2伝熱部22とが配管で接続され、内部を熱媒体が循環するものである。排出機構65は、熱媒体循環回路120に設けられており、排出弁67を有し、該排出弁67が開いているときに熱媒体循環回路120内に存在する空気を熱媒体循環回路120外へ排出するものである。また、本実施の形態1に係る空気調和装置100の空気排出方法は、熱媒体循環回路120内に存在する空気を熱媒体循環回路120外へ排出させる方法であって、第1工程と、該第1工程の後に行われる第2工程とを備えている。第1工程は、熱源側熱交換器13が放熱器として機能し、中間熱交換器20の第1伝熱部21が蒸発器として機能する状態で、冷媒を冷媒循環回路110で循環させる工程である。また、第1工程は、排出機構65の排出弁が閉じている状態で、熱媒体を熱媒体循環回路120で循環させる工程である。第2工程は、熱源側熱交換器13が蒸発器として機能し、中間熱交換器20の第1伝熱部21が放熱器として機能する状態で、冷媒を冷媒循環回路110で循環させる工程である。また、第2工程は、排出機構65の排出弁67が開いている状態で、熱媒体を熱媒体循環回路120で循環させる工程である。
 本実施の形態1に係る空気調和装置100の空気排出方法においては、上述のように、熱媒体循環回路120内の空気塊と、熱媒体循環回路120への充填時より熱媒体に溶解している空気との双方を、熱媒体循環回路120外へ排出することができる。したがって、本実施の形態1に係る空気調和装置100の空気排出方法は、熱媒体循環回路120の空気を従来よりも熱媒体循環回路120外へ排出させることができる。
実施の形態2.
 上述のように、実施の形態1で例示した空気調和装置100においては、利用側熱交換器と、該利用側熱交換器に流れる熱媒体の量を調整する流量調整弁との組が、熱媒体循環回路120において並列に接続されている。このように構成されている空気調和装置100の場合、空気排出運転モードにおいて、次のように空気調和装置100を動作させてもよい。すなわち、このように構成されている空気調和装置100の場合、次のように空気排出運転モードでの運転を行ってもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、実施の形態1と同一の機能及び構成については実施の形態1と同一の符号を用いて述べることとする。
 図4及び図5は、本実施の形態2に係る空気調和装置の回路構成の一例を模式的に記載した図である。なお、図4及び図5においては、流量調整弁32a及び流量調整弁32bは、開いている状態が白抜きで示されており、閉じている状態が黒塗りで示されている。
 本実施の形態2に係る空気調和装置100は、利用側熱交換器と、該利用側熱交換器に流れる熱媒体の量を調整する流量調整弁との組が、熱媒体循環回路120において並列に接続されている。そして、本実施の形態2に係る空気調和装置100は、複数の流量調整弁のうちの1つのみが開いている状態で、実施の形態1で示した空気排出運転モードでの運転を行う。また、この空気排出運転モードでの運転が終了した後、複数の流量調整弁のうちでこの空気排出運転モードでの運転で開かれていなかった流量調整弁の1つのみを開き、実施の形態1で示した空気排出運転モードでの運転を行う。このように、本実施の形態2に係る空気調和装置100は、複数の流量調整弁のうちの1つのみが開いている状態で、各組毎に実施の形態1で示した空気排出運転モードでの運転を行う。
 例えば、図4及び図5に例示した空気調和装置100は、利用側熱交換器31a及び流量調整弁32aの組と、利用側熱交換器31b及び流量調整弁32bの組とが、熱媒体循環回路120において並列に接続されている。このように空気調和装置100が調整されている場合、図4に示すように、流量調整弁32aが開いており、流量調整弁32bが閉じている状態で、実施の形態1で示した空気排出運転モードでの運転を行う。その後、図5に示すように、流量調整弁32aが閉じており、流量調整弁32bが開いている状態で、実施の形態1で示した空気排出運転モードでの運転を行う。
 利用側熱交換器と流量調整弁との組が熱媒体循環回路120において並列に接続されている場合、熱媒体循環回路120を循環する熱媒体の速度が遅くなり、熱媒体循環回路120内の空気塊を熱媒体に溶解させる速度が低下する場合がある。このような場合、本実施の形態2のように空気排出運転モードでの運転を行い、熱媒体循環回路120を循環する速度を増加させるのが好ましい。本実施の形態2のように空気排出運転モードでの運転を行うことにより、熱媒体循環回路120内の空気塊を熱媒体に溶解させる速度が向上し、空気排出運転モードでの運転時間を低減することができる。
実施の形態3.
 図2のステップS2における第1工程から第2工程へ切り替えるか否かの判定は、例えば本実施の形態3のように行われてもよい。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、実施の形態1又は実施の形態2と同一の機能及び構成については実施の形態1又は実施の形態2と同一の符号を用いて述べることとする。
 図6は、本実施の形態3に係る空気調和装置の回路構成の一例を模式的に記載した図である。
 本実施の形態3に係る空気調和装置100は、第1圧力センサー36及び第2圧力センサー37を備えている。第1圧力センサー36は、ポンプ23から吐出される熱媒体の圧力を検出するものである。本実施の形態3では、第1圧力センサー36は、配管125におけるポンプ23の吐出側となる位置に設けられている。第2圧力センサー37は、ポンプ23に流入する熱媒体の圧力を検出するものである。本実施の形態3では、第2圧力センサー37は、配管125におけるポンプ23の吸入側となる位置に設けられている。そして、本実施の形態3に係る空気調和装置100では、制御装置50の運転モード切替部54は、図2に示すステップS2において、第1運転モードから第2運転モードへ切り替えるか否かを次のように判定する。第1圧力センサー36の検出圧力及び第2圧力センサー37の検出圧力は、制御装置50の受信部52によって受信される。
 図7は、本実施の形態3に係る空気調和装置が備える制御装置の運転モード切替部による、運転モードの切り替えの判定方法を説明するための図である。この図7の横軸は、第1運転モードでの空気調和装置100の運転時間を示している。また図7の縦軸のΔPは、第1圧力センサー36の検出圧力から第2圧力センサー37の検出圧力を減算した圧力差である。すなわち、ΔPは、ポンプ23から吐出される熱媒体の圧力からポンプ23に流入する熱媒体の圧力を減算した圧力差である。
 第1運転モードでの空気調和装置100の動作が開始され、ポンプ23が起動すると、ポンプ23から吐出される熱媒体の圧力が上昇していく。このため、ΔPが大きくなっていく。ここで、熱媒体循環回路120内に空気塊が多く存在するほど、熱媒体循環回路120内の流路の有効断面積が縮小されるため、熱媒体循環回路120を循環する熱媒体の速度が大きくなる。このため、熱媒体循環回路120内に空気塊が多く存在するほど、熱媒体循環回路120での圧力損失が大きくなり、ΔPが大きくなる。したがって、第1運転モードでの空気調和装置100の運転を継続し、熱媒体循環回路120内の空気塊が熱媒体に溶解していくにつれて、ΔPが小さくなっていく。そして、第1運転モードでの空気調和装置100の運転をさらに継続し、熱媒体循環回路120内の空気塊が熱媒体に溶解されてしまうと、ΔPの単位時間当たりの変化が規定圧力差以内となる。換言すると、第1運転モードでの空気調和装置100の運転をさらに継続し、熱媒体循環回路120内の空気塊が熱媒体に熱媒体に溶解されてしまうと、ΔPが略一定となる。
 したがって、運転モード切替部54は、ΔPが低下し、該ΔPの単位時間当たりの変化が規定圧力差以内となった後に、第1運転モードから第2運転モードへ切り替えると判定する。換言すると、制御装置50は、ΔPが低下し、該ΔPの単位時間当たりの変化が規定圧力差以内となった後に、第1運転モードから第2運転モードへ切り替える。
 このように第1運転モードから第2運転モードに切り替えても、実施の形態1及び実施の形態2と同様の効果を得ることができる。なお、作業者がΔPを観測し、該作業者が第1運転モードから第2運転モードへ切り替える判定を行ってもよい。
実施の形態4.
 図2のステップS2における第1工程から第2工程へ切り替えるか否かの判定は、例えば本実施の形態4のように行われてもよい。なお、本実施の形態4において、特に記述しない項目については実施の形態1~実施の形態3のいずれかと同様とし、実施の形態1~実施の形態3のいずれかと同一の機能及び構成については実施の形態1~実施の形態3のいずれかと同一の符号を用いて述べることとする。
 図8は、本実施の形態4に係る空気調和装置の回路構成の一例を模式的に記載した図である。
 本実施の形態4に係る空気調和装置100の熱媒体循環回路120は、熱媒体循環回路120内の熱媒体を視認可能な窓70を備えている。本実施の形態4では、窓70は、配管125におけるポンプ23の吐出側となる位置に設けられている。窓70は、例えば、サイトグラスで構成されている。また、本実施の形態4に係る空気調和装置100は、熱媒体循環回路120内の熱媒体を窓70から撮影するカメラ71と、カメラ71が撮影した画像から気泡を検出する画像処理装置72と、を備えている。画像処理装置72による気泡の検出結果は、制御装置50の受信部52によって受信される。
 そして、本実施の形態4に係る空気調和装置100では、制御装置50の運転モード切替部54は、気泡の出現頻度が規定頻度以下となった際、熱媒体循環回路120内の空気塊が熱媒体に十分に溶解した判断する。すなわち、運転モード切替部54は、図2に示すステップS2において、気泡の出現頻度が規定頻度以下となった後に、第1運転モードから第2運転モードへ切り替えると判定する。換言すると、本実施の形態4に係る空気調和装置100の制御装置50は、気泡の出現頻度が規定頻度以下となった後に、第1運転モードから第2運転モードへ切り替える。
 気泡の出現頻度とは、例えば、単位時間当たりに検出される気泡の数である。この場合、単位時間当たりに検出される気泡の数が規定数以下となった後、運転モード切替部54は、第1運転モードから第2運転モードへ切り替えると判定する。また例えば、気泡の出現頻度とは、気泡が検出されてから次の気泡が検出されるまでの時間である。すなわち、気泡の出現頻度とは、例えば、気泡が検出される時間間隔である。この場合、気泡が検出される時間間隔が規定時間以上となった後、運転モード切替部54は、第1運転モードから第2運転モードへ切り替えると判定する。
 このように第1運転モードから第2運転モードに切り替えても、実施の形態1及び実施の形態2と同様の効果を得ることができる。なお、作業者が窓70から気泡を目視で観測し、該作業者が第1運転モードから第2運転モードへ切り替える判定を行ってもよい。この場合、カメラ71及び画像処理装置72を空気調和装置100に備える必要はない。また、実施の形態1~実施の形態3で示したように第1運転モードから第2運転モードへ切り替える構成の空気調和装置100において、窓70を備えていてもよい。熱媒体循環回路120を循環する熱媒体の状態を、目視で確認できるからである。
実施の形態5.
 図2のステップS2における第1工程から第2工程へ切り替えるか否かの判定は、例えば本実施の形態5のように行われてもよい。なお、本実施の形態5において、特に記述しない項目については実施の形態1~実施の形態4のいずれかと同様とし、実施の形態1~実施の形態4のいずれかと同一の機能及び構成については実施の形態1~実施の形態4のいずれかと同一の符号を用いて述べることとする。
 図9は、本実施の形態5に係る空気調和装置の回路構成の一例を模式的に記載した図である。
 本実施の形態5に係る空気調和装置100は、熱媒体循環回路120内の熱媒体に溶解している空気の量を検出する検出器75を備えている。以下、熱媒体循環回路120内の熱媒体に溶解している空気の量を、溶存空気量と称することとする。例えば、熱媒体に溶解した酸素量を検出するセンサーを備えた検出器が知られている。このような検出器は、光学式又は隔膜電極式のセンサーによって、熱媒体に溶解した酸素量を検出する。例えば、このような検出器を検出器75として用いることができる。本実施の形態5では、検出器75は、配管125におけるポンプ23の吐出側となる位置に設けられている。検出器75は、熱媒体循環回路120に固定されていてもよいし、熱媒体循環回路120から取り外し可能な構成であってもよい。
 そして、本実施の形態5に係る空気調和装置100では、制御装置50の運転モード切替部54は、検出器75が検出した溶存空気量が規定量以上となった際、熱媒体循環回路120内の空気塊が熱媒体に十分に溶解した判断する。すなわち、運転モード切替部54は、図2に示すステップS2において、検出器75が検出した溶存空気量が規定量以上となった後に、第1運転モードから第2運転モードへ切り替えると判定する。換言すると、本実施の形態5に係る空気調和装置100の制御装置50は、検出器75が検出した溶存空気量が規定量以上となった後に、第1運転モードから第2運転モードへ切り替える。
 このように第1運転モードから第2運転モードに切り替えても、実施の形態1及び実施の形態2と同様の効果を得ることができる。なお、作業者が検出器75の検出結果を目視で観測し、該作業者が第1運転モードから第2運転モードへ切り替える判定を行ってもよい。
 1 熱源機、3a,3b 室内機、11 圧縮機、12 流路切替装置、13 熱源側熱交換器、14 ファン、15 絞り装置、19 アキュムレータ、20 中間熱交換器、21 第1伝熱部、22 第2伝熱部、23 ポンプ、24 第1温度センサー、25 第2温度センサー、31a,31b 利用側熱交換器、32a,32b 流量調整弁、33a,33b ファン、34a,34b 温度センサー、35a,35b 温度センサー、36 第1圧力センサー、37 第2圧力センサー、41 温度センサー、42 温度センサー、43 温度センサー、44 温度センサー、45 温度センサー、46 圧力センサー、47 圧力センサー、50 制御装置、51 入力部、52 受信部、53 制御部、54 運転モード切替部、60 供給機構、61 供給配管、62 供給弁、65 排出機構、66 排出配管、67 排出弁、70 窓、71 カメラ、72 画像処理装置、75 検出器、100 空気調和装置、110 冷媒循環回路、120 熱媒体循環回路、121 配管、122 配管、123a,123b 配管、125 配管、126 配管、127a,127b 配管。

Claims (13)

  1.  冷媒が流れる第1伝熱部、及び該冷媒とは異なる熱媒体が流れる第2伝熱部を有し、前記第1伝熱部と前記第2伝熱部とで熱交換する中間熱交換器と、
     熱源側熱交換器を有し、該熱源側熱交換器と前記第1伝熱部とが配管で接続され、内部を前記冷媒が循環する冷媒循環回路と、
     利用側熱交換器を有し、該利用側熱交換器と前記第2伝熱部とが配管で接続され、内部を前記熱媒体が循環する熱媒体循環回路と、
     前記熱媒体循環回路に設けられており、排出弁を有し、該排出弁が開いているときに前記熱媒体循環回路内に存在する空気を前記熱媒体循環回路外へ排出する排出機構と、
     を備えた空気調和装置であって、
     前記熱媒体循環回路内に存在する前記空気を前記熱媒体循環回路外へ排出する空気排出運転モードにおいて、第1運転モードと、該第1運転モードの後に行われる第2運転モードとを備え、
     前記第1運転モードは、
     前記熱源側熱交換器が放熱器として機能し、前記第1伝熱部が蒸発器として機能する状態で、前記冷媒が前記冷媒循環回路を循環し、
     前記排出機構の前記排出弁が閉じている状態で、前記熱媒体が前記熱媒体循環回路を循環する運転モードであり、
     前記第2運転モードは、
     前記熱源側熱交換器が蒸発器として機能し、前記第1伝熱部が放熱器として機能する状態で、前記冷媒が前記冷媒循環回路を循環し、
     前記排出機構の前記排出弁が開いている状態で、前記熱媒体が前記熱媒体循環回路を循環する運転モードである
     空気調和装置。
  2.  前記利用側熱交換器と、該利用側熱交換器に流れる前記熱媒体の量を調整する流量調整弁との組を、複数備え、
     これらの組は、前記熱媒体循環回路において並列に接続されており、
     複数の前記流量調整弁のうちの1つのみが開いている状態で、各組毎に前記空気排出運転モードでの運転が行われる構成である
     請求項1に記載の空気調和装置。
  3.  前記中間熱交換器の前記第2伝熱部に流入する前記熱媒体の温度を検出する第1温度センサーと、
     前記中間熱交換器の前記第2伝熱部から流出する前記熱媒体の温度を検出する第2温度センサーと、
     前記空気排出運転モードにおいて前記第1運転モードから前記第2運転モードへ切り替える制御装置と、
     を備え、
     前記制御装置は、
     前記第1温度センサーの検出温度から前記第2温度センサーの検出温度を減算した温度差が低下し、該温度差の単位時間当たりの変化が規定温度差以内となった後に、前記第1運転モードから前記第2運転モードへ切り替える構成である
     請求項1又は請求項2に記載の空気調和装置。
  4.  前記熱媒体循環回路は、該熱媒体循環回路内の前記熱媒体を循環させるポンプを備え、
     当該空気調和装置は、
     前記ポンプから吐出される前記熱媒体の圧力を検出する第1圧力センサーと、
     前記ポンプに流入する前記熱媒体の圧力を検出する第2圧力センサーと、
     前記空気排出運転モードにおいて前記第1運転モードから前記第2運転モードへ切り替える制御装置と、
     を備え、
     前記制御装置は、
     前記第1圧力センサーの検出圧力から前記第2圧力センサーの検出圧力を減算した圧力差が低下し、該圧力差の単位時間当たりの変化が規定圧力差以内となった後に、前記第1運転モードから前記第2運転モードへ切り替える構成である
     請求項1又は請求項2に記載の空気調和装置。
  5.  前記熱媒体循環回路内の前記熱媒体に溶解している前記空気の量である溶存空気量を検出する検出器と、
     前記空気排出運転モードにおいて前記第1運転モードから前記第2運転モードへ切り替える制御装置と、
     を備え、
     前記制御装置は、前記検出器が検出した前記溶存空気量が規定量以上となった後に、前記第1運転モードから前記第2運転モードへ切り替える構成である
     請求項1又は請求項2に記載の空気調和装置。
  6.  前記熱媒体循環回路は、該熱媒体循環回路内の前記熱媒体を視認可能な窓を備え、
     当該空気調和装置は、
     前記熱媒体循環回路内の前記熱媒体を前記窓から撮影するカメラと、
     前記カメラが撮影した画像から気泡を検出する画像処理装置と、
     前記空気排出運転モードにおいて前記第1運転モードから前記第2運転モードへ切り替える制御装置と、
     を備え、
     前記制御装置は、前記気泡の出現頻度が規定頻度以下となった後に、前記第1運転モードから前記第2運転モードへ切り替える構成である
     請求項1又は請求項2に記載の空気調和装置。
  7.  前記熱媒体循環回路は、該熱媒体循環回路内の前記熱媒体を視認可能な窓を備えている
     請求項1~請求項5のいずれか一項に記載の空気調和装置。
  8.  冷媒が流れる第1伝熱部、及び該冷媒とは異なる熱媒体が流れる第2伝熱部を有し、前記第1伝熱部と前記第2伝熱部とで熱交換する中間熱交換器と、
     熱源側熱交換器を有し、該熱源側熱交換器と前記第1伝熱部とが配管で接続され、内部を前記冷媒が循環する冷媒循環回路と、
     利用側熱交換器を有し、該利用側熱交換器と前記第2伝熱部とが配管で接続され、内部を前記熱媒体が循環する熱媒体循環回路と、
     前記熱媒体循環回路に設けられており、排出弁を有し、該排出弁が開いているときに前記熱媒体循環回路内に存在する空気を前記熱媒体循環回路外へ排出する排出機構と、
     を備えた空気調和装置の空気排出方法であって、
     当該空気調和装置の空気排出方法は、前記熱媒体循環回路内に存在する前記空気を前記熱媒体循環回路外へ排出させる方法であって、第1工程と、該第1工程の後に行われる第2工程とを備え、
     前記第1工程は、
     前記熱源側熱交換器が放熱器として機能し、前記第1伝熱部が蒸発器として機能する状態で、前記冷媒を前記冷媒循環回路で循環させ、
     前記排出機構の前記排出弁が閉じている状態で、前記熱媒体を前記熱媒体循環回路で循環させる工程であり、
     前記第2工程は、
     前記熱源側熱交換器が蒸発器として機能し、前記第1伝熱部が放熱器として機能する状態で、前記冷媒を前記冷媒循環回路で循環させ、
     前記排出機構の前記排出弁が開いている状態で、前記熱媒体を前記熱媒体循環回路で循環させる工程である
     空気調和装置の空気排出方法。
  9.  前記空気調和装置は、
     前記利用側熱交換器と、該利用側熱交換器に流れる前記熱媒体の量を調整する流量調整弁との組を、複数備え、
     これらの組は、前記熱媒体循環回路において並列に接続されており、
     複数の前記流量調整弁のうちの1つのみが開いている状態で、各組毎に前記第1工程及び前記第2工程を行う
     請求項8に記載の空気調和装置の空気排出方法。
  10.  前記中間熱交換器の前記第2伝熱部に流入する前記熱媒体の温度から前記第2伝熱部に流入する前記熱媒体の温度を減算した温度差が低下し、該温度差の単位時間当たりの変化が規定温度差以内となった後に、前記第1工程から前記第2工程へ切り替える
     請求項8又は請求項9に記載の空気調和装置の空気排出方法。
  11.  前記熱媒体循環回路は、該熱媒体循環回路内の前記熱媒体を循環させるポンプを備え、
     前記ポンプから吐出される前記熱媒体の圧力から前記ポンプに流入する前記熱媒体の圧力を減算した圧力差が低下し、該圧力差の単位時間当たりの変化が規定圧力差以内となった後に、前記第1工程から前記第2工程へ切り替える
     請求項8又は請求項9に記載の空気調和装置の空気排出方法。
  12.  前記熱媒体循環回路内の前記熱媒体に溶解している前記空気の量である溶存空気量が規定量以上となった後に、前記第1工程から前記第2工程へ切り替える
     請求項8又は請求項9に記載の空気調和装置の空気排出方法。
  13.  前記熱媒体循環回路は、該熱媒体循環回路内の前記熱媒体を視認可能な窓を備え、
     前記窓から見える気泡の出現頻度が規定頻度以下となった後に、前記第1工程から前記第2工程へ切り替える
     請求項8又は請求項9に記載の空気調和装置の空気排出方法。
PCT/JP2020/009167 2020-03-04 2020-03-04 空気調和装置、及び空気調和装置の空気排出方法 WO2021176597A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022504843A JP7199594B2 (ja) 2020-03-04 2020-03-04 空気調和装置、及び空気調和装置の空気排出方法
EP20923544.9A EP4116638A4 (en) 2020-03-04 2020-03-04 AIR CONDITIONING AND AIR OUTLET METHOD OF AN AIR CONDITIONING SYSTEM
US17/791,906 US20220404061A1 (en) 2020-03-04 2020-03-04 Air-conditioning apparatus, and air discharge method for air-conditioning apparatus
PCT/JP2020/009167 WO2021176597A1 (ja) 2020-03-04 2020-03-04 空気調和装置、及び空気調和装置の空気排出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009167 WO2021176597A1 (ja) 2020-03-04 2020-03-04 空気調和装置、及び空気調和装置の空気排出方法

Publications (1)

Publication Number Publication Date
WO2021176597A1 true WO2021176597A1 (ja) 2021-09-10

Family

ID=77613201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009167 WO2021176597A1 (ja) 2020-03-04 2020-03-04 空気調和装置、及び空気調和装置の空気排出方法

Country Status (4)

Country Link
US (1) US20220404061A1 (ja)
EP (1) EP4116638A4 (ja)
JP (1) JP7199594B2 (ja)
WO (1) WO2021176597A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336768A (ja) 2000-05-31 2001-12-07 Daikin Ind Ltd 温調装置の運転制御装置
WO2012107947A1 (ja) * 2011-02-07 2012-08-16 三菱電機株式会社 空気調和装置
WO2014083682A1 (ja) * 2012-11-30 2014-06-05 三菱電機株式会社 空気調和装置
WO2018037544A1 (ja) * 2016-08-25 2018-03-01 三菱電機株式会社 ヒートポンプ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136623B2 (ja) * 2010-11-11 2013-02-06 トヨタ自動車株式会社 水温センサ異常判定装置
EP2667107B1 (en) * 2011-01-20 2020-08-19 Mitsubishi Electric Corporation Air conditioner
WO2016157481A1 (ja) * 2015-04-01 2016-10-06 三菱電機株式会社 空気調和装置
WO2019021406A1 (ja) * 2017-07-27 2019-01-31 三菱電機株式会社 空調システムおよび熱媒体封入方法
DE112018007922T5 (de) * 2018-08-21 2021-04-29 Mitsubishi Electric Corporation Strömungswächter, Innenraumeinheit und Klimaanlage
DE102019113977A1 (de) * 2019-05-24 2020-11-26 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren zur Überwachung von erforderlichen Luftströmen zum Handhaben eines Fadens und/oder Faserbandes und Spinnmaschineneinheit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336768A (ja) 2000-05-31 2001-12-07 Daikin Ind Ltd 温調装置の運転制御装置
WO2012107947A1 (ja) * 2011-02-07 2012-08-16 三菱電機株式会社 空気調和装置
WO2014083682A1 (ja) * 2012-11-30 2014-06-05 三菱電機株式会社 空気調和装置
WO2018037544A1 (ja) * 2016-08-25 2018-03-01 三菱電機株式会社 ヒートポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116638A4

Also Published As

Publication number Publication date
JPWO2021176597A1 (ja) 2021-09-10
EP4116638A4 (en) 2023-04-05
JP7199594B2 (ja) 2023-01-05
US20220404061A1 (en) 2022-12-22
EP4116638A1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
JP6935720B2 (ja) 冷凍装置
JP5774128B2 (ja) 空気調和装置
US8176743B2 (en) Refrigeration device
US8959940B2 (en) Refrigeration cycle apparatus
WO2020121411A1 (ja) 空気調和装置
JP5921714B2 (ja) 空気調和装置
US20220065506A1 (en) Refrigerant cycle apparatus
JP2008064439A (ja) 空気調和装置
WO2008032581A1 (en) Refrigeration device
JP2019143876A (ja) 空気調和システム
AU2015267776A1 (en) Refrigeration apparatus
US11340001B2 (en) Refrigeration cycle apparatus
JP6291774B2 (ja) 冷凍装置
JP5517891B2 (ja) 空気調和装置
JP7360285B2 (ja) 空気調和機
WO2021176597A1 (ja) 空気調和装置、及び空気調和装置の空気排出方法
JP2018063091A (ja) 冷房機能付きヒートポンプ給湯機
JP4105413B2 (ja) マルチ式空気調和機
JP7442741B2 (ja) 空気調和装置
JP7574324B2 (ja) ヒートポンプシステムおよびヒートポンプシステムの動作を制御するための制御装置
KR101203995B1 (ko) 공기조화기 및 그 제상운전방법
JP2021001718A (ja) ヒートポンプ式温水暖房システム
KR102422010B1 (ko) 냉난방 멀티 공기조화기
EP3217118B1 (en) Heat pump apparatus
JP2017083043A (ja) 空気調和システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020923544

Country of ref document: EP

Effective date: 20221004