WO2021175144A1 - 自动增益控制方法、传感器及无线电器件 - Google Patents

自动增益控制方法、传感器及无线电器件 Download PDF

Info

Publication number
WO2021175144A1
WO2021175144A1 PCT/CN2021/077811 CN2021077811W WO2021175144A1 WO 2021175144 A1 WO2021175144 A1 WO 2021175144A1 CN 2021077811 W CN2021077811 W CN 2021077811W WO 2021175144 A1 WO2021175144 A1 WO 2021175144A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
gain
unit
link
test
Prior art date
Application number
PCT/CN2021/077811
Other languages
English (en)
French (fr)
Inventor
朱砚
Original Assignee
加特兰微电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加特兰微电子科技(上海)有限公司 filed Critical 加特兰微电子科技(上海)有限公司
Priority to KR1020227028496A priority Critical patent/KR102691882B1/ko
Priority to US17/908,315 priority patent/US12047209B2/en
Priority to EP21765512.5A priority patent/EP4117243A4/en
Priority to JP2022551272A priority patent/JP7546307B2/ja
Publication of WO2021175144A1 publication Critical patent/WO2021175144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • G01S7/4013Means for monitoring or calibrating of parts of a radar system of transmitters involving adjustment of the transmitted power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3089Control of digital or coded signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter

Definitions

  • This application relates to the technical field of automatic gain control, and in particular to an automatic gain control method, sensor and radio device.
  • the signal received by the sensor (echo signal) will be affected by the shape and size of the reflector (or target) and the distance between the sensor and the sensor. The intensity will continue to change.
  • the signal power that the signal receiving link in the sensor can withstand has a certain threshold range, that is, the maximum signal power that the signal receiving link in the sensor can withstand is certain, so it is regarded as the signal of the echo signal.
  • the power exceeds the above-mentioned maximum signal power the signal received by the receiving link will be distorted, making the sensor unable to correctly detect the target object data, and even making the sensor completely blind.
  • the minimum signal power that can be received by the signal receiving link in the sensor is also certain, and when the signal power of the echo signal is less than the minimum signal power, it will cause the signal received by the receiving link to introduce a large amount of signal power.
  • Quantization Noise Quantization Noise
  • the embodiments of the present application provide an automatic gain control (AGC) method, sensors, and radio devices, which can adjust the gain coefficient of the transmitting and receiving link by using the saturation information of the test echo information to adjust the gain coefficient of the transmitting and receiving link.
  • AGC automatic gain control
  • this application provides an automatic gain control method, which can be applied to the signal transmitting and receiving link of the sensor; in the radio signal transmitted by the signal transmitting and receiving link, the signal frame includes a plurality of consecutive units Signal, the multiple unit signals include N test unit signals and at least one scanning unit signal; the method may include:
  • i and N are positive integers, i ⁇ N-1, 2 ⁇ N;
  • the signal transmitting and receiving link transmits the (i+1)th test unit signal and/or receives the (i+1)th test echo unit signal based on the (i+1)th preamble gain;
  • the scanning gain is used to transmit each scanning unit signal, and/or receive a scanning echo unit signal corresponding to each scanning unit signal.
  • the saturation information of the test echo unit signal and the ADC output signal power of the sensor are used to adjust the link gain of the subsequent transmission and/or reception of the detection signal, thereby ensuring the strength of the subsequent received signal received by the sensor Within the preset range, signal distortion can be effectively avoided to improve the accuracy of detecting target information, and at the same time, the introduction of large quantization noise can be effectively avoided, and the probability of missed detection and false detection can be avoided.
  • the operation method in this embodiment is executed in the digital part of the sensor, the complexity of circuit design can be effectively reduced, the flexibility of automatic gain control can be improved, and the receiving and transmitting of the sensor can work together.
  • test unit signal and the scanning unit signal have the same or similar shapes, so that the strength of the test echo unit signal obtained can be more true to reflect the strength of the receiving link in the scanning echo unit signal.
  • shape between the test unit signal and the scan unit signal can also be set to be slightly different to meet actual needs.
  • the determining the scan gain based on the saturation information of the Nth test echo unit signal and the ADC output signal power may include:
  • the scan gain is set to a default value
  • the value of the scan gain is determined according to the power of the ADC output signal.
  • the scan gain is determined by testing the saturation information of the echo unit signal and the signal power output by the ADC. Specifically, first, it is determined whether the signal transceiver link is linked according to the saturation information of the Nth test echo unit signal. When it is determined that the signal link is saturated, the scan gain is set to the default value; when the signal link is not saturated, the value of the scan gain is determined according to the ADC output signal power, so as to achieve the actual situation of the output signal.
  • the default value is the minimum gain value or the maximum gain value of the signal transmitting and receiving link.
  • the signal transmission and reception link when the signal transmission and reception link is saturated, it indicates that the strength of the received signal is within the preset range, which can ensure the accuracy of determining the target object.
  • the signal transmission and reception link can be
  • the sweep gain is set to the minimum gain value or the maximum gain value, and there is no need to dynamically adjust it according to the power of the current signal.
  • the method may further include:
  • the default value is the maximum value of the signal transmitting and receiving link
  • the ADC output signal is left-shifted, so that when the input signal is too small, the link
  • the ADC output data is left-shifted to ensure the accuracy of the baseband digital processing.
  • the determining the value of the scan gain according to the ADC output signal power may include:
  • the value of the scan gain is determined through a lookup table (LUT) and/or calculation according to the ADC output signal power.
  • obtaining the ADC output signal power in the sensor includes:
  • the ADC output signal power is determined by calculating the average of the squares of the values in the Nth echo unit signal output by the ADC; or
  • the absolute value of the preset order in the effective area of the Nth echo unit signal output by the ADC is used as the ADC output signal power.
  • the largest absolute value or the second largest absolute value in the effective region of the Nth echo unit signal output by the ADC is used as the ADC output signal power.
  • the method may further include:
  • the first test unit signal is transmitted by using the initial gain, and the first test echo unit signal corresponding to the first test unit signal is received.
  • the senor includes at least two signal transmitting and receiving links, and the method further includes:
  • each of the signal transmitting and receiving links transmits and/or receives signals based on their corresponding scanning gains
  • Each of the signal transmission and reception links performs signal transmission and/or reception based on the minimum scanning gain.
  • each signal transmitting and receiving link can perform AGC adjustment independently of each other, so that the scanning gains between different signal transmitting and receiving links may be different, namely
  • Each signal transmitting and receiving link can use the scanning gain obtained after adjustment by the respective AGC to perform subsequent target detection operations without angle measurement requirements; if angle measurement is required, each signal transmitting and receiving link needs to be performed before subsequent target detection operations.
  • First unified scanning gain that is, each signal transmitting and receiving link needs to perform subsequent target detection operations based on the same scanning gain (generally the smallest scanning gain from the acquired scanning gain of each signal transmitting and receiving link) to avoid introducing The system phase difference affects the result of subsequent angle measurement.
  • the final scan gain can be selected before the end of the signal transmission of the last test unit of each signal transmitting and receiving link, or before the end of the signal transmission of each test unit in the link decision, between the signal transmitting and receiving links
  • the gains are kept the same for AGC operation.
  • the method may further include:
  • the N test unit signals are continuously distributed in the signal frame.
  • the N test unit signals are located at the head of the signal frame to form a preamble unit signal
  • the signal transmitting and receiving link transmits each scanning unit signal in the current frame signal according to the scanning gain, and/or receives a scanning echo unit signal corresponding to each scanning unit signal in the current frame signal.
  • the N test unit signals are located at the end of the signal frame
  • the signal transmitting and receiving link transmits each scanning unit signal in the next frame signal according to the scanning gain, and/or receives a scanning echo unit signal corresponding to each scanning unit signal in the next frame signal.
  • acquiring the saturation information of the test echo unit signal corresponding to the test unit signal includes:
  • the method may further include:
  • the method may further include:
  • the value of the scan gain is dynamically adjusted according to the saturation information of the signal transmitting and receiving link.
  • the scanning unit signal may be transmitted with a fixed scanning gain until the scanning unit signal in the frame signal is sent, or a fixed scanning may be used.
  • the gain transmits the scanning unit signal in the subsequent preset frame, and the scanning gain can also be dynamically adjusted in real time based on the actual demand based on the current statistical saturation information.
  • a fixed gain is used for signal transmission and reception.
  • the radio signal is a Frequency Modulation Continuous Wave (FMCW) signal.
  • FMCW Frequency Modulation Continuous Wave
  • the link gain configuration can be obtained by using N test unit signals as preamble test signals for signal strength estimation.
  • the AGC design algorithm can be used Digital circuit or DSP and other digital modules are implemented. Compared with adding feedback for AGC such as radio frequency or analog link, the technical solution of this embodiment can not only effectively improve the real-time performance of gain adjustment, but also the circuit design is simple and the circuit is well designed. In the actual AGC application, the flexibility is high. At the same time, it can adapt to multiple application scenarios by adaptively adjusting the link gain, and realize the cooperative work of receiving and transmitting.
  • the method may further include:
  • each echo signal unit corresponds to a gain configuration table, or all echo signals
  • the units correspond to the same gain configuration table.
  • an embodiment of the present application also provides a sensor, which may include:
  • Signal transmitting and receiving link used to transmit and receive radio signals
  • ADC device for digital signal processing of received radio signals
  • the automatic gain control device is configured to perform automatic gain control on the signal transmitting and receiving link based on the method described in the first aspect of the present application.
  • the senor may be a millimeter wave radar.
  • the automatic gain control device is a digital circuit module or a digital circuit processor (Digital Signal Processor, DSP) in the sensor.
  • DSP Digital Signal Processor
  • an embodiment of the present application also provides a method for automatic gain control, which is applied to a radio device, and the method includes:
  • the transmission signal and/or the reception signal are configured based on the link gain.
  • the corresponding relationship between the signal strength and the link gain can be saved in advance, and after the received signal strength is determined, the link gain configuration can be determined based on the above signal strength and the above corresponding relationship.
  • the automatic gain control method can be implemented with reference to and combined with the content described in other embodiments of this application, and can be combined with actual applications in other embodiments.
  • the relevant technical content set forth in is adaptively adjusted to realize the relevant steps of the automatic gain control in this embodiment.
  • an embodiment of the present application also provides a radio device, which may include:
  • the automatic gain control device is configured to obtain the link gain configuration based on the method according to any one of the embodiments of the fourth aspect of the present application; wherein, the automatic gain control device is further configured to transmit a signal based on the link gain configuration and / Or receive the signal.
  • the radio device in the above embodiment can be a device for communication, or a sensor device for target detection, such as a radar, so as to adjust the signal of the device based on the saturation information of the received test signal and the processing result of the digital circuit.
  • the gain of the receiving link can then enable the subsequent received signal strength for communication and target detection to be within the threshold range of the receiving link, so that the receiver can work in a suitable link gain environment, and at the same time make the corresponding Modules, circuits, etc. are efficient, simple and flexible.
  • the embodiments of the present application also provide a sensor.
  • the sensor may have an automatic gain control stage and a target detection stage when performing target detection for a preset time period (such as one or more frames), that is, in the automatic gain control stage
  • the sensor can adjust the gain coefficient of the transceiver link adaptively to ensure that the echo signal received in the target detection phase is within the preset threshold range, and the two phases can be cycled sequentially during the entire target detection process.
  • the previous part (such as 3 or 5) of a frame signal can be used as a preamble signal for automatic gain control, while the remaining part of the chirp signal can be used as Scan the signal for target detection. That is, the preamble signal transmission stage of each frame signal is the automatic gain control stage, and the subsequent scanning signal transmission stage can be regarded as the automatic gain control stage.
  • the latter part of the chirp signal in the current frame signal can be used as the leading signal of the next frame signal for automatic gain control, and the previous part of the chirp signal of each frame can be used as the scanning signal for target detection.
  • the division of the above-mentioned automatic gain control stage and target detection stage can be based on the different realized functions of the transmitting unit signal (such as chirp signal), or it can be divided based on the time domain, which can be carried out according to actual needs. Adaptive adjustment.
  • the aforementioned sensor may include:
  • Signal transmission link used to transmit radio signals
  • a detector coupled with the signal receiving link, for detecting whether each device is in a saturated state when the signal receiving link receives the echo signal
  • a controller respectively connected to the signal transmitting link, the signal receiving link and the device working state detector
  • the controller is used to adjust the gain coefficient of the signal transmitting link and/or the signal receiving link according to the saturation state information output by the detector.
  • the signal receiving link includes a low noise amplifier LNA, a transimpedance amplifier TIA, a first variable gain amplifier VGA1, and a second variable gain amplifier VGA2, which are connected in sequence, to correct the feedback Signal processing for wave signals;
  • the detector is respectively connected with the output terminal of the transimpedance amplifier, the output terminal of the first variable gain amplifier and/or the output terminal of the second variable gain amplifier to detect the transimpedance amplifier in real time , The saturation state information of the first variable gain amplifier and/or the second variable gain amplifier during the signal processing.
  • the detector includes a first detector, a second detector, and a third detector
  • the first detector is connected to the output terminal of the transimpedance amplifier, and is used to detect and output first saturation state information when the transimpedance amplifier performs the signal processing;
  • the second detector is connected to the output terminal of the first variable gain amplifier, and is used for detecting and outputting second saturation state information when the first variable gain amplifier is performing the signal processing;
  • the third detector is connected to the output terminal of the second variable gain amplifier, and is used to detect and output third saturation state information when the second variable gain amplifier performs the signal processing;
  • the controller adjusts the gain coefficient of the signal transmission link and/or the signal reception link according to the first saturation state information, the second saturation state new message, and the third state saturation information to Realize automatic gain control.
  • the signal receiving link further includes:
  • An analog-to-digital converter respectively, and the output terminal of the second variable gain amplifier, for performing analog-to-digital conversion on the echo signal to output ADC data;
  • the controller is connected to the output terminal of the analog-to-digital converter
  • the controller is also used to obtain the current ADC data output by the analog-to-digital converter and the current saturation state information output by the detector, and according to the current ADC data and the current saturation state information to obtain the scan gain coefficient;
  • the controller is also used to control the signal transmission link and/or the signal reception link to transmit and receive radio signals according to the scan gain coefficient.
  • each of the detectors includes:
  • Sampling and comparison module for sampling and power comparison of the received echo signal
  • a counting module configured to count the number of times the power value of the signal sampled by the sampling comparison module is greater than a preset value
  • the comparison module is used to compare the numerical value output by the unit of the counting modulus with a preset threshold value
  • the comparison module before the end of the signal transmission of each unit in the automatic gain control phase, when the count value of the technical modulus during the signal transmission period of the unit is greater than the preset threshold, the comparison module outputs the saturation state information as being saturated state.
  • the controller is used to obtain the intermediate gain coefficient through table lookup and/or calculation according to the saturation state information output by the detector, and adjust the signal transmission link and /Or the gain coefficient of the signal receiving link is the intermediate gain coefficient for transmitting and/or receiving the next unit signal.
  • FIG. 1 is a flowchart of an automatic gain control method provided by an embodiment of the application
  • Figure 2 is a signal processing framework diagram of a test echo unit provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of an effective interval provided by an embodiment of the application.
  • FIG. 4a is a schematic diagram of a signal transmission structure provided by an embodiment of this application.
  • FIG. 4b is a schematic diagram of another transmission signal structure provided by an embodiment of this application.
  • FIG. 5a is a schematic diagram of the working principle of a radar provided by an embodiment of this application.
  • FIG. 5b is a schematic diagram of a frequency-modulated continuous wave provided by an embodiment of this application.
  • FIG. 6 is a flowchart of another automatic gain control method provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a sensor provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another sensor structure provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a radio device provided by an embodiment of the application.
  • a feedback circuit is mainly added to the radio frequency/analog circuit to adjust the reception gain and/or the transmission gain through the signal fed back by the feedback circuit.
  • this method will not only make the circuit design complicated and less flexible, but also make it difficult for the receiving/transmitting link to work together.
  • the embodiment of the present application provides an automatic gain control method, which can be used for automatic gain adjustment through a digital circuit or a digital signal processor (DSP). Not only is the circuit design simple, but also adaptive adjustment can be made by changing the digital signal. Thus, the flexibility is effectively improved, and the cooperative work between the receiving link and the transmitting link can be realized.
  • DSP digital signal processor
  • the method can be applied to the signal transmitting and receiving links of sensors or other radio devices.
  • the signal may include multiple signal frames, and at least some of the signal frames may include multiple consecutive unit signals, and the multiple unit signals may include N test unit signals and at least one scanning unit signal.
  • the method includes:
  • S101 Acquire saturation information of the i-th test echo unit signal corresponding to the i-th test unit signal.
  • the saturation information of the test echo unit signal corresponding to the test unit signal is acquired.
  • the test echo signal corresponding to the test unit signal refers to the signal received by the transmitting/receiving link after the test unit signal is reflected by the object.
  • the saturation information of the test echo signal may be considered as signal information in the test echo signal that exceeds the signal threshold range that can be received by the receiving link.
  • acquiring the saturation information of the test echo unit signal corresponding to the i-th test unit signal may include: counting the number of times that the signal transmission and reception link has been saturated during the time period between the start of the transmission of the test unit signal and the end of transmission. . Specifically, it is determined whether the number of times that the signal transmission and reception link is saturated is greater than the preset value, if it is greater than the preset value, it can be determined that the signal transmission and reception link is saturated; otherwise, it can be determined that the signal transmission and reception link does not occur. saturation.
  • FIG. 2 is a schematic structural diagram of a saturation detector set for the signal receiving link.
  • the signal receiving link may include a low noise amplifier LNA, a variable gain amplifier VGA1, and a variable gain connected in sequence.
  • the amplifier VGA2 and the echo signal sampling module ADC, etc., and filters as shown in the figure can be set between the low noise amplifier LNA and the variable gain amplifier VGA1, and between the variable gain amplifier VGA1 and the variable gain amplifier VGA2.
  • a transimpedance amplifier TIA (not shown in the figure) can also be arranged between the low noise amplifier LNA and the filter; correspondingly, the detector shown in the figure can be connected to the aforementioned low noise amplifier LNA and transimpedance amplifier TIA.
  • variable gain amplifier VGA1 and/or variable gain amplifier VGA2 to detect low noise amplifier LNA, transimpedance amplifier TIA, variable gain amplifier VGA1 and/or variable gain amplifier VGA2 in the automatic gain control stage Whether the wave signal is in saturation during signal processing.
  • one or more detectors may be used to detect the saturation state of each device in the above-mentioned signal receiving link, or it may be used to detect the saturation state of only part of the devices.
  • the first detector, the second detector, and the third detector can be set separately to detect the saturation state of the low noise amplifier (or transimpedance amplifier), the variable gain amplifier VGA1 and the variable gain amplifier VGA2 respectively ( Figure Not shown in ), and can be combined with the saturation state information data output by the three detectors to perform automatic gain control, and combined with the ADC output data to obtain the scanning gain coefficient of the subsequent stage.
  • each of the above-mentioned detectors may include a digital circuit-based sampling and comparison module, a counter, and a comparator, etc., that is, the sampling and comparison module may be used to sample the received echo signal, and when the power of the sampling signal is When it is outside the preset threshold range, it is determined that the corresponding device is in a saturated state at this time, and the counter counts the saturation times of the sampling comparison module output during the signal transmission phase of a test unit, and the comparator compares the count value output by the counter with the preset value.
  • a threshold is set for comparison, and when the count value is greater than a preset threshold, it is determined that the corresponding device is in a saturated state.
  • the above-mentioned saturation count can be performed in a preset time period by setting a detector.
  • the saturation information detector is turned on, and after the echo signal received by the signal receiving channel passes through the low-noise amplifier, sampling is performed at the preset position on the link, and It is determined whether the received power of the echo signals at various places is outside the preset power threshold range at this time, and if it is outside the preset power threshold range, the counter is incremented by 1.
  • the above-mentioned sampling and judgment are also performed respectively.
  • the value of the counter is compared with the preset threshold, and if it is greater than or equal to the preset threshold, it is determined that the received test echo signal is saturated, otherwise it is not saturated.
  • a frame signal including N test unit signals and at least one scanning unit signal can be obtained in the following manner:
  • N test unit signals are added in front of the M scanning unit signals to serve as preamble signals, that is, one frame of signal includes N+M signals.
  • the unit signal, N test unit signals and M scanning unit signals are continuously transmitted as a signal frame.
  • the types of the added N test unit signals may be the same as or different from the types of the M scan unit signals.
  • the various parameters of the added test unit signal can be kept consistent with the various parameters of the scanning unit signal, and the values of M and N can be dynamically allocated according to actual needs to achieve real-time and flexible adjustment. This is not limited.
  • M and N can be made to satisfy the relationship 2 ⁇ N ⁇ (M+N)/2, and M and N are integers.
  • the other is to divide the multiple unit signals in the signal frame into N test unit signals and at least one scanning unit signal based on the number of unit signals. For example, acquiring a signal frame including X unit signals, defining X1 unit signals in front of the X unit signals as test unit signals, and defining the remaining X2 unit signals as scanning unit signals.
  • X1 and X2 can be made to satisfy the relational expressions 2 ⁇ X1 ⁇ X/2, 2 ⁇ X2, and X, X1, and X2 are all integers.
  • the unit signals in the signal frame are divided into test unit signals and scan unit signals.
  • the period of the signal frame is T
  • each unit signal in the first time period T1 in the period T is defined as a test unit signal
  • each unit signal in the remaining time period T2 is defined as a scanning unit signal to form a transmission signal.
  • T T1+T2, 2 ⁇ T1 ⁇ T/2
  • each time period includes at least two unit signals. That is, by dividing the signal frame into different time periods to determine the test unit signal and the scanning unit signal, for example, each unit signal in the time period before the time can be determined as the test unit signal, and the time period after the time can be determined as the test unit signal. The signal of each unit is determined as the scanning unit signal.
  • test unit signal used for gain estimation is generally not used for target object detection, and the shape of the test unit signal used for gain estimation is the same or similar to that of the scanning unit signal used for target object detection, so that The test unit signal for gain estimation more truly reflects the strength of the scanning unit signal used to detect the target object on the receiving link.
  • the controller can determine whether there is saturation information for the i-th test echo unit signal in the following way: the controller can sample the i-th test echo unit signal multiple times within a valid time to obtain multiple sampling points; determine each Whether link saturation occurs at the sampling point; when link saturation occurs at several preset sampling points, or when the number of sampling points at which link saturation occurs is greater than the preset threshold, it is determined that the i-th test echo unit signal is saturated information. Specifically, it is determined whether the power of the sampling point exceeds the power threshold, if it exceeds, it is determined that the sampling point has link saturation, and the number of sampling points where the link saturation occurs is counted. If the number of sampling points where the link saturation occurs meets the predetermined Assuming the conditions, it is determined that the signal of the i-th test echo unit is saturated.
  • the signal transmitting and receiving link can use the initial gain to transmit the first test unit signal, and the signal receiving link uses the initial gain to receive the first test unit signal Corresponding to the first test echo unit signal.
  • the initial gain includes the initial transmission gain and the initial reception gain, and the initial gain can be pre-built in the system based on application scenarios and data analysis.
  • S102 Determine the (i+1)th preamble gain according to the saturation information of at least one test echo unit signal in the previous i test echo unit signal.
  • the controller After the controller obtains the saturation information of the test echo signal corresponding to the currently transmitted test unit signal, it determines the i-th one according to the saturation information of at least one test echo unit signal among all the obtained test echo unit signals. +1 preamble gain.
  • the controller determines the i+1th preamble gain according to the saturation information of at least one test echo unit signal in the previous i test echo unit signals, which can be obtained in the following manner, specifically:
  • the controller selects part of the test echo unit signals from the acquired first i test echo unit signals, and calculates and/or looks up the table to determine the i+1th preamble gain according to the saturation information of the partial test echo unit signals.
  • the controller searches for the preamble gain corresponding to the saturation information according to the saturation information of the partial test echo unit signal. That is, the controller pre-stores the corresponding table of the saturation information and the lead gain.
  • the controller When acquiring the saturation information of the first i test echo unit signals, it searches for the corresponding lead gain according to the saturation information of the partial test echo unit signals and the corresponding table.
  • the controller determines the i+1th preamble gain through calculation and/or table look-up according to the saturation information of all test echo unit signals. That is, when acquiring the saturation information of the i-th test echo unit signal, the controller determines the (i+1)th preamble gain according to the saturation information of each test echo unit signal acquired before and currently. Specifically, the controller may calculate the i+1th preamble gain according to the acquired saturation information of all test echo unit signals, or the controller may determine the first gain by looking up the table according to the acquired saturation information of all test echo unit signals. i+1 preamble gain.
  • a gain configuration table is pre-stored in the controller, and the (i+1)th preamble gain is obtained by looking up the table based on the gain configuration table.
  • each test echo unit signal may correspond to a gain configuration table, or all test echo unit signals correspond to the same gain configuration table.
  • the controller can calculate the average saturation information according to the saturation information of all test echo unit signals, and then calculate or look up the table to obtain the i+1th preamble gain according to the average saturation information.
  • the controller can also determine the maximum saturation information or the minimum saturation information from the saturation information of all test echo unit signals, and then calculate the i+1th preamble gain based on the maximum saturation information or the minimum saturation information.
  • the controller looks up the table according to the maximum saturation information or the minimum saturation information to obtain the (i+1)th preamble gain.
  • the controller calculates the preamble gain according to the saturation information of the test echo unit signal, which can be determined by the controller according to the saturation information of the test echo unit signal and the maximum value of the test echo unit signal that can be received by the signal transmitting and receiving link. Leading gain.
  • the i+1th preamble gain is used to transmit the i+1th test unit signal and/or receive the i+1th echo unit signal. That is, the preamble gain determined at the current moment is used to transmit the next test unit signal and/or receive the next test echo unit signal. Repeat S102-S103 until the Nth test unit signal is transmitted and/or the Nth test echo unit signal is received according to the N-1th preamble gain.
  • the gain of the signal transmitting and receiving link you can adjust only the gain of the transmit link, or only the gain of the receive link, or adjust the transmit gain and the receive gain at the same time, or adjust first After receiving the gain of the link, adjust the gain of the transmitting link.
  • the priority of adjusting the receiving gain can be set higher than the priority of adjusting the transmitting gain according to actual needs.
  • the preamble gain adjusted by the saturation information of the first N1 test echo unit signals is the gain of the receiving link, and the test echo unit signal is received by using the gain of the receiving link; the N1+1 to N-1th tests are used
  • the preamble gain adjusted by the saturation information of the echo unit signal is the gain of the transmission link, and the gain of the transmission link is used to transmit the next test unit signal.
  • N1 is an integer, and 2 ⁇ N1 ⁇ N-1.
  • S104 Acquire the saturation information of the signal of the Nth test echo unit and the signal power output by the analog-to-digital converter ADC in the current sensor.
  • the saturation information of the N-th test echo unit signal corresponding to the N-th test unit signal is obtained; at the same time, the current time ADC for the N-th test echo is obtained The output signal power of the unit signal.
  • S105 Determine the scan gain according to the saturation information of the Nth test echo unit signal and the ADC output signal power.
  • the scan gain can be set to a default value. That is, when the signal transmitting and receiving link is still saturated at this time, it indicates that the strength of the test echo unit signal received by the current receiving link still cannot be used to accurately detect the target object, so the scanning gain still needs to be adjusted. It is necessary to directly set the transmit link and/or receive link to the default value.
  • the default value can be the maximum gain value or the minimum gain value of the channel transmitting and receiving link.
  • the signal output by the analog-to-digital converter ADC may be shifted right or left, and then the scan gain may be determined according to the signal output power of the left/right shift operation. For example, when the scanning gain of the signal transmitting and receiving link has been adjusted to the maximum gain value, but the strength of the received echo unit signal is still small at this time, the signal output by the analog-to-digital converter can be shifted to the left, thereby Increase the output signal power to ensure processing accuracy.
  • the scanning gain can be determined according to the ADC output signal power.
  • the controller obtains the output signal power of the Nth test echo unit signal, it can calculate the scan gain according to the signal threshold (maximum and minimum) that can be received by the signal transmitting and receiving link and the output signal power, Therefore, it is ensured that the strength of the received echo unit signal will not exceed the maximum reception threshold and will not be less than the minimum reception threshold, thereby ensuring the accuracy of detection.
  • the controller when it obtains the output signal power of the Nth test echo unit signal, it can also obtain the scan gain through a lookup table (LUT) method according to the output signal power, so as to use the scan gain to transmit the scan unit signal Or receive the scan echo unit signal, so as to ensure that the strength of the received scan echo unit signal does not exceed the maximum reception threshold and is not less than the minimum reception threshold, so as to ensure the accuracy of subsequent detection.
  • LUT lookup table
  • the gain configuration table is pre-stored in the controller, and the scan gain is obtained by looking up the table based on the gain configuration table, which can further improve the efficiency of system operation.
  • each test echo unit signal may correspond to a gain configuration table, or all test echo unit signals correspond to the same gain configuration table.
  • obtaining the ADC output signal power in the sensor can be obtained in the following manner:
  • One is to determine the ADC output signal power by calculating the average of the squares of each value in the Nth test echo unit signal output by the ADC. That is, the Nth test echo unit signal is sampled, the amplitude corresponding to each sampling point is obtained, the square of the amplitude of each sampling point is added, and the average value is obtained by dividing by the number of sampling points, and the average value is taken as ADC output signal power.
  • the other is to use the absolute value of the preset order in the effective area of the Nth test echo unit signal output by the ADC as the ADC output signal power. That is, for the acquired Nth test echo unit signal, first determine the effective area of the Nth test echo unit signal. For example, as shown in Figure 3, when the rising edge of the chirp signal is valid, the Nth test echo can be A part or all of the area between the rising edge and the falling edge of the unit signal is determined as the effective area, and the absolute value corresponding to some points in the effective area is determined as the ADC output signal power.
  • the absolute value of the preset order may be the largest absolute value or the second largest absolute value. That is, the square of the largest absolute value in the effective area is taken as the ADC output signal power, or the square of the second largest absolute value in the effective area is taken as the ADC output signal power.
  • S106 Use the scan gain to transmit each scan unit signal, and/or receive the scan echo unit signal corresponding to each scan unit signal.
  • the scan gain is used to transmit subsequent scan unit signals, and/or the scan gain is used to receive each scan unit signal Corresponding scan echo unit signal.
  • the scanning gain may include the transmission gain and/or the reception gain.
  • the transmission link unit uses the transmission gain to transmit the signals of each scanning unit.
  • the receiving link unit uses the receiving gain to receive the scanning echo unit signal corresponding to each scanning unit signal.
  • the transmission link unit uses the transmission gain to transmit each scanning unit signal, and the reception link unit uses the reception gain to receive the echo unit signal corresponding to each scanning unit signal.
  • the saturation information of each signal transmitting and receiving link can also be counted, so as to dynamically adjust the value of the scanning gain according to the saturation information of the signal transmitting and receiving link, so that The signal transmitting and receiving link can dynamically adjust the strength of the received scanning echo unit signal, thereby ensuring the accuracy of locating the target object.
  • the saturation information of each signal transmitting and receiving link please refer to the related description of obtaining the saturation information of the test echo unit signal.
  • the scanning gain corresponding to each signal transmitting and receiving link is determined.
  • transmitting the scanning unit signal or receiving the scanning echo unit signal use the scanning gain corresponding to the signal transmitting and receiving link to transmit the scanning unit signal of the signal transmitting and receiving link, and/or the scanning unit that receives the signal transmitting and receiving link
  • the signal corresponding to the scan echo unit signal can independently determine its corresponding scanning gain.
  • the transmitting/receiving link uses its own corresponding scanning gain to transmit Scan the unit signal, or use its corresponding scan gain to receive the scan echo unit signal.
  • the scanning gains corresponding to each transmitting and receiving link are the same. That is, when the sensor is used for not only distance measurement, but also angle measurement, each transmitting and receiving link uses the target scanning gain to transmit each scanning unit signal, and/or receive the echo unit signal corresponding to the scanning unit signal.
  • angle measurement may refer to the use of a sensor to measure the deflection angle of the target object relative to the sensor.
  • the target gain can be determined by the scanning gain corresponding to each signal transmitting and receiving link. For example, the scanning gain with the smallest value among the scanning gains corresponding to each signal transmitting and receiving link is determined as the target scanning gain, so as to ensure that each signal transmitting and receiving link The strength of the received scan echo unit signal will not exceed the receiving threshold.
  • each signal transmission and reception link can perform AGC adjustment independently of each other, so that the scanning gains between different signal transmission and reception links may be different. That is, each signal transmitting and receiving link can use the scanning gain obtained after the respective AGC adjustment to perform subsequent target detection operations without angle measurement requirements; if angle measurement is required, each signal transmitting and receiving link is required to perform subsequent target detection operations Before, the scanning gain is unified first, that is, each signal transmitting and receiving link needs to perform subsequent target detection operations based on the same scanning gain (generally the smallest scanning gain from the acquired scanning gain of each signal transmitting and receiving link) to avoid Introduce the system phase difference, which affects the result of subsequent angle measurement.
  • the final scan gain can be selected before the end of the signal transmission of the last test unit of each signal transmitting and receiving link, or before the end of the signal transmission of each test unit in the link decision, between the signal transmitting and receiving links
  • the gains are kept the same for AGC operation.
  • N test unit signals are located at the head of the signal frame to form a preamble unit signal.
  • the signal transmitting and receiving link transmits each scanning unit signal in the current frame signal according to the scanning gain, and/or receives the scanning echo unit signal corresponding to each scanning unit signal in the current frame signal.
  • the signal frame includes N test unit signals and M scan unit signals, where N test unit signals are located before M scan unit signals as the preamble signal of the current frame, and the N+M unit signals It is a continuous signal.
  • N test unit signals are located at the end of the signal frame; the signal transmitting and receiving link transmits each scanning unit signal in the next frame signal according to the scanning gain, and/or receives the next frame signal The scan echo unit signal corresponding to each scan unit signal in.
  • the signal frame 1 that is, the transmission signal 1
  • the signal frame 2 that is, the transmission signal 2
  • the scan gain determined according to the Nth test echo unit signal is used to guide the signal transmission link to receive the scan echo unit signal corresponding to the scan unit signal in the signal frame 2 (that is, the transmission signal 2), and/or send Scan unit signal in signal frame 2.
  • test unit signal can be used to estimate the signal strength to adjust the gain on the transmitting and receiving link to ensure that the strength of the received test echo signal is within the preset range , Thereby ensuring the accuracy of target detection.
  • the saturation information of the test echo signal corresponding to the currently transmitted test unit signal is acquired, and the preamble gain is determined according to the saturation information of the received at least one test echo signal. Then, the preamble gain is used to transmit the next test unit signal, and/or the preamble gain is used to receive the test echo unit signal corresponding to the next test unit signal.
  • the saturation information of the test echo signal corresponding to the next test unit signal obtains the saturation information of the test echo signal corresponding to the next test unit signal, and use the saturation information to determine the preamble gain, and use the preamble gain to transmit the next test unit signal and/or Receive the test echo signal corresponding to the test unit signal at the next moment, and loop in turn until the N-1th test unit signal is reached.
  • the saturation information of the test echo signal corresponding to the Nth test unit signal and the output signal power of the ADC for the Nth test echo unit signal are acquired, and determined according to the saturation information and output signal power Scanning gain, to use the scanning gain to transmit scanning unit signals and/or to receive scanning echo unit signals corresponding to the scanning unit signals. It can be seen that through the method provided in the embodiments of the present application, the gain of the transmitting and receiving link can be determined in real time, so as to adjust the transmit power of the transmitted signal and/or the received power of the echo signal, thereby ensuring that the strength of the echo signal is at the preset reception level. Within the range, improve the accuracy of detecting the target object.
  • the saturation information of the test echo unit signal and the ADC output signal power of the sensor are used to adjust the link gain of the subsequent transmission and/or reception of the detection signal, thereby ensuring the subsequent reception of the received signal. If the intensity is within the preset range, it can effectively avoid signal distortion to improve the accuracy of detecting target information, while also effectively avoiding the introduction of large quantization noise, and avoiding the probability of missed detection and false detection. In addition, because the operation method in this embodiment can be executed in the digital part of the device, it can effectively reduce the complexity of circuit design, improve the flexibility of automatic gain control, and enable the sensor's receiving and transmitting to work together. .
  • FMCW Frequency Modulated Continuous Wave
  • the radar system may include: a transmitting antenna, a receiving antenna, a power divider, a power amplifier and a mixer consisting of a radio frequency front end;
  • the back-end processing part may include a triangle wave generator, VCO , AD sampling and signal processing modules.
  • the triangular wave generator provides the required modulation signal, and is controlled by a Voltage-Controlled Oscillator (VCO) to generate a continuous high-frequency constant-amplitude wave whose frequency changes in a triangle in time.
  • VCO Voltage-Controlled Oscillator
  • the received echo signal will have changes in parameters such as frequency and phase compared to the local oscillator signal, which is based on the mixer.
  • the beat signal is output.
  • the beat signal is filtered, amplified and sampled by AD, it performs such as two-dimensional fast Fourier transform (2D-FFT) and constant false alarm rate (2D-FFT).
  • Digital signal processing such as Constant False-Alarm Rate (CFAR) and Direction Of Arrival (DOA) are used to obtain information such as the distance, speed and angle of the target relative to the sensor, thereby realizing target detection.
  • the frequency modulated continuous wave FMCW is composed of multiple chirp signals (chirp), and the strength of the echo chirp signal can be processed based on the digital signal processing method to obtain the link through the content related to the automatic gain control method of this application.
  • Gain configuration and then adaptively adjust the strength of the transmitted chirp signal and/or the strength of the echo chirp signal according to the link gain configuration to ensure that the strength of the received echo chirp signal is within the preset receiving range, and then Ensure the accuracy of target detection.
  • a predetermined number of chirp signals in the frame signal of the frequency modulated continuous wave can be used to estimate the signal strength, thereby determining the corresponding gain of the transmitting link/receiving link.
  • the FM continuous wave waveform, the chirp signal on the left side of the dotted line is used for signal strength estimation, that is, automatic gain control (AGC) is performed, and the chirp signal on the right side of the dotted line is used for the target object Detection.
  • AGC automatic gain control
  • the waveform of the chirp continuous wave in FIG. 5b is only an example, and the specific waveform presentation form can be determined according to actual conditions.
  • the chirp signal used for signal strength estimation is generally not used for target object detection, and the chirp signal used for signal strength estimation is the same or similar in shape to the chirp signal used for target object detection, otherwise it is used for The chirp signal estimated by the signal strength will not be able to truly reflect the strength of the chirp used to detect the target object on the receiving link.
  • an embodiment of the present application also provides an automatic gain control method. See FIG. 6, which is a flowchart of an automatic gain control method provided by an embodiment of the present application. As shown in FIG. 6, the method may include:
  • S601 Obtain the strength of the signal received by the radio device.
  • S602 Perform digital signal processing on the strength of the signal received by the radio device, and obtain the link gain configuration by looking up the table.
  • the processed signal is obtained, and the strength of the processed signal is obtained, and then a table look-up method is performed according to the signal strength Get the link gain configuration.
  • S603 Configure the transmit signal and/or receive signal based on the link gain.
  • the link gain configuration can be used to transmit or receive signals, so that the strength of the echo signal received by the radio device meets a preset condition, thereby confirming the accuracy of detecting the target object.
  • the embodiment of the present application also provides a sensor.
  • the sensor 700 may include a signal transmitting and receiving chain 701, an analog-to-digital converter 702 and an automatic gain control device 702.
  • the signal transmitting and receiving link 701 is used to transmit and receive radio signals.
  • the signal transmitting and receiving link 701 reference may be made to the related description in the method shown in FIG. 1.
  • the analog-to-digital converter 702 is used to perform digital signal processing on the received radio signal. Specifically, digital signal processing is performed on the received test echo unit signal or scan echo unit signal.
  • analog-to-digital converter 702 refer to the related description in the method shown in FIG. 1.
  • the automatic gain control device 703 is used to control the gain of the signal transmitting and receiving link in the method shown in the method embodiment of the present application (as shown in FIG. 1 and FIG. 6).
  • the automatic gain device 703 may be a digital circuit module or a digital circuit processor in the sensor.
  • the automatic gain control device 703 is a digital circuit module or a digital circuit processor in the sensor.
  • the sensor may be a millimeter wave radar, and the radar may include a receiving antenna 801, a processor 802, and a transmitting antenna 803 as shown in FIG. 8, where the processor 802 is connected to the receiving antenna 801 and the transmitting antenna 803, respectively.
  • the receiving antenna 801 is used to receive test echo unit signals or scan echo unit signals.
  • the processor 802 is configured to obtain the strength of the test echo unit signal, and perform digital signal processing on the strength of the test echo unit signal to obtain the link gain;
  • the transmitting antenna 803 is used to transmit the subsequent transmitting test unit signal or scanning unit signal by using the link gain;
  • the receiving antenna 801 is also used to receive the test echo unit signal corresponding to the subsequent transmission test unit signal or the scan echo unit signal corresponding to the scan unit signal by using the link gain configuration.
  • the radar may further include: an analog-to-digital converter 804, the analog-to-digital converter 804 is located between the receiving antenna 801 and the processor 802; Analog to digital conversion.
  • the analog-to-digital converter performs analog-to-digital conversion of the test echo unit signal received by the receiving antenna, and outputs the converted test echo unit signal, and the processor obtains the strength of the converted test echo unit signal . That is, through the analog-to-digital conversion operation, the signal strength of the digital test echo unit is estimated, and the complexity of the calculation is simplified.
  • the radar further includes an amplifier 805, which may be located between the receiving antenna 801 and the processor 802, specifically, the amplifier 805 is located between the receiving antenna 801 and the analog-to-digital converter 804.
  • the amplifier 805 is used to amplify the test echo unit signal.
  • the radar further includes a detector 806 for determining whether the test echo unit signal is saturated according to the signal power of each sampling point in the echo signal.
  • the detector 806 includes a comparator and a counter.
  • the comparator is used to compare the signal power of each sampling point with a preset power threshold.
  • the counter is used to count the number of sampling points whose signal power is not less than the preset power threshold.
  • the embodiment of the present application also provides a radio device.
  • the radio device 900 may include a signal receiving link 901 and an automatic control device 902.
  • the signal link 901 is used to transmit and receive signals.
  • the automatic control device 902 is configured to obtain a link gain configuration, and transmit signals and/or receive signals according to the link gain configuration.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B , Where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the steps of the method or algorithm described in the embodiments disclosed in this document can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Circuits Of Receivers In General (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

一种自动增益控制方法、传感器(700)及无线电器件(900),通过利用测试回波单元的饱和信息来调整发收链路的增益系数,从而可确保所接收的用于目标探测的信号功率位于额定阈值范围内,进而提升传感器(700)目标检测精准度,避免产生漏检、误检甚至致盲等缺陷。

Description

自动增益控制方法、传感器及无线电器件
本申请要求于2020年03月02日提交中国专利局、申请号为202010136325.8、发明名称为“一种雷达信号的增益控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动增益控制技术领域,具体涉及一种自动增益控制方法、传感器及无线电器件。
背景技术
在各种传感器(例如雷达)应用中,由于受到反射物(或目标物)的形状、尺寸及其与传感器之间的距离等因素的影响,会使得传感器所接收的信号(即回波信号)的强度会不断的发生变化。
但是,由于传感器中信号的接收链路所能承受的信号功率是有一定的阈值范围的,即传感器中信号的接收链路所能承受的最大信号功率是一定的,故而当回波信号的信号功率超过上述的最大信号功率时,就会使得接收链路所接收的信号产生畸变,从而使得传感器无法正确探测出目标物体数据,甚至会使得传感器完全至盲。同样,传感器中信号的接收链路所能接收到的最小信号功率也是一定的,而当回波信号的信号功率小于该最小信号功率时,就会使得接收链路所接收的信号中引入较大的量化噪声(Quantization Noise),从而会使得传感器发生漏检和误检等的问题。
发明内容
有鉴于此,本申请实施例提供了一种自动增益控制(Automatic Gain Control,AGC)方法、传感器及无线电器件,通过利用测试回波信息的饱和信息来调整发收链路的增益系数,从而可确保所接收到的用于目标探测的信号功率位于预设阈值范围内,进而提升传感器目标检测的精准度,避免产生漏检、误检甚至致盲等缺陷。
为解决上述问题,本申请实施例提供的技术方案如下:
第一方面,本申请提供了一种自动增益控制方法,可应用于传感器的信号发收链路上;在所述信号发收链路所发射的无线电信号中,信号帧包括连续的多个单元信号,所述多个单元信号包括N个测试单元信号和至少一个扫描单元信号;所述方法可包括:
获取与第i测试单元信号所对应的第i测试回波单元信号的饱和信息;i、N为正整数,i≤N-1,2≤N;
根据前i个测试回波单元信号中至少一个测试回波单元信号的饱和信息来确定第i+1前导增益;
所述信号发收链路基于所述第i+1前导增益,发射第i+1测试单元信号和/或接收第i+1测试回波单元信号;
依次循环直至i=N-1;
获取第N测试回波单元信号的饱和信息和此时所述传感器中模数转换器(Analog-to-Digital Convertor,ADC)输出信号功率;
根据所述第N测试回波单元信号的饱和信息和所述ADC输出信号功率确定扫描增益;以及
利用所述扫描增益发射各所述扫描单元信号,和/或接收各所述扫描单元信号对应的扫描回波单元信号。
在该实施例中,通过利用测试回波单元信号的饱和信息以及传感器的ADC输出信号功率,来调整后续发射和/或接收探测信号的链路增益,从而确保传感器后续所接收的接收信号的强度在预设范围内,能够有效的避免产生信号畸变,以提升探测目标信息的精确性,同时还能有效避免引入较大的量化噪声,避免发生漏检及误检的概率。
另外,由于本实施例中的操作方法是在传感器的数字部分中执行的,进而还能有效的降低电路设计的复杂度,提升自动增益控制的灵活性,且能使得传感器的接收发射协同工作。
需要说明的是,上述的测试单元信号与扫描单元信号之间的形状相同或类似,以使得所获得的测试回波单元信号的强度能够比较真实的反应接收链路在扫描回波单元信号的强度。而在一些特殊的应用场景下,也可将测试单元信号与扫描单元信号之间的形状设置为略有不同,以满足实际的需求。
在一个可选的实施例中,所述根据所述第N测试回波单元信号的饱和信息和所述ADC输出信号功率确定扫描增益,可包括:
根据所述第N测试回波单元信号的饱和信息判断所述信号发收链路是否发生链路饱和;
若发生所述链路饱和,则将所述扫描增益设置为默认值;
否则,根据所述ADC输出信号功率确定所述扫描增益的值。
在该实施例中,通过测试回波单元信号的饱和信息和ADC所输出的信号功率来确定扫描增益,具体地,首先根据第N测试回波单元信号的饱和信息确定信号收发链路是否发生链路饱和,在确定信号链路发生饱和时,将扫描增益设置为默认值;在信号链路未发生饱和时,则根据ADC输出信号功率确定扫描增益的值,从而实现根据输出信号的实际情况进行实时调整,以保证收发链路可以按照该扫描增益发送扫描单元信号,或按照该扫描增益接收扫描单元信号对应的扫描回波单元信号,从而保证所发送的扫描单元信号可以检测目标物体,以及保证可以通过所接收的扫描回波单元信号确定目标物体的距离等信息。
在一个可选的实施例中,所述默认值为所述信号发收链路的最小增益值或最大增益值。
在该实施例中,当信号发收链路发生链路饱和时,表明接收信号的强度在预设范围内,可以保证确定目标物体的准确性,该情况下,可以将信号发收链路的扫描增益设置为最小增益值或最大增益值,无需根据当前信号的功率进行动态调整。
在一个可选的实施例中,所述方法还可包括:
所述默认值为所述信号发收链路的最大值时,若是ADC的输入信号小于预设值,则对所述ADC输出信号进行左移位操作,以在输入信号过小,而链路增益又已调整最大时,通 过将ADC输出数据进行左移位操作,进而来保证基带数字处理的精度。
在一个可选的实施例中,所述根据所述ADC输出信号功率确定所述扫描增益的值,可包括:
根据所述ADC输出信号功率通过查找表(Look up Table,LUT)和/或计算来确定所述扫描增益的值。
在一个可选的实施例中,获取所述传感器中ADC输出信号功率,包括:
通过计算所述ADC输出的第N回波单元信号中各个值的平方的平均值来确定所述ADC输出信号功率;或者
将所述ADC输出的第N回波单元信号的有效区域中预设次序的绝对值作为所述ADC输出信号功率。
在一个可选的实施例中,将所述ADC输出的第N回波单元信号的有效区域中最大绝对值或次大绝对值作为所述ADC输出信号功率。
在一个可选的实施例中,所述方法还可包括:
利用初始增益发射第1个测试单元信号,以及接收与所述第1个测试单元信号对应的第1测试回波单元信号。
在一个可选的实施例中,所述传感器包括至少两个信号发收链路,所述方法还包括:
针对任一信号发收链路,确定每个所述信号发收链路各自对应的扫描增益;
其中,各所述信号发收链路基于各自对应的扫描增益进行信号的发射和/或接收;或者
各所述信号发收链路基于最小的扫描增益进行信号的发射和/或接收。
在本实施例中,针对至少两个信号发收链路的传感器,各个信号发收链路可相互独立进行AGC调整,这样不同的信号发收链路之间的扫描增益可能会有不同,即各信号发收链路可采用各自AGC调整后获得的扫描增益,进行后续无角度测量需求的目标探测操作;若是对需要角度测量,则需要各信号发收链路在进行后续的目标探测操作前,先统一扫描增益,即各信号发收链路需要基于相同扫描增益(一般为从所获取的各信号发收链路的扫描增益中最小的扫描增益)进行后续的目标探测操作,以避免引入系统相位差,影响后续角度测量的结果。
具体的,可在各信号发收链路的最后一个测试单元信号发射结束之前选择最终的扫描增益,也可在链路决策的每个测试单元信号发射结束前,各信号发收链路之间的增益均保持一致来进行AGC操作。
在一个可选的实施例中,所述方法还可包括:
基于单元信号的个数或者所述信号帧的周期时长,将信号帧中的所述多个信号帧划分为所述N个测试单元信号和所述至少一个扫描单元信号;或者
基于原始信号帧的基础上,通过增加所述N个测试单元信号,以形成包含所述N个测试单元信号和所述至少一个扫描单元信号的信号帧;
其中,所述N个测试单元信号在所述信号帧中连续分布。
在一个可选的实施例中,针对任一信号帧,所述N个测试单元信号位于该信号帧的头部以形成前导单元信号;
其中,所述信号发收链路根据所述扫描增益发射当前帧信号中各所述扫描单元信号,和/或接收当前帧信号中各所述扫描单元信号对应的扫描回波单元信号。
在一个可选的实施例中,针对任一信号帧,所述N个测试单元信号位于该信号帧的尾部;
其中,所述信号发收链路根据所述扫描增益发射下一帧信号中各所述扫描单元信号,和/或接收下一帧信号中各所述扫描单元信号对应的扫描回波单元信号。
在一个可选的实施例中,针对任一测试单元信号,获取该测试单元信号对应的测试回波单元信号的饱和信息,包括:
在该测试单元信号开始发射与发射结束之间的时间段内,统计所述信号发收链路发生链路饱和的次数。
在一个可选的实施例中,所述方法还可包括:
判断在所述测试单元信号开始发射与发射结束之间的时间段内,所述信号发收链路发生链路饱和的次数是否大于预设值;
若大于预设值,则定义发生链路饱和;
否则,则定义未发生链路饱和。
在一个可选的实施例中,所述方法还可包括:
在发射各所述扫描单元信号时,统计所述信号发收链路的饱和信息;以及
根据所述信号发收链路的饱和信息动态调整所述扫描增益的值。
需要说明的是,在所述信号发收链路发射所述扫描单元信号时,可采用固定的扫描增益发射所述扫描单元信号直至该帧信号中扫描单元信号发送完毕,也可采用固定的扫描增益发射后续预设帧中的所述扫描单元信号,同样也可以基于实际需求基于当前统计的饱和信息对扫描增益进行实时的动态调整。但是,在同一个单元信号采用固定的增益进行信号的发收操作。
在一个可选的实施例中,所述无线电信号为调频连续波信号(Frequency Modulation Continuous Wave,FMCW)。
由于FMCW波是由多个连续的单元信号(chirp,啁啾)构成的帧结构,通过利用N个测试单元信号作为前导测试信号进行信号强度估计来获得链路增益配置,同时AGC设计算法可利用数字电路或DSP等数字模块实现,相较于在诸如射频或模拟链路增加反馈进行AGC,本实施例的技术方案,不仅可有效提升增益调节的实时性,且电路设计简单,设计好的电路在实际AGC应用中的灵活性较高,同时也可通过自适应调整链路增益,来适配多种应用场景,实现接收发射的协同工作。
在一个可选的实施例中,所述方法还可包括:
预设增益配置表;
基于所述增益配置表通过查表方式获取所述第i+1前导增益和/或所述扫描增益;
其中,各回波信号单元分别对应一个增益配置表,或者,所有回波信号
单元对应同一个增益配置表。
第二方面,本申请实施例还提供了一种传感器,可包括:
信号发收链路,用于发射和接收无线电信号;
ADC装置,用于对所接收的无线电信号进行数字信号处理;以及
自动增益控制装置,用于基于如本申请第一方面所述的方法对所述信号发收链路进行自动增益控制。
在一个可选的实施例中,所述传感器可为毫米波雷达。
在一个可选的实施例中,所述自动增益控制装置为所述传感器中的数字电路模块或者数字电路处理器(Digital Signal Processor,DSP)。
第三方面,本申请实施例还提供了一种自动增益控制的方法,应用于无线电器件中,所述方法包括:
获取所述无线电器件所接收信号的强度;
对所述无线电器件所接收信号的强度进行数字信号处理,并通过查表方式获取链路增益配置;
基于所述链路增益配置发射信号和/或接收信号。
在该实施例中,可以预先保存信号强度与链路增益之间的对应关系,当确定出所接收的信号的强度后,可以通过上述信号强度以及上述对应关系确定链路增益配置。
需要注意的是,在本实施例中,在不冲突的前提下,该自动增益控制的方法可参考及结合本申请其他实施例所阐述的内容进行具体实施,并可结合实际应用对其他实施例中所阐述的相关技术内容进行适应性的调整来实现本实施例中自动增益控制的相关步骤。
第四方面,本申请实施例还提供了一种无线电器件,可包括:
信号发收链路,用于接收信号;以及
自动增益控制装置,用于基于本申请第四方面任一实施例所述的方法获取所述链路增益配置;其中,所述自动增益控制装置还用于基于所述链路增益配置发射信号和/或接收信号。
上述实施例中无线电器件可为用于通信的器件,也可为诸如雷达等用于目标探测的传感器件,以基于所接收测试信号的饱和信息,并基于数字电路处理结果,来调整器件的信号接收链路的增益,进而可使得后续所接收的用于通信、目标检测等信号强度能够在接收链路的阈值范围内,进而使得接收机工作在合适的链路增益环境中,同时使得相应的模块、电路等高效简单灵活。
第五方面,本申请实施例还提供了一种传感器,该传感器在进行预设时间段(如一或多帧)进行目标探测时可具有自动增益控制阶段和目标探测阶段,即在自动增益控制阶段传感器可自适应的进行收发链路增益系数的调整,以确保目标探测阶段所收到的回波信号在预设阈值范围内,且在整个目标探测过程中该两个阶段可依次循环。
例如,针对FMCW雷达传感器,可将一帧信号中的前一部分(如3个或5个等)啁啾信号(chirp)作为前导信号进行自动增益控制,而剩余部分的啁啾信号则可用于作为扫描信号进行目标探测。即每帧信号的前导信号发射阶段为自动增益控制阶段,而后续的扫描信号发射阶段则可认为是自动增益控制阶段。同时,针对连续帧的信号,还可将当前帧信号中后一部分啁啾信号作为下一帧信号的前导信号进行自动增益控制,而将各帧的前一部 分啁啾信号作为扫描信号进行目标探测。
需要说明的是,上述可自动增益控制阶段和目标探测阶段的划分可基于发射单元信号(如啁啾信号)的所实现功能不同进行划分,也可基于时域进行划分,具体可依据实际需求进行适应性的调整。
具体的,上述的传感器可包括:
信号发射链路,用于发射无线电信号;
信号接收链路,用于接收回波信号;以及
探测器,与所述信号接收链路耦合,用于探测该信号接收链路在接收所述回波信号时各器件是否处于饱和状态;以及
控制器,分别与所述信号发射链路、所述信号接收链路和所述器件工作状态探测器连接;
其中,在自动增益控制阶段,所述控制器用于根据所述探测器所输出的饱和状态信息调整所述信号发射链路和/或所述信号接收链路的增益系数。
在一个可选的实施例中,所述信号接收链路包括依次连接的低噪声放大器LNA、跨阻放大器TIA、第一可变增益放大器VGA1和第二可变增益放大器VGA2,以对所述回波信号进行信号处理;
其中,所述探测器分别与所述跨阻放大器的输出端、所述第一可变增益放大器的输出端和/或第二可变增益放大器的输出端连接,以实时检测所述跨阻放大器、所述第一可变增益放大器和/或所述第二可变增益放大器在进行所述信号处理时的饱和状态信息。
在一个可选的实施例中,所述探测器包括第一探测器、第二探测器和第三探测器;
所述第一探测器连接至所述跨阻放大器的输出端,用于检测并输出所述跨阻放大器进行所述信号处理时第一饱和状态信息;
所述第二探测器连接至所述第一可变增益放大器的输出端,用于检测并输出所述第一可变增益放大器进行所述信号处理时第二饱和状态信息;以及
所述第三探测器连接至所述第二可变增益放大器的输出端,用于检测并输出所述第二可变增益放大器进行所述信号处理时第三饱和状态信息;
其中,所述控制器根据所述第一饱和状态信息、第二饱和状态新消息和所述第三状态饱和信息调整所述信号发射链路和/或所述信号接收链路的增益系数,以实现自动增益控制。
在一个可选的实施例中,所述信号接收链路还包括:
模数转换器,分别与所述第二可变增益放大器的输出端,用于对所述回波信号进行模数转换输出ADC数据;以及
所述控制器连接至所述模数转换器的输出端;
其中,在所述自动增益控制阶段结束时,所述控制器还用于获取所述模数转换器所输出的当前ADC数据和所述探测器所输出的当前饱和状态信息,并根据所述当前ADC数据和所述当前饱和状态信息获取扫描增益系数;以及
在后一个目标探测阶段,所述控制器还用于根据所述扫描增益系数控制所述信号发射 链路和/或所述信号接收链路进行无线电信号的发射及接收。
可选地,各所述探测器包括:
采样比较模块,用于对所收到的回波信号进行采样及功率比较;
计数模块,用于对所述采样比较模块所采样信号功率值大于预设值的次数进行计数;以及
比较模块,用于将所述计数模数在单元输出的数值与预设阈值进行比较;
其中,在所述自动增益控制阶段中各单元信号发射结束前,所述技术模数在该单元信号发射期间的计数值大于所述预设阈值时,所述比较模块输出饱和状态信息为处于饱和状态。
可选地,在所述自动增益控制阶段内,所述控制器用于根据所述探测器所输出的饱和状态信息通过查表和/或计算获取中间增益系数,并调整所述信号发射链路和/或所述信号接收链路的增益系数为所述中间增益系数以进行下一单元信号的发射和/或接收。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种自动增益控制方法流程图;
图2为本申请实施例提供的测试回波单元信号处理框架图;
图3为本申请实施例提供的一种有效区间示意图;
图4a为本申请实施例提供的一种发送信号结构示意图;
图4b为本申请实施例提供的另一种发送信号结构示意图;
图5a为本申请实施例提供的一种雷达工作原理示意图;
图5b为本申请实施例提供的一种调频连续波示意图;
图6为本申请实施例提供的另一种自动增益控制方法流程图;
图7为本申请实施例提供的一种传感器结构示意图;
图8为本申请实施例提供的另一种传感器结构示意图;
图9为本申请实施例提供的一种无线电器件结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请实施例作进一步详细的说明。
为便于理解本申请提供的技术方案,下面以雷达为例对本申请中涉及的相关技术内容进行详细说明,但应当理解的是,依据本领域技术人员所掌握的技术,本申请记载的内容可扩展应用到其他传感器及通信等无线电器件中。
在实际应用中,由于雷达的接收链路所能承受的回波信号的强度有限,为保证雷达检 测目标的准确性,故而需将回波信号的强度控制在预设阈值范围内。为解决上述问题,目前主要是在射频/模拟电路上加反馈电路,以通过反馈电路所反馈的信号对接收增益和/或发射增益进行调整。然而,该种方式会不仅使得电路设计复杂,且灵活性较差,还会导致接收/发射链路较难协同工作。
针对上述问题,本申请实施例中提供了自动增益控制方法,可通过数字电路或数字信号处理器(DSP)进行自动增益调整,不仅电路设计简单,且通过更改数字信号即可进行适应性调整,从而有效提升了灵活性,并可实现接收链路与发射链路之间的协同工作。
为便于理解本申请实施例提供的自动增益控制方法,下面将结合附图对该方法进行说明。
参见图1,该图为本申请实施例提供的一种自动增益控制方法流程图,该方法可以应用于传感器或其他无线电器件的信号发收链路上,在信号发收链路所发射的无线电信号中,可包括多个信号帧,而至少部分信号帧可包括连续的多个单元信号,该多个单元信号可包括N个测试单元信号和至少一个扫描单元信号,所述方法包括:
S101:获取与第i测试单元信号所对应的第i测试回波单元信号的饱和信息。
本实施例中,针对信号发收链路所发射的发送信号中的每个测试单元信号,获取该测试单元信号对应的测试回波单元信号的饱和信息。其中,该测试单元信号对应的测试回波信号是指该测试单元信号被物体反射后且被发收链路所接收到的信号。在一个可选的实施例中,测试回波信号的饱和信息可以认为是该测试回波信号中超出接收链路所能接收的信号阈值范围之外的信号信息。
另外,获取第i测试单元信号对应的测试回波单元信号的饱和信息,可包括:在测试单元信号开始发射到发射结束之间的时间段内,统计信号发收链路发生链路饱和的次数。具体地,判断信号发收链路发生链路饱和的次数是否大于预设值,如果大于预设值,则可以确定信号发收链路发生饱和;否则,则可以确定信号发收链路未发生饱和。
具体的,图2为针对信号接收链路所设置的饱和状态探测器的结构示意图,该实施例中,信号接收链路可包括依次连接的低噪声放大器LNA、可变增益放大器VGA1、可变增益放大器VGA2和回波信号采样模块ADC等,且在低噪声放大器LNA与可变增益放大器VGA1之间、可变增益放大器VGA1与可变增益放大器VGA2之间可设置有如图所示的滤波器,同时在低噪声放大器LNA与滤波器之间还可设置有跨阻放大器TIA(图中未示出);对应的,图中所示的探测器可以连接在上述的低噪声放大器LNA、跨阻放大器TIA、可变增益放大器VGA1和/或可变增益放大器VGA2的输出端,以检测低噪声放大器LNA、跨阻放大器TIA、可变增益放大器VGA1和/或可变增益放大器VGA2在自动增益控制阶段对回波信号进行信号处理时是否处于饱和状态。
在一个可选的实施例中,可以利用一个或多个探测器对上述信号接收链路中各器件进行饱和状态检测,也可以只针对部分器件进行饱和状态检测。例如,可分别设置第一探测器、第二探测器和第三探测器以分别对低噪声放大器(或跨阻放大器)、可变增益放大器VGA1和可变增益放大器VGA2分别进行饱和状态检测(图中未示出),并可结合该三个探测器所输出的饱和状态信息数据进行自动增益控制,以及结合ADC输出数据来获取后续阶 段的扫描增益系数。
可选地,上述的各个探测器可以包括基于数字电路的采样比较模块、计数器及比较器等器件,即采样比较模块可以用于对所收到的回波信号进行采样,且当采样信号的功率在预设阈值范围外时确定此时对应的器件处于饱和状态,而计数器则针对一个测试单元信号发射阶段内对采样比较模块输出的饱和次数进行统计,比较器则将计数器输出的计数值与预设阈值进行比较,且当该计数值大于预设阈值时才确定该对应的器件处于饱和状态。
作为一个可选的实施例,如图2所示,针对信号发收链路,可通过设置探测器的方式在预设时间段内进行上述饱和次数的统计。如在测试单元信号开始发射到发射结束的时间段内,打开饱和信息探测器,当信号接收通道接收到的回波信号经过低噪声放大器后,在该链路上预设位置处进行采样,并判断出此时各处回波信号的接收功率是否位于预设的功率阈值范围之外,如果在预设功率阈值范围之外,则计数器加1。然后在经过可变增益放大器VGA1和可变增益放大器VGA2时也进行分别进行上述的采样和判断。最后,将计数器的值与预设阈值进行比较,如果大于或等于预设阈值,则确定接收的测试回波信号发生饱和,否则为未饱和。
在一个可选的实施例中,可以通过以下方式得到包括N个测试单元信号和至少一个扫描单元信号的帧信号:
一种是,基于采用M个扫描单元信号作为一信号帧的基础上,于该M个扫描单元信号前面增设N个测试单元信号,以作为前导信号,即此时一帧信号包括N+M个单元信号,N个测试单元信号和M个扫描单元信号作为一个信号帧进行连续发射。其中,所增加的N个测试单元信号的类型可以和M个扫描单元信号的类型相同,也可以不相同。例如,增设的测试单元信号的各种参数可与扫描单元信号的各种参数保持一致,而M和N的值可根据实际需求,进行动态的分配,以实现实时灵活的调整,本实施例在此可不做限定。另外,考虑到雷达的应用场景,可使得M、N满足关系式2≤N≤(M+N)/2,且M、N为整数。
另一种是,基于单元信号的个数,将信号帧中的多个单元信号划分为N个测试单元信号和至少一个扫描单元信号。例如,获取包括X个单元信号的信号帧,将X个单元信号中位于前面的X1个单元信号定义为测试单元信号、将剩余的X2个单元信号定义为扫描单元信号。另外,基于实际应用场景的考虑,可使得X1、X2满足关系式2≤X1≤X/2,2≤X2且X、X1、X2均为整数。
再一种是,基于信号帧的周期时长,对信号帧中的单元信号进行测试单元信号和扫描单元信号的划分。例如,信号帧的周期为T,将周期T中位于第一时间段T1内的各单元信号定义为测试单元信号,将位于剩余时间段T2的各单元信号定义为扫描单元信号以形成发送信号,T=T1+T2,2≤T1≤T/2,且各个时间段内均包括至少两个单元信号。也就是,通过将信号帧划分为不同时间段以确定测试单元信号和扫描单元信号,例如可以将时间靠前的时间段内的各单元信号确定为测试单元信号,将时间靠后的时间段内的各单元信号确定为扫描单元信号。
在本实施例中,用于增益估计的测试单元信号一般不用于目标物体的探测,且用于增益估计的测试单元信号与用于目标物体探测的扫描单元信号的形状相同或类似,以使得用 于增益估计的测试单元信号比较真实地反映接收链路上用于探测目标物体的扫描单元信号的强度。
可以理解的是,基于上述实施例所得到包括测试单元信号和扫描单元信号的帧信号的基础上,来确定第i测试回波单元信号是否存在饱和信息,具体的:
控制器可以通过以下方式确定第i测试回波单元信号是否存在饱和信息:控制器可以在有效的时间内,多次对第i测试回波单元信号进行采样,获得多个采样点;确定每个采样点是否发生链路饱和;当预设数个采样点均发生链路饱和时,或者发生链路饱和的采样点的个数大于预设阈值时,则确定第i测试回波单元信号存在饱和信息。具体地,确定采样点的功率是否超过功率阈值,如果超过,则确定该采样点发生链路饱和,统计发生链路饱和的采样点的个数,如果发生链路饱和的采样点个数满足预设条件,则确定第i测试回波单元信号发生饱和。
另外,当i=1时,即发射第1个测试单元信号时,信号发收链路可以利用初始增益发射第1个测试单元信号,以及信号接收链路利用初始增益接收第1个测试单元信号对应的第1测试回波单元信号。其中,初始增益包括初始发射增益和初始接收增益,该初始增益可为系统基于应用场景、数据分析等预先内置。
S102:根据前i测试回波单元信号中的至少一个测试回波单元信号的饱和信息确定第i+1前导增益。
本实施例中,控制器获取当前发射的测试单元信号对应的测试回波信号的饱和信息后,根据所获取的所有测试回波单元信号中的至少一个测试回波单元信号的饱和信息确定第i+1前导增益。
其中,控制器根据前i个测试回波单元信号中的至少一个测试回波单元信号的饱和信息确定第i+1前导增益,可以通过以下方式获取,具体为:
一种是,控制器从获取的前i个测试回波单元信号中选择部分测试回波单元信号,根据部分测试回波单元信号的饱和信息计算和/或查表确定第i+1前导增益。或者,控制器根据部分测试回波单元信号的饱和信息进行查找获取该饱和信息对应的前导增益。即,控制器预先保存饱和信息与前导增益的对应关系表,当获取前i个测试回波单元信号的饱和信息时,根据部分测试回波单元信号的饱和信息以及对应关系表查找对应的前导增益。
另一种是,控制器根据所有测试回波单元信号的饱和信息通过计算和/或查表确定第i+1前导增益。即,控制器在获取第i测试回波单元信号的饱和信息时,根据之前以及当前所获取的各个测试回波单元信号的饱和信息确定第i+1前导增益。具体地,控制器可以根据所获取的所有测试回波单元信号的饱和信息计算获得第i+1前导增益,或者,控制器根据所获取的所有测试回波单元信号的饱和信息通过查表确定第i+1前导增益。
在一些实施例中,在控制器中预先存储增益配置表,基于该增益配置表通过查表方式获取第i+1前导增益。具体地,各个测试回波单元信号可以分别对应一个增益配置表,或者,所有测试回波单元信号对应同一个增益配置表。
在具体实现时,控制器可以根据所有测试回波单元信号的饱和信息计算获得平均饱和信息,再根据该平均饱和信息计算或查表获得第i+1前导增益。当然,控制器也可以从所 有测试回波单元信号的饱和信息中确定最大饱和信息或最小饱和信息,再根据最大饱和信息或最小饱和信息计算获得第i+1前导增益。或者,控制器根据最大饱和信息或最小饱和信息查表获取第i+1前导增益。其中,控制器根据测试回波单元信号的饱和信息计算获得前导增益可以为控制器根据测试回波单元信号的饱和信息以及该信号发收链路所能接收的测试回波单元信号的最大值确定前导增益。
S103:信号发收链路基于第i+1前导增益发射第i+1测试单元信号,和/或接收第i+1测试回波单元信号,依次循环直至i=N-1。
本实施例中,利用该第i+1前导增益来发射第i+1个测试单元信号,和/或接收第i+1回波单元信号。也就是,在当前时刻确定出的前导增益用于发射下一个测试单元信号和/或接收下一个测试回波单元信号。重复执行S102-S103,直至根据第N-1前导增益发射第N测试单元信号,和/或接收第N测试回波单元信号。
在实际应用中,在调整信号发收链路的增益时,既可以仅调整发射链路的增益,也可以仅调整接收链路的增益,也可以同时调整发射增益和接收增益,还可以先调整接收链路的增益,再调整发射链路的增益。当分开调整上述两个增益时,可根据实际需求,将调整接收增益的优先级设为高于调整发射增益的优先级。
可选地,当既调整发射链路的增益,又调整接收链路的增益时,可以利用第i+1前导增益接收第i+1测试回波单元信号,依次循环直至i=N1;利用第N1+1前导增益发射第N1+2测试单元信号依次循环值i=N-1,获取第N测试回波单元信号的饱和信息。即,利用前N1个测试回波单元信号的饱和信息调整的前导增益为接收链路的增益,利用该接收链路的增益接收测试回波单元信号;利用第N1+1至N-1个测试回波单元信号的饱和信息调整的前导增益为发射链路的增益,利用该发射链路的增益发射下一个测试单元信号。其中,N1为整数,且2<N1<N-1。
S104:获取第N测试回波单元信号的饱和信息和当前传感器中模数转换器ADC输出的信号功率。
具体地,当利用第N-1前导增益发射第N个测试单元信号后,获取第N测试单元信号对应的第N测试回波单元信号的饱和信息;同时获取当前时刻ADC针对第N测试回波单元信号的输出信号功率。
S105:根据第N测试回波单元信号的饱和信息和ADC输出信号功率确定扫描增益。
具体地,先根据第N测试回波单元信号的饱和信息判断信号发收链路是否发生链路饱和;在信号发收链路发生饱和时,则可以将扫描增益设置为默认值。也就是,当此时信号发收链路仍然发生饱和,表明当前接收链路所接收的测试回波单元信号的强度依然无法用于准确检测到目标物体,故而仍然需要对扫描增益进行调整,则需要直接将发射链路和/或接收链路设置为默认值。其中,默认值可以为信道发收链路的最大增益值或最小增益值。
在一些实施例中,为保证处理精度,还可以对模数转换器ADC输出的信号进行右移或左移操作,然后根据左/右移操作的信号输出功率确定扫描增益。例如,当信号发收链路的扫描增益已调整到最大增益值,但此时所接收的回波单元信号的强度仍较小,则可以对模数转换器输出的信号进行左移操作,从而增强输出信号功率,以确保处理精度。
另外,当根据第N测试回波单元信号的饱和信息判断信号发收链路未发生饱和时,则可以根据ADC输出信号功率确定扫描增益。具体地,控制器在获取到第N测试回波单元信号的输出信号功率时,可以根据信号发收链路所能接收的信号阈值(最大值和最小值)和该输出信号功率计算扫描增益,从而保证所接收的回波单元信号的强度不会超过最大接收阈值以及不会小于最小接收阈值,进而确保检测的准确性。另外,控制器在获取第N测试回波单元信号的输出信号功率时,还可以根据该输出信号功率通过查找表(look up table,LUT)方式获取扫描增益,以利用该扫描增益发射扫描单元信号或接收扫描回波单元信号,从而保证所接收的扫描回波单元信号的强度不会超过最大接收阈值以及不小于最小接收阈值,确保后续检测的准确性。
在一些实施例中,在控制器中预先存储增益配置表,基于该增益配置表通过查表方式获取扫描增益,能够进一步提升系统运行的效率。具体地,各个测试回波单元信号可以分别对应一个增益配置表,或者,所有测试回波单元信号对应同一个增益配置表。在一些实施例中,获取传感器中ADC输出信号功率,可以通过以下方式获取:
一种是,通过计算ADC输出的第N测试回波单元信号中各个值的平方的平均值确定ADC输出信号功率。也就是,对第N测试回波单元信号进行抽样,获取每个抽样点对应的幅值,将各个抽样点的幅值的平方相加,并除以抽样点数获得平均值,将该平均值作为ADC输出信号功率。
另一种是,将ADC输出的第N测试回波单元信号的有效区域中预设次序的绝对值作为ADC输出信号功率。也就是,对于获取的第N测试回波单元信号,首先确定该第N测试回波单元信号的有效区域,例如图3所示,当啁啾信号上升沿有效时,可将第N测试回波单元信号的上升沿开始到下降沿之间的部分或全部区域确定为有效区域,将该有效区域中某些点对应的绝对值确定为ADC输出信号功率。其中,预设次序的绝对值可以为最大绝对值或次大绝对值。也就是,将有效区域内最大绝对值的平方作为ADC输出信号功率,或者将有效区域内次大绝对值的平方作为ADC输出信号功率。
S106:利用扫描增益发射各扫描单元信号,和/或接收各扫描单元信号对应的扫描回波单元信号。
本实施例中,当根据第N回波单元信号的饱和信息和ADC输出信号功率确定出扫描增益后,利用该扫描增益发射后续各个扫描单元信号,和/或利用该扫描增益接收各个扫描单元信号对应的扫描回波单元信号。其中,扫描增益可以包括发射增益和/或接收增益,当扫描增益仅包括发射增益时,发射链路单元利用该发射增益发射各个个扫描单元信号。当扫描增益仅包括接收增益时,接收链路单元利用该接收增益接收各个扫描单元信号对应的扫描回波单元信号。当扫描增益包括发射增益和接收增益时,发射链路单元利用该发射增益发射各个扫描单元信号,接收链路单元利用该接收增益接收各个扫描单元信号对应的回波单元信号。
在一些可选的实施例中,在发射各扫描单元信号时,也可统计各个信号发收链路的饱和信息,以便于根据信号发收链路的饱和信息动态调整扫描增益的值,进而使得信号发收链路可以动态调整所接收扫描回波单元信号的强度,从而保证定位目标物体的准确性。其 中,关于获得各个信号发收链路的饱和信息的实现可以参见上述获取测试回波单元信号的饱和信息的相关描述。
在一些实施例中,当传感器包括至少两个信号发收链路时,针对任一信号发收链路,确定每个信号发收链路各自对应的扫描增益。在发射扫描单元信号或接收扫描回波单元信号时,利用该信号发收链路对应的扫描增益发射该信号发收链路的扫描单元信号,和/或接收该信号发收链路的扫描单元信号对应的扫描回波单元信号。也就是,每个发收链路可独自确定其所对应的扫描增益,当该发收链路发射扫描单元信号或接收扫描回波单元信号时,该发收链路利用自身对应的扫描增益发射扫描单元信号,或利用自身对应的扫描增益接收扫描回波单元信号。
在一些实施例中,当传感器包括至少两个信号发收链路且利用传感器进行角度测量等场景时,则各个发收链路对应的扫描增益相同。也就是,当利用传感器不仅进行距离测量,还需要进行角度测量时,各发收链路均利用目标扫描增益发射各扫描单元信号,和/或接收扫描单元信号对应的回波单元信号。其中,角度测量可以是指利用传感器测量目标物体相对于传感器的偏角。其中,目标增益可以通过各个信号发收链路对应的扫描增益确定,例如,将各信号发收链路对应的扫描增益中数值最小的扫描增益确定为目标扫描增益,从而确保各信号发收链路所接收的扫描回波单元信号的强度不会超过接收阈值。
在本实施例中,针对包括至少两个信号发收链路的传感器,各个信号发收链路可相互独立进行AGC调整,这样不同的信号发收链路之间的扫描增益可能会有不同,即各信号发收链路可采用各自AGC调整后获得的扫描增益,进行后续无角度测量需求的目标探测操作;若是对需要角度测量,则需要各信号发收链路在进行后续的目标探测操作前,先统一扫描增益,即各信号发收链路需要基于相同扫描增益(一般为从所获取的各信号发收链路的扫描增益中最小的扫描增益)进行后续的目标探测操作,以避免引入系统相位差,影响后续角度测量的结果。
具体的,可在各信号发收链路的最后一个测试单元信号发射结束之前选择最终的扫描增益,也可在链路决策的每个测试单元信号发射结束前,各信号发收链路之间的增益均保持一致来进行AGC操作。
在一些实施例中,针对任一信号帧,N个测试单元信号位于该信号帧的头部以形成前导单元信号。其中,信号发收链路根据扫描增益发送当前帧信号中各扫描单元信号,和/或接收当前帧信号中各扫描单元信号对应的扫描回波单元信号。如图4a所示,信号帧包括N个测试单元信号以及M个扫描单元信号,其中,N个测试单元信号位于M个扫描单元信号之前作为当前帧的前导信号,且该N+M个单元信号为连续信号。
在一些实施例中,针对任一信号帧,N个测试单元信号位于信号帧的尾部;信号发收链路根据扫描增益发射下一帧信号中各个扫描单元信号,和/或接收下一帧信号中各扫描单元信号对应的扫描回波单元信号。如图4b所示,信号帧1(即发送信号1)中包括M个扫描单元信号和N个测试单元信号,其中,N个测试单元信号位于M个扫描单元信号的尾部,以作为下一帧的前导信号。该情况下,根据第N测试回波单元信号确定的扫描增益用于指导信号发收链路接收信号帧2(即发送信号2)中扫描单元信号对应的扫描回波单元信号, 和/或发送信号帧2中扫描单元信号。
可以理解的是,无论测试单元信号位于哪个位置,均可以利用测试单元信号进行信号强度估计,以调整发收链路上的增益,以确保所接收的测试回波信号的强度位于预设范围内,进而保证目标检测的精度。
可见,在本实施例中,通过获取当前所发射的测试单元信号对应的测试回波信号的饱和信息,并根据所接收的至少一个测试回波信号的饱和信息确定前导增益。然后,利用该前导增益发射下一个测试单元信号,和/或利用该前导增益接收下一个测试单元信号对应的测试回波单元信号。在发射下一个测试单元信号时,获取该下一个测试单元信号对应的测试回波信号的饱和信息,并利用该饱和信息确定前导增益,利用该前导增益发射下一时刻的测试单元信号和/或接收下一时刻的测试单元信号对应的测试回波信号,依次循环,直至到第N-1个测试单元信号。在第N个测试单元信号发送时,获取第N测试单元信号对应的测试回波信号的饱和信息以及ADC针对第N测试回波单元信号的输出信号功率,并根据该饱和信息和输出信号功率确定扫描增益,以利用该扫描增益发射扫描单元信号,和/或接收扫描单元信号对应的扫描回波单元信号。可见,通过本申请实施例提供的方法,可以实时确定发收链路的增益,以调整发送信号的发射功率和/或回波信号的接收功率,进而保证回波信号的强度在预设的接收范围内,提高检测目标物体的准确性。
另外,在该实施例中,通过利用测试回波单元信号的饱和信息以及传感器的ADC输出信号功率,来调整后续发射和/或接收探测信号的链路增益,从而确保后续所接收的接收信号的强度在预设范围内,能够有效的避免产生信号畸变,以提升探测目标信息的精确性,同时还能有效避免引入较大的量化噪声,避免发生漏检及误检的概率。另外,由于本实施例中的操作方法是可在器件的数字部分中执行的,进而还能有效的降低电路设计的复杂度,提升自动增益控制的灵活性,且能使得传感器的接收发射协同工作。
本申请实施例可应用于调频连续波(Frequency Modulated Continuous Wave,FMCW)雷达中,例如:
如图5a所示的雷达系统结构示意图,该雷达系统可包括:发射天线、接收天线、功分器、功率放大器和混频器组成的射频前端;后端处理部分则可包括三角波发生器、VCO、AD采样和信号处理等模块。具体为,三角波发生器提供所需要的调制信号,经压控震动器(Voltage-Controlled Oscillator,VCO)控制产生频率在时间上按三角形变化的连续高频等幅波,利用功分器将一部分经功率放大器放大后通过发射天线辐射出去,另一部分则可作为混频器的本振信号。在所发射的无线电波被目标物体反射形成回波信号被接收天线接收,这时被接收的回波信号相较于本振信号会产生诸如频率、相位等参数的变化,即经混频器基于本振信号下降频后输出差拍信号,后续对该差拍信号进行滤波放大及AD采样后,进行诸如二维快速傅里叶变换(2Dimensional Fast Fourier Transform,2D-FFT)、恒虚警率(Constant False-Alarm Rate,CFAR)、波达方向(Direction Of Arrival,DOA)等数字信号处理,以得到目标相对于传感器的距离、速度及角度等信息,进而实现目标的检测。
其中,调频连续波FMCW是由多个啁啾信号(chirp)组成,可以通过本申请自动增益控制方法相关的内容,基于数字信号处理的方式对回波啁啾信号的强度进行处理以获取链 路增益配置,进而根据该链路增益配置自适应调整发射啁啾信号的强度和/或回波啁啾信号的强度,以保证所接收的回波啁啾信号的强度在预设接收范围内,进而确保目标探测的准确性。
在实际应用中,可以利用调频连续波的帧信号中预设数个啁啾信号做信号强度估计,进而确定发射链路/接收链路对应的增益。如图5b所示的调频连续波的波形图,虚线左侧的啁啾信号用于信号强度估计,即进行自动增益控制(Automatic Gain Control,AGC),虚线右侧的啁啾信号用于目标物体的探测。需要说明的是,图5b中线性调频连续波的波形仅为一种示例,具体波形呈现形式可以根据实际情况进行确定。
需要说明的是,用于信号强度估计的啁啾信号一般不用于目标物体的探测,且用于信号强度估计的啁啾信号与用于目标物体探测的啁啾信号形状相同或类似,否则用于信号强度估计的啁啾信号将无法比较真实地反映接收链路上用于探测目标物体的chirp的强度。
此外,本申请实施例还提供了一种自动增益控制方法,参见图6,该图为本申请实施例提供的一种自动增益控制方法流程图,如图6所示,该方法可以包括:
S601:获取无线电器件所接收信号的强度。
S602:对无线电器件所接收信号的强度进行数字信号处理,并通过查表方式获取链路增益配置。
本实施例中,通过对无线电器件所接收的信号进行数字信号处理,如过滤信号中的噪声,获得处理后的信号,并获取该处理后的信号的强度,进而根据该信号强度通过查表方式获取链路增益配置。
S603:基于链路增益配置发射信号和/或接收信号。
在确定出链路增益配置后,可以利用该链路增益配置发射信号或接收信号,以使得无线电器件所接收的回波信号的强度满足预设条件,进而确认检测目标物体的准确性。
基于上述方法实施例,本申请实施例还提供了一种传感器,参见图7,该传感器700可以包括信号发收链701、模数转换器702以及自动增益控制装置702。
其中,信号发收链路701,用于发射和接收无线电信号。关于信号发收链路701的具体实现可以参见图1所示方法中的相关描述。
模数转换器702,用于对所接收的无线电信号进行数字信号处理。具体地,对于接收的测试回波单元信号或扫描回波单元信号进行数字信号处理。关于模数转换器702的具体实现可以参见图1所示方法中相关描述。
自动增益控制装置703,用于执行本申请方法实施例(如图1和图6)所示方法中对信号发收链路的增益进行控制。关于自动增益控制装703的具体实现可以参见上述所阐述方法中的相关描述。其中,自动增益装置703可以为传感器中的数字电路模块或数字电路处理器。其中,自动增益控制装置703为传感器中的数字电路模块或数字电路处理器。
其中,传感器可以为毫米波雷达,该雷达可以包括如图8中所示的接收天线801、处理器802和发射天线803,其中,处理器802分别与接收天线801、发射天线803连接。
接收天线801,用于接收测试回波单元信号或扫描回波单元信号。
处理器802,用于获取该测试回波单元信号的强度,并对该测试回波单元信号的强度 进行数字信号处理获取链路增益;
发射天线803,用于利用链路增益发射后续的发射测试单元信号或扫描单元信号;
接收天线801,还用于利用链路增益配置接收后续发射测试单元信号对应的测试回波单元信号,或者扫描单元信号对应的扫描回波单元信号。
在一些实施例中,该雷达还可以包括:模数转换器804,该模数转换器804位于接收天线801和处理器802之间;模数转换器804,用于对测试回波单元信号进行模数转换。
本实施例中,模数转换器将接收天线所接收的测试回波单元信号进行模数准换,并输出转换后的测试回波单元信号,处理器获取转换后的测试回波单元信号的强度。即,通过模数转换操作,估计数字测试回波单元信号的强度,简化计算的复杂性。
在一些实施例中,该雷达还包括放大器805,该放大器可以位于接收天线801与处理器802之间,具体地,放大器805位于接收天线801和模数转换器804之间。放大器805,用于对测试回波单元信号进行放大。
在一些实施例中,该雷达还包括探测器806,该探测器806,用于根据回波信号中各采样点的信号功率确定该测试回波单元信号是否发生饱和。
具体地,该探测器806包括比较器和计数器。其中,比较器,用于将各采样点的信号功率与预设功率阈值进行比较。计数器,用于统计信号功率不小于预设功率阈值的采样点的个数。
其中,关于各个器件的具体实现可以参见上述方法100的相关描述,本实施例在此不再赘述。
本申请实施例还提供了一种无线电器件,如图9所示,该无线电器件900可以包括信号接收链路901和自动控制装置902。
其中,信号链路901,用于发射接收信号。
自动控制装置902,用于获取链路增益配置,并根据该链路增益配置发射信号和/或接收信号。
其中,关于信号链路901和自动控制装置902的具体实现可以参见上述方法实施例的相关描述。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统或装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (28)

  1. 一种自动增益控制方法,其特征在于,应用于传感器的信号发收链路上;在所述信号发收链路所发射的无线电信号中,信号帧包括连续的多个单元信号,所述多个单元信号包括N个测试单元信号和至少一个扫描单元信号;所述方法包括:
    获取与第i测试单元信号所对应的第i测试回波单元信号的饱和信息,i、N为正整数,i≤N-1,2≤N;
    根据前i个测试回波单元信号中至少一个测试回波单元信号的饱和信息来确定第i+1前导增益;
    所述信号发收链路基于所述第i+1前导增益,发射第i+1测试单元信号和/或接收第i+1测试回波单元信号;
    依次循环直至i=N-1;
    获取第N测试回波单元信号的饱和信息,和此时所述传感器中模数转换器ADC输出信号功率;
    根据所述第N测试回波单元信号的饱和信息和所述ADC输出信号功率确定扫描增益;
    利用所述扫描增益发射各所述扫描单元信号,和/或接收各所述扫描单元信号对应的扫描回波单元信号。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第N测试回波单元信号的饱和信息和所述ADC输出信号功率确定扫描增益,包括:
    根据所述第N测试回波单元信号的饱和信息判断所述信号发收链路是否发生链路饱和;
    若发生所述链路饱和,则将所述扫描增益设置为默认值;
    否则,根据所述ADC输出信号功率确定所述扫描增益的值。
  3. 根据权利要求2所述的方法,其特征在于,所述默认值为所述信号发收链路的最小增益值或最大增益值。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    所述默认值为所述信号发收链路的最大值时,若所述ADC的输入信号小于预设值,则对所述ADC输出信号进行左移位操作。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述ADC输出信号功率确定所述扫描增益的值,包括:
    根据所述ADC输出信号功率通过查找表和/或计算来确定所述扫描增益的值。
  6. 根据权利要求1所述的方法,其特征在于,所述获取所述传感器中模数转换器ADC输出信号功率,包括:
    通过计算所述ADC输出的第N回波单元信号中各个值的平方的平均值来确定所述ADC输出信号功率;或者
    将所述ADC输出的第N回波单元信号的有效区域中预设次序的绝对值作为所述ADC输出信号功率。
  7. 根据权利要求6所述的方法,其特征在于,所述ADC输出信号功率为所述ADC 输出的第N回波单元信号的有效区域中最大绝对值或次大绝对值。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    利用初始增益发射第1个测试单元信号,以及接收与所述第1个测试单元信号对应的第1测试回波单元信号。
  9. 根据权利要求1所述的方法,其特征在于,所述传感器包括至少两个信号发收链路,所述方法还包括:
    针对任一信号发收链路,确定每个所述信号发收链路各自对应的扫描增益;
    其中,各所述信号发收链路基于各自对应的扫描增益进行信号的发射和/或接收;或者
    各所述信号发收链路基于最小的扫描增益进行信号的发射和/或接收。
  10. 根据权利要求1所述的方法,其特征在于,还包括:
    基于单元信号的个数或者所述信号帧的周期时长,将信号帧中的所述多个单元信号划分为所述N个测试单元信号和所述至少一个扫描单元信号;或者
    基于原始信号帧的基础上,通过增加所述N个测试单元信号,以形成包含所述N个测试单元信号和所述至少一个扫描单元信号的信号帧;
    其中,所述N个测试单元信号在所述信号帧中连续分布。
  11. 根据权利要求1所述的方法,其特征在于,针对任一信号帧,所述N个测试单元信号位于该信号帧的头部以形成前导单元信号;
    其中,所述信号发收链路根据所述扫描增益发射当前帧信号中各所述扫描单元信号,和/或接收当前帧信号中各所述扫描单元信号对应的扫描回波单元信号。
  12. 根据权利要求1所述的方法,其特征在于,针对任一信号帧,所述N个测试单元信号位于该信号帧的尾部;
    其中,所述信号发收链路根据所述扫描增益发射下一帧信号中各所述扫描单元信号,和/或接收下一帧信号中各所述扫描单元信号对应的扫描回波单元信号。
  13. 根据权利要求1所述的方法,其特征在于,针对任一测试单元信号,获取该测试单元信号对应的测试回波单元信号的饱和信息,包括:
    在该测试单元信号开始发射与发射结束之间的时间段内,统计所述信号发收链路发生链路饱和的次数。
  14. 根据权利要求13所述的方法,其特征在于,还包括:
    判断在所述测试单元信号开始发射与发射结束之间的时间段内,所述信号发收链路发生链路饱和的次数是否大于预设值;
    若大于预设值,则确定链路饱和;
    否则,则确定链路未饱和。
  15. 根据权利要求1所述的方法,其特征在于,还包括:
    在发射各所述扫描单元信号时,统计所述信号发收链路的饱和信息;以及
    根据所述信号发收链路的饱和信息动态调整所述扫描增益的值。
  16. 根据权利要求1所述的方法,其特征在于,所述无线电信号为调频连续波信号。
  17. 根据权利要求1-16中任一所述的方法,其特征在于,还包括:
    预设增益配置表;
    基于所述增益配置表通过查表方式获取所述第i+1前导增益和/或所述扫描增益;
    其中,各测试回波单元信号分别对应一个增益配置表,或者,所有测试回波单元信号对应同一个增益配置表。
  18. 一种传感器,其特征在于,包括:
    信号发收链路,用于发射和接收无线电信号;
    模数转换器ADC,用于对所接收的无线电信号进行数字信号处理;以及
    自动增益控制装置,用于执行权利要求1-17中任意一项所述的方法对所述信号发收链路进行自动增益控制。
  19. 根据权利要求18所述的传感器,其特征在于,所述传感器为毫米波雷达。
  20. 根据权利要求18所述的传感器,其特征在于,所述自动增益控制装置为所述传感器中的数字电路模块或者数字电路处理器。
  21. 一种自动增益控制的方法,其特征在于,应用于无线电器件中,所述方法包括:
    获取所述无线电器件所接收信号的强度;
    对所述无线电器件所接收信号的强度进行数字信号处理,并通过查表方式获取链路增益配置;
    基于所述链路增益配置发射信号和/或接收信号。
  22. 一种无线电器件,其特征在于,包括:
    信号链路,用于接收信号;以及
    自动增益控制装置,用于执行权利要求21所述的方法获取所述链路增益配置;
    所述自动增益控制装置,还用于基于所述链路增益配置发射信号和/或接收信号。
  23. 一种传感器,其特征在于,包括:
    信号发射链路,用于发射无线电信号;
    信号接收链路,用于接收回波信号;以及
    探测器,与所述信号接收链路耦合,用于探测该信号接收链路在接收所述回波信号时各器件是否处于饱和状态;以及
    控制器,分别与所述信号发射链路、所述信号接收链路和所述器件工作状态探测器连接;
    其中,在自动增益控制阶段,所述控制器用于根据所述探测器所输出的饱和状态信息调整所述信号发射链路和/或所述信号接收链路的增益系数。
  24. 根据权利要求23所述的传感器,其特征在于,所述信号接收链路包括依次连接的低噪声放大器LNA、跨阻放大器TIA、第一可变增益放大器VGA1和第二可变增益放大器VGA2,以对所述回波信号进行信号处理;
    其中,所述探测器分别与所述跨阻放大器的输出端、所述第一可变增益放大器的输出端和/或第二可变增益放大器的输出端连接,以实时检测所述跨阻放大器、所述第一可变增益放大器和/或所述第二可变增益放大器在进行所述信号处理时的饱和状态信息。
  25. 根据权利要求24所述的传感器,其特征在于,所述探测器包括第一探测器、第二 探测器和第三探测器;
    所述第一探测器连接至所述跨阻放大器的输出端,用于检测并输出所述跨阻放大器进行所述信号处理时第一饱和状态信息;
    所述第二探测器连接至所述第一可变增益放大器的输出端,用于检测并输出所述第一可变增益放大器进行所述信号处理时第二饱和状态信息;以及
    所述第三探测器连接至所述第二可变增益放大器的输出端,用于检测并输出所述第二可变增益放大器进行所述信号处理时第三饱和状态信息;
    其中,所述控制器根据所述第一饱和状态信息、第二饱和状态新消息和所述第三状态饱和信息调整所述信号发射链路和/或所述信号接收链路的增益系数,以实现自动增益控制。
  26. 根据权利要求24所述的传感器,其特征在于,所述信号接收链路还包括:
    模数转换器,分别与所述第二可变增益放大器的输出端,用于对所述回波信号进行模数转换输出ADC数据;以及
    所述控制器连接至所述模数转换器的输出端;
    其中,在所述自动增益控制阶段结束时,所述控制器还用于获取所述模数转换器所输出的当前ADC数据和所述探测器所输出的当前饱和状态信息,并根据所述当前ADC数据和所述当前饱和状态信息获取扫描增益系数;以及
    在后一个目标探测阶段,所述控制器还用于根据所述扫描增益系数控制所述信号发射链路和/或所述信号接收链路进行无线电信号的发射及接收。
  27. 根据权利要求23-26中任一所述的传感器,其特征在于,各所述探测器包括:
    采样比较模块,用于对所收到的回波信号进行采样及功率比较;
    计数模块,用于对所述采样比较模块所采样信号功率值大于预设值的次数进行计数;以及
    比较模块,用于将所述计数模数在单元输出的数值与预设阈值进行比较;
    其中,在所述自动增益控制阶段中各单元信号发射结束前,所述技术模数在该单元信号发射期间的计数值大于所述预设阈值时,所述比较模块输出饱和状态信息为处于饱和状态。
  28. 根据权利要求23-26中任一所述的传感器,其特征在于,在所述自动增益控制阶段内,所述控制器用于根据所述探测器所输出的饱和状态信息通过查表和/或计算获取中间增益系数,并调整所述信号发射链路和/或所述信号接收链路的增益系数为所述中间增益系数以进行下一单元信号的发射和/或接收。
PCT/CN2021/077811 2020-03-02 2021-02-25 自动增益控制方法、传感器及无线电器件 WO2021175144A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227028496A KR102691882B1 (ko) 2020-03-02 2021-02-25 자동 이득 제어 방법, 센서 및 무선 전기 소자
US17/908,315 US12047209B2 (en) 2020-03-02 2021-02-25 Automatic gain control method, sensor, and radio device
EP21765512.5A EP4117243A4 (en) 2020-03-02 2021-02-25 METHOD FOR AUTOMATIC GAIN CONTROL, SENSOR AND RADIO DEVICE
JP2022551272A JP7546307B2 (ja) 2020-03-02 2021-02-25 自動利得制御方法、センサ及び無線電気素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010136325.8 2020-03-02
CN202010136325 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021175144A1 true WO2021175144A1 (zh) 2021-09-10

Family

ID=76462310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077811 WO2021175144A1 (zh) 2020-03-02 2021-02-25 自动增益控制方法、传感器及无线电器件

Country Status (6)

Country Link
US (1) US12047209B2 (zh)
EP (1) EP4117243A4 (zh)
JP (1) JP7546307B2 (zh)
KR (1) KR102691882B1 (zh)
CN (2) CN116667968A (zh)
WO (1) WO2021175144A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667968A (zh) * 2020-03-02 2023-08-29 加特兰微电子科技(上海)有限公司 自动增益控制方法、传感器及无线电器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165489A1 (en) * 2006-01-13 2007-07-19 Furuno Electric Co., Ltd. Underwater sounding method and apparatus
CN101090302A (zh) * 2007-07-31 2007-12-19 中兴通讯股份有限公司 移动终端的自校或自测方法及具有该方法的移动终端
CN102594275A (zh) * 2011-01-07 2012-07-18 中国科学院微电子研究所 自动增益控制的装置及方法
CN107632307A (zh) * 2017-08-23 2018-01-26 天津大学 自调节脉冲激光测距系统及方法
CN107861112A (zh) * 2017-12-26 2018-03-30 成都心无界光电技术有限公司 一种全数字调节的激光测距系统
CN110324054A (zh) * 2019-06-20 2019-10-11 上海华虹集成电路有限责任公司 一种数字通信接收机的自动增益控制方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308568A (ja) * 1992-04-30 1993-11-19 Sony Corp ビデオカメラ装置
FR2760306B1 (fr) * 1997-03-03 2003-07-11 Antoine Mikrut Ensembles constitues des postes tv et/ou autres ecrans tv, tvhd et/ou tvthd avec memoires associees aux appareils audiovisuels munis d'emetteurs et/ou recepteurs d'ondes tvcom et avec systemes de peritelevision
US5991234A (en) * 1998-06-11 1999-11-23 Trw Inc. Ultrasonic sensor system and method having automatic excitation frequency adjustment
JP4046425B2 (ja) 1998-11-11 2008-02-13 富士通テン株式会社 ミリ波レーダのゲインコントロール装置及び方法並びにレーダ装置
US6832251B1 (en) * 1999-10-06 2004-12-14 Sensoria Corporation Method and apparatus for distributed signal processing among internetworked wireless integrated network sensors (WINS)
JP2001228240A (ja) * 2000-02-18 2001-08-24 Matsushita Electric Ind Co Ltd Fmcwレーダの受信信号増幅装置
JP2002082165A (ja) 2000-09-07 2002-03-22 Mitsubishi Electric Corp 海洋レーダによる観測方法
CN1120990C (zh) * 2000-11-10 2003-09-10 中国科学院长春地理研究所 冲击脉冲地下成像雷达
US7050419B2 (en) * 2001-02-23 2006-05-23 Terayon Communicaion Systems, Inc. Head end receiver for digital data delivery systems using mixed mode SCDMA and TDMA multiplexing
JP4111853B2 (ja) * 2003-03-25 2008-07-02 富士通テン株式会社 送受信共用fm−cwレーダ装置及びfm−cwレーダの信号処理方法
US7078912B2 (en) 2003-06-06 2006-07-18 Intel Corporation Techniques to test signal propagation media
US7436905B2 (en) * 2004-07-05 2008-10-14 Sharp Kabushiki Kaisha Receiver device, communications device, wireless LAN device, power control method for a receiver device, power control program for a receiver device, and storage medium
CN101151840B (zh) * 2005-01-10 2011-09-21 四次方有限公司 用于依据指令处理媒体的单芯片媒体处理器
CN100531170C (zh) * 2005-05-24 2009-08-19 威盛电子股份有限公司 无线局域网络系统的自动增益控制方法和装置
US8001841B2 (en) * 2005-10-14 2011-08-23 Olympus Ndt Ultrasonic fault detection system using a high dynamic range analog to digital conversion system
CN101331395B (zh) * 2005-10-14 2012-06-27 奥林巴斯Ndt公司 超声波探伤系统
US7676208B2 (en) 2005-12-09 2010-03-09 Electronics And Telecommunications Research Institute Automatic gain control device having variable gain control interval and method thereof
US20070169549A1 (en) * 2006-01-23 2007-07-26 Southwest Research Institute Method and apparatus for sensing fuel levels in tanks
US8068984B2 (en) * 2006-10-17 2011-11-29 Ut-Battelle, Llc Triply redundant integrated navigation and asset visibility system
TW200913598A (en) 2007-05-04 2009-03-16 Amicus Wireless Technology Ltd Automatic gain control circuit for MIMO OFDM receiver
US7873746B2 (en) * 2007-07-27 2011-01-18 Lagavulin Limited User interface for a portable, image-processing transmitter
JP5262164B2 (ja) * 2008-02-18 2013-08-14 パナソニック株式会社 デジタルagc回路およびそれを用いた角速度センサ
JP5262165B2 (ja) * 2008-02-18 2013-08-14 パナソニック株式会社 デジタルagc回路およびそれを用いた角速度センサ
CN101359942B (zh) * 2008-09-18 2010-12-22 北京创毅视讯科技有限公司 功率控制模块和方法、及包含功率控制模块的收发设备
US8107565B2 (en) 2009-01-28 2012-01-31 Qualcomm Incorporated Automatic gain control (AGC) for OFDM-based transmission in a wireless communication network
CN201286157Y (zh) * 2009-02-11 2009-08-05 深圳华昌视数字技术有限公司 无线数字电视故障自动报修装置
US8843181B2 (en) * 2009-05-27 2014-09-23 Qualcomm Incorporated Sensor uses in communication systems
CN101650570B (zh) * 2009-09-10 2012-05-23 成都六九一四科技有限公司 智能云台对准系统
KR100962628B1 (ko) * 2009-10-01 2010-06-11 박정규 방송 신호 레벨링 장치 및 방법
CN101719775B (zh) * 2009-11-16 2013-04-10 许继集团有限公司 一种继电保护专用电力线载波收发信机
CN102215556B (zh) * 2010-04-01 2016-04-20 中兴通讯股份有限公司 一种收发信单元、无线接收系统自动增益控制方法及装置
JP5814573B2 (ja) * 2011-03-18 2015-11-17 富士通テン株式会社 受信機
CN104955400B (zh) * 2013-02-04 2017-06-09 株式会社日立制作所 超声波拍摄装置以及超声波拍摄方法
CN203720372U (zh) * 2014-02-21 2014-07-16 上海航征测控系统有限公司 便携式地下管线雷达探测系统
US9891311B2 (en) 2014-07-30 2018-02-13 Nxp B.V. Method of secure RF ranging under strong multipath reflections
US10033367B2 (en) 2014-12-02 2018-07-24 Nxp Usa, Inc. Integrated circuit for saturation detection, wireless device and method of detecting saturation
EP3320456A4 (en) 2015-07-08 2018-07-18 Cloud Crowding Corp. System and method for secure transmission of signals from a camera
JP6780699B2 (ja) 2016-04-05 2020-11-04 ソニー株式会社 測距装置および測距方法
CN206147647U (zh) * 2016-07-21 2017-05-03 苏州沿芯微电子科技有限公司 应用于远距离uhf rfid读写器的回波抵消系统
CN106203222B (zh) * 2016-07-21 2019-06-28 苏州中科沿芯微电子科技有限公司 应用于远距离uhf rfid读写器的回波抵消方法
US10656222B2 (en) * 2016-12-14 2020-05-19 Waveguide Corporation Variable gain amplification for linearization of NMR signals
DE112017006442T5 (de) * 2016-12-21 2019-09-19 Intel Corporation Drahtlose kommunikationstechnologie, einrichtungen und verfahren
US10014960B1 (en) * 2016-12-30 2018-07-03 Intel Corporation Methods and systems for determining a human body channel sensor position
CN107064900A (zh) * 2017-04-20 2017-08-18 中南大学 一种连续波穿墙雷达瞬变直耦波无控型对消器
CN107276621B (zh) 2017-06-01 2019-03-29 博流智能科技(南京)有限公司 兼顾多种应用场景的接收机自动增益控制系统及方法
CN107809258B (zh) * 2017-11-03 2020-03-24 上海华虹集成电路有限责任公司 一种无线通信接收机的自动增益控制方法和电路
US10601386B2 (en) * 2018-07-03 2020-03-24 Rafael Microelectronics, Inc. Automatic gain control circuit with background calibration
KR102500149B1 (ko) * 2018-08-27 2023-02-16 삼성전자주식회사 빔 폭을 제어하는 전자 장치 및 그 방법
US11327147B2 (en) * 2018-12-26 2022-05-10 Locix, Inc. Systems and methods for determining locations of wireless sensor nodes based on anchorless nodes and known environment information
CN112534302B (zh) * 2019-02-15 2022-02-11 华为技术有限公司 一种雷达以及增益控制方法
CN116667968A (zh) * 2020-03-02 2023-08-29 加特兰微电子科技(上海)有限公司 自动增益控制方法、传感器及无线电器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165489A1 (en) * 2006-01-13 2007-07-19 Furuno Electric Co., Ltd. Underwater sounding method and apparatus
CN101090302A (zh) * 2007-07-31 2007-12-19 中兴通讯股份有限公司 移动终端的自校或自测方法及具有该方法的移动终端
CN102594275A (zh) * 2011-01-07 2012-07-18 中国科学院微电子研究所 自动增益控制的装置及方法
CN107632307A (zh) * 2017-08-23 2018-01-26 天津大学 自调节脉冲激光测距系统及方法
CN107861112A (zh) * 2017-12-26 2018-03-30 成都心无界光电技术有限公司 一种全数字调节的激光测距系统
CN110324054A (zh) * 2019-06-20 2019-10-11 上海华虹集成电路有限责任公司 一种数字通信接收机的自动增益控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117243A4

Also Published As

Publication number Publication date
EP4117243A4 (en) 2023-11-29
US12047209B2 (en) 2024-07-23
CN116667968A (zh) 2023-08-29
JP7546307B2 (ja) 2024-09-06
KR102691882B1 (ko) 2024-08-06
JP2023520626A (ja) 2023-05-18
US20230099685A1 (en) 2023-03-30
CN113037433B (zh) 2023-03-31
CN113037433A (zh) 2021-06-25
EP4117243A1 (en) 2023-01-11
KR20220131287A (ko) 2022-09-27

Similar Documents

Publication Publication Date Title
US8548032B2 (en) Method of detecting a radar signal, radar detection module, and wireless transceiver including the same
JP5849245B2 (ja) レーダ装置
JP6225041B2 (ja) 受信装置
US7088794B2 (en) Automatic gain control for digitized RF signal processing
JP2003008676A (ja) 自動利得制御回路およびその方法、並びにそれらを用いた復調装置
US10237749B2 (en) Dynamic frequency selection with discrimination
KR101512414B1 (ko) 다수의 무선 프로토콜들을 구현하는 무선 디바이스에서 적응형 rf 포화 검출
CN118283765A (zh) 使用多个功率等级进行接近度检测
TWI469588B (zh) 快速且穩健之自動增益控制裝置及其操作之方法
US20130127529A1 (en) Automatic gain control device
JP2013238477A (ja) レーダ装置
WO2021175144A1 (zh) 自动增益控制方法、传感器及无线电器件
CN105022033A (zh) 雷达装置及控制方法
KR101854459B1 (ko) 증폭이득을 조절가능한 레이더 시스템 및 레이더 신호 처리 방법
US10505770B2 (en) Reception signal processing device, radar, and object detection method
CN107147368B (zh) 增益放大器的增益调整方法与装置
KR102037035B1 (ko) 기저 대역 신호의 전압 포화 방지 기능을 갖춘 레이더 장치 및 그의 전압 포화 방지 방법
JP2013113722A (ja) レーダ装置
WO2022269907A1 (ja) レーダ装置および干渉波回避装置
US20030151545A1 (en) Pulse radar device
US9891311B2 (en) Method of secure RF ranging under strong multipath reflections
JP2003018119A (ja) 受信装置
KR101030746B1 (ko) 레이더 수신기 및 그 표적 탐지 방법
JP2011242224A (ja) 広帯域レーダ装置及び広帯域レーダ装置の制御方法
CN111064478A (zh) 时延校准方法、无线射频设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227028496

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022551272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021765512

Country of ref document: EP

Effective date: 20221004