WO2021174727A1 - 一种高温使用的镍基变形高温合金轮盘锻件的制备方法 - Google Patents

一种高温使用的镍基变形高温合金轮盘锻件的制备方法 Download PDF

Info

Publication number
WO2021174727A1
WO2021174727A1 PCT/CN2020/098920 CN2020098920W WO2021174727A1 WO 2021174727 A1 WO2021174727 A1 WO 2021174727A1 CN 2020098920 W CN2020098920 W CN 2020098920W WO 2021174727 A1 WO2021174727 A1 WO 2021174727A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
forging
alloy
alloy ingot
controlled
Prior art date
Application number
PCT/CN2020/098920
Other languages
English (en)
French (fr)
Inventor
黄烁
张北江
张文云
秦鹤勇
段然
赵光普
胥国华
陈石富
田强
Original Assignee
北京钢研高纳科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京钢研高纳科技股份有限公司 filed Critical 北京钢研高纳科技股份有限公司
Priority to EP20923081.2A priority Critical patent/EP3978640A4/en
Publication of WO2021174727A1 publication Critical patent/WO2021174727A1/zh
Priority to US17/564,265 priority patent/US20220119931A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the invention belongs to the field of alloy preparation, and in particular relates to a method for preparing a nickel-based deformed high-temperature alloy wheel forging used at high temperature.
  • the service temperature of high-pressure compressor discs such as aero engines and gas turbines and hot-end rotating roulette discs such as turbine discs has gradually increased, and the maximum temperature exceeds 850°C. Therefore, the alloy materials required for the preparation of roulette forgings must have excellent strength and plasticity at room temperature to 850°C, high temperature permanent creep performance, and long-term structural performance stability, as well as good casting and forging process performance. At present, the nickel-based deformed superalloy roulette materials used in domestic aero-engines cannot meet the long-term use requirements above 850°C.
  • the present invention provides a method for preparing nickel-based deformed superalloy roulette forgings for high temperature use, which solves the problem that there is currently no high-performance roulette forging material that can be used for a long time at 850°C.
  • Optimize and improve the key process links in the smelting and forging process to solve the problems of metallurgical defects, cracking and uneven organization of high-alloyed nickel-based superalloys containing 55-65% ⁇ ′ phase in the smelting, and the diameter of 100-1200mm can be prepared Nickel-based deformed superalloy wheel forgings have excellent tensile strength, yield strength and endurance life at 850°C.
  • the present invention provides a method for preparing a nickel-based deformed high-temperature alloy used at high temperature, which includes the following steps:
  • Step 1 Weigh the raw materials according to the component ratio.
  • the component ratio is calculated by mass percentage.
  • the raw materials include: C: 0.01 ⁇ 0.08%, W: 6.5 ⁇ 8.0%, Cr: 7.5 ⁇ 11.0%, Mo: 1.5 ⁇ 3.5%, Co: 14.5 to 17.5%, Ti: 1.0 to 2.0%, Al: 4.0 to 5.5%, Nb: 1.0 to 2.0%, Zr: 0.005 to 0.05%, Mg: 0.005 to 0.05%; Ce: 0.001 to 0.05 %, B: 0.005 ⁇ 0.05%, Fe: 0.01 ⁇ 1.5%, the balance is Ni; the raw material also includes impurity elements, among the impurity elements, P ⁇ 0.015%, Mn ⁇ 0.5%, Si ⁇ 0.5%, S ⁇ 0.015%, O ⁇ 0.005%, N ⁇ 0.01%, Ag ⁇ 0.005%, Ca ⁇ 0.01%, Sn ⁇ 0.01%, Pb ⁇ 0.001%, Cu ⁇ 0.5%, Ta ⁇ 0.5%, V ⁇ 0.5%;
  • Step 2 Use vacuum induction melting to melt the raw materials into primary alloy ingots.
  • the processing technology of vacuum induction melting includes: evacuation, smelting period, refining and tapping.
  • the primary alloy ingots need to be demolded. High temperature stress relief annealing, then electroslag remelting refining into secondary alloy ingots, after demolding the secondary alloy ingots, low temperature stress relief annealing is required, and then vacuum consumable remelting refining into tertiary alloy ingots to obtain alloy ingots;
  • Step 3 After the alloy ingot obtained in step 2 is subjected to high-temperature homogenization annealing, the high-temperature homogenization annealing includes heating, heat preservation and cooling processes, and the heating rate is controlled to be 15-60°C/h.
  • the temperature of the heat preservation is 1150 ⁇ 1250°C
  • the time of the heat preservation is 24 ⁇ 72h
  • the cooling rate is controlled at 5 ⁇ 55°C/h.
  • the alloy after high temperature homogenization and annealing is obtained, and then heated for forging. Bars, after forging, the bars need to be subjected to high-temperature homogenization annealing, and the temperature is increased to the high-temperature homogenization annealing temperature T at a rate of 10 ⁇ 50°C/h.
  • the temperature of T is T ⁇ ′ ⁇ 30°C, according to T ⁇ ′
  • the measured composition of the alloy is calculated using the thermodynamic software Jmatpro;
  • Step 4 Cut the bar obtained in step 3 according to the weight of the roulette forging to obtain a cut bar; the weight of the cut bar is 110 to 150% of the weight of the roulette forging, and the height of the cut bar The diameter ratio is controlled between 1.5 and 3.0, and the cut bar is formed by billet and die forging to obtain alloy wheel forgings;
  • Step 5 After heat treatment of the alloy wheel forgings obtained in step 4, the heat treatment includes solution treatment, intermediate aging treatment and aging treatment.
  • the solution treatment method is 1150 ⁇ 1220°C for 2 ⁇ 10h
  • the intermediate aging treatment method is 1000-1150°C for 2-10 hours
  • the aging treatment method is 760°C to 920°C for 8 to 32 hours to obtain nickel-based deformed superalloy wheel forgings for ultra-high temperature use.
  • the alloy prepared by this technical solution can be used to prepare roulette forgings for long-term use at 850°C.
  • the diameter of the roulette forgings ranges from 200mm to 1200mm.
  • the tensile strength at 850°C is greater than 850MPa, and the yield strength is greater than 700MPa.
  • °C/350MPa endurance life is greater than 50h.
  • the alloy prepared by this technical solution can use existing high-temperature alloy smelting and forging equipment to prepare wheel forgings with an alloy diameter of 200mm to 1200mm, realizing industrial production, and obtaining uniform microstructure and good mechanical properties, and at the same time Effectively reduce the internal stress in the forging.
  • the vacuum degree is 10-100 Pa; in the treatment process in the smelting period, the temperature is controlled to be 1300°C-1650°C; In the refining treatment process, the temperature is controlled at 1400°C to 1600°C, and the vacuum is 1-20 Pa; in the steel tapping treatment process, the temperature is controlled at 1420°C to 1590°C, and it needs to be filled with argon at 10,000 to 50,000 Pa. Gas protection, cooling for 0.5h ⁇ 3h after casting is completed, then demoulding and cooling to obtain primary alloy ingot.
  • the primary alloy ingot needs to be transferred to the annealing furnace within 0.1h ⁇ 2h for high temperature stress relief annealing treatment, and the temperature is raised to the high temperature stress relief annealing temperature T at a rate of 10 ⁇ 50°C/h, and the temperature of T is the ⁇ ′ phase total solution temperature T ⁇ ' ⁇ 50°C, T ⁇ ' is calculated based on the measured composition of the alloy using the thermodynamic software Jmatpro.
  • alloy vacuum induction ingots can be prepared, alloy elements can be accurately controlled, and the steel ingots will not be hot cracked, and the melting rate will not fluctuate during the remelting process, which can be used to prepare high Quality electroslag remelting electrode or consumable remelting electrode.
  • the step 2 further includes: preparing the primary alloy ingot into an electroslag remelting electrode, and the filling ratio of the electroslag remelting electrode to the mold is 0.75 to 0.9;
  • the steady-state melting rate is 1.0-6.0 kg/min
  • the cooling time of the secondary alloy ingot after the electroslag remelting refining is completed is 0.5h-6h, and then the Mold to obtain a secondary alloy ingot.
  • the secondary alloy ingot After demolding, the secondary alloy ingot is subjected to low-temperature stress relief annealing, and the temperature is raised to the low temperature stress relief annealing temperature T at a rate of 10 ⁇ 50°C/h.
  • the temperature of T is T ⁇ ′ -100 ⁇ T ⁇ ′ -250°C, and T ⁇ ′ is based on
  • the measured composition of the alloy is calculated using the thermodynamic software Jmatpro.
  • the inventor has confirmed through research that through this technical solution, after the primary alloy ingots prepared by vacuum induction melting are remelted, the inclusion content and the harmful impurity element S content in the alloy ingots can be effectively reduced, and at the same time, electroslag with qualified composition can be prepared.
  • Ingots are used to prepare vacuum consumable remelting electrodes, which can significantly improve the quality of electrodes, especially after low-temperature stress relief annealing can effectively reduce the internal stress of the electrode, improve the process stability of the vacuum consumable remelting process, and avoid melting speed Wave, can prepare the electrode of 500mm diameter vacuum consumable ingot.
  • the step 2 further includes: preparing the secondary alloy ingot into a consumable remelting electrode, and the filling ratio of the consumable remelting electrode to the mold is 0.75-0.95, melting rate 1.0-5.0 kg/min; the cooling time of the tertiary alloy ingot after the completion of the vacuum consumable remelting refining is 0.5h-3h, and then demolding and cooling.
  • the inventor has confirmed through research that through this technical solution, through the above-mentioned vacuum consumable remelting, the metallurgical quality of the steel ingot can be significantly improved, and the compactness and thermoplasticity of the steel ingot can be improved.
  • step 2 if the primary alloy ingot is an alloy ingot with a diameter of less than 500 mm, the treatment process for the primary alloy ingot will be changed to:
  • the alloy ingot is directly subjected to vacuum consumable remelting to obtain the alloy ingot.
  • the inventors have confirmed through research that through this technical solution, consumable ingots smaller than 500mm require a small electrode diameter, and the use of vacuum induction ingots to prepare electrodes can obtain good metallurgical quality, which not only shortens the process flow, but also effectively reduces costs.
  • the step 3 further includes: the alloy ingot obtained in the step 2 is homogenized and annealed, heated to the forging temperature and kept at the temperature, and then out of the furnace for forging, and the heating rate before forging is controlled as follows: 15 ⁇ 60°C/h, the holding temperature is 1050°C ⁇ 1180°C, and the holding time is 2h ⁇ 8h.
  • the forging and billeting process includes upsetting and drawing. The forging time of a single fire time exceeds 5 ⁇ 30min and then it is returned to the furnace for 1 ⁇ 6h. Before each forging, the surface of the alloy ingot is covered with asbestos for heat preservation, and the total forging ratio is controlled to be 5-20 to obtain bars.
  • thermodynamic software Jmatpro is calculated and obtained. The inventor has confirmed through research that through this technical solution, the steel ingot can be forged and billeted using a fast forging machine, the steel ingot does not crack, and the as-cast structure can be transformed into an equiaxed crystal structure.
  • the step 4 also includes: the cut bar is heated and then upset the billet, the heating rate before forging is controlled to be 20-50°C/h, and the holding temperature is 1000 DEG C to 1150 DEG C, the holding time is 2 to 8 hours, the upsetting deformation is 30 to 70%, and the disc blank is obtained.
  • the bar upsetting process is stable, and there are no forging defects such as forging cracks, large and small heads, and wrinkles.
  • the disc blank is heated and then die forged, the heating rate before forging is controlled to be 20-50°C/h, the holding temperature is 950°C to 1150°C, and the holding time is 2-8h, the forging deformation is 30-70%, and the mold heating temperature is 300-1050°C.
  • the wheel disc forging can be formed by die forging without forging cracking, with good filling effect and good uniformity of the structure.
  • This patent provides a new method for preparing ultra-high temperature nickel-based deformed superalloys. Using the preparation method provided by this patent, a casting-forging process can be used to prepare wheel forgings with a diameter of 100-1200mm. The temperature is 850-900°C at room temperature. It has good mechanical properties and satisfactory service stability within the range, which can fill the gap in domestic long-term deformation disk materials at 850°C.
  • Fig. 1 is the morphology of the ⁇ ′ phase scanning electron microscope of the alloy wheel forging of the present invention
  • Figure 2 is a ⁇ 'phase equilibrium phase diagram of a certain ratio of the alloy of the present invention.
  • Fig. 4 is the metallographic morphology of the abnormally coarse grains remaining during the improper preparation process of the alloy wheel of the present invention
  • Figure 5 shows the normal grain metallographic morphology of the alloy wheel forging of the present invention.
  • the nickel-based deformed superalloy mentioned herein includes impurity elements, such as P, Mn, Si, S, O, N, Ag, Ca, Sn, Pb, Cu, Ta, V and so on.
  • electroslag remelting refining is used to remove inclusions and S elements and improve the metallurgical quality of alloy ingots.
  • the vacuum consumable remelting refining is used to further improve the metallurgical quality and obtain an alloy ingot with a certain degree of thermoplasticity.
  • the alloy of the present invention has a high content of solution strengthening elements W, Mo and strengthening phase ⁇ ′ phase forming elements Al, Ti, Nb, and the ⁇ ′ phase content reaches 55%-65% (see Figure 1 and Figure 1). 2) Aiming at a series of technical problems caused by high ⁇ ′ phase to alloy smelting and forging, by optimizing the thermal history of the preparation process of wheel forgings and controlling the precipitation and dissolution of ⁇ ′ phase, the high temperature stress relief of steel ingots is proposed.
  • Annealing, low-temperature stress-relieving annealing process and high-temperature homogenization annealing of bars solve the problem of easy cracking and uneven structure in smelting and forging of nickel-base deformed superalloy wheel forgings used at high temperature of 850°C.
  • the thermal stress in the steel ingot and the structural stress will be superimposed.
  • the stress is too large, the steel ingot will be hot cracked. At the same time, more looseness in the steel ingot will accelerate the crack propagation.
  • the inventor found through experiments that for vacuum induction melting, after the refining of the molten steel, the steel is tapped and poured into a mold made of cast iron, and the heat is dissipated in the vacuum chamber through thermal radiation.
  • the cooling conditions are slow, the solidification speed of the molten steel is slow, and the inside and outside The temperature difference is large, which will cause greater thermal stress and organizational stress.
  • the ⁇ 'phase content of the alloy of the present invention is as high as 55-60% (see Figures 1 and 2), and the total melting temperature of the ⁇ 'phase is 1155 ⁇ 1170°C (T ⁇ ').
  • the present invention proposes a high temperature stress relief annealing process for primary alloy ingots prepared by vacuum induction melting.
  • the process design idea is to demold the steel ingot in a certain period of time and transfer it to the annealing furnace. The heating rate is increased to the temperature T, and the ⁇ 'phase gradually re-dissolves under this temperature condition to eliminate thermal stress and tissue stress.
  • the electroslag remelting electrode is inserted into the slag pool, melted by the slag resistance, and then dripped into the crystallizer cooled by water in the form of droplets.
  • the molten steel pool of the slag remelted steel ingot is shallow, and the solidification speed of the molten steel is fast, which can effectively reduce the thermal stress and the structural stress.
  • the electroslag ingot is not annealed after demolding, there is still a greater risk of thermal cracking. It is directly used to prepare consumable remelting electrodes, and the melting rate will fluctuate randomly during the vacuum consumable remelting process.
  • the inventor of the present invention proposes a low-temperature stress-relieving annealing process for the secondary alloy ingot prepared by electroslag remelting.
  • the furnace heats up to temperature T at a certain heating rate.
  • the ⁇ 'phase gradually coarsens and grows and ensures that all parts of the steel ingot are uniformly charged and analyzed. This can effectively reduce the internal stress of the steel ingot and avoid melting during consumable remelting. Rapid fluctuations without using high-temperature stress-relieving annealing process can also effectively save energy costs.
  • the inventors have found through experiments that corresponding to the billeting of steel ingots to prepare bars, due to the high total melting temperature of the ⁇ ′ phase of the alloy, the ⁇ ′ phase of the alloy is easy to precipitate during the billeting process, resulting in a decrease in the thermoplasticity of the steel ingot and an increase in deformation resistance.
  • the ⁇ ′ phase due to the ⁇ ′ phase
  • the effect of pinning dislocations will inhibit the dynamic recrystallization of the alloy, leaving an abnormally coarse grain structure (see Figure 4), affecting the structure and performance uniformity of the roulette forgings, and in severe cases, it will cause the roulette forgings to be scrapped.
  • the inventor of the present invention proposes a high-temperature homogenization annealing process for the secondary alloy ingot prepared by electroslag remelting.
  • the process design idea is that the steel ingot is forged to prepare the bar. After the forging is completed, the high temperature homogenization annealing is carried out, and the temperature is raised to the high temperature homogenization annealing temperature T at a rate of 10-50 °C/h, at which the ⁇ 'phase is properly re-dissolved , The effect of ⁇ 'phase pinning dislocations disappears, and then static recrystallization occurs in the alloy, forming equiaxed grains with uniform structure, realizing the homogenization of the structure, and providing a uniform bar for subsequent billeting and die forging .
  • Example C W Cr Mo Co Ti Al Nb Zr Mg Ce B Fe Ni T ⁇ ′//°C
  • Example 1 0.04 6.9 7.7 2 15 1.5 4.5 1.5 0.004 0.004 0.004 0.004 0.004 Remain 1152
  • Example 2 0.01 7.9 10 3 16 1.7 5 1.7 0.01 0.01 0.01 0.01 1 Remain 1175
  • Example 3 0.08 6.5 7.5 1.5 14.5 1 4 1 0.005 0.005 0.005 0.01 Remain 1055
  • Example 4 0.06 8 11 3.5 17 2 5.5 2 0.05 0.05 0.05 0.05 1.5 Remain 1172
  • Example 5 0.03 7.5 8 2 15 1.2 4.5 1.2 0.03 0.03 0.03 0.02 Remain 1130
  • Example 6 0.04 7 10 3.2 16.5 1.8 5.2 1.8 0.02 0.02 0.02 0.02 1.2 Remain 1178 Comparative example 1 0.045 6.8 10.5 2.6 16.2 1.55 4.52 1.46 0.002 0.001 0.001 0.003 1.2 Remain 1139 Comparative example 2 0.045 4.8 10.5 4.8 16.2 1.55 4.52 1.46 0.017 0.011 0.005 0.013 2.2 Remain 1129
  • Example 1 A method for preparing a nickel-based deformed superalloy wheel forging that can be used for a long time at 850°C
  • a nickel-based deformed high-temperature alloy wheel forging (with a diameter of 200 mm) that can be used for a long time at 850° C. is prepared, and the alloy composition is shown in the part of embodiment 1 in Table 1.
  • the preparation process of alloy wheel forgings includes the following steps:
  • Step 1 The smelting adopts a dual process (namely, vacuum induction melting and vacuum consumable remelting), the diameter of the primary alloy ingot obtained by vacuum induction melting is 250 mm, and the diameter of the alloy ingot obtained by vacuum consumable remelting is 305 mm.
  • Vacuum induction smelting includes the following steps: weighing raw materials according to the element ratio of the alloy, and performing vacuum induction smelting.
  • the vacuum induction melting process includes several steps such as evacuation, smelting period, refining and tapping.
  • the vacuum in the evacuation stage is 10Pa
  • the temperature in the smelting period is controlled to 1300°C
  • the temperature in the refining period is controlled to 1400°C
  • the vacuum degree in the refining stage is 1Pa.
  • the temperature is controlled to 1420°C, and 20,000Pa is filled with argon protection when tapping. After casting, it is cooled for 0.5h and then demolded for cooling. After demolding, it is heated to high temperature stress relief annealing temperature T at a rate of 50°C/h, and ⁇ ′ can be obtained by calculation.
  • the total dissolution temperature T ⁇ ' of the phase is 1152°C
  • the annealing temperature is T ⁇ '-20°C
  • the primary alloy ingot is obtained after cooling.
  • the primary alloy ingot is machined and prepared into a consumable remelting electrode.
  • the filling ratio of the electrode to the mold is 0.75, and the melting rate is 1.0kg/min.
  • the cooling time after the tertiary alloy ingot smelting is completed is 0.5h, and then demolding and cooling. Obtain an alloy ingot.
  • Step 2 The alloy ingot needs to undergo high temperature homogenization annealing treatment, including the process of heating, holding and cooling.
  • the heating rate is controlled to 15°C/h
  • the holding temperature is 1150°C
  • the holding time is 24h
  • the cooling rate is controlled to 5°C/h .
  • the alloy ingot is heated to the forging temperature and kept warm and then out of the furnace for forging.
  • the heating rate before forging is controlled to 15°C/h
  • the holding temperature is 1050°C
  • the holding time is 2h.
  • the forging billeting process includes Upsetting and drawing length, single-fire forging time is controlled within 1min ⁇ 5min, after 5min is returned to the furnace for 1h, the surface of the alloy ingot is covered with asbestos for heat preservation before each forging, and the total forging ratio is controlled to 5, after the bar forging is completed High-temperature homogenization annealing is required, and the temperature is increased to the high-temperature homogenization annealing temperature T at a rate of 45°C/h. After calculation, the total solution temperature T ⁇ ′ of the ⁇ ′ phase is 1152°C, and the annealing temperature is T ⁇ ′-30°C. Bar.
  • Step 3 Cut the appropriate length of the bar according to 140% of the weight of the roulette forging.
  • the height-to-diameter ratio of the bar is controlled to 1.5.
  • the billet is upset, and the heating rate before forging is controlled to 20°C/h.
  • the temperature is 1000°C
  • the holding time is 2h
  • the upsetting deformation is 30%
  • the disc blank is obtained.
  • the disc blank is heated, it is forged and formed.
  • the heating rate before forging is controlled to 20°C/h
  • the holding temperature is 950°C
  • the holding time is 2h
  • the forging deformation is 30%
  • the mold heating temperature is 300°C.
  • the alloy roulette forging is obtained.
  • Step 4 The roulette forgings are machined for heat treatment.
  • the heat treatment includes solution treatment, intermediate aging treatment and aging treatment.
  • the solution treatment system is 1150°C for 2 hours
  • the intermediate aging treatment system is 1000°C for 2 hours
  • the aging treatment system is 760. Incubate at °C for 8h.
  • the raw material may be selected from metallic nickel, metallic chromium or nickel-chromium alloy, metallic titanium, metallic aluminum, metallic molybdenum, metallic boron iron, metallic cobalt, metallic tungsten, nickel-tungsten alloy, niobium One or more of nickel alloy, vanadium iron, carbon electrode, master alloy.
  • Example 2 A method for preparing a nickel-based deformed high-temperature alloy wheel forging with a diameter of 550mm that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 550 mm that can be used at 850° C. for a long time is prepared.
  • the alloy composition is shown in Example 2 of Table 1.
  • the preparation process of alloy wheel forgings includes the following steps:
  • Step 1 The smelting adopts a dual process, vacuum induction melting + vacuum consumable remelting, the diameter of the primary alloy ingot in vacuum induction melting is 370mm, and the diameter of the vacuum consumable remelting alloy ingot is 460mm.
  • Vacuum induction smelting includes the following steps: weighing raw materials according to the element ratio of the alloy, and performing vacuum induction smelting.
  • the vacuum induction melting process includes several steps such as evacuation, smelting, refining and tapping.
  • the vacuum in the evacuation stage is 100Pa
  • the temperature in the smelting stage is controlled at 1650°C
  • the temperature in the refining stage is controlled at 1600°C
  • the vacuum in the refining stage is 20Pa.
  • the temperature is controlled at 1590°C, and 50,000Pa is filled with argon protection when tapping. After casting, it is cooled for 3h and demolded. After demolding, the temperature is raised to the high temperature stress relief annealing temperature T at a rate of 40°C/h, and the ⁇ ′ phase can be obtained by calculation.
  • the melting temperature T ⁇ ′ is 1175°C
  • the annealing temperature is T ⁇ ′+10°C
  • the primary alloy ingot is obtained after cooling.
  • the primary alloy ingot is machined and prepared into a consumable remelting electrode.
  • the filling ratio of the electrode to the mold is 0.95
  • the melting rate is 6.0kg/min
  • the cooling time after the secondary alloy ingot is melted is 3h, and then demolding and cooling. Obtain an alloy ingot.
  • Step 2 High-temperature homogenization annealing of alloy ingots includes heating, holding and cooling processes. The heating rate is controlled to 60°C/h, the holding temperature is 1250°C, the holding time is 72h, and the cooling rate is controlled to 55°C/h. After homogenization annealing, after machining, the alloy ingots are heated to the forging temperature for holding and then out of the furnace for forging. The heating rate before forging is controlled to 60°C/h, the holding temperature is 1180°C, and the holding time is 8h.
  • the forging billeting process includes Upsetting and drawing length, single-fire forging time is controlled within 1min ⁇ 30min, after 30min, heat preservation is 6h, the alloy ingot surface is covered with asbestos for heat preservation before each forging, the total forging ratio is controlled to 20, after the bar forging is completed High-temperature homogenization annealing is required, and the temperature is increased to the high-temperature homogenization annealing temperature T at a rate of 50°C/h. After calculation, the total solution temperature T ⁇ ′ of the ⁇ ′ phase is 1175°C, and the annealing temperature is T ⁇ ′-10°C. Bar.
  • Step 3 Cut the bar according to 130% of the weight of the roulette forging.
  • the height-to-diameter ratio of the bar is controlled to 3.0.
  • the billet is upset, and the heating rate before forging is controlled to 50°C/h, and the holding temperature is At 1140°C, the holding time is 8h, and the upsetting deformation is 70%.
  • the disc blank is heated, it is forged and formed.
  • the heating rate before forging is controlled to 50°C/h, the holding temperature is 1120°C, the holding time is 8h, the forging deformation is 70%, and the mold heating temperature is 1050°C.
  • the alloy roulette forging is obtained.
  • Step 4 The roulette forgings are machined for heat treatment.
  • the heat treatment includes solution treatment, intermediate aging treatment and aging treatment.
  • the solution treatment system is 1220°C for 10 hours
  • the intermediate aging treatment system is 1150°C for 10 hours
  • the aging treatment system is 920. Incubate at °C for 32h.
  • the raw material may be selected from metallic nickel, metallic chromium or nickel-chromium alloy, metallic titanium, metallic aluminum, metallic molybdenum, metallic boron iron, metallic cobalt, metallic tungsten, nickel-tungsten alloy, niobium One or more of nickel alloy, vanadium iron, carbon electrode, master alloy.
  • Example 3 A 900mm diameter nickel-based wrought superalloy wheel forging that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy diameter wheel forging that can be used for a long time at 850° C. is prepared, and the alloy composition is shown in Example 3 of Table 1.
  • the preparation process of alloy wheel forgings includes the following steps:
  • Step 1 The smelting adopts the triple process, vacuum induction melting + electroslag remelting + vacuum consumable remelting.
  • the diameter of the primary alloy ingot in vacuum induction melting is 355mm
  • the diameter of electroslag remelting alloy ingot is 423mm
  • the vacuum consumable remelting alloy ingot The diameter is 508mm.
  • Vacuum induction smelting includes the following steps: weighing raw materials according to the element ratio of the alloy, and performing vacuum induction smelting.
  • the vacuum induction melting process includes several steps such as evacuation, smelting, refining and tapping.
  • the vacuum in the evacuation stage is 20Pa
  • the temperature in the smelting stage is controlled at 1550°C
  • the temperature in the refining stage is controlled at 1500°C
  • the vacuum degree in the refining stage is 4Pa.
  • the tapping temperature is controlled at 1480°C
  • 20,000Pa is filled with argon protection during tapping.
  • the temperature is raised to high temperature stress relief annealing temperature T at a rate of 30°C/h, and ⁇ can be obtained by calculation.
  • the phase total solution temperature T ⁇ ′ is 1055°C
  • the annealing temperature is T ⁇ ′+50°C
  • the primary alloy ingot is obtained after cooling.
  • the primary alloy ingot is machined to prepare an electroslag remelting electrode.
  • the secondary alloy ingot is machined to prepare an electroslag remelting electrode.
  • the filling ratio of the electrode to the mold is 0.75, and the melting rate is 1.0kg/min.
  • the cooling time after the tertiary alloy ingot smelting is completed is 1h, and then demolding and cooling. Obtain an alloy ingot.
  • Step 2 High-temperature homogenization annealing of alloy ingots includes heating, heat preservation and cooling processes. The heating rate is controlled to 35°C/h, the holding temperature is 1190°C, the holding time is 50h, and the cooling rate is controlled to 25°C/h. After homogenization annealing, the alloy ingot is machined, heated to the forging temperature, and then out of the furnace for forging. The heating rate before forging is controlled to 35°C/h, the holding temperature is 1170°C, and the holding time is 6h.
  • the forging billeting process includes Upsetting and drawing length, single-fire forging time is controlled within 1min ⁇ 15min, after 15min, the temperature is returned to the furnace for 2h.
  • the surface of the alloy ingot is covered with asbestos for heat preservation, and the total forging ratio is controlled to 15, after the bar forging is completed High-temperature homogenization annealing is required, and the temperature is increased to the high-temperature homogenization annealing temperature T at a rate of 30°C/h. After calculation, the total solution temperature T ⁇ ′ of the ⁇ ′ phase is 1055°C, and the annealing temperature is T ⁇ ′+30°C. Bar.
  • Step 3 Cut the bar according to 140% of the weight of the roulette forging.
  • the height-to-diameter ratio of the bar is controlled to 2.5.
  • the billet is upset and the heating rate before forging is controlled to 35°C/h, and the holding temperature is 1110 °C, the holding time is 4h, the upsetting deformation is 40%, and the disc blank is obtained.
  • the disc blank is heated, it is forged and formed.
  • the heating rate before forging is controlled to 35°C/h
  • the holding temperature is 1120°C
  • the holding time is 4h
  • the forging deformation is 40%
  • the mold heating temperature is 650°C.
  • the alloy roulette forging is obtained.
  • Step 4 The roulette forgings are processed by machining for heat treatment.
  • the heat treatment includes solution treatment, intermediate aging treatment and aging treatment.
  • the solution treatment system is 1180°C for 5 hours
  • the intermediate aging treatment system is 1050°C for 8 hours
  • the aging treatment system is 910 Incubate at °C for 20h.
  • the raw material may be selected from metallic nickel, metallic chromium or nickel-chromium alloy, metallic titanium, metallic aluminum, metallic molybdenum, metallic boron iron, metallic cobalt, metallic tungsten, nickel-tungsten alloy, niobium One or more of nickel alloy, vanadium iron, carbon electrode, master alloy.
  • Example 4 A 900mm diameter nickel-based deformed superalloy wheel forging that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 900 mm that can be used at 850° C. for a long time is prepared, and the alloy composition is shown in Example 4 of Table 1.
  • the preparation process of alloy wheel forgings includes the following steps:
  • Step 1 The smelting adopts the triple process, vacuum induction melting + electroslag remelting + vacuum consumable remelting.
  • the diameter of the primary alloy ingot in vacuum induction melting is 355mm
  • the diameter of electroslag remelting alloy ingot is 423mm
  • the vacuum consumable remelting alloy ingot The diameter is 508mm.
  • Vacuum induction smelting includes the following steps: weighing raw materials according to the element ratio of the alloy, and performing vacuum induction smelting.
  • the vacuum induction melting process includes several steps such as evacuation, smelting, refining and tapping.
  • the vacuum in the evacuation stage is 30Pa
  • the temperature in the smelting stage is controlled to 1580°C
  • the temperature in the refining stage is controlled to 1550°C
  • the vacuum degree in the refining stage is 5Pa
  • the steel is tapped.
  • the temperature is controlled to 1480°C
  • 25000Pa argon protection is filled when steel is tapped.
  • the melting temperature T ⁇ ′ is 1172°C
  • the annealing temperature is T ⁇ ′-50°C
  • the primary alloy ingot is obtained after cooling.
  • the primary alloy ingot is machined to prepare an electroslag remelting electrode.
  • the total solution temperature T ⁇ ′ of the ⁇ ′ phase is 1172°C
  • the annealing temperature is T ⁇ ′-150°C
  • the secondary alloy ingot is obtained after cooling.
  • the secondary alloy ingot is machined and prepared into an electroslag remelting electrode.
  • the filling ratio of the electrode to the mold is 0.87
  • the melting rate is 3.8kg/min
  • the cooling time after the tertiary alloy ingot smelting is 3h, and then demolding and cooling. Obtain an alloy ingot.
  • Step 2 High-temperature homogenization annealing of alloy ingots includes heating, holding and cooling processes.
  • the heating rate is controlled to 20°C/h
  • the holding temperature is 1180°C
  • the holding time is 70h
  • the cooling rate is controlled to 5°C/h.
  • After homogenization annealing after machining, the alloy ingot is heated to the forging temperature and kept warm and then out of the furnace for forging.
  • the heating rate before forging is controlled to 15°C/h
  • the holding temperature is 1180°C
  • the holding time is 6h.
  • the forging billeting process includes Upsetting and drawing length, single-fire forging time is controlled within 1min ⁇ 10min, after 10min, it is heated to the furnace for 2h.
  • the surface of the alloy ingot is covered with asbestos for heat preservation, and the total forging ratio is controlled to 10, after the bar forging is completed High-temperature homogenization annealing is required, and the temperature is increased to the high-temperature homogenization annealing temperature T at a rate of 25°C/h. After calculation, the total solution temperature T ⁇ ′ of the ⁇ ′ phase is 1172°C, and the annealing temperature is T ⁇ ′+20°C. Bar.
  • Step 3 Cut the bar according to 125% of the weight of the roulette forging.
  • the height-to-diameter ratio of the bar is controlled to 2.
  • the heating rate before forging is controlled to 35°C/h, and the holding temperature is 1150 °C, holding time is 6h, upsetting deformation is 50%.
  • After the disc blank is heated, it is forged and formed.
  • the heating rate before forging is controlled to 40°C/h, the holding temperature is 1100°C, the holding time is 6h, the forging deformation is 35%, and the mold heating temperature is 350°C.
  • the alloy roulette forging is obtained.
  • Step 4 The roulette forgings are processed by machining for heat treatment.
  • the heat treatment includes solution treatment, intermediate aging treatment and aging treatment.
  • the solution treatment system is 1160°C for 8 hours
  • the intermediate aging treatment system is 1100°C for 7 hours
  • the aging treatment system is 850. Incubate at °C for 32h.
  • the raw material may be selected from metallic nickel, metallic chromium or nickel-chromium alloy, metallic titanium, metallic aluminum, metallic molybdenum, metallic boron iron, metallic cobalt, metallic tungsten, nickel-tungsten alloy, niobium One or more of nickel alloy, vanadium iron, carbon electrode, master alloy.
  • Example 5 a nickel-based deformed superalloy wheel forging with a diameter of 900mm that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 900 mm that can be used at 850° C. for a long time is prepared.
  • the alloy composition is shown in Example 5 of Table 1.
  • the preparation process of alloy wheel forgings includes the following steps:
  • Step 1 The smelting adopts the triple process, vacuum induction melting + electroslag remelting + vacuum consumable remelting.
  • the diameter of the primary alloy ingot in vacuum induction melting is 355mm
  • the diameter of electroslag remelting alloy ingot is 423mm
  • the vacuum consumable remelting alloy ingot The diameter is 508mm.
  • Vacuum induction smelting includes the following steps: weighing raw materials according to the element ratio of the alloy, and performing vacuum induction smelting.
  • the vacuum induction melting process includes several steps such as evacuation, smelting, refining and tapping.
  • the vacuum in the evacuation stage is 20Pa
  • the temperature in the smelting stage is controlled to 1600°C
  • the temperature in the refining stage is controlled to 1500°C
  • the vacuum degree in the refining stage is 4Pa
  • the steel is tapped.
  • the temperature is controlled at 1480°C
  • 20,000Pa is filled with argon protection during tapping.
  • the temperature is raised to the high temperature stress relief annealing temperature T at a rate of 10°C/h, and the ⁇ ′ phase can be obtained by calculation.
  • the melting temperature T ⁇ ′ is 1130°C
  • the annealing temperature is T ⁇ ′+30°C
  • the primary alloy ingot is obtained after cooling.
  • the primary alloy ingot is machined to prepare an electroslag remelting electrode.
  • the total solution temperature T ⁇ ′ of the ⁇ ′ phase is 1130°C
  • the annealing temperature is T ⁇ ′-250°C
  • the secondary alloy ingot is obtained after cooling.
  • the secondary alloy ingot is machined and prepared into an electroslag remelting electrode.
  • the filling ratio of the electrode to the mold is 0.95
  • the melting rate is 5kg/min
  • the cooling time after the tertiary alloy ingot smelting is 3h, and then demolding and cooling to obtain Alloy ingots.
  • Step 2 High-temperature homogenization annealing of alloy ingots includes heating, heat preservation and cooling processes. The heating rate is controlled to 35°C/h, the holding temperature is 1190°C, the holding time is 50h, and the cooling rate is controlled to 25°C/h. After homogenization annealing, after machining, the alloy ingot is heated to the forging temperature and kept warm and then out of the furnace for forging. The heating rate before forging is controlled to 35°C/h, the holding temperature is 1170°C, and the holding time is 7h.
  • the forging billeting process includes Upsetting and drawing length, single-fire forging time is controlled within 1min ⁇ 12min, after 12min is returned to the furnace for 3h, the surface of the alloy ingot is covered with asbestos for heat preservation before each forging, and the total forging ratio is controlled to 17, after the bar forging is completed High-temperature homogenization annealing is required, and the temperature is increased to the high-temperature homogenization annealing temperature T at a rate of 20°C/h. After calculation, the total solution temperature T ⁇ ′ of the ⁇ ′ phase is 1130°C, and the annealing temperature is T ⁇ ′+30°C. Bar.
  • Step 3 Cut the bar according to 115% of the weight of the roulette forging.
  • the height-to-diameter ratio of the bar is controlled to 2.
  • the billet is upset, the heating rate before forging is controlled to 40°C/h, and the holding temperature is 1120 °C, holding time is 7h, upsetting deformation is 60%.
  • the disc blank is heated, it is forged to form.
  • the heating rate before forging is controlled to 45°C/h, the holding temperature is 1130°C, the holding time is 3h, the forging deformation is 60%, and the mold heating temperature is 650°C.
  • the alloy roulette forging is obtained.
  • Step 4 The roulette forgings are machined for heat treatment.
  • the heat treatment includes solution treatment, intermediate aging treatment and aging treatment.
  • the solution treatment system is 1200°C for 3 hours
  • the intermediate aging treatment system is 1050°C for 4 hours
  • the aging treatment system is 900 Incubate at °C for 25h.
  • this embodiment prepares a nickel-based deformed high-temperature alloy wheel forging with a diameter of 900 mm that can be used at 850°C for a long time and also includes impurity elements.
  • this embodiment prepares a nickel-based deformed high-temperature alloy wheel forging with a diameter of 900mm that can be used at 850°C for a long time and also includes impurity elements.
  • the raw material may be selected from metallic nickel, metallic chromium or nickel-chromium alloy, metallic titanium, metallic aluminum, metallic molybdenum, metallic boron iron, metallic cobalt, metallic tungsten, nickel-tungsten alloy, niobium One or more of nickel alloy, vanadium iron, carbon electrode, master alloy.
  • Example 6 A 600mm diameter nickel-based deformed superalloy wheel forging that can be used for a long time at 850°C
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 600 mm that can be used at 850° C. for a long time is prepared.
  • the alloy composition is shown in Example 6 of Table 1.
  • the preparation process of alloy wheel forgings includes the following steps:
  • Step 1 The smelting adopts the triple process, vacuum induction melting + electroslag remelting + vacuum consumable remelting.
  • the diameter of the primary alloy ingot in vacuum induction melting is 355mm
  • the diameter of electroslag remelting alloy ingot is 423mm
  • the vacuum consumable remelting alloy ingot The diameter is 508mm.
  • Vacuum induction smelting includes the following steps: weighing raw materials according to the element ratio of the alloy, and performing vacuum induction smelting.
  • the vacuum induction melting process includes several steps such as evacuation, smelting, refining and tapping.
  • the vacuum in the evacuation stage is 30Pa
  • the temperature in the smelting stage is controlled to 1580°C
  • the temperature in the refining stage is controlled to 1550°C
  • the vacuum degree in the refining stage is 5Pa
  • the steel is tapped.
  • the temperature is controlled at 1400°C
  • the steel is filled with 30000Pa argon protection when tapping.
  • the melting temperature T ⁇ ' is 1178°C
  • the annealing temperature is T ⁇ '-30°C
  • the primary alloy ingot is obtained after cooling.
  • the primary alloy ingot is machined to prepare an electroslag remelting electrode.
  • the secondary alloy ingot After cooling, the secondary alloy ingot is obtained.
  • the secondary alloy ingot is machined and prepared into an electroslag remelting electrode.
  • the filling ratio of the electrode to the mold is 0.87, and the melting rate is 3.8kg/min.
  • the cooling time after the tertiary alloy ingot smelting is 2h, and then demolding and cooling. Obtain an alloy ingot.
  • Step 2 High-temperature homogenization annealing of alloy ingots includes heating, heat preservation and cooling processes.
  • the heating rate is controlled to 15°C/h
  • the holding temperature is 1170°C
  • the holding time is 70h
  • the cooling rate is controlled to 10°C/h.
  • After homogenization annealing after machining, the alloy ingot is heated to the forging temperature and kept warm and then out of the furnace for forging.
  • the heating rate before forging is controlled to 30°C/h
  • the holding temperature is 1090°C
  • the holding time is 5h.
  • the forging billeting process includes Upsetting and drawing length, single-fire forging time is controlled within 1min ⁇ 12min, after 12min, the temperature is returned to the furnace for 3h.
  • the surface of the alloy ingot is covered with asbestos for heat preservation, and the total forging ratio is controlled to 8.
  • High-temperature homogenization annealing is required, and the temperature is increased to the high-temperature homogenization annealing temperature T at a rate of 10°C/h.
  • the total solution temperature T ⁇ ′ of the ⁇ ′ phase is 1178°C, and the annealing temperature is T ⁇ ′-30°C. Bar.
  • Step 3 Cut the bar according to 145% of the weight of the roulette forging.
  • the height-to-diameter ratio of the bar is controlled to 2.5.
  • the heating rate before forging is controlled to 35°C/h, and the holding temperature is 1150.
  • °C holding time is 4h, upsetting deformation is 50%.
  • the disc blank is heated, it is die forged.
  • the heating rate is controlled to 35°C/h, the holding temperature is 1100°C, the holding time is 4h, the forging deformation is 35%, and the mold heating temperature is 350°C.
  • the alloy roulette forging is obtained.
  • Step 4 The roulette forgings are machined for heat treatment.
  • the heat treatment includes solution treatment, intermediate aging treatment and aging treatment.
  • the solution treatment system is 1160°C for 8 hours
  • the intermediate aging treatment system is 1100°C for 10 hours
  • the aging treatment system is 850. Incubate at °C for 30h.
  • a nickel-based deformed superalloy wheel forging with a diameter of 600mm that can be used at 850°C for a long time in this embodiment also includes impurity elements.
  • a nickel-based deformed superalloy wheel forging with a diameter of 600mm that can be used at 850°C for a long time in this embodiment also includes impurity elements.
  • the raw material may be selected from metallic nickel, metallic chromium or nickel-chromium alloy, metallic titanium, metallic aluminum, metallic molybdenum, metallic boron iron, metallic cobalt, metallic tungsten, nickel-tungsten alloy, niobium One or more of nickel alloy, vanadium iron, carbon electrode, master alloy.
  • Example 7 A 600mm diameter nickel-based deformed superalloy wheel forging that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 600 mm that can be used at 850° C. for a long time is prepared.
  • the alloy composition is shown in Example 6 of Table 1.
  • step 1 of the preparation process of alloy wheel forgings if the primary alloy ingot is an alloy ingot with a diameter of less than 500mm, the processing process for the primary alloy ingot will be changed
  • the steps are: directly subjecting the primary alloy ingot to vacuum consumable remelting to obtain an alloy ingot.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm that can be used at 850°C for a long time and also includes impurity elements.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm, which can be used at 850°C for a long time, also includes impurity elements.
  • Example 8 A 600mm diameter nickel-based deformed superalloy wheel forging that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 600 mm that can be used at 850° C. for a long time is prepared.
  • the alloy composition is shown in Example 1 of Table 1.
  • step 1 of the preparation process of alloy wheel forgings if the primary alloy ingot is an alloy ingot with a diameter of less than 500mm, the processing process for the primary alloy ingot will be changed
  • the steps are: directly subjecting the primary alloy ingot to vacuum consumable remelting to obtain an alloy ingot.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm that can be used at 850°C for a long time and also includes impurity elements.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm, which can be used at 850°C for a long time, also includes impurity elements.
  • Example 9 A 600mm diameter nickel-based deformed superalloy wheel forging that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 600 mm that can be used at 850° C. for a long time is prepared.
  • the alloy composition is shown in Example 2 of Table 1.
  • step 1 of the preparation process of alloy wheel forgings if the primary alloy ingot is an alloy ingot with a diameter of less than 500mm, the processing process for the primary alloy ingot will be changed
  • the steps are: directly subjecting the primary alloy ingot to vacuum consumable remelting to obtain an alloy ingot.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm that can be used at 850°C for a long time and also includes impurity elements.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm, which can be used at 850°C for a long time, also includes impurity elements.
  • Example 10 a nickel-based deformed superalloy wheel forging with a diameter of 600mm that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 600 mm that can be used at 850° C. for a long time is prepared.
  • the alloy composition is shown in Example 3 of Table 1.
  • step 1 of the preparation process of alloy wheel forgings if the primary alloy ingot is an alloy ingot with a diameter of less than 500mm, the processing process for the primary alloy ingot will be changed
  • the method is: directly subjecting the primary alloy ingot to vacuum consumable remelting to obtain an alloy ingot.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm that can be used at 850°C for a long time and also includes impurity elements.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm, which can be used at 850°C for a long time, also includes impurity elements.
  • Example 11 A 600mm diameter nickel-based wrought superalloy wheel forging that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 600 mm that can be used at 850° C. for a long time is prepared.
  • the alloy composition is shown in Example 4 of Table 1.
  • step 1 of the preparation process of alloy wheel forgings if the primary alloy ingot is an alloy ingot with a diameter of less than 500mm, the processing process for the primary alloy ingot will be changed
  • the method is: directly subjecting the primary alloy ingot to vacuum consumable remelting to obtain an alloy ingot.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm that can be used at 850°C for a long time and also includes impurity elements.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm, which can be used at 850°C for a long time, also includes impurity elements.
  • Example 12 A 600mm diameter nickel-based deformed superalloy wheel forging that can be used at 850°C for a long time
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 600 mm that can be used at 850° C. for a long time is prepared.
  • the alloy composition is shown in Example 5 of Table 1.
  • step 1 of the preparation process of the alloy wheel forgings if the primary alloy ingot is an alloy ingot with a diameter of less than 500mm, the processing process for the primary alloy ingot will be changed
  • the steps are: directly subjecting the primary alloy ingot to vacuum consumable remelting to obtain an alloy ingot.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm that can be used at 850°C for a long time and also includes impurity elements.
  • this embodiment prepares a nickel-based deformed superalloy wheel forging with a diameter of 600mm, which can be used at 850°C for a long time, also includes impurity elements.
  • a nickel-based deformed superalloy used above 850°C obtained from any one of Examples 1 to 12 has been tested and analyzed by the inventor and found that this type of nickel-based deformed superalloy is based on Ni-Co-Cr elements.
  • the nickel-based deformations obtained in other examples The technical effect of this part of
  • the nickel-based deformed superalloy obtained from any one of Examples 1 to 12 has been aged for more than 5000 hours in the temperature range of 650 to 900 °C at room temperature for a long time, and the content of the precipitated harmful phase ⁇ phase does not exceed 1%.
  • Example 1 This part of the technical effect of the obtained nickel-based wrought superalloy is as shown in Figure 2. The part of the technical effect of the nickel-based wrought superalloy obtained in other embodiments is the same. In summary, it can be seen that the alloy obtained by the present invention can be used as 850 °C Long-term use of roulette material.
  • the chemical composition of the main strengthening phase ⁇ 'phase is (Ni, Co) 3 (Al, Ti, Nb), and contains a certain amount of Nb
  • the ⁇ ′ phase after the element is more stable during the hot working process, and the precipitation speed of the ⁇ ′ phase during the forging billeting process under the free forging condition is slow, which avoids the problem of the deterioration of the thermoplasticity of the steel ingot caused by the strain aging precipitation, so that the alloy has sufficient Thermoplastic, can realize free forging and billeting.
  • the nickel-based deformed superalloy obtained from any one of Examples 1 to 12 was determined by phase analysis using an electrolytic extraction method. It was determined by phase analysis using ⁇ austenite as the matrix, and the mass percentage of the strengthening phase ⁇ 'phase The content reaches 55-65%.
  • the nickel-based deformed high-temperature alloy obtained from any one of Examples 1 to 12 can be prepared by using the smelting, forging billeting, forging forming and heat treatment processes provided by the present invention to produce wheel forgings with a diameter of 100 to 1200 mm. Industrial production can be realized with conventional equipment, and it has good casting-forging process performance.
  • the nickel-based deformed superalloy wheel material that can be used for a long time at a temperature of 850 to 900 °C obtained in any one of the embodiments 1 to 12 of the present invention can be prepared with a reasonable composition design and preparation method.
  • the 100-1200mm roulette forgings have excellent tensile and durability properties at 850°C, and have good long-term structural stability, and have the ability to be industrialized and mass-produced.
  • Comparative example 1 A nickel-based deformed superalloy wheel forging with a diameter of 900mm that can be used for a long time at 850°C
  • a nickel-based deformed high-temperature alloy wheel forging with a diameter of 900mm that can be used at 850°C for a long time is prepared.
  • the alloy composition is shown in Table 1 and Comparative Example 1. Compared with other examples, B, Zr, Ce, Mg, etc. The element content is lower.
  • the smelting adopts a dual process, vacuum induction melting + vacuum consumable remelting.
  • the diameter of the primary alloy ingot in vacuum induction melting is 355mm
  • the diameter of electroslag remelting alloy ingot is 440mm
  • the diameter of vacuum consumable remelting alloy ingot is 508mm.
  • Vacuum induction smelting includes the following steps: Weigh the raw materials according to the element ratio of the alloy.
  • the metal raw materials include: metallic nickel, metallic chromium or nickel-chromium alloy, metallic titanium, metallic aluminum, metallic molybdenum, boron iron, metallic cobalt, metallic tungsten, and nickel Tungsten alloys, niobium-nickel alloys, ferrovanadium, carbon electrodes, return materials, etc.
  • the vacuum induction melting process includes several steps such as evacuation, smelting, refining and tapping.
  • the vacuum in the evacuation stage is 20Pa
  • the temperature in the smelting stage is controlled at 1550°C
  • the temperature in the refining stage is controlled at 1500°C
  • the vacuum degree in the refining stage is 4Pa
  • the tapping The temperature is controlled at 1480°C
  • 20,000 Pa argon gas is filled for protection during tapping.
  • the primary alloy ingot is machined and prepared into a consumable remelting electrode.
  • the filling ratio of the electrode to the mold is 0.85
  • the melting rate is 3.5kg/min
  • the cooling time after the tertiary alloy ingot smelting is 2h, and then demolding and cooling to obtain Alloy ingot.
  • the high-temperature homogenization annealing of alloy ingots includes heating, holding and cooling processes.
  • the heating rate is controlled to 35°C/h
  • the holding temperature is 1190°C
  • the holding time is 50h
  • the cooling rate is controlled to 25°C/h.
  • the alloy ingot is machined, heated to the forging temperature, and then out of the furnace for forging.
  • the heating rate before forging is controlled to 35°C/h
  • the holding temperature is 1170°C
  • the holding time is 6h.
  • the forging billeting process includes Upsetting and drawing length, the single-fire forging time exceeds 15 minutes and then returning to the furnace for 2 hours.
  • the surface of the alloy ingot is covered with asbestos for heat preservation before each forging.
  • the total forging ratio is controlled to 15. After the forging of the bar is completed, high temperature homogenization is required Annealing, heating to high temperature homogenization annealing temperature T at a rate of 30°C/h, the total solution temperature T ⁇ ′ of ⁇ ′ phase is 1139°C and the annealing temperature is T ⁇ ′-20°C by calculation, and the bar is obtained.
  • Cut bars of appropriate length according to the weight of the roulette forgings The height-to-diameter ratio of the bars is controlled to 2.5. After the bars are heated, the billet is upset. The heating rate before forging is controlled to 35°C/h, and the holding temperature is 1120°C. The time is 4h, and the upsetting deformation is 40%. After the disc blank is heated, it is forged and formed. The heating rate before forging is controlled to 35°C/h, the holding temperature is 1120°C, the holding time is 4h, the forging deformation is 40%, and the mold heating temperature is 650°C to obtain the wheel. Disc forgings.
  • the roulette forgings are machined for heat treatment.
  • the heat treatment includes solution treatment, intermediate aging treatment and aging treatment.
  • the solution treatment system is 1180°C for 5h
  • the intermediate aging treatment system is 1050°C for 4h
  • the aging treatment system is 910°C for 12h. .
  • Comparative Example 2 A nickel-based deformed superalloy wheel forging with a diameter of 900mm that can be used at 850°C for a long time
  • the alloy composition is shown in Table 1 and Comparative Example 2. Compared with other examples, the Mo content is increased and the Mo content is lowered. The W content increases the Fe content.
  • the smelting adopts a double process, vacuum induction melting + electroslag remelting + vacuum consumable remelting.
  • the diameter of the primary alloy ingot of vacuum induction melting is 355mm
  • the diameter of electroslag remelting alloy ingot is 423mm
  • the diameter of vacuum consumable remelting alloy ingot is 508mm.
  • Vacuum induction smelting includes the following steps: Weigh the raw materials according to the element ratio of the alloy.
  • the metal raw materials include: metallic nickel, metallic chromium or nickel-chromium alloy, metallic titanium, metallic aluminum, metallic molybdenum, boron iron, metallic cobalt, metallic tungsten, and nickel Tungsten alloys, niobium-nickel alloys, ferrovanadium, carbon electrodes, return materials, etc.
  • the vacuum induction melting process includes several steps such as evacuation, smelting, refining and tapping.
  • the vacuum in the evacuation stage is 20Pa
  • the temperature in the smelting stage is controlled at 1550°C
  • the temperature in the refining stage is controlled at 1500°C
  • the vacuum degree in the refining stage is 4Pa
  • the tapping The temperature is controlled at 1480°C
  • 20,000Pa is filled with argon protection when tapping.
  • the temperature is raised to the high temperature stress relief annealing temperature T at a rate of 35°C/h, and the ⁇ ′ phase can be obtained by calculation.
  • the melting temperature T ⁇ ′ is 1129°C
  • the annealing temperature is T ⁇ ′+30°C
  • the primary alloy ingot is obtained after cooling.
  • the primary alloy ingot is machined to prepare an electroslag remelting electrode.
  • the total solution temperature T ⁇ ′ of the ⁇ ′ phase is 1129°C
  • the annealing temperature is T ⁇ ′-200°C
  • the secondary alloy ingot is obtained after cooling.
  • the secondary alloy ingot is machined and prepared into an electroslag remelting electrode.
  • the filling ratio of the electrode to the mold is 0.83
  • the melting rate is 2.8kg/min.
  • the cooling time after the tertiary alloy ingot smelting is 2h, and then demolding and cooling. Obtain an alloy ingot.
  • the high-temperature homogenization annealing of alloy ingots includes heating, holding and cooling processes.
  • the heating rate is controlled to 35°C/h
  • the holding temperature is 1190°C
  • the holding time is 50h
  • the cooling rate is controlled to 25°C/h.
  • the alloy ingot is machined, heated to the forging temperature, and then out of the furnace for forging.
  • the heating rate before forging is controlled to 35°C/h
  • the holding temperature is 1170°C
  • the holding time is 6h.
  • the forging billeting process includes Upsetting and drawing length, single-fire forging time exceeds 15 minutes, and then returning to the furnace for 2 hours. Before each forging, the surface of the alloy ingot is covered with asbestos for heat preservation, and the total forging ratio is controlled to 15 to obtain the bar.
  • Cut bars of appropriate length according to the weight of the roulette forgings The height-to-diameter ratio of the bars is controlled to 2.5. After the bars are heated, the billet is upset. The heating rate before forging is controlled to 35°C/h, and the holding temperature is 1120°C. The time is 4h, and the upsetting deformation is 40%. After the disc blank is heated, it is forged and formed. The heating rate before forging is controlled to 35°C/h, the holding temperature is 1120°C, the holding time is 4h, the forging deformation is 40%, and the mold heating temperature is 650°C to obtain the wheel. Disc forgings.
  • the roulette forgings are machined for heat treatment.
  • the heat treatment includes solution treatment, intermediate aging treatment and aging treatment.
  • the solution treatment system is 1180°C for 5h
  • the intermediate aging treatment system is 1050°C for 4h
  • the aging treatment system is 910°C for 12h. .
  • the alloy wheel forgings prepared in this comparative example 2 were sampled, and the structure analysis revealed that there are many ASTM 00 grade coarse grains, and the mixed crystal problem is more prominent.
  • the high-temperature long-term microstructure stability test was carried out. After aging for 3000 hours, it was found that more harmful ⁇ phase and ⁇ phase were precipitated, and the long-term structure stability at 850°C was poor.

Abstract

一种高温使用的镍基变形高温合金轮盘锻件的制备方法,合金具有高含量的溶强化元素W、Mo和强化相γ'相形成元素Al、Ti、Nb,γ'相含量达到55%~65%,针对高γ'相给合金的冶炼和锻造带来的一系列技术难题,通过优化轮盘锻件制备过程的热历程,通过控制γ'相的析出与溶解,提出了钢锭的高温去应力退火、低温去应力退火工艺和棒材的高温均质化退火,解决了850℃高温使用的直径100~1200mm镍基变形高温合金轮盘锻件的冶炼易形成冶金缺陷、锻造易开裂和组织不均匀问题。

Description

一种高温使用的镍基变形高温合金轮盘锻件的制备方法
本发明属于合金制备领域,具体涉及一种高温使用的镍基变形高温合金轮盘锻件的制备方法。
背景技术
航空发动机和燃气轮机等高压压气机盘和涡轮盘等热端转动轮盘类锻件的服役温度逐渐提高,最高超过850℃。因此,对制备轮盘锻件所需合金材料要求,需具备在室温~850℃具有优异的强度和塑性、高温持久蠕变性能以及长时组织性能稳定性,同时还具备良好的铸锻工艺性能。目前,国内航空发动机用镍基变形高温合金轮盘材料都无法满足850℃以上长时使用需求。
提高镍基高温合金使用温度最有效的途径是提高合金化程度,增加强化相γ′相的含量,但是合金化程度过高会造成合金的冶金偏析倾向大、热塑性变差,因而开发新型镍基变形高温合金轮盘材料存在较大的难度。传统的γ′相含量达55~65%的镍基高温合金,只能采用粉末冶金或铸造(包括等轴铸造、定向凝固和单晶凝固)工艺生产,这些合金采用铸-锻工艺生产都面临着元素偏析倾向大、易形成冶金缺陷、热加工(锻造)塑性差等问题,因而该类合金成分不适合于镍基变形高温合金轮盘材料的制备。
因此,有必要提供改进的技术方案以克服现有技术中存在的技术问题。
发明内容
为解决现有技术存在的问题,本发明提供一种高温使用的镍基变形高温合金轮盘锻件的制备方法,解决了目前尚无可在850℃长时可用的高性能轮盘锻件材料,通过优化改进冶炼和锻造工艺中的关键工艺环节解决含有55~65%γ′相高合金化镍基高温合金冶炼易形成冶金缺陷、锻造易开裂和组织不均匀问题,可以制备出直径100~1200mm的镍基变形高温合金轮盘锻件,具有优异的850℃抗拉强度、屈服强度和持久寿命。
本发明提供一种高温使用的镍基变形高温合金的制备方法,包括如下步骤:
步骤1:按照成分配比称取原材料,成分配比以质量百分比计,所述的原材 料包括:C:0.01~0.08%,W:6.5~8.0%,Cr:7.5~11.0%,Mo:1.5~3.5%,Co:14.5~17.5%,Ti:1.0~2.0%,Al:4.0~5.5%,Nb:1.0~2.0%,Zr:0.005~0.05%,Mg:0.005~0.05%;Ce:0.001~0.05%,B:0.005~0.05%,Fe:0.01~1.5%,余量为Ni;所述的原材料还包括杂质元素,在所述的杂质元素中,P≤0.015%、Mn≤0.5%、Si≤0.5%、S≤0.015%、O≤0.005%、N≤0.01%、Ag≤0.005%、Ca≤0.01%、Sn≤0.01%、Pb≤0.001%,Cu≤0.5%、Ta≤0.5%、V≤0.5%;
步骤2:采用真空感应熔炼将所述的原材料熔炼为一次合金锭,所述的真空感应熔炼的处理工艺包括:抽空、熔炼期、精炼和出钢,所述的一次合金锭脱模后需进行高温去应力退火,再经电渣重熔精炼为二次合金锭,二次合金锭脱模后需进行低温去应力退火,再经真空自耗重熔精炼为三次合金锭,得到合金锭;
步骤3:将步骤2所得的合金锭经高温均匀化退火后,所述的高温均匀化退火包括升温、保温和冷却过程,所述的升温的速度控制为15~60℃/h,所述的保温的温度为1150~1250℃,所述的保温的时间为24~72h,所述的冷却的速度控制为5~55℃/h,得到高温均匀化退火后的合金,再加热锻造开坯成棒材,所述的棒材锻造完成后需进行高温均质化退火,以10~50℃/h速度升温至高温均质化退火温度T,T的温度为Tγ′±30℃,Tγ′根据合金的实测成分利用热力学软件Jmatpro计算得到;
步骤4:根据轮盘锻件的重量切取步骤3所得的棒材,得到切取棒材;所述的切取棒材的重量为轮盘锻件的重量的110~150%,所述的切取棒材的高径比控制在1.5~3.0之间,将所述的切取棒材经制坯和模锻成型,得到合金轮盘锻件;
步骤5:将步骤4所得的合金轮盘锻件经热处理后,所述的热处理包括固溶处理、中间时效处理和时效处理,所述的固溶处理的方法为1150~1220℃保温2~10h,所述的中间时效处理的方法为1000~1150℃保温2~10h,所述的时效处理的方法为760℃~920℃保温8~32h,得到超高温使用的镍基变形高温合金轮盘锻件。
发明人经研究证实,通过该技术方案制备的合金可用于制备850℃长时使用的轮盘锻件,轮盘锻件直径范围为200mm~1200mm,850℃抗拉强度大于850MPa、屈服强度大于700MPa,850℃/350MPa持久寿命大于50h。而且,该技术方案制备的合金可采用现有高温合金的冶炼和锻造设备制备合金直径 200mm~1200mm的轮盘锻件,实现工业化生产,并且可获得均匀的显微组织和良好的力学性能,同时可有效降低锻件中的内应力。
进一步地,在所述的制备方法中,在所述的抽空的处理工艺中,真空度为10~100Pa;在所述的熔炼期的处理工艺中,温度控制为1300℃-1650℃;在所述的精炼的处理工艺中,温度控制为1400℃~1600℃,真空度1~20Pa;在所述的出钢的处理工艺中,温度控制为1420℃-1590℃,且需充10000~50000Pa氩气保护,浇铸完成后冷却0.5h~3h后脱模冷却,得到一次合金锭。一次合金锭需要在0.1h~2h内转移至退火炉内进行高温去应力退火处理,以10~50℃/h速度升温至高温去应力退火温度T,T的温度为γ′相全溶温度Tγ′的±50℃,Tγ′根据合金的实测成分利用热力学软件Jmatpro计算获得。发明人经研究证实,通过该技术方案,可制备出合金的真空感应锭,合金元素可精确控制,且钢锭不会发生热裂,在重熔过程中不会发生熔速波动,可用于制备高质量的电渣重熔电极或自耗重熔电极。
进一步地,在所述的制备方法中,所述的步骤2还包括:将所述的一次合金锭制备成电渣重熔电极,电渣重熔电极与结晶器的充填比为0.75~0.9;在所述的电渣重熔过程中,采用的电渣的组分配比为CaF 2:CaO:MgO:Al 2O 3:TiO 2=65~75%:10~20%:0.5~5%:10~20%:0.5~5%,稳态熔速为1.0~6.0kg/min,所述的二次合金锭在所述电渣重熔精炼完成后的冷却时间为0.5h~6h,而后脱模得到二次合金锭。二次合金锭脱模后进行低温去应力退火,以10~50℃/h速度升温至低温去应力退火温度T,T的温度为T γ′-100~T γ′-250℃,Tγ′根据合金的实测成分利用热力学软件Jmatpro计算获得。发明人经研究证实,通过该技术方案,将真空感应熔炼制备的一次合金锭电渣重熔后,可以有效降低合金锭中的夹杂物含量和有害杂质元素S含量,同时制备成分合格的电渣锭,用于制备真空自耗重熔电极,可以显著改善电极质量,尤其是经过经过低温去应力退火后能够有效降低电极内应力,提高真空自耗重熔过程的工艺稳定性,避免出现熔速波动,能够制备直径500mm真空自耗锭的电极。
进一步地,在所述的制备方法中,所述的步骤2还包括:将所述的二次合金锭制备成自耗重熔电极,所述的自耗重熔电极与结晶器的充填比为0.75~0.95,熔速1.0~5.0kg/min;所述的三次合金锭在所述的真空自耗重熔精炼 完成后的冷却时间为0.5h~3h,而后脱模冷却。发明人经研究证实,通过该技术方案,通过上述真空自耗重熔,能够显著提升钢锭的冶金质量,提高钢锭的致密性和热塑性。
进一步地,在所述的制备方法中,在步骤2中,如果所述的一次合金锭为直径小于500mm的合金锭,对所述的一次合金锭的处理工艺将变更为:将所述的一次合金锭直接进行真空自耗重熔,得到合金锭。发明人经研究证实,通过该技术方案,小于500mm的自耗锭所需电极直径小,采用真空感应锭制备电极可获得良好的冶金质量,不仅可以缩短工艺流程,还能有效降低成本。
进一步地,在所述的制备方法中,所述的步骤3还包括:所述的步骤2所得的合金锭经均匀化退火后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为15~60℃/h,保温温度为1050℃~1180℃,保温时间为2h~8h,锻造开坯过程包括镦粗和拔长,单火次锻造时间超过5~30min后回炉保温1~6h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为5~20,得到棒材。棒材锻造完成后需进行高温均质化退火,以10~50℃/h速度升温至高温均质化退火温度T,T的温度为T γ′±30℃,Tγ′根据合金的实测成分利用热力学软件Jmatpro计算获得。发明人经研究证实,通过该技术方案,钢锭可利用快锻机实现锻造开坯,钢锭不开裂,铸态组织可转变为等轴晶组织。
进一步地,在所述的制备方法中,所述的步骤4还包括:所述的切取棒材经加热后镦粗制坯,锻前加热升温速度控制为20~50℃/h,保温温度为1000℃~1150℃,保温时间为2~8h,镦粗变形量为30~70%,得到盘坯。发明人经研究证实,通过该技术方案,棒材镦粗过程稳定,不出现锻造裂纹、大小头和皱褶等锻造缺陷。
进一步地,在所述的制备方法中,所述的盘坯经加热后进行模锻成型,锻前加热升温速度控制为20~50℃/h,保温温度为950℃~1150℃,保温时间为2~8h,模锻变形量为30~70%,模具加热温度为300~1050℃。发明人经研究证实,通过该技术方案,轮盘锻件可实现模锻成型,不发生锻造开裂,充型效果好,组织均匀性良好。
本发明创造的有益效果:
本专利提供了一种新的超高温镍基变形高温合金的制备方法,采用本专利提 供的制备方法,可采用铸-锻工艺制备直径100~1200mm的轮盘锻件,在室温850~900℃温度范围内具有良好的力学性能和满意的服役稳定性,可填补国内850℃长时变形盘材料的空白。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明合金轮盘锻件的γ′相扫描电镜形貌;
图2为本发明合金某一配比的γ′相平衡相图;
图3本发明合金轮盘锻件制备工艺流程图;
图4为本发明合金轮盘制备工艺不当时残留的异常粗大晶粒的金相形貌
图5为本发明合金轮盘锻件的正常的晶粒金相形貌。
具体实施方式
下列实施例中未注明具体条件的实验方法,通常按照国家标准测定。若没有相应的国家标准,则按照通用的国际标准、常规条件、或按照制造厂商所建议的条件进行。
可对本发明提到的特征或实施例提到的特征进行组合。本说明书所揭示的所有特征可与任何组合物形式并用,说明书中所揭示的各个特征,可以任何可提供相同、均等或相似目的的替代性特征取代。因此除有特别说明,所揭示的特征仅为均等或相似特征的一般性例子。
在本发明中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
在本发明中,如果没有特别的说明,本文所提到的镍基变形高温合金包括杂质元素,诸如P、Mn、Si、S、O、N、Ag、Ca、Sn、Pb、Cu、Ta、V等。
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明,但本发明包括但不限于这些实施例。
为了开发一种可在850℃长时使用的镍基变形高温合金轮盘材料,同时具有可控的成本,一方面不添加或少添加Ta、Re等贵金属或Co、稀土等战略储备 元素,尽量使用传统镍基变形高温合金轮盘材料的常规元素;另一方面不仅保证合金在850℃具有满意的性能,同时还应考虑合金的铸-锻工艺性能,能够利用现有的冶炼和锻造设备,制备直径100~1200mm的轮盘锻件,实现批量化低成本的生产。
为了提高铸锭的洁净度、均质性和致密性,在真空感应熔炼浇铸成分合格的一次合金锭后,采用电渣重熔精炼脱除夹杂物和S元素并提升合金锭的冶金质量,再采用真空自耗重熔精炼进一步提升冶金质量,获得具有一定热塑性的合金锭。
经发明人不断探索发现,本发明合金具有高含量的溶强化元素W、Mo和强化相γ′相形成元素Al、Ti、Nb,γ′相含量达到55%~65%(见图1和图2),针对高γ′相给合金的冶炼和锻造带来的一系列技术难题,通过优化轮盘锻件制备过程的热历程,通过控制γ′相的析出与溶解,提出了钢锭的高温去应力退火、低温去应力退火工艺和棒材的高温均质化退火,如图3所示,解决了850℃高温使用的镍基变形高温合金轮盘锻件的冶炼和锻造易开裂和组织不均匀问题。
经发明人不断探索,为了提高镍基变形高温合金的使用温度,提高合金化程度,发明人经试验发现,增加沉淀相γ′相的含量是最有效的措施。同时,发明人经试验发现,由于本发明合金的合金化程度高,合金元素重量与含量高,沉淀相γ′相的含量高,一方面高含量的合金元素在合金真空感应熔炼后的浇铸过程中,产生强烈的枝晶元素偏析,形成较多的凝固疏松;另一方面,由于合金的热导率低,还会形成较大的热应力,在冷却过程中由于γ′相的析出,还会形成较大的组织应力。钢锭在浇铸完成后,如果不及时脱模退火会造成钢锭中的热应力与组织应力叠加,当应力过大会导致钢锭热裂,同时钢锭中较多的疏松还会加速裂纹扩展。
发明人经试验发现,对于真空感应熔炼,钢液精炼完成后出钢浇入以铸铁为材质的模子内,在真空室内通过热辐射散热,冷却条件较慢,钢液的凝固速度慢,且内外的温差大,因而会形成较大的热应力和组织应力。尤其是本发明合金的γ′相含量高达55~60%(见图1和图2),γ′相的全溶温度为1155~1170℃(Tγ′),钢液浇入后的冷却过程中当温度低于Tγ′,γ′相会不断析出, 产生组织应力,增大了钢锭脱模后以及在电渣重熔或自耗重熔过程中热裂的风险,脱模后热裂会造成钢锭报废,电渣重熔或自耗重熔过程中热裂会引起熔速波动形成冶金缺陷。因此,本发明针对真空感应熔炼制备的一次合金锭提出了一种高温去应力退火工艺,工艺设计思路为在钢锭脱模后一定时间内及时脱模并转移至退火炉内,退火炉以一定的升温速度升温至温度T,在此温度条件下γ′相逐渐回溶进而起到消除热应力和组织应力的作用。
发明人经试验发现,对于电渣重熔,电渣重熔电极插入渣池中,靠渣阻热熔化后以熔滴的形式滴入通水冷却的结晶器中,与真空感应熔炼相比电渣重熔钢锭的钢液熔池浅,钢液的凝固速度快,因而能够有效减少热应力和组织应力。但是电渣锭脱模后不退火,还会存在较大的热裂风险,直接用于制备自耗重熔电极,在真空自耗重熔过程中会随机出现熔速波动。因此,本发明发明人针对电渣重熔制备的二次合金锭提出了一种低温去应力退火工艺,工艺设计思路为在钢锭脱模后一定时间内及时脱模并转移至退火炉内,退火炉以一定的升温速度升温至温度T,在此温度条件下γ′相逐渐粗化长大并确保钢锭各部位均充分析出,可以有效降低钢锭的内应力,避免自耗重熔过程中的熔速波动,同时不采用高温去应力退火工艺还可有效节约能源成本。
发明人经试验发现,对应钢锭开坯制备棒材,由于合金的γ′相全溶温度高,开坯过程中合金容易析出γ′相造成钢锭热塑性降低、变形抗力增大,同时由于γ′相钉扎位错的作用,会抑制合金的动态再结晶,残留异常粗大的晶粒组织(见图4),影响轮盘锻件的组织和性能均匀性,严重时会导致轮盘锻件报废。因此,本发明发明人针对电渣重熔制备的二次合金锭提出了一种高温均质化退火工艺。工艺设计思路为钢锭开坯锻造制备棒材,锻造完成后进行高温均质化退火,以10~50℃/h速度升温至高温均质化退火温度T,在此温度下γ′相适当回溶,γ′相钉扎位错的作用消失,而后合金中发生静态再结晶,形成组织均匀的等轴晶粒,实现组织均质化,进而为后续的制坯和模锻提供组织均匀的棒材。
以下是具体的实施例和对比例中的合金成分表和技术效果对比表。
表1 实施例与对比例的合金成分(表中数值为百分比数值)
实施例 C W Cr Mo Co Ti Al Nb Zr Mg Ce B Fe Ni Tγ′//℃
实施例1 0.04 6.9 7.7 2 15 1.5 4.5 1.5 0.004 0.004 0.004 0.004 0.004 1152
实施例2 0.01 7.9 10 3 16 1.7 5 1.7 0.01 0.01 0.01 0.01 1 1175
实施例3 0.08 6.5 7.5 1.5 14.5 1 4 1 0.005 0.005 0.005 0.005 0.01 1055
实施例4 0.06 8 11 3.5 17 2 5.5 2 0.05 0.05 0.05 0.05 1.5 1172
实施例5 0.03 7.5 8 2 15 1.2 4.5 1.2 0.03 0.03 0.03 0.03 0.02 1130
实施例6 0.04 7 10 3.2 16.5 1.8 5.2 1.8 0.02 0.02 0.02 0.02 1.2 1178
比较例1 0.045 6.8 10.5 2.6 16.2 1.55 4.52 1.46 0.002 0.001 0.001 0.003 1.2 1139
比较例2 0.045 4.8 10.5 4.8 16.2 1.55 4.52 1.46 0.017 0.011 0.005 0.013 2.2 1129
表2 实施例与对比例的工艺与理化测试结果对比
Figure PCTCN2020098920-appb-000001
实施例1、一种可在850℃长时使用的镍基变形高温合金轮盘锻件的制备方法
本实施例制备一种可在850℃长时使用的镍基变形高温合金轮盘锻件(其直径为200mm),其合金成分见表1中实施例1的部分。
合金轮盘锻件的制备工艺,如图3所示,包括如下步骤:
步骤1、冶炼采用双联工艺(即真空感应熔炼和真空自耗重熔),真空感应熔炼得到的一次合金锭的直径为250mm,真空自耗重熔得到的合金锭直径为305mm。真空感应熔炼包括以下步骤:按照合金的元素配比称取原材料,进行真空感应熔炼。真空感应熔炼过程包括抽空、熔炼期、精炼和出钢等几个步骤,抽空阶段真空度为10Pa,熔炼期温度控制为1300℃,精炼期温度控制为1400℃,精炼阶段真空度1Pa,出钢温度控制为1420℃,出钢时充20000Pa氩气保护,浇铸完成后冷却0.5h后脱模冷却,脱模后以50℃/h速度升温至高温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1152℃,退火温度为Tγ′-20℃,冷却后得到一次合金锭。一次合金锭经机加工后制备成自耗重熔电极,电极与结晶器的充填比为0.75,熔速1.0kg/min,三次合金锭熔炼完成后的冷却时间为0.5h,而后脱模冷却,得到合金锭。
步骤2、合金锭需经高温均匀化退火处理,包括升温,保温和冷却的过程, 升温速度控制为15℃/h,保温温度为1150℃,保温时间为24h,冷却速度控制为5℃/h。合金锭经均匀化退火后,经机加工后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为15℃/h,保温温度为1050℃,保温时间为2h,锻造开坯过程包括镦粗和拔长,单火次锻造时间控制在1min~5min,超过5min后回炉保温1h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为5,棒材锻造完成后需进行高温均质化退火,以45℃/h速度升温至高温均质化退火温度T,经计算可得γ′相全溶温度Tγ′为1152℃,退火温度为Tγ′-30℃,得到棒材。
步骤3、根据轮盘锻件重量的140%切取适当长度的棒材,棒材高径比控制为1.5,棒材经加热后镦粗制坯,锻前加热升温速度控制为20℃/h,保温温度为1000℃,保温时间为2h,镦粗变形量为30%,得到盘坯。盘坯经加热后进行模锻成型,锻前加热升温速度控制为20℃/h,保温温度为950℃,保温时间为2h,模锻变形量为30%,模具加热温度为300℃,即可得到合金轮盘锻件。
步骤4、轮盘锻件经机加工进行热处理,热处理包括固溶处理,中间时效处理和时效处理,固溶处理制度为1150℃保温2h,中间时效处理制度为1000℃保温2h,时效处理制度为760℃保温8h。
在本实施例的一些实施方式中,所述的原材料可选自金属镍、金属铬或镍铬合金、金属钛、金属铝、金属钼、硼铁、金属钴、金属钨、镍钨合金、铌镍合金、钒铁、碳电极、中间合金中的一种或几种。
实施例2、一种可在850℃长时使用的镍基变形高温合金直径550mm轮盘锻件的制备方法
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径550mm轮盘锻件,合金成分见表1实施例2。
合金轮盘锻件的制备工艺,如图3所示,包括如下步骤:
步骤1、冶炼采用双联工艺,真空感应熔炼+真空自耗重熔,真空感应熔炼一次合金锭直径为370mm,真空自耗重熔合金锭直径为460mm。真空感应熔炼包括以下步骤:按照合金的元素配比称取原材料,进行真空感应熔炼。真空感应熔炼过程包括抽空、熔炼期、精炼和出钢等几个步骤,抽空阶段真空度为100Pa,熔炼期温度控制为1650℃,精炼期温度控制为1600℃,精炼阶段真空度20Pa, 出钢温度控制为1590℃,出钢时充50000Pa氩气保护,浇铸完成后冷却3h后脱模,脱模后以40℃/h速度升温至高温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1175℃,退火温度为Tγ′+10℃,冷却后得到一次合金锭。一次合金锭经机加工后制备成自耗重熔电极,电极与结晶器的充填比为0.95,熔速6.0kg/min,二次合金锭熔炼完成后的冷却时间为3h,而后脱模冷却,得到合金锭。
步骤2、合金锭高温均匀化退火包括升温,保温和冷却过程,升温速度控制为60℃/h,保温温度为1250℃,保温时间为72h,冷却速度控制为55℃/h。合金锭经均匀化退火后,经机加工后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为60℃/h,保温温度为1180℃,保温时间为8h,锻造开坯过程包括镦粗和拔长,单火次锻造时间控制在1min~30min,超过30min后回炉保温6h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为20,棒材锻造完成后需进行高温均质化退火,以50℃/h速度升温至高温均质化退火温度T,经计算可得γ′相全溶温度Tγ′为1175℃,退火温度为Tγ′-10℃,得到棒材。
步骤3、根据轮盘锻件重量的130%切取棒材,棒材高径比控制为3.0,该棒材经加热后镦粗制坯,锻前加热升温速度控制为50℃/h,保温温度为1140℃,保温时间为8h,镦粗变形量为70%。盘坯经加热后进行模锻成型,锻前加热升温速度控制为50℃/h,保温温度为1120℃,保温时间为8h,模锻变形量为70%,模具加热温度为1050℃,即可得到合金轮盘锻件。
步骤4、轮盘锻件经机加工进行热处理,热处理包括固溶处理,中间时效处理和时效处理,固溶处理制度为1220℃保温10h,中间时效处理制度为1150℃保温10h,时效处理制度为920℃保温32h。
在本实施例的一些实施方式中,所述的原材料可选自金属镍、金属铬或镍铬合金、金属钛、金属铝、金属钼、硼铁、金属钴、金属钨、镍钨合金、铌镍合金、钒铁、碳电极、中间合金中的一种或几种。
实施例3、一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径轮盘锻件,合金成分见表1实施例3。
合金轮盘锻件的制备工艺,如图3所示,包括如下步骤:
步骤1、冶炼采用三联工艺,真空感应熔炼+电渣重熔+真空自耗重熔,真空感应熔炼一次合金锭直径为355mm,电渣重熔合金锭直径为423mm,真空自耗重熔合金锭直径为508mm。真空感应熔炼包括以下步骤:按照合金的元素配比称取原材料,进行真空感应熔炼。真空感应熔炼过程包括抽空、熔炼期、精炼和出钢等几个步骤,抽空阶段真空度为20Pa,熔炼期熔炼期温度控制为1550℃,精炼期温度控制为1500℃,精炼阶段真空度4Pa,出钢温度控制为1480℃,出钢时充20000Pa氩气保护,浇铸完成后冷却2.5h后脱模,脱模后以30℃/h速度升温至高温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1055℃,退火温度为Tγ′+50℃,冷却后得到一次合金锭。一次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.9,电渣配比为CaF2:CaO:MgO:Al2O3:TiO2=65%:10%:0.5%:10%:0.5%,稳态熔速为5.0kg/min,二次合金锭熔炼完成后的冷却时间为0.5h后脱模,脱模后以30℃/h速度升温至低温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1055℃,退火温度为Tγ′-200℃,冷却后得到二次合金锭。二次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.75,熔速1.0kg/min,三次合金锭熔炼完成后的冷却时间为1h,而后脱模冷却,得到合金锭。
步骤2、合金锭高温均匀化退火包括升温,保温和冷却过程,升温速度控制为35℃/h,保温温度为1190℃,保温时间为50h,冷却速度控制为25℃/h。合金锭经均匀化退火后,经机加工后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为35℃/h,保温温度为1170℃,保温时间为6h,锻造开坯过程包括镦粗和拔长,单火次锻造时间控制在1min~15min,超过15min后回炉保温2h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为15,棒材锻造完成后需进行高温均质化退火,以30℃/h速度升温至高温均质化退火温度T,经计算可得γ′相全溶温度Tγ′为1055℃,退火温度为Tγ′+30℃,得到棒材。
步骤3、根据轮盘锻件重量的140%切取棒材,棒材高径比控制为2.5,棒材经加热后镦粗制坯,锻前加热升温速度控制为35℃/h,保温温度为1110℃,保温时间为4h,镦粗变形量为40%,得到盘坯。盘坯经加热后进行模锻成型,锻前加热升温速度控制为35℃/h,保温温度为1120℃,保温时间为4h,模锻变 形量为40%,模具加热温度为650℃,即可得到合金轮盘锻件。
步骤4、轮盘锻件经机加工进行热处理,热处理包括固溶处理,中间时效处理和时效处理,固溶处理制度为1180℃保温5h,中间时效处理制度为1050℃保温8h,时效处理制度为910℃保温20h。
在本实施例的一些实施方式中,所述的原材料可选自金属镍、金属铬或镍铬合金、金属钛、金属铝、金属钼、硼铁、金属钴、金属钨、镍钨合金、铌镍合金、钒铁、碳电极、中间合金中的一种或几种。
实施例4、一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件,合金成分见表1实施例4。
合金轮盘锻件的制备工艺,如图3所示,包括如下步骤:
步骤1、冶炼采用三联工艺,真空感应熔炼+电渣重熔+真空自耗重熔,真空感应熔炼一次合金锭直径为355mm,电渣重熔合金锭直径为423mm,真空自耗重熔合金锭直径为508mm。真空感应熔炼包括以下步骤:按照合金的元素配比称取原材料,进行真空感应熔炼。真空感应熔炼过程包括抽空、熔炼期、精炼和出钢等几个步骤,抽空阶段真空度为30Pa,熔炼期温度控制为1580℃,精炼期温度控制为1550℃,精炼阶段真空度5Pa,出钢温度控制为1480℃,出钢时充25000Pa氩气保护,浇铸完成后冷却3h后脱模,脱模后以25℃/h速度升温至高温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1172℃,退火温度为Tγ′-50℃,冷却后得到一次合金锭。一次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.9,电渣配比为CaF2:CaO:MgO:Al2O3:TiO2=75%:20%:5%:20%:5%,稳态熔速为4.0kg/min,二次合金锭熔炼完成后的冷却时间为6h后脱模,脱模后以20℃/h速度升温至低温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1172℃,退火温度为Tγ′-150℃,冷却后得到二次合金锭。二次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.87,熔速3.8kg/min,三次合金锭熔炼完成后的冷却时间为3h,而后脱模冷却,得到合金锭。
步骤2、合金锭高温均匀化退火包括升温,保温和冷却过程,升温速度控 制为20℃/h,保温温度为1180℃,保温时间为70h,冷却速度控制为5℃/h。合金锭经均匀化退火后,经机加工后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为15℃/h,保温温度为1180℃,保温时间为6h,锻造开坯过程包括镦粗和拔长,单火次锻造时间控制在1min~10min,超过10min后回炉保温2h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为10,棒材锻造完成后需进行高温均质化退火,以25℃/h速度升温至高温均质化退火温度T,经计算可得γ′相全溶温度Tγ′为1172℃,退火温度为Tγ′+20℃,得到棒材。
步骤3、根据轮盘锻件重量的125%切取棒材,棒材高径比控制为2,棒材经加热后镦粗制坯,锻前加热升温速度控制为35℃/h,保温温度为1150℃,保温时间为6h,镦粗变形量为50%。盘坯经加热后进行模锻成型,锻前加热升温速度控制为40℃/h,保温温度为1100℃,保温时间为6h,模锻变形量为35%,模具加热温度为350℃,即可得到合金轮盘锻件。
步骤4、轮盘锻件经机加工进行热处理,热处理包括固溶处理,中间时效处理和时效处理,固溶处理制度为1160℃保温8h,中间时效处理制度为1100℃保温7h,时效处理制度为850℃保温32h。
在本实施例的一些实施方式中,所述的原材料可选自金属镍、金属铬或镍铬合金、金属钛、金属铝、金属钼、硼铁、金属钴、金属钨、镍钨合金、铌镍合金、钒铁、碳电极、中间合金中的一种或几种。
实施例5、一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件,合金成分见表1实施例5。
合金轮盘锻件的制备工艺,如图3所示,包括如下步骤:
步骤1、冶炼采用三联工艺,真空感应熔炼+电渣重熔+真空自耗重熔,真空感应熔炼一次合金锭直径为355mm,电渣重熔合金锭直径为423mm,真空自耗重熔合金锭直径为508mm。真空感应熔炼包括以下步骤:按照合金的元素配比称取原材料,进行真空感应熔炼。真空感应熔炼过程包括抽空、熔炼期、精炼和出钢等几个步骤,抽空阶段真空度为20Pa,熔炼期温度控制为1600℃,精炼期温度控制为1500℃,精炼阶段真空度4Pa,出钢温度控制为1480℃,出钢时充 20000Pa氩气保护,浇铸完成后冷却3h后脱模,脱模后以10℃/h速度升温至高温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1130℃,退火温度为Tγ′+30℃,冷却后得到一次合金锭。得到一次合金锭。一次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.8,电渣配比为CaF2:CaO:MgO:Al2O3:TiO2=70%:15%:1%:15%:4%,稳态熔速为6.0kg/min,二次合金锭熔炼完成后的冷却时间为2h后脱模,脱模后以10℃/h速度升温至低温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1130℃,退火温度为Tγ′-250℃,冷却后得到二次合金锭。二次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.95,熔速5kg/min,三次合金锭熔炼完成后的冷却时间为3h,而后脱模冷却,得到合金锭。
步骤2、合金锭高温均匀化退火包括升温,保温和冷却过程,升温速度控制为35℃/h,保温温度为1190℃,保温时间为50h,冷却速度控制为25℃/h。合金锭经均匀化退火后,经机加工后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为35℃/h,保温温度为1170℃,保温时间为7h,锻造开坯过程包括镦粗和拔长,单火次锻造时间控制在1min~12min,超过12min后回炉保温3h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为17,棒材锻造完成后需进行高温均质化退火,以20℃/h速度升温至高温均质化退火温度T,经计算可得γ′相全溶温度Tγ′为1130℃,退火温度为Tγ′+30℃,得到棒材。
步骤3、根据轮盘锻件重量的115%切取棒材,棒材高径比控制为2,棒材经加热后镦粗制坯,锻前加热升温速度控制为40℃/h,保温温度为1120℃,保温时间为7h,镦粗变形量为60%。盘坯经加热后进行模锻成型,锻前加热升温速度控制为45℃/h,保温温度为1130℃,保温时间为3h,模锻变形量为60%,模具加热温度为650℃,即可得到合金轮盘锻件。
步骤4、轮盘锻件经机加工进行热处理,热处理包括固溶处理,中间时效处理和时效处理,固溶处理制度为1200℃保温3h,中间时效处理制度为1050℃保温4h,时效处理制度为900℃保温25h。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.015%、Mn=0.5%、Si=0.5%、S=0.015%、O=0.005%、N=0.01%、Ag=0.005%、 Ca=0.01%、Sn=0.01%、Pb=0.001%,Cu=0.5%、Ta=0.5%、V=0.5%。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.001%、Mn=0.1%、Si=0.2%、S=0.003%、O=0.001%、N=0.0021%、Ag=0.003%、Ca=0.0011%、Sn=0.001%、Pb=0,Cu=0、Ta=0、V=0。
在本实施例的一些实施方式中,所述的原材料可选自金属镍、金属铬或镍铬合金、金属钛、金属铝、金属钼、硼铁、金属钴、金属钨、镍钨合金、铌镍合金、钒铁、碳电极、中间合金中的一种或几种。
实施例6、一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件,合金成分见表1实施例6。
合金轮盘锻件的制备工艺,如图3所示,包括如下步骤:
步骤1、冶炼采用三联工艺,真空感应熔炼+电渣重熔+真空自耗重熔,真空感应熔炼一次合金锭直径为355mm,电渣重熔合金锭直径为423mm,真空自耗重熔合金锭直径为508mm。真空感应熔炼包括以下步骤:按照合金的元素配比称取原材料,进行真空感应熔炼。真空感应熔炼过程包括抽空、熔炼期、精炼和出钢等几个步骤,抽空阶段真空度为30Pa,熔炼期温度控制为1580℃,精炼期温度控制为1550℃,精炼阶段真空度5Pa,出钢温度控制为1400℃,出钢时充30000Pa氩气保护,浇铸完成后冷却3h后脱模,脱模后以25℃/h速度升温至高温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1178℃,退火温度为Tγ′-30℃,冷却后得到一次合金锭。一次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.75,电渣配比为CaF2:CaO:MgO:Al2O3:TiO2=68%:14%:2%:14%:2%,稳态熔速为5.0kg/min,二次合金锭熔炼完成后的冷却时间为6h后脱模,脱模后以50℃/h速度升温至低温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1178℃,退火温度为Tγ′-100℃,冷却后得到二次合金锭。二次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.87,熔速3.8kg/min,三次合金锭熔炼完成后的冷却时间为2h,而后脱模冷却,得到合金锭。
步骤2、合金锭高温均匀化退火包括升温,保温和冷却过程,升温速度控制为15℃/h,保温温度为1170℃,保温时间为70h,冷却速度控制为10℃/h。合金锭经均匀化退火后,经机加工后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为30℃/h,保温温度为1090℃,保温时间为5h,锻造开坯过程包括镦粗和拔长,单火次锻造时间控制在1min~12min,超过12min后回炉保温3h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为8,棒材锻造完成后需进行高温均质化退火,以10℃/h速度升温至高温均质化退火温度T,经计算可得γ′相全溶温度Tγ′为1178℃,退火温度为Tγ′-30℃,得到棒材。
步骤3、根据轮盘锻件重量的145%切取棒材,棒材高径比控制为2.5,棒材经加热后镦粗制坯,锻前加热升温速度控制为35℃/h,保温温度为1150℃,保温时间为4h,镦粗变形量为50%。盘坯经加热后进行模锻成型,锻前加热升温速度控制为35℃/h,保温温度为1100℃,保温时间为4h,模锻变形量为35%,模具加热温度为350℃,即可得到合金轮盘锻件。
步骤4、轮盘锻件经机加工进行热处理,热处理包括固溶处理,中间时效处理和时效处理,固溶处理制度为1160℃保温8h,中间时效处理制度为1100℃保温10h,时效处理制度为850℃保温30h。
在本实施例中,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.010%、Mn=0.15%、Si=0.15%、S=0.005%、O=0.002%、N=0.005%、Ag=0.0005%、Ca=0.005%、Sn=0.005%、Pb=0.0005%,Cu=0.1%、Ta=0.1%、V=0.1%。
在本实施例中,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.010%、Mn=0.102%、Si=0.10%、S=0.001%、O=0.001%、N=0.00015%、Ag=0.0001%、Ca=0.0015%、Sn=0、Pb=0.0,Cu=0.01%、Ta=0.01%、V=0.02%。
在本实施例的一些实施方式中,所述的原材料可选自金属镍、金属铬或镍铬合金、金属钛、金属铝、金属钼、硼铁、金属钴、金属钨、镍钨合金、铌镍合金、钒铁、碳电极、中间合金中的一种或几种。
实施例7、一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件,合金成分见表1实施例6。
与实施例6的不同之处在于:在合金轮盘锻件的制备工艺的步骤1中,如果所述的一次合金锭为直径小于500mm的合金锭,对所述的一次合金锭的处理工艺将变更为:将所述的一次合金锭直接进行真空自耗重熔,得到合金锭。
其它实施工艺与实施例6相同。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.015%、Mn=0.5%、Si=0.5%、S=0.015%、O=0.005%、N=0.01%、Ag=0.005%、Ca=0.01%、Sn=0.01%、Pb=0.001%,Cu=0.5%、Ta=0.5%、V=0.5%。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.001%、Mn=0.1%、Si=0.2%、S=0.003%、O=0.001%、N=0.0021%、Ag=0.003%、Ca=0.0011%、Sn=0.001%、Pb=0,Cu=0、Ta=0、V=0。
实施例8、一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件,合金成分见表1实施例1。
与实施例1的不同之处在于:在合金轮盘锻件的制备工艺的步骤1中,如果所述的一次合金锭为直径小于500mm的合金锭,对所述的一次合金锭的处理工艺将变更为:将所述的一次合金锭直接进行真空自耗重熔,得到合金锭。
其它实施工艺与实施例1相同。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.015%、Mn=0.5%、Si=0.5%、S=0.015%、O=0.005%、N=0.01%、Ag=0.005%、Ca=0.01%、Sn=0.01%、Pb=0.001%,Cu=0.5%、Ta=0.5%、V=0.5%。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.001%、Mn=0.1%、Si=0.2%、S=0.003%、O=0.001%、N=0.0021%、Ag=0.003%、 Ca=0.0011%、Sn=0.001%、Pb=0,Cu=0、Ta=0、V=0。
实施例9、一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件,合金成分见表1实施例2。
与实施例2的不同之处在于:在合金轮盘锻件的制备工艺的步骤1中,如果所述的一次合金锭为直径小于500mm的合金锭,对所述的一次合金锭的处理工艺将变更为:将所述的一次合金锭直接进行真空自耗重熔,得到合金锭。
其它实施工艺与实施例2相同。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.015%、Mn=0.5%、Si=0.5%、S=0.015%、O=0.005%、N=0.01%、Ag=0.005%、Ca=0.01%、Sn=0.01%、Pb=0.001%,Cu=0.5%、Ta=0.5%、V=0.5%。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.001%、Mn=0.1%、Si=0.2%、S=0.003%、O=0.001%、N=0.0021%、Ag=0.003%、Ca=0.0011%、Sn=0.001%、Pb=0,Cu=0、Ta=0、V=0。
实施例10、一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件,合金成分见表1实施例3。
与实施例3的不同之处在于:在合金轮盘锻件的制备工艺的步骤1中,如果所述的一次合金锭为直径小于500mm的合金锭,对所述的一次合金锭的处理工艺将变更为:将所述的一次合金锭直接进行真空自耗重熔,得到合金锭。
其它实施工艺与实施例3相同。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.015%、Mn=0.5%、Si=0.5%、S=0.015%、O=0.005%、N=0.01%、Ag=0.005%、Ca=0.01%、Sn=0.01%、Pb=0.001%,Cu=0.5%、Ta=0.5%、V=0.5%。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.001%、Mn=0.1%、Si=0.2%、S=0.003%、O=0.001%、N=0.0021%、Ag=0.003%、Ca=0.0011%、Sn=0.001%、Pb=0,Cu=0、Ta=0、V=0。
实施例11、一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件,合金成分见表1实施例4。
与实施例4的不同之处在于:在合金轮盘锻件的制备工艺的步骤1中,如果所述的一次合金锭为直径小于500mm的合金锭,对所述的一次合金锭的处理工艺将变更为:将所述的一次合金锭直接进行真空自耗重熔,得到合金锭。
其它实施工艺与实施例4相同。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.015%、Mn=0.5%、Si=0.5%、S=0.015%、O=0.005%、N=0.01%、Ag=0.005%、Ca=0.01%、Sn=0.01%、Pb=0.001%,Cu=0.5%、Ta=0.5%、V=0.5%。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.001%、Mn=0.1%、Si=0.2%、S=0.003%、O=0.001%、N=0.0021%、Ag=0.003%、Ca=0.0011%、Sn=0.001%、Pb=0,Cu=0、Ta=0、V=0。
实施例12、一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件
本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件,合金成分见表1实施例5。
与实施例5的不同之处在于:在合金轮盘锻件的制备工艺的步骤1中,如果所述的一次合金锭为直径小于500mm的合金锭,对所述的一次合金锭的处理工艺将变更为:将所述的一次合金锭直接进行真空自耗重熔,得到合金锭。
其它实施工艺与实施例5相同。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍 基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.015%、Mn=0.5%、Si=0.5%、S=0.015%、O=0.005%、N=0.01%、Ag=0.005%、Ca=0.01%、Sn=0.01%、Pb=0.001%,Cu=0.5%、Ta=0.5%、V=0.5%。
在本实施例的一些实施方式,本实施例制备一种可在850℃长时使用的镍基变形高温合金直径600mm轮盘锻件还包括杂质元素,在所述的杂质元素中,P=0.001%、Mn=0.1%、Si=0.2%、S=0.003%、O=0.001%、N=0.0021%、Ag=0.003%、Ca=0.0011%、Sn=0.001%、Pb=0,Cu=0、Ta=0、V=0。
实施例13、性能测定实验
从实施例1至12中任一实施例得到的一种850℃以上使用的镍基变形高温合金,经发明人检测分析发现,该类镍基变形高温合金是以Ni-Co-Cr元素为基体组元,形成稳定的γ奥氏体基体,以共格析出的γ′相为主要强化相,添加了高含量的γ′相形成元素Al、Ti、Nb,γ′相的质量百分含量最高达达到55~65%,添加高含量的W、Mo元素进行固溶强化,同时添加加入适量的B、Zr、Ce、Mg进行微合金化以改善晶界性能,合金中析出MC型、M6C型和M23C6型碳化物,MB2、M3B2型硼化物等第二相进行复合强化,实施例1所得的镍基变形高温合金的该部分技术效果如如图1所示,其它实施例所得的镍基变形高温合金的该部分技术效果雷同。
参照GB/T228.2金属材料拉伸试验第2部分高温试验方法开展的检测。结果表明,在850℃条件下,从实施例1至12中任一实施例得到的合金的拉伸抗拉强度可达850MPa以上,屈服强度可达700MPa以上。参照GB/T2039金属拉伸蠕变及持久试验方法进行检测,结果表明,从实施例1至12中任一实施例得到的合金在350MPa下的持久寿命大于100h。
从实施例1至12中任一实施例得到的镍基变形高温合金,经在室温650~900℃温度范围内长期时效5000h以上,且析出有害相μ相的含量不超过1%,实施例1所得的镍基变形高温合金的该部分技术效果如如图2所示,其它实施例所得的镍基变形高温合金的该部分技术效果雷同,综上可看出,本发明得到的合金能够作为850℃长时使用的轮盘材料。
从实施例1至12中任一实施例得到的的镍基变形高温合金,其主要强化相γ′相的化学组成为(Ni,Co) 3(Al,Ti,Nb),含有一定量的Nb元素后γ′相 在热加工过程中更为稳定,在自由锻造条件下锻造开坯过程中γ′相的析出速度慢,避免了应变时效析出造成的钢锭热塑性劣化的问题,使合金具备足够的热塑性,可实现自由锻造开坯。
从实施例1至12中任一实施例得到的的镍基变形高温合金,经利用电解萃取方法进行相分析测定,其是以γ奥氏体为基体,其强化相γ′相的质量百分含量达到55~65%。发明人经试验发现,合金成分决定了强化相γ′相可析出的含量,在经过热处理包括固溶处理,中间时效处理和时效处理,热处理后合金中即可实现析出55~65%的γ′相。
从实施例1至12中任一实施例得到的的镍基变形高温合金,采用本发明提供的冶炼、锻造开坯、锻造成型和热处理工艺可以制备处直径100~1200mm的轮盘锻件,采用现有常规设备可以实现工业化生产,具有良好的铸-锻工艺性能。
综上所述,本发明实施例1至12中任一实施例得到的可在850~900℃温度长时使用的镍基变形高温合金轮盘材料,通过合理的成分设计和制备方法能够制备直径100~1200mm的轮盘锻件,在850℃条件下具有优异的拉伸和持久性能,且长时组织稳定性良好,而且具备可工业化批量生产的能力。
对比例1、一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件
本对比例制备一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件,合金成分见表1对比例1,与其它实施例相比,B、Zr、Ce、Mg等微量元素含量更低。
合金轮盘锻件的制备工艺如下:
冶炼采用双联工艺,真空感应熔炼+真空自耗重熔,真空感应熔炼一次合金锭直径为355mm,电渣重熔合金锭直径为440mm,真空自耗重熔合金锭直径为508mm。真空感应熔炼包括以下步骤:按照合金的元素配比称取原材料,金属原材料包括:金属镍、金属铬或镍铬合金、金属钛、金属铝、金属钼、硼铁、金属钴、金属钨、镍钨合金、铌镍合金、钒铁、碳电极、返回料等。真空感应熔炼过程包括抽空、熔炼期、精炼和出钢等几个步骤,抽空阶段真空度为20Pa,熔炼期温度控制为1550℃,精炼期温度控制为1500℃,精炼阶段真空度4Pa,出钢温度控制为1480℃,出钢时充20000Pa氩气保护,浇铸完成后冷却3h后脱模冷 却,得到一次合金锭。一次合金锭经机加工后制备成自耗重熔电极,电极与结晶器的充填比为0.85,熔速3.5kg/min,三次合金锭熔炼完成后的冷却时间为2h,而后脱模冷却,得到合金锭。
合金锭高温均匀化退火包括升温,保温和冷却过程,升温速度控制为35℃/h,保温温度为1190℃,保温时间为50h,冷却速度控制为25℃/h。合金锭经均匀化退火后,经机加工后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为35℃/h,保温温度为1170℃,保温时间为6h,锻造开坯过程包括镦粗和拔长,单火次锻造时间超过15min后回炉保温2h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为15,棒材锻造完成后需进行高温均质化退火,以30℃/h速度升温至高温均质化退火温度T,经计算可得γ′相全溶温度Tγ′为1139℃,退火温度为Tγ′-20℃,得到棒材。
根据轮盘锻件重量切取适当长度的棒材,棒材高径比控制为2.5,棒材经加热后镦粗制坯,锻前加热升温速度控制为35℃/h,保温温度为1120℃,保温时间为4h,镦粗变形量为40%。盘坯经加热后进行模锻成型,锻前加热升温速度控制为35℃/h,保温温度为1120℃,保温时间为4h,模锻变形量为40%,模具加热温度为650℃,得到轮盘锻件。
轮盘锻件经机加工进行热处理,热处理包括固溶处理,中间时效处理和时效处理,固溶处理制度为1180℃保温5h,中间时效处理制度为1050℃保温4h,时效处理制度为910℃保温12h。
针对对比例1制备的合金棒材,钢锭在电渣重熔和真空自耗重熔过程中出现了熔速波动,经低倍检查发现存在黑斑冶金缺陷,且在锻造开坯过程中开裂明显,开裂倾向大于实施例3。
对比例2 一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件
本对比例制备一种可在850℃长时使用的镍基变形高温合金直径900mm轮盘锻件,合金成分见表1对比例2,与其它实施例相比,调高了Mo含量、调低了W含量,增加了Fe含量。
合金轮盘锻件的制备工艺如下:
冶炼采用双联工艺,真空感应熔炼+电渣重熔+真空自耗重熔,真空感应熔 炼一次合金锭直径为355mm,电渣重熔合金锭直径为423mm,真空自耗重熔合金锭直径为508mm。真空感应熔炼包括以下步骤:按照合金的元素配比称取原材料,金属原材料包括:金属镍、金属铬或镍铬合金、金属钛、金属铝、金属钼、硼铁、金属钴、金属钨、镍钨合金、铌镍合金、钒铁、碳电极、返回料等。真空感应熔炼过程包括抽空、熔炼期、精炼和出钢等几个步骤,抽空阶段真空度为20Pa,熔炼期温度控制为1550℃,精炼期温度控制为1500℃,精炼阶段真空度4Pa,出钢温度控制为1480℃,出钢时充20000Pa氩气保护,浇铸完成后冷却3h后脱模,脱模后以35℃/h速度升温至高温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1129℃,退火温度为Tγ′+30℃,冷却后得到一次合金锭。一次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.8,电渣配比为CaF2:CaO:MgO:Al2O3:TiO2=65%:15%:1%:15%:4%,稳态熔速为5.0kg/min,二次合金锭熔炼完成后的冷却时间为2h后脱模,脱模后以45℃/h速度升温至低温去应力退火温度T,经计算可得γ′相全溶温度Tγ′为1129℃,退火温度为Tγ′-200℃,冷却后得到二次合金锭。二次合金锭经机加工后制备成电渣重熔电极,电极与结晶器的充填比为0.83,熔速2.8kg/min,三次合金锭熔炼完成后的冷却时间为2h,而后脱模冷却,得到合金锭。
合金锭高温均匀化退火包括升温,保温和冷却过程,升温速度控制为35℃/h,保温温度为1190℃,保温时间为50h,冷却速度控制为25℃/h。合金锭经均匀化退火后,经机加工后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为35℃/h,保温温度为1170℃,保温时间为6h,锻造开坯过程包括镦粗和拔长,单火次锻造时间超过15min后回炉保温2h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为15,得到棒材。
根据轮盘锻件重量切取适当长度的棒材,棒材高径比控制为2.5,棒材经加热后镦粗制坯,锻前加热升温速度控制为35℃/h,保温温度为1120℃,保温时间为4h,镦粗变形量为40%。盘坯经加热后进行模锻成型,锻前加热升温速度控制为35℃/h,保温温度为1120℃,保温时间为4h,模锻变形量为40%,模具加热温度为650℃,得到轮盘锻件。
轮盘锻件经机加工进行热处理,热处理包括固溶处理,中间时效处理和时效处理,固溶处理制度为1180℃保温5h,中间时效处理制度为1050℃保温4h, 时效处理制度为910℃保温12h。
本对比例2制备的合金轮盘锻件取试样,进行组织分析发现存在较多ASTM 00级的粗大晶粒,混晶问题较为突出,进行高温长时组织稳定性测试,试样经850℃长时时效3000h后,发现析出了较多的有害相σ相、μ相析出,850℃长时组织稳定性较差。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围内。

Claims (8)

  1. 一种高温使用的镍基变形高温合金轮盘锻件的制备方法,其特征在于,包括如下步骤:
    步骤1:按照成分配比称取原材料,成分配比以质量百分比计,所述的原材料包括:C:0.01~0.08%,W:6.5~8.0%,Cr:7.5~11.0%,Mo:1.5~3.5%,Co:14.5~17.5%,Ti:1.0~2.0%,Al:4.0~5.5%,Nb:1.0~2.0%,Zr:0.005~0.05%,Mg:0.005~0.05%;Ce:0.001~0.05%,B:0.005~0.05%,Fe:0.01~1.5%,余量为Ni;所述的原材料还包括杂质元素,在所述的杂质元素中,P≤0.015%、Mn≤0.5%、Si≤0.5%、S≤0.015%、O≤0.005%、N≤0.01%、Ag≤0.005%、Ca≤0.01%、Sn≤0.01%、Pb≤0.001%,Cu≤0.5%、Ta≤0.5%、V≤0.5%;
    步骤2:采用真空感应熔炼将所述的原材料熔炼为一次合金锭,所述的真空感应熔炼的处理工艺包括:抽空、熔炼期、精炼和出钢,所述的一次合金锭脱模后需进行高温去应力退火,再经电渣重熔精炼为二次合金锭,所述的二次合金锭脱模后需进行低温去应力退火,再经真空自耗重熔精炼为三次合金锭,得到合金锭;
    步骤3:将步骤2所得的合金锭经高温均匀化退火后,所述的高温均匀化退火包括升温、保温和冷却过程,所述的升温的速度控制为15~60℃/h,所述的保温的温度为1150~1250℃,所述的保温的时间为24~72h,所述的冷却的速度控制为5~55℃/h,得到高温均匀化退火后的合金,再加热锻造开坯成棒材,所述的棒材锻造完成后需进行高温均质化退火,得到轮盘锻件;
    步骤4:根据所述的轮盘锻件的重量切取步骤3所得的棒材,得到切取棒材;所述的切取棒材的重量为轮盘锻件的重量的115~145%,所述的切取棒材的高径比控制在1.5~3.0之间,将所述的切取棒材经制坯和模锻成型,得到合金轮盘锻件;
    步骤5:将步骤4所得的合金轮盘锻件经热处理后,所述的热处理包括固溶处理、中间时效处理和时效处理,所述的固溶处理的方法为1150~1220℃保温2~10h,所述的中间时效处理的方法为1000~1150℃保温2~10h,所述的时效处理的方法为760℃~920℃保温8~32h,得到超高温使用的镍基变形高温合金轮盘锻件。
  2. 根据权利要求1所述的制备方法,其特征在于,在所述的抽空的处理工艺中, 真空度为10~100Pa;在所述的熔炼期的处理工艺中,温度控制为1300℃-1650℃;在所述的精炼的处理工艺中,温度控制为1400℃~1600℃,真空度1~20Pa;
    在所述的出钢的处理工艺中,温度控制为1420℃-1590℃,且需充10000~50000Pa氩气保护,浇铸完成后冷却0.5h~3h后脱模,得到一次合金锭;所述的一次合金锭脱模进行高温去应力退火处理,以10~50℃/h速度升温至高温去应力退火温度T,T的温度为γ′相全溶温度Tγ′±50℃,Tγ′根据合金的实测成分利用商业软件Jmatpro计算得到。
  3. 根据权利要求1所述的制备方法,其特征在于,所述的步骤2还包括:将所述的一次合金锭制备成电渣重熔电极,电渣重熔电极与结晶器的充填比为0.75~0.9;在所述的电渣重熔过程中,采用的电渣的组分配比为CaF2:CaO:MgO:Al2O3:TiO2=65~75%:10~20%:0.5~5%:10~20%:0.5~5%,稳态熔速为1.0~6.0kg/min,所述的二次合金锭在所述电渣重熔精炼完成后的冷却时间为0.5h~6h,而后脱模得到二次合金锭,所述的二次合金锭脱模后进行低温去应力退火,以10~50℃/h速度升温至低温去应力退火温度T,T的温度为T γ′-100~T γ′-250℃,T γ′根据合金的实测成分利用商业软件Jmatpro计算得到。
  4. 根据权利要求1所述的制备方法,其特征在于,所述的步骤2还包括:将所述的二次合金锭制备成自耗重熔电极,自耗重熔电极与结晶器的充填比为0.75~0.95,熔速1.0~5.0kg/min;所述的三次合金锭在所述的真空自耗重熔精炼完成后的冷却时间为0.5h~3h,而后脱模冷却。
  5. 根据权利要求1所述的制备方法,其特征在于,在步骤2中,如果所述的一次合金锭为直径小于500mm的合金锭,对所述的一次合金锭的处理工艺将变更为:将所述的一次合金锭直接进行真空自耗重熔,得到合金锭。
  6. 根据权利要求1所述的制备方法,其特征在于,所述的步骤3还包括:所述的步骤2所得的合金锭经均匀化退火后,加热至锻造温度保温后出炉锻造,锻前加热升温速度控制为15~60℃/h,保温温度为1050℃~1180℃,保温时间为2h~8h,锻造开坯过程包括镦粗和拔长,单火次锻造时间超过5~30min后回炉保温1~6h,每次锻造前合金锭表面均包覆石棉进行保温,控制总锻比为5~20,得到棒材,所述的棒材在锻造完成后进行高温均质化退火,以10~50℃/h速度升温至高温均质化退火温度T,T的温度为T γ′±30℃,T γ′根据合金的实测成分利用商业软件 Jmatpro计算得到。
  7. 根据权利要求1所述的制备方法,其特征在于,所述的步骤4还包括:所述的切取棒材经加热后镦粗制坯,锻前加热升温速度控制为20~50℃/h,保温温度为1000℃~1150℃,保温时间为2~8h,镦粗变形量为30~70%,得到盘坯。
  8. 根据权利要求7所述的制备方法,其特征在于,所述的盘坯经加热后进行模锻成型,锻前加热升温速度控制为20~50℃/h,保温温度为950℃~1150℃,保温时间为2~8h,模锻变形量为30~70%,模具加热温度为300~1050℃。
PCT/CN2020/098920 2020-03-02 2020-06-29 一种高温使用的镍基变形高温合金轮盘锻件的制备方法 WO2021174727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20923081.2A EP3978640A4 (en) 2020-03-02 2020-06-29 METHOD OF PREPARING A NICKEL BASE HIGH TEMPERATURE ALLOY TURBINE DISC FORGING FOR HIGH TEMPERATURE USE
US17/564,265 US20220119931A1 (en) 2020-03-02 2021-12-29 Preparation method of nickel-based wrought superalloy wheel disk forgings used at high temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010137240.1 2020-03-02
CN202010137240.1A CN111235434B (zh) 2020-03-02 2020-03-02 一种高温使用的镍基变形高温合金轮盘锻件的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/564,265 Continuation US20220119931A1 (en) 2020-03-02 2021-12-29 Preparation method of nickel-based wrought superalloy wheel disk forgings used at high temperature

Publications (1)

Publication Number Publication Date
WO2021174727A1 true WO2021174727A1 (zh) 2021-09-10

Family

ID=70878441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098920 WO2021174727A1 (zh) 2020-03-02 2020-06-29 一种高温使用的镍基变形高温合金轮盘锻件的制备方法

Country Status (4)

Country Link
US (1) US20220119931A1 (zh)
EP (1) EP3978640A4 (zh)
CN (1) CN111235434B (zh)
WO (1) WO2021174727A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862571A (zh) * 2021-09-28 2021-12-31 江苏宇钛新材料有限公司 镍铬高温合金及其制备方法与应用
CN114147426A (zh) * 2021-11-30 2022-03-08 中国兵器工业第五九研究所 一种锥形薄壁构件剧烈塑性成形方法
CN114226618A (zh) * 2021-12-07 2022-03-25 太原科技大学 基于混晶调控的大型轴类锻件终锻成形的反向控制工艺
CN114289500A (zh) * 2022-01-17 2022-04-08 无锡派克新材料科技股份有限公司 一种大型超高结构钢的异形轧制工艺
CN114540699A (zh) * 2022-02-28 2022-05-27 江苏宏晟模具钢材料科技有限公司 一种高性能热作模具钢及其制备方法
CN115369289A (zh) * 2022-08-29 2022-11-22 江西宝顺昌特种合金制造有限公司 一种水下流量计用Inconel 625锻件及其制备方法
CN115647257A (zh) * 2022-10-27 2023-01-31 遵义航天新力精密铸锻有限公司 一种喷嘴锻造工艺
CN115747462A (zh) * 2022-11-08 2023-03-07 中国航发北京航空材料研究院 高温合金带箔材钣金件变形的控制方法
CN115852128A (zh) * 2022-12-16 2023-03-28 东方蓝天钛金科技有限公司 一种消除冷拉态gh4738合金制螺栓头部混晶的方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235434B (zh) * 2020-03-02 2021-07-30 北京钢研高纳科技股份有限公司 一种高温使用的镍基变形高温合金轮盘锻件的制备方法
CN111187946B (zh) * 2020-03-02 2021-11-16 北京钢研高纳科技股份有限公司 一种高铝含量的镍基变形高温合金及制备方法
CN111659894B (zh) * 2020-06-19 2022-06-21 北京钢研高纳科技股份有限公司 粉末高温合金棒材及盘件的制备方法
CN112139415B (zh) * 2020-09-16 2022-04-19 江苏隆达超合金航材有限公司 一种补偿加热辅助自由锻生产难变形镍基高温合金的方法
CN112226651B (zh) * 2020-10-16 2022-04-19 中国航发北京航空材料研究院 一种用于850℃的变形涡轮盘合金材料及制备工艺
CN112620383B (zh) * 2020-11-02 2022-10-14 抚顺特殊钢股份有限公司 一种高速飞航器用镍基高温合金宽厚扁材的制造方法
CN112708788B (zh) * 2020-11-18 2022-06-17 北京钢研高纳科技股份有限公司 一种提高k403合金塑性的方法,模具材料和制品
CN112458326B (zh) * 2021-01-28 2021-04-16 北京科技大学 一种含Zr-Ce的变形高温合金及其制备方法
CN112981186B (zh) * 2021-04-22 2021-08-24 北京钢研高纳科技股份有限公司 低层错能的高温合金、结构件及其应用
CN113234963B (zh) * 2021-05-19 2021-12-17 沈阳航空航天大学 室温以及低温环境用镍铬基超合金及其制备方法
CN113560481B (zh) * 2021-07-30 2023-07-18 内蒙古工业大学 一种gh4738镍基高温合金的热加工工艺
CN113881909A (zh) * 2021-08-26 2022-01-04 北京钢研高纳科技股份有限公司 一种GH4720Li高温合金叶片锻件的热处理方法及叶片锻件
CN113512670B (zh) * 2021-09-14 2021-12-07 河北钢研德凯科技有限公司北京分公司 可焊接的铸造高温合金及其应用
CN114015909B (zh) * 2021-11-16 2022-05-17 南京中远海运船舶设备配件有限公司 一种大规格柴油机气阀及其制造方法
CN114318061A (zh) * 2021-11-17 2022-04-12 华能核能技术研究院有限公司 一种用于高温或超高温气冷堆蒸汽发生器的合金及其制备方法
CN114160728A (zh) * 2021-11-18 2022-03-11 王江明 一种航空零部件涡轮扇叶的加工工艺
CN114182078A (zh) * 2021-12-03 2022-03-15 上海电气上重铸锻有限公司 一种高强度奥氏体轴类大锻件的制备方法
CN114317921A (zh) * 2021-12-21 2022-04-12 深圳市万泽中南研究院有限公司 制备涡轮盘的退火工艺方法和涡轮盘
CN114262822B (zh) * 2021-12-28 2022-05-31 北京钢研高纳科技股份有限公司 一种镍基粉末高温合金及其制备方法和应用
CN114250368B (zh) * 2021-12-31 2024-03-26 西部超导材料科技股份有限公司 一种提高钛铌合金熔炼过程稳定性的方法
WO2023145423A1 (ja) * 2022-01-31 2023-08-03 株式会社プロテリアル 析出硬化型オーステナイト系合金鋼材およびその製造方法、ならびに析出硬化型オーステナイト系合金熱処理鋼材およびその製造方法
CN114799005A (zh) * 2022-05-06 2022-07-29 任超群 一种均质细晶高温合金盘件的锻造方法
CN114921688B (zh) * 2022-05-11 2023-05-23 北冶功能材料(江苏)有限公司 一种难变形镍基高温合金带材、钣金件及难变形镍基高温合金带材的制备方法
CN114836665B (zh) * 2022-05-17 2022-10-11 西北有色金属研究院 一种Ta-W-Hf-Re-C合金及其棒材的制备方法
CN114990344B (zh) * 2022-06-07 2023-11-24 大冶特殊钢有限公司 一种采用真空自耗熔炼生产高Al合金的方法
CN115044774A (zh) * 2022-06-08 2022-09-13 山东工业职业学院 一种铬合金的制备方法
CN115383400B (zh) * 2022-08-08 2023-10-13 陕西斯瑞新材料股份有限公司 一种低成本铜铬触头批量加工方法
CN115786830A (zh) * 2022-11-09 2023-03-14 抚顺特殊钢股份有限公司 一种高合金比难变形高温合金电极坯退火工艺
CN115709255B (zh) * 2023-01-04 2023-04-07 北京钢研高纳科技股份有限公司 Gh4780合金锻件及其制备方法与应用
CN115780708B (zh) * 2023-02-08 2023-04-14 中国航发北京航空材料研究院 镍基粉末高温合金盘件的直接模锻成型方法
CN116949380B (zh) * 2023-09-20 2023-12-12 北京钢研高纳科技股份有限公司 一种高热强性高温合金的热处理方法
CN117123716B (zh) * 2023-10-10 2024-05-03 哈尔滨工业大学 一种镍基高温合金整体叶盘锻件控制折叠的成形方法
CN117126996B (zh) * 2023-10-26 2024-01-02 东方蓝天钛金科技有限公司 一种gh2132合金抽芯铆钉钉套的热处理方法
CN117161298B (zh) * 2023-11-02 2024-02-09 莱州市莱索制品有限公司 一种工程机械用支重轮的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1177391A (en) * 1966-08-24 1970-01-14 Gen Electric Improvements in wrought nickel base alloy.
EP0292320A2 (en) * 1987-05-21 1988-11-23 General Electric Company Nickel base superalloy
CN105112728A (zh) * 2015-09-29 2015-12-02 钢铁研究总院 一种700℃超超临界汽轮机转子用耐热合金及其制备方法
CN108315599A (zh) * 2018-05-14 2018-07-24 钢铁研究总院 一种高钴镍基高温合金及其制备方法
CN110205523A (zh) * 2019-07-04 2019-09-06 北京钢研高纳科技股份有限公司 一种具有高拉伸强度的镍基粉末高温合金及其制备方法
CN110468361A (zh) * 2019-07-22 2019-11-19 中国航发北京航空材料研究院 一种变形高温合金细晶棒材的制备方法
CN111235434A (zh) * 2020-03-02 2020-06-05 北京钢研高纳科技股份有限公司 一种高温使用的镍基变形高温合金轮盘锻件的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1713962A1 (ru) * 1989-12-27 1992-02-23 Центральный научно-исследовательский институт черной металлургии им.И.П.Бардина Порошковый сплав на основе никел
US7156932B2 (en) * 2003-10-06 2007-01-02 Ati Properties, Inc. Nickel-base alloys and methods of heat treating nickel-base alloys
CN102312118B (zh) * 2011-09-21 2013-04-03 北京科技大学 一种gh864镍基高温合金组织精确控制的热加工方法
CN103691952B (zh) * 2014-01-06 2015-05-27 钢铁研究总院 一种功能梯度性能涡轮盘的制备方法
CN103866392A (zh) * 2014-01-24 2014-06-18 南京理工大学 一种低铼镍基单晶高温合金及其制备方法
KR101640324B1 (ko) * 2014-12-29 2016-07-18 순천대학교 산학협력단 이중 용해를 이용한 니켈-타이타늄계 형상기억합금의 제조 방법
EP3091095B1 (de) * 2015-05-05 2018-07-11 MTU Aero Engines GmbH Rheniumfreie nickelbasis-superlegierung mit niedriger dichte
CN106636758B (zh) * 2016-12-29 2018-07-24 西部超导材料科技股份有限公司 一种小规格镍基高温合金fgh4097铸锭的冶炼工艺
CN108441705B (zh) * 2018-03-16 2020-06-09 中国航发北京航空材料研究院 一种高强度镍基变形高温合金及其制备方法
JP6728282B2 (ja) * 2018-08-02 2020-07-22 三菱日立パワーシステムズ株式会社 Ni基合金軟化材の製造方法およびNi基合金部材の製造方法
CN109355517A (zh) * 2018-11-29 2019-02-19 西安华创新材料有限公司 一种镍钛形状记忆合金超低间隙大规格铸锭熔炼方法
CN109576621B (zh) * 2019-01-18 2020-09-22 中国航发北京航空材料研究院 一种镍基变形高温合金制件的精确热处理方法
CN110004312B (zh) * 2019-05-09 2020-10-27 西安聚能高温合金材料科技有限公司 一种镍基高温合金gh4698大规格铸锭的三联冶炼工艺
CN110373620B (zh) * 2019-09-03 2020-11-03 钢铁研究总院 一种改善高γ′相体积分数镍基沉淀强化型高温合金热加工性能的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1177391A (en) * 1966-08-24 1970-01-14 Gen Electric Improvements in wrought nickel base alloy.
EP0292320A2 (en) * 1987-05-21 1988-11-23 General Electric Company Nickel base superalloy
CN105112728A (zh) * 2015-09-29 2015-12-02 钢铁研究总院 一种700℃超超临界汽轮机转子用耐热合金及其制备方法
CN108315599A (zh) * 2018-05-14 2018-07-24 钢铁研究总院 一种高钴镍基高温合金及其制备方法
CN110205523A (zh) * 2019-07-04 2019-09-06 北京钢研高纳科技股份有限公司 一种具有高拉伸强度的镍基粉末高温合金及其制备方法
CN110468361A (zh) * 2019-07-22 2019-11-19 中国航发北京航空材料研究院 一种变形高温合金细晶棒材的制备方法
CN111235434A (zh) * 2020-03-02 2020-06-05 北京钢研高纳科技股份有限公司 一种高温使用的镍基变形高温合金轮盘锻件的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978640A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862571A (zh) * 2021-09-28 2021-12-31 江苏宇钛新材料有限公司 镍铬高温合金及其制备方法与应用
CN114147426A (zh) * 2021-11-30 2022-03-08 中国兵器工业第五九研究所 一种锥形薄壁构件剧烈塑性成形方法
CN114226618A (zh) * 2021-12-07 2022-03-25 太原科技大学 基于混晶调控的大型轴类锻件终锻成形的反向控制工艺
CN114226618B (zh) * 2021-12-07 2023-10-03 太原科技大学 基于混晶调控的大型轴类锻件终锻成形的反向控制工艺
CN114289500B (zh) * 2022-01-17 2023-07-14 无锡派克新材料科技股份有限公司 一种大型超高结构钢的异形轧制工艺
CN114289500A (zh) * 2022-01-17 2022-04-08 无锡派克新材料科技股份有限公司 一种大型超高结构钢的异形轧制工艺
CN114540699A (zh) * 2022-02-28 2022-05-27 江苏宏晟模具钢材料科技有限公司 一种高性能热作模具钢及其制备方法
CN115369289A (zh) * 2022-08-29 2022-11-22 江西宝顺昌特种合金制造有限公司 一种水下流量计用Inconel 625锻件及其制备方法
CN115369289B (zh) * 2022-08-29 2024-02-09 江西宝顺昌特种合金制造有限公司 一种水下流量计用Inconel 625锻件及其制备方法
CN115647257A (zh) * 2022-10-27 2023-01-31 遵义航天新力精密铸锻有限公司 一种喷嘴锻造工艺
CN115747462A (zh) * 2022-11-08 2023-03-07 中国航发北京航空材料研究院 高温合金带箔材钣金件变形的控制方法
CN115747462B (zh) * 2022-11-08 2023-12-22 中国航发北京航空材料研究院 高温合金带箔材钣金件变形的控制方法
CN115852128A (zh) * 2022-12-16 2023-03-28 东方蓝天钛金科技有限公司 一种消除冷拉态gh4738合金制螺栓头部混晶的方法
CN115852128B (zh) * 2022-12-16 2023-09-19 东方蓝天钛金科技有限公司 一种消除冷拉态gh4738合金制螺栓头部混晶的方法

Also Published As

Publication number Publication date
EP3978640A1 (en) 2022-04-06
EP3978640A4 (en) 2022-11-16
CN111235434A (zh) 2020-06-05
CN111235434B (zh) 2021-07-30
US20220119931A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
WO2021174727A1 (zh) 一种高温使用的镍基变形高温合金轮盘锻件的制备方法
WO2021174726A1 (zh) 一种高铝含量的镍基变形高温合金及制备方法
CN110592506B (zh) 一种gh4780合金坯料和锻件及其制备方法
US9309584B2 (en) Base material for high temperature alloy and manufacture method thereof
US20160263655A1 (en) Hot isostatic pressing process for superalloy powder
CN110373620B (zh) 一种改善高γ′相体积分数镍基沉淀强化型高温合金热加工性能的方法
CN109136652B (zh) 核电关键设备用镍基合金大截面棒材及其制造方法
CN105821250A (zh) 一种高强度镍基高温合金及其制造方法
CN106636848A (zh) 一种耐磨抗蚀镍基合金丝材的制备方法
CN111826550B (zh) 一种中等强度耐硝酸腐蚀钛合金
CN110468361B (zh) 一种变形高温合金细晶棒材的制备方法
CN104630597A (zh) 一种铁镍铬基高温合金及其制造方法
CN116000134B (zh) Gh4738合金冷拔棒材及其制备方法和应用
CN114645162A (zh) 一种难变形高温合金的细晶均质盘锻件的制造方法
CN113122763A (zh) 一种高强韧性高熵合金制备方法
JP2022511276A (ja) 鍛造チタン合金による高強度のファスナ素材及びその製造方法
CN114657398A (zh) 一种大规格难变形镍基高温合金铸锭及其制备方法
CN111455221B (zh) 增材制造用钴基高温合金及其制备方法和应用、增材制造产品
CN113846247A (zh) W-Mo-Co强化高温合金热轧棒材及其制备方法
CN105238957A (zh) 一种高性能镍基高温合金及其制造方法
CN115156471A (zh) 一种高强镍基高温合金材料盘、轴类锻件的制备方法
CN114540731B (zh) 一种gh4169合金棒材及其制备方法和紧固件
CN114226610B (zh) 一种大规格高温合金铸锭的开坯方法及制得的棒材
CN111074101A (zh) 一种高强低比重定向凝固镍基高温合金及其制备方法和应用
CN114032440A (zh) 一种Laves相强化奥氏体耐热钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020923081

Country of ref document: EP

Effective date: 20211229

NENP Non-entry into the national phase

Ref country code: DE