WO2021174461A1 - 一种超多模穴产品用模具浇注系统 - Google Patents

一种超多模穴产品用模具浇注系统 Download PDF

Info

Publication number
WO2021174461A1
WO2021174461A1 PCT/CN2020/077833 CN2020077833W WO2021174461A1 WO 2021174461 A1 WO2021174461 A1 WO 2021174461A1 CN 2020077833 W CN2020077833 W CN 2020077833W WO 2021174461 A1 WO2021174461 A1 WO 2021174461A1
Authority
WO
WIPO (PCT)
Prior art keywords
runners
flow channel
runner
narrowing
vertical
Prior art date
Application number
PCT/CN2020/077833
Other languages
English (en)
French (fr)
Inventor
周沃华
叶南飚
黄险波
关安南
黄明瑜
刘天明
皮保清
李钊英
颜杨
王海兰
周起雄
胡贵
Original Assignee
金发科技股份有限公司
木林森股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 木林森股份有限公司 filed Critical 金发科技股份有限公司
Priority to PCT/CN2020/077833 priority Critical patent/WO2021174461A1/zh
Publication of WO2021174461A1 publication Critical patent/WO2021174461A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles

Definitions

  • the invention relates to the technical field of injection molding, in particular to a mold pouring system for super-multi-cavity products.
  • the melt quickly enters the runner through the injection pressure, and then is poured into the mold cavity.
  • the existing gating system usually requires the pressure loss to be as small as possible, so that the injection pressure can be evenly transmitted to all parts of the mold cavity, and then a clear and high-quality plastic product can be obtained.
  • the length and diameter of the road is smaller than the design.
  • the present invention provides a mold pouring system for super-multi-cavity products, which is suitable for pouring super-multi-cavity products with more than 500 cavities.
  • the specific technical solutions are as follows:
  • a mold pouring system for super multi-cavity products comprising: a main runner, a primary runner, a secondary runner, a plurality of cross runners and a plurality of vertical runners, the runner is connected to a plurality of primary runners, The plurality of vertical runners are arranged in multiple groups, and each group has more than one vertical runner;
  • each row of pouring components has multiple sets of said vertical runners, in each row of pouring components, said horizontal runners are distributed and connected to each Between adjacent two groups of the vertical runners, the secondary branch runners are distributed between every two adjacent rows of pouring components, and respectively connect the cross runners on every two adjacent rows of pouring components, so
  • the primary flow channel is connected to one of the secondary flow channels, so as to realize that the main flow channel sequentially transports materials to each group of the vertical flow channel through the primary flow channel, the secondary flow channel, and the cross flow channel.
  • the flow channel wall of each of the secondary flow channels has a narrowing portion configured to reduce the cross-sectional area of a part of the secondary flow channel.
  • the shape of the inner surface of the narrowing portion is a smooth transition surface.
  • the narrowing portion is located in the middle of the secondary shunt.
  • the second-level splitter connected to the first-level splitter is set as a near-end second-level splitter, and the second-level splitter away from the proximal end is a far-end second-level splitter
  • the ratio of the minimum cross-sectional area of the secondary runner at the narrowing portion to the cross-sectional area of the non-narrowed part of the secondary runner is set to the degree of narrowing, starting from the secondary runner at the proximal end To the secondary shunt at the distal end, the degree of constriction of each constriction is the same or different.
  • the degree of narrowing of each constriction gradually increases.
  • the degree of narrowing of each constriction gradually increases in a linear gradual manner.
  • the narrowing degree of the constriction of the secondary shunt between the secondary shunt at the proximal end and the secondary shunt at the distal end is
  • S1 is the degree of narrowing of the constriction of the secondary shunt at the proximal end
  • Sk is the degree of constriction of the constriction of the secondary shunt at the distal end
  • Sk ⁇ S1 is the degree of constriction of the secondary shunt from the proximal end.
  • the number of i secondary runners counted at the beginning of the runner, k is the total number of secondary runners from the secondary runner at the near end to the secondary runner at the far end, k ⁇ i
  • Si is the i-th The degree of constriction of the constriction of a secondary shunt.
  • the narrowing degree of the constriction of the proximal secondary shunt is greater than 2/5, and the constriction of the distal secondary shunt is less than 4/5.
  • a group of said vertical flow channels includes one said vertical flow channel.
  • a group of the vertical runners includes more than two vertical runners combined into a bundle.
  • the cross flow channel connected to the secondary shunt is set as a proximal cross flow channel, and the cross flow channel far from the proximal cross flow channel is a far
  • the cross flow channel at the end, from the cross flow channel at the proximal end to the cross flow channel at the far end, each of the cross flow channels has an inwardly concave wave-shaped channel wall, and the two sides of the wave-shaped channel wall are respectively connected to the corresponding all
  • the vertical flow channel is relatively inclined, and the shape of the inner surface of the wave-shaped flow channel wall is a smooth transition surface.
  • the runners include a primary runner and a secondary runner, the primary runner is connected to multiple primary runners, and the multiple vertical runners are arranged in multiple groups, each with one The above vertical runners, multiple sets of vertical runners and multiple said cross runners are combined into multiple rows of pouring components, each row of pouring components has multiple sets of vertical runners, in each row of pouring components, the cross runners are distributed and connected to each phase Between two adjacent sets of vertical runners, the secondary runners are distributed between every two adjacent rows of pouring components, and are connected to the cross runners on every two adjacent rows of pouring components, and the primary runner connects one of the two.
  • Graded runners in order to realize that the main runner transports materials to each group of vertical runners through the first runners, the second runners, and the cross runners in sequence. Compared with the existing, rapid pouring of super multi-cavities can be realized, and the total length of intermediate runners such as branch runners and cross runners can be shortened, and the pressure loss can be significantly reduced.
  • each secondary flow channel has a narrowed portion arranged to reduce the cross-sectional area of a part of the secondary flow channel. Since the cross-sectional area of the narrowed part is smaller than the cross-sectional area of the non-narrowed part of the secondary shunt, the melt reflow encounters a lot of resistance at the narrowed part, which can effectively prevent the melt reflow and eliminate the lack of melt filling. Defects and weld line defects significantly improve the yield and production efficiency. Moreover, each secondary shunt has a narrowing part to prevent backflow, and the effect is better.
  • the shape of the inner surface of the narrowing portion is a smooth transition surface, which can reduce shear.
  • the gradual narrowing part can effectively prevent both distal and proximal reflux.
  • This structure can also make the pressure of the proximal and distal shunt channels more uniform, thereby making the overall temperature and pressure of the melt more uniform .
  • the material cost of the flow channel after the necking is lower, and it is convenient to control the backflow generated by different materials or processes through different gradation and necking degrees.
  • Figure 1 is an overall schematic diagram of the mold casting system for super multi-cavity products in Example 1;
  • Fig. 2 is a schematic diagram of the left area in Fig. 1;
  • Fig. 3 is a partial enlarged view of the area at D in Fig. 2;
  • Figure 4 is a partial enlarged view of the area at E in Figure 2
  • Figure 5 is a schematic diagram of the connection between the horizontal flow channel and the vertical flow channel in Embodiment 3;
  • Fig. 6 is a partial enlarged view of the area at A in Fig. 5;
  • Fig. 7 is a partial enlarged view of the area at B in Fig. 5;
  • Fig. 8 is a partial enlarged view of the area at C in Fig. 5.
  • Expressions used in various embodiments of the present invention can modify various constituent elements in the various embodiments, but may not limit the corresponding constituent elements.
  • the above expression does not limit the order and/or importance of the elements.
  • the above expressions are only used for the purpose of distinguishing one element from other elements.
  • the first user device and the second user device indicate different user devices, although both are user devices.
  • the first element may be referred to as the second element, and similarly, the second element may also be referred to as the first element.
  • this embodiment provides a mold casting system for super multi-cavity products, including: a main runner 1, a primary runner 2, a secondary runner 3, a plurality of cross runners 4 and Multiple vertical runners5.
  • the main runner 1 is connected to multiple primary runners 2.
  • the primary runner 1 is connected to two primary runners 2.
  • One primary runner 2 is located on the left side of the primary runner 1, and the other primary runner 2 Located on the right side of main runner 1.
  • the multiple vertical runners 5 are arranged in multiple groups, and each group has more than one vertical runner 5.
  • each row of pouring components has multiple sets of vertical runners 5, in each row of pouring components, the cross runners 4 are distributed and connected to each adjacent Between the two sets of vertical runners 5, the secondary runners 3 are distributed between every two adjacent rows of pouring components, and are connected to the cross runners 4 on every two adjacent rows of pouring components, and the primary runners 2 are connected One of the secondary runners 3 is to realize that the primary runner 1 transports the material to each group of vertical runners 5 through the primary runner 2, the secondary runner 3, and the cross runner 4 in turn.
  • a group of vertical runners 5 includes 4 vertical runners 5 combined into a bundle. This is a preferred arrangement of vertical runners 5. In other embodiments, a group of vertical runners 5 may also be used. Including more than 2 vertical runners 5 combined into a bundle. In another embodiment, a group of vertical flow channels 5 may also include one vertical flow channel 5.
  • each secondary flow passage 3 has a narrowed portion 9 arranged to reduce the cross-sectional area of a part of the secondary flow passage 3.
  • the secondary runner 3 connected to the primary runner 2 is set as the secondary runner 3 at the proximal end, and the secondary runner 3 far from the secondary runner 3 at the proximal end is the secondary runner 3 at the far end. .
  • each secondary runner 3 has a constriction 9 to prevent backflow, that is, both the proximal secondary runner 3 and the distal secondary runner 3 have the function of preventing the backflow of molten glue. The overall effect is better, and it is convenient to achieve a more uniform pressure in the entire flow channel.
  • the shape of the inner surface of the narrowing portion 9 is a smooth transition surface. Since the shape of the inner surface of the narrowed portion 9 is a smooth transition surface, the shearing of the molten glue can be reduced.
  • the narrowing portion 9 is located in the middle of the secondary flow passage 3.
  • the ratio of the minimum cross-sectional area of the secondary runner 3 in the narrowing portion 9 to the cross-sectional area of the non-narrowed part 9 of the secondary runner 3 is set to the degree of narrowing.
  • the narrowing of each constriction 9 is different.
  • the degree of narrowing of each constriction 9 gradually increases in a linear gradual manner.
  • the gradual narrowing portion 9 can effectively prevent both the distal and proximal reflux, and the linear gradual change from the distal end to the proximal end can make the pressure of the runners in the glue inlet section and the remote gate section more uniform.
  • the narrowing degree of the constriction 9 of the secondary shunt 3 between the secondary shunt 3 at the proximal end and the secondary shunt 3 at the distal end is
  • S1 is the degree of constriction of the constriction 9 of the proximal secondary shunt 3
  • Sk is the degree of constriction of the constriction 9 of the distal secondary shunt 3
  • Sk ⁇ S1 i is from the near The number of i secondary runners 3 counted from the secondary runner 3 at the end
  • k is the total number of secondary runners 3 from the secondary runner 3 at the proximal end to the secondary runner 3 at the far end
  • K ⁇ i Si is the narrowing degree of the narrowing portion 9 of the i-th secondary shunt 3. Based on the linear gradient formula, the temperature and pressure of the melt in the multiple runners can be made more uniform.
  • the narrowing degree of the constriction 9 of the proximal secondary runner 3 is greater than 2/5, and the constriction of the constriction 9 of the distal secondary runner 3 is less than 4/ 5.
  • the cross flow channel connected to the secondary runner is set as the proximal cross flow channel 6, and the cross flow channel away from the proximal cross flow channel 6 It is the cross flow channel 7 at the distal end, and correspondingly, the cross flow channel between the cross flow channel 6 at the proximal end and the cross flow channel 7 at the distal end is the cross flow channel 8 at the middle end.
  • each cross flow channel has an inwardly concave wave-shaped channel wall 10, and the two sides of the wave-shaped channel wall 10 are respectively inclined relative to the corresponding connected vertical channel 5 , And the shape of the inner surface of the wave-shaped flow channel wall 10 is a smooth transition surface.
  • the angle between the cross flow channel and the vertical flow channel 5 is controlled by the wave-shaped flow channel wall 10 structure of the cross flow channel, thereby reducing the shear reduction of the melt, and the size of the shear can be controlled by the inclination angle, thereby facilitating The reflow generated in different materials or processes is controlled, and the temperature and pressure of the entire melt are more uniform.
  • the shape of the inner surface of the wave-shaped flow channel wall 10 is a smooth transition surface, which can further reduce the shear.
  • the two sides of the wave-shaped flow channel wall 10 are substantially symmetrical, so that the inclination angles between the two adjacent sets of vertical flow channels 5 and the wave-shaped flow channel wall 10 are substantially the same. Specifically, between the two adjacent sets of vertical flow passages 5, the inclination angle between one side of the wave-shaped flow channel wall 10 and one set of vertical flow channels 5 and the other side of the wave-shaped flow channel wall 10 and the other set The inclination angle of the vertical runner 5.
  • the inclination angle between the two sides of the wave-shaped flow channel wall 10 between the cross flow channel 6 at the proximal end and the cross flow channel 7 at the distal end and the corresponding vertical flow channel 5 is
  • A1 is the inclination angle between the two sides of the wave-shaped flow channel wall 10 at the proximal end and the connected vertical flow channel 5
  • Ak is the inclination of the two sides of the wave-shaped channel wall 10 at the distal end and the connected vertical flow channel 5
  • Angle, A1 ⁇ Ak, i is the number of i cross flow channels counted from the proximal cross flow channel 6
  • k is the total number of cross flow channels from the proximal cross flow channel 6 to the distal cross flow channel 7
  • Ai is the inclination angle between the two sides of the i-th wave-shaped flow channel wall 10 and the connected vertical flow channel 5. Based on the relationship formula of the inclination angle, the temperature and pressure of the entire melt can be made more uniform.
  • the inclination angle between the two sides of the wave-shaped flow channel wall 10 at the proximal end and the connected vertical flow channel 5 is less than 150°, and the two sides of the wave-shaped flow channel wall 10 at the distal end are connected to the vertical flow channel 5.
  • the angle of inclination is greater than 90°.
  • the length of the inwardly recessed area of the wave-shaped flow channel wall 10 is equal to the distance between the two adjacent sets of vertical flow channels 5.
  • modules in the device in the implementation scenario can be distributed in the device in the implementation scenario according to the description of the implementation scenario, or can be changed to be located in one or more devices different from the implementation scenario.
  • the modules of the above implementation scenarios can be combined into one module or further divided into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种超多模穴产品用模具浇注系统,分流道包括一级分流道(2)、二级分流道(3),主流道(1)连接多个一级分流道,多个竖流道(5)设置为多组,每组中具有一个以上竖流道,多组竖流道和多个横流道(4)组合成多排浇注组件,每排浇注组件具有多组竖流道,在每排浇注组件中,横流道分布并连接在每相邻的两组竖流道之间,二级分流道分布在相邻的每两排浇注组件之间、且分别连接每相邻两排浇注组件上的横流道,各二级分流道的流道壁上具有配置为使二级分流道的一部分部位横截面积缩小的缩窄部(9)。上述浇注系统可实现超多模穴的快速浇注,且显著减少压力损失;各个二级分流道中均具有缩窄部实现阻止回流,剪切小,令熔胶整体的温度与压力更加均匀。

Description

一种超多模穴产品用模具浇注系统 技术领域
本发明涉及注塑技术领域,具体而言,涉及一种超多模穴产品用模具浇注系统。
背景技术
聚合物注塑过程中,熔胶通过注塑压力快速进入流道,然后再浇注到模具腔内。现有的浇注系统通常都要求压力损失尽可能小,这样可将注射压力均匀地传递到模具型腔的各个部分,进而可得到外型清晰、质量优良的塑胶产品,因此尽可能地将各浇道的长径比设计的较小。
但是,对于具有500个以上模穴的超多模穴产品,由于需要浇注的模具腔特别多,为了提高注塑效率,需要从主流道延伸出来的下级流道具有足够的长度,因而下级流道长径比大,在各流道连接处压力损失也比较多,为此需要提供较大的注射压力。而且聚合物注塑过程中,熔胶在流道中容易发生回流。
发明内容
为了克服现有技术的不足,本发明提供了一种超多模穴产品用模具浇注系统,其适用于具有500个以上模穴的超多模穴产品的浇注,具体技术方案如下所示:
一种超多模穴产品用模具浇注系统,包括:主流道、一级分流道、二级分流道、多个横流道和多个竖流道,所述主流道连接多个一级分流道,多个所述竖流道设置为多组,每组中具有一个以上所述竖流道;
多组所述竖流道和多个所述横流道组合成多排浇注组件,每排浇注组件具有多组所述竖流道,在每排浇注组件中,所述横流道分布并连接在每相邻的两组所述竖流道之间,所述二级分流道分布在相邻的每两排浇注组件之间、且分别连接每相邻两排浇注组件上的所述横流道,所述一级分流 道连接其中一个所述二级分流道,以实现所述主流道依次经所述一级分流道、所述二级分流道、所述横流道将物料输送到各组所述竖流道;
各所述二级分流道的流道壁上具有配置为使所述二级分流道的一部分部位横截面积缩小的缩窄部。
在一个具体的实施例中,所述缩窄部内表面形状为圆滑过渡表面。
在一个具体的实施例中,所述缩窄部位于所述二级分流道的中部。
在一个具体的实施例中,与所述一级分流道连接的所述二级分流道设置为近端的二级分流道,远离近端的所述二级分流道为远端的二级分流道,在所述缩窄部所述二级分流道的最小横截面积与所述二级分流道的未缩窄部分的横截面积比值设置为缩窄程度,从近端的二级分流道到远端的二级分流道,各所述缩窄部的缩窄程度相同或不同。
在一个具体的实施例中,从近端的二级分流道到远端的二级分流道,各所述缩窄部的缩窄程度逐渐增大。
在一个具体的实施例中,从近端的二级分流道到远端的二级分流道,各所述缩窄部的缩窄程度以线性渐变的方式逐渐增大。
在一个具体的实施例中,近端的二级分流道与远端的二级分流道之间的二级分流道的缩窄部的缩窄程度为
Si=(S1+Sk)*i/k,
其中,S1为近端的二级分流道的缩窄部的缩窄程度,Sk为远端的二级分流道的缩窄部的缩窄程度,Sk≥S1,i为从近端的二级分流道开始计数到的i个二级分流道个数,k为从近端的二级分流道到远端的二级分流道的二级分流道总个数,k≥i,Si为第i个二级分流道的缩窄部的缩窄程度。
在一个具体的实施例中,近端的二级分流道的缩窄部的缩窄程度大于2/5,远端的二级分流道的缩窄部的缩窄程度小于4/5。
在一个具体的实施例中,一组所述竖流道包括1个所述竖流道。
在一个具体的实施例中,一组所述竖流道包括组合成一捆的2个以上所述竖流道。
在一个具体的实施例中,在至少一排浇注组件中,与所述二级分流道连接的所述横流道设置为近端的横流道,远离近端的横流道的所述横流道为远端的横流道,从近端的横流道到远端的横流道,各所述横流道具有向内凹陷的波浪型流道壁,所述波浪型流道壁的两侧分别与对应连接的所述竖流道相对倾斜,且所述波浪型流道壁内表面形状为圆滑过渡表面。
本发明至少具有以下有益效果:
本发明中超多模穴产品用模具浇注系统,分流道包括一级分流道、二级分流道,主流道连接多个一级分流道,多个竖流道设置为多组,每组中具有一个以上竖流道,多组竖流道和多个所述横流道组合成多排浇注组件,每排浇注组件具有多组竖流道,在每排浇注组件中,横流道分布并连接在每相邻的两组竖流道之间,二级分流道分布在相邻的每两排浇注组件之间、且分别连接每相邻两排浇注组件上的横流道,一级分流道连接其中一个二级分流道,以实现主流道依次经一级分流道、二级分流道、横流道将物料输送到各组竖流道。与现有相比,可实现超多模穴的快速浇注,且可缩短分流道、横流道等中间流道的总长度,显著减少压力损失。
而且,各二级分流道的流道壁上具有配置为使二级分流道的一部分部位横截面积缩小的缩窄部。由于缩窄部的横截面积小于二级分流道中未缩窄部分的横截面积,熔胶回流在缩窄部遇到很大的阻力,进而能够有效阻止熔胶回流,消除熔胶填充不足的缺陷和熔接痕缺陷,显著提高了良品率生产效率。而且,各个二级分流道中均具有缩窄部实现阻止回流的作用,效果更好。
进一步地,缩窄部内表面形状为圆滑过渡表面,可减小剪切。
进一步地,渐变式缩窄部可以令远端回流和近端回流都得到有效阻止,该结构还可以令近端和远端的分流道道压力更加均匀,从而令熔胶整体的温度与压力更加均匀。
而且,缩颈之后流道材料成本更低,以及便于通过不同的渐变程度和 缩颈程度对不同材料或工艺时产生的回流进行调控。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是实施例1中超多模穴产品用模具浇注系统的整体示意图;
图2是图1中左侧区域的示意图;
图3是图2中D处区域的局部放大图;
图4是图2中E处区域的局部放大图
图5是实施例3中横流道与竖流道的连接示意图;
图6是图5中A处区域的局部放大图;
图7是图5中B处区域的局部放大图;
图8是图5中C处区域的局部放大图。
主要元件符号说明:
1-主流道;
2-一级分流道;
3-二级分流道;
4-横流道;
5-竖流道;
6-近端的横流道;
7-远端的横流道;
8-中间端的横流道;
9-缩窄部;
10-波浪型流道壁。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在本发明的各种实施例中使用的表述(诸如“第一”、“第二”等)可修饰在各种实施例中的各种组成元件,不过可不限制相应组成元件。例如,以上表述并不限制所述元件的顺序和/或重要性。以上表述仅用于将一个元件与其它元件区别开的目的。例如,第一用户装置和第二用户装置指示不同用户装置,尽管二者都是用户装置。例如,在不脱离本发明的各种实施例的范围的情况下,第一元件可被称为第二元件,同样地,第二元件也可被称为第一元件。
应注意到:在本发明中,除非另有明确的规定和定义,“安装”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接、也可以是可拆卸连接、或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也是可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
实施例1
如图1、图2所示,本实施例提供了一种超多模穴产品用模具浇注系统,包括:主流道1、一级分流道2、二级分流道3、多个横流道4和多个竖流道5。主流道1连接多个一级分流道2,示例性地,主流道1连接2个一级分流道2,其中一个一级分流道2位于主流道1的左侧,另一个一级分流道2位于主流道1的右侧。多个竖流道5设置为多组,每组中具有一个以上竖流道5。多组竖流道5和多个所述横流道4组合成多排浇注组件,每排浇注组件具有多组竖流道5,在每排浇注组件中,横流道4分布并连接在每相邻的两组竖流道5之间,二级分流道3分布在相邻的每两排浇注组件之间、且分别连接每相邻两排浇注组件上的横流道4,一级分流道2连接其中一个二级分流道3,以实现主流道1依次经一级分流道2、二级分流道3、横流道4将物料输送到各组竖流道5。
且与现有技术相比,在实现超多模穴浇注的同时,还能降低分流道、横流道4等中间流道的总长度,减小了因中间流道长度过长带来的压力损失,以及减小多个连接处因剪切产生的压力、温度变化等。
本实施例中,一组竖流道5包括组合成一捆的4个竖流道5,这是一种优选的竖流道5设置方式,在其它实施方式中,也可以一组竖流道5包括组合成一捆的2个以上竖流道5。在另外的实施方式中,也可以一组竖流道5包括1个竖流道5。
各二级分流道3的流道壁上具有配置为使二级分流道3的一部分部位横截面积缩小的缩窄部9。其中,与一级分流道2连接的二级分流道3设置 为近端的二级分流道3,远离近端的二级分流道3的二级分流道3为远端的二级分流道3。
本实施例中,由于缩窄部9的横截面积小于二级分流道3中未缩窄部9分的横截面积,熔胶回流在缩窄部9遇到很大的阻力,进而能够有效阻止熔胶回流,消除熔胶填充不足的缺陷和熔接痕缺陷,显著提高了良品率生产效率。而且,各个二级分流道3中均具有缩窄部9实现阻止回流的作用,即无论是近端的二级分流道3,还是远端的二级分流道3,均具有阻止熔胶回流的作用,整体效果更好,便于实现整个流道的更均匀的压力。
本实施例中,缩窄部9内表面形状为圆滑过渡表面。由于缩窄部9内表面形状为圆滑过渡表面,可减小熔胶受到的剪切。
如图2所示,缩窄部9位于二级分流道3的中部。
其中,在缩窄部9二级分流道3的最小横截面积与二级分流道3的未缩窄部9分的横截面积比值设置为缩窄程度。本实施例中,从近端的二级分流道3到远端的二级分流道3,各缩窄部9的缩窄程度不同。
具体地,如图2、图3和图4所示,从近端的二级分流道3到远端的二级分流道3,各缩窄部9的缩窄程度逐渐增大。
优选地,从近端的二级分流道3到远端的二级分流道3,各缩窄部9的缩窄程度以线性渐变的方式逐渐增大。由此,渐变缩窄部9可以令远端回流和近端回流都得到有效阻止,而且该从远端到近端的线性渐变可以令进胶段和远浇段的分流道压力更加均匀。
在一个优选的实施方式中,近端的二级分流道3与远端的二级分流道3之间的二级分流道3的缩窄部9的缩窄程度为
Si=(S1+Sk)*i/k,
其中,S1为近端的二级分流道3的缩窄部9的缩窄程度,Sk为远端的二级分流道3的缩窄部9的缩窄程度,Sk≥S1,i为从近端的二级分流道3开始计数到的i个二级分流道3个数,k为从近端的二级分流道3到远端的 二级分流道3的二级分流道3总个数,k≥i,Si为第i个二级分流道3的缩窄部9的缩窄程度。基于该线性渐变公式,可令多个分流道中熔胶整体的温度与压力更加均匀。
在一个优选的实施方式中,近端的二级分流道3的缩窄部9的缩窄程度大于2/5,远端的二级分流道3的缩窄部9的缩窄程度小于4/5。
实施例2
与实施例1相比,本实施例的主要区别在于:
本实施例中,从近端的二级分流道到远端的二级分流道,各缩窄部的缩窄程度相同(图中未示出)。
本实施例中的其它特征与实施例1相同,不再赘述。
实施例3
与实施例1相比,本实施例的主要区别在于:
本实施例中,如图5-图8所示,在至少一排浇注组件中,与二级分流道连接的横流道设置为近端的横流道6,远离近端的横流道6的横流道为远端的横流道7,相应地,近端的横流道6和远端的横流道7之间的横流道为中间端的横流道8。从近端的横流道6到远端的横流道7,各横流道具有向内凹陷的波浪型流道壁10,波浪型流道壁10的两侧分别与对应连接的竖流道5相对倾斜,且波浪型流道壁10内表面形状为圆滑过渡表面。
由此,通过横流道的波浪型流道壁10结构控制横流道与竖流道5的角度,从而减小熔胶受到的剪切减小,以及可通过倾斜角度控制剪切的大小,进而便于在不同材料或工艺时产生的回流进行调控,且使熔胶整体的温度与压力更加均匀。而且,波浪型流道壁10内表面形状为圆滑过渡表面,可进一步减小剪切。
优选地,波浪型流道壁10的两侧基本对称,使相邻的两组竖流道5与波浪型流道壁10之间的倾斜角基本相同。具体地,在相邻的两组竖流道5之间,波浪型流道壁10的一侧与一组竖流道5的倾斜角和波浪型流道壁10的另一侧与另一组竖流道5的倾斜角。
如图3-图6所示,从近端的横流道6到远端的横流道7,各波浪型流道壁10的凹陷程度逐渐减小,使波浪型流道壁10的两侧分别与对应连接的竖流道5的倾斜角逐渐减小。由此,令横流道的熔胶在远端受到更大剪切在近端受到更小剪切,从而令熔胶整体的温度与压力更加均匀。
具体地,近端的横流道6与远端的横流道7之间的波浪型流道壁10的两侧与对应的竖流道5的倾斜角为
Ai=(A1+Ak)*i/k,
其中,A1为近端的波浪型流道壁10的两侧与连接的竖流道5的倾斜角,Ak为远端的波浪型流道壁10的两侧与连接的竖流道5的倾斜角,A1≥Ak,i为从近端的横流道6开始计数到的i个横流道个数,k为从近端的横流道6到远端的横流道7的横流道总个数,k≥i,Ai为第i个波浪型流道壁10的两侧与连接的竖流道5的倾斜角。基于该倾斜角关系公式,可令熔胶整体的温度与压力更加均匀。
本实施例中,近端的波浪型流道壁10的两侧与连接的竖流道5的倾斜角小于150°,远端的波浪型流道壁10的两侧与连接的竖流道5的倾斜角大于90°。
本实施例中,波浪型流道壁10的向内凹陷的区域的长度等于相邻两组竖流道5之间的距离。
本实施例中的其它特征与实施例1相同,不再赘述。
如本领域技术人员可以理解附图只是一个优选实施场景的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以合并为一个模 块,也可以进一步拆分成多个子模块。
上述本发明序号仅仅为了描述,不代表实施场景的优劣。
以上公开的仅为本发明的几个具体实施场景,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (11)

  1. 一种超多模穴产品用模具浇注系统,其特征在于,包括:主流道、一级分流道、二级分流道、多个横流道和多个竖流道,所述主流道连接多个一级分流道,多个所述竖流道设置为多组,每组中具有一个以上所述竖流道;
    多组所述竖流道和多个所述横流道组合成多排浇注组件,每排浇注组件具有多组所述竖流道,在每排浇注组件中,所述横流道分布并连接在每相邻的两组所述竖流道之间,所述二级分流道分布在相邻的每两排浇注组件之间、且分别连接每相邻两排浇注组件上的所述横流道,所述一级分流道连接其中一个所述二级分流道,以实现所述主流道依次经所述一级分流道、所述二级分流道、所述横流道将物料输送到各组所述竖流道;
    各所述二级分流道的流道壁上具有配置为使所述二级分流道的一部分部位横截面积缩小的缩窄部。
  2. 根据权利要求1所述的超多模穴产品用模具浇注系统,其特征在于,所述缩窄部内表面形状为圆滑过渡表面。
  3. 根据权利要求1所述的超多模穴产品用模具浇注系统,其特征在于,所述缩窄部位于所述二级分流道的中部。
  4. 根据权利要求1所述的超多模穴产品用模具浇注系统,其特征在于,与所述一级分流道连接的所述二级分流道设置为近端的二级分流道,远离近端的所述二级分流道为远端的二级分流道,在所述缩窄部所述二级分流道的最小横截面积与所述二级分流道的未缩窄部分的横截面积比值设置为缩窄程度,从近端的二级分流道到远端的二级分流道,各所述缩窄部的缩窄程度相同或不同。
  5. 根据权利要求4所述的超多模穴产品用模具浇注系统,其特征在于,从近端的二级分流道到远端的二级分流道,各所述缩窄部的缩窄程度逐渐增大。
  6. 根据权利要求5所述的超多模穴产品用模具浇注系统,其特征在于,从近端的二级分流道到远端的二级分流道,各所述缩窄部的缩窄程度以线性渐变的方式逐渐增大。
  7. 根据权利要求6所述的超多模穴产品用模具浇注系统,其特征在于,近端的二级分流道与远端的二级分流道之间的二级分流道的缩窄部的缩窄程度为
    Si=(S1+Sk)*i/k,
    其中,S1为近端的二级分流道的缩窄部的缩窄程度,Sk为远端的二级分流道的缩窄部的缩窄程度,Sk≥S1,i为从近端的二级分流道开始计数到的i个二级分流道个数,k为从近端的二级分流道到远端的二级分流道的二级分流道总个数,k≥i,Si为第i个二级分流道的缩窄部的缩窄程度。
  8. 根据权利要求5-7中任一项所述的超多模穴产品用模具浇注系统,其特征在于,近端的二级分流道的缩窄部的缩窄程度大于2/5,远端的二级分流道的缩窄部的缩窄程度小于4/5。
  9. 根据权利要求1所述的超多模穴产品用模具浇注系统,其特征在于,一组所述竖流道包括1个所述竖流道。
  10. 根据权利要求1所述的超多模穴产品用模具浇注系统,其特征在于,一组所述竖流道包括组合成一捆的2个以上所述竖流道。
  11. 根据权利要求1所述的超多模穴产品用模具浇注系统,其特征在于,在至少一排浇注组件中,与所述二级分流道连接的所述横流道设置为近端的横流道,远离近端的所述横流道为远端的横流道,从近端的横流道到远端的横流道,各所述横流道具有向内凹陷的波浪型流道壁,所述波浪型流道壁的两侧分别与对应连接的所述竖流道相对倾斜,且所述波浪型流道壁内表面形状为圆滑过渡表面。
PCT/CN2020/077833 2020-03-04 2020-03-04 一种超多模穴产品用模具浇注系统 WO2021174461A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077833 WO2021174461A1 (zh) 2020-03-04 2020-03-04 一种超多模穴产品用模具浇注系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077833 WO2021174461A1 (zh) 2020-03-04 2020-03-04 一种超多模穴产品用模具浇注系统

Publications (1)

Publication Number Publication Date
WO2021174461A1 true WO2021174461A1 (zh) 2021-09-10

Family

ID=77612805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077833 WO2021174461A1 (zh) 2020-03-04 2020-03-04 一种超多模穴产品用模具浇注系统

Country Status (1)

Country Link
WO (1) WO2021174461A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193817A (ja) * 1985-02-22 1986-08-28 Shoichi Teraoka 減圧ロツドをもつたtダイに複数ノズルを配置し多段取用金型に減圧力を付加させて小物品多数取り金型に高能率射出する成形機とその成形方法
US5624691A (en) * 1994-06-21 1997-04-29 Texas Instruments Incorporated Transfer mold design
CN201327820Y (zh) * 2008-12-26 2009-10-14 单井工业股份有限公司 半导体组件封装成型装置
CN202965090U (zh) * 2012-12-06 2013-06-05 高立明 一种冷流道结构
CN104723511A (zh) * 2015-04-02 2015-06-24 中山市美捷时包装制品有限公司 多模穴模具结构
CN205326161U (zh) * 2016-01-18 2016-06-22 苏州泰嘉电子股份有限公司 一种发光二极管支架的注塑模具
CN205800071U (zh) * 2016-06-17 2016-12-14 东莞市凯昶德电子科技股份有限公司 高反射塑封体贴片式led支架之注塑模具的平衡流道结构
CN206383450U (zh) * 2017-01-20 2017-08-08 东莞川鹏塑料有限公司 一种分型面模具排气结构
CN208682011U (zh) * 2018-08-17 2019-04-02 阿特斯阳光电力集团有限公司 一种牛角进胶结构及模具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193817A (ja) * 1985-02-22 1986-08-28 Shoichi Teraoka 減圧ロツドをもつたtダイに複数ノズルを配置し多段取用金型に減圧力を付加させて小物品多数取り金型に高能率射出する成形機とその成形方法
US5624691A (en) * 1994-06-21 1997-04-29 Texas Instruments Incorporated Transfer mold design
CN201327820Y (zh) * 2008-12-26 2009-10-14 单井工业股份有限公司 半导体组件封装成型装置
CN202965090U (zh) * 2012-12-06 2013-06-05 高立明 一种冷流道结构
CN104723511A (zh) * 2015-04-02 2015-06-24 中山市美捷时包装制品有限公司 多模穴模具结构
CN205326161U (zh) * 2016-01-18 2016-06-22 苏州泰嘉电子股份有限公司 一种发光二极管支架的注塑模具
CN205800071U (zh) * 2016-06-17 2016-12-14 东莞市凯昶德电子科技股份有限公司 高反射塑封体贴片式led支架之注塑模具的平衡流道结构
CN206383450U (zh) * 2017-01-20 2017-08-08 东莞川鹏塑料有限公司 一种分型面模具排气结构
CN208682011U (zh) * 2018-08-17 2019-04-02 阿特斯阳光电力集团有限公司 一种牛角进胶结构及模具

Similar Documents

Publication Publication Date Title
CN104400965B (zh) 具有包括从入口和出口延伸的不间断的熔体通道的熔体分裂装置的模具‑工具系统
WO2021174461A1 (zh) 一种超多模穴产品用模具浇注系统
WO2020125817A2 (zh) 一种超多模穴产品用波浪型分流道系统
CN202716437U (zh) 新型叠层混合式热流道系统
CN207901576U (zh) 快速成型的一模多穴模具
CN111186095A (zh) 一种超多模穴产品用模具浇注系统
CN102909829A (zh) 一种注射器外套全热流道成型模具
CN209955207U (zh) 一种橡胶注射成型机的流道结构
CN214239303U (zh) 一种瓶坯的注塑模具
CN205011880U (zh) 一种异形中空喷丝板装置
CN210758964U (zh) 一种分流板多点平衡流道结构
CN205326161U (zh) 一种发光二极管支架的注塑模具
CN209222913U (zh) 导流模与型材挤压模具组
CN207564871U (zh) 一种拉链头上板模具
CN111283142A (zh) 一种快速成型的模芯结构
CN219276528U (zh) 星状均压分流的注塑成型结构
CN206455899U (zh) 一种多流道插头内胆注塑模具用上模
CN202336987U (zh) 一种挤出机头
CN203031888U (zh) 一种热嘴出料口的冷却结构
CN203267108U (zh) 一种u型件注塑模具的浇注系统
CN210132728U (zh) 模具的热浇道模组
CN206217082U (zh) 一种高光面注塑产品曲面随形水路注塑模仁
CN219667323U (zh) 一种多型腔热流道注射模流道板
CN211763356U (zh) 一种多穴多层复合挤出模具
CN213888063U (zh) 一种蝶阀零件的叠层式模具组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20923357

Country of ref document: EP

Kind code of ref document: A1