WO2020125817A2 - 一种超多模穴产品用波浪型分流道系统 - Google Patents

一种超多模穴产品用波浪型分流道系统 Download PDF

Info

Publication number
WO2020125817A2
WO2020125817A2 PCT/CN2020/077834 CN2020077834W WO2020125817A2 WO 2020125817 A2 WO2020125817 A2 WO 2020125817A2 CN 2020077834 W CN2020077834 W CN 2020077834W WO 2020125817 A2 WO2020125817 A2 WO 2020125817A2
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
wave
shaped
vertical
wall
Prior art date
Application number
PCT/CN2020/077834
Other languages
English (en)
French (fr)
Other versions
WO2020125817A3 (zh
Inventor
周沃华
黄险波
叶南飚
关安南
黄明瑜
周起雄
胡贵
颜杨
王海兰
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Priority to JP2020524294A priority Critical patent/JP6889808B2/ja
Publication of WO2020125817A2 publication Critical patent/WO2020125817A2/zh
Publication of WO2020125817A3 publication Critical patent/WO2020125817A3/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles

Definitions

  • the invention relates to the technical field of injection molding, in particular, to a wave-shaped shunt system for super multi-cavity products.
  • the melt glue quickly enters the runner through the injection pressure, and then is poured into the mold cavity.
  • Existing casting systems usually require that the pressure loss is as small as possible, so that the injection pressure can be evenly transmitted to each part of the mold cavity, and then the plastic products with clear appearance and good quality can be obtained, so each The length and diameter of the road are smaller than the design.
  • the present invention provides a wave-shaped shunt system for ultra-multi-cavity products, which is suitable for the casting of ultra-multi-cavity products with more than 500 cavity, the specific technical solutions are as follows :
  • a wave-shaped flow channel system for super multi-mode cavity products including: a main flow channel, a flow distribution channel, a plurality of lateral flow channels and a plurality of vertical flow channels, the flow distribution channel is connected to the main flow channel, a plurality of the vertical flow channels Set into multiple groups, each group having more than one vertical flow channel, the horizontal flow channel is distributed and connected between each adjacent two groups of the vertical flow channel, the flow channel is connected to one of the horizontal flow channels, to Realizing that the flow channel conveys the material to each group of the vertical flow channels through the horizontal flow channels;
  • the cross-flow channel connected to the shunt is set as a near-end cross-flow channel, and the cross-flow channel away from the near-end is a far-end cross-flow channel.
  • each The lateral flow channel has a wave-shaped flow channel wall recessed inwards, and both sides of the wave-shaped flow channel wall are respectively inclined relative to the correspondingly connected vertical flow channels, and the inner surface shape of the wave-shaped flow channel wall is a smooth transition surface.
  • both sides of the wave-shaped flow channel wall are symmetrical, so that the inclination angles between the adjacent two groups of the vertical flow channel and the wave-shaped flow channel wall are the same.
  • each wave-shaped flow channel wall has the same degree of depression, so that both sides of each wave-shaped flow channel wall are connected to the corresponding The inclination angles of the vertical flow channels are the same.
  • each wave-shaped flow channel wall gradually decreases, so that the sides of each wave-shaped flow channel wall correspond to The inclination angle of the connected vertical flow channels gradually decreases.
  • the inclination angle between the two sides of the wavy flow channel wall between the proximal cross channel and the distal cross channel and the corresponding vertical channel is
  • A1 is the inclination angle of both sides of the proximal wave-shaped flow channel wall and the connected vertical flow channel
  • Ak is the inclination of both sides of the distal wave-shaped flow channel wall and the connected vertical flow channel
  • Angle A1 ⁇ Ak
  • i is the number of i cross-flow channels counted from the near-end cross-flow channel
  • k is the total number of cross-flow channels from the near-end cross-flow channel to the far-end cross-flow channel
  • k ⁇ i Ai is the angle of inclination between both sides of the wall of the i-th wave-shaped flow channel and the vertical flow channel connected thereto.
  • the inclination angle of both sides of the proximal wavy flow channel wall and the connected vertical flow channel is less than 150°, and the two sides of the distal wavy flow channel wall are connected to the The inclination angle of the vertical flow channel is greater than 90°.
  • the flow channel includes a primary flow channel and a secondary flow channel, the main flow channel is connected to multiple primary flow channels, and each primary flow channel is connected to multiple secondary flow channels.
  • the stage flow channel is connected to the cross flow channel.
  • a group of the vertical flow channels and a plurality of the horizontal flow channels are combined into a multi-row pouring assembly, each row of the casting assembly has multiple groups of the vertical flow channels, and the secondary flow channels are distributed in The two cross-flow channels on the two adjacent rows of casting components are respectively connected to each other.
  • a group of the vertical flow channels includes one vertical flow channel.
  • a group of the vertical flow channels includes two or more vertical flow channels combined into a bundle.
  • the length of the inwardly recessed area of the wave-shaped flow channel wall is equal to the distance between the adjacent two sets of the vertical flow channels.
  • the wall of the wave-shaped flow channel is recessed inwards, and both sides of the wall of the wave-shaped flow channel are respectively inclined relative to the corresponding connected vertical flow channels.
  • the angle of the cross flow channel and the vertical flow channel is controlled by the wave structure of the wave channel wall, thereby reducing the shear of the melt, and the size of the shear can be controlled by the angle, thereby facilitating the reflow Regulate and make the temperature and pressure of the whole melt more uniform.
  • the shape of the inner surface of the wavy flow channel wall is a smooth transition surface, which can further reduce the shear.
  • melt of the cross-flow channel is subjected to greater shear at the distal end and less shear at the proximal end, thereby making the temperature and pressure of the entire melt more uniform.
  • FIG. 1 is an overall schematic view of a wave-shaped runner system for super multi-mode cavity products in Example 1;
  • FIG. 2 is a schematic diagram of the left area in FIG. 1;
  • Example 3 is a schematic diagram of the connection between the horizontal flow channel and the vertical flow channel in Example 1;
  • FIG. 4 is a partially enlarged view of the area at A in FIG. 3;
  • FIG. 5 is a partial enlarged view of the area at B in FIG. 3;
  • FIG. 6 is a partially enlarged view of the area at C in FIG. 3.
  • first, second, etc. may modify various constituent elements in various embodiments, but the corresponding constituent elements may not be limited.
  • the above expression does not limit the order and/or importance of the described elements.
  • the above expression is only for the purpose of distinguishing one element from other elements.
  • the first user device and the second user device indicate different user devices, although both are user devices.
  • the first element may be referred to as the second element, and similarly, the second element may also be referred to as the first element.
  • connection should be understood in a broad sense.
  • it may be a fixed connection or a detachable connection. Or it can be connected integrally; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be a connection between two components.
  • connection may be a fixed connection or a detachable connection.
  • connection can be connected integrally; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be a connection between two components.
  • this embodiment provides a wave-shaped flow channel system for ultra-multi-cavity products, including: main flow channel 1, flow channel, multiple lateral flow channels, and multiple vertical flow channels 5.
  • the channels are connected to the main channel 1, and multiple vertical flow channels 5 are arranged in multiple groups, each group has more than one vertical flow channel 5, and the horizontal flow channels are distributed and connected between each adjacent two groups of vertical flow channels 5, and the flow channels are connected One of the cross-flow channels to realize the distribution of the flow channels to the vertical flow channels 5 through the cross-flow channels.
  • the shunt channel includes a first-stage shunt channel 2 and a second-stage shunt channel 3, and the main-stream channel 1 connects to multiple first-stage shunt channels 2.
  • the main flow channel 1 connects two primary flow channels 2, one of the primary flow channels 2 is located on the left side of the main flow channel 1, and the other primary flow channel 2 is located on the right side of the main flow channel 1.
  • Each primary flow channel 2 is connected to multiple secondary flow channels 3, and the secondary flow channel 3 is connected to a cross flow channel.
  • each row of casting components has multiple sets of vertical channels 5, and the secondary flow channels 3 are distributed in adjacent The cross flow channels on each two rows of casting components are connected to each two rows of casting components, respectively.
  • the melt glue transported by the main flow channel 1 passes through the first-stage flow channel 2, the second-stage flow channel 3, and the lateral flow channel into the vertical flow channel 5 in order to realize the super-multi-cavity casting.
  • a group of vertical flow channels 5 includes four vertical flow channels 5 combined into a bundle, and the four vertical flow channels 5 are arranged in two rows, and two vertical flow channels 5 in each row.
  • the casting of super multi-cavity cavity is further realized.
  • it can also reduce the total length of the intermediate flow channels such as the split flow channel and the cross flow channel, and reduce the pressure loss caused by the excessive length of the intermediate flow channel. And to reduce the pressure and temperature changes caused by shearing at multiple joints.
  • a group of vertical flow channels 5 including 4 vertical flow channels 5 combined into a bundle is a preferred way of setting the vertical flow channels 5.
  • a group of vertical flow channels 5 The channel 5 includes two or more vertical flow channels 5 combined into a bundle, for example, four.
  • the cross-flow channel connected to the split flow channel is set as the near-end cross-flow channel 6, and the cross-flow channel away from the near-end cross-flow channel 6 is the far-end cross-flow channel 7. Accordingly, the near-end cross-flow channel 6 and The cross-flow channel between the far-end cross-flow channel 7 is the middle-end cross-flow channel 8. From the near-end cross-flow channel 6 to the far-end cross-flow channel 7, each cross-flow channel has a wave-shaped flow channel wall 4 recessed inward, and both sides of the wave-shaped flow channel wall 4 are respectively inclined relative to the corresponding connected vertical flow channel 5 And the shape of the inner surface of the wavy flow channel wall 4 is a smooth transition surface.
  • the angle of the cross flow channel and the vertical flow channel 5 is controlled by the wave-shaped flow channel wall structure 4 of the cross flow channel, thereby reducing the shearing of the melt adhesive, and the size of the shearing can be controlled by the tilting angle, which is convenient for generating
  • the recirculation is controlled, and the temperature and pressure of the entire melt are more uniform.
  • the shape of the inner surface of the wavy flow channel wall 4 is a smooth transition surface, which can further reduce the shear.
  • both sides of the wave-shaped flow channel wall 4 are symmetrical, so that the inclination angles between the adjacent two sets of vertical flow channels 5 and the wave-shaped flow channel wall 4 are the same. Specifically, between the adjacent two sets of vertical flow channels 5, the inclination angle of one side of the wave-shaped flow channel wall 4 and the set of vertical flow channels 5 and the other side of the wave-shaped flow channel wall 4 and another group The inclination angle of the vertical flow channel 5.
  • the inclination angle between the lateral flow channel 6 at the proximal end and the lateral flow channel 7 at the distal end of the wave-shaped flow channel wall 4 and the corresponding vertical flow channel 5 is
  • A1 is the inclination angle of both sides of the proximal wave-shaped flow channel wall 4 and the connected vertical flow channel 5
  • Ak is the inclination of both sides of the distal wave-shaped flow channel wall 4 and the connected vertical flow channel 5
  • Angle, A1 ⁇ Ak, i is the number of i cross-flow channels counted from the near-end cross-flow channel 6
  • k is the total number of cross-flow channels from the near-end cross-flow channel 6 to the far-end cross-flow channel 7
  • k ⁇ i is the angle of inclination between the two sides of the i-th wave channel wall 4 and the connected vertical channel 5. Based on the relationship formula of the inclination angle, the temperature and pressure of the whole melt can be made more uniform.
  • the inclination angle of both sides of the proximal wave channel wall 4 and the connected vertical channel 5 is less than 150°, and both sides of the distal wave channel wall 4 and the connected vertical channel 5 The angle of inclination is greater than 90°.
  • the length of the inwardly recessed area of the wavy flow channel wall 4 is equal to the distance between the two adjacent sets of vertical flow channels 5.
  • Embodiment 1 Compared with Embodiment 1, the main differences of this embodiment are:
  • each wave-shaped flow channel wall has the same degree of depression (not shown in the figure), so that both sides of the wave-shaped flow channel wall are respectively connected to the corresponding The inclination angle of the vertical flow channel is the same.
  • Embodiment 1 Compared with Embodiment 1, the main differences of this embodiment are:
  • a group of vertical flow channels includes one vertical flow channel (not shown in the figure).
  • modules in the device in the implementation scenario may be distributed in the device in the implementation scenario according to the description of the implementation scenario, or may be changed accordingly in one or more devices different from the implementation scenario.
  • the modules in the above implementation scenarios can be combined into one module, or can be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本发明提供了一种超多模穴产品用波浪型分流道系统,其横流道具有向内凹陷的波浪型流道壁,波浪型流道壁的两侧分别与对应连接的竖流道相对倾斜。与现有技术相比,通过波浪型流道壁的波浪型结构控制横流道与竖流道的角度,从而减小熔胶受到的剪切,以及可通过角度控制剪切的大小,进而便于对产生的回流进行调控,且使熔胶整体的温度与压力更加均匀。而且,波浪型流道壁内表面形状为圆滑过渡表面,可进一步减小剪切。

Description

一种超多模穴产品用波浪型分流道系统 技术领域
本发明涉及注塑技术领域,具体而言,涉及一种超多模穴产品用波浪型分流道系统。
背景技术
聚合物注塑过程中,熔胶通过注塑压力快速进入流道,然后再浇注到模具腔内。现有的浇注系统通常都要求压力损失尽可能小,这样可将注射压力均匀地传递到模具型腔的各个部分,进而可得到外型清晰、质量优良的塑胶产品,因此尽可能地将各浇道的长径比设计的较小。
但是,对于具有500个以上模穴的超多模穴产品,由于需要浇注的模具腔特别多,为了提高注塑效率,需要从主流道延伸出来的下级流道具有足够的长度,因而下级流道长径比大,在各流道连接处压力损失也比较多,为此需要提供较大的注射压力。但熔胶在流道之间流动时,整体温度与压力不均匀,导致产品性能不统一,有些甚至达不到性能要求。
发明内容
为了克服现有技术的不足,本发明提供了一种超多模穴产品用波浪型分流道系统,其适用于具有500个以上模穴的超多模穴产品的浇注,具体技术方案如下所示:
一种超多模穴产品用波浪型分流道系统,包括:主流道、分流道、多个横流道和多个竖流道,所述分流道连接所述主流道,多个所述竖流道设置为多组,每组中具有一个以上所述竖流道,所述横流道分布并连接在每相邻的两组所述竖流道之间,所述分流道连接其中一个横流道,以实现所述分流道经所述横流道将物料输送到各组所述竖流道;
与所述分流道连接的所述横流道设置为近端的横流道,远离近端的所述横流道为远端的横流道,从近端的横流道到远端的横流道,各所述横流 道具有向内凹陷的波浪型流道壁,所述波浪型流道壁的两侧分别与对应连接的所述竖流道相对倾斜,且所述波浪型流道壁内表面形状为圆滑过渡表面。
在一个具体的实施例中,所述波浪型流道壁的两侧对称,使相邻的两组所述竖流道与所述波浪型流道壁之间的倾斜角相同。
在一个具体的实施例中,从近端的横流道到远端的横流道,各所述波浪型流道壁的凹陷程度相同,使各所述波浪型流道壁的两侧与对应连接的所述竖流道的倾斜角相同。
在一个具体的实施例中,从近端的横流道到远端的横流道,各所述波浪型流道壁的凹陷程度逐渐减小,使各所述波浪型流道壁的两侧与对应连接的所述竖流道的倾斜角逐渐减小。
在一个具体的实施例中,近端的横流道与远端的横流道之间的所述波浪型流道壁的两侧与对应的所述竖流道的倾斜角为
Ai=(A1+Ak)*i/k,
其中,A1为近端的波浪型流道壁的两侧与连接的所述竖流道的倾斜角,Ak为远端的波浪型流道壁的两侧与连接的所述竖流道的倾斜角,A1≥Ak,i为从近端的横流道开始计数到的i个横流道个数,k为从近端的横流道到远端的横流道的横流道总个数,k≥i,Ai为第i个波浪型流道壁的两侧与连接的所述竖流道的倾斜角。
在一个具体的实施例中,近端的波浪型流道壁的两侧与连接的所述竖流道的倾斜角小于150°,远端的波浪型流道壁的两侧与连接的所述竖流道的倾斜角大于90°。
在一个具体的实施例中,所述分流道包括一级分流道和二级分流道,所述主流道连接多个一级分流道,每个一级分流道连接多个二级分流道,二级分流道连接所述横流道。
在一个具体的实施例中,组所述竖流道和多个所述横流道组合成多排 浇注组件,每排浇注组件中具有多组所述竖流道,所述二级分流道分布在相邻的每两排浇注组件之间、且分别连接每两排浇注组件上的所述横流道。
在一个具体的实施例中,一组所述竖流道包括1个所述竖流道。
在一个具体的实施例中,一组所述竖流道包括组合成一捆的2个以上个所述竖流道。
在一个具体的实施例中,所述波浪型流道壁的向内凹陷的区域的长度等于相邻两组所述竖流道之间的距离。
本发明至少具有以下有益效果:
本发明中,波浪型流道壁向内凹陷,波浪型流道壁的两侧分别与对应连接的竖流道相对倾斜。由此,通过波浪型流道壁的波浪型结构控制横流道与竖流道的角度,从而减小熔胶受到的剪切,以及可通过角度控制剪切的大小,进而便于对产生的回流进行调控,且使熔胶整体的温度与压力更加均匀。而且,波浪型流道壁内表面形状为圆滑过渡表面,可进一步减小剪切。
进一步地,令横流道的熔胶在远端受到更大剪切在近端受到更小剪切,从而令熔胶整体的温度与压力更加均匀。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是实施例1中超多模穴产品用波浪型分流道系统的整体示意图;
图2是图1中左侧区域的示意图;
图3是实施例1中横流道与竖流道的连接示意图;
图4是图3中A处区域的局部放大图;
图5是图3中B处区域的局部放大图;
图6是图3中C处区域的局部放大图。
主要元件符号说明:
1-主流道;
2-一级分流道;
3-二级分流道;
4-波浪型流道壁;
5-竖流道;
6-近端的横流道;
7-远端的横流道;
8-中间端的横流道。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语 仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在本发明的各种实施例中使用的表述(诸如“第一”、“第二”等)可修饰在各种实施例中的各种组成元件,不过可不限制相应组成元件。例如,以上表述并不限制所述元件的顺序和/或重要性。以上表述仅用于将一个元件与其它元件区别开的目的。例如,第一用户装置和第二用户装置指示不同用户装置,尽管二者都是用户装置。例如,在不脱离本发明的各种实施例的范围的情况下,第一元件可被称为第二元件,同样地,第二元件也可被称为第一元件。
应注意到:在本发明中,除非另有明确的规定和定义,“安装”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接、也可以是可拆卸连接、或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也是可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
实施例1
如图1、图2所示,本实施例提供了一种超多模穴产品用波浪型分流道系统,包括:主流道1、分流道、多个横流道和多个竖流道5,分流道连接主流道1,多个竖流道5设置为多组,每组中具有一个以上竖流道5,横流道分布并连接在每相邻的两组竖流道5之间,分流道连接其中一个横流道,以实现分流道经横流道将物料输送到各组竖流道5。
其中,分流道包括一级分流道2和二级分流道3,主流道1连接多个一级分流道2。示例性地,主流道1连接2个一级分流道2,其中一个一级分流道2位于主流道1的左侧,另一个一级分流道2位于主流道1的右侧。每个一级分流道2连接多个二级分流道3,二级分流道3连接横流道。
如图1、图2所示,多组竖流道5和多个横流道组合成多排浇注组件,每排浇注组件中具有多组竖流道5,二级分流道3分布在相邻的每两排浇注 组件之间、且分别连接每两排浇注组件上的横流道。由此,主流道1输送的熔胶依次经过一级分流道2、二级分流道3、横流道后进入竖流道5,实现超多模穴的浇注。
如图1、图2所示,一组竖流道5包括组合成一捆的4个竖流道5,该4个竖流道5排成两排,每排两个竖流道5。由此,进一步实现超多模穴的浇注。且与现有技术相比,在实现超多模穴浇注的同时,还能降低分流道、横流道等中间流道的总长度,减小了因中间流道长度过长带来的压力损失,以及减小多个连接处因剪切产生的压力、温度变化等。
需要说明的是,本实施例中一组竖流道5包括组合成一捆的4个竖流道5是一种优选的竖流道5设置方式,在其它实施方式中,也可以一组竖流道5包括组合成一捆的2个以上竖流道5,例如4个等。
本实施例中,与分流道的连接的横流道设置为近端的横流道6,远离近端的横流道6的横流道为远端的横流道7,相应地,近端的横流道6和远端的横流道7之间的横流道为中间端的横流道8。从近端的横流道6到远端的横流道7,各横流道具有向内凹陷的波浪型流道壁4,波浪型流道壁4的两侧分别与对应连接的竖流道5相对倾斜,且波浪型流道壁4内表面形状为圆滑过渡表面。
由此,通过横流道的波浪型流道壁4结构控制横流道与竖流道5的角度,从而减小熔胶受到的剪切,以及可通过倾斜角度控制剪切的大小,进而便于对产生的回流进行调控,且使熔胶整体的温度与压力更加均匀。而且,波浪型流道壁4内表面形状为圆滑过渡表面,可进一步减小剪切。
优选地,波浪型流道壁4的两侧对称,使相邻的两组竖流道5与波浪型流道壁4之间的倾斜角相同。具体地,在相邻的两组竖流道5之间,波浪型流道壁4的一侧与一组竖流道5的倾斜角和波浪型流道壁4的另一侧与另一组竖流道5的倾斜角。
如图3-图6所示,从近端的横流道6到远端的横流道7,各波浪型流道壁4的凹陷程度逐渐减小,使波浪型流道壁4的两侧分别与对应连接的竖流道5的倾斜角逐渐减小。由此,令横流道的熔胶在远端受到更大剪切 在近端受到更小剪切,从而令熔胶整体的温度与压力更加均匀。
具体地,近端的横流道6与远端的横流道7之间的波浪型流道壁4的两侧与对应的竖流道5的倾斜角为
Ai=(A1+Ak)*i/k,
其中,A1为近端的波浪型流道壁4的两侧与连接的竖流道5的倾斜角,Ak为远端的波浪型流道壁4的两侧与连接的竖流道5的倾斜角,A1≥Ak,i为从近端的横流道6开始计数到的i个横流道个数,k为从近端的横流道6到远端的横流道7的横流道总个数,k≥i,Ai为第i个波浪型流道壁4的两侧与连接的竖流道5的倾斜角。基于该倾斜角关系公式,可令熔胶整体的温度与压力更加均匀。
本实施例中,近端的波浪型流道壁4的两侧与连接的竖流道5的倾斜角小于150°,远端的波浪型流道壁4的两侧与连接的竖流道5的倾斜角大于90°。
本实施例中,波浪型流道壁4的向内凹陷的区域的长度等于相邻两组竖流道5之间的距离。
实施例2
与实施例1相比,本实施例的主要区别在于:
本实施例中,从近端的横流道到远端的横流道,各波浪型流道壁的凹陷程度相同(图中未示出),使波浪型流道壁的两侧分别与对应连接的竖流道的倾斜角相同。
本实施例中的其它特征与实施例1相同,不再赘述。
实施例3
与实施例1相比,本实施例的主要区别在于:
本实施例中,一组竖流道包括1个竖流道(图中未示出)。
本实施例中的其它特征与实施例1相同,不再赘述。
如本领域技术人员可以理解附图只是一个优选实施场景的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
上述本发明序号仅仅为了描述,不代表实施场景的优劣。
以上公开的仅为本发明的几个具体实施场景,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (11)

  1. 一种超多模穴产品用波浪型分流道系统,其特征在于,包括:主流道、分流道、多个横流道和多个竖流道,所述分流道连接所述主流道,多个所述竖流道设置为多组,每组中具有一个以上所述竖流道,所述横流道分布并连接在每相邻的两组所述竖流道之间,所述分流道连接其中一个横流道,以实现所述分流道经所述横流道将物料输送到各组所述竖流道;
    与所述分流道连接的所述横流道设置为近端的横流道,远离近端的所述横流道设置为远端的横流道,从近端的横流道到远端的横流道,各所述横流道具有向内凹陷的波浪型流道壁,所述波浪型流道壁的两侧分别与对应连接的所述竖流道相对倾斜,且所述波浪型流道壁内表面形状为圆滑过渡表面。
  2. 根据权利要求1所述的超多模穴产品用波浪型分流道系统,其特征在于,所述波浪型流道壁的两侧对称,使相邻的两组所述竖流道与所述波浪型流道壁之间的倾斜角相同。
  3. 根据权利要求1所述的超多模穴产品用波浪型分流道系统,其特征在于,从近端的横流道到远端的横流道,各所述波浪型流道壁的凹陷程度相同,使各所述波浪型流道壁的两侧与对应连接的所述竖流道的倾斜角相同。
  4. 根据权利要求1所述的超多模穴产品用波浪型分流道系统,其特征在于,从近端的横流道到远端的横流道,各所述波浪型流道壁的凹陷程度逐渐减小,使各所述波浪型流道壁的两侧与对应连接的所述竖流道的倾斜角逐渐减小。
  5. 根据权利要求2所述的超多模穴产品用波浪型分流道系统,其特征在于,近端的横流道与远端的横流道之间的所述波浪型流道壁的两侧与对应的所述竖流道的倾斜角为
    Ai=(A1+Ak)*i/k,
    其中,A1为近端的波浪型流道壁的两侧与连接的所述竖流道的倾斜角,Ak为远端的波浪型流道壁的两侧与连接的所述竖流道的倾斜角,A1≥Ak,i为从近端的横流道开始计数到的i个横流道个数,k为从近端的横流道到远端的横流道的横流道总个数,k≥i,Ai为第i个波浪型流道壁的两侧与连接的所述竖流道的倾斜角。
  6. 根据权利要求4或5所述的超多模穴产品用波浪型分流道系统,其特征在于,近端的波浪型流道壁的两侧与连接的所述竖流道的倾斜角小于150°,远端的波浪型流道壁的两侧与连接的所述竖流道的倾斜角大于90°。
  7. 根据权利要求1所述的超多模穴产品用波浪型分流道系统,其特征在于,所述分流道包括一级分流道和二级分流道,所述主流道连接多个一级分流道,每个一级分流道连接多个二级分流道,二级分流道连接所述横流道。
  8. 根据权利要求7所述的超多模穴产品用波浪型分流道系统,其特征在于,多组所述竖流道和多个所述横流道组合成多排浇注组件,每排浇注组件中具有多组所述竖流道,所述二级分流道分布在相邻的每两排浇注组件之间、且分别连接每两排浇注组件上的所述横流道。
  9. 根据权利要求1所述的超多模穴产品用波浪型分流道系统,其特征在于,一组所述竖流道包括1个所述竖流道。
  10. 根据权利要求1所述的超多模穴产品用波浪型分流道系统,其特征在于,一组所述竖流道包括组合成一捆的2个以上所述竖流道。
  11. 根据权利要求1所述的超多模穴产品用波浪型分流道系统,其特征在于,所述波浪型流道壁的向内凹陷的区域的长度等于相邻两组所述竖流道之间的距离。
PCT/CN2020/077834 2020-02-18 2020-03-04 一种超多模穴产品用波浪型分流道系统 WO2020125817A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020524294A JP6889808B2 (ja) 2020-02-18 2020-03-04 スーパーマルチキャビティ製品用波型サブランナーシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010099474.1A CN111152420A (zh) 2020-02-18 2020-02-18 一种超多模穴产品用波浪型分流道系统
CN202010099474.1 2020-02-18

Publications (2)

Publication Number Publication Date
WO2020125817A2 true WO2020125817A2 (zh) 2020-06-25
WO2020125817A3 WO2020125817A3 (zh) 2020-12-30

Family

ID=70565909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077834 WO2020125817A2 (zh) 2020-02-18 2020-03-04 一种超多模穴产品用波浪型分流道系统

Country Status (4)

Country Link
JP (1) JP6889808B2 (zh)
KR (1) KR102247970B1 (zh)
CN (1) CN111152420A (zh)
WO (1) WO2020125817A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393788B (zh) * 2022-01-19 2023-12-01 西南科技大学 一种对流混合作用方式充填平衡调控装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101018A (ja) * 1983-11-09 1985-06-05 Hitachi Ltd 樹脂封止用金型
JPH04201220A (ja) * 1990-11-29 1992-07-22 Mitsubishi Electric Corp モールド金型
JPH1058491A (ja) * 1996-08-27 1998-03-03 Citizen Watch Co Ltd 成形金型
JPH10272657A (ja) * 1997-03-31 1998-10-13 Pentel Kk 射出成形用金型装置のリングゲート
JP2003039495A (ja) * 2001-07-27 2003-02-13 Meiki Co Ltd 射出成形用金型
CN101209577A (zh) * 2006-12-30 2008-07-02 苏州三星电子有限公司 冷流道多模穴模具流道平衡结构
JP2010111014A (ja) * 2008-11-06 2010-05-20 Suzuki Motor Corp 成形用金型及び成形品の製造方法
JP5874493B2 (ja) * 2012-03-29 2016-03-02 セイコーエプソン株式会社 金属粉末射出成形用成形型
CN203305475U (zh) * 2013-02-01 2013-11-27 深圳市兆威机电有限公司 一种新型多型腔流动平衡的冷流道结构
CN104827609A (zh) * 2015-04-22 2015-08-12 柳道万和(苏州)热流道系统有限公司 3d打印流道分流板加工工艺
CN208682011U (zh) * 2018-08-17 2019-04-02 阿特斯阳光电力集团有限公司 一种牛角进胶结构及模具

Also Published As

Publication number Publication date
WO2020125817A3 (zh) 2020-12-30
KR102247970B1 (ko) 2021-05-03
CN111152420A (zh) 2020-05-15
JP2021508292A (ja) 2021-03-04
JP6889808B2 (ja) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2020125817A2 (zh) 一种超多模穴产品用波浪型分流道系统
EP3350864B1 (de) Separatorplatte für ein elektrochemisches system
CN103907233B (zh) 燃料电池
US7193491B2 (en) Multi-planar sealing gasket for waveguide assembly
CN103017579A (zh) 一种通道内流体折返流动的板翅式换热器
US10797324B2 (en) Power generation cell
CN109786895B (zh) 一种基于扰流的分流装置及其分流方法
CN203869560U (zh) 一种圆形钎焊板式换热器
CN107978704A (zh) 拼装式锂离子电池组及电池模组
WO2021174461A1 (zh) 一种超多模穴产品用模具浇注系统
KR102198738B1 (ko) 멀티 캐비티용 주입 러너 시스템
KR20000032672A (ko) 광 결합기 및 그 제작방법
WO2011154084A2 (de) Brennstoffzelle mit einer bipolarplatte oder einem stack aus mehreren bipolarplatten
CN207739220U (zh) 一种河道用护坡砖
CN210651709U (zh) 一种超多模穴产品用波浪型分流道系统
CN105353470B (zh) 基于梯形波导结构的偏振转换器
CN220367999U (zh) 液冷板及应用其的电池模组
CN210314596U (zh) 一种减少流动死角的纺丝箱熔体通道结构
WO2020062728A1 (zh) 一种翅片及具有其的热交换器
CN220564474U (zh) 一种用于玻璃窑炉的y形横通路结构及其玻璃窑炉
CN218788420U (zh) 温度调节板及电池模组
CN217719673U (zh) 极板及具有其的电堆
CN208374117U (zh) 对称匀入式模具结构
CN217512865U (zh) 一种用于激光粉末床熔融气体流场均匀分布的结构
CN213988996U (zh) 冷板和电池模组

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020524294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20734305

Country of ref document: EP

Kind code of ref document: A2