WO2020062728A1 - 一种翅片及具有其的热交换器 - Google Patents

一种翅片及具有其的热交换器 Download PDF

Info

Publication number
WO2020062728A1
WO2020062728A1 PCT/CN2019/072097 CN2019072097W WO2020062728A1 WO 2020062728 A1 WO2020062728 A1 WO 2020062728A1 CN 2019072097 W CN2019072097 W CN 2019072097W WO 2020062728 A1 WO2020062728 A1 WO 2020062728A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
air
flat tube
arch
airflow
Prior art date
Application number
PCT/CN2019/072097
Other languages
English (en)
French (fr)
Inventor
朱守朝
张有林
薛震
吴迎文
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020062728A1 publication Critical patent/WO2020062728A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the invention relates to the technical field of heat exchange, in particular to a fin and a heat exchanger having the same.
  • the micro-channel heat exchanger is a new type of high-efficiency heat exchanger, which has the advantages of high heat transfer efficiency, small size, light weight, and low charge.
  • the fins of the traditional single-cooled micro-channel heat exchanger are Wavy shape, then brazed between the two flat tubes above and below.
  • the front half of the fin is near the two sides of the flat tube. Due to the large temperature difference between the air flow and the flat tube and fin, heat exchange It is sufficient; in the middle of the air flow, it is far away from the flat tube, the temperature difference between the air flow and the fins is small, and the heat exchange is insufficient.
  • An object of the present invention is to provide a fin, which can change the flow path of the airflow in the air duct through the air guiding structure, and improve the uniformity of airflow heat exchange in the air duct.
  • Another object of the present invention is to provide a heat exchanger, which can change the path of airflow in the air duct through the fin guide structure, so that the airflows flowing along different paths are interchanged, and improve the uniformity of airflow heat exchange in the air duct. And improve the heat exchange efficiency of the heat exchanger.
  • a fin having an upwind side and a downwind side opposite to each other, wherein the fin is provided with one or more flat tube grooves extending toward the downwind side;
  • the fins are provided with one or more groups of guide structures, and one or more groups of guide structures guide the airflow between the two flat tube grooves along a path of multiple reversals.
  • one or more groups of the flow guiding structures guide the air flow between the two flat tube grooves along a plurality of different said paths.
  • the above-mentioned diversion structure includes one or more fin bridges having the same structure and disposed obliquely with respect to the flat tube groove, and the fin bridge includes an arched portion and a raised portion connected to the arched portion. ;
  • the arched portion includes an air inlet that faces the windward side and an air outlet that faces the leeward side, and the turned-up portion is located on the air outlet side of the arched portion.
  • an included angle formed by the projection formed by the leeward side of the arched portion with respect to the vertical direction of the fin and the airflow direction is A, 10 ° ⁇ A ⁇ 60 °.
  • an included angle formed by the projection formed by the turned-up portion in a vertical direction with respect to the fin and the airflow direction is B, and 10 ° ⁇ B ⁇ 60 °.
  • the above-mentioned diversion structure includes one or more rows of single-sided air duct groups arranged in a row relative to a vertical airflow direction.
  • the single-sided air duct group is formed by arching two arched openings toward opposite fin cutouts. .
  • each row of the unilateral air duct group includes an air inlet arch and an air outlet arch;
  • the air outlet arch is located on the leeward side of the air inlet arch, and the air inlet arch and the air outlet arch are facing in opposite directions.
  • a side of the air outlet arch close to the flat tube groove is a second leeward side, and the projection of the second leeward side in a vertical direction with respect to the fin is formed by the airflow direction
  • the included angle is C, 10 ° ⁇ C ⁇ 60 °.
  • the air intake arch is located on the leeward side and is adjacent to the air intake arch cutout side on the first leeward side, and the projection of the first leeward side with respect to the fins in the vertical direction and the The included angle formed by the air flow direction is D, 10 ° ⁇ D ⁇ 60 °.
  • the fins are respectively provided with an enhanced heat exchange section on the windward side and the leeward side of the flow guiding structure, and the enhanced heat exchange section is a columnar protrusion.
  • a heat exchanger includes fins and flat tubes, and the flat tubes are matched with the flat tube grooves.
  • An air duct is formed between two adjacent flat tubes, and the airflow flows from the upwind side to the downwind side.
  • the airflow guide structure is arranged inside the airflow channel.
  • the airflow guide structure changes the position of the airflow flow in the airflow channel, and allows the airflow exchange position in the airflow channel to flow.
  • the heat exchange efficiency of the airflow is improved, and the temperature difference between the airflow near the flat tube and the flat tube is maintained, and the uniformity of airflow heat exchange is ensured.
  • FIG. 1 is a schematic structural diagram of an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an air flow structure in FIG. 1 according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the airflow flow structure of the fin bridge in FIG. 2 according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an air flow structure in FIG. 4 according to an embodiment of the present invention.
  • Icons 2, windward side; 3, leeward side; 4, flat tube groove; 5, fin bridge; 51, arched part; 52, turned up part; 6, unilateral air duct group; 61, wind inlet arched 62, the wind arching; 621, the second leeward side; 611, the first leeward side; 7, the enhanced heat exchange section; 8, the flanging; 9, the positioning structure; 10, the ribs; 11, the flat tube.
  • horizontal and vertical do not mean that the component is required to be absolutely horizontal or drooping, but may be slightly inclined.
  • horizontal simply means that its direction is more horizontal than “vertical”, which does not mean that the structure must be completely horizontal, but it can be tilted slightly.
  • a fin has an upwind side 2 and an opposite downwind side 3.
  • the fin is provided with one or more flat tube grooves 4 extending toward the downwind side 3.
  • the fins are provided with one or more groups of diversion structures.
  • One or more groups of diversion structures guide the air flow between the two flat tube grooves 4 along multiple paths of reversal.
  • One or more groups of diversion structures follow multiple directions. Different paths guide the air flow between the two flat tube grooves 4;
  • an air duct is formed between the two flat tube grooves 4, and the airflow flows from the upwind side 2 to the downwind side 3, and the air guide structure guides the air flow in the air guide along the preset path of the air guide structure, thereby changing the air flow in the air guide. path.
  • the diversion structure includes one or more fin bridges 5 having the same structure and arranged obliquely with respect to the flat tube groove 4.
  • the fin bridge 5 includes an arched portion 51 and a raised portion 52 connected to the arched portion 51; the arched portion 51 includes an air inlet facing the windward side 2 and an air outlet facing the leeward side 3, the raised portion 52 is located on the air outlet side of the arched portion 51, and the projection of the leeward side of the arched portion 51 in a vertical direction relative to the fins
  • the included angle formed with the airflow direction is A, 10 ° ⁇ A ⁇ 60 °
  • the included angle formed by the projection of the flipped portion 52 in the vertical direction with respect to the fin and the airflow direction is B, 10 ° ⁇ B ⁇ 60 ° .
  • the diversion structure includes one or more rows of single-sided air duct groups 6 arranged in a row relative to the direction of vertical air flow.
  • the single-sided air duct groups 6 are formed by arching two arched openings toward opposite fin cutouts, and each row is unilateral
  • the air duct group 6 includes an air inlet arch 61 and an air outlet arch 62; the air outlet arch 62 is located on the lee side of the air inlet arch 61, an air inlet arch 61 and an air outlet arch 62 Mouth faces in opposite directions.
  • the side of the outflow arch 62 near the flat tube groove 4 is the second leeward side 621, and the angle formed by the projection of the second leeward side 621 in the vertical direction with respect to the fin and the direction of air flow is C, 10 ° ⁇ C ⁇ 60 °, the air intake arch 61 is located on the leeward side and the side adjacent to the cut of the air intake arch 61 is the first leeward side 611, and the projection and airflow of the first leeward side 611 in the vertical direction relative to the fins
  • the included angle formed by the flow direction is D, 10 ° ⁇ D ⁇ 60 °.
  • the fins are respectively provided with a reinforced heat exchange section 7 on the windward side and the leeward side of the flow guide structure, and the reinforced heat exchange section 7 is a columnar protrusion.
  • a heat exchanger includes a fin and a flat tube 11.
  • the flat tube 11 is matched with the flat tube groove 4.
  • a fin bridge 5 is provided with one or more flat tube grooves 4 extending on the windward side 2 of the fins, the flat tube grooves 4 being used to install the flat tubes 11 and the flow guiding structure provided in the flat tube grooves 4
  • the airflow blows from the upwind side 2 to the downwind side 3
  • the diversion structure guides the airflow between the two flat tube grooves 4 along multiple different paths, and the airflow on the upwind side 2 passes the diversion
  • the position of the relative flow of the airflow in the air duct was changed.
  • the flow position of the same airflow on the upwind side 2 relative to the downwind side 3 was changed.
  • a group of one or more airflow guides were arranged at intervals. Group; the diversion structure guides the airflow from the upwind side 2 to the downwind side 3 several times.
  • the airflow flows from the upwind side 2 to the downwind side 3.
  • the flat tube groove 4 is installed with a flat tube 11.
  • An air channel is formed between two adjacent flat tubes 11, and a flow guiding structure is arranged in the air channel.
  • a reinforced heat exchange portion 7 is respectively provided on both sides of the diversion structure facing the upwind side 2 and the downwind side 3.
  • the reinforced heat exchange portion 7 is a triangular prism-shaped protrusion.
  • the diversion structure includes two identical structures and is opposite to the flat tube groove. 4 slanted fin bridge 5.
  • the fin bridge 5 is disposed obliquely near the flat tubes 11 on both sides of the air duct, and the airflow can flow from the bottom of the fin bridge 5.
  • the fin bridge 5 includes an arched portion 51 and a raised portion 52.
  • the arched portion 51 includes an air inlet and For the air outlet, the raised portion 52 is located on the side of the air outlet, the raised portion 52 is located on the side of the arched portion 51 near the flat tube 11, and the raised portion 52 is used to change the position of the air flow above the arched portion 51.
  • the angle between the projection formed by the leeward side in the vertical direction with respect to the fins and the airflow direction is A, 10 ° ⁇ A ⁇ 60 °, and the projection formed by the flipped portion 52 in the vertical direction with respect to the fins and the airflow direction
  • the included angle is B, 10 ° ⁇ B ⁇ 60 °.
  • the arched portion 51 and the turned-up portion 52 change the flow direction of the airflow, and at the same time reduce the resistance to the airflow.
  • the air duct includes two airflows a and b.
  • the airflow a is outside the fin bridge 5 and is obstructed by the tilting portion 52 to change the direction of the flow.
  • the inside of the portion 51 flows through, and the arched portion 51 changes the flow direction of the B airflow;
  • the fins are also provided with a flanging 8, a positioning structure 9 and a reinforcing rib 10, and the positioning structure 9 is used to control the distance between the fins and strengthen them when they are stacked.
  • the ribs 10 are used to improve the structural strength of the fins.
  • a heat exchanger is provided with flat tubes 11 in flat tube grooves 4.
  • An air duct is formed between adjacent flat tubes 11, and air flows through the air duct from the upper wind side 2 to the lower wind side 3.
  • the fin bridge 5 reverses the air current flowing between the flat tube 11 and the intermediate air flow.
  • the fin bridge 5 divides the air duct into two parts, from the fin bridge 5 to the upwind side 2. The air flow close to the flat tube 11 and the flat tube 11 are sufficient.
  • the airflow located between the flat tubes 11 on both sides and the flat tubes 11 are not sufficiently heat exchanged, the airflow flows through the fin bridge 5, the projection of the leeward side 51 on the leeward side and the airflow direction are formed
  • the included angle is A, 10 ° ⁇ A ⁇ 60 °; the included angle formed by the projection and airflow direction of the flipped portion 52 in the vertical direction relative to the fins is B, 10 ° ⁇ B ⁇ 60 °, the flipped portion 52 It is arranged obliquely near the flat tube 11, and the airflow flowing near the flat tube 11 changes the flow direction along the turn-up portion 52, and relatively flows the airflow located in the middle of the air passage through the obliquely arranged arch portion 51, and the airflow flows toward the flat tube 11 and fits
  • the flat tube 11 flows to the downwind side 3, and through the fin bridge 5, the air flow in the air duct close to the flat tube 11 and the middle of the air duct Flow exchange to change the direction of air flow passing through the fin bridge 5 in the air
  • this embodiment provides a fin and a heat exchanger having the same. As shown in Figs. 4 and 5, one end of the fin is upwind side 2, and the fin and upwind side The opposite end of 2 is the downwind side 3, and the upwind side 2 is provided with one or more flat tube grooves 4 extending toward the downwind side 3.
  • the fin-spaced flat tube groove 4 is provided with one or more groups of guide structures for guiding the airflow flow path in the air duct, and the guide structure includes one or more rows of single-sided air duct groups 6 arranged in a row with respect to the vertical air flow direction.
  • the unilateral air duct group 6 is formed by cutting a plurality of parts of the fins and arched on one side.
  • Each row of the unilateral air duct group 6 includes an air inlet arch 61 and an air outlet arch 62.
  • the air outlet arch 62 is located in the air inlet arch.
  • the arched opening of the air inlet arch 61 and the arched outlet 62 face the opposite, the arched inlet of the air arch 61 faces the upwind side 2, and the arched outlet of the air arch Facing the downwind side.
  • the side of the outflow arch 62 near the flat tube groove 4 is the second leeward side 621, and the angle formed by the projection of the second leeward side 621 in the vertical direction with respect to the fin and the direction of air flow is C, 10 ° ⁇ C ⁇ 60 °; the air inlet arch 61 is located on the leeward side and the side adjacent to the incision is the first leeward side 611, and the projection of the first leeward side 611 with respect to the fins in the vertical direction and the direction formed by the air flow direction The angle is D, 10 ° ⁇ D ⁇ 60 °.
  • an air duct is formed between two adjacent flat tubes 11.
  • the air duct is divided into two parts, the diversion structure to the upwind side 2 is the first half of the air duct, and the diversion structure to the downwind side 3 is the second half of the air duct.
  • the a-flow and d-flow flow close to the flat tubes 11 on both sides of the air duct, respectively, and the a-flow and d-flow fully exchange heat with the flat tube 11 with high heat exchange efficiency.
  • the b-flow and c-flow are relatively a
  • the airflow and the d-airflow are near the middle part of the air duct, and the heat exchange efficiency with the flat tube 11 is low during the flow process.
  • the single-sided air duct group 6 includes an air inlet arch 61 and an air outlet arch 62.
  • the cut of the air inlet arch 61 faces the upwind side 2.
  • the air outlet arch 62 is provided on the side of the air inlet arch 61 facing the downwind side 3.
  • the cutout of the wind-out arch 62 faces the downwind side 3.
  • the wind-out arch 62 and the air-intake arch 61 are inclined in the air duct.
  • the side of the wind-out arch 62 near the flat tube groove 4 is the second leeward side 621.
  • the angle formed by the projection of the second leeward side 621 with respect to the vertical direction of the fins and the direction of air flow is C, 10 ° ⁇ C ⁇ 60 °; the air inlet arch 61 is located on the leeward side and adjacent to the cut
  • the first leeward side 611, the angle formed by the projection of the first leeward side 611 with respect to the fins in the vertical direction and the direction of air flow is D, 10 ° ⁇ D ⁇ 60 °, the inlet air arch 61 and the outlet air
  • a gap is provided between the arches 62, and the gap is a passage for air flow.
  • the air flows through the gap between the inlet air and the flat tube 11 and flows along the second leeward side 621 toward the middle of the air duct.
  • the b air flows through the air inlet arch 61 and the air outlet arch 62 and is inclined toward the flat tube 11.
  • Flow, a-flow and b-flow flow through the unilateral air duct group 6 to realize the interchange of the a-flow and b-flow flow positions in the first half of the air duct and the second half of the air duct.
  • the b-flow approaches
  • the flat tube 11 flows and fully exchanges heat with the flat tube 11 to improve the uniformity of airflow heat exchange in the air duct.
  • the principle of the exchange position of c and d and a and b air flows is the same and will not be described again.

Abstract

一种翅片及具有其的热交换器,翅片具有上风侧(2)和相对设置的下风侧(3),所述翅片开设有一个或多个朝向所述下风侧(3)延伸的扁管槽(4),所述翅片设置有一组或多组导流结构,一组或多组所述导流结构沿多次换向的路径导引两个所述扁管槽(4)之间的气流,其能够通过导流结构改变风道中气流流动的路径,提高风道内气流换热的均匀性。

Description

一种翅片及具有其的热交换器 技术领域
本发明涉及换热技术领域,具体而言,涉及一种翅片及具有其的热交换器。
背景技术
微通道换热器是一种新型高效换热器,具有传热效率高、体积小、重量轻、充注量少等优点,传统单冷型微通道换热器的翅片是通过辊轧机辊成波浪形状,然后放在上下两根扁管之间钎焊。
但由于卡槽式翅片自身结构限制,在气流动过翅片通道过程中,对于翅片前半部分,靠近扁管的两侧处,因气流与扁管和翅片的温差较大,换热较为充分;在气流中间处,距离扁管较远,气流与翅片温差较小,换热不够充分。
对于翅片后半部分,靠近扁管的两侧处,由于在前半部分充分换热,此时气流与扁管和翅片的温差减小,不能充分利用后半部分的扁管温度优势;在气流中间处,距离扁管较远,换热仍然不够充分。
发明内容
本发明的目的在于提供一种翅片,其能够通过导流结构改变风道中气流流动的路径,提高风道内气流换热的均匀性。
本发明的另一目的在于提供一种热交换器,其能够通过翅片的导流结构改变风道内气流的路径,使沿不同路径流动的气流互换位置流动,提高风道内气流换热的均匀性,提高热交换器的换热效率。
本发明的实施例是这样实现的:
一种翅片,所述翅片具有上风侧和相对设置的下风侧,所述翅片开设有一个或多个朝向所述下风侧延伸的扁管槽;
所述翅片设置有一组或多组导流结构,一组或多组所述导流结构沿多次换向的路径导引两个所述扁管槽之间的气流。
优选的,一组或多组所述导流结构沿多个不同的所述路径导引两个所述扁管槽之间的气流。
优选的,上述导流结构包括一个或多个结构相同且相对于所述扁管槽倾斜设置的翅片桥,所述翅片桥包括拱起部及与所述拱起部连接的翻起部;
所述拱起部包括朝向上风侧的进风口和朝向下风侧的出风口,所述翻起部位于所述拱起部的出风口一侧。
优选的,上述拱起部背风侧在相对于所述翅片竖直方向形成的投影与气流流向形成的夹角为A,10°≤A≤60°。
优选的,上述翻起部在相对于所述翅片竖直方向形成的投影与气流流向形成的夹角为B,10°≤B≤60°。
优选的,上述导流结构包括一排或多排相对垂直气流流动方向排列设置的单侧风道组,进一步的,单侧风道组由两个拱起口朝向相反的翅片切口拱起形成。
优选的,每排所述单侧风道组包括进风拱起和出风拱起;
所述出风拱起位于所述进风拱起的背风侧,所述进风拱起的拱起口和所述出风拱起的拱起口朝向相反。
优选的,上述出风拱起靠近所述扁管槽的一侧为第二背风侧,所述第二背风侧在相对于所述翅片竖直方向上的投影与所述气流流动方向形成的夹角为C,10°≤C≤60°。
优选的,上述进风拱起位于背风侧且与进风拱起切口相邻一侧位第一背风侧,所述第一背风侧相对于所述翅片在竖直方向上的投影与所述气流流动方向形成的夹角为D,10°≤D≤60°。
优选的,上述翅片在所述导流结构的迎风侧和背风侧分别设置有强化换热部,所述强化换热部为柱状凸起。
一种热交换器,包括翅片及扁管,所述扁管与所述扁管槽相配合。
本发明实施例的有益效果是:
相邻的两个扁管之间形成风道,气流从上风侧朝向下风侧流动,导流结构设置在风道内部,导流结构改变风道内气流流动位置,使风道内气流互换位置流动,提高了气流的换热效率,使靠近扁管的气流与扁管保持较大温差,保证了气流换热的均匀性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例结构示意图;
图2为本发明实施例图1气流流动结构示意图;
图3为本发明实施例图2翅片桥气流流动结构示意图;
图4为本发明实施例另一结构示意图;
图5为本发明实施例图4气流流动结构示意图。
图标:2、上风侧;3、下风侧;4、扁管槽;5、翅片桥;51、拱起部;52、翻起部;6、单侧风道组;61、进风拱起;62、出风拱起;621、第二背风侧;611、第一背风侧;7、强化换热部;8、翻边;9、定位结构;10、加强筋;11、扁管。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1:
一种翅片,翅片具有上风侧2和相对设置的下风侧3,翅片开设有一个或多个朝向下风侧3延伸的扁管槽4。
翅片设置有一组或多组导流结构,一组或多组导流结构沿多次换向的路径导引两个扁管槽4之间的气流,一组或多组导流结构沿多个不同的路径导引两个扁管槽4之间的气流流通;
翅片使用时,两个扁管槽4之间形成风道,气流从上风侧2流向下风侧3,导流结构引导风道内气流沿导流结构预设路径进行流动,从而改变风道内气流流动路径。
导流结构包括一个或多个结构相同且相对于扁管槽4倾斜设置的翅片桥5,翅片桥5包括拱起部51及与拱起部51连接的翻起部52;拱起部51包括朝向上风侧2的进风口和朝向下风侧3的出风口,翻起部52位于拱起部51的出风口一侧,拱起部51背风侧在相对于翅片竖直方向形成的投影与气流流向形成的夹角为A,10°≤A≤60°,翻起部52在相对于翅片竖直方向形成的投影与气流流向形成的夹角为B,10°≤B≤60°。
导流结构包括一排或多排相对垂直气流流动方向排列设置的单侧风道组6,单侧风道组6由两个拱起口朝向相反的翅片切口拱起形成,每排单侧风道组6包括进风拱起61和出风拱起62;出风拱起62位于进风拱起61的背风侧,进风拱起61的拱起口和出风拱起62的拱起口朝向相反。
出风拱起62靠近扁管槽4的一侧为第二背风侧621,第二背风侧621在相对于翅片竖直方向上的投影与气流流动方向形成的夹角为C,10°≤C≤60°,进风拱起61位于背风侧且与进风拱起61切口相邻一侧位第一背风侧611,第一背风侧611相对于翅片在竖直方向上的投影与气流流动方向形成的夹角为D,10°≤D≤60°。
翅片在导流结构的迎风侧和背风侧分别设置有强化换热部7,强化换热部7为柱状凸起。
一种热交换器,包括翅片及扁管11,扁管11与扁管槽4相配合。
结构原理:
一种翅片桥5,翅片的上风侧2开设有一个或多个朝向下风侧3延伸的扁管槽4,扁管槽4用于安装扁管11,导流结构设置在扁管槽4的两侧,翅片使用时,气流从上风侧2吹向下风侧3,导流结构沿多个不同的路径导引两个扁管槽4之间的气流,上风侧2的气流经过导流结构后,改变了气流在风道内相对流动的位置,同一股气流在上风侧2流动位置相对于下风侧3的流动位置发生了改变,在气流流动方向上,导流结构间隔设置有一组或多组;导流结构对从上风侧2流向下风侧3的气流进行多次引导换位流动。
结合图2和图3所示,气流从上风侧2流向下风侧3,扁管槽4安装扁管11,相邻的两个扁管11之间形成风道,导流结构设置在风道内,在导流结构朝向上风侧2和下风侧3的两侧分别设置有强化换热部7,强化换热部7为三棱柱状凸起,导流结构包括两个结构相同且相对于扁管槽4倾斜设置的翅片桥5。
翅片桥5分别靠近风道两侧的扁管11倾斜设置,气流可以从翅片桥5底部流动,翅片桥5包括拱起部51和翻起部52,拱起部51包括进风口和出风口,翻起部52位于出风口一侧,翻起部52位于拱起部51靠近扁管11的一侧,翻起部52用于改变拱起部51上方气流流动的位置,拱起部51背风侧在相对于翅片竖直方向形成的投影与气流流向形成的夹角为A,10°≤A≤60°,翻起部52在相对于翅片竖直方向形成的投影与气流流向形成的夹角为B,10°≤B≤60°,拱起部51和翻起部52改变气流流动方向,同时降低对气流流动产生的阻力。
如图3所述,风道内包括a和b两股气流,a气流在翅片桥5的外侧并被倾斜设置的翻起部52阻挡,从而改变了流动方向,b气流从倾斜设置的拱起部51内部流过,拱起部51改变了B气流的流动方向;翅片还设置有翻边8、定位结构9和加强筋10,定位结构9用于翅片叠装时控制片距,加强筋10用于提高翅片的结构强度。
参考图2和图3,一种热交换器,在扁管槽4内安装扁管11,相邻的扁管11之间形成风道,气流通过风道从上风侧2流向下风侧3,翅片桥5将靠近扁管11流动的气流与中间气流换位流动,翅片桥5将风道分成两部分,从翅片桥5至上风侧2,靠近扁管11的气流与扁管11充分换热,位于两侧扁管11中间的气流与扁管11换热不充分,气流流过翅片桥5,拱起部51背风侧在相对于翅片竖直方向形成的投影与气流流向形成的夹角为A,10°≤A≤60°;翻起部52在相对于翅片竖直方向形成的投影与气流流向形成的夹角为B,10°≤B≤60°,翻起部52靠近扁管11倾斜设置,靠近扁管11流动的气流通过沿翻起部52改变流动方向,相对位于风道中部流动气流通过倾斜设置的拱起部51,气流朝向扁管11流动,并贴合扁管11流向下风侧3,通过翅片桥5,将风道内靠近扁管11的流动的气流与风道内中部的气流交换,变换风道内经过翅片桥5的气流流动方向;在翅片桥5至下风侧3的风道内,靠近扁管11流动的气流为翅片桥5至上风侧2之间的中部气流,通过翅片桥5解决了风道内中部气流相对于靠近扁管11流动的气流换热不均匀的问题,使靠近扁管11流动的气流保持较大温差,提高了换热效率,同时提高了气流换热的均匀性。
实施例2:
在实施里1结构和原理的基础上,本实施例提供一种翅片及具有其的换热器,结合图4、图5所示,翅片的一端为上风侧2,翅片与上风侧2相对的一端为下风侧3,上风侧2开设有一个或多个朝向下风侧3延伸的扁管槽4。
翅片间隔扁管槽4设置有一组或多组用于引导风道内气流流动路径的导流结构,导流结构包括一排或多排相对垂直气流流动方向排列设置的单侧风道组6,单侧风道组6由翅片多个部位切割后单侧拱起形成,每排单侧风道组6包括进风拱起61和出风拱起62,出风拱起62位于进风拱起61的背风侧,进风拱起61的拱起口和出风拱起62的拱起口朝向相反,进风拱起61的拱起口朝向上风侧2,出风拱起的拱起口朝向下风侧。
出风拱起62靠近扁管槽4的一侧为第二背风侧621,第二背风侧621在相对于翅片竖直方向上的投影与气流流动方向形成的夹角为C,10°≤C≤60°;进风拱起61位于背风侧且 与切口相邻一侧位第一背风侧611,第一背风侧611相对于翅片在竖直方向上的投影与气流流动方向形成的夹角为D,10°≤D≤60°。
结构原理:
结合图4、图5所示,相邻的两个扁管11之间形成风道,风道内有a、b、c、d四股气流,均从上风侧2流向下风侧3,导流结构将风道分成两部分,导流结构至上风侧2为风道的前半段,导流结构至下风侧3为风道的后半段。
在风道的前半段,a气流和d气流分别靠近风道两侧的扁管11流动,a气流和d气流充分和扁管11进行换热,换热效率高,b气流和c气流相对a气流和d气流靠近风道的中间部位,在流动过程中与扁管11换热效率低。
单侧风道组6包括进风拱起61和出风拱起62,进风拱起61的切口朝向上风侧2,出风拱起62设置在进风拱起61朝向下风侧3的一侧,出风拱起62的切口朝向下风侧3,出风拱起62和进风拱起61在风道内倾斜设置,出风拱起62靠近扁管槽4的一侧为第二背风侧621,第二背风侧621在相对于翅片竖直方向上的投影与气流流动方向形成的夹角为C,10°≤C≤60°;进风拱起61位于背风侧且与切口相邻一侧位第一背风侧611,第一背风侧611相对于翅片在竖直方向上的投影与气流流动方向形成的夹角为D,10°≤D≤60°,进风拱起61和出风拱起62之间设置有间隙,间隙为气流流动的通道。
a气流从进风空气与扁管11之间的间隙流过,沿第二背风侧621朝向风道中部流动,b气流动过进风拱起61和出风拱起62,倾斜朝向扁管11流动,a气流和b气流动过单侧风道组6,实现了a气流和b气流在风道前半段和风道后半段流动位置的互换,在风道的后半段,b气流靠近扁管11流动并与扁管11充分换热,提高了风道内气流换热的均匀性,c气流和d气流与a气流和b气流交换位置原理相同不再赘述。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种翅片,其特征在于,所述翅片具有上风侧(2)和下风侧(3),所述与所述下风侧(3)相对地设置,所述翅片开设有一个或多个朝向所述下风侧(3)延伸的扁管槽(4);
    所述翅片设置有一组或多组导流结构,一组或多组所述导流结构沿多次换向的路径导引两个所述扁管槽(4)之间的气流。
  2. 根据权利要求1所述的翅片,其特征在于,一组或多组所述导流结构沿多个不同的所述路径导引两个所述扁管槽(4)之间的气流。
  3. 根据权利要求1所述的翅片,其特征在于,所述导流结构包括一个或多个结构相同且相对于所述扁管槽(4)倾斜设置的翅片桥(5),所述翅片桥(5)包括拱起部(51)及与所述拱起部(51)连接的翻起部(52);
    所述拱起部(51)包括朝向上风侧(2)的进风口和朝向下风侧(3)的出风口,所述翻起部(52)位于所述拱起部(51)的出风口一侧。
  4. 根据权利要求3所述的翅片,其特征在于,所述拱起部(51)背风侧在相对于所述翅片竖直方向形成的投影与气流流向形成的夹角为A,10°≤A≤60°。
  5. 根据权利要求3所述的翅片,其特征在于,所述翻起部(52)在相对于所述翅片竖直方向形成的投影与气流流向形成的夹角为B,10°≤B≤60°。
  6. 根据权利要求1所述的翅片,其特征在于,所述导流结构包括一排或多排单侧风道组(6),多排所述单侧风道组(6)的排列方向垂直气流流向。
  7. 根据权利要求6所述的翅片,其特征在于,每排所述单侧风道组(6)包括进风拱起(61)和出风拱起(62);
    所述出风拱起(62)位于所述进风拱起(61)的背风侧,所述进风拱起(61)的拱起口和所述出风拱起(62)的拱起口朝向相反。
  8. 根据权利要求7所述的翅片,其特征在于,所述出风拱起(62)靠近所述扁管槽(4)的一侧为第二背风侧(621),所述第二背风侧(621)在相对于所述翅片竖直方向上的投影与所述气流流动方向形成的夹角为C,10°≤C≤60°。
  9. 根据权利要求7所述的翅片,其特征在于,所述进风拱起(61)位于背风侧且与进风拱起切口相邻一侧位第一背风侧(611),所述第一背风侧(611)相对于所述翅片在竖直方向上的投影与所述气流流动方向形成的夹角为D,10°≤D≤60°。
  10. 根据权利要求1-9任意一项所述的翅片,其特征在于,所述翅片在所述导流结构的迎风侧和背风侧分别设置有强化换热部(7),所述强化换热部(7)为柱状凸起。
  11. 一种热交换器,其特征在于,包括扁管(11)和权利要求10所述的翅片,所述扁管(11)与所述扁管槽(4)相配合。
PCT/CN2019/072097 2018-09-30 2019-01-17 一种翅片及具有其的热交换器 WO2020062728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811158160.3 2018-09-30
CN201811158160.3A CN109186302A (zh) 2018-09-30 2018-09-30 一种翅片及具有其的热交换器

Publications (1)

Publication Number Publication Date
WO2020062728A1 true WO2020062728A1 (zh) 2020-04-02

Family

ID=64946783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072097 WO2020062728A1 (zh) 2018-09-30 2019-01-17 一种翅片及具有其的热交换器

Country Status (2)

Country Link
CN (1) CN109186302A (zh)
WO (1) WO2020062728A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186302A (zh) * 2018-09-30 2019-01-11 珠海格力电器股份有限公司 一种翅片及具有其的热交换器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916989A (en) * 1973-09-03 1975-11-04 Hitachi Ltd Heat exchanger
CN1186932A (zh) * 1996-12-30 1998-07-08 三星电子株式会社 空气调节器的热交换器翅片
WO2004104506A1 (ja) * 2003-05-23 2004-12-02 Mitsubishi Denki Kabushiki Kaisha プレートフィンチューブ型の熱交換器
CN102087079A (zh) * 2011-02-23 2011-06-08 浙江工业大学 放射式强化换热翅片
CN102374816A (zh) * 2011-11-09 2012-03-14 海信(山东)空调有限公司 环翼桥式换热器翅片、换热器及空调
JP2014222144A (ja) * 2014-08-29 2014-11-27 パナソニック株式会社 熱交換器およびそれを用いた冷却システムおよび冷蔵庫
CN204830969U (zh) * 2015-07-02 2015-12-02 派克汉尼汾空调制冷设备(无锡)有限公司 一种换热设备用翅片结构
CN106288911A (zh) * 2016-09-07 2017-01-04 珠海格力电器股份有限公司 一种翅片及包括该翅片的散热器
CN106461349A (zh) * 2014-05-05 2017-02-22 法雷奥热系统公司 用于热交换器的扁平管
CN106642642A (zh) * 2017-02-10 2017-05-10 珠海格力电器股份有限公司 翅片管式换热器及具有其的空调器
CN109186306A (zh) * 2018-09-30 2019-01-11 珠海格力电器股份有限公司 一种翅片及具有其的热交换器
CN109186302A (zh) * 2018-09-30 2019-01-11 珠海格力电器股份有限公司 一种翅片及具有其的热交换器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856044B2 (ja) * 2007-10-17 2012-01-18 シャープ株式会社 熱交換器
CN106705732B (zh) * 2015-11-16 2020-01-21 浙江盾安人工环境股份有限公司 翅片和换热器
CN209279763U (zh) * 2018-09-30 2019-08-20 珠海格力电器股份有限公司 一种翅片及具有其的热交换器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916989A (en) * 1973-09-03 1975-11-04 Hitachi Ltd Heat exchanger
CN1186932A (zh) * 1996-12-30 1998-07-08 三星电子株式会社 空气调节器的热交换器翅片
WO2004104506A1 (ja) * 2003-05-23 2004-12-02 Mitsubishi Denki Kabushiki Kaisha プレートフィンチューブ型の熱交換器
CN102087079A (zh) * 2011-02-23 2011-06-08 浙江工业大学 放射式强化换热翅片
CN102374816A (zh) * 2011-11-09 2012-03-14 海信(山东)空调有限公司 环翼桥式换热器翅片、换热器及空调
CN106461349A (zh) * 2014-05-05 2017-02-22 法雷奥热系统公司 用于热交换器的扁平管
JP2014222144A (ja) * 2014-08-29 2014-11-27 パナソニック株式会社 熱交換器およびそれを用いた冷却システムおよび冷蔵庫
CN204830969U (zh) * 2015-07-02 2015-12-02 派克汉尼汾空调制冷设备(无锡)有限公司 一种换热设备用翅片结构
CN106288911A (zh) * 2016-09-07 2017-01-04 珠海格力电器股份有限公司 一种翅片及包括该翅片的散热器
CN106642642A (zh) * 2017-02-10 2017-05-10 珠海格力电器股份有限公司 翅片管式换热器及具有其的空调器
CN109186306A (zh) * 2018-09-30 2019-01-11 珠海格力电器股份有限公司 一种翅片及具有其的热交换器
CN109186302A (zh) * 2018-09-30 2019-01-11 珠海格力电器股份有限公司 一种翅片及具有其的热交换器

Also Published As

Publication number Publication date
CN109186302A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
EP3415854B1 (en) Plate-type heat exchanger and heat-pump-type heating and hot-water supply system equipped with same
WO2020062722A1 (zh) 一种翅片及具有其的热交换器
JP2017537287A (ja) 熱交換器、熱交換モジュール、熱交換装置、及び熱源ユニット
EP2246655A1 (en) Heat exchanger
CN106662406B (zh) 热交换器
WO2020062728A1 (zh) 一种翅片及具有其的热交换器
ITRM970402A1 (it) Scambiatore di calore per condizionatore di aria
ITRM970401A1 (it) Scambiatore di calore per condizionatore di aria
CN216204482U (zh) 一种相变冷却系统用的高效换热器
CN106197093B (zh) 一种换热器
CN103256834A (zh) 椭圆管翅片式换热器及顶出风空调室外机
JP4935322B2 (ja) 熱交換器および温水装置
JP2016050718A (ja) 空気調和機
CN209279763U (zh) 一种翅片及具有其的热交换器
CN216204483U (zh) 一种相变式冷却换热器
CN211824010U (zh) 用于换热的装置、换热器、家电
JP2016121839A (ja) 熱交換器及びそれを用いた熱交換器ユニット
EP3240376B1 (en) Cabinet
WO2020062721A1 (zh) 一种翅片及具有其的热交换器
JP2014029221A (ja) 空気調和機
CN113624042A (zh) 相变式冷却换热器
CN209279720U (zh) 一种热交换器及包含其的空调
ITRM960835A1 (it) Scambiatore di calore per condizionatore d'aria
CN212721063U (zh) 用于换热的装置、换热器、家电
JP7399293B2 (ja) 熱交換素子および熱交換型換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864656

Country of ref document: EP

Kind code of ref document: A1