WO2021172301A1 - 熱交換器、熱交換器の製造方法、及び熱交換器の閉塞確認方法 - Google Patents

熱交換器、熱交換器の製造方法、及び熱交換器の閉塞確認方法 Download PDF

Info

Publication number
WO2021172301A1
WO2021172301A1 PCT/JP2021/006724 JP2021006724W WO2021172301A1 WO 2021172301 A1 WO2021172301 A1 WO 2021172301A1 JP 2021006724 W JP2021006724 W JP 2021006724W WO 2021172301 A1 WO2021172301 A1 WO 2021172301A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat exchanger
main body
opening
fluid
Prior art date
Application number
PCT/JP2021/006724
Other languages
English (en)
French (fr)
Inventor
雅哉 畑中
博之 中拂
伸英 原
陽一 上藤
駿作 江口
拓央 小田
谷本 浩一
仁 北村
篠原 種宏
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US17/799,837 priority Critical patent/US20230079473A1/en
Priority to CN202180015893.5A priority patent/CN115135948A/zh
Publication of WO2021172301A1 publication Critical patent/WO2021172301A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This disclosure relates to a heat exchanger, a method for manufacturing a heat exchanger, and a method for confirming blockage of a heat exchanger.
  • heat exchangers are used for the purpose of heating or cooling fluids.
  • heat exchangers There are various types of heat exchangers, and for example, one in which a heat exchanger core formed of a laminated body of plates is housed inside a tubular casing is known (patented). Document 1).
  • each flow path is not normally opened directly to the outside of the heat exchanger, it remains in each flow path.
  • the metal powder is sent to, for example, a header flow path communicating with each flow path, and the metal powder is discharged from the opening of the header flow path.
  • the heat exchanger is molded by the powder bed type three-dimensional laminated molding, it is usually necessary to discharge the metal powder through a long path, or the opening for extracting the metal powder is small, so that the metal is used.
  • the powder was not sufficiently extracted and remained inside the heat exchanger.
  • the flow path is blocked by using the heat exchanger, there is a problem that the maintenance work becomes difficult due to the configuration of the heat exchanger described above.
  • At least one embodiment of the present disclosure includes a method for manufacturing a heat exchanger and a heat exchanger capable of easily removing raw materials remaining inside during laminated molding, and an internal blockage after using the heat exchanger. It is an object of the present invention to provide a method for confirming blockage of a heat exchanger that can be easily confirmed.
  • the heat exchanger according to the present disclosure is a heat exchanger in which the first fluid and the second fluid exchange heat with each other, and the heat exchanger is a main body portion which is a laminated model.
  • a main body including a first flow path through which the first fluid flows and a second flow path through which the second fluid flows, and a covering portion attached to the main body are provided, and the main body is provided with the first.
  • the first opening of the first flow path and the second opening of the second flow path are formed, and the covering portion covers the exposure of the first opening and the second opening so that the main body portion is covered. It is attached to.
  • the method for manufacturing a heat exchanger is a method for manufacturing a heat exchanger in which a first fluid and a second fluid exchange heat with each other, and is a first flow path through which the first fluid flows and the first.
  • a step of laminating and modeling the main body including the second flow path through which the two fluids flow and the first opening of the first flow path and the second opening of the second flow path from the metal powder.
  • a step of removing the metal powder remaining inside the main body portion via the first opening and the second opening and a step of removing the metal powder.
  • the step of attaching the covering portion to the main body portion so as to cover the exposure of the first opening portion and the second opening portion is included.
  • the raw materials for the laminated molding remain in the first flow path and the second flow path after the laminated molding of the main body portion, but the first opening and the second flow path of the first flow path Since the second opening of the above is exposed, the remaining raw material can be easily removed through the first opening and the second opening. Further, since the first opening of the first flow path and the second opening of the second flow path are exposed by removing the covering portion from the main body portion after using the heat exchanger, the first flow path and the second flow path are exposed. It is possible to easily confirm the presence or absence of blockage in the flow path.
  • the metal powder of the laminated molding remains in the first flow path and the second flow path after the laminated molding of the main body portion, but the first opening of the first flow path and the first opening of the first flow path and Since the second opening of the second flow path is exposed, the residual metal powder can be easily removed through the first opening and the second opening.
  • FIG. 5 is an enlarged cross-sectional view of a part of an end face at one end in the longitudinal direction of the main body of the heat exchanger according to at least one embodiment of the present disclosure. It is a flowchart of the manufacturing method of the heat exchanger which concerns on at least one Embodiment of this disclosure.
  • the heat exchanger 1 according to the first embodiment of the present disclosure is a heat exchanger in which the first fluid and the second fluid exchange heat, and the main body 2 and the main body 2 have heat exchangers. It is provided with a covering portion 3 to be attached.
  • the first fluid and the second fluid may be either a liquid or a gas, respectively, and their temperatures are usually different from each other.
  • the main body 2 may have a rectangular parallelepiped shape.
  • a rectangular lid member 3a which is a covering portion 3, is attached to one end of the main body 2 in the longitudinal direction.
  • the covering portion 3 may be detachably attached to the main body portion 2 by fastening with bolts or the like, or may be irreversibly attached to the main body portion 2 by welding, adhesive or the like.
  • the main body 2 is formed with a first flow path 21 through which the first fluid flows and a second flow path 22 through which the second fluid flows.
  • the first flow path 21 and the second flow path 22 are each formed so as to extend along the longitudinal direction of the main body 2 (the direction perpendicular to the paper surface in FIG. 2).
  • the first flow path 21 and the second flow path 22 are alternately arranged in a direction perpendicular to the longitudinal direction of the main body 2.
  • the adjacent first flow path 21 and the second flow path 22 are separated by a partition wall 23.
  • the number of each of the first flow path 21 and the second flow path 22, that is, the number of partition walls 23 is not limited to the number shown in FIG. 2, and can be designed to any number.
  • each of the first flow path 21 and each second flow path 22 may be partitioned into a plurality of division flow paths 21a and a plurality of division flow paths 22a by a plurality of partition walls 24 and 25, respectively.
  • the number of the divided flow paths 21a and 22a that is, the number of the partition walls 24 and 25 is not limited to the number shown in FIG. 2, and can be designed to any number.
  • the configuration shown in FIG. 3 is not an essential configuration, one or more ribs 26 are provided in each of the first flow paths 21 and each second flow path 22 so as to extend between the adjacent partition walls 23 and 23. May be good.
  • a first opening 27 of each first flow path 21 and a second opening 28 of each second flow path 22 are formed on the end surface 2a of one end of the main body 2 in the longitudinal direction. ing. That is, in a state where the lid member 3a (see FIG. 1) is not attached to the main body 2, the first opening 27 of each first flow path 21 and the second opening 28 of each second flow path 22 are formed on the end surface 2a. Be exposed. When the lid member 3a is attached to the end surface 2a of the main body 2 so as to cover the first opening 27 and the second opening 28 (state in FIG. 1), the exposure of the first opening 27 and the second opening 28 is covered. Will be done.
  • the heat exchanger 1 includes a first header flow path 4 for allowing the first fluid to flow into each of the first flow paths 21 (see FIGS. 2 and 3), and a first fluid, respectively.
  • a first header flow path 5 collected after flowing through the first flow path 21, a second header flow path 6 for allowing the second fluid to flow into each of the second flow paths 22 (see FIGS. 2 and 3), and a second.
  • a second header flow path 7 is provided in which the two fluids are collected after flowing through each of the second flow paths 22.
  • the configuration of FIG. 1 includes a first fluid flowing through each first flow path 21 and a second fluid flowing through each second flow path 22.
  • each first flow path 21 and each second flow path 22 are not divided into a plurality of divided flow paths 21a and divided flow paths 22a by the partition walls 24 and 25, and each divided flow path is not partitioned.
  • a first distribution flow path 21b and a second distribution flow path 22b communicating with the path 21a and the division flow path 22a are configured.
  • each first distribution flow path 21b communicates with the header flow path 4
  • each second distribution flow path 22b communicates with the second header flow path 7.
  • Each second distribution flow path 22b is sealed at the end on the first header flow path 4 side by a wall 23b connected to each of two adjacent partition walls 23, 23 defining the second flow path 22. As a result, it does not communicate with the first header flow path 4.
  • Each first distribution flow path 21b is sealed at the end on the second header flow path 7 side by a wall 23c connected to each of two adjacent partition walls 23, 23 defining the first flow path 21. As a result, it does not communicate with the second header flow path 7.
  • the other end of the main body 2 in the longitudinal direction Similar to the above-described configuration in which the first header flow path 4 and the first flow path 21 communicate with each other and the configuration in which the second header flow path 7 and the second flow path 22 communicate with each other, the other end of the main body 2 in the longitudinal direction. On the side, the first header flow path 5 and the first flow path 21 communicate with each other, and the second header flow path 6 and the second flow path 22 communicate with each other. Not shown.
  • a seal is formed between the first flow path 21 and the second flow path 22 when the lid member 3a is attached to the end surface 2a of the main body 2.
  • a sealing member such as a rubber plate or a liquid gasket is sandwiched between the lid member 3a and the end surface 2a to hold the lid member 3a.
  • the seal can be formed by fastening the main body 2 with a bolt.
  • the lid member 3a When the lid member 3a is irreversibly attached to the end surface 2a of the main body 2, for example, with the lid member 3a placed on the end surface 2a, the end portion of the partition wall 23 is viewed from the outer surface side of the lid member 3a.
  • the end portion of the partition wall 23 By irradiating the laser along the ends of 23a (see FIG. 5) and the walls 23b and 23c, the back surface of the lid member 3a and the ends 23a of the partition wall 23 and the ends of the walls 23b and 23c are joined.
  • the above seal can be formed.
  • a brazing material is applied to the joint position between the lid member 3a and the end surface 2a of the main body 2, and the lid member 3a is placed on the end surface 2a and brazed in a furnace.
  • the seal can also be formed by adhering the end surface 2a of 2 with an adhesive or the like.
  • the first fluid is supplied to the first header flow path 4 and the second fluid is supplied to the second header flow path 6.
  • the first fluid supplied to the first header flow path 4 passes through the first distribution flow path 21b and each first flow path 21. It flows into each of the divided flow paths 21a.
  • the second fluid supplied to the second header flow path 6 flows into each divided flow path 22a of each second flow path 22 in the same operation.
  • the first fluid flowing through the first flow path 21 and the second fluid flowing through the second flow path 22 exchange heat with each other via the partition wall 23.
  • the flow directions of the first fluid and the second fluid are opposite in the longitudinal direction of the main body 2.
  • the first fluid and the second fluid are not limited to flowing in such a countercurrent flow, and may flow in a parallel flow.
  • the first fluid and the second fluid collide with the ribs 26 or flow so as to bypass the ribs 26.
  • the boundary layer that hinders heat exchange is destroyed.
  • the heat exchange efficiency between the first fluid and the second fluid is improved.
  • the rib 26 is connected to both of the pair of partition walls 23, 23, the risk of deformation of the partition wall 23, that is, the risk of narrowing of the flow path can be reduced.
  • the second fluid flowing through each of the second flow paths 22 is each second. It flows into the second header flow path 7 via the distribution flow path 22b, is collected, and flows out from the heat exchanger 1.
  • the first fluid flowing through each of the first flow paths 21 is In the same operation, it flows into the first header flow path 5, is collected, and flows out of the heat exchanger 1.
  • the main body 2 is difficult to manufacture by laminating or casting plates due to the complexity of its configuration. Therefore, the main body 2 is preferably manufactured by laminating and modeling a metal powder as a raw material.
  • the main body 2 is a laminated model of metal powder.
  • the metal powder used for the laminated molding of the main body 2 is not particularly limited, but powders such as stainless steel and titanium can be used. Since the structure of the lid member 3a is not as complicated as that of the main body portion 2, the lid member 3a may be manufactured by casting or the like, or may be manufactured by laminating and modeling metal powder in the same manner as the main body portion 2.
  • the main body 2 is laminated on the base plate (step S1). Specifically, the metal powder is spread on the base plate, and the metal powder is irradiated with a laser or an electron beam to melt and harden the necessary parts. By further spreading metal powder on this and repeating such an operation, the main body 2 is laminated and shaped.
  • the stacking direction of the main body 2 is preferably a direction from the other end of the main body 2 in the longitudinal direction toward one end (or vice versa), that is, a direction in which the first flow path 21 and the second flow path 22 extend.
  • the partition wall 23 becomes an overhang portion, and the support for supporting this overhang portion is widely provided. It will have to be provided. In this case, considering the complexity of the configuration of the main body 2, it becomes practically impossible to remove the support, and it becomes practically impossible to form the main body 2 in a laminated manner.
  • the flow path width of the first flow path 21 and the second flow path 22, that is, the distance between the adjacent partition walls 23, 23 is 3 mm or less, preferably about 1 mm. It is empirically known that if the overhang portion has a length of 3 mm or less, laminated molding is possible without support.
  • the rib 26 as shown in FIG. 3 is provided in the first flow path 21 and the second flow path 22, the rib 26 becomes an overhang portion, and the flow path width of the first flow path 21 and the second flow path 22 is this. Within such a range, the length of the rib 26 is also 3 mm or less, so that the rib 26 can be laminated without support.
  • step S2 After laminating and modeling the main body 2 on the base plate, the main body 2 is separated from the base plate (step S2).
  • the metal powder that has not been melted and solidified remains inside the main body 2 formed by laminating the metal powder, for example, in the first flow path 21 and the second flow path 22. Therefore, following step S2, the metal powder remaining inside the main body 2 is removed (step S3).
  • the first opening 27 of each first flow path 21 and the second of each second flow path 22 are formed on the end surface 2a of one end in the longitudinal direction of the main body 2 formed by laminating in steps S1 and S2.
  • the opening 28 is formed. Therefore, the first opening 27 and the second opening 28 are shaken vertically downward, or the first flow path 21 and the second flow path 22 pass through the first opening 27 and the second opening 28.
  • the metal powder remaining in the first flow path 21 and the second flow path 22 can be easily removed by sucking the inside of the first flow path 21 or flowing a fluid through the first flow path 21 and the second flow path 22. Can be done.
  • step S3 Although it is not an essential step after step S3, light is applied to the inside of the first flow path 21 and the second flow path 22 through the first opening 27 and the second opening 28, or a fiberscope is inserted. By doing so, it may be confirmed whether or not the metal powder still remains inside the first flow path 21 and the second flow path 22 (step S4). When the residual metal powder is confirmed, the process returns to step S3.
  • step S5 After the completion of step S3 or after confirming that no metal powder remains when performing step S4, the first opening 27 and the second opening 28 are covered, that is, the end face of the main body 2.
  • the lid member 3a is attached to the main body 2 so as to cover the 2a (step S5).
  • the metal powder of the laminated molding remains in the first flow path 21 and the second flow path 22 after the laminated molding of the main body portion 2, but the first opening 27 and the second flow path of the first flow path 21 Since the second opening 28 of 22 is exposed, the residual metal powder can be easily removed through the first opening 27 and the second opening 28.
  • the lid member 3a is removed from the main body 2 (step S11). Subsequently, the blocked portion inside the first flow path 21 and the second flow path 22 is specified via the first opening 27 and the second opening 28 (step S12). Specifically, by irradiating the inside of the first flow path 21 and the second flow path 22 through the first opening 27 and the second opening 28, or by inserting a fiberscope, each of them. It is confirmed whether or not there is a blockage inside the first flow path 21 and each of the second flow paths 22, and the blockage location is specified.
  • step S13 After identifying the blockage location, remove the blockage as necessary (step S13). If there are few blockages or there is no blockage, step S13 may be skipped. After the end of step S13, or when step S13 is skipped, the lid member 3a is attached to the main body 2 (step S14).
  • the heat exchanger according to the second embodiment is a modification of the first embodiment in which the configuration of the main body 2 is changed.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the lid member 3a is attached to the main body 2 so as to cover the first end surface 2b on one end side in the longitudinal direction of the main body 2.
  • the first lid 3a1 is provided, and the second lid 3a2 is attached to the main body 2 so as to cover the second end surface 2c on the other end side in the longitudinal direction of the main body 2.
  • Other configurations are the same as those in the first embodiment.
  • the heat exchange operation in the heat exchanger 1 according to the second embodiment is the same as the heat exchange operation in the heat exchanger 1 according to the first embodiment.
  • the manufacturing method of the heat exchanger 1 according to the second embodiment is basically the same as the manufacturing method of the heat exchanger 1 according to the first embodiment.
  • the two lid members 3a that is, the first lid 3a1 and the second lid 3a2 are attached to the main body 2 so as to cover the first end surface 2b and the second end surface 2c of the main body 2.
  • the first lid 3a1 and the second lid 3a2 are removed from the main body 2, the first opening 27 and the second opening 28 are exposed, so that the first opening 27 and the second opening are exposed.
  • the metal powder remaining in the first flow path 21 and the second flow path 22 can be easily removed via the portion 28.
  • the method for confirming blockage after use of the heat exchanger 1 according to the second embodiment is basically the same as the method for confirming blockage after use of the heat exchanger 1 according to the first embodiment.
  • the second embodiment is different from the first embodiment in that the two lid members 3a, that is, the first lid 3a1 and the second lid 3a2 can be removed from the main body 2. Also in the second embodiment, after using the heat exchanger 1, by removing each of the first lid 3a1 and the second lid 3a2 from the main body 2, the first opening 27 and the second flow path 22 of the first flow path 21 are removed. Since the second opening 28 of the above is exposed, it is possible to easily confirm the presence or absence of blockage in the first flow path 21 and the second flow path 22.
  • both ends of the first flow path 21 and the second flow path 22 are each of the first end surface 2b and the second end surface. Open to 2c. Then, when there is no metal powder or blockage in the first flow path 21 and the second flow path 22, light passes through the first flow path 21 and the second flow path 22, whereas the first flow path 21 and the second flow path 22 and When there is metal powder or blockage in the second flow path 22, light does not pass through the first flow path 21 and the second flow path 22, so that it is easy to remove the metal powder and confirm the presence or absence of blockage.
  • the heat exchanger according to the third embodiment is a modification of the second embodiment in which the configuration of the main body portion 2 in the vicinity of the first end surface 2b and the second end surface 2c is changed.
  • the same reference numerals as those of the constituent requirements of the second embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • a first closing wall 31 for closing the end of the first flow path 21 is provided between the adjacent second openings 28, 28. Therefore, in the second end surface 2c, only the second opening 28 is configured to open.
  • a second closing wall 32 for closing the end of the second flow path 22 is provided between the adjacent first openings 27 and 27. Therefore, in the first end surface 2b, only the first opening 27 is configured to open. Therefore, in the heat exchanger 1 according to the third embodiment, the first opening 27 is exposed on the first end surface 2b and the second opening 28 is exposed on the second end surface 2c.
  • Other configurations are the same as in the second embodiment.
  • the heat exchange operation in the heat exchanger 1 according to the third embodiment is also the same as the heat exchange operation in the heat exchanger 1 according to the second embodiment.
  • the third embodiment even if the seal between the first lid 3a1 and the main body 2 is incomplete on the first end surface 2b, the second fluid leaks from the second flow path 22 due to the second closing wall 32. Only a leak of the first fluid through the first opening 27 can result from an imperfect seal.
  • the second end surface 2c even if the seal between the second lid 3a2 and the main body 2 is incomplete, the first fluid may leak from the first flow path 21 due to the first closing wall 31.
  • the manufacturing method of the heat exchanger 1 according to the third embodiment is basically the same as the manufacturing method of the heat exchanger 1 according to the second embodiment.
  • the method for confirming blockage after use of the heat exchanger 1 according to the third embodiment is basically the same as the method for confirming blockage after use of the heat exchanger 1 according to the second embodiment.
  • the heat exchanger according to the fourth embodiment is a modification of the first embodiment in which the configuration of the covering portion 3 is changed.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the first header flow path wall 41 defining the first header flow path 4 is first fixed to the main body 2. It includes a wall 42 and a first separation wall 43 attached to the first fixed wall 42. Flange portions 42a and 43a are provided on the first fixing wall 42 and the first separation wall 43, respectively, and the first separation wall 43 is first placed so as to sandwich the sealing member 44 between the flange portions 42a and the flange portions 43a. It can be attached to the fixed wall 42.
  • the positions where the flange portions 42a and 43a are arranged are not particularly limited, and the flange portions 42a may be arranged on the upper end surface 2d of the main body portion 2 as shown in FIG. 11, for example.
  • the first separation wall 43 may be detachably attached to the first fixing wall 42 by fastening bolts or the like, or may be irreversibly attached to the first fixing wall 42 by welding, adhesive or the like.
  • the first flow path 21 communicates with the first header flow path 4 via the first distribution flow path 21b (see FIGS. 4 and 5). Therefore, as shown in FIG. 12, the first opening 27 is an opening in the first fixed wall 42 of the first distribution flow path 21b. As shown in FIG. 11, when the first separation wall 43 is removed from the first fixed wall 42, the first opening 27 is exposed at the first fixed wall 42. On the other hand, in a state where the first separation wall 43 is attached to the first fixed wall 42, the first separation wall 43 covers the exposure of the first opening 27. Therefore, the first separation wall 43 constitutes the covering portion 3. Although not shown in FIG. 11, the first header flow path wall defining the first header flow path 5 has the same configuration.
  • the second header flow path wall 45 that defines the second header flow path 7 includes a second fixing wall 46 fixed to the main body 2 and a second separation wall 47 attached to the second fixing wall 46. .. Flange portions 46a and 47a are provided on the second fixing wall 46 and the second separation wall 47, respectively, and the second separation wall 47 is placed on the second separation wall 47 so as to sandwich the sealing member 48 between the flange portions 46a and the flange portion 47a. It can be attached to the fixed wall 46.
  • the positions where the flange portions 46a and 47a are arranged are not particularly limited, and the flange portions 46a may be arranged on the upper end surface 2d of the main body portion 2 as shown in FIG. 11, for example.
  • the second separation wall 47 may be detachably attached to the second fixing wall 46, or may be irreversibly attached to the second fixing wall 46 by welding, adhesive, or the like.
  • the second flow path 22 communicates with the second header flow path 7 via the second distribution flow path 22b (see FIGS. 4 and 5). Therefore, as shown in FIG. 13, the second opening 28 is an opening in the second fixed wall 46 of the second distribution flow path 22b.
  • the second separation wall 47 is removed from the second fixed wall 46, the second opening 28 is exposed at the second fixed wall 46.
  • the second separation wall 47 covers the exposure of the second opening 28. Therefore, the second separation wall 47 constitutes the covering portion 3.
  • the second header flow path wall defining the second header flow path 6 has the same configuration.
  • the heat exchanger 1 according to the fourth embodiment has the heat exchange according to the first embodiment in a state where the first separation wall 43 and the second separation wall 47 are attached to the first fixed wall 42 and the second fixed wall 46, respectively. Since the configuration is the same as that of the device 1, the heat exchange operation in the heat exchanger 1 according to the fourth embodiment is the same as the heat exchange operation in the heat exchanger 1 according to the first embodiment.
  • the manufacturing method of the heat exchanger 1 according to the fourth embodiment is basically the same as the manufacturing method of the heat exchanger 1 according to the first embodiment.
  • the covering portion 3 is the first separation wall 43 and the second separation wall 47
  • the removal of the metal powder in step S3 and the confirmation of the residual metal powder in step S4 of the flowchart of FIG. 6 are the first. It differs from the first embodiment in that it is performed through the first opening 27 and the second opening 28 opened in the fixed wall 42 and the second fixed wall 46, respectively.
  • the method for confirming blockage after use of the heat exchanger 1 according to the fourth embodiment is basically the same as the method for confirming blockage after use of the heat exchanger 1 according to the first embodiment.
  • the covering portion 3 is the first separation wall 43 and the second separation wall 47
  • the identification of the blockage portion in step S12 and the removal of the blockage in step S13 of the flowchart of FIG. 7 are performed by the first fixed wall 42. It differs from the first embodiment in that it is performed through the first opening 27 and the second opening 28 opened in the second fixed wall 46, respectively.
  • the heat exchanger according to the fifth embodiment is a cartridge type structure in which the main body portion 2 is inserted into the housing portion as compared with the fourth embodiment.
  • the same reference numerals as those of the constituent requirements of the fourth embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the heat exchanger 1 according to the fifth embodiment of the present disclosure includes a main body 2 and a main body 2 having substantially the same configuration as the main body 2 of the heat exchanger 1 according to the fourth embodiment. It includes a housing portion 50 that can be inserted.
  • the main body 2 of the fifth embodiment is the main body of the fourth embodiment in that the first fixed wall 42 and the second fixed wall 46 do not have the flange portions 42a (see FIG. 11) and 46a (see FIG. 11), respectively. Different from part 2.
  • the housing portion 50 is formed with an insertion space 51 into which the main body portion 2 is inserted. In FIG.
  • the number of insertion spaces 51 is 9, but only one insertion space 51 may be formed, or an arbitrary number of insertion spaces 51 may be formed without being limited to nine. good.
  • the layout of each insertion space 51 can be arbitrarily designed.
  • the insertion space 51 is defined by four inner wall surfaces 52, and these four inner wall surfaces 52 are the first header flow paths when the main body 2 is inserted into the insertion space 51.
  • the inner wall surface 52a facing one end side of the main body 2 provided with 4 (see FIG. 11) and the second header flow path 7 (see FIG. 11), the first header flow path 5 (see FIG. 1), and the second. It includes an inner wall surface 52b facing the other end side of the main body 2 provided with the header flow path 6 (see FIG. 1).
  • Two grooves 53a and 53b extending in the direction in which the main body 2 is inserted are formed in the inner wall surface 52a, and a resin sealing member 54a is attached to a portion other than the grooves 53a and 53b. There is.
  • the inner wall surface 52b is also formed with two grooves 53c and 53d extending in the direction in which the main body 2 is inserted into the insertion space 51, and a resin sealing member 54b is attached to a portion other than the grooves 53c and 53d. There is.
  • the groove defining wall 53a1 that defines the groove 53a and the first fixed wall 42 (see FIG. 11) fixed to one end side of the main body 2 are combined to form a first. 1
  • the header flow path 4 (see FIG. 11) is defined, and the groove defining wall 53b1 defining the groove 53b and the second fixing wall 46 (see FIG. 11) fixed to one end side of the main body 2 are combined.
  • the second header flow path 7 (see FIG. 11) is defined, and the groove defining wall 53c1 defining the groove 53c and the first fixing wall 42 fixed to the other end side of the main body 2 are combined.
  • the first header flow path 5 (see FIG.
  • the groove demarcation walls 53a1 and 53c1 each form the first separation wall 43 (see FIG. 11), and the groove demarcation walls 53b1 and 53d1 each form the second separation wall 47 (see FIG. 11).
  • the configuration of each unit in which the main body 2 is inserted into each insertion space 51 is the same as the configuration of the heat exchanger 1 of the fourth embodiment.
  • the heat exchange operation between the first fluid and the second fluid is the same as that in the fourth embodiment.
  • the heat exchanger 1 has a plurality of units, the heat exchange capacity can be easily adjusted by inserting the required number of main body portions 2 into the insertion space 51 according to the required heat exchange capacity. be able to. Further, since a plurality of units can be arranged without a gap, the entire heat exchanger 1 can be made compact. Further, when a problem occurs in any of the units, maintenance can be performed only on the unit in which the problem occurs without stopping the entire heat exchanger 1, and it is possible to avoid stopping the device including the heat exchanger 1. .
  • the removal of the lid member in step S11 of the flowchart of FIG. 7 corresponds to the removal of the main body 2 from the insertion space 51. Since the main body 2 of the fifth embodiment and the main body 2 of the fourth embodiment have substantially the same configuration, steps S12 and S13 of the flowchart of FIG. 7 are the same as those of the fourth embodiment. Therefore, also in the fifth embodiment, it is possible to easily confirm the presence or absence of blockage in the first flow path 21 and the second flow path 22 as in the fourth embodiment.
  • the attachment of the lid member in step SS14 of the flowchart of FIG. 7 corresponds to the operation of inserting the main body 2 into the insertion space 51.
  • the heat exchanger according to the sixth embodiment is a modification of the first to third embodiments in which the structure of the seal between the covering portion 3 and the main body portion 2 is changed.
  • the sixth embodiment will be described with a configuration in which the seal configuration is changed in the third embodiment, but the sixth embodiment may be configured by changing the seal configuration in the first or second embodiment.
  • the same reference numerals as those of the constituent requirements of the third embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • each embodiment after the sixth embodiment is an invention relating to a seal between the main body portion 2 and the covering portion 3. Therefore, the configuration of the heat exchanger 1 according to each embodiment after the sixth embodiment is the same as the configuration of any one of the first to third embodiments when the covering portion 3 is attached to the main body portion 2. Therefore, the heat exchange operation in the heat exchanger 1 according to each embodiment after the sixth embodiment is the same as the heat exchange operation in the heat exchanger 1 according to any one of the first to third embodiments. Further, the method for manufacturing the heat exchanger 1 and the method for confirming blockage after use of the heat exchanger 1 according to each embodiment after the sixth embodiment also include the method for manufacturing the heat exchanger 1 according to any one of the first to third embodiments.
  • the end surface 2b of the main body 2 includes a flat portion 2a1 extending along the edge thereof.
  • the first header flow path 4 and the first opening 27 are surrounded by the flat portion 2a1.
  • the flat portion 2a1 has a groove portion 61 extending and recessing along the first header flow path 4 and the second header flow path 7 (see FIG. 4) and a groove portion 62 extending and recessing along the first distribution flow path 21b. And are formed.
  • Sealing members 63 and 64 are provided at the bottoms of the grooves 61 and 62, respectively.
  • convex ridges 65 and 66 are formed so as to be fitted into the grooves 61 and 62, respectively.
  • a flange portion 67 is provided in the vicinity of the end surface 2a of the main body portion 2.
  • the flange portion 67 is formed with a hole 67a into which a bolt can be inserted.
  • the lid member 3a is formed with a flange portion 68 at a position where the lid member 3a overlaps with the flange portion 67 when the lid member 3a is attached to the main body portion 2.
  • the flange portion 68 is formed with a hole 68a into which a bolt can be inserted.
  • Other configurations are the same as those in the first embodiment.
  • the lid member 3a when the lid member 3a is attached to the main body 2 during the manufacture of the heat exchanger 1 or after the maintenance of the heat exchanger 1, it becomes easy to form a seal between the main body 2 and the lid member 3a.
  • the end surface 2c on the opposite side of the main body 2 also has the same seal configuration as described above, which facilitates the formation of a seal between the main body 2 and the lid member 3a.
  • the groove portions 61 and 62 recessed in the end surface 2a of the main body portion 2 are formed, and the convex ridge portions 65 and 66 are formed in the lid member 3a.
  • the lid is formed.
  • the member 3a may be formed with recessed grooves 61 and 62, and the end surface 2a of the main body 2 may be formed with convex ridges 65 and 66.
  • the seal members 63 and 64 are provided inside the grooves 61 and 62, but the seal members 63 and 64 may be provided in the ridges 65 and 66, respectively.
  • the ridges 65 and 66 are not elastically deformed even when the seal members 63 and 64 are pressed, but when the seal members 63 and 64 are pressed in the groove 61 and 62, the groove 61 and The configuration may be elastically deformable in the depth direction of 62.
  • the ridge portion 65 can be a spring member 65a having a cross-sectional shape curved in a substantially C shape.
  • the seal member 63 may be provided in the spring member 65a instead of being provided in the groove portion 61.
  • the ridge 66 can have the same configuration.
  • the heat exchanger according to the seventh embodiment is a modification of the sixth embodiment in which the structure of the seal between the covering portion 3 and the main body portion 2 is changed.
  • the same reference numerals as those of the constituent requirements of the sixth embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the seal member 63 has the inner seal member 71 and the first opening 27 and the second opening 27 with respect to the inner seal member 71. It has an outer seal member 72 provided on the opposite side of 28. Further, the seal member 64 has an inner seal member 73 and an outer seal member 74 provided on the side opposite to the first opening 27 and the second opening 28 with respect to the inner seal member 73. Notches 72a and 74a are formed in the outer seal members 72 and 74, respectively, so as to extend them in the extending direction. Other configurations are the same as those in the sixth embodiment.
  • the leaked fluid flows out through the notches 72a and 74a of the outer sealing members 72 and 74. Since the positions of the notches 72a and 74a are known in advance, when a leak of the first fluid or the second fluid occurs, the leaked fluid can be confirmed from the notches 72a and 74a, so that the leak can be detected early and easily. can do.
  • a storage portion 75 capable of storing the first fluid or the second fluid leaked from the notch portion 74a may be formed in the main body portion 2 so as to communicate with the notch portion 74a.
  • a storage portion similar to the storage portion 75 capable of storing the first fluid or the second fluid leaked from the cutout portion 72a is formed in the main body portion 2 so as to communicate with the notch portion 74a. May be good. Since the leaked fluid can be stored in the storage unit 75, it is possible to temporarily prevent the heat exchanger 1 from leaking to the outside.
  • the sensor S which is a detection unit for detecting the inflow of the first fluid or the second fluid, may be provided in the storage unit 75.
  • the leak of the first fluid or the second fluid can be detected by the sensor S, so that the leak can be detected at an early stage by remotely monitoring the detection by the sensor S.
  • the heat exchanger 1 has a first on-off valve 76 for supplying the first fluid to the first flow path 21 (see FIG. 18) or stopping the supply of the first fluid, and a second on-off valve 76.
  • the second on-off valve 77 for supplying or stopping the supply of the second fluid to the flow path 22 (see FIG. 18), the sensor S, the first on-off valve 76, and the second on-off valve 77 are electrically connected.
  • a control unit 78 such as a computer connected to the device may be provided.
  • the control unit 78 closes the first on-off valve 76 and the second on-off valve 77 when a signal for detecting that the first fluid or the second fluid has flowed into the storage unit 75 is transmitted from the sensor S. It is configured in. As a result, the control unit 78 automatically closes the first on-off valve 76 and the second on-off valve 77 based on the detection of the leak by the sensor S, thereby supplying the first fluid to the first flow path 21 and the first. Since the supply of the second fluid to the two flow paths 22 is stopped, it is possible to prevent the heat exchanger 1 from leaking to the outside at an early stage.
  • the heat exchanger according to the eighth embodiment is a modification of the third embodiment in which the structure of the seal between the covering portion 3 and the main body portion 2 is changed.
  • the same components as those of the third embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • a plurality of first seal members 81 and a plurality of second seal members 82 are provided on the back surfaces of the first lid 3a1 and the second lid 3a2, respectively.
  • the first sealing member 81 and the second sealing member 82 have a first closing wall 31 and a second closing wall, respectively, when the first lid 3a1 and the second lid 3a2 are attached to the main body 2 (see FIG. 1), respectively. It is configured to abut on 32. Therefore, when the first lid 3a1 and the second lid 3a2 are attached to the main body 2, the first seal member 81 and the second seal member 82 have at least the first closing wall 31 and the second closing wall 32, respectively. It is configured to extend from one end to the other end of each of the above. Other configurations are the same as in the third embodiment.
  • the first seal member 81 and the second seal member 82 are placed between the first flow paths 21 and the second one, respectively. Since each of the flow paths 22 can be sealed, the weight of the heat exchanger 1 can be reduced.
  • the plurality of first closing walls 31 are flush with each other on the second end surface 2c, and the plurality of second closing walls 32 are flush with each other on the first end surface 2b.
  • the pressing force of each first seal member 81 against each first closing wall 31 becomes uniform, and the second lid 3a2 is attached to the main body. Since the pressing force of each of the second sealing members 82 with respect to each of the second closing walls 32 becomes uniform in the state of being attached to the portion 2, variation in the sealing performance of each of the first sealing members 81 and each of the second sealing members is reduced. be able to.
  • the first closing wall 31 and the second closing wall 32 are manufactured to be thicker, respectively, and a plurality of them are manufactured.
  • the first closing wall 31 and the plurality of second closing walls 32 may be shaved so as to be flush with each other, that is, the wall thickness may be reduced. Thereby, each of the plurality of first closing walls 31 and each of the plurality of second closing walls 32 can be easily flushed.
  • the materials used for the first seal member 81 and the second seal member 82 need to be selected according to the heat resistance required for the heat exchanger 1, that is, the temperatures of the first fluid and the second fluid. ..
  • a resin such as rubber can be selected as the material.
  • easily processable metals such as silver, gold, and indium can be selected as the material.
  • the heat exchanger according to the ninth embodiment is a modification of the first to third embodiments in which the structure of the seal between the covering portion 3 and the main body portion 2 is changed.
  • the ninth embodiment will be described in which the structure of the seal is modified in the first embodiment, but the ninth embodiment may be configured by modifying the structure of the seal in the second or third embodiment.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • a plurality of sealing members 90 are provided on the back surface of the lid member 3a.
  • Each seal member 90 is configured to come into contact with the end portion 23a of the partition wall 23 when the lid member 3a is attached to the main body portion 2 (see FIG. 1). Therefore, the seal member 90 is configured to extend from one end to the other end of at least the end portion 23a of the partition wall 23 when the lid member 3a is attached to the main body portion 2.
  • the seal member 90 includes a hollow portion 91 provided inside the seal member 90 and a contact portion 92 that abuts on the end portion 23a of the partition wall 23. Therefore, when the contact portion 92 is pressed against the end portion 23a of the partition wall 23 when the lid member 3a is attached to the main body portion 2, the seal member 90 is configured to be deformed so that the cavity portion 91 is crushed. There is. The smaller the area where the abutting portion 92 abuts on the end portion 23a of the partition wall 23, the greater the pressure that the abutting portion 92 receives when the abutting portion 92 is pressed against the end portion 23a, so that the cavity portion 91 is crushed. It will be easier. Other configurations are the same as those in the first embodiment.
  • the shape of the seal member 90 is not limited to the shape shown in FIG. 22. As long as the sealing member 90 is deformed so that the cavity 91 is crushed when the contact portion 92 is pressed against the end portion 23a of the partition wall 23, the shape may be any shape. Instead of the configuration in which the portion 91 exists, it may be a so-called lattice-like porous body composed of a plurality of small cavities. Further, not only the configuration of the hollow portion 91 but also the shape of the contact portion 92 can be arbitrarily designed.
  • the heat exchanger according to the tenth embodiment is a modification of the first to third embodiments in which the structure of the seal between the covering portion 3 and the main body portion 2 is changed.
  • the tenth embodiment will be described in which the structure of the seal is modified in the first embodiment, but the tenth embodiment may be configured by modifying the structure of the seal in the second or third embodiment.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • a plurality of sealing members 100 are provided on the back surface of the lid member 3a.
  • Each seal member 100 is configured to come into contact with the end portion 23a of the partition wall 23 when the lid member 3a is attached to the main body portion 2 (see FIG. 1). Therefore, the seal member 100 is configured to extend from one end to the other end of at least the end portion 23a of the partition wall 23 when the lid member 3a is attached to the main body portion 2.
  • the end portion 23a of the partition wall 23 is formed with a seal groove portion 110 recessed with respect to the end portion 23a.
  • the seal groove 110 is defined by two inclined surfaces 110a and 110b connected to each other at the bottom 110c of the seal groove 110.
  • the cross-sectional shape of the seal groove 110 is V-shaped.
  • the seal member 100 includes a deformable contact portion 101.
  • the contact portion 101 is inserted into the seal groove portion 110 and is configured to come into contact with each of the two inclined surfaces 110a and 110a.
  • the cross section of the contact portion 101 is curved in an arc shape.
  • the seal member 100 has a substantially J-shaped cross-sectional shape. Other configurations are the same as those in the first embodiment.
  • the contact portion 101 of the seal member 100 hits the two inclined surfaces 110a and 110b of the seal groove 110, respectively. Get in touch.
  • the contact portion 101 may come into contact with only one inclined surface 110b, for example.
  • the contact portion 101 is deformed, and the contact position between the contact portion 101 and the inclined surface 110b shifts downward, and eventually, The other portion of the contact portion 101 comes into contact with the other inclined surface 110a.
  • the sealing member 100 is similarly pressed against the inclined surface 110b and deformed, so that the contact portion 101 eventually becomes 2 It comes into contact with the two inclined surfaces 110a and 110b.
  • the contact portion 101 has a substantially J-shaped cross-sectional shape, but the present invention is not limited to this configuration.
  • the abutting portion 101 When the abutting portion 101 is inserted into the seal groove portion 110, it abuts on each of the two inclined surfaces 110a and 110b, or when the abutting portion 101 is inserted into the seal groove portion 110, the two inclined surfaces 110a and 110b Any configuration may be used as long as the seal member 100 can be deformed to contact each of the two inclined surfaces 110a and 110b even when the seal member 100 is in contact with only one of the 110b. It may have a bent shape in the vicinity, for example, a substantially L-shape instead of a substantially J-shape.
  • the seal groove portion 110 has a V-shaped cross-sectional shape, but the present invention is not limited to this configuration.
  • the inclined surfaces 110a and 110b do not necessarily have to be flat surfaces, and the inclined surfaces 110a and 110b may have a V-shaped cross-sectional shape close to a U-shape because the inclined surfaces 110a and 110b have a curvature.
  • the inclined surfaces 110a and 110b have a curvature, it needs to be smaller than the curvature of the contact portion 101 of the sealing member 100.
  • the sealing members 90 and 100 which are deformed at least partially when the sealing member abuts on the end portion 23a of the partition wall 23 and is pressed have been described. It is not limited to (including modified examples). Any type of seal member can be adopted as long as it is a seal member that deforms at least a part when it comes into contact with the end portion 23a of the partition wall 23 and is pressed.
  • the heat exchanger is A heat exchanger (1) in which the first fluid and the second fluid exchange heat.
  • the heat exchanger (1) is A main body (2) which is a laminated model and includes a first flow path (21) through which the first fluid flows and a second flow path (22) through which the second fluid flows. When, It is provided with a covering portion (3) attached to the main body portion (2).
  • the main body portion (2) is formed with a first opening portion (27) of the first flow path (21) and a second opening portion (28) of the second flow path (22), and the covering portion (3). ) Is attached to the main body (2) so as to cover the exposure of the first opening (27) and the second opening (28).
  • the raw materials for the laminated molding remain in the first flow path and the second flow path after the laminated molding of the main body portion, but the first opening and the second flow path of the first flow path Since the second opening of the above is exposed, the remaining raw material can be easily removed through the first opening and the second opening. Further, since the first opening of the first flow path and the second opening of the second flow path are exposed by removing the covering portion from the main body portion after using the heat exchanger, the first flow path and the second flow path are exposed. It is possible to easily confirm the presence or absence of blockage in the flow path.
  • the heat exchanger according to another aspect is the heat exchanger of [1].
  • the covering portion (3) includes a lid member (3a) attached to the main body portion (2) so as to cover the first opening (27) and the second opening (28).
  • the first opening and the second opening are directly opened when the lid member is not attached to the main body portion, the first opening and the second opening remain in the first flow path and the second flow path.
  • the raw material can be easily removed, and the presence or absence of blockage in the first flow path and the second flow path can be easily confirmed.
  • the heat exchanger according to still another aspect is the heat exchanger of [2].
  • the main body portion (2) includes a first end surface (2b) and a second end surface (2c) located at both ends in the extending direction of the first flow path (21) and the second flow path (22), respectively.
  • the lid member (3a) is A first lid (3a1) attached to the main body (2) so as to cover the first end surface (2b). It includes a second lid (3a2) attached to the main body (2) so as to cover the second end surface (2c).
  • the first flow path and the first flow path and the second opening are provided through the first opening and the second opening, respectively.
  • the light can pass through the first flow path and the second flow path, so that the presence or absence of raw materials and blockages can be easily confirmed.
  • the heat exchanger according to still another aspect is the heat exchanger of [3].
  • the first opening (27) is formed on the first end surface (2b), and the second opening (28) is formed on the second end surface (2c).
  • the heat exchanger according to still another aspect is the heat exchanger of [1].
  • the main body (2) is The first header flow paths (4,5) through which the first fluid flows, and A first distribution flow path (21b) communicating the first header flow path (4,5) and the first flow path (21),
  • the second header flow paths (6, 7) through which the second fluid flows, and A second distribution flow path that communicates the second header flow path (6, 7) and the second flow path (22) is included.
  • the first header flow path wall (41) and the second header flow path wall (45) that define each of the first header flow path (4,5) and the second header flow path (6, 7) are respectively.
  • the first opening (27) is an opening in the first fixed wall (42) of the first distribution flow path (21b)
  • the second opening (28) is the second distribution flow path.
  • (22b) is an opening in the second fixed wall (46)
  • the covering portion (3) includes the first separation wall (43) and the road separation wall (47).
  • the first opening and the second separation wall are not attached. Since the openings are exposed in the first fixed wall and the second fixed wall, respectively, the raw materials remaining in the first flow path and the second flow path can be easily removed, and the first flow path and the second flow path can be easily removed. The presence or absence of blockage in the flow path can be easily confirmed.
  • the heat exchanger according to still another aspect is the heat exchanger of [5].
  • the heat exchanger (1) includes a housing portion (50) into which the main body portion (2) can be inserted.
  • the first separation wall (groove demarcation wall 53a1 / 53c1) and the second separation wall (groove demarcation wall 53b1 / 53d1) are provided in the housing portion (50).
  • each of the first separation wall (groove demarcation wall 53a1 / 53c1) and the second separation wall (groove demarcation wall 53b1 / 53d1) becomes the first. It is attached to each of the 1 fixed wall (42) and the 2nd fixed wall (46).
  • the raw materials remaining in the first flow path and the second flow path can be easily removed. It is possible to easily confirm the presence or absence of blockage in the first flow path and the second flow path.
  • the heat exchanger according to still another aspect is the heat exchanger according to any one of [2] to [4].
  • the first opening (21) and the second opening (21) and the second opening (21) are attached to either the covering portion (3) or the main body portion (2) with the covering portion (3) attached to the main body portion (2).
  • a recessed groove (61/62) is formed so as to surround at least one of the openings (22).
  • a ridge portion (65/66) that can be inserted into the groove portion (61/62) is formed on either the covering portion (3) or the main body portion (2). With the covering portion (3) attached to the main body portion (2), the ridge portion (65/66) is inserted into the groove portion (61/62), and the ridge portion (65/66) and the ridge portion (65/66) and the above.
  • a resin sealing member (63/64) is provided between the groove portion (61/62).
  • the heat exchanger according to still another aspect is the heat exchanger of [7].
  • the ridge portion (65a / 66a) is configured to be elastically deformable in the depth direction of the groove portion (61/62). According to such a configuration, the sealing property of the sealing member can be improved.
  • the heat exchanger according to still another aspect is the heat exchanger according to any one of [2] to [4].
  • the covering portion (3) is attached to the main body portion (2) via a seal member (63/64) between the covering portion (3) and the main body portion (2).
  • the seal member (63/64) is An inner seal member (2) provided so as to surround at least one of the first opening (27) and the second opening (28) with the covering portion (3) attached to the main body portion (2). 71/73) and With the outer seal member (72/74) provided on the side opposite to at least one of the first opening (27) and the second opening (28) with respect to the inner seal member (71/73).
  • the outer seal member (72/74) is formed with notches (72a / 74a) spaced apart in the extending direction thereof.
  • the heat exchanger according to still another aspect is the heat exchanger of [9].
  • the main body portion (2) is formed so that the first fluid or the storage portion (75) capable of storing the second fluid communicates with the notch portion (72a / 74a).
  • the leaked fluid can be stored in the storage portion, so that the leak to the outside of the heat exchanger can be temporarily prevented.
  • the heat exchanger according to still another aspect is the heat exchanger of [10].
  • a detection unit (sensor S) for detecting the inflow of the first fluid or the second fluid is provided in the storage unit (75).
  • the leak of the first fluid or the second fluid can be detected by the detection unit, so that the leak can be detected at an early stage by remotely monitoring the detection by the detection unit.
  • the heat exchanger is the heat exchanger of [11].
  • the control unit (78) opens and closes the first.
  • the valve (76) and the second on-off valve (77) are closed.
  • control unit automatically closes the first on-off valve and the second on-off valve based on the detection of the leak by the detection unit, thereby supplying the first fluid to the first flow path and supplying the first fluid. Since the supply of the second fluid to the second flow path is stopped, it is possible to prevent the heat exchanger from leaking to the outside at an early stage.
  • the heat exchanger according to still another aspect is the heat exchanger according to any one of [7] to [12].
  • Each of the covering portion (3) and the main body portion (2) is provided with flange portions (67, 68) that overlap each other with the covering portion (3) attached to the main body portion (2). .. With such a configuration, it becomes easy to form a seal between the covering portion and the main body portion.
  • the heat exchanger according to still another aspect is the heat exchanger of [4].
  • the second end surface (2c) is provided with at least one first closing wall (31) for closing the first flow path (21) between adjacent second openings (28).
  • the first end surface (2b) is provided with at least one second closing wall (32) for closing the second flow path (22) between adjacent first openings (27).
  • the first lid (3a1) is provided with a first seal member (81) that abuts on the second closing wall (32), and the second lid (3a2) is provided with the first closing wall (31).
  • a second seal member (82) that comes into contact with the is provided.
  • the first seal member and the second seal member are between the first flow paths and between the second flow paths, respectively, without increasing the thickness of the covering portion. Since each can be sealed, the weight of the heat exchanger can be reduced.
  • the heat exchanger according to still another aspect is the heat exchanger of [14].
  • the second end surface (2c) is provided with a plurality of the first closing walls (31), and the first end surface (2b) is provided with a plurality of the second closing walls (32).
  • the plurality of first closing walls (31) are flush with each other on the second end surface (2c), and the plurality of second closing walls (32) are flush with each other on the first end surface (2b).
  • the heat exchanger according to still another aspect is the heat exchanger of [2] or [3].
  • the adjacent first flow path (21) and the second flow path (22) are separated by a partition wall (23).
  • the lid member (3a) is a seal member configured to be deformable by abutting the end portion (23a) of the partition wall (23) when the lid member (3a) is attached to the main body portion (2). (90/100) is provided.
  • the seal member abuts on the end portion of the partition wall and is deformed, so that the adjacent first flow path and the second flow path are reliably sealed. can do.
  • the heat exchanger according to still another aspect is the heat exchanger of [16].
  • the seal member (90) is A hollow portion (91) provided inside the seal member (90) and When the contact portion (92) is pressed against the end portion (23a) of the partition wall (23), the cavity portion includes the contact portion (92) that abuts the end portion (23a) of the partition wall (23). The seal member (90) is deformed so that (91) is crushed.
  • the sealing member when the abutting portion is pressed against the end portion of the partition wall, the sealing member is deformed so that the cavity portion is crushed, so that the space between the adjacent first flow path and the second flow path is ensured. Can be sealed to.
  • the heat exchanger according to still another aspect is the heat exchanger of [17].
  • the cavity (91) is composed of a plurality of small cavities.
  • the sealing member when the abutting portion is pressed against the end portion of the partition wall, the sealing member is deformed so that the cavity portion is crushed, so that the space between the adjacent first flow path and the second flow path is ensured. Can be sealed to.
  • the heat exchanger according to still another aspect is the heat exchanger of [16].
  • a seal groove portion (110) recessed with respect to the end portion (23a) is formed at the end portion (23a) of the partition wall (23).
  • the seal groove (110) is defined by two inclined surfaces (110a, 110b) connected to each other at the bottom of the seal groove (110).
  • the sealing member (100) includes a deformable contact portion (101). The contact portion (101) is inserted into the seal groove portion (110) and comes into contact with each of the two inclined surfaces (110a, 110b).
  • the contact portion when the contact portion is pressed against the seal groove portion, the contact portion is deformed and comes into contact with each of the two inclined surfaces, so that between the adjacent first flow path and the second flow path. Can be reliably sealed.
  • the heat exchanger according to still another aspect is the heat exchanger of [19].
  • the contact portion (101) has a J-shaped or L-shaped cross-sectional shape.
  • the contact portion when the contact portion is pressed against the seal groove portion, the contact portion is deformed and comes into contact with each of the two inclined surfaces, so that between the adjacent first flow path and the second flow path. Can be reliably sealed.
  • the heat exchanger according to still another aspect is the heat exchanger of [20].
  • the contact portion (101) has a J-shaped cross-sectional shape, and includes a portion having a cross-sectional shape that is at least partially curved in an arc shape.
  • the contact portion when the contact portion is pressed against the seal groove portion, the contact portion is deformed and comes into contact with each of the two inclined surfaces, so that between the adjacent first flow path and the second flow path. Can be reliably sealed.
  • the heat exchanger according to still another aspect is the heat exchanger according to any one of [19] to [21].
  • the two inclined surfaces (110a, 110b) are surfaces having a curvature.
  • the contact portion when the contact portion is pressed against the seal groove portion, the contact portion is deformed and comes into contact with each of the two inclined surfaces, so that between the adjacent first flow path and the second flow path. Can be reliably sealed.
  • the heat exchanger according to still another aspect is the heat exchanger according to any one of [1] to [22].
  • the covering portion (3) is detachably attached to the main body portion (2).
  • the raw materials remaining in the first flow path and the second flow path after the laminated molding of the main body portion can be easily removed. Further, after using the heat exchanger, it is possible to easily confirm the presence or absence of blockage in the first flow path and the second flow path.
  • the heat exchanger according to still another aspect is the heat exchanger according to any one of [1] to [23].
  • the width of each of the first flow path (21) and the second flow path (22) is 3 mm or less.
  • the overhang portion has a length of 3 mm or less, laminated modeling is possible without using a support. Therefore, if the width of each of the first flow path and the second flow path is 3 mm or less, when the heat exchangers are laminated and modeled in the extending direction of the first flow path and the second flow path, the respective flow paths are formed.
  • the length of the ribs is 3 mm or less, so that the ribs can be laminated without using a support.
  • the heat exchanger according to still another aspect is the heat exchanger according to any one of [1] to [24].
  • the main body (2) is a laminated model of metal powder.
  • the metal powder remains in the first flow path and the second flow path after the laminated molding of the metal powder, but the first opening of the first flow path and the second opening of the second flow path. Since the portion is exposed, the residual metal powder can be easily removed through the first opening and the second opening.
  • the method for manufacturing a heat exchanger is as follows.
  • the metal powder of the laminated molding remains in the first flow path and the second flow path after the laminated molding of the main body portion, but the first opening of the first flow path and the first opening of the first flow path and Since the second opening of the second flow path is exposed, the residual metal powder can be easily removed through the first opening and the second opening.
  • the method for manufacturing a heat exchanger according to another aspect is the method for manufacturing a heat exchanger according to [26].
  • the inside of the main body portion (2) is provided via the first opening (27) and the second opening (28). Includes a step of confirming whether or not the metal powder remains.
  • the metal powder of the laminated molding remains in the first flow path and the second flow path after the laminated molding of the main body portion, the first opening and the second flow of the first flow path. Since the second opening of the road is exposed, the residual metal powder can be easily removed through the first opening and the second opening.
  • the method for manufacturing a heat exchanger is as follows.
  • the method for manufacturing the heat exchanger (1) according to [15]. The step of laminating and modeling the main body (2) from the metal powder, In each of the first end surface (2b) and the second end surface (2c) of the main body portion (2), each of the plurality of first closing walls (31) and the plurality of second closing walls (32) Steps to scrape each so that they are flush with each other, After the step of laminating the main body (2), the metal powder remaining inside the main body (2) is removed through the first opening (27) and the second opening (28). Steps to do and After the step of removing the metal powder, a step of attaching the covering portion (3) to the main body portion (2) so as to cover the exposure of the first opening (27) and the second opening (28). And include.
  • each of the plurality of first closing walls and each of the plurality of second closing walls can be easily flushed.
  • the method for confirming blockage of the heat exchanger is as follows. [23] The method for confirming blockage of the heat exchanger. A step of removing the covering portion (3) from the main body portion (2) to expose the first opening (27) and the second opening (28). A step of identifying a blocked portion of the first flow path (21) and the second flow path (22) via each of the first opening (27) and the second opening (28). After the step of identifying the blocked portion, the covering portion (3) is attached to the main body portion (2) so as to cover the exposure of the first opening (27) and the second opening (28). Including steps.
  • the first opening of the first flow path and the second opening of the second flow path are obtained by removing the covering portion from the main body portion after using the heat exchanger. Is exposed, so that it is possible to easily confirm the presence or absence of blockage in the first flow path and the second flow path through the first opening and the second opening.
  • the heat exchanger blockage confirmation method is the heat exchanger blockage confirmation method according to [29]. After the step of identifying the blocked portion, the step of removing the blockage of the blocked portion is included. According to such a blockage confirmation method, the blockage removal work can be efficiently performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

第1流体と第2流体とが熱交換する熱交換器は、積層造形体である本体部であって、第1流体が流通する第1流路及び第2流体が流通する第2流路を含む本体部と、本体部に取付けられる被覆部とを備え、本体部には第1流路の第1開口部及び第2流路の第2開口部が形成され、被覆部は、第1開口部及び第2開口部の露出を被覆するようにして本体部に取付けられている。

Description

熱交換器、熱交換器の製造方法、及び熱交換器の閉塞確認方法
 本開示は、熱交換器、熱交換器の製造方法、及び熱交換器の閉塞確認方法に関する。
 様々な装置やプラント等において、流体の加熱又は冷却を目的に熱交換器が使用されている。熱交換器には様々なタイプのものが存在するが、例えば、筒状のケーシングの内側に、プレートの積層体から形成された熱交換器コアを収容した構成のものが知られている(特許文献1)。
特許第3406896号公報
 しかしながら、特許文献1のようにプレートを積層して熱交換器コアを形成すると、どうしても熱交換器コアの形状に制約ができてしまう。これに対し、近年では、金属を積層造形して製品を造形する3次元積層造形(付加的製造方法:addirive manufacturing)によって熱交換器を製造することが行われるようになっている。3次元積層造形によれば、熱交換器コアの形状の制約を大幅に緩和することができる。熱交換器には微細構造や薄肉構造が多く含まれるため、熱交換機の造形には、パウダーベッド方式の3次元積層造形が適している。この方式では、熱交換器の造形後に熱交換器の内部に残存する余剰な金属粉末を除去する必要がある。
 例えば熱交換器を流れる流体の流路内に残存する金属粉末を除去しようとすると、通常は各流路が熱交換器の外部に対して直接は開口していないので、各流路内に残存する金属粉末を、例えば、各流路に連通するヘッダ流路に送り、そのヘッダ流路の開口から金属粉末を払い出すことになる。このように、パウダーベッド方式の3次元積層造形で熱交換器を造形した場合は通常、金属粉末を長い経路を介して排出させる必要があったり、金属粉末を抜き出す開口が小さかったりして、金属粉末が十分に抜き出されずに熱交換器の内部に残存してしまう可能性があった。また、熱交換器を使用することによって流路内に閉塞が生じた場合に、上述した熱交換器の構成に起因してメンテナンス作業が困難になるという問題点もあった。
 本開示の少なくとも1つの実施形態は、上述の事情に鑑みて、積層造形時に内部に残存する原材料を容易に除去できる熱交換器及び熱交換器の製造方法並びに熱交換器の使用後に内部の閉塞を容易に確認できる熱交換器の閉塞確認方法を提供することを目的とする。
 上記目的を達成するため、本開示に係る熱交換器は、第1流体と第2流体とが熱交換する熱交換器であって、前記熱交換器は、積層造形体である本体部であって、前記第1流体が流通する第1流路及び前記第2流体が流通する第2流路を含む本体部と、前記本体部に取付けられる被覆部とを備え、前記本体部には前記第1流路の第1開口部及び前記第2流路の第2開口部が形成され、前記被覆部は、前記第1開口部及び前記第2開口部の露出を被覆するようにして前記本体部に取付けられている。
 また、本開示に係る熱交換器の製造方法は、第1流体と第2流体とが熱交換する熱交換器の製造方法であって、前記第1流体が流通する第1流路及び前記第2流体が流通する第2流路を含むとともに前記第1流路の第1開口部及び前記第2流路の第2開口部が形成された本体部を、金属粉末から積層造形するステップと、前記本体部を積層造形するステップの後に、前記本体部の内部に残存する前記金属粉末を前記第1開口部及び前記第2開口部を介して除去するステップと、前記金属粉末を除去するステップの後に、前記第1開口部及び前記第2開口部の露出を被覆するようにして前記本体部に被覆部を取付けるステップとを含む。
 本開示の熱交換器によれば、本体部の積層造形後に第1流路及び第2流路内に積層造形の原材料が残存するが、第1流路の第1開口部及び第2流路の第2開口部が露出しているので、第1開口部及び第2開口部を介して、残存する原材料を容易に除去することができる。また、熱交換器の使用後に、被覆部を本体部から取り外すことによって、第1流路の第1開口部及び第2流路の第2開口部が露出するので、第1流路及び第2流路内の閉塞の有無を容易に確認することができる。
 本開示の熱交換器の製造方法によれば、本体部の積層造形後に第1流路及び第2流路内に積層造形の金属粉末が残存するが、第1流路の第1開口部及び第2流路の第2開口部が露出しているので、第1開口部及び第2開口部を介して、残存する金属粉末を容易に除去することができる。
本開示の少なくとも一実施形態に係る熱交換器の斜視図である。 図1の破線L1に沿って切断した切断面の端面図である。 図2のIII-III線に沿った断面図である。 図1の熱交換器において被覆部を取外した状態の本体部の端面の一部の平面図である。 本開示の少なくとも一実施形態に係る熱交換器の本体部の長手方向の一端の端面の一部の拡大断面図である。 本開示の少なくとも一実施形態に係る熱交換器の製造方法のフローチャートである。 本開示の少なくとも一実施形態に係る熱交換器の使用後の閉塞確認方法のフローチャートである。 本開示の少なくとも一実施形態に係る熱交換器の斜視図である。 本開示の少なくとも一実施形態に係る熱交換器において第1蓋を取外した状態の本体部の第1端面の一部の平面図である。 本開示の少なくとも一実施形態に係る熱交換器において第2蓋を取外した状態の本体部の第2端面の一部の平面図である。 本開示の少なくとも一実施形態に係る熱交換器の一端側の一部の分解斜視図である。 本開示の少なくとも一実施形態に係る熱交換器における第1開口部を示す図である。 本開示の少なくとも一実施形態に係る熱交換器における第2開口部を示す図である。 本開示の少なくとも一実施形態に係る熱交換器の分解斜視図である。 本開示の少なくとも一実施形態に係る熱交換器の筐体部の一部の正面拡大図である。 本開示の少なくとも一実施形態に係る熱交換器の一端側の一部の分解斜視図である。 本開示の少なくとも一実施形態に係る熱交換器の変形例の一端側の一部の分解断面図である。 本開示の少なくとも一実施形態に係る熱交換器の本体部の一端側の一部の平面図である。 本開示の少なくとも一実施形態に係る熱交換器の変形例の本体部の一端側の一部の斜視図である。 本開示の少なくとも一実施形態に係る熱交換器の別の変形例のブロック構成図である。 本開示の少なくとも一実施形態に係る熱交換器の一端側の一部の断面図である。 本開示の少なくとも一実施形態に係る熱交換器の一端側の一部の断面図である。 本開示の少なくとも一実施形態に係る熱交換器の一端側の一部の断面図である。 本開示の少なくとも一実施形態に係る熱交換器の一端側の一部の断面拡大図である。
 以下、本開示の実施形態による熱交換器、この熱交換器の積層造形方法、及びこの熱交換器の閉塞確認方法について、図面に基づいて説明する。かかる実施形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。
(実施形態1)
<本開示の実施形態1に係る熱交換器の構成>
 図1に示されるように、本開示の実施形態1に係る熱交換器1は、第1流体と第2流体とが熱交換する熱交換器であって、本体部2と、本体部2に取付けられる被覆部3とを備えている。ここで、第1流体及び第2流体はそれぞれ、液体でも気体でもよく、通常は両者の温度は異なっている。限定はしないが、本体部2は直方体形状とすることができる。本体部2が直方体形状を有する場合、本体部2の長手方向の一端に、被覆部3である矩形の蓋部材3aが取り付けられている。被覆部3は本体部2に対して、ボルトによる締結等によって取外し可能に取付けられてもよいし、溶接や接着剤等で不可逆的に取付けられてもよい。
 図2に示されるように、本体部2には、第1流体が流通する第1流路21と、第2流体が流通する第2流路22とが形成されている。第1流路21及び第2流路22はそれぞれ、本体部2の長手方向(図2では紙面に対して垂直な方向)に沿って延びるように形成されている。第1流路21及び第2流路22は、本体部2の長手方向に対して垂直な方向に交互に配列されている。隣り合う第1流路21と第2流路22とは、隔壁23によって隔てられている。尚、第1流路21及び第2流路22それぞれの個数、すなわち隔壁23の個数については、図2で示される個数に限定するものではなく、任意の個数に設計可能である。
 必須の構成ではないが、各第1流路21及び各第2流路22はそれぞれ、複数の区画壁24,25によって複数の分割流路21a及び分割流路22aに区画されてもよい。この場合、分割流路21a及び22aそれぞれの個数、すなわち区画壁24,25の個数については、図2で示される個数に限定するものではなく、任意の個数に設計可能である。図3に示される構成も必須の構成ではないが、各第1流路21及び各第2流路22には、隣り合う隔壁23,23間を延びるように1つ以上のリブ26を設けてもよい。
 図4に示されるように、本体部2の長手方向の一端の端面2aには、各第1流路21の第1開口部27及び各第2流路22の第2開口部28が形成されている。すなわち、本体部2に蓋部材3a(図1参照)を取付けていない状態では、端面2aにおいて各第1流路21の第1開口部27及び各第2流路22の第2開口部28が露出する。第1開口部27及び第2開口部28を覆うように本体部2の端面2aに蓋部材3aを取付けると(図1の状態)、第1開口部27及び第2開口部28の露出が被覆される。
 図1に示されるように、熱交換器1には、第1流体を各第1流路21(図2及び3参照)に流入させるための第1ヘッダ流路4と、第1流体が各第1流路21を流通した後に集められる第1ヘッダ流路5と、第2流体を各第2流路22(図2及び3参照)に流入させるための第2ヘッダ流路6と、第2流体が各第2流路22を流通した後に集められる第2ヘッダ流路7とが設けられている。熱交換器1における熱交換動作を説明する際に詳述するが、図1の構成は、各第1流路21を流通する第1流体と各第2流路22を流通する第2流体とが対向流の場合であり、第1流体と第2流体とが並流の場合は、第1ヘッダ流路4と第1ヘッダ流路5との位置を入れ替えた構成、又は第2ヘッダ流路6と第2ヘッダ流路7との位置を入れ替えた構成のいずれかとなる。
 図5に示されるように、区画壁24,25のそれぞれの端部24a,25aは、隔壁23の端部23aよりも本体部2の長手方向の他端側(図5では下方側)に位置している。このため、端面2aの近傍では、各第1流路21及び各第2流路22は区画壁24,25によって複数の分割流路21a及び分割流路22aに区画されておらず、各分割流路21a及び分割流路22aに連通する第1分配流路21b及び第2分配流路22bが構成されている。
 図4に示されるように、各第1分配流路21bはヘッダ流路4に連通し、各第2分配流路22bは第2ヘッダ流路7に連通している。各第2分配流路22bは、第1ヘッダ流路4側の端部で、第2流路22を画定する隣り合う2つの隔壁23,23のそれぞれに接続された壁23bによって封止されることにより、第1ヘッダ流路4に連通しないようになっている。各第1分配流路21bは、第2ヘッダ流路7側の端部で、第1流路21を画定する隣り合う2つの隔壁23,23のそれぞれに接続された壁23cによって封止されることにより、第2ヘッダ流路7に連通しないようになっている。
 上述した第1ヘッダ流路4と第1流路21とが連通する構成及び第2ヘッダ流路7と第2流路22とが連通する構成と同様に、本体部2の長手方向の他端側において、第1ヘッダ流路5と第1流路21とが連通するとともに第2ヘッダ流路6と第2流路22とが連通しているが、これらの構成は図1~5には図示していない。
 本体部2の長手方向の一端側が上述した図4の構成の場合、蓋部材3aを本体部2の端面2aに取付ける際に、第1流路21及び第2流路22間のシールを形成する必要がある。蓋部材3aを取外し可能に本体部2の端面2aに取付ける場合には、例えば、ゴム製の板や液状ガスケット等のシール部材を蓋部材3aと端面2aとの間に挟み込んで、蓋部材3aを本体部2に対してボルトで締結することで、上記シールの形成が可能である。また、蓋部材3aを不可逆的に本体部2の端面2aに取付ける場合には、例えば、蓋部材3aを端面2aに載置した状態で、蓋部材3aの外表面側から、隔壁23の端部23a(図5参照)及び壁23b,23cそれぞれの端部に沿ってレーザー照射することにより、蓋部材3aの裏面と隔壁23の端部23a及び壁23b,23cそれぞれの端部とが接合されて、上記シールの形成が可能である。その他に、蓋部材3aと本体部2の端面2aとの接合位置にろう材を塗布し、蓋部材3aを端面2aに載置した状態で炉中ろう付けをしたり、蓋部材3aと本体部2の端面2aとを接着剤で接着すること等によっても上記シールの形成は可能である。
<本開示の実施形態1に係る熱交換器における熱交換動作>
 次に、熱交換器1において第1流体と第2流体とが熱交換される熱交換動作について説明する。図1に示されるように、第1流体が第1ヘッダ流路4に供給されるとともに第2流体が第2ヘッダ流路6に供給される。図4に示されるように、本体部2の長手方向の一端側では、第1ヘッダ流路4に供給された第1流体は、第1分配流路21bを介して、各第1流路21の各分割流路21aに流入する。一方、本体部2の長手方向の他端側では、第2ヘッダ流路6に供給された第2流体は、同様の動作で、各第2流路22の各分割流路22aに流入する。第1流路21を流通する第1流体と第2流路22を流通する第2流体とは、隔壁23を介して熱交換される。尚、熱交換器1が図1の構成を有する場合、第1流体及び第2流体それぞれの流れる方向は、本体部2の長手方向において逆方向である。ただし、第1流体及び第2流体はこのような対向流で流れることに限定するものではなく、並流で流れてもよい。
 第1流路21及び第2流路22にリブ26が設けられている場合には、第1流体及び第2流体がリブ26に衝突したりリブ26を迂回するように流れたりして第1流体及び第2流体の流れが乱されることにより、熱交換の阻害要因となる境界層の破壊が行われる。これにより、第1流体及び第2流体間の熱交換効率が向上する。また、リブ26が一対の隔壁23,23の両方に接続する場合、隔壁23の変形のおそれ、すなわち流路の狭窄のおそれを低減することもできる。
 本体部2の長手方向の一端側では、第2流体が第2流路22を流通して第1流体と熱交換した後、各第2流路22を流通した第2流体は、各第2分配流路22bを介して第2ヘッダ流路7に流入して集められ、熱交換器1から流出する。一方、本体部2の長手方向の他端側では、第1流体が第1流路21を流通して第2流体と熱交換した後、各第1流路21を流通した第1流体は、同様の動作で、第1ヘッダ流路5に流入して集められ、熱交換器1から流出する。
<本開示の実施形態1に係る熱交換器の製造方法>
 本開示の実施形態1に係る熱交換器1のうち本体部2は、その構成の複雑さから、プレートの積層や鋳造等では製造が難しい。このため、本体部2は、原材料としての金属粉末を積層造形することにより製造することが好ましい。この場合、本体部2は、金属粉末の積層造形体である。本体部2の積層造形に用いられる金属粉末は特に限定しないが、ステンレスやチタン等の粉末を用いることができる。尚、蓋部材3aは、その構成が本体部2ほど複雑ではないので鋳造等で製造してもよく、本体部2と同様に金属粉末を積層造形することにより製造してもよい。
 次に、熱交換器1の製造方法を図6のフローチャートに基づいて説明する。まず、ベースプレート上に本体部2を積層造形する(ステップS1)。具体的には、ベースプレート上に金属粉末を敷き詰め、金属粉末にレーザーや電子ビームを照射して必要な部分を溶かして固める。この上にさらに金属粉末を敷き詰めて、このような動作を繰り返すことにより、本体部2が積層造形される。本体部2の積層方向は、本体部2の長手方向の他端から一端に向かう方向(又はこの逆)、すなわち第1流路21及び第2流路22の延びる方向が好ましい。第1流路21及び第2流路22の延びる方向が水平になるように本体部2を積層しようとすると、隔壁23がオーバーハング部となってしまい、このオーバーハング部を支えるサポートを広範囲に設けなくてはならなくなる。この場合、本体部2の構成の複雑さを考慮するとサポートの除去が実質的に不可能となり、本体部2の積層造形が実質的に不可能となってしまう。
 また、第1流路21及び第2流路22の流路幅、すなわち隣り合う隔壁23,23間の間隔を3mm以下、好ましくは1mm程度にすることが好ましい。3mm以下の長さのオーバーハング部であれば、サポートなしに積層造形が可能であることが経験的にわかっている。図3のようなリブ26を第1流路21及び第2流路22に設ける場合、リブ26がオーバーハング部となるが、第1流路21及び第2流路22の流路幅がこのような範囲内であれば、リブ26の長さも3mm以下となるので、サポートなしにリブ26の積層造形が可能となる。
 ベースプレート上に本体部2を積層造形し終えたら、本体部2をベースプレートから切り離す(ステップS2)。金属粉末を積層造形した本体部2の内部、例えば第1流路21及び第2流路22内等には、溶融固化しなかった金属粉末が残存する。このため、ステップS2に続いて、本体部2の内部に残存する金属粉末の除去を行う(ステップS3)。
 ステップS1及びS2によって積層造形された本体部2の長手方向の一端の端面2aには、上述したように、各第1流路21の第1開口部27及び各第2流路22の第2開口部28が形成されている。このため、第1開口部27及び第2開口部28が鉛直下向きになるようにしてゆすったり、第1開口部27及び第2開口部28を介して第1流路21及び第2流路22の内部を吸引したり、第1流路21及び第2流路22に流体を流したりすることにより、第1流路21及び第2流路22内に残存する金属粉末を容易に除去することができる。
 ステップS3の後に必須のステップではないが、第1開口部27及び第2開口部28を介して第1流路21及び第2流路22の内部に光を照射したり、ファイバースコープを挿入したりすることにより、第1流路21及び第2流路22の内部に金属粉末がまだ残存しているか否かを確認してもよい(ステップS4)。金属粉末の残存を確認した場合には、ステップS3に戻る。
 ステップS3の終了後、又は、ステップS4を行う場合には金属粉末が残存していないことを確認後、第1開口部27及び第2開口部28を被覆するように、すなわち本体部2の端面2aを覆うようにして蓋部材3aを本体部2に取付ける(ステップS5)。
 このように、本体部2の積層造形後に第1流路21及び第2流路22内に積層造形の金属粉末が残存するが、第1流路21の第1開口部27及び第2流路22の第2開口部28が露出しているので、第1開口部27及び第2開口部28を介して、残存する金属粉末を容易に除去することができる。
<本開示の実施形態1に係る熱交換器の使用後の閉塞確認方法>
 蓋部材3aを取外し可能に本体部2に取付けるようにすれば、熱交換器1の使用後に、第1流路21及び第2流路22内の閉塞の有無を確認することができる。以下に、熱交換器1の使用後の閉塞確認方法を図7のフローチャートに基づいて説明する。
 熱交換器1の使用後に、本体部2から蓋部材3aを取外す(ステップS11)。続いて、第1開口部27及び第2開口部28を介して第1流路21及び第2流路22の内部の閉塞箇所を特定する(ステップS12)。具体的には、第1開口部27及び第2開口部28を介して第1流路21及び第2流路22の内部に光を照射したり、ファイバースコープを挿入したりすることにより、各第1流路21及び各第2流路22の内部に閉塞があるか否かを確認し、閉塞箇所を特定する。
 閉塞箇所を特定したら、必要に応じて閉塞を除去する(ステップS13)。閉塞箇所が少ない場合又は閉塞がない場合には、ステップS13をスキップしてもよい。ステップS13の終了後、又は、ステップS13をスキップした場合には、蓋部材3aを本体部2に取付ける(ステップS14)。
 このように、熱交換器1の使用後に、蓋部材3aを本体部2から取り外すことによって、第1流路21の第1開口部27及び第2流路22の第2開口部28が露出するので、第1流路21及び第2流路22内の閉塞の有無を容易に確認することができる。
(実施形態2)
 次に、実施形態2に係る熱交換器について説明する。実施形態2に係る熱交換器は、実施形態1に対して、本体部2の構成を変更したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態2に係る熱交換器の構成及び熱交換動作>
 図8に示されるように、本開示の実施形態2に係る熱交換器1では、蓋部材3aは、本体部2の長手方向の一端側の第1端面2bを覆うように本体部2に取付けられる第1蓋3a1と、本体部2の長手方向の他端側の第2端面2cを覆うように本体部2に取付けられる第2蓋3a2とを備えている。その他の構成は実施形態1と同じである。また、実施形態2に係る熱交換器1における熱交換動作も、実施形態1に係る熱交換器1における熱交換動作と同じである。
<本開示の実施形態2に係る熱交換器の製造方法>
 実施形態2に係る熱交換器1の製造方法は、実施形態1に係る熱交換器1の製造方法と基本的には同じである。実施形態2では、2つの蓋部材3a、すなわち第1蓋3a1及び第2蓋3a2のそれぞれを、本体部2の第1端面2b及び第2端面2cを覆うように本体部2に取付ける点で実施形態1と異なる。実施形態2でも、第1蓋3a1及び第2蓋3a2のそれぞれを本体部2から取外せば、第1開口部27及び第2開口部28が露出するので、第1開口部27及び第2開口部28を介して、第1流路21及び第2流路22内に残存する金属粉末を容易に除去することができる。
<本開示の実施形態2に係る熱交換器の使用後の閉塞確認方法>
 実施形態2に係る熱交換器1の使用後の閉塞確認方法は、実施形態1に係る熱交換器1の使用後の閉塞確認方法と基本的には同じである。実施形態2では、2つの蓋部材3a、すなわち第1蓋3a1及び第2蓋3a2のそれぞれを本体部2から取外すことができる点で実施形態1と異なる。実施形態2でも、熱交換器1の使用後に、第1蓋3a1及び第2蓋3a2のそれぞれを本体部2から取り外すことによって、第1流路21の第1開口部27及び第2流路22の第2開口部28が露出するので、第1流路21及び第2流路22内の閉塞の有無を容易に確認することができる。
 実施形態2では、第1蓋3a1及び第2蓋3a2のそれぞれを本体部2から取り外すことによって、第1流路21及び第2流路22のそれぞれの両端が、第1端面2b及び第2端面2cに開口する。そうすると、第1流路21及び第2流路22内に金属粉末や閉塞がない場合には光が第1流路21及び第2流路22を通過するのに対し、第1流路21及び第2流路22内に金属粉末や閉塞がある場合には光が第1流路21及び第2流路22を通過しないので、金属粉末の除去や閉塞の有無の確認が容易になる。
(実施形態3)
 次に、実施形態3に係る熱交換器について説明する。実施形態3に係る熱交換器は、実施形態2に対して、第1端面2b及び第2端面2c近傍の本体部2の構成を変更したものである。尚、実施形態3において、実施形態2の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態3に係る熱交換器の構成>
 図9に示されるように、第2端面2cにおいて、隣り合う第2開口部28,28間に、第1流路21の端部を閉止する第1閉止壁31が設けられている。このため、第2端面2cにおいて、第2開口部28のみが開口するように構成されている。図10に示されるように、第1端面2bにおいて、隣り合う第1開口部27,27間に、第2流路22の端部を閉止する第2閉止壁32が設けられている。このため、第1端面2bにおいて、第1開口部27のみが開口するように構成されている。したがって、実施形態3に係る熱交換器1では、第1開口部27は第1端面2bにおいて露出するとともに第2開口部28は第2端面2cにおいて露出するようになっている。その他の構成は実施形態2と同じである。
<本開示の実施形態3に係る熱交換器における熱交換動作>
 実施形態3に係る熱交換器1における熱交換動作も、実施形態2に係る熱交換器1における熱交換動作と同じである。実施形態3では、第1端面2bにおいて、第1蓋3a1と本体部2との間のシールが不完全であったとしても、第2閉止壁32によって第2流路22から第2流体がリークすることはなく、不完全なシールに起因して生じ得るのは第1開口部27を介した第1流体のリークのみである。一方、第2端面2cにおいて、第2蓋3a2と本体部2との間のシールが不完全であったとしても、第1閉止壁31によって第1流路21から第1流体がリークすることはなく、不完全なシールに起因して生じ得るのは第2開口部28を介した第2流体のリークのみである。このため、第1蓋3a1及び第2蓋3a2のそれぞれと本体部2との間のシールが不完全でリークが生じた場合に、第1端面2b及び第2端面2cのいずれにおいても、第1流体と第2流体とが混ざってしまうことを防ぐことができる。
<本開示の実施形態3に係る熱交換器の製造方法及び使用後の閉塞確認方法>
 実施形態3に係る熱交換器1の製造方法は、実施形態2に係る熱交換器1の製造方法と基本的には同じである。尚、本体部2を積層造形する際に、第1閉止壁31又は第2閉止壁32のいずれか一方がオーバーハング部になるが、第1流路21及び第2流路22の流路幅が3mm以下であれば、サポートなしに第1閉止壁31又は第2閉止壁32の積層造形が可能となる。また、実施形態3に係る熱交換器1の使用後の閉塞確認方法は、実施形態2に係る熱交換器1の使用後の閉塞確認方法と基本的には同じである。
(実施形態4)
 次に、実施形態4に係る熱交換器について説明する。実施形態4に係る熱交換器は、実施形態1に対して、被覆部3の構成を変更したものである。尚、実施形態4において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態4に係る熱交換器の構成>
 図11に示されるように、本開示の実施形態4に係る熱交換器1では、第1ヘッダ流路4を画定する第1ヘッダ流路壁41は、本体部2に固定された第1固定壁42と、第1固定壁42に取付けられる第1分離壁43とを備えている。第1固定壁42及び第1分離壁43のそれぞれにはフランジ部42a及び43aが設けられ、フランジ部42aとフランジ部43aとの間にシール部材44を挟むようにして、第1分離壁43を第1固定壁42に取付けることができる。尚、フランジ部42a及び43aが配置される位置は特に限定されず、例えば図11に示されるように、フランジ部42aが本体部2の上端面2dに配置されてもよい。第1分離壁43は第1固定壁42に対して、ボルト等を締結することによって取外し可能に取付けられてもよいし、溶接や接着剤等で不可逆的に取付けられてもよい。
 実施形態1で説明したように、第1流路21(図2~5参照)は第1分配流路21b(図4及び5参照)を介して第1ヘッダ流路4に連通している。このため、図12に示されるように、第1開口部27は、第1分配流路21bの第1固定壁42における開口部である。図11に示されるように、第1分離壁43を第1固定壁42から取外した状態では、第1開口部27は第1固定壁42において露出する。一方、第1分離壁43を第1固定壁42に取付けた状態では、第1開口部27の露出を第1分離壁43が被覆する。このため、第1分離壁43は被覆部3を構成する。図11に図示しないが、第1ヘッダ流路5を画定する第1ヘッダ流路壁も同じ構成を有している。
 第2ヘッダ流路7を画定する第2ヘッダ流路壁45は、本体部2に固定された第2固定壁46と、第2固定壁46に取付けられる第2分離壁47とを備えている。第2固定壁46及び第2分離壁47のそれぞれにはフランジ部46a及び47aが設けられ、フランジ部46aとフランジ部47aとの間にシール部材48を挟むようにして、第2分離壁47を第2固定壁46に取付けることができる。尚、フランジ部46a及び47aが配置される位置は特に限定されず、例えば図11に示されるように、フランジ部46aが本体部2の上端面2dに配置されてもよい。第2分離壁47は第2固定壁46に対して、取外し可能に取付けられてもよいし、溶接や接着剤等で不可逆的に取付けられてもよい。
 実施形態1で説明したように、第2流路22(図2~5参照)は第2分配流路22b(図4及び5参照)を介して第2ヘッダ流路7に連通している。このため、図13に示されるように、第2開口部28は、第2分配流路22bの第2固定壁46における開口部である。図11に示されるように、第2分離壁47を第2固定壁46から取外した状態では、第2開口部28は第2固定壁46において露出する。一方、第2分離壁47を第2固定壁46に取付けた状態では、第2開口部28の露出を第2分離壁47が被覆する。このため、第2分離壁47は被覆部3を構成する。図11に図示しないが、第2ヘッダ流路6を画定する第2ヘッダ流路壁も同じ構成を有している。
<本開示の実施形態4に係る熱交換器における熱交換動作>
 実施形態4に係る熱交換器1の構成は、第1分離壁43及び第2分離壁47をそれぞれ第1固定壁42及び第2固定壁46に取付けた状態では、実施形態1に係る熱交換器1の構成と同じになるので、実施形態4に係る熱交換器1における熱交換動作は、実施形態1に係る熱交換器1における熱交換動作と同じである。
<本開示の実施形態4に係る熱交換器の製造方法>
 実施形態4に係る熱交換器1の製造方法は、実施形態1に係る熱交換器1の製造方法と基本的には同じである。実施形態4では、被覆部3が第1分離壁43及び第2分離壁47であるので、図6のフローチャートのステップS3における金属粉末の除去及びステップS4における金属粉末の残存の確認が、第1固定壁42及び第2固定壁46のそれぞれに開口した第1開口部27及び第2開口部28を介して行われる点で、実施形態1と異なる。しかし、実施形態4でも、第1固定壁42及び第2固定壁46のそれぞれに第1分離壁43及び第2分離壁47が取り付けられていない状態では、第1開口部27及び第2開口部28がそれぞれ露出しているので、第1流路21及び第2流路22内に残存する金属粉末を容易に除去することができる。
<本開示の実施形態4に係る熱交換器の使用後の閉塞確認方法>
 実施形態4に係る熱交換器1の使用後の閉塞確認方法は、実施形態1に係る熱交換器1の使用後の閉塞確認方法と基本的には同じである。実施形態4では、被覆部3が第1分離壁43及び第2分離壁47であるので、図7のフローチャートのステップS12における閉塞箇所の特定及びステップS13における閉塞の除去が、第1固定壁42及び第2固定壁46のそれぞれに開口した第1開口部27及び第2開口部28を介して行われる点で、実施形態1と異なる。しかし、実施形態4でも、第1固定壁42及び第2固定壁46のそれぞれに第1分離壁43及び第2分離壁47が取り付けられていない状態では、第1開口部27及び第2開口部28がそれぞれ露出しているので、第1流路21及び第2流路22内の閉塞の有無を容易に確認することができる。
(実施形態5)
 次に、実施形態5に係る熱交換器について説明する。実施形態5に係る熱交換器は、実施形態4に対して、本体部2を筐体部に挿入するカートリッジ型の構成に変更したものである。尚、実施形態5において、実施形態4の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態5に係る熱交換器の構成>
 図14に示されるように、本開示の実施形態5に係る熱交換器1は、実施形態4に係る熱交換器1の本体部2とおおよそ同じ構成を有する本体部2と、本体部2を挿入可能な筐体部50とを備えている。実施形態5の本体部2は、第1固定壁42及び第2固定壁46がそれぞれフランジ部42a(図11参照)及び46a(図11参照)を有していない点で、実施形態4の本体部2と異なる。筐体部50には、本体部2が挿入される挿入空間51が形成されている。図14では挿入空間51の個数は9つであるが、1つの挿入空間51のみが形成されてもよいし、9つに限定せずに任意の複数の個数の挿入空間51が形成されてもよい。筐体部50に複数の挿入空間51が形成されている場合には、各挿入空間51のレイアウトは任意に設計可能である。
 図15に示されるように、挿入空間51は4つの内壁面52によって画定されているが、これら4つの内壁面52は、挿入空間51に本体部2を挿入する際に、第1ヘッダ流路4(図11参照)及び第2ヘッダ流路7(図11参照)が設けられた本体部2の一端側に面する内壁面52aと、第1ヘッダ流路5(図1参照)及び第2ヘッダ流路6(図1参照)が設けられた本体部2の他端側に面する内壁面52bとを含んでいる。内壁面52aには、挿入空間51内に本体部2が挿入される方向に延びる2つの溝53a及び53bが形成され、溝53a及び53b以外の部分に樹脂製のシール部材54aが貼り付けられている。内壁面52bにも、挿入空間51内に本体部2が挿入される方向に延びる2つの溝53c及び53dが形成され、溝53c及び53d以外の部分に樹脂製のシール部材54bが貼り付けられている。
 挿入空間51に本体部2を挿入すると、溝53aを画定する溝画定壁53a1と、本体部2の一端側に固定された第1固定壁42(図11参照)とが組み合わされることにより、第1ヘッダ流路4(図11参照)が画定され、溝53bを画定する溝画定壁53b1と、本体部2の一端側に固定された第2固定壁46(図11参照)とが組み合わされることにより、第2ヘッダ流路7(図11参照)が画定され、溝53cを画定する溝画定壁53c1と、本体部2の他端側に固定された第1固定壁42とが組み合わされることにより、第1ヘッダ流路5(図1参照)が画定され、溝53dを画定する溝画定壁53d1と、本体部2の他端側に固定された第2固定壁46とが組み合わされることにより、第2ヘッダ流路6(図1参照)が画定される。このため、溝画定壁53a1及び53c1はそれぞれ第1分離壁43(図11参照)を構成し、溝画定壁53b1及び53d1はそれぞれ第2分離壁47(図11参照)を構成する。
<本開示の実施形態5に係る熱交換器における熱交換動作>
 本開示の実施形態5に係る熱交換器1では、各挿入空間51に本体部2が挿入された各ユニットの構成は実施形態4の熱交換器1の構成と同じになるので、各ユニットにおける第1流体と第2流体との間の熱交換動作は実施形態4と同じである。熱交換器1が複数のユニットを有する構成の場合には、必要な熱交換能力に応じて必要な個数の本体部2を挿入空間51に挿入することで、熱交換能力の調整を容易に行うことができる。また、複数のユニットを隙間なく配置することができるので、熱交換器1全体をコンパクトにすることができる。さらに、いずれかのユニットに不具合が生じた場合は、熱交換器1全体を停止せずに、不具合の生じたユニットだけメンテナンスができ、熱交換器1を含む装置の停止を回避することができる。
<本開示の実施形態5に係る熱交換器の製造方法>
 実施形態5の本体部2と実施形態4の本体部2とはおおよそ同じ構成を有するので、本開示の実施形態5に係る熱交換器1の製造方法は、図6のフローチャートのステップS1~S4までは実施形態4に係る熱交換器1の製造方法と同じである。このため、実施形態5においても、実施形態4と同様に、第1流路21及び第2流路22内に残存する金属粉末を容易に除去することができる。実施形態5において、ステップS5における蓋部材の取付けは、本体部2を挿入空間51に挿入する動作に相当する。
<本開示の実施形態5に係る熱交換器の使用後の閉塞確認方法>
 本開示の実施形態5に係る熱交換器1の使用後の閉塞確認方法では、図7のフローチャートのステップS11における蓋部材の取外しは、挿入空間51から本体部2を取外すことに相当する。実施形態5の本体部2と実施形態4の本体部2とはおおよそ同じ構成を有するので、図7のフローチャートのステップS12及びS13は実施形態4と同じである。このため、実施形態5においても、実施形態4と同様に、第1流路21及び第2流路22内の閉塞の有無を容易に確認することができる。図7のフローチャートのステップSS14における蓋部材の取付けは、本体部2を挿入空間51に挿入する動作に相当する。
(実施形態6)
 次に、実施形態6に係る熱交換器について説明する。実施形態6に係る熱交換器は、実施形態1~3に対して、被覆部3と本体部2との間のシールの構成を変更したものである。以下では、実施形態3においてシールの構成を変更した構成で実施形態6を説明するが、実施形態1又は2においてシールの構成を変更することにより実施形態6を構成してもよい。尚、実施形態6において、実施形態3の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 実施形態6以降の各実施形態は全て、本体部2と被覆部3との間のシールに関する発明である。このため、実施形態6以降の各実施形態に係る熱交換器1の構成は、被覆部3を本体部2に取付けた状態では、実施形態1~3のいずれかの構成と同じである。このため、実施形態6以降の各実施形態に係る熱交換器1における熱交換動作は、実施形態1~3のいずれかの熱交換器1における熱交換動作と同じである。また、実施形態6以降の各実施形態に係る熱交換器1の製造方法及び熱交換器1の使用後の閉塞確認方法も、実施形態1~3のいずれかの熱交換器1の製造方法及び熱交換器1の使用後の閉塞確認方法と同じである。したがって、実施形態6以降の各実施形態では、特に言及すべき事項がない場合には、熱交換器1における熱交換動作と、熱交換器1の製造方法と、熱交換器1の使用後の閉塞確認方法との説明は省略する。
<本開示の実施形態6に係る熱交換器の構成>
 図16に示されるように、本開示の実施形態6に係る熱交換器1において、本体部2の端面2bは、その縁部に沿って延びる平坦部2a1を含んでいる。第1ヘッダ流路4と、第1開口部27とは、平坦部2a1に囲まれている。平坦部2a1には、第1ヘッダ流路4及び第2ヘッダ流路7(図4参照)に沿って延びるとともに窪んだ溝部61と、第1分配流路21bに沿って延びるとともに窪んだ溝部62とが形成されている。溝部61及び62のそれぞれの底部にはシール部材63及び64が設けられている。蓋部材3aの端面2aに面する裏面には、溝部61及び62のそれぞれに嵌合可能に構成された凸状の畝部65及び66が形成されている。
 本体部2の端面2a近傍にはフランジ部67が設けられている。フランジ部67には、ボルトが挿入可能な孔67aが形成されている。蓋部材3aには、蓋部材3aを本体部2に取付けた際にフランジ部67と重なる位置にフランジ部68が形成されている。フランジ部68には、ボルトが挿入可能な孔68aが形成されている。その他の構成は実施形態1と同じである。
 畝部65及び66のそれぞれが溝部61及び62に嵌合すると、畝部65及び66のそれぞれはシール部材63及び64を押圧する。この状態を維持するために、重ね合わされたフランジ部67及び68それぞれの孔67a及び67bにボルトを挿入してナットで締結する。これにより、蓋部材3aと本体部2との間にシールが形成される。
 このように、熱交換器1の製造時や熱交換器1のメンテナンス後に蓋部材3aを本体部2に取り付ける際に、本体部2と蓋部材3aとの間のシールの形成が容易になる。尚、本体部2の反対側の端面2cにおいても、上記と同様のシールの構成を有することによって、本体部2と蓋部材3aとの間のシールの形成が容易になる。
<本開示の実施形態6に係る熱交換器のいくつかの変形例の構成>
 実施形態6では、本体部2の端面2aに窪んだ溝部61及び62が形成されるとともに蓋部材3aに凸状の畝部65及び66が形成されていたが、この構成とは逆に、蓋部材3aに窪んだ溝部61及び62が形成されるとともに本体部2の端面2aに凸状の畝部65及び66が形成された構成であってもよい。また、実施形態6では、溝部61及び62の内部にシール部材63及び64が設けられていたが、畝部65及び66のそれぞれにシール部材63及び64を設ける構成であってもよい。
 実施形態6では畝部65及び66は、シール部材63及び64を押圧しても弾性変形しない構成であったが、溝部61及び62内でシール部材63及び64を押圧する際に、溝部61及び62の深さ方向に弾性変形可能な構成であってもよい。例えば、図17に示されるように、畝部65は、略C字状に湾曲した断面形状を有するばね部材65aとすることができる。この場合も、シール部材63は、溝部61内に設けるのではなく、ばね部材65aに設けてもよい。尚、図17に図示していないが、畝部66についても同じ構成とすることができる。
(実施形態7)
 次に、実施形態7に係る熱交換器について説明する。実施形態7に係る熱交換器は、実施形態6に対して、被覆部3と本体部2との間のシールの構成を変更したものである。尚、実施形態7において、実施形態6の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態7に係る熱交換器の構成>
 図18に示されるように、本開示の実施形態7に係る熱交換器1において、シール部材63は、内側シール部材71と、内側シール部材71に対して第1開口部27及び第2開口部28とは反対側に設けられた外側シール部材72とを有している。また、シール部材64は、内側シール部材73と、内側シール部材73に対して第1開口部27及び第2開口部28とは反対側に設けられた外側シール部材74とを有している。外側シール部材72及び74のそれぞれには、それらが延びる方向に間隔があいた切欠部72a及び74aが形成されている。その他の構成は実施形態6と同じである。
 第1流体又は第2流体が内側シール部材71及び73のいずれかの部分からリークした場合、リークした流体は、外側シール部材72及び74の切欠部72a及び74aを介して、外部に流出する。切欠部72a及び74aの位置は予め分かっているから、第1流体又は第2流体のリークが生じた場合に、切欠部72a及び74aからリークした流体を確認できるので、リークを早期かつ容易に検知することができる。
<本開示の実施形態7に係る熱交換器のいくつかの変形例の構成>
 図19に示されるように、本体部2に、切欠部74aからリークした第1流体又は第2流体を貯留可能な貯留部75が切欠部74aに連通するように形成されてもよい。図19には図示しないが、本体部2に、切欠部72aからリークした第1流体又は第2流体を貯留可能な貯留部75と同様の貯留部が切欠部74aに連通するように形成されてもよい。貯留部75にリークした流体を貯留することができるので、熱交換器1の外部へのリークを一時的に防止することができる。
 この場合、貯留部75に第1流体又は第2流体が流入したことを検知する検知部であるセンサSを設けてもよい。これにより、第1流体又は第2流体のリークをセンサSで検知することができるので、センサSによる検知を遠隔監視することで早期にリークを検知することができる。
 図20に示されるように、熱交換器1に、第1流路21(図18参照)へ第1流体を供給又は第1流体の供給を停止するための第1開閉弁76と、第2流路22(図18参照)へ第2流体を供給又は第2流体の供給を停止するための第2開閉弁77と、センサSと第1開閉弁76と第2開閉弁77とに電気的に接続されたコンピューター等の制御部78とを設けてもよい。この場合、制御部78は、貯留部75へ第1流体又は第2流体が流入したことを検知した信号がセンサSから伝送されると、第1開閉弁76及び第2開閉弁77を閉めるように構成されている。これにより、センサSによるリークの検知に基づいて、制御部78が自動的に第1開閉弁76及び第2開閉弁77を閉めることにより、第1流路21への第1流体の供給及び第2流路22への第2流体の供給を停止するので、早期に熱交換器1の外部へのリークを防止することができる。
(実施形態8)
 次に、実施形態8に係る熱交換器について説明する。実施形態8に係る熱交換器は、実施形態3に対して、被覆部3と本体部2との間のシールの構成を変更したものである。実施形態8において、実施形態3の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態8に係る熱交換器の構成>
 図21に示されるように、第1蓋3a1及び第2蓋3a2のそれぞれの裏面に複数の第1シール部材81及び複数の第2シール部材82が設けられている。第1シール部材81及び第2シール部材82はそれぞれ、第1蓋3a1及び第2蓋3a2のそれぞれを本体部2(図1参照)に取付けた際に、第1閉止壁31及び第2閉止壁32に当接するように構成されている。このため、第1シール部材81及び第2シール部材82はそれぞれ、第1蓋3a1及び第2蓋3a2のそれぞれを本体部2に取付けた際に、少なくとも第1閉止壁31及び第2閉止壁32のそれぞれの一端から他端まで延びるように構成されている。その他の構成は実施形態3と同じである。
 このように、第1蓋3a1及び第2蓋3a2の厚さを大きくしなくても、第1シール部材81及び第2シール部材82がそれぞれ、各第1流路21同士の間及び各第2流路22同士の間のそれぞれをシールできるので、熱交換器1の重量を低減することができる。
 実施形態8では、複数の第1閉止壁31はそれぞれ第2端面2cにおいて面一であるとともに複数の第2閉止壁32はそれぞれ第1端面2bにおいて面一であることが好ましい。このような構成によれば、第1蓋3a1を本体部2に取り付けた状態で、各第1閉止壁31に対する各第1シール部材81の押圧力が均一になるとともに、第2蓋3a2を本体部2に取り付けた状態で、各第2閉止壁32に対する各第2シール部材82の押圧力が均一になるので、各第1シール部材81及び各第2シール部材のシール性能のばらつきを低減することができる。
 尚、複数の第1閉止壁31及び複数の第2閉止壁32をそれぞれ面一にするためには、例えば、第1閉止壁31及び第2閉止壁32をそれぞれ厚めに製造しておき、複数の第1閉止壁31及び複数の第2閉止壁32がそれぞれ面一となるように削る、すなわち薄肉化すればよい。これにより、複数の第1閉止壁31のそれぞれ及び複数の第2閉止壁32のそれぞれを容易に面一にすることができる。
 実施形態8において、第1シール部材81及び第2シール部材82に用いる材質は、熱交換器1に要求される耐熱性、すなわち第1流体及び第2流体の温度に応じて選択する必要がある。例えば、第1流体及び第2流体の温度が100℃程度以下である場合には、当該材質としてゴム等の樹脂を選択することができる。第1流体及び第2流体の温度が100℃から500℃程度までの範囲であれば、当該材質として、銀、金、インジウム等の加工しやすい金属を選択することができる。
(実施形態9)
 次に、実施形態9に係る熱交換器について説明する。実施形態9に係る熱交換器は、実施形態1~3に対して、被覆部3と本体部2との間のシールの構成を変更したものである。以下では、実施形態1においてシールの構成を変形した構成で実施形態9を説明するが、実施形態2又は3においてシールの構成を変形することにより実施形態9を構成してもよい。尚、実施形態9において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態9に係る熱交換器の構成>
 図22に示されるように、蓋部材3aの裏面に複数のシール部材90が設けられている。各シール部材90は、蓋部材3aを本体部2(図1参照)に取付けた際に、隔壁23の端部23aに当接するように構成されている。このため、シール部材90は、蓋部材3aを本体部2に取付けた際に、少なくとも隔壁23の端部23aの一端から他端まで延びるように構成されている。
 シール部材90は、シール部材90の内部に設けられる空洞部91と、隔壁23の端部23aに当接する当接部92とを含んでいる。このため、蓋部材3aを本体部2に取付けた際に当接部92が隔壁23の端部23aに押し付けられると、空洞部91が潰れるようにしてシール部材90は変形するように構成されている。当接部92が隔壁23の端部23aに当接する面積を小さくするほど、当接部92が端部23aに押し付けられる際に当接部92が受ける圧力が大きくなるので、空洞部91が潰れやすくなる。その他の構成は実施形態1と同じである。
 このように、当接部92が隔壁23の端部23aに押し付けられると空洞部91が潰れるようにしてシール部材90は変形するので、隣り合う第1流路21と第2流路22との間を確実にシールすることができる。
<本開示の実施形態9に係る熱交換器の変形例の構成>
 尚、シール部材90の形状は、図22に示される形状に限定するものではない。当接部92が隔壁23の端部23aに押し付けられると空洞部91が潰れるようにしてシール部材90が変形すればどのような形状であってもよいので、図22のように大きな1つの空洞部91が存在する構成ではなく、複数の小さな空洞が集まって構成されたいわゆるラティスのような多孔体であってもよい。また、空洞部91の構成だけではなく、当接部92の形状も任意に設計可能である。
(実施形態10)
 次に、実施形態10に係る熱交換器について説明する。実施形態10に係る熱交換器は、実施形態1~3に対して、被覆部3と本体部2との間のシールの構成を変更したものである。以下では、実施形態1においてシールの構成を変形した構成で実施形態10を説明するが、実施形態2又は3においてシールの構成を変形することにより実施形態10を構成してもよい。尚、実施形態10において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態10に係る熱交換器の構成>
 図23に示されるように、蓋部材3aの裏面に複数のシール部材100が設けられている。各シール部材100は、蓋部材3aを本体部2(図1参照)に取付けた際に、隔壁23の端部23aに当接するように構成されている。このため、シール部材100は、蓋部材3aを本体部2に取付けた際に、少なくとも隔壁23の端部23aの一端から他端まで延びるように構成されている。
 隔壁23の端部23aには、端部23aに対して窪んだシール溝部110が形成されている。シール溝部110は、シール溝部110の底部110cで互いに接続する2つの傾斜面110a及び110bによって画定されている。例えば、シール溝部110の断面形状はV字状である。シール部材100は、変形可能な当接部101を含んでいる。当接部101は、シール溝部110内に挿入されて2つの傾斜面110a及び110aのそれぞれに当接するように構成されている。例えば、当接部101の断面は、円弧状に湾曲した形状である。これにより、シール部材100は、略J字状の断面形状を有している。その他の構成は実施形態1と同じである。
 図24に示されるように、シール部材100とシール溝部110との相対位置が合っていれば、シール部材100の当接部101は、シール溝部110の2つの傾斜面110a及び110bのそれぞれに当接する。しかし、シール部材100の位置が隔壁23の厚さ方向にずれてしまうと、当接部101は例えば、一方の傾斜面110bのみにしか当接しない場合がある。しかし、この状態でシール部材100が傾斜面110bに対して押し付けられると、当接部101が変形して、当接部101と傾斜面110bとの当接位置が下方にずれていき、やがて、当接部101の他の部分が他方の傾斜面110aに当接するようになる。逆に、当接部101が他方の傾斜面110aのみにしか当接しない場合も同様に、シール部材100が傾斜面110bに対して押し付けられて変形することにより、やがて、当接部101は2つの傾斜面110a及び110bに当接するようになる。
 このように、当接部101がシール溝部110に押し付けられると当接部101が変形して2つの傾斜面110a及び110aのそれぞれに当接するので、隣り合う第1流路21と第2流路22との間を確実にシールすることができる。
<本開示の実施形態10に係る熱交換器の変形例の構成>
 実施形態10では、当接部101が略J字状の断面形状を有していたが、この構成に限定するものではない。当接部101がシール溝部110内に挿入されたときに2つの傾斜面110a及び110bのそれぞれに当接するか、当接部101がシール溝部110内に挿入されたときに2つの傾斜面110a及び110bの一方のみに当接する場合でもシール部材100が変形して2つの傾斜面110a及び110bのそれぞれに当接できる構成であればどのような構成でもよく、具体的には、シール部材100の先端付近が折れ曲がった形状、例えば略J字状ではなく略L字状等であってもよい。
 実施形態10では、シール溝部110がV字状の断面形状を有していたが、この構成に限定するものではない。傾斜面110a及び110bは必ずしも平坦面でなくてもよく、傾斜面110a及び110bが曲率を有することで、U字状に近いV字状の断面形状を有するシール溝部であってもよい。ただし、傾斜面110a及び110bが曲率を有する場合は、シール部材100の当接部101の曲率よりも小さい必要がある。
 実施形態9及び10のそれぞれにおいて、シール部材が隔壁23の端部23aに当接して押圧されたときに少なくとも一部が変形するシール部材90及び100を説明したが、これら2つの構成(それぞれの変形例も含む)に限定するものではない。隔壁23の端部23aに当接して押圧されたときに少なくとも一部が変形するシール部材であれば、どのような構成のものも採用することが可能である。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
[1]一の態様に係る熱交換器は、
 第1流体と第2流体とが熱交換する熱交換器(1)であって、
 前記熱交換器(1)は、
 積層造形体である本体部(2)であって、前記第1流体が流通する第1流路(21)及び前記第2流体が流通する第2流路(22)を含む本体部(2)と、
 前記本体部(2)に取付けられる被覆部(3)と
を備え、
 前記本体部(2)には前記第1流路(21)の第1開口部(27)及び前記第2流路(22)の第2開口部(28)が形成され、前記被覆部(3)は、前記第1開口部(27)及び前記第2開口部(28)の露出を被覆するようにして前記本体部(2)に取付けられている。
 本開示の熱交換器によれば、本体部の積層造形後に第1流路及び第2流路内に積層造形の原材料が残存するが、第1流路の第1開口部及び第2流路の第2開口部が露出しているので、第1開口部及び第2開口部を介して、残存する原材料を容易に除去することができる。また、熱交換器の使用後に、被覆部を本体部から取り外すことによって、第1流路の第1開口部及び第2流路の第2開口部が露出するので、第1流路及び第2流路内の閉塞の有無を容易に確認することができる。
[2]別の態様に係る熱交換器は、[1]の熱交換器であって、
 前記被覆部(3)は、前記第1開口部(27)及び前記第2開口部(28)を覆うように前記本体部(2)に取付けられる蓋部材(3a)を含む。
 このような構成によれば、蓋部材が本体部に取り付けられていない状態では第1開口部及び第2開口部が直接開口しているので、第1流路及び第2流路内に残存する原材料を容易に除去することができ、第1流路及び第2流路内の閉塞の有無を容易に確認することができる。
[3]さらに別の態様に係る熱交換器は、[2]の熱交換器であって、
 前記本体部(2)は、前記第1流路(21)及び前記第2流路(22)の延びる方向における両端のそれぞれに位置する第1端面(2b)及び第2端面(2c)を含み、
 前記蓋部材(3a)は、
 前記第1端面(2b)を覆うように前記本体部(2)に取付けられる第1蓋(3a1)と、
 前記第2端面(2c)を覆うように前記本体部(2)に取付けられる第2蓋(3a2)と
を含む。
 このような構成によれば、第1端面及び第2端面のそれぞれに取り付けられる第1蓋及び第2蓋を取り外せば、第1開口部及び第2開口部のそれぞれを介して第1流路及び第2流路内に光を照射することによって光が第1流路及び第2流路を通過できるので、原材料や閉塞物の有無を容易に確認することができる。
[4]さらに別の態様に係る熱交換器は、[3]の熱交換器であって、
 前記第1開口部(27)は前記第1端面(2b)に形成されるとともに前記第2開口部(28)は前記第2端面(2c)に形成されている。
 このような構成によれば、第1端面及び第2端面のそれぞれに第1開口部及び第2開口部が露出しているので、第1端面と第1蓋との間のシール又は第2端面と第2蓋との間のシールが不完全で第1開口部又は第2開口部から第1流体又は第2流体がリークしても、それぞれの端面では同じ流体のみがリークするので、第1流体と第2流体との混合を防ぐことができる。
[5]さらに別の態様に係る熱交換器は、[1]の熱交換器であって、
 前記本体部(2)は、
 前記第1流体が流通する第1ヘッダ流路(4,5)と、
 前記第1ヘッダ流路(4,5)と前記第1流路(21)とを連通する第1分配流路(21b)と、
 前記第2流体が流通する第2ヘッダ流路(6,7)と、
 前記第2ヘッダ流路(6,7)と前記第2流路(22)とを連通する第2分配流路と
を含み、
 前記第1ヘッダ流路(4,5)及び前記第2ヘッダ流路(6,7)のそれぞれを画定する第1ヘッダ流路壁(41)及び第2ヘッダ流路壁(45)はそれぞれ、
 前記本体部(2)に固定された第1固定壁(42)及び第2固定壁(46)と、
 前記第1固定壁(42)及び前記第2固定壁(46)のそれぞれに取付けられて前記第1ヘッダ流路(4,5)及び前記第2ヘッダ流路(6,7)のそれぞれを画定する第1分離壁(43)及び第路分離壁(47)と
を含み、
 前記第1開口部(27)は、前記第1分配流路(21b)の前記第1固定壁(42)における開口部であり、前記第2開口部(28)は、前記第2分配流路(22b)の前記第2固定壁(46)における開口部であり、前記被覆部(3)は、前記第1分離壁(43)及び前記第路分離壁(47)を含む。
 このような構成によれば、本体部に固定された第1固定壁及び第2固定壁のそれぞれに第1分離壁及び第2分離壁が取り付けられていない状態では、第1開口部及び第2開口部がそれぞれ第1固定壁及び第2固定壁において露出しているので、第1流路及び第2流路内に残存する原材料を容易に除去することができ、第1流路及び第2流路内の閉塞の有無を容易に確認することができる。
[6]さらに別の態様に係る熱交換器は、[5]の熱交換器であって、
 前記熱交換器(1)は、前記本体部(2)を挿入可能な筐体部(50)を備え、
 前記第1分離壁(溝画定壁53a1/53c1)及び前記第2分離壁(溝画定壁53b1/53d1)は前記筐体部(50)に設けられ、
 前記本体部(2)を前記筐体部(50)に挿入すると、第1分離壁(溝画定壁53a1/53c1)及び前記第2分離壁(溝画定壁53b1/53d1)のそれぞれが、前記第1固定壁(42)及び前記第2固定壁(46)のそれぞれに取付けられる。
 このような構成によれば、本体部と、本体部を挿入可能な筐体部とを備えるカートリッジ方式の熱交換器でも、第1流路及び第2流路内に残存する原材料を容易に除去することができ、第1流路及び第2流路内の閉塞の有無を容易に確認することができる。
[7]さらに別の態様に係る熱交換器は、[2]~[4]のいずれかの熱交換器であって、
 前記被覆部(3)又は前記本体部(2)のいずれか一方には、前記被覆部(3)を前記本体部(2)に取付けた状態で、第1開口部(21)及び前記第2開口部(22)の少なくとも一方を取り囲むように凹んだ溝部(61/62)が形成され、
 前記被覆部(3)又は前記本体部(2)のいずれか他方には、前記溝部(61/62)に挿入可能な畝部(65/66)が形成され、
 前記被覆部(3)を前記本体部(2)に取付けた状態で、前記畝部(65/66)が前記溝部(61/62)に挿入されるとともに前記畝部(65/66)と前記溝部(61/62)との間に樹脂製のシール部材(63/64)が設けられている。
 このような構成によれば、熱交換器の製造時や熱交換器のメンテナンス後に被覆部を本体部に取り付ける際に、本体部と被覆部との間のシールの形成が容易になる。
[8]さらに別の態様に係る熱交換器は、[7]の熱交換器であって、
 前記畝部(65a/66a)は、前記溝部(61/62)の深さ方向に弾性変形可能に構成されている。
 このような構成によれば、シール部材のシール性を向上することができる。
[9]さらに別の態様に係る熱交換器は、[2]~[4]のいずれかの熱交換器であって、
 前記被覆部(3)は、前記本体部(2)との間にシール部材(63/64)を介して前記本体部(2)に取付けられ、
 前記シール部材(63/64)は、
 前記被覆部(3)を前記本体部(2)に取付けた状態で、前記第1開口部(27)及び前記第2開口部(28)の少なくとも一方を取り囲むように設けられた内側シール部材(71/73)と、
 前記内側シール部材(71/73)に対して前記第1開口部(27)及び前記第2開口部(28)の前記少なくとも一方とは反対側に設けられた外側シール部材(72/74)と
を含み、
 前記外側シール部材(72/74)には、その延びる方向に間隔があいた切欠部(72a/74a)が形成されている。
 このような構成によれば、第1流体又は第2流体のリークが生じた場合に、切欠部からリークした流体を確認できるので、リークを早期かつ容易に検知することができる。
[10]さらに別の態様に係る熱交換器は、[9]の熱交換器であって、
 前記本体部(2)には、前記第1流体又は前記第2流体を貯留可能な貯留部(75)が前記切欠部(72a/74a)に連通するように形成されている。
 このような構成によれば、貯留部にリークした流体を貯留することができるので、熱交換器の外部へのリークを一時的に防止することができる。
[11]さらに別の態様に係る熱交換器は、[10]の熱交換器であって、
 前記貯留部(75)に前記第1流体又は前記第2流体が流入したことを検知する検知部(センサS)が設けられている。
 このような構成によれば、第1流体又は第2流体のリークを検知部で検知することができるので、検知部による検知を遠隔監視することで早期にリークを検知することができる。
[12]さらに別の態様に係る熱交換器は、[11]の熱交換器であって、
 前記第1流路(21)へ前記第1流体を供給又は前記第1流体の供給を停止するための第1開閉弁(76)と、
 前記第2流路(22)へ前記第2流体を供給又は前記第2流体の供給を停止するための第2開閉弁(77)と、
 前記検知部(センサS)と前記第1開閉弁(76)と前記第2開閉弁(77)とに電気的に接続された制御部(78)と
が設けられ、
 前記制御部(78)は、前記貯留部(75)へ前記第1流体又は前記第2流体が流入したことを検知した信号が前記検知部(センサS)から伝送されると、前記第1開閉弁(76)及び前記第2開閉弁(77)を閉める。
 このような構成によれば、検知部によるリークの検知に基づいて、制御部が自動的に第1開閉弁及び第2開閉弁を閉めることにより、第1流路への第1流体の供給及び第2流路への第2流体の供給を停止するので、早期に熱交換器の外部へのリークを防止することができる。
[13]さらに別の態様に係る熱交換器は、[7]~[12]のいずれかの熱交換器であって、
 前記被覆部(3)及び前記本体部(2)のそれぞれには、前記被覆部(3)を前記本体部(2)に取付けた状態で互いに重なり合うフランジ部(67,68)が設けられている。
 このような構成によれば、被覆部と本体部との間のシールの形成が容易になる。
[14]さらに別の態様に係る熱交換器は、[4]の熱交換器であって、
 前記第2端面(2c)には、隣り合う第2開口部(28)間に、前記第1流路(21)を閉止する少なくとも1つの第1閉止壁(31)が設けられ、
 前記第1端面(2b)には、隣り合う第1開口部(27)間に、前記第2流路(22)を閉止する少なくとも1つの第2閉止壁(32)が設けられ、
 前記第1蓋(3a1)には、前記第2閉止壁(32)に当接する第1シール部材(81)が設けられ、前記第2蓋(3a2)には、前記第1閉止壁(31)に当接する第2シール部材(82)が設けられている。
 このような構成によれば、被覆部の厚さを大きくしなくても、第1シール部材及び第2シール部材がそれぞれ、各第1流路同士の間及び各第2流路同士の間のそれぞれをシールできるので、熱交換器の重量を低減することができる。
[15]さらに別の態様に係る熱交換器は、[14]の熱交換器であって、
 前記第2端面(2c)には複数の前記第1閉止壁(31)が設けられるとともに前記第1端面(2b)には複数の前記第2閉止壁(32)が設けられ、
 複数の前記第1閉止壁(31)はそれぞれ前記第2端面(2c)において面一であるとともに複数の前記第2閉止壁(32)はそれぞれ前記第1端面(2b)において面一である。
 このような構成によれば、被覆部を本体部に取り付けた状態で、各第1閉止壁に対する各第1シール部材の押圧力と、各第2閉止壁に対する各第2シール部材の押圧力とが均一になるので、各第1シール部材及び各第2シール部材のシール性能のばらつきを低減することができる。
[16]さらに別の態様に係る熱交換器は、[2]または[3]の熱交換器であって、
 隣り合う前記第1流路(21)と前記第2流路(22)とは隔壁(23)によって隔てられ、
 前記蓋部材(3a)には、前記蓋部材(3a)を前記本体部(2)に取付ける際に、前記隔壁(23)の端部(23a)に当接して変形可能に構成されたシール部材(90/100)が設けられている。
 このような構成によれば、蓋部材を本体部に取付けると、シール部材が隔壁の端部に当接して変形するので、隣り合う第1流路と第2流路との間を確実にシールすることができる。
[17]さらに別の態様に係る熱交換器は、[16]の熱交換器であって、
 前記シール部材(90)は、
 前記シール部材(90)の内部に設けられる空洞部(91)と、
 前記隔壁(23)の端部(23a)に当接する当接部(92)と
を含み
 前記当接部(92)が前記隔壁(23)の端部(23a)に押し付けられると、前記空洞部(91)が潰れるようにして前記シール部材(90)は変形する。
 このような構成によれば、当接部が隔壁の端部に押し付けられると空洞部が潰れるようにしてシール部材は変形するので、隣り合う第1流路と第2流路との間を確実にシールすることができる。
[18]さらに別の態様に係る熱交換器は、[17]の熱交換器であって、
 前記空洞部(91)は、複数の小さな空洞が集まって構成されている。
 このような構成によれば、当接部が隔壁の端部に押し付けられると空洞部が潰れるようにしてシール部材は変形するので、隣り合う第1流路と第2流路との間を確実にシールすることができる。
[19]さらに別の態様に係る熱交換器は、[16]の熱交換器であって、
 前記隔壁(23)の端部(23a)には、該端部(23a)に対して窪んだシール溝部(110)が形成され、
 前記シール溝部(110)は、該シール溝部(110)の底部で互いに接続する2つの傾斜面(110a,110b)によって画定され、
 前記シール部材(100)は、変形可能な当接部(101)を含み、
 前記当接部(101)は、前記シール溝部(110)内に挿入されて前記2つの傾斜面(110a,110b)のそれぞれに当接する。
 このような構成によれば、当接部がシール溝部に押し付けられると当接部が変形して2つの傾斜面のそれぞれに当接するので、隣り合う第1流路と第2流路との間を確実にシールすることができる。
[20]さらに別の態様に係る熱交換器は、[19]の熱交換器であって、
 前記当接部(101)は、J字状又はL字状の断面形状を有する。
 このような構成によれば、当接部がシール溝部に押し付けられると当接部が変形して2つの傾斜面のそれぞれに当接するので、隣り合う第1流路と第2流路との間を確実にシールすることができる。
[21]さらに別の態様に係る熱交換器は、[20]の熱交換器であって、
 前記当接部(101)は、J字状の断面形状を有し、少なくとも部分的に円弧状に湾曲した断面形状を有する部分を含む。
 このような構成によれば、当接部がシール溝部に押し付けられると当接部が変形して2つの傾斜面のそれぞれに当接するので、隣り合う第1流路と第2流路との間を確実にシールすることができる。
[22]さらに別の態様に係る熱交換器は、[19]~[21]のいずれかの熱交換器であって、
 前記2つの傾斜面(110a,110b)は、曲率を有する面である。
 このような構成によれば、当接部がシール溝部に押し付けられると当接部が変形して2つの傾斜面のそれぞれに当接するので、隣り合う第1流路と第2流路との間を確実にシールすることができる。
[23]さらに別の態様に係る熱交換器は、[1]~[22]のいずれかの熱交換器であって、
 前記被覆部(3)は、取外し可能に前記本体部(2)に取付けられている。
 このような構成によれば、本体部の積層造形後に第1流路及び第2流路内に残存する原材料を容易に除去することができる。また、熱交換器の使用後に、第1流路及び第2流路内の閉塞の有無を容易に確認することができる。
[24]さらに別の態様に係る熱交換器は、[1]~[23]のいずれかの熱交換器であって、
 前記第1流路(21)及び前記第2流路(22)のそれぞれの流路幅は3mm以下である。
 3mm以下の長さのオーバーハング部であれば一般に、サポートを用いなくても積層造形が可能である。このため、第1流路及び第2流路のそれぞれの流路幅が3mm以下であれば、第1流路及び第2流路の延びる方向に熱交換器を積層造形する際に、それぞれの流路に強度補強用のリブを形成すると、リブの長さが3mm以下となるので、サポートを用いなくてもリブの積層造形が可能となる。
[25]さらに別の態様に係る熱交換器は、[1]~[24]のいずれかの熱交換器であって、
 前記本体部(2)は金属粉末の積層造形体である。
 このような構成によれば、金属粉末の積層造形後に第1流路及び第2流路内に金属粉末が残存するが、第1流路の第1開口部及び第2流路の第2開口部が露出しているので、第1開口部及び第2開口部を介して、残存する金属粉末を容易に除去することができる。
[26]一の態様に係る熱交換器の製造方法は、
 第1流体と第2流体とが熱交換する熱交換器(1)の製造方法であって、
 前記第1流体が流通する第1流路(21)及び前記第2流体が流通する第2流路(22)を含むとともに前記第1流路(21)の第1開口部(27)及び前記第2流路(22)の第2開口部(28)が形成された本体部(2)を、金属粉末から積層造形するステップと、
 前記本体部(2)を積層造形するステップの後に、前記本体部(2)の内部に残存する前記金属粉末を前記第1開口部(27)及び前記第2開口部(28)を介して除去するステップと、
 前記金属粉末を除去するステップの後に、前記第1開口部(27)及び前記第2開口部(28)の露出を被覆するようにして前記本体部(2)に被覆部(3)を取付けるステップと
を含む。
 本開示の熱交換器の製造方法によれば、本体部の積層造形後に第1流路及び第2流路内に積層造形の金属粉末が残存するが、第1流路の第1開口部及び第2流路の第2開口部が露出しているので、第1開口部及び第2開口部を介して、残存する金属粉末を容易に除去することができる。
[27]別の態様に係る熱交換器の製造方法は、[26]の熱交換器の製造方法であって、
 前記金属粉末を除去するステップと前記被覆部(3)を取付けるステップとの間に、前記第1開口部(27)及び前記第2開口部(28)を介して前記本体部(2)の内部に前記金属粉末が残存しているか否かを確認するステップを含む。
 このような製造方法によれば、本体部の積層造形後に第1流路及び第2流路内に積層造形の金属粉末が残存する場合に、第1流路の第1開口部及び第2流路の第2開口部が露出しているので、第1開口部及び第2開口部を介して、残存する金属粉末を容易に除去することができる。
[28]一の態様に係る熱交換器の製造方法は、
 [15]に記載の熱交換器(1)の製造方法であって、
 金属粉末から前記本体部(2)を積層造形するステップと、
 前記本体部(2)の前記第1端面(2b)及び前記第2端面(2c)のそれぞれにおいて、複数の前記第1閉止壁(31)のそれぞれ及び複数の前記第2閉止壁(32)のそれぞれが面一となるように削るステップと、
 前記本体部(2)を積層造形するステップの後に、前記本体部(2)の内部に残存する前記金属粉末を前記第1開口部(27)及び前記第2開口部(28)を介して除去するステップと、
 前記金属粉末を除去するステップの後に、前記第1開口部(27)及び前記第2開口部(28)の露出を被覆するようにして前記本体部(2)に被覆部(3)を取付けるステップと
を含む。
 このような製造方法によれば、複数の第1閉止壁のそれぞれ及び複数の第2閉止壁のそれぞれを容易に面一にすることができる。
[29]一の態様に係る熱交換器の閉塞確認方法は、
 [23]の熱交換器の閉塞確認方法であって、
 前記本体部(2)から前記被覆部(3)を取外して前記第1開口部(27)及び前記第2開口部(28)を露出するステップと、
 前記第1開口部(27)及び前記第2開口部(28)のそれぞれを介して前記第1流路(21)及び前記第2流路(22)の閉塞箇所を特定するステップと、
 前記閉塞箇所を特定するステップの後に、前記第1開口部(27)及び前記第2開口部(28)の露出を被覆するようにして前記被覆部(3)を前記本体部(2)に取付けるステップと
を含む。
 本開示の熱交換器の閉塞確認方法によれば、熱交換器の使用後に、被覆部を本体部から取り外すことによって、第1流路の第1開口部及び第2流路の第2開口部が露出するので、第1開口部及び第2開口部を介して第1流路及び第2流路内の閉塞の有無を容易に確認することができる。
[30]別の態様に係る熱交換器の閉塞確認方法は、[29]に記載の熱交換器の閉塞確認方法であって、
 前記閉塞箇所を特定するステップの後に、前記閉塞箇所の閉塞を除去するステップを含む。
 このような閉塞確認方法によれば、閉塞の除去作業を効率的に行うことができる。
1 熱交換器
2 本体部
2b (本体部の)第1端面
2c (本体部の)第2端面
3 被覆部
3a 蓋部材
3a1 第1蓋
3a2 第2蓋
4 第1ヘッダ流路
5 第1ヘッダ流路
6 第2ヘッダ流路
7 第2ヘッダ流路
21 第1流路
21b 第1分配流路
22 第2流路
22b 第2分配流路
23 隔壁
23a (隔壁の)端部
27 第1開口部
28 第2開口部
31 第1閉止壁
32 第2閉止壁
41 第1ヘッダ流路壁
42 第1固定壁
43 第1分離壁
45 第2ヘッダ流路壁
46 第2固定壁
47 第2分離壁
50 筐体部
53a1 溝画定壁(第1分離壁)
53b1 溝画定壁(第2分離壁)
53c1 溝画定壁(第1分離壁)
53d1 溝画定壁(第2分離壁)
61 溝部
62 溝部
63 シール部材
64 シール部材
65 畝部
65a ばね部材(畝部)
66 畝部
66a ばね部材(畝部)
67 フランジ部
68 フランジ部
71 内側シール部材
72 外側シール部材
72a 切欠部
73 内側シール部材
74 外側シール部材
74a 切欠部
75 貯留部
76 第1開閉弁
77 第2開閉弁
78 制御部
81 第1シール部材
82 第2シール部材
90 シール部材
91 空洞部
92 当接部
100 シール部材
101 当接部
110 シール溝部
110a 傾斜面
110b 傾斜面
S センサ(検知部)

Claims (30)

  1.  第1流体と第2流体とが熱交換する熱交換器であって、
     前記熱交換器は、
     積層造形体である本体部であって、前記第1流体が流通する第1流路及び前記第2流体が流通する第2流路を含む本体部と、
     前記本体部に取付けられる被覆部と
    を備え、
     前記本体部には前記第1流路の第1開口部及び前記第2流路の第2開口部が形成され、前記被覆部は、前記第1開口部及び前記第2開口部の露出を被覆するようにして前記本体部に取付けられている熱交換器。
  2.  前記被覆部は、前記第1開口部及び前記第2開口部を覆うように前記本体部に取付けられる蓋部材を含む、請求項1に記載の熱交換器。
  3.  前記本体部は、前記第1流路及び前記第2流路の延びる方向における両端のそれぞれに位置する第1端面及び第2端面を含み、
     前記蓋部材は、
     前記第1端面を覆うように前記本体部に取付けられる第1蓋と、
     前記第2端面を覆うように前記本体部に取付けられる第2蓋と
    を含む、請求項2に記載の熱交換器。
  4.  前記第1開口部は前記第1端面に形成されるとともに前記第2開口部は前記第2端面に形成されている、請求項3に記載の熱交換器。
  5.  前記本体部は、
     前記第1流体が流通する第1ヘッダ流路と、
     前記第1ヘッダ流路と前記第1流路とを連通する第1分配流路と、
     前記第2流体が流通する第2ヘッダ流路と、
     前記第2ヘッダ流路と前記第2流路とを連通する第2分配流路と
    を含み、
     前記第1ヘッダ流路及び前記第2ヘッダ流路のそれぞれを画定する第1ヘッダ流路壁及び第2ヘッダ流路壁はそれぞれ、
     前記本体部に固定された第1固定壁及び第2固定壁と、
     前記第1固定壁及び前記第2固定壁のそれぞれに取付けられて前記第1ヘッダ流路及び前記第2ヘッダ流路のそれぞれを画定する第1分離壁及び第2分離壁と
    を含み、
     前記第1開口部は、前記第1分配流路の前記第1固定壁における開口部であり、前記第2開口部は、前記第2分配流路の前記第2固定壁における開口部であり、前記被覆部は、前記第1分離壁及び前記第2分離壁を含む、請求項1に記載の熱交換器。
  6.  前記熱交換器は、前記本体部を挿入可能な筐体部を備え、
     前記第1分離壁及び前記第2分離壁は前記筐体部に設けられ、
     前記本体部を前記筐体部に挿入すると、前記第1分離壁及び前記第2分離壁のそれぞれが、前記第1固定壁及び前記第2固定壁のそれぞれに取付けられる、請求項5に記載の熱交換器。
  7.  前記被覆部又は前記本体部のいずれか一方には、前記被覆部を前記本体部に取付けた状態で、第1開口部及び前記第2開口部の少なくとも一方を取り囲むように凹んだ溝部が形成され、
     前記被覆部又は前記本体部のいずれか他方には、前記溝部に挿入可能な畝部が形成され、
     前記被覆部を前記本体部に取付けた状態で、前記畝部が前記溝部に挿入されるとともに前記畝部と前記溝部との間に樹脂製のシール部材が設けられている、請求項2~4のいずれか一項に記載の熱交換器。
  8.  前記畝部は、前記溝部の深さ方向に弾性変形可能に構成されている、請求項7に記載の熱交換器。
  9.  前記被覆部は、前記本体部との間にシール部材を介して前記本体部に取付けられ、
     前記シール部材は、
     前記被覆部を前記本体部に取付けた状態で、第1開口部及び前記第2開口部の少なくとも一方を取り囲むように設けられた内側シール部材と、
     前記内側シール部材に対して前記第1開口部及び前記第2開口部の前記少なくとも一方とは反対側に設けられた外側シール部材と
    を含み、
     前記外側シール部材には、その延びる方向に間隔があいた切欠部が形成されている、請求項2~4のいずれか一項に記載の熱交換器。
  10.  前記本体部には、前記第1流体又は前記第2流体を貯留可能な貯留部が前記切欠部に連通するように形成されている、請求項9に記載の熱交換器。
  11.  前記貯留部に前記第1流体又は前記第2流体が流入したことを検知する検知部が設けられている、請求項10に記載の熱交換器。
  12.  前記第1流路へ前記第1流体を供給又は前記第1流体の供給を停止するための第1開閉弁と、
     前記第2流路へ前記第2流体を供給又は前記第2流体の供給を停止するための第2開閉弁と、
     前記検知部と前記第1開閉弁と前記第2開閉弁とに電気的に接続された制御部と
    が設けられ、
     前記制御部は、前記貯留部へ前記第1流体又は前記第2流体が流入したことを検知した信号が前記検知部から伝送されると、前記第1開閉弁及び前記第2開閉弁を閉める、請求項11に記載の熱交換器。
  13.  前記被覆部及び前記本体部のそれぞれには、前記被覆部を前記本体部に取付けた状態で互いに重なり合うフランジ部が設けられている、請求項7~12のいずれか一項に記載の熱交換器。
  14.  前記第2端面には、隣り合う第2開口部間に、前記第1流路を閉止する少なくとも1つの第1閉止壁が設けられ、
     前記第1端面には、隣り合う第1開口部間に、前記第2流路を閉止する少なくとも1つの第2閉止壁が設けられ、
     前記第1蓋には、前記第2閉止壁に当接する第1シール部材が設けられ、前記第2蓋には、前記第1閉止壁に当接する第2シール部材が設けられている、請求項4に記載の熱交換器。
  15.  前記第2端面には複数の前記第1閉止壁が設けられるとともに前記第1端面には複数の前記第2閉止壁が設けられ、
     複数の前記第1閉止壁はそれぞれ前記第2端面において面一であるとともに複数の前記第2閉止壁はそれぞれ前記第1端面において面一である、請求項14に記載の熱交換器。
  16.  隣り合う前記第1流路と前記第2流路とは隔壁によって隔てられ、
     前記蓋部材には、前記蓋部材を前記本体部に取付ける際に、前記隔壁の端部に当接して変形可能に構成されたシール部材が設けられている、請求項2または3に記載の熱交換器。
  17.  前記シール部材は、
     前記シール部材の内部に設けられる空洞部と、
     前記隔壁の端部に当接する当接部と
    を含み
     前記当接部が前記隔壁の端部に押し付けられると、前記空洞部が潰れるようにして前記シール部材は変形する、請求項16に記載の熱交換器。
  18.  前記空洞部は、複数の小さな空洞が集まって構成されている、請求項17に記載の熱交換器。
  19.  前記隔壁の端部には、該端部に対して窪んだシール溝部が形成され、
     前記シール溝部は、該シール溝部の底部で互いに接続する2つの傾斜面によって画定され、
     前記シール部材は、変形可能な当接部を含み、
     前記当接部は、前記シール溝部内に挿入されて前記2つの傾斜面のそれぞれに当接する、請求項16に記載の熱交換器。
  20.  前記当接部は、J字状又はL字状の断面形状を有する、請求項19に記載の熱交換器。
  21.  前記当接部は、J字状の断面形状を有し、少なくとも部分的に円弧状に湾曲した断面形状を有する部分を含む、請求項20に記載の熱交換器。
  22.  前記2つの傾斜面は、曲率を有する面である、請求項19~21のいずれか一項に記載の熱交換器。
  23.  前記被覆部は、取外し可能に前記本体部に取付けられている、請求項1~22のいずれか一項に記載の熱交換器。
  24.  前記第1流路及び前記第2流路のそれぞれの流路幅は3mm以下である、請求項1~23のいずれか一項に記載の熱交換器。
  25.  前記本体部は金属粉末の積層造形体である、請求項1~24のいずれか一項に記載の熱交換器。
  26.  第1流体と第2流体とが熱交換する熱交換器の製造方法であって、
     前記第1流体が流通する第1流路及び前記第2流体が流通する第2流路を含むとともに前記第1流路の第1開口部及び前記第2流路の第2開口部が形成された本体部を、金属粉末から積層造形するステップと、
     前記本体部を積層造形するステップの後に、前記本体部の内部に残存する前記金属粉末を前記第1開口部及び前記第2開口部を介して除去するステップと、
     前記金属粉末を除去するステップの後に、前記第1開口部及び前記第2開口部の露出を被覆するようにして前記本体部に被覆部を取付けるステップと
    を含む熱交換器の製造方法。
  27.  前記金属粉末を除去するステップと前記被覆部を取付けるステップとの間に、前記第1開口部及び前記第2開口部を介して前記本体部の内部に前記金属粉末が残存しているか否かを確認するステップを含む、請求項26に記載の熱交換器の製造方法。
  28.  請求項15に記載の熱交換器の製造方法であって、
     金属粉末から前記本体部を積層造形するステップと、
     前記本体部の前記第1端面及び前記第2端面のそれぞれにおいて、複数の前記第1閉止壁のそれぞれ及び複数の前記第2閉止壁のそれぞれが面一となるように削るステップと、
     前記本体部を積層造形するステップの後に、前記本体部の内部に残存する前記金属粉末を前記第1開口部及び前記第2開口部を介して除去するステップと、
     前記金属粉末を除去するステップの後に、前記第1開口部及び前記第2開口部の露出を被覆するようにして前記本体部に被覆部を取付けるステップと
    を含む熱交換器の製造方法。
  29.  請求項23に記載の熱交換器の閉塞確認方法であって、
     前記本体部から前記被覆部を取外して前記第1開口部及び前記第2開口部を露出するステップと、
     前記第1開口部及び前記第2開口部のそれぞれを介して前記第1流路及び前記第2流路の閉塞箇所を特定するステップと、
     前記閉塞箇所を特定するステップの後に、前記第1開口部及び前記第2開口部の露出を被覆するようにして前記被覆部を前記本体部に取付けるステップと
    を含む熱交換器の閉塞確認方法。
  30.  前記閉塞箇所を特定するステップの後に、前記閉塞箇所の閉塞を除去するステップを含む、請求項29に記載の熱交換器の閉塞確認方法。
PCT/JP2021/006724 2020-02-27 2021-02-24 熱交換器、熱交換器の製造方法、及び熱交換器の閉塞確認方法 WO2021172301A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/799,837 US20230079473A1 (en) 2020-02-27 2021-02-24 Heat exchanger, method of producing heat exchanger, and method of confirming blockage of heat exchanger
CN202180015893.5A CN115135948A (zh) 2020-02-27 2021-02-24 热交换器、热交换器的制造方法及热交换器的堵塞确认方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-031205 2020-02-27
JP2020031205A JP7390929B2 (ja) 2020-02-27 2020-02-27 熱交換器、熱交換器の製造方法、及び熱交換器の閉塞確認方法

Publications (1)

Publication Number Publication Date
WO2021172301A1 true WO2021172301A1 (ja) 2021-09-02

Family

ID=77491891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006724 WO2021172301A1 (ja) 2020-02-27 2021-02-24 熱交換器、熱交換器の製造方法、及び熱交換器の閉塞確認方法

Country Status (4)

Country Link
US (1) US20230079473A1 (ja)
JP (1) JP7390929B2 (ja)
CN (1) CN115135948A (ja)
WO (1) WO2021172301A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505088A (ja) * 1991-02-27 1994-06-09 ロールス・ロイス・ピーエルシー 熱交換器
US20170304964A1 (en) * 2016-04-25 2017-10-26 Raytheon Company Powdered metal as a sacrificial material for ultrasonic additive manufacturing
US20180073813A1 (en) * 2016-09-12 2018-03-15 Hamilton Sundstrand Corporation Counter-flow ceramic heat exchanger assembly and method
JP2018511767A (ja) * 2015-03-05 2018-04-26 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft プレート式熱交換器用の3dプリントされた加熱面要素
US20180245854A1 (en) * 2017-02-28 2018-08-30 General Electric Company Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
JP2019095186A (ja) * 2017-11-17 2019-06-20 ゼネラル・エレクトリック・カンパニイ 輪郭付けされた壁熱交換器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302402B1 (en) * 1999-07-07 2001-10-16 Air Products And Chemicals, Inc. Compliant high temperature seals for dissimilar materials
US20020036078A1 (en) * 2000-09-28 2002-03-28 Janezich Robert J. Heat exchanger seal apparatus
US6719037B2 (en) * 2001-05-02 2004-04-13 Transpro, Inc. Resiliently bonded heat exchanger
NO321805B1 (no) * 2001-10-19 2006-07-03 Norsk Hydro As Fremgangsmate og anordning for a lede to gasser inn og ut av kanalene i en flerkanals monolittenhet.
US7272005B2 (en) * 2005-11-30 2007-09-18 International Business Machines Corporation Multi-element heat exchange assemblies and methods of fabrication for a cooling system
JP2009523994A (ja) * 2006-01-23 2009-06-25 ベール ゲーエムベーハー ウント コー カーゲー 熱交換器
JP5128544B2 (ja) * 2009-04-20 2013-01-23 株式会社神戸製鋼所 プレートフィン熱交換器
JP2013032901A (ja) * 2011-06-27 2013-02-14 Denso Corp 熱交換器用パッキン材料およびそれを用いた熱交換器
US20130264031A1 (en) * 2012-04-09 2013-10-10 James F. Plourde Heat exchanger with headering system and method for manufacturing same
GB2551134B (en) * 2016-06-06 2019-05-15 Energy Tech Institute Llp Heat exchanger
US20180051941A1 (en) * 2016-08-16 2018-02-22 Hamilton Sundstrand Corporation Heat exchanger with removable core assembly
DE102017100460A1 (de) * 2017-01-11 2018-07-12 Hanon Systems Vorrichtung zur Wärmeübertragung in einem Kältemittelkreislauf
US10731930B2 (en) * 2018-01-18 2020-08-04 Denso International America, Inc. Tank for heat exchanger and method for manufacturing the tank

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505088A (ja) * 1991-02-27 1994-06-09 ロールス・ロイス・ピーエルシー 熱交換器
JP2018511767A (ja) * 2015-03-05 2018-04-26 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft プレート式熱交換器用の3dプリントされた加熱面要素
US20170304964A1 (en) * 2016-04-25 2017-10-26 Raytheon Company Powdered metal as a sacrificial material for ultrasonic additive manufacturing
US20180073813A1 (en) * 2016-09-12 2018-03-15 Hamilton Sundstrand Corporation Counter-flow ceramic heat exchanger assembly and method
US20180245854A1 (en) * 2017-02-28 2018-08-30 General Electric Company Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
JP2019095186A (ja) * 2017-11-17 2019-06-20 ゼネラル・エレクトリック・カンパニイ 輪郭付けされた壁熱交換器

Also Published As

Publication number Publication date
US20230079473A1 (en) 2023-03-16
CN115135948A (zh) 2022-09-30
JP7390929B2 (ja) 2023-12-04
JP2021134979A (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
JP4666142B2 (ja) 熱交換器外殻構造
JP5620498B2 (ja) 高温静水圧プレス成形によって中空領域を備えたモジュールを製造するための方法
RU2445564C1 (ru) Теплообменник с двойной пластиной
US6944947B1 (en) Heat exchanger for cooling exhaust gas and method of manufacturing same
JP4602714B2 (ja) 熱交換器
EP2594884B1 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
KR20060051166A (ko) 열교환 유닛
JP5545198B2 (ja) プレート式熱交換器
WO1991018253A1 (en) Plate heat exchanger
JP2012527596A (ja) 熱交換器のプレート束を製造する方法
WO2021172301A1 (ja) 熱交換器、熱交換器の製造方法、及び熱交換器の閉塞確認方法
CN114728827A (zh) 用于熔化器的冷却板
EP1648654B1 (en) A method of manufacturing a plate heat exchanger
JP4726770B2 (ja) 蓄熱装置
JP6249611B2 (ja) 積層構造体
JP7568540B2 (ja) 熱交換コア、熱交換器及び熱交換コアの製造方法
JP4204580B2 (ja) 押出機シリンダの熱交換機構および熱交換方法
JP2001116484A (ja) 熱交換器
US20200338546A1 (en) Fluid flow-passage device
JP3998610B2 (ja) 金型冷却構造及び金型冷却方法
JP4471423B2 (ja) プレート式熱交換器
JP4613615B2 (ja) 熱交換器用タンクの製造方法
JPWO2004074757A1 (ja) 熱交換器
JP2001012892A (ja) 熱交換器
JP2887444B2 (ja) 積層型熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761711

Country of ref document: EP

Kind code of ref document: A1