WO2021172011A1 - 非水電解質二次電池用正極活物質および非水電解質二次電池 - Google Patents
非水電解質二次電池用正極活物質および非水電解質二次電池 Download PDFInfo
- Publication number
- WO2021172011A1 WO2021172011A1 PCT/JP2021/004883 JP2021004883W WO2021172011A1 WO 2021172011 A1 WO2021172011 A1 WO 2021172011A1 JP 2021004883 W JP2021004883 W JP 2021004883W WO 2021172011 A1 WO2021172011 A1 WO 2021172011A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- aqueous electrolyte
- secondary battery
- electrolyte secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/1228—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the positive electrode active material.
- the positive electrode active material greatly affects the battery performance such as input / output characteristics, capacity, and cycle characteristics.
- a lithium transition metal composite oxide containing a metal element such as Ni, Co, Mn, or Al is generally used as the positive electrode active material. Since the properties of lithium transition metal composite oxides differ greatly depending on their composition, many studies have been conducted on the types and amounts of additive elements.
- Patent Document 1 the composition formula Li x Ni 1-y Coy -z M z O 2-a X b is expressed, and the a-axis lattice constant measured by X-ray diffraction is 2.81-2. .91 ⁇ , the lattice constant of the c-axis is 13.7 to 14.4 ⁇ , and the ratio of the diffraction peak intensity of the (104) plane to the peak intensity of the (003) plane is 0.3 to 0.8.
- a positive electrode active material for an electrolyte secondary battery is disclosed.
- Lithium-rich composite oxides are expected as high-capacity next-generation positive electrode active materials, but have problems such as easy elution of transition metals. It is known that adding F to a lithium-rich composite oxide suppresses the elution of transition metals and improves durability, but there is a problem that the operating voltage drops when charging and discharging are repeated. , F cannot be added to solve this problem.
- the positive electrode active material for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, has a composition formula Li x Mn y Ni z Ge a M b O 2-c F c (in the formula, M is Ti, Co, Si, Al). , Nb, W, Mo, P, Ca, Mg, Sb, Na, B, V, Cr, Fe, Cu, Zn, Sr, Zr, Ru, K, Bi.
- the non-aqueous electrolyte secondary battery includes a positive electrode containing the positive electrode active material, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte.
- the lithium excess type positive electrode active material according to the present disclosure has a high voltage retention rate and excellent cycle characteristics.
- FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery which is an example of the embodiment.
- the present inventors have greatly improved durability by adding one or more types of Ge and a specific element to a lithium-rich F-containing composite oxide containing at least Mn as a transition metal.
- the voltage retention rate during charging and discharging is improved.
- the outer body is not limited to the cylindrical outer can, for example, a square outer can (for example, a square outer can (). It may be a square battery), a coin-shaped outer can (coin-shaped battery), or an outer body (laminated battery) composed of a laminated sheet containing a metal layer and a resin layer. Further, the electrode body may be a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via a separator.
- FIG. 1 is a cross-sectional view of the non-aqueous electrolyte secondary battery 10 which is an example of the embodiment.
- the non-aqueous electrolyte secondary battery 10 includes a wound electrode body 14, a non-aqueous electrolyte, and an outer can 16 that houses the electrode body 14 and the non-aqueous electrolyte.
- the electrode body 14 has a positive electrode 11, a negative electrode 12, and a separator 13, and has a wound structure in which the positive electrode 11 and the negative electrode 12 are spirally wound via the separator 13.
- the outer can 16 is a bottomed cylindrical metal container having an opening on one side in the axial direction, and the opening of the outer can 16 is closed by a sealing body 17.
- the battery sealing body 17 side is on the top and the bottom side of the outer can 16 is on the bottom.
- the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
- the non-aqueous solvent for example, esters, ethers, nitriles, amides, and a mixed solvent of two or more of these are used.
- the non-aqueous solvent may contain a halogen substituent in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
- the electrolyte salt for example, a lithium salt such as LiPF 6 is used.
- the non-aqueous electrolyte is not limited to the liquid electrolyte, and may be a solid electrolyte.
- the positive electrode 11, the negative electrode 12, and the separator 13 constituting the electrode body 14 are all strip-shaped long bodies, and are alternately laminated in the radial direction of the electrode body 14 by being wound in a spiral shape.
- the negative electrode 12 is formed to have a size one size larger than that of the positive electrode 11 in order to prevent the precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (short direction).
- the two separators 13 are formed at least one size larger than the positive electrode 11, and are arranged so as to sandwich the positive electrode 11, for example.
- the electrode body 14 has a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
- Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
- the positive electrode lead 20 extends to the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode lead 21 extends to the bottom side of the outer can 16 through the outside of the insulating plate 19.
- the positive electrode lead 20 is connected to the lower surface of the internal terminal plate 23 of the sealing body 17 by welding or the like, and the cap 27, which is the top plate of the sealing body 17 electrically connected to the internal terminal plate 23, serves as the positive electrode terminal.
- the negative electrode lead 21 is connected to the inner surface of the bottom of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
- a gasket 28 is provided between the outer can 16 and the sealing body 17 to ensure the airtightness inside the battery.
- the outer can 16 is formed with a grooved portion 22 that supports the sealing body 17, with a part of the side surface portion protruding inward.
- the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and the sealing body 17 is supported on the upper surface thereof.
- the sealing body 17 is fixed to the upper part of the outer can 16 by the grooved portion 22 and the opening end portion of the outer can 16 crimped to the sealing body 17.
- the sealing body 17 has a structure in which an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in this order from the electrode body 14 side.
- Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
- the lower valve body 24 and the upper valve body 26 are connected at their respective central portions, and an insulating member 25 is interposed between the respective peripheral portions.
- the positive electrode 11, the negative electrode 12, and the separator 13 constituting the electrode body 14 will be described in detail, and in particular, the positive electrode active material constituting the positive electrode 11 will be described in detail.
- the positive electrode 11 has a positive electrode core body and a positive electrode mixture layer provided on the surface of the positive electrode core body.
- a foil of a metal stable in the potential range of the positive electrode 11 such as aluminum or an aluminum alloy, a film in which the metal is arranged on the surface layer, or the like can be used.
- the positive electrode mixture layer contains a positive electrode active material, a conductive material, and a binder, and is preferably provided on both sides of the positive electrode core body.
- a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder, and the like is applied onto the positive electrode core, the coating film is dried, and then compressed to form the positive electrode mixture layer into the positive electrode core. It can be produced by forming it on both sides of the body.
- Examples of the conductive material contained in the positive electrode mixture layer include carbon materials such as carbon black, acetylene black, ketjen black, and graphite.
- Examples of the binder contained in the positive electrode mixture layer include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. .. These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or salts thereof, polyethylene oxide (PEO) and the like.
- the positive electrode active material is composed of the composition formula Li x Mn y Ni z Ge a M b O 2-c F c (in the formula, M is Ti, Co, Si, Al, Nb, W, Mo, P, Ca, Mg, Sb. , Na, B, V, Cr, Fe, Cu, Zn, Sr, Zr, Ru, K, Bi, 1.0 ⁇ x ⁇ 1.2, 0.4 ⁇ y ⁇ Lithium transition metal composite oxide represented by 0.8, 0 ⁇ z ⁇ 0.4, 0 ⁇ a ⁇ 0.01, 0 ⁇ b ⁇ 0.03, 0 ⁇ c ⁇ 0.1, x + y + z + a + b ⁇ 2) including.
- the composite oxide is a Li excess material in which the molar ratio of Li to the transition metal exceeds 1, and a predetermined amount of fluoride ions are introduced and a part of O is replaced with F.
- the positive electrode active material contains the composite oxide represented by the above composition formula as a main component.
- the principal component means the component having the highest mass ratio among the constituent components of the composite oxide.
- a composite oxide other than the composite oxide represented by the above composition formula (for example, a composite oxide that is not an excess Li system or a composite compound that does not contain fluoride ions) is used in combination with the positive electrode 11 as a positive electrode active material.
- the content of the composite oxide is preferably 50% by mass or more, and may be substantially 100% by mass.
- the composition of the composite oxide can be measured using an ICP emission spectrophotometer (iCAP6300 manufactured by Thermo Fisher Scientific).
- the lithium transition metal composite oxide represented by the above composition formula may contain Ni in addition to Li, Mn, and Ge. Further, it is selected from Ti, Co, Si, Al, Nb, W, Mo, P, Ca, Mg, Sb, Na, B, V, Cr, Fe, Cu, Zn, Sr, Zr, Ru, K and Bi. Contains two or more elements as essential components. Of these, Ti, Co, Nb, Sr, Mg, Al, Si and W are preferable.
- M is at least one selected from Co and Al. That is, M is any one of (1) Co, (2) Al, (3) Co and Al.
- the molar ratio (b) of M is preferably 0 ⁇ b ⁇ 0.02, more preferably 0.001 ⁇ b ⁇ 0.015, and particularly preferably 0.0002 ⁇ b ⁇ 0.010.
- the molar ratio (x) of Li is 1.0 ⁇ x ⁇ 1.2, preferably 1.1 ⁇ x ⁇ 1.2.
- the molar ratio (y) of Mn is 0.4 ⁇ y ⁇ 0.8, preferably 0.45 ⁇ y ⁇ 0.6.
- the molar ratio (a) of Ge is 0 ⁇ a ⁇ 0.01, preferably 0.001 ⁇ a ⁇ 0.007, and more preferably 0.002 ⁇ a ⁇ 0.005.
- Ni is an optional component, but is preferably contained in an amount of, for example, 0.05 ⁇ z ⁇ 0.3.
- the total molar amount (x + y + z + a + b) of Li, Mn, Ni, Ge, and M is 2 or less, preferably 2. That is, it is preferable that the composite oxide is a Li excess type composite oxide and not a cation excess type composite oxide.
- the molar ratio (c) of F is 0 ⁇ c ⁇ 0.1, preferably 0.05 ⁇ x ⁇ 0.085.
- a specific example of a suitable lithium transition metal composite oxide is a lithium excess type F-containing composite oxide containing Mn, Ni, Ge and at least one selected from Co and Al.
- the composite oxide substantially contains no elements other than, for example, Mn, Ni, Ge, Co, Al, Li, O, and F.
- the molar ratio of each of Co and Al is preferably 0.01 or less, more preferably 0.001 to 0.007, particularly preferably 0.002 to 0.005, and is, for example, less than or equal to the molar ratio of Ge.
- the lithium transition metal composite oxide of the present embodiment includes, for example, a carbonate containing Mn and Ni and a compound containing Ge, Co, Al and the like (for example, germanium oxide, cobalt sulfate, aluminum hydroxide, etc.).
- Lithium fluoride (LiF) is mixed and the mixture is calcined to synthesize the mixture.
- An example of firing conditions is 700 to 900 ° C. ⁇ 10 to 30 hours.
- the negative electrode 12 has a negative electrode core body and a negative electrode mixture layer provided on the surface of the negative electrode core body.
- a metal foil stable in the potential range of the negative electrode 12 such as copper, a film in which the metal is arranged on the surface layer, or the like can be used.
- the negative electrode mixture layer contains a negative electrode active material and a binder, and is preferably provided on both sides of the negative electrode core body.
- a negative electrode mixture slurry containing a negative electrode active material, a conductive material, a binder, and the like is applied to the surface of the negative electrode core, the coating film is dried, and then compressed to compress the negative electrode mixture layer into a negative electrode. It can be manufactured by forming it on both sides of the core body.
- the negative electrode mixture layer contains, for example, a carbon-based active material that reversibly occludes and releases lithium ions as a negative electrode active material.
- Suitable carbon-based active materials are natural graphite such as scaly graphite, massive graphite, earthy graphite, and graphite such as artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB).
- a Si-based active material composed of at least one of Si and a Si-containing compound may be used, or a carbon-based active material and a Si-based active material may be used in combination.
- the conductive material contained in the negative electrode mixture layer carbon materials such as carbon black, acetylene black, ketjen black, and graphite can be used as in the case of the positive electrode 11.
- the binder contained in the negative electrode mixture layer fluororesin, PAN, polyimide, acrylic resin, polyolefin or the like can be used as in the case of the positive electrode 11, but styrene-butadiene rubber (SBR) is used. Is preferable.
- the negative electrode mixture layer preferably further contains CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA) and the like. Above all, it is preferable to use SBR in combination with CMC or a salt thereof, PAA or a salt thereof.
- a porous sheet having ion permeability and insulating property is used as the separator 13.
- the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
- the material of the separator 13 polyethylene, polypropylene, polyolefin such as a copolymer of ethylene and ⁇ -olefin, cellulose and the like are suitable.
- the separator 13 may have either a single-layer structure or a laminated structure.
- a heat-resistant layer containing inorganic particles, a heat-resistant layer made of a highly heat-resistant resin such as an aramid resin, polyimide, or polyamide-imide may be formed on the surface of the separator 13.
- Example 1 [Synthesis of Lithium Transition Metal Composite Oxide] A carbonate containing Mn and Ni in a molar ratio of 2: 1 was mixed, germanium oxide, aluminum hydroxide and lithium fluoride were mixed, and the mixture was fired at 800 ° C. for 20 hours under an oxygen stream. A lithium transition metal composite oxide represented by the composition formula Li 1.167 Mn 0.55 Ni 0.275 Ge 0.02 Al 0.002 O 1.92 F 0.08 was obtained.
- the above lithium transition metal composite oxide was used as the positive electrode active material.
- Positive electrode active material, acetylene black, and polyvinylidene fluoride are mixed at a solid content mass ratio of 7: 2: 1, and N-methyl-2-pyrrolidone (NMP) is used as a dispersion medium to prepare a positive electrode mixture slurry.
- NMP N-methyl-2-pyrrolidone
- a positive electrode mixture slurry was applied onto a positive electrode core made of aluminum foil, the coating film was dried and compressed, and then cut to a predetermined electrode size to obtain a positive electrode.
- Ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed in a predetermined volume ratio. LiPF 6 was added to the mixed solvent to obtain a non-aqueous electrolyte solution.
- the positive electrode and the negative electrode made of lithium metal foil were arranged to face each other via a separator to form an electrode body, and the electrode body was housed in a coin-shaped outer can. After injecting the non-aqueous electrolyte solution into the outer can, the outer can was sealed to obtain a coin-shaped test cell (non-aqueous electrolyte secondary battery).
- the voltage retention rate was evaluated by the following method, and the evaluation results are shown in Table 1 together with the composition of the positive electrode active material.
- Voltage maintenance rate (V20 / V1) x 100
- Charging / discharging conditions After CC charging to a battery voltage of 5.2 V with a constant current of 0.05 C, the battery was paused for 20 minutes, and CC discharge was performed to a battery voltage of 2.5 V with a constant current of 0.05 C. This charge / discharge cycle was repeated 20 times.
- Example 2 Comparative Example 1> In the synthesis of the lithium transition metal composite oxide, except that the type of the raw material and the mixing ratio of the raw materials were changed so as to obtain the composition shown in Table 1 (the contents of Ni and Mn are the same as in Example 1). A test cell was prepared in the same manner as in Example 1, and the voltage retention rate was evaluated.
- the positive electrode active material a lithium-rich F-containing composite oxide containing Mn, Ni, and Ge to which at least one element selected from Co and Al is added is used.
- the test cell of the example used had a higher voltage retention rate than the test cell of the comparative example.
- the positive electrode active material of Example 2 containing Ge, Al, and Co greatly improves the voltage retention rate of the test cell.
- the voltage is maintained by adding at least one specific element selected from Co, Al, etc. together with Ge to the lithium excess type F-containing composite oxide containing at least Mn as a transition metal.
- the rate can be greatly improved.
- Non-aqueous electrolyte secondary battery 11 Positive electrode 12 Negative electrode 13 Separator 14 Electrode body 16 Exterior can 17 Sealing body 18, 19 Insulating plate 20 Positive electrode lead 21 Negative electrode lead 22 Grooving part 23 Internal terminal plate 24 Lower valve body 25 Insulating member 26 Upper valve Body 27 Cap 28 Gasket
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
非水電解質二次電池用正極活物質は、組成式LixMnyNizGeaMbO2-cFc(式中、MはTi、Co、Si、Al、Nb、W、Mo、P、Ca、Mg、Sb、Na、B、V、Cr、Fe、Cu、Zn、Sr、Zr、Ru、K、Biから選択される少なくとも1種であり、1.0<x≦1.2、0.4≦y≦0.8、0≦z≦0.4、0<a<0.01、0<b<0.03、0<c<0.1、x+y+z+a+b≦2)で表されるリチウム遷移金属複合酸化物を含む。
Description
本開示は、非水電解質二次電池用正極活物質および当該正極活物質を用いた非水電解質二次電池に関する。
リチウムイオン電池等の非水電解質二次電池において、正極活物質は、入出力特性、容量、サイクル特性等の電池性能に大きく影響する。正極活物質には、一般的に、Ni、Co、Mn、Al等の金属元素を含有するリチウム遷移金属複合酸化物が使用されている。リチウム遷移金属複合酸化物は、その組成によって性質が大きく異なるため、添加元素の種類、量について数多くの検討が行われてきた。
例えば、特許文献1には、組成式LixNi1-yCoy-zMzO2-aXbで表され、X線回折により測定されたa軸の格子定数が2.81~2.91Å、c軸の格子定数が13.7~14.4Åであり、(104)面の回折ピーク強度の(003)面のピーク強度に対する比が、0.3~0.8である非水電解質二次電池用正極活物質が開示されている。
遷移金属に対するLiのモル比が1を超えるリチウム過剰型の複合酸化物も提案されている。リチウム過剰型の複合酸化物は、高容量の次世代正極活物質として期待されているが、遷移金属が溶出し易い等の課題がある。リチウム過剰型の複合酸化物にFを添加することで、遷移金属の溶出が抑制され耐久性が改善されることが知られているが、充放電を繰り返すと作動電圧が低下するという問題があり、Fの添加ではこの問題を解決することはできない。
本開示の一態様である非水電解質二次電池用正極活物質は、組成式LixMnyNizGeaMbO2-cFc(式中、MはTi、Co、Si、Al、Nb、W、Mo、P、Ca、Mg、Sb、Na、B、V、Cr、Fe、Cu、Zn、Sr、Zr、Ru、K、Biから選択される少なくとも1種であり、1.0<x≦1.2、0.4≦y≦0.8、0≦z≦0.4、0<a<0.01、0<b<0.03、0<c<0.1、x+y+z+a+b≦2)で表されるリチウム遷移金属複合酸化物を含む。
本開示の一態様である非水電解質二次電池は、上記正極活物質を含む正極と、負極と、前記正極と前記負極の間に介在するセパレータと、非水電解質とを備える。
本開示に係るリチウム過剰型の正極活物質は、電圧維持率が高く、サイクル特性に優れる。
上記のように、リチウム過剰型の複合酸化物にFを添加した場合、遷移金属の溶出が抑制され、複合酸化物の耐久性が改善されるが、その効果は十分であるとは言えずさらなる改善が求められている。本発明者らの検討の結果、Geの添加は耐久性の改善に寄与することが確認されたが、Geを添加するだけでは改善効果が小さい。Geは、酸素の脱離を抑制し、複合酸化物の構造を安定化させると考えられる。
本発明者らは、さらに鋭意検討した結果、遷移金属として少なくともMnを含有するリチウム過剰型のF含有複合酸化物に、Geおよび特定の元素を1種類以上添加することにより、耐久性が大きく向上し、充放電時の電圧維持率が改善されることを見出した。
以下、図面を参照しながら、本開示に係る非水電解質二次電池用正極活物質および当該正極活物質を用いた非水電解質二次電池の実施形態の一例について詳細に説明する。なお、以下で説明する複数の実施形態および変形例を選択的に組み合わせることは当初から想定されている。
以下では、巻回型の電極体14が有底円筒形状の外装缶16に収容された円筒形電池を例示するが、外装体は円筒形の外装缶に限定されず、例えば角形の外装缶(角形電池)や、コイン形の外装缶(コイン形電池)であってもよく、金属層および樹脂層を含むラミネートシートで構成された外装体(ラミネート電池)であってもよい。また、電極体は複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。
図1は、実施形態の一例である非水電解質二次電池10の断面図である。図1に示すように、非水電解質二次電池10は、巻回型の電極体14と、非水電解質と、電極体14および非水電解質を収容する外装缶16とを備える。電極体14は、正極11、負極12、およびセパレータ13を有し、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装缶16は、軸方向一方側が開口した有底円筒形状の金属製容器であって、外装缶16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装缶16の底部側を下とする。
非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等が用いられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。電解質塩には、例えばLiPF6等のリチウム塩が使用される。なお、非水電解質は液体電解質に限定されず、固体電解質であってもよい。
電極体14を構成する正極11、負極12、およびセパレータ13は、いずれも帯状の長尺体であって、渦巻状に巻回されることで電極体14の径方向に交互に積層される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。すなわち、負極12は、正極11よりも長手方向および幅方向(短手方向)に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを有する。
電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
外装缶16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性が確保される。外装缶16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対して加締められた外装缶16の開口端部とにより、外装缶16の上部に固定される。
封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、およびキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状またはリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
以下、電極体14を構成する正極11、負極12、セパレータ13について、特に正極11を構成する正極活物質について詳説する。
[正極]
正極11は、正極芯体と、正極芯体の表面に設けられた正極合材層とを有する。正極芯体には、アルミニウム、アルミニウム合金など正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質、導電材、および結着材を含み、正極芯体の両面に設けられることが好ましい。正極11は、例えば正極芯体上に正極活物質、導電材、および結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合材層を正極芯体の両面に形成することにより作製できる。
正極11は、正極芯体と、正極芯体の表面に設けられた正極合材層とを有する。正極芯体には、アルミニウム、アルミニウム合金など正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質、導電材、および結着材を含み、正極芯体の両面に設けられることが好ましい。正極11は、例えば正極芯体上に正極活物質、導電材、および結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合材層を正極芯体の両面に形成することにより作製できる。
正極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。正極合材層に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂などが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)またはその塩等のセルロース誘導体、ポリエチレンオキシド(PEO)などが併用されてもよい。
正極活物質は、組成式LixMnyNizGeaMbO2-cFc(式中、MはTi、Co、Si、Al、Nb、W、Mo、P、Ca、Mg、Sb、Na、B、V、Cr、Fe、Cu、Zn、Sr、Zr、Ru、K、Biから選択される少なくとも1種であり、1.0<x≦1.2、0.4≦y≦0.8、0≦z≦0.4、0<a<0.01、0<b<0.03、0<c<0.1、x+y+z+a+b≦2)で表されるリチウム遷移金属複合酸化物を含む。当該複合酸化物は、遷移金属に対するLiのモル比が1を超えるLi過剰系材料であって、所定量のフッ化物イオンが導入され、Oの一部がFに置換されている。
正極活物質は、上記組成式で表される複合酸化物を主成分とする。ここで、主成分とは、複合酸化物の構成成分のうち最も質量比率が高い成分を意味する。正極11には、正極活物質として、上記組成式で表される複合酸化物以外の複合酸化物(例えば、Li過剰系ではない複合酸化物や、フッ化物イオンを含有しない複合化合物)が併用されてもよいが、上記複合酸化物の含有量は50質量%以上であることが好ましく、実質的に100質量%であってもよい。なお、複合酸化物の組成は、ICP発光分光分析装置(Thermo Fisher Scientific製のiCAP6300)を用いて測定できる。
上記組成式で表されるリチウム遷移金属複合酸化物は、Li、Mn、Geに加えて、Niを含有していてもよい。さらに、Ti、Co、Si、Al、Nb、W、Mo、P、Ca、Mg、Sb、Na、B、V、Cr、Fe、Cu、Zn、Sr、Zr、Ru、K、Biから選択される2種以上の元素を必須成分として含有する。中でも、Ti、Co、Nb、Sr、Mg、Al、Si、Wが好ましい。
上記組成式において、MはCo、Alから選択される少なくとも1種であることが特に好ましい。すなわち、Mは(1)Co、(2)Al、(3)CoおよびAlのいずれかである。また、Mのモル比(b)は、0<b<0.02であることが好ましく、0.001≦b≦0.015がより好ましく、0.0002≦b≦0.010が特に好ましい。元素Mが上記(1)~(3)より選択される組み合わせである場合、電圧維持率の改善効果がより顕著に現れる。
上記組成式において、Liのモル比(x)は、1.0<x≦1.2であって、好ましくは1.1≦x≦1.2である。Mnのモル比(y)は、0.4≦y≦0.8であって、好ましくは0.45≦y≦0.6である。Geのモル比(a)は、0<a<0.01であって、好ましくは0.001≦a≦0.007であり、より好ましくは0.002≦a≦0.005である。Li、Mn、Geのモル比が当該範囲内であれば、電圧維持率の改善効果がより顕著に現れる。Niは任意成分であるが、例えば、0.05≦z≦0.3の量で含有されることが好ましい。
上記組成式で表されるリチウム遷移金属複合酸化物において、Li、Mn、Ni、Ge、Mの総モル量(x+y+z+a+b)は2以下であり、好ましくは2である。すなわち、当該複合酸化物は、Li過剰型の複合酸化物であって、カチオン過剰型の複合酸化物ではないことが好ましい。また、Fのモル比(c)は、0<c≦0.1であって、好ましくは0.05≦x≦0.085である。所定量のFを添加することにより、遷移金属の溶出が抑制され、耐久性が向上する。
好適なリチウム遷移金属複合酸化物の具体例は、Mn、Ni、Geを含有し、かつCo、Alから選択される少なくとも1種を含有する、リチウム過剰型のF含有複合酸化物である。当該複合酸化物は、例えば、Mn、Ni、Ge、Co、Al、Li、O、F以外の元素を実質的に含有しない。Co、Alの各々のモル比は、0.01以下が好ましく、0.001~0.007がより好ましく、0.002~0.005が特に好ましく、例えばGeのモル比以下である。
本実施形態のリチウム遷移金属複合酸化物は、例えば、Mn、Niを含有する炭酸塩と、Ge、Co、Al等をそれぞれ含有する化合物(例えば、酸化ゲルマニウム、硫酸コバルト、水酸化アルミニウムなど)と、フッ化リチウム(LiF)とを混合し、混合物を焼成することにより合成できる。焼成条件の一例は、700~900℃×10~30時間である。
[負極]
負極12は、負極芯体と、負極芯体の表面に設けられた負極合材層とを有する。負極芯体には、銅などの負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質および結着材を含み、負極芯体の両面に設けられることが好ましい。負極12は、例えば負極芯体の表面に負極活物質、導電材、および結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合材層を負極芯体の両面に形成することにより作製できる。
負極12は、負極芯体と、負極芯体の表面に設けられた負極合材層とを有する。負極芯体には、銅などの負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質および結着材を含み、負極芯体の両面に設けられることが好ましい。負極12は、例えば負極芯体の表面に負極活物質、導電材、および結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合材層を負極芯体の両面に形成することにより作製できる。
負極合材層には、負極活物質として、例えばリチウムイオンを可逆的に吸蔵、放出する炭素系活物質が含まれる。好適な炭素系活物質は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などの黒鉛である。また、負極活物質には、SiおよびSi含有化合物の少なくとも一方で構成されるSi系活物質が用いられてもよく、炭素系活物質とSi系活物質が併用されてもよい。
負極合材層に含まれる導電材としては、正極11の場合と同様に、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料を用いることができる。負極合材層に含まれる結着材には、正極11の場合と同様に、フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィン等を用いることもできるが、スチレン-ブタジエンゴム(SBR)を用いることが好ましい。また、負極合材層は、さらに、CMCまたはその塩、ポリアクリル酸(PAA)またはその塩、ポリビニルアルコール(PVA)などを含むことが好ましい。中でも、SBRと、CMCまたはその塩、PAAまたはその塩を併用することが好適である。
[セパレータ]
セパレータ13には、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン、エチレンとαオレフィンの共重合体等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造、積層構造のいずれであってもよい。セパレータ13の表面には、無機粒子を含む耐熱層、アラミド樹脂、ポリイミド、ポリアミドイミド等の耐熱性の高い樹脂で構成される耐熱層などが形成されていてもよい。
セパレータ13には、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン、エチレンとαオレフィンの共重合体等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造、積層構造のいずれであってもよい。セパレータ13の表面には、無機粒子を含む耐熱層、アラミド樹脂、ポリイミド、ポリアミドイミド等の耐熱性の高い樹脂で構成される耐熱層などが形成されていてもよい。
<実施例>
以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
<実施例1>
[リチウム遷移金属複合酸化物の合成]
Mn、Niを2:1のモル比で含有する炭酸塩と、酸化ゲルマニウムと、水酸化アルミニウムと、フッ化リチウムとを混合し、混合物を800℃で20時間、酸素気流下で焼成して、組成式Li1.167Mn0.55Ni0.275Ge0.02Al0.002O1.92F0.08で表されるリチウム遷移金属複合酸化物を得た。
[リチウム遷移金属複合酸化物の合成]
Mn、Niを2:1のモル比で含有する炭酸塩と、酸化ゲルマニウムと、水酸化アルミニウムと、フッ化リチウムとを混合し、混合物を800℃で20時間、酸素気流下で焼成して、組成式Li1.167Mn0.55Ni0.275Ge0.02Al0.002O1.92F0.08で表されるリチウム遷移金属複合酸化物を得た。
[正極の作製]
正極活物質として、上記リチウム遷移金属複合酸化物を用いた。正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンとを、7:2:1の固形分質量比で混合し、分散媒としてN-メチル-2-ピロリドン(NMP)を用いて、正極合材スラリーを調製した。次に、アルミニウム箔からなる正極芯体上に正極合材スラリーを塗布し、塗膜を乾燥、圧縮した後、所定の電極サイズに切断して正極を得た。
正極活物質として、上記リチウム遷移金属複合酸化物を用いた。正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンとを、7:2:1の固形分質量比で混合し、分散媒としてN-メチル-2-ピロリドン(NMP)を用いて、正極合材スラリーを調製した。次に、アルミニウム箔からなる正極芯体上に正極合材スラリーを塗布し、塗膜を乾燥、圧縮した後、所定の電極サイズに切断して正極を得た。
[非水電解液の調製]
エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、所定の体積比で混合した。当該混合溶媒に、LiPF6を添加して非水電解液を得た。
エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、所定の体積比で混合した。当該混合溶媒に、LiPF6を添加して非水電解液を得た。
[試験セルの作製]
セパレータを介して上記正極とリチウム金属箔からなる負極を対向配置して電極体を構成し、コイン形の外装缶に電極体を収容した。外装缶に上記非水電解液を注入した後、外装缶を封止してコイン形の試験セル(非水電解質二次電池)を得た。
セパレータを介して上記正極とリチウム金属箔からなる負極を対向配置して電極体を構成し、コイン形の外装缶に電極体を収容した。外装缶に上記非水電解液を注入した後、外装缶を封止してコイン形の試験セル(非水電解質二次電池)を得た。
試験セルについて、下記の方法で電圧維持率を評価し、その評価結果を正極活物質の組成と共に表1に示す。
[電圧維持率の評価]
下記充放電条件で試験セルの充放電を行い、20サイクル目の平均作動電圧(V20)および1サイクル目の平均作動電圧(V1)から下記の式により電圧維持率を算出した。
下記充放電条件で試験セルの充放電を行い、20サイクル目の平均作動電圧(V20)および1サイクル目の平均作動電圧(V1)から下記の式により電圧維持率を算出した。
電圧維持率=(V20/V1)×100
充放電条件:0.05Cの定電流で電池電圧5.2VまでCC充電した後、20分間休止し、0.05Cの定電流で電池電圧2.5VまでCC放電を行った。この充放電サイクルを20回繰り返した。
充放電条件:0.05Cの定電流で電池電圧5.2VまでCC充電した後、20分間休止し、0.05Cの定電流で電池電圧2.5VまでCC放電を行った。この充放電サイクルを20回繰り返した。
<実施例2、比較例1>
リチウム遷移金属複合酸化物の合成において、表1に示す組成が得られるように、原料の種類および原料の混合比を変更したこと以外(Ni、Mnの含有率は実施例1と同じ)は、実施例1と同様にして試験セルを作製し、電圧維持率の評価を行った。
リチウム遷移金属複合酸化物の合成において、表1に示す組成が得られるように、原料の種類および原料の混合比を変更したこと以外(Ni、Mnの含有率は実施例1と同じ)は、実施例1と同様にして試験セルを作製し、電圧維持率の評価を行った。
表1に示すように、正極活物質として、Mn、Ni、Geを含有する、リチウム過剰型のF含有複合酸化物に、Co、Alから選択される少なくとも1種の元素を添加したものを用いた実施例の試験セルは、比較例の試験セルと比べて電圧維持率が高い。特に、Ge、Al、Coを含有する実施例2の正極活物質は、試験セルの電圧維持率を大きく向上させる。
以上のように、遷移金属として少なくともMnを含有するリチウム過剰型のF含有複合酸化物に、Geと共に、Co、Al等から選択される特定の元素を少なくとも1種以上添加することにより、電圧維持率を大きく改善することができる。
10 非水電解質二次電池
11 正極
12 負極
13 セパレータ
14 電極体
16 外装缶
17 封口体
18,19 絶縁板
20 正極リード
21 負極リード
22 溝入部
23 内部端子板
24 下弁体
25 絶縁部材
26 上弁体
27 キャップ
28 ガスケット
11 正極
12 負極
13 セパレータ
14 電極体
16 外装缶
17 封口体
18,19 絶縁板
20 正極リード
21 負極リード
22 溝入部
23 内部端子板
24 下弁体
25 絶縁部材
26 上弁体
27 キャップ
28 ガスケット
Claims (4)
- 組成式LixMnyNizGeaMbO2-cFc(式中、MはTi、Co、Si、Al、Nb、W、Mo、P、Ca、Mg、Sb、Na、B、V、Cr、Fe、Cu、Zn、Sr、Zr、Ru、K、Biから選択される少なくとも1種であり、1.0<x≦1.2、0.4≦y≦0.8、0≦z≦0.4、0<a<0.01、0<b<0.03、0<c<0.1、x+y+z+a+b≦2)で表されるリチウム遷移金属複合酸化物を含む、非水電解質二次電池用正極活物質。
- 組成式LixMnyNizGeaMbO2-cFcにおいて、MはCo、Alから選択される少なくとも1種であり、Mのモル比(b)は0<b<0.02である、請求項1に記載の非水電解質二次電池用正極活物質。
- 組成式LixMnyNizGeaMbO2-cFcにおいて、Geのモル比(a)は0.002≦a≦0.005である、請求項1または2に記載の非水電解質二次電池用正極活物質。
- 請求項1~3のいずれか1項に記載の正極活物質を含む正極と、負極と、前記正極と前記負極の間に介在するセパレータと、非水電解質とを備える、非水電解質二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21760449.5A EP4113663A4 (en) | 2020-02-28 | 2021-02-10 | ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR NON-AQUEOUS ELECTROLYTE RECHARGEABLE BATTERY AND NON-AQUEOUS ELECTROLYTE RECHARGEABLE BATTERY |
JP2022503245A JPWO2021172011A1 (ja) | 2020-02-28 | 2021-02-10 | |
CN202180015378.7A CN115136355A (zh) | 2020-02-28 | 2021-02-10 | 非水电解质二次电池用正极活性物质和非水电解质二次电池 |
US17/800,357 US20230053476A1 (en) | 2020-02-28 | 2021-02-10 | Positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020033977 | 2020-02-28 | ||
JP2020-033977 | 2020-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021172011A1 true WO2021172011A1 (ja) | 2021-09-02 |
Family
ID=77491416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/004883 WO2021172011A1 (ja) | 2020-02-28 | 2021-02-10 | 非水電解質二次電池用正極活物質および非水電解質二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230053476A1 (ja) |
EP (1) | EP4113663A4 (ja) |
JP (1) | JPWO2021172011A1 (ja) |
CN (1) | CN115136355A (ja) |
WO (1) | WO2021172011A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017033817A (ja) * | 2015-08-04 | 2017-02-09 | 日立化成株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料及びリチウムイオン二次電池 |
JP2018077965A (ja) * | 2016-11-07 | 2018-05-17 | 株式会社Gsユアサ | 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池 |
JP2018152256A (ja) * | 2017-03-14 | 2018-09-27 | 株式会社Gsユアサ | 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5682172B2 (ja) * | 2010-08-06 | 2015-03-11 | Tdk株式会社 | 活物質、活物質の製造方法及びリチウムイオン二次電池 |
EP3595058A1 (en) * | 2017-03-06 | 2020-01-15 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode active material and battery |
JP7228773B2 (ja) * | 2018-01-17 | 2023-02-27 | パナソニックIpマネジメント株式会社 | 正極活物質、および、電池 |
-
2021
- 2021-02-10 CN CN202180015378.7A patent/CN115136355A/zh active Pending
- 2021-02-10 US US17/800,357 patent/US20230053476A1/en active Pending
- 2021-02-10 WO PCT/JP2021/004883 patent/WO2021172011A1/ja unknown
- 2021-02-10 JP JP2022503245A patent/JPWO2021172011A1/ja active Pending
- 2021-02-10 EP EP21760449.5A patent/EP4113663A4/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017033817A (ja) * | 2015-08-04 | 2017-02-09 | 日立化成株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料及びリチウムイオン二次電池 |
JP2018077965A (ja) * | 2016-11-07 | 2018-05-17 | 株式会社Gsユアサ | 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池 |
JP2018152256A (ja) * | 2017-03-14 | 2018-09-27 | 株式会社Gsユアサ | 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115136355A (zh) | 2022-09-30 |
JPWO2021172011A1 (ja) | 2021-09-02 |
EP4113663A4 (en) | 2023-08-30 |
US20230053476A1 (en) | 2023-02-23 |
EP4113663A1 (en) | 2023-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021172010A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2020218474A1 (ja) | 二次電池用の正極活物質、及び二次電池 | |
WO2021171843A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2021039751A1 (ja) | 非水電解質二次電池 | |
WO2022070898A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2023054041A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2021241027A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2021220626A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2021153527A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2022044489A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2021019943A1 (ja) | 非水電解質二次電池 | |
WO2021172011A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2021171842A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2022138848A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
CN112655102A (zh) | 二次电池用浆料、二次电池用正极和二次电池 | |
WO2022181264A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2023068229A1 (ja) | 非水電解質二次電池用正極及び非水電解質二次電池 | |
WO2023189507A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2024161962A1 (ja) | 非水電解質二次電池用正極および非水電解質二次電池 | |
JP7539392B2 (ja) | 非水電解質二次電池用正極活物質、及び非水電解質二次電池 | |
WO2023053582A1 (ja) | 二次電池用正極、及びそれを用いた二次電池 | |
WO2022163531A1 (ja) | 非水電解質二次電池用活物質、及び非水電解質二次電池 | |
WO2024024364A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
WO2023120413A1 (ja) | 二次電池用正極活物質、及び二次電池用正極活物質の製造方法 | |
WO2023100748A1 (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21760449 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022503245 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021760449 Country of ref document: EP Effective date: 20220928 |