WO2021171672A1 - Rfidタグ用rficモジュール及びrfidタグ - Google Patents

Rfidタグ用rficモジュール及びrfidタグ Download PDF

Info

Publication number
WO2021171672A1
WO2021171672A1 PCT/JP2020/036707 JP2020036707W WO2021171672A1 WO 2021171672 A1 WO2021171672 A1 WO 2021171672A1 JP 2020036707 W JP2020036707 W JP 2020036707W WO 2021171672 A1 WO2021171672 A1 WO 2021171672A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
coil
rfic
connection
antenna
Prior art date
Application number
PCT/JP2020/036707
Other languages
English (en)
French (fr)
Inventor
紀行 植木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021525803A priority Critical patent/JP6947339B1/ja
Priority to CN202090000341.8U priority patent/CN215729774U/zh
Priority to DE212020000493.5U priority patent/DE212020000493U1/de
Priority to US17/363,751 priority patent/US12093765B2/en
Publication of WO2021171672A1 publication Critical patent/WO2021171672A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07752Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna using an interposer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Definitions

  • the present invention relates to an RFID tag RFIC module that constitutes a part of an RFID tag, and an RFID tag that includes the RFID tag RFIC module.
  • Patent Document 1 is shown as an example of an RFID (Radio Frequency Identifier) tag including an RFIC (Radio Frequency Integrated Circuit) module.
  • This RFID tag is configured by mounting an RFIC module on an antenna base material on which an antenna is formed.
  • the RFIC module includes an RFIC and an impedance matching circuit that matches the impedance of the RFIC and the antenna.
  • the coils of the plurality of coils constituting the impedance matching circuit are very close to each other.
  • unnecessary coupling may occur depending on the coil winding direction and the coil shape, and the characteristics of the RFIC module and the RFID tag may deteriorate.
  • the coils constituting the impedance matching circuit are arranged so as to be sandwiched between the two antenna connection electrodes in the plane direction. Therefore, the coil constituting the impedance matching circuit is shielded by the antenna connection electrode, and the magnetic field leakage to the outside is small. Therefore, the conventional RFIC module is difficult to inspect in a non-contact manner.
  • an object of the present invention is to provide an RFIC module and an RFID tag in which unnecessary coupling between a plurality of coils constituting an impedance matching circuit between an RFIC and an antenna is suppressed.
  • Another object of the present invention is to provide an RFID tag RFIC module and an RFID tag that enable inspection such as characteristic measurement by itself.
  • the RFIC module for an RFID tag includes an RFIC, a first electrode for antenna connection, a second electrode for antenna connection, a first electrode for RFIC connection, a second electrode for RFIC connection, and the RFIC.
  • An impedance matching circuit that is connected between the first electrode for connection and the second electrode for RFIC connection and the first electrode for antenna connection and the second electrode for antenna connection to match the impedances of the RFIC and the antenna.
  • the impedance matching circuit connects the first coil and the second coil, which are connected between the first electrode for RFIC connection and the second electrode for RFIC connection, and the coil openings are widened along the surface of the substrate, respectively.
  • the first coil and the second coil are juxtaposed on the substrate with the first electrode for connecting the antenna and the second electrode for connecting the antenna interposed therebetween.
  • the RFID tag includes an antenna, an RFIC, an antenna connection first electrode, an antenna connection second electrode, an RFIC connection first electrode, an RFIC connection second electrode, and the RFIC.
  • An impedance matching circuit that is connected between the first electrode for connection and the second electrode for RFIC connection and the first electrode for antenna connection and the second electrode for antenna connection to match the impedances of the RFIC and the antenna.
  • the RFIC connection first electrode, the RFIC connection second electrode, the antenna connection first electrode, the antenna connection second electrode, and the substrate on which the impedance matching circuit is formed are provided.
  • the impedance matching circuit connects the first coil and the second coil, which are connected between the first electrode for RFIC connection and the second electrode for RFIC connection, and the coil openings are widened along the surface of the substrate, respectively.
  • the first coil and the second coil are juxtaposed on the substrate with the first electrode for connecting the antenna and the second electrode for connecting the antenna interposed therebetween.
  • an RFIC module and an RFID tag in which unnecessary coupling between a plurality of coils constituting an impedance matching circuit between an RFIC and an antenna is suppressed.
  • RFIC modules for RFID tags and RFID tags that enable inspections such as characteristic measurement by themselves can be obtained.
  • FIG. 1 is an enlarged plan view of the RFIC module 101 according to the first embodiment.
  • FIG. 2 is a circuit diagram of the RFIC module 101.
  • FIG. 3 is a diagram showing two resonance frequencies generated by the impedance matching circuit 7 shown in FIG.
  • FIG. 4A is a plan view of the RFID tag 201
  • FIG. 4B is an enlarged plan view of a mounting portion of the RFIC module 101 in the RFID tag 201.
  • FIG. 5 is a vertical cross-sectional view taken along the line XX in FIG. 4 (B).
  • FIG. 6 is a diagram showing the relationship between the RFIC module 101 and the measuring instrument 301 and the like.
  • FIG. 7 is an enlarged plan view of the RFIC module 102 according to the second embodiment.
  • FIG. 8 is a plan view of the RFIC module as a comparative example.
  • FIG. 1 is an enlarged plan view of an RFID tag RFIC module (hereinafter, simply referred to as “RFIC module”) 101 according to the first embodiment.
  • RFIC module an RFID tag RFIC module
  • the RFIC module 101 includes RFIC 2, an antenna connection first electrode 11, an antenna connection second electrode 12, an RFIC connection first electrode 31, an RFIC connection second electrode 32, an impedance matching circuit, and a substrate. 1 and.
  • the impedance matching circuit is connected between the first electrode 31 for RFIC connection and the second electrode 32 for RFIC connection, the first electrode 11 for antenna connection and the second electrode 12 for antenna connection, and the RFIC 2 and the antenna are connected to each other. Match the impedance.
  • the RFIC connection first electrode 31, the RFIC connection second electrode 32, the antenna connection first electrode 11, the antenna connection second electrode 12, and the impedance matching circuit are formed on the substrate 1.
  • RFIC terminal electrodes 21 and 22 are formed on the lower surface of the RFIC 2, and the RFIC 2 is mounted on the substrate 1 by connecting the RFIC terminal electrodes 21 and 22 to the RFIC connection electrodes 31 and 32.
  • the mounting surface of the RFIC 2 on the substrate 1 is covered with an insulator layer formed by a resin mold, and FIG. 1 is a plan view of the substrate 1 in front of the resin mold.
  • the impedance matching circuit has a first coil LA and a second coil LB that are connected between the RFIC connection first electrode 31 and the RFIC connection second electrode 32 and the coil openings are widened along the surface of the substrate 1, respectively. .. Expressed in the coordinates shown in FIG. 1, the coil winding axis of the first coil LA is parallel to the Z axis, and the coil opening is parallel to the XY plane. Similarly, the coil winding axis of the second coil LB is parallel to the Z axis, and its coil opening is parallel to the XY plane.
  • the first coil LA and the second coil LB are juxtaposed on the substrate 1 with the first electrode 11 for antenna connection and the second electrode 12 for antenna connection interposed therebetween.
  • the coil opening CO1 of the first coil LA is a region surrounded by the innermost circumference of the conductor pattern constituting the first coil LA
  • the coil opening CO2 of the second coil LB is the conductor pattern constituting the second coil LB. It is the area surrounded by the innermost circumference of.
  • the first coil LA includes a coil constituting the first inductor L1 connected between the RFIC connection first electrode 31 and the antenna connection first electrode 11, and the antenna connection first electrode 11 and the antenna connection first. It is composed of a coil constituting a third inductor L3 connected in series with the two electrodes 12. Both coils are spiral. Further, the second coil LB is a coil constituting a third inductor L3 connected between the second electrode 32 for RFIC connection and the second electrode 12 for antenna connection, and the first electrode 11 for antenna connection and antenna connection. It is composed of a coil constituting a fourth inductor L4 connected in series with the second electrode 12. Both coils are spiral.
  • the coil constituting the first inductor L1 is formed on the upper surface of the substrate 1, and the coil constituting the third inductor L3 is formed on the lower surface of the substrate 1.
  • the coil constituting the first inductor L1 and the coil constituting the third inductor L3 are connected via an interlayer connecting conductor V1.
  • the coil constituting the second inductor L2 is formed on the upper surface of the substrate 1, and the coil constituting the fourth inductor L4 is formed on the lower surface of the substrate 1.
  • the coil constituting the second inductor L2 and the coil constituting the fourth inductor L4 are connected via an interlayer connecting conductor V2.
  • the coil constituting the third inductor L3 and the coil constituting the fourth inductor L4 are connected via a conductor pattern constituting the fifth inductor L5.
  • FIG. 2 is a circuit diagram of the RFIC module 101.
  • the RFIC module 101 is composed of an RFIC 2 and an impedance matching circuit 7.
  • the impedance matching circuit 7 is composed of a first inductor L1, a second inductor L2, a third inductor L3, a fourth inductor L4, and a fifth inductor L5.
  • the RFIC 2 has an equivalent capacitor Cp connected between the RFIC connection first electrode 31 and the RFIC connection second electrode 32.
  • the first inductor L1 and the third inductor L3 are magnetically coupled, and the second inductor L2 and the fourth inductor L4 are magnetically coupled.
  • the dot symbols in FIG. 2 indicate the coil winding direction of each inductor.
  • FIG. 3 is a diagram showing two resonance frequencies generated by the impedance matching circuit 7 shown in FIG. Two resonances occur in the RFIC module 101.
  • the first resonance is a resonance that occurs in the current path composed of the antenna 6, the third inductor L3, the fourth inductor, and the fifth inductor L5, and the current i1 shown in FIG. 2 represents the current flowing in the resonance current path.
  • the second resonance is a resonance that occurs in the current path composed of the capacitor Cp, the first inductor L1, the second inductor L2, the third inductor L3, and the fifth inductor L5, and the current i2 shown in FIG. 2 is the resonance current thereof. It represents the current flowing in the path.
  • the first resonance and the second resonance are coupled via the third inductor L3, the fourth inductor L4, and the fifth inductor L5.
  • a difference of several tens of MHz is generated between the resonance frequency of the first resonance and the resonance frequency of the second resonance.
  • These resonance frequency characteristics are represented by curves A and B in FIG.
  • a wide-band resonance frequency characteristic as shown by the curve C in FIG. 3 can be obtained.
  • FIG. 4 (A) is a plan view of the RFID tag 201
  • FIG. 4 (B) is an enlarged plan view of the mounting portion of the RFIC module 101 in the RFID tag 201.
  • FIG. 5 is a vertical cross-sectional view of the XX portion in FIG. 4 (B).
  • FIG. 4B is a plan view of the mounting surface of the RFIC2 of the substrate 1 before the protective film (protective film 3 in FIG. 5) is formed by the resin mold.
  • the RFID tag 201 is composed of an antenna 6 and an RFIC module 101 coupled to the antenna 6.
  • the antenna 6 is composed of an insulator film 60 and antenna conductor patterns 61 and 62 formed on the insulator film 60.
  • the antenna conductor pattern 61 is composed of conductor patterns 61P, 61L, 61C
  • the antenna conductor pattern 62 is composed of conductor patterns 62P, 62L, 62C.
  • the antenna conductor patterns 61 and 62 constitute a dipole antenna.
  • a protective film 3 is formed on the upper surface of the RFIC module 101, and the lower surface is covered with the coverlay film 4.
  • the RFIC module 101 is mounted on the insulator film 60 by being adhered to the insulator film 60 via the adhesive layer 5.
  • the conductor pattern 61P and the antenna connection first electrode 11 are capacitively coupled via the adhesive layer 5 and the coverlay film 4.
  • the conductor pattern 62P and the antenna connection second electrode 12 are capacitively coupled via the adhesive layer 5 and the coverlay film 4.
  • the conductor patterns 61L and 62L have a meander line shape and act as a region having a high inductance component. Further, the conductor patterns 61C and 62C have a planar shape and act as a region having a high capacitance component. As a result, the inductance component in the region with high current strength is increased, the capacitance component in the region with high voltage strength is increased, and the formation regions of the antenna conductor patterns 61 and 62 are reduced.
  • FIG. 1 a plan view of the RFIC module as a comparative example is shown in FIG.
  • the first coil LA and the second coil LB are arranged in a positional relationship sandwiched between the antenna connection first electrode 11 and the antenna connection second electrode 12. Therefore, the first coil LA and the second coil LB are likely to be unnecessarily coupled. Further, since the first coil LA and the second coil LB are electromagnetically shielded by the antenna connecting first electrode 11 and the antenna connecting second electrode 12, the leakage magnetic field to the outside is weak.
  • the first electrode 11 for antenna connection and the second electrode 12 for antenna connection are arranged between the first coil LA and the second coil LB along the surface direction of the substrate 1. Therefore, the first coil LA and the second coil LB are electromagnetically shielded by the antenna connecting first electrode 11 and the antenna connecting second electrode 12, and unnecessary coupling between the first coil LA and the second coil LB is performed. Is suppressed. Further, as the coupling between the first coil LA and the second coil LB is suppressed, the magnetic field leaked to the outside from the first coil LA or the second coil LB becomes stronger.
  • FIG. 6 is a diagram showing the relationship between the RFIC module 101 and the measuring instrument 301 and the like.
  • a magnetic field probe 311 is connected to the measuring instrument 301.
  • the magnetic flux interlinks between the coil opening of the first coil LA and the coil opening of the magnetic field probe 311 so that the first coil LA and the magnetic field probe 311 are magnetically coupled.
  • the magnetic flux contributing to the coupling is represented by a broken line.
  • the magnetic field leaked to the outside from the first coil LA or the second coil LB becomes stronger, so that the first coil LA or the second coil LB and the magnetic field probe 311 of the measuring instrument 301 are used. Magnetic field coupling is enhanced. Therefore, the RFIC module 101 can be inspected even when the distance H between the RFIC module 101 and the magnetic field probe 311 is large to some extent, that is, even when the magnetic field probe 311 is not in contact with the RFIC module 101.
  • Second Embodiment the arrangement relationship of the antenna connection first electrode 11 and the antenna connection second electrode 12 with respect to the first coil LA and the second coil LB is different from the example shown in the first embodiment. Is shown.
  • FIG. 7 is an enlarged plan view of the RFIC module 102 according to the second embodiment.
  • the RFIC module 102 includes RFIC 2, an antenna connection first electrode 11, an antenna connection second electrode 12, an RFIC connection first electrode 31, an RFIC connection second electrode 32, an impedance matching circuit, and a substrate. 1 and.
  • the arrangement direction of the antenna connection first electrode 11 and the antenna connection second electrode 12 is equal to the arrangement direction of the first coil LA and the second coil LB (both are on the X-axis).
  • the arrangement direction of the first electrode 11 for connecting the antenna and the second electrode 12 for connecting the antenna (parallel to the Y axis), the first coil LA, and the second electrode 12 are parallel directions.
  • the arrangement direction (parallel to the X-axis) with the 2-coil LB is orthogonal. Other configurations are as shown in the first embodiment.
  • the unnecessary coupling between the first coil LA and the second coil LB is suppressed as in the first embodiment. Further, the magnetic field coupling between the first coil LA or the second coil LB and the magnetic field probe 311 of the measuring instrument 301 is enhanced, and the inspection can be performed in the state of the RFIC module 101 alone.
  • the straight line passing through the center of gravity of the coil opening of the first coil LA and the center of gravity of the coil opening of the second coil LB is the first electrode 11 for antenna connection and the first electrode for antenna connection.
  • An example of passing through the center of the contour including the two electrodes 12 is shown, but it does not necessarily have to pass through the center.
  • the impedance matching circuit is configured by the first inductor L1, the second inductor L2, the third inductor L3, the fourth inductor L4, and the fifth inductor L5. Is not limited to this.
  • the coil for the first inductor L1 and the coil for the third inductor L3 form the first coil LA
  • the coil for the second inductor L2 and the coil for the fourth inductor L4 form the second coil LB.
  • the present invention is not limited to this.
  • the same can be applied when the first coil LA and the second coil LB are each composed of a single coil.
  • a capacitance is formed between the antenna connection first electrode 11 and the antenna conductor pattern 61P, and the antenna connection second electrode 12 and the antenna are formed.
  • An example of forming a capacitance with the conductor pattern 62P has been shown, but this "connection" is not limited to the connection via the capacitance, and may be a direct current connection.
  • RFIC connection 2nd electrode 60 Insulator film 61, 62 ... Antenna conductor pattern 61P, 61L, 61C, 62P, 62L, 62C ... Conductor pattern 101, 102 ... RFID tag RFIC module 201 ... RFID tag 301 ... Measuring instrument 311 ... Magnetic probe

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

RFICモジュール(101)は、RFIC(2)と、アンテナ接続用第1電極(11)と、アンテナ接続用第2電極(12)と、RFIC接続用第1電極(31)と、RFIC接続用第2電極(32)と、RFICとアンテナとのインピーダンスを整合させるインピーダンス整合回路と、基板(1)と、を備える。インピーダンス整合回路は、コイル開口が基板(1)の面に沿ってそれぞれ拡がる第1コイル(LA)及び第2コイル(LB)を有し、第1コイル(LA)及び第2コイル(LB)は、アンテナ接続用第1電極(11)及びアンテナ接続用第2電極(12)を挟んで基板(1)に並置されている。

Description

RFIDタグ用RFICモジュール及びRFIDタグ
 本発明は、RFIDタグの一部を構成するRFIDタグ用RFICモジュール、及びそのRFIDタグ用RFICモジュールを備えるRFIDタグに関する。
 RFIC(Radio Frequency Integrated Circuit)モジュールを備えるRFID(Radio Frequency Identifier)タグの一例として特許文献1が示されている。このRFIDタグは、アンテナが形成されたアンテナ基材にRFICモジュールが実装されることで構成される。そのRFICモジュールは、RFICと、このRFICとアンテナとのインピーダンスを整合させるインピーダンス整合回路とを備える。
国際公開第2016/084658号
 特許文献1に記載の構造のRFICモジュールでは、それを薄型化、小型化しようとすると、上記インピーダンス整合回路を構成する複数のコイルのコイル間が非常に近接する。このようにコイル間が近接すると、コイルの巻回方向やコイル形状によっては不要結合が生じ、RFICモジュール及びRFIDタグの特性が劣化する場合がある。
 また、RFIDタグの製造段階でその特性を検査する際、一般的にはRFIDタグリーダで読み取ることになるが、RFICモジュール単体で検査することができれば、検査効率が非常に高まる。
 RFICモジュール単体でその検査を行うためには、外部へ漏洩する磁界を非接触で検知する必要がある。しかし、従来のRFIDタグリーダに用いられるRFICモジュールでは、インピーダンス整合回路を構成するコイルが、二つのアンテナ接続電極で面方向に挟まれる位置関係で配置されている。そのため、インピーダンス整合回路を構成するコイルがアンテナ接続電極でシールドされてしまい、外部への磁界漏洩は少ない。したがって、従来のRFICモジュールは、非接触での検査が困難であった。
 そこで、本発明の目的は、RFICとアンテナとのインピーダンス整合回路を構成する複数のコイル間の不要結合が抑制されたRFICモジュール及びRFIDタグを提供することにある。また、本発明の目的は、単体での特性測定等の検査を可能としたRFIDタグ用RFICモジュール及RFIDタグを提供することにある。
 本開示の一例としてのRFIDタグ用RFICモジュールは、RFICと、アンテナ接続用第1電極と、アンテナ接続用第2電極と、RFIC接続用第1電極と、RFIC接続用第2電極と、前記RFIC接続用第1電極及び前記RFIC接続用第2電極と、前記アンテナ接続用第1電極及び前記アンテナ接続用第2電極との間に接続され、前記RFICとアンテナとのインピーダンスを整合させるインピーダンス整合回路と、前記RFIC接続用第1電極、前記RFIC接続用第2電極、前記アンテナ接続用第1電極、前記アンテナ接続用第2電極及び前記インピーダンス整合回路が形成され、前記RFICが搭載される基板と、を備える。そして、前記インピーダンス整合回路は、前記RFIC接続用第1電極と前記RFIC接続用第2電極との間に接続され、コイル開口が前記基板の面に沿ってそれぞれ拡がる第1コイル及び第2コイルを有し、前記第1コイル及び前記第2コイルは、前記アンテナ接続用第1電極及び前記アンテナ接続用第2電極を挟んで前記基板に並置されている。
 本開示の一例としてのRFIDタグは、アンテナと、RFICと、アンテナ接続用第1電極と、アンテナ接続用第2電極と、RFIC接続用第1電極と、RFIC接続用第2電極と、前記RFIC接続用第1電極及び前記RFIC接続用第2電極と、前記アンテナ接続用第1電極及び前記アンテナ接続用第2電極との間に接続され、前記RFICとアンテナとのインピーダンスを整合させるインピーダンス整合回路と、少なくとも、前記RFIC接続用第1電極、前記RFIC接続用第2電極、前記アンテナ接続用第1電極、前記アンテナ接続用第2電極及び前記インピーダンス整合回路が形成される基板と、を備える。そして、前記インピーダンス整合回路は、前記RFIC接続用第1電極と前記RFIC接続用第2電極との間に接続され、コイル開口が前記基板の面に沿ってそれぞれ拡がる第1コイル及び第2コイルを有し、前記第1コイル及び前記第2コイルは前記アンテナ接続用第1電極及び前記アンテナ接続用第2電極を挟んで前記基板に並置されている。
 上記構成により、インピーダンス整合回路に含まれるコイル同士の不要結合がアンテナ接続用第1電極及び第2電極によって抑制される。また、インピーダンス整合回路に含まれるコイルからの外部への漏洩磁界が強くなり、外部の磁界プローブとの磁界結合が高まる。
 本発明によれば、RFICとアンテナとのインピーダンス整合回路を構成する複数のコイル間の不要結合が抑制されたRFICモジュール及びRFIDタグが得られる。また、単体での特性測定等の検査を可能としたRFIDタグ用RFICモジュール及RFIDタグが得られる。
図1は第1の実施形態に係るRFICモジュール101の拡大平面図である。 図2はRFICモジュール101の回路図である。 図3は、図2に示したインピーダンス整合回路7により生じる2つの共振周波数について示す図である。 図4(A)はRFIDタグ201の平面図であり、図4(B)は、RFIDタグ201におけるRFICモジュール101の搭載部分の拡大平面図である。 図5は図4(B)におけるX-X部分での縦断面図である。 図6はRFICモジュール101と測定器301等との関係を示す図である。 図7は第2の実施形態に係るRFICモジュール102の拡大平面図である。 図8は比較例としてのRFICモジュールの平面図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上、複数の実施形態に分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係るRFIDタグ用RFICモジュール(以下、単に「RFICモジュール」という。)101の拡大平面図である。
 RFICモジュール101は、RFIC2と、アンテナ接続用第1電極11と、アンテナ接続用第2電極12と、RFIC接続用第1電極31と、RFIC接続用第2電極32と、インピーダンス整合回路と、基板1とを備える。
 上記インピーダンス整合回路は、RFIC接続用第1電極31及びRFIC接続用第2電極32と、アンテナ接続用第1電極11及びアンテナ接続用第2電極12との間に接続され、RFIC2とアンテナとのインピーダンスを整合させる。
 RFIC接続用第1電極31、RFIC接続用第2電極32、アンテナ接続用第1電極11、アンテナ接続用第2電極12及びインピーダンス整合回路は基板1に形成されている。RFIC2の下面にはRFIC端子電極21,22が形成されていて、このRFIC端子電極21,22がRFIC接続用電極31,32に接続されることで、RFIC2は基板1に搭載されている。基板1の、RFIC2の搭載面には樹脂モールドによる絶縁体層が覆われるが、図1はその樹脂モールド前での平面図である。
 インピーダンス整合回路は、RFIC接続用第1電極31とRFIC接続用第2電極32との間に接続されてコイル開口が基板1の面に沿ってそれぞれ拡がる第1コイルLA及び第2コイルLBを有する。図1に示した座標で表現すると、第1コイルLAのコイル巻回軸はZ軸に平行であり、そのコイル開口はX-Y面に平行である。同様に、第2コイルLBのコイル巻回軸はZ軸に平行であり、そのコイル開口はX-Y面に平行である。
 第1コイルLA及び第2コイルLBは、アンテナ接続用第1電極11及びアンテナ接続用第2電極12を挟んで基板1に並置されている。第1コイルLAのコイル開口CO1は、第1コイルLAを構成する導体パターンの最内周で囲まれた領域であり、第2コイルLBのコイル開口CO2は、第2コイルLBを構成する導体パターンの最内周で囲まれた領域である。
 第1コイルLAは、RFIC接続用第1電極31とアンテナ接続用第1電極11との間に接続される第1インダクタL1を構成するコイルと、アンテナ接続用第1電極11とアンテナ接続用第2電極12との間に直列接続される第3インダクタL3を構成するコイルと、で構成されている。いずれのコイルもスパイラル状である。また、第2コイルLBはRFIC接続用第2電極32とアンテナ接続用第2電極12との間に接続される第3インダクタL3を構成するコイルと、アンテナ接続用第1電極11とアンテナ接続用第2電極12との間に直列接続される第4インダクタL4を構成するコイルと、で構成されている。いずれのコイルもスパイラル状である。
 第1インダクタL1を構成するコイルは基板1の上面に形成されていて、第3インダクタL3を構成するコイルは基板1の下面に形成されている。第1インダクタL1を構成するコイルと第3インダクタL3を構成するコイルとは層間接続導体V1を介して接続されている。また、第2インダクタL2を構成するコイルは基板1の上面に形成されていて、第4インダクタL4を構成するコイルは基板1の下面に形成されている。第2インダクタL2を構成するコイルと第4インダクタL4を構成するコイルとは層間接続導体V2を介して接続されている。
 また、第3インダクタL3を構成するコイルと第4インダクタL4を構成するコイルとは、第5インダクタL5を構成する導体パターンを介して接続されている。
 第1インダクタL1を構成するコイルのコイル開口と、第3インダクタL3を構成するコイルのコイル開口とは重なり、第2インダクタL2を構成するコイルのコイル開口と、第4インダクタL4を構成するコイルのコイル開口とは重なる。
 図2はRFICモジュール101の回路図である。RFICモジュール101はRFIC2とインピーダンス整合回路7とで構成されている。インピーダンス整合回路7は、第1インダクタL1、第2インダクタL2、第3インダクタL3、第4インダクタL4及び第5インダクタL5で構成される。RFIC2には、RFIC接続用第1電極31とRFIC接続用第2電極32との間に接続される等価的なキャパシタCpが存在する。第1インダクタL1と第3インダクタL3とは磁界結合し、第2インダクタL2と第4インダクタL4とは磁界結合する。図2中のドット記号は各インダクタのコイル巻回方向を示している。
 図3は、図2に示したインピーダンス整合回路7により生じる2つの共振周波数について示す図である。RFICモジュール101では2つの共振が発生する。第1の共振は、アンテナ6、第3インダクタL3、第4インダクタ及び第5インダクタL5で構成される電流経路に生じる共振であり、図2に示す電流i1はその共振電流経路に流れる電流を表している。第2の共振は、キャパシタCp、第1インダクタL1、第2インダクタL2、第3インダクタL3及び第5インダクタL5で構成される電流経路に生じる共振であり、図2に示す電流i2はその共振電流経路に流れる電流を表している。
 上記第1の共振と第2の共振とは、第3インダクタL3、第4インダクタL4及び第5インダクタL5を介して結合する。第1の共振の共振周波数と第2の共振の共振周波数との間には数10MHz(具体的には5~50MHz程度)の差を生じさせている。これらの共振周波数特性は図3において曲線A及びBで表現される。このような共振周波数を有する2つの共振を結合させることで、図3において曲線Cで示すような広帯域の共振周波数特性が得られる。
 図4(A)はRFIDタグ201の平面図であり、図4(B)は、RFIDタグ201におけるRFICモジュール101の搭載部分の拡大平面図である。また、図5は図4(B)におけるX-X部分での縦断面図である。ただし、図4(B)は、基板1のRFIC2の搭載面の樹脂モールドによる保護膜(図5における保護膜3)形成前での平面図である。
 RFIDタグ201は、アンテナ6と、このアンテナ6に結合するRFICモジュール101とで構成される。アンテナ6は、絶縁体フィルム60と、この絶縁体フィルム60に形成されたアンテナ導体パターン61,62とで構成される。
 アンテナ導体パターン61は導体パターン61P,61L,61Cで構成され、アンテナ導体パターン62は導体パターン62P,62L,62Cで構成される。アンテナ導体パターン61,62はダイポールアンテナを構成する。
 図5に示すように、RFICモジュール101の上面には保護膜3が形成されていて、下面はカバーレイフィルム4で被覆されている。RFICモジュール101は接着剤層5を介して絶縁体フィルム60に接着されることで、絶縁体フィルム60にRFICモジュール101が搭載される。
 図5に示すように、導体パターン61Pとアンテナ接続用第1電極11とは、接着剤層5及びカバーレイフィルム4を介して容量結合する。同様に、導体パターン62Pとアンテナ接続用第2電極12とは、接着剤層5及びカバーレイフィルム4を介して容量結合する。
 導体パターン61L,62Lはメアンダライン形状であって、インダクタンス成分の高い領域として作用する。また、導体パターン61C,62Cは平面形状であって、キャパシタンス成分の高い領域として作用する。このことにより、電流強度の高い領域のインダクタンス成分を大きくし、電圧強度の高い領域のキャパシタンス成分を大きくして、アンテナ導体パターン61,62の形成領域を縮小化している。
 ここで、比較例としてのRFICモジュールの平面図を図8に示す。この比較例としてのRFICモジュールでは、第1コイルLA及び第2コイルLBがアンテナ接続用第1電極11とアンテナ接続用第2電極12とで挟まれる位置関係にそれらが配置されている。そのため、第1コイルLAと第2コイルLBとは不要結合しやすい。また、第1コイルLA及び第2コイルLBはアンテナ接続用第1電極11及びアンテナ接続用第2電極12によって電磁界的に遮蔽されるので、外部への漏洩磁界は弱い。
 本実施形態によれば、基板1の面方向に沿った、第1コイルLAと第2コイルLBとの間に、アンテナ接続用第1電極11及びアンテナ接続用第2電極12が配置されているので、第1コイルLAと第2コイルLBとは、アンテナ接続用第1電極11及びアンテナ接続用第2電極12によって電磁界的に遮蔽され、第1コイルLAと第2コイルLBとの不要結合が抑制される。また、第1コイルLAと第2コイルLBとの結合が抑制されることに伴って、第1コイルLA又は第2コイルLBからの外部への漏洩磁界が強くなる。
 図6はRFICモジュール101と測定器301等との関係を示す図である。測定器301には磁界プローブ311が接続されている。図6に示す例では、第1コイルLAのコイル開口及び磁界プローブ311のコイル開口に磁束が鎖交することにより、第1コイルLAと磁界プローブ311とが磁界結合する。図6において、結合に寄与する磁束を破線で表している。
 このように、本実施形態によれば、第1コイルLA又は第2コイルLBからの外部への漏洩磁界が強くなるので、第1コイルLA又は第2コイルLBと測定器301の磁界プローブ311との磁界結合が高まる。そのため、RFICモジュール101と磁界プローブ311との間隔Hがある程度大きくても、つまり、磁界プローブ311がRFICモジュール101に接していない状態でも、RFICモジュール101の検査を行うことができる。
《第2の実施形態》
 第2の実施形態では、第1コイルLA及び第2コイルLBに対するアンテナ接続用第1電極11及びアンテナ接続用第2電極12の配置関係が第1の実施形態で示した例とは異なるRFICモジュールについて示す。
 図7は第2の実施形態に係るRFICモジュール102の拡大平面図である。RFICモジュール102は、RFIC2と、アンテナ接続用第1電極11と、アンテナ接続用第2電極12と、RFIC接続用第1電極31と、RFIC接続用第2電極32と、インピーダンス整合回路と、基板1とを備える。
 図1に示した例では、アンテナ接続用第1電極11とアンテナ接続用第2電極12との配列方向が、第1コイルLAと第2コイルLBとの配列方向に等しい(いずれもX軸に平行方向)であるのに対し、第2の実施形態では、アンテナ接続用第1電極11とアンテナ接続用第2電極12との配列方向(Y軸に平行方向)と、第1コイルLAと第2コイルLBとの配列方向(X軸に平行方向)とが直交している。その他の構成は第1の実施形態で示したとおりである。
 第2の実施形態によれば、第1の実施形態と同様に、第1コイルLAと第2コイルLBとの不要結合が抑制される。また、第1コイルLA又は第2コイルLBと測定器301の磁界プローブ311との磁界結合が高まり、RFICモジュール101単体の状態でその検査を行うことができる。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 例えば、以上に示したいずれの実施形態においても、第1コイルLAのコイル開口の重心と第2コイルLBのコイル開口の重心とを通る直線が、アンテナ接続用第1電極11及びアンテナ接続用第2電極12を含む輪郭(アンテナ接続用第1電極11及びアンテナ接続用第2電極12の形成範囲)中央を通る例を示したが、必ずしも中央を通らなくてもよい。
 また、例えば、以上に示したいずれの実施形態においても、第1インダクタL1、第2インダクタL2、第3インダクタL3、第4インダクタL4及び第5インダクタL5によってインピーダンス整合回路を構成したが、本発明はこれに限るものではない。
 また、第1インダクタL1用コイルと第3インダクタL3用コイルとで第1コイルLAを構成し、第2インダクタL2用コイルと第4インダクタL4用コイルとで第2コイルLBを構成した例を示したが、本発明はこれに限るものではない。例えば、第1コイルLA、第2コイルLBがそれぞれ単一のコイルで構成されている場合にも同様に適用できる。
 また、以上に示したいずれの実施形態においても、RFICモジュール101,102において、アンテナ接続用第1電極11とアンテナ導体パターン61Pとの間に容量を形成し、アンテナ接続用第2電極12とアンテナ導体パターン62Pとの間に容量を形成する例を示したが、この「接続」は、容量を介する接続に限らず、直流的な接続であってもよい。
CO1,CO2…コイル開口
Cp…キャパシタ
L1…第1インダクタ
L2…第2インダクタ
L3…第3インダクタ
L4…第4インダクタ
L5…第5インダクタ
LA…第1コイル
LB…第2コイル
V1,V2…層間接続導体
1…基板
2…RFIC
3…保護膜
4…カバーレイフィルム
5…接着剤層
6…アンテナ
7…インピーダンス整合回路
11…アンテナ接続用第1電極
12…アンテナ接続用第2電極
21,22…RFIC端子電極
31…RFIC接続用第1電極
32…RFIC接続用第2電極
60…絶縁体フィルム
61,62…アンテナ導体パターン
61P,61L,61C,62P,62L,62C…導体パターン
101,102…RFIDタグ用RFICモジュール
201…RFIDタグ
301…測定器
311…磁界プローブ

Claims (5)

  1.  RFICと、
     アンテナ接続用第1電極と、
     アンテナ接続用第2電極と、
     RFIC接続用第1電極と、
     RFIC接続用第2電極と、
     前記RFIC接続用第1電極及び前記RFIC接続用第2電極と、前記アンテナ接続用第1電極及び前記アンテナ接続用第2電極との間に接続され、前記RFICとアンテナとのインピーダンスを整合させるインピーダンス整合回路と、
     前記RFIC接続用第1電極、前記RFIC接続用第2電極、前記アンテナ接続用第1電極、前記アンテナ接続用第2電極及び前記インピーダンス整合回路が形成され、前記RFICが搭載される基板と、
     を備え、
     前記インピーダンス整合回路は、前記RFIC接続用第1電極と前記RFIC接続用第2電極との間に接続され、コイル開口が前記基板の面に沿ってそれぞれ拡がる第1コイル及び第2コイルを有し、
     前記第1コイル及び前記第2コイルは、前記アンテナ接続用第1電極及び前記アンテナ接続用第2電極を挟んで前記基板に並置されている、
     RFIDタグ用RFICモジュール。
  2.  前記第1コイルは、前記RFIC接続用第1電極と前記アンテナ接続用第1電極との接続される第1インダクタを構成するコイルと、前記アンテナ接続用第1電極と前記アンテナ接続用第2電極との間に直列接続される第3インダクタを構成するコイルと、で構成され、
     前記第2コイルは、前記RFIC接続用第2電極と前記アンテナ接続用第2電極との接続される第2インダクタを構成するコイルと、前記アンテナ接続用第1電極と前記アンテナ接続用第2電極との間に直列接続される第4インダクタを構成するコイルと、で構成され、
     前記第1インダクタを構成するコイルのコイル開口と、前記第3インダクタを構成するコイルのコイル開口とは重なり、
     前記第2インダクタを構成するコイルのコイル開口と、前記第4インダクタを構成するコイルのコイル開口とは重なる、
     請求項1に記載のRFIDタグ用RFICモジュール。
  3.  アンテナと、
     RFICと、
     アンテナ接続用第1電極と、
     アンテナ接続用第2電極と、
     RFIC接続用第1電極と、
     RFIC接続用第2電極と、
     前記RFIC接続用第1電極及び前記RFIC接続用第2電極と、前記アンテナ接続用第1電極及び前記アンテナ接続用第2電極との間に接続され、前記RFICとアンテナとのインピーダンスを整合させるインピーダンス整合回路と、
     少なくとも、前記RFIC接続用第1電極、前記RFIC接続用第2電極、前記アンテナ接続用第1電極、前記アンテナ接続用第2電極及び前記インピーダンス整合回路が形成される基板と、
     を備え、
     前記インピーダンス整合回路は、前記RFIC接続用第1電極と前記RFIC接続用第2電極との間に接続され、コイル開口が前記基板の面に沿ってそれぞれ拡がる第1コイル及び第2コイルを有し、
     前記第1コイル及び前記第2コイルは前記アンテナ接続用第1電極及び前記アンテナ接続用第2電極を挟んで前記基板に並置されている、
     RFIDタグ。
  4.  前記第1コイルは、前記RFIC接続用第1電極と前記アンテナ接続用第1電極との接続される第1インダクタを構成するコイルと、前記アンテナ接続用第1電極と前記アンテナ接続用第2電極との間に直列接続される第3インダクタを構成するコイルと、で構成され、
     前記第2コイルは、前記RFIC接続用第2電極と前記アンテナ接続用第2電極との接続される第2インダクタを構成するコイルと、前記アンテナ接続用第1電極と前記アンテナ接続用第2電極との間に直列接続される第4インダクタを構成するコイルと、で構成され、
     前記第1インダクタを構成するコイルのコイル開口と、前記第3インダクタを構成するコイルのコイル開口とは重なり、
     前記第2インダクタを構成するコイルのコイル開口と、前記第4インダクタを構成するコイルのコイル開口とは重なる、
     請求項3に記載のRFIDタグ。
  5.  前記アンテナは、絶縁体フィルムと、当該絶縁体フィルムに形成された導体パターンとによって構成され、
     前記基板が前記絶縁体フィルムに搭載された、
     請求項3又は4に記載のRFIDタグ。
PCT/JP2020/036707 2020-02-25 2020-09-28 Rfidタグ用rficモジュール及びrfidタグ WO2021171672A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021525803A JP6947339B1 (ja) 2020-02-25 2020-09-28 Rfidタグ用rficモジュール及びrfidタグ
CN202090000341.8U CN215729774U (zh) 2020-02-25 2020-09-28 Rfid标签用rfic模块和rfid标签
DE212020000493.5U DE212020000493U1 (de) 2020-02-25 2020-09-28 RFID-Etikett-RFIC-Modul und RFID-Etikett
US17/363,751 US12093765B2 (en) 2020-02-25 2021-06-30 RFID tag RFIC module and RFID tag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020029451 2020-02-25
JP2020-029451 2020-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/363,751 Continuation US12093765B2 (en) 2020-02-25 2021-06-30 RFID tag RFIC module and RFID tag

Publications (1)

Publication Number Publication Date
WO2021171672A1 true WO2021171672A1 (ja) 2021-09-02

Family

ID=77489958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036707 WO2021171672A1 (ja) 2020-02-25 2020-09-28 Rfidタグ用rficモジュール及びrfidタグ

Country Status (2)

Country Link
US (1) US12093765B2 (ja)
WO (1) WO2021171672A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090207A (ja) * 1998-09-08 2000-03-31 Toppan Printing Co Ltd 非接触icカード用検査装置および検査方法
WO2016084658A1 (ja) * 2014-11-27 2016-06-02 株式会社 村田製作所 Rficモジュールおよびそれを備えるrfidタグ
WO2018164255A1 (ja) * 2017-03-09 2018-09-13 株式会社村田製作所 無線通信デバイス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491447B (en) * 2010-03-24 2014-10-22 Murata Manufacturing Co RFID system
WO2016203882A1 (ja) * 2015-06-18 2016-12-22 株式会社村田製作所 キャリアテープ及びその製造方法、並びにrfidタグの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090207A (ja) * 1998-09-08 2000-03-31 Toppan Printing Co Ltd 非接触icカード用検査装置および検査方法
WO2016084658A1 (ja) * 2014-11-27 2016-06-02 株式会社 村田製作所 Rficモジュールおよびそれを備えるrfidタグ
WO2018164255A1 (ja) * 2017-03-09 2018-09-13 株式会社村田製作所 無線通信デバイス

Also Published As

Publication number Publication date
US12093765B2 (en) 2024-09-17
US20210326668A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US8847844B2 (en) Antenna and antenna module
US9825361B2 (en) Antenna with multifrequency capability for miniaturized applications
JP6583589B2 (ja) 無線通信デバイス
US10243253B2 (en) Antenna, printed circuit board, and electronic device
US9501732B2 (en) Antenna module
US20100220025A1 (en) Omnidirectional flat antenna and method of production
US10528859B2 (en) RFID Tag
JP6288317B2 (ja) 無線通信デバイスおよびそれを備えた物品
WO2019012767A1 (ja) Rfidタグおよびrfidタグ管理方法
WO2021171672A1 (ja) Rfidタグ用rficモジュール及びrfidタグ
JP6947339B1 (ja) Rfidタグ用rficモジュール及びrfidタグ
US11132597B2 (en) RFID tag reading antenna
JP5958670B2 (ja) 無線通信デバイス及び無線通信用モジュールの製造方法
JP6531873B1 (ja) Rfidタグ付きメガネおよびrfidタグ付き物品
EP4305708A1 (en) Broadband decoupled midband dipole for a dense multiband antenna
JP7060180B2 (ja) Rficモジュール、rfidタグ及び物品
WO2021166315A1 (ja) Rfidタグ用rficモジュールセット及びrfidタグセット
JP6729843B1 (ja) Rfidタグ
JP7060172B2 (ja) 通信装置及び通信方法
JP6483001B2 (ja) Rfidタグ付き紙管

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021525803

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921019

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20921019

Country of ref document: EP

Kind code of ref document: A1