WO2021170128A1 - 信号传输方法及相关装置 - Google Patents

信号传输方法及相关装置 Download PDF

Info

Publication number
WO2021170128A1
WO2021170128A1 PCT/CN2021/078326 CN2021078326W WO2021170128A1 WO 2021170128 A1 WO2021170128 A1 WO 2021170128A1 CN 2021078326 W CN2021078326 W CN 2021078326W WO 2021170128 A1 WO2021170128 A1 WO 2021170128A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
detection device
detection
period
time unit
Prior art date
Application number
PCT/CN2021/078326
Other languages
English (en)
French (fr)
Inventor
高磊
马莎
宋思达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21760116.0A priority Critical patent/EP4099735A4/en
Publication of WO2021170128A1 publication Critical patent/WO2021170128A1/zh
Priority to US17/896,709 priority patent/US20220413087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex

Definitions

  • This application relates to the field of sensors, and in particular to a signal transmission method and related devices.
  • ADAS Advanced Driving Assistant System
  • the system uses various sensors installed on the car to sense the surrounding environment during the car’s driving. , Collect data, identify, detect and track stationary and moving objects, and combine with navigator map data to perform system calculations and analysis, so that drivers can be aware of possible dangers in advance, and effectively increase the comfort of driving. And safety.
  • the sensing layer includes vision sensors such as vehicle cameras and radar sensors such as vehicle millimeter wave radars, vehicle laser radars, and vehicle ultrasonic radars.
  • Millimeter-wave radar is the first to become the main sensor of unmanned driving system due to its low cost and relatively mature technology.
  • ADAS has developed more than ten functions, including Adaptive Cruise Control (ACC), Automatic Emergency Braking (AEB), Lane Change Assist (LCA), and Blind Spot Monitoring (Blind). Spot (Monitoring, BSD) is inseparable from vehicle-mounted millimeter wave radar.
  • Millimeter wave refers to electromagnetic waves with a wavelength of 1-10mm, and the corresponding frequency range is 30-300GHz.
  • the characteristics of millimeter waves are very suitable for application in the automotive field.
  • the beam is much narrower than the microwave beam, and the radar resolution is high; it has strong penetration.
  • the laser radar and optical system it has the ability to penetrate smoke, dust and fog, and can work around the clock.
  • the embodiments of the present application provide a signal transmission method and related devices, which can be used in sensors, especially in the field of radars, and especially related to cooperative radars.
  • the radar uses this method to coordinate through communication to reduce mutual interference between radars.
  • the first signal indicating the transmission resource information of the detection signal can be sent in the first time unit, and the second detection device can be used in the first time unit.
  • the first signal is received in the first time unit, so that the second detection device can select channels that do not interfere with each other to send the detection signal, which improves the performance when detecting the target.
  • an embodiment of the present application provides a signal transmission method applied to a first detection device, and the method includes:
  • the first time being the start time of the first time unit, and the first time unit is used by the first detection device to send the first signal;
  • the first time unit is also used for the second detection device to receive the first signal.
  • the first time unit is also used for the second detection device to receive the first signal, and the first signal indicates the transmission resource information of the detection signal.
  • a detection device can inform the second detection device of the transmission resource of the first detection device to send the detection signal through the first signal, and the second detection device can perform the detection signal of the second detection device according to the transmission resource of the detection signal of the first detection device.
  • Resource selection reduces the interference between different detection devices during target detection, and improves the performance of the detection device during target detection.
  • the detection devices adopt the above-mentioned method to achieve coordination through communication and avoid or reduce mutual interference.
  • the first period is a positive integer multiple of the period during which the first detection device sends the detection signal.
  • the first period is an integer multiple of the period of the detection signal, which can easily realize that the special listening signal and the detection signal are sent at different times, which can reduce the complexity of the implementation and improve the detection device when sending the first signal. The convenience.
  • the first period is also a period during which the second detection device receives the first signal.
  • the second detection device can receive the first signal in every first cycle.
  • the first period is a common multiple of the second period and the third period, the second period is the period during which the first detection device sends the detection signal; and the third period is the period during which the second detection device sends the detection signal.
  • the first period is the common multiple of the second period and the third period, it can be easily realized that the second detection device listens to the first signal and sends the detection signal at different times, ensuring that the second detection device can listen To the first signal, the stability of the second detection device when detecting the first signal is improved.
  • the first detection device sends the first signal on the second time unit, and the second time unit is included in the first time unit.
  • the first time unit does not overlap with the time unit of the detection signal sent by the first detection device.
  • the first time unit does not overlap with the time unit for sending the probe signal, the situation where resources are overlapped during signal transmission and a signal is abandoned can be avoided, and the reliability of signal transmission can be improved.
  • the first detection device if the transmission resource of the first signal overlaps the transmission resource of the detection signal, the first detection device sends the first signal, and the first detection device does not send the detection signal;
  • the first detection device when the random number generated by the first detection device is greater than the preset value, the first detection device sends the first signal, and the first detection device does not send the detection signal.
  • the transmission resource information includes time domain resource information and/or frequency domain resource information.
  • the transmission resource information includes waveform type information and/or waveform related parameter information of the detection signal.
  • an embodiment of the present application provides a detection device, which includes a processor and a transceiver, wherein:
  • a processor configured to obtain a first moment, the first moment being the start moment of the first time unit, and the first time unit is used by the transceiver to send the first signal;
  • a transceiver configured to send a first signal in a first cycle, and the first signal is used to indicate transmission resource information of the probe signal;
  • the first time unit is also used for the second detection device to receive the first signal.
  • the first period is a positive integer multiple of the period during which the first detection device sends the detection signal.
  • the first period is also a period during which the second detection device receives the first signal.
  • the first period is a common multiple of the second period and the third period, the second period is the period during which the transceiver sends the detection signal; and the third period is the period during which the second detection device sends the detection signal.
  • the transceiver sends the first signal on the second time unit, and the second time unit is included in the first time unit.
  • the first time unit does not overlap with the time unit of the detection signal sent by the transceiver.
  • the transceiver sends the first signal, and the transceiver does not send the probe signal
  • the transceiver when the random number generated by the processor is greater than the preset value, the transceiver sends the first signal, and the transceiver does not send the detection signal.
  • an embodiment of the present application provides a chip system, and the chip system includes a processor for supporting the detection device to implement the method as in any one of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, characterized in that the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the program instructions cause the processor to execute when executed by the processor Such as the method of any one of the first aspect.
  • FIG. 1 provides a schematic diagram of a radar sending and receiving detection signals according to an embodiment of this application
  • FIG. 2 is a schematic flowchart of a signal transmission method according to an embodiment of this application.
  • FIG. 3 provides a schematic diagram of a radar sending a detection signal and a special signal for interception according to an embodiment of this application;
  • FIG. 4 provides a schematic diagram of a transmission period of a special interception signal according to an embodiment of this application
  • FIG. 5 is a schematic diagram of a special signal for radar detection and interception provided by an embodiment of this application
  • FIG. 6 provides a schematic diagram of another sending period of a special interception signal according to an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a detection device provided in an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a radar provided in an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a chip system provided by this application.
  • the first detection device and the second detection device involved in the embodiments of the present application may be radars.
  • the first detection device and the second detection device are only for distinguishing radars, and are not limited to a specific radar.
  • the first detection device , The second detection device can be a cooperative radar, etc.
  • the car where the first detection device is located is driving in lane 1
  • the car where the second detection device is located is driving in lane 2.
  • Lane 1 and lane 2 are similar lanes, and similar lanes can be understood as being on the same road. The other lanes can be adjacent or non-adjacent lanes.
  • the first detection device uses frequency-domain constant and time-domain periodic resources to send detection signals. After the detection signal is reflected by the target object, the first detection device receives the reflected detection signal (target reflection signal), according to the signal of the target reflection signal At least one of strength, signal propagation time delay, signal Doppler frequency, received wave vector direction, and the existence of the target object, RCS, and the distance and speed (accurately) relative to the first detection device are determined accordingly. It is said that at least one of the relative velocity (vector) on the connecting line between the first detection device and the target object) and angle, etc., to complete the target detection.
  • the first detection device Since the first detection device will also receive the detection signal (interference signal) sent by the second detection device, when the transmission resource of the detection signal sent by the second detection device partially or completely overlaps the transmission resource of the detection signal sent by the first detection device.
  • the target detection signal (detecting target existence, distance, speed, angle, etc.) received by the first detection device may include both the target reflection signal and the detection signal (interference signal) sent by the second detection device.
  • the detection signal sent by the second detection device will interfere with the first detection device and affect the detection of the target object by the first detection device.
  • the possible impacts include: raising the first detection device to perform target detection noise, resulting in The ability of the first detection device to detect the presence of weak targets decreases and the accuracy of target detection decreases; false targets are formed. In this way, how to reduce the mutual interference between radars is a problem that needs to be solved.
  • the embodiment of the application aims to solve the problem of mutual interference formed by the aforementioned detection devices during target detection.
  • the first detection device is used to send a detection signal, and the first detection device obtains the first time (the starting time of the first time unit).
  • the first time unit is used by the first detection device to send a dedicated listening signal, the first detection device sends a dedicated listening signal in the first cycle, the dedicated listening signal indicates the transmission resource information of the detection signal, and the second detection device is in the first
  • the dedicated listening signal is received in the time unit. After the second detecting device receives the dedicated listening signal, the received dedicated listening signal is used to determine the transmission resource information of the detection signal sent by the second detecting device, which can reduce the time between detection devices.
  • the mutual interference caused by the transmission of detection signals can improve the accuracy of the detection device in target detection.
  • the embodiments of the present application provide a signal transmission method and related equipment, which can be used in sensors, especially in the field of radars, especially in the field of cooperative radars. Radars use this method to coordinate through communication, reduce mutual interference between radars, and improve radar targets. Accuracy during detection.
  • FIG. 2 is a schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • the signal transmission method provided by the embodiment of the present application is applied to the first detection device.
  • the first signal may be the special interception signal in the foregoing embodiment.
  • the method includes:
  • the first detection device acquires a first time, the first time is the start time of the first time unit, and the first time unit is used by the first detection device to send a first signal.
  • the start time of the first time unit is M times the time of the first cycle from the zero time of the system time, and M is a natural number.
  • M is a natural number.
  • the start time of the first time unit can be: distance system
  • the time is 200ms from the zero time of the time, 400ms from the zero time of the system time, etc.
  • the system time can be understood as a time jointly followed by the first detection device and the second detection device, and the time can be natural time or a self-defined time.
  • the first detection device may use part or all of the time in the first time unit to send the first signal.
  • the first detection device sends a first signal in a first cycle, the first signal is used to indicate transmission resource information of the detection signal, and the first time unit is also used for the second detection device to receive the first signal.
  • the transmission resource information includes time domain resource information, frequency domain resource information, etc., and may also include waveforms and/or waveform-related parameter information used by the sounding channel.
  • the second detection device may use part or all of the time in the first time unit to receive the first signal.
  • the first signal indicates the transmission resource information of the sounding signal
  • the time domain and/or frequency domain resources of the first signal may be used to indicate the transmission resource information of the sounding signal, which can reduce the amount of information in the special listening signal. Indicating the amount of information contained in the information, thereby improving the reliability when acquiring the transmission resource information of the probe signal through the first signal.
  • the first signal may also indicate the transmission resource information of the probe signal by listening to the indication information carried by the dedicated signal.
  • the indication information includes at least one of frequency domain resource information and/or time domain resource information occupied by the sounding signal, and frequency domain resource information and/or time domain resource information not occupied by the sounding signal.
  • the indication information may also include at least one of the following: starting time information of the second signal, transmission period information, frequency resource information, and the like.
  • the indication information may also include waveform type information and/or waveform related parameter information of the detection signal.
  • the first signal may also indicate unoccupied resource information of the probe signal, which is specifically the same as the occupied resource information, and will not be repeated here.
  • FIG. 3 shows a schematic diagram of the first detection device sending the first signal.
  • the first detection device takes the first signal as a special listening signal as an example for description, the first detection device sends the detection signal and the special listening signal, and the special listening signal is used to indicate the transmission resource information of the detection signal sent by the first detection device.
  • FIG. 4 shows a schematic diagram of a transmission period (first period) of a special listening signal, wherein the first detection device transmits at least A dedicated monitoring signal, and the first detection device may also receive a dedicated monitoring signal sent by at least one other radar in the first time unit.
  • the first detection device sends the dedicated listening signal in the first period.
  • the first period may be a positive integer multiple of the period during which the first detection device sends the detection signal.
  • the first period is the same as the period of the detection signal as an example.
  • the first period can also be other positive integer multiples of the period of the detection signal.
  • a special listening signal is sent every other period of the detection signal (the first period is twice the period of the detection signal). For illustration, no specific limitation is made.
  • the first detection device sends a dedicated listening signal on a second time unit, and the second time unit is included in the first time unit.
  • the first time unit is divided into N sub-time units.
  • the two time units are K continuous sub-time units among the N sub-time units, and N and K are positive integers.
  • the K sub-time units may also be discontinuous, and this application does not specifically limit it. Therefore, when the second detection device receives the special listening signal sent by the first detection device, it needs to receive the special listening signal on the second time unit. In this way, it can be ensured that the special listening signal sent by the first detection device can be The second detection device listens.
  • the first period is an integer multiple of the period of the detection signal, which can easily realize that the special detection signal and the detection signal are sent at different times, which can reduce the complexity of the implementation and improve the detection device Convenience when sending the first signal.
  • the first detection device may also send multiple dedicated listening signals in the first time unit, and each dedicated listening signal is sent according to the first period, and the second detecting device may also be sent in the first period. Multiple listening dedicated signals are heard in one time unit.
  • the second detection device receives the special listening signal sent by the first detection device in the first time unit, and the second detection device receives the first detection signal for the first time.
  • the special listening signal sent by the first detection device can be received after a certain period.
  • the period is the period when the second detection device detects the special listening signal and the first detection device sends the listening signal.
  • the common multiple of the period of the dedicated signal Since the common multiple of the two periods must exist, the second detection device must be able to receive the special listening signal sent by the first detection device again.
  • the period for the second detection device to detect and listen to the dedicated signal can be the same as the period for the second detection device to send the detection signal.
  • the period for the second detection device to detect and listen to the dedicated signal can also be different from the period for the second detection device to send the detection signal.
  • the second detection device After receiving the first signal, the second detection device re-determines the transmission resource information of the detection signal according to the transmission resource information indicated by the first signal. When the second detection device re-determines the transmission resource information of the detection signal, it can select to listen to some or all of the resource information in the resource information other than the transmission resource information indicated by the dedicated signal as the transmission resource information of the detection signal of the second detection device .
  • the second detecting device may also receive multiple dedicated listening signals in the first time unit, based on the multiple dedicated listening signals Re-determine the transmission resource information of the detection signal by indicating the transmission resource information of other detection devices.
  • the second detection device may or may not send a dedicated signal for interception, which is not limited in this application.
  • FIG. 6 shows a schematic diagram of another transmission period (first period) of a special listening signal.
  • the first period is the common multiple of the second period and the third period
  • the second period is the period during which the first detection device sends the detection signal
  • the third period is the period during which the second detection device sends the detection signal, as shown in FIG. 6
  • the first period is three times the period during which the first detection device sends the detection signal
  • the second period is four times the period during which the second detection device sends the detection signal. This is only an example for illustration and no specific limitation is made.
  • the first period is a common multiple of the second period and the third period
  • the second detection device uses the first period to detect the special listening signal in the first time unit.
  • the first detection device may also send a dedicated listening signal on the second time unit, and reference may be made to the specific sending method in the foregoing embodiment, which will not be repeated here.
  • the transmission resource of the special interception signal does not overlap with the time unit for the first detection device to send the detection signal.
  • the transmission resource for the first detection device to send the dedicated listening signal may also overlap with the resource for the first detection device to send the detection signal. If the first time unit is the same as the time unit for the first detection device to send the detection signal Overlap, the first detection device sends a dedicated signal for listening, and the first detection device does not send a detection signal;
  • the first detection device if the first time unit overlaps with the time unit for sending the detection signal by the first detection device, the first detection device generates a random number, and if the random number generated by the first detection device is greater than the preset value, the first detection device sends Signal, the first detection device does not send a detection signal.
  • the first detection device may also use the following method to select to send the special listening signal or the detection signal:
  • the first detection device sends a special signal for listening, and the first detection device does not send a detection signal
  • the first detection device does not send a dedicated signal for listening, and the first detection device sends a detection signal
  • the first detection device when the random number generated by the first detection device is greater than a preset value, the first detection device sends a special signal for listening, and the first detection device does not send a detection signal; the random number generated by the first detection device is less than or equal to the preset value When the value is a value, the first detection device does not send a special listening signal, and the first detection device sends a detection signal.
  • the first detection device can also listen to special signals sent by other radars.
  • the time unit of the first detection device to listen to special signals sent by other radars is a time unit other than the second time unit. .
  • FIG. 7 provides a schematic structural diagram of a detection device according to an embodiment of the application.
  • the detection device 700 provided in the embodiment of the present application includes a processor 710 and a transceiver 720, where:
  • the processor 710 is configured to obtain a first time, where the first time is the start time of the first time unit, and the first time unit is used by the transceiver to send the first signal;
  • the transceiver 720 is configured to send a first signal in a first cycle, and the first signal is used to indicate transmission resource information of the detection signal; the first time unit is also used to receive the first signal by the second detection device.
  • the first period is a positive integer multiple of the period during which the first detection device sends the detection signal.
  • the first period is also a period during which the second detection device receives the first signal.
  • the first period is a common multiple of the second period and the third period, the second period is the period during which the transceiver sends the detection signal; and the third period is the period during which the second detection device sends the detection signal.
  • the transceiver 720 transmits the first signal on the second time unit, and the second time unit is included in the first time unit.
  • the first time unit and the time unit of the detection signal sent by the transceiver 720 do not overlap.
  • the transceiver 720 sends the first signal, and the transceiver does not send the probe signal;
  • the transceiver 720 sends the first signal, and the transceiver 720 does not send the detection signal.
  • an embodiment of the present application further provides a radar 800.
  • the radar 800 includes a processor 810, a memory 820, and a transceiver 830.
  • the memory 820 stores instructions or programs, and the processor 810 is configured to execute the memory 820. Instruction or program stored in.
  • the processor 810 is configured to perform operations performed by the processor 710 in the foregoing embodiment
  • the transceiver 830 is configured to perform operations performed by the transceiver 720 in the foregoing embodiment.
  • the chip system 900 may include a processor 910 and one or more interfaces 920 coupled to the processor 910. Exemplary:
  • the processor 910 can be used to read and execute computer readable instructions.
  • the processor 910 may mainly include a controller, an arithmetic unit, and a register.
  • the controller is mainly responsible for instruction decoding, and sends control signals for operations corresponding to the instructions.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations and logical operations, etc., and can also perform address operations and conversions.
  • the register is mainly responsible for storing the register operands and intermediate operation results temporarily stored during the execution of the instruction.
  • the hardware architecture of the processor 910 can be an application specific integrated circuit (ASIC) architecture, a microprocessor without interlocked pipeline stage architecture (microprocessor without interlocked piped stages architecture, MIPS) architecture, and advanced streamlining. Instruction set machine (advanced RISC machines, ARM) architecture or NP architecture, etc.
  • the processor 910 may be single-core or multi-core.
  • the interface 920 may be used to input data to be processed to the processor 910, and may output the processing result of the processor 810 externally.
  • the interface 920 may be a general purpose input output (GPIO) interface.
  • the interface 920 is connected to the processor 910 through the bus 930.
  • the processor 910 can be used to call the implementation program or data on the detection device side of the signal interpretation method provided by one or more embodiments of the present application from the memory, so that the chip can implement the aforementioned Figures 2 to 2 to The method shown in Figure 5.
  • the memory may be integrated with the processor 910, or may be coupled with the chip system 900 through the interface 920, that is to say, the memory may be a part of the chip system 900, or may be independent of the chip system 900.
  • the interface 920 can be used to output the execution result of the processor 910. In this application, the interface 920 may be specifically used to output the decoding result of the processor 910.
  • the signal transmission method provided by one or more embodiments of the present application, reference may be made to each of the foregoing embodiments, which will not be repeated here.
  • processor 910 and the interface 920 can be implemented either through hardware design, through software design, or through a combination of software and hardware, which is not limited here.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Sync Link DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, transistor logic device, or discrete hardware component
  • the memory storage module
  • the embodiments of the present application also provide a computer-readable storage medium, wherein the computer-readable storage medium may store a program, and when the program is executed, it includes some or all of the steps of any signal transmission method described in the above method embodiments. .
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated into Another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned memory includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: flash disk, Read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disc, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号传输方法、探测装置、芯片系统及计算机存储介质,可用于传感器,特别是雷达领域,尤其涉及协同式雷达。该方法包括:获取第一时刻,第一时刻为第一时间单元的起始时刻,第一时间单元用于第一探测装置发送第一信号(S101);以第一周期发送第一信号,第一信号用于指示探测信号的发送资源信息,第一时间单元还用于第二探测装置接收第一信号(S102)。可以在发送探测信号时,在第一时间单元中发送用于指示探测信号的发送资源信息的第一信号,第二探测装置可以在第一时间单元中接收第一信号,从而第二探测装置能够选择互不干扰的信道进行探测信号的发送,提升了对目标进行探测时的性能。该方法通过通信进行协同,减轻雷达间的互相干扰。

Description

信号传输方法及相关装置
本申请要求于2020年02月29日提交中国专利局、申请号为202010134537.2、申请名称为“信号传输方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及传感器领域,尤其涉及一种信号传输方法及相关装置。
背景技术
随着社会的发展,现代生活中越来越多的机器向自动化、智能化发展,移动出行用的汽车也不例外,智能汽车正在逐步进入人们的日常生活中。近些年,高级驾驶辅助系统(Advanced Driving Assistant System,ADAS)在智能汽车中发挥着十分重要的作用,该系统利用安装在车上的各式各样传感器,在汽车行驶过程中感应周围的环境、收集数据,进行静止、移动物体的辨识、侦测与追踪,并结合导航仪地图数据,进行系统的运算与分析,从而预先让驾驶者察觉到可能发生的危险,有效增加汽车驾驶的舒适性和安全性。
在无人驾驶架构中,传感层包括车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器。毫米波雷达由于成本较低、技术比较成熟率先成为无人驾驶系统主力传感器。目前ADAS已开发出十多项功能,其中自适应巡航控制(Adaptive Cruise Control,ACC)、自动紧急制动(Autonomous Emergency Braking,AEB)、变道辅助(Lance Change Assist,LCA)、盲点监测(Blind Spot Monitoring,BSD)都离不开车载毫米波雷达。毫米波是指波长介于1-10mm的电磁波,所对应的频率范围为30-300GHz。在这个频段,毫米波相关的特性非常适合应用于车载领域。例如,带宽大,频域资源丰富,天线副瓣低,有利于实现成像或准成像;波长短,雷达设备体积和天线口径得以减小,重量减轻;波束窄,在相同天线尺寸下毫米波的波束要比微波的波束窄得多,雷达分辨率高;穿透强,相比于激光雷达和光学系统,更加具有穿透烟、灰尘和雾的能力,可全天候工作。
随着车载雷达的广泛使用,车载雷达所在的车辆之间的互干扰越来越严重。由于互干扰会降低车载雷达检测概率或提升其虚警(Ghost)概率,对车辆行驶安全或舒适性造成不可忽视的影响。在这种前提下,如何降低车载雷达之间的干扰是亟需解决的一个技术问题。
发明内容
本申请实施例提供一种信号传输方法及相关装置,可用于传感器,特别是雷达领域,尤其涉及协同式雷达。雷达使用该方法通过通信进行协同,减轻雷达间的互相干扰,可以在发送探测信号时,在第一时间单元中发送用于指示探测信号的发送资源信息的第一信号,第二探测装置可以在第一时间单元中接收第一信号,从而第二探测装置能够选择互不干扰的信道进行探测信号的发送,提升了对目标进行探测时的性能。
第一方面,本申请实施例提供一种信号传输方法,应用于第一探测装置,该方法包括:
获取第一时刻,第一时刻为第一时间单元的起始时刻,第一时间单元用于第一探测装 置发送第一信号;
以第一周期发送第一信号,第一信号用于指示探测信号的发送资源信息;
第一时间单元还用于第二探测装置接收第一信号。
本申请实施例中,在以第一周期在第一时间单元中发送第一信号,第一时间单元还用于第二探测装置接收第一信号,第一信号指示探测信号的发送资源信息,第一探测装置可以通过第一信号告知第二探测装置第一探测装置发送探测信号的发送资源,第二探测装置可以根据第一探测装置的探测信号的发送资源进行对第二探测装置的探测信号进行资源选择,从而降低了不同探测装置之间进行目标探测时的干扰,提升探测装置进行目标检测时的性能,探测装置之间采用上述方法,通过通信实现协同,避免或减轻互相干扰。
结合第一方面,在一个可能的实施例中,第一周期为第一探测装置发送探测信号的周期的正整数倍。
本示例中,第一周期为探测信号的周期的整数倍,可以很容易的实现侦听专用信号和探测信号在不同的时间发送,可以降低实现时的复杂度,提升探测装置发送第一信号时的便捷性。
结合第一方面,在一个可能的实施例中,
第一周期还为第二探测装置接收第一信号的周期。
本示例中,第二探测装置在每个第一周期都可以接收到第一信号。
结合第一方面,在一个可能的实施例中,
第一周期为第二周期和第三周期的公倍数,第二周期为第一探测装置发送探测信号的周期;第三周期为第二探测装置发送探测信号的周期。
本示例中,第一周期为第二周期和第三周期的公倍数,则可以很容易的实现第二探测装置侦听第一信号和发送探测信号的时间不同,保证了第二探测装置能够侦听到第一信号,提升了第二探测装置对第一信号进行检测时的稳定性。
结合第一方面,在一个可能的实施例中,第一探测装置在第二时间单元上发送第一信号,第二时间单元包含于第一时间单元。
结合第一方面,在一个可能的实施例中,第一时间单元与第一探测装置发送的探测信号的时间单元不重叠。
本示例中,第一时间单元与发送探测信号的时间单元不重叠,则可以避免信号发送时资源重叠占用而放弃发送某个信号的情况,提升信号发送时的可靠性。
结合第一方面,在一个可能的实施例中,若第一信号的发送资源与探测信号的发送资源重叠,则第一探测装置发送第一信号,第一探测装置不发送探测信号;
或者,在第一探测装置生成的随机数大于预设数值时,第一探测装置发送第一信号,第一探测装置不发送探测信号。
结合第一方面,在一个可能的实施例中,发送资源信息包括时域资源信息和/或频域资源信息。
结合第一方面,在一个可能的实施例中,发送资源信息包括探测信号的波形类型信息和/或波形相关参数信息。
第二方面,本申请实施例提供了一种探测装置,该装置包括处理器和收发器,其中,
处理器,用于获取第一时刻,第一时刻为第一时间单元的起始时刻,第一时间单元用于收发器发送第一信号;
收发器,用于以第一周期发送第一信号,第一信号用于指示探测信号的发送资源信息;
第一时间单元还用于第二探测装置接收第一信号。
结合第二方面,在一个可能的实施例中,
第一周期为第一探测装置发送探测信号的周期的正整数倍。
结合第二方面,在一个可能的实施例中,
第一周期还为第二探测装置接收第一信号的周期。
结合第二方面,在一个可能的实施例中,
第一周期为第二周期和第三周期的公倍数,第二周期为收发器发送探测信号的周期;第三周期为第二探测装置发送探测信号的周期。
结合第二方面,在一个可能的实施例中,收发器在第二时间单元上发送第一信号,第二时间单元包含于第一时间单元。
结合第二方面,在一个可能的实施例中,第一时间单元与收发器发送的探测信号的时间单元不重叠。
结合第二方面,在一个可能的实施例中,若第一信号的发送资源与探测信号的发送资源重叠,则收发器发送第一信号,收发器不发送探测信号;
或者,在处理器生成的随机数大于预设数值时,收发器发送第一信号,收发器不发送探测信号。
第三方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持探测装置实现如第一方面任一项的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有计算机程序,计算机程序包括程序指令,程序指令当被处理器执行时使处理器执行如第一方面任一项的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供了一种雷达发送和接收探测信号的示意图;
图2为本申请实施例提供了一种信号传输方法的流程示意图;
图3为本申请实施例提供了一种雷达发送探测信号和侦听专用信号的示意图;
图4为本申请实施例提供了一种侦听专用信号的发送周期的示意图;
图5为本申请实施例提供了一种雷达检测侦听专用信号的示意图
图6为本申请实施例提供了另一种侦听专用信号的发送周期的示意图;
图7为本申请实施例提供了一种探测装置的结构示意图;
图8为本申请实施例还提供一种雷达的结构示意图;
图9为本申请提供的一种芯片系统的结构示意图。
具体实施方式
下面结合附图对本申请的实施例进行描述。
首先对雷达进行目标检测进行介绍。本申请实施例中所涉及的第一探测装置和第二探测装置可以为雷达,第一探测装置和第二探测装置仅为对雷达进行区分,不限定为具体的某个雷达,第一探测装置、第二探测装置可以为协同式雷达等。
如图1所示,第一探测装置所在的汽车行驶于车道1,第二探测装置所在的汽车行驶于车道2,车道1和车道2为相近的车道,相近的车道可以理解为同一条道路上的其它车道,可以是相邻的车道也可以是不相邻的车道。第一探测装置使用频域不变、时域周期性的资源发送探测信号,探测信号经过目标物体反射后,第一探测装置接收反射后的探测信号(目标反射信号),根据目标反射信号的信号强度、信号传播的时延、信号的多普勒频率、接收波矢量的方向中的至少一种,以及据此确定目标物体的存在性、RCS以及相对于第一探测装置的距离、速度(准确的说是相对速度(矢量)在第一探测装置和目标物体连线上的投影分量)和角度等至少一种,来完成目标检测。
由于第一探测装置同样会接收到第二探测装置发送的探测信号(干扰信号),当第二探测装置发送的探测信号的发送资源与第一探测装置发送的探测信号的发送资源部分或全部重叠时,第一探测装置收到的目标检测(检测目标的存在性、距离、速度、角度等)的信号可能既包含目标反射信号,也包含第二探测装置发送的探测信号(干扰信号)。此时,第二探测装置发送的探测信号便会对第一探测装置造成干扰,影响第一探测装置对目标物体的检测,可能的影响包括:抬升第一探测装置进行目标检测的底噪,导致第一探测装置检测弱目标存在性的能力下降以及目标检测精度的下降;形成伪目标等。如此,如何减少雷达间的相互干扰,是一个需要解决的问题。
本申请实施例旨在解决上述探测装置进行目标检测时相互间形成干扰的问题,采用了第一探测装置在发送探测信号,第一探测装置获取第一时刻(第一时间单元的起始时刻),第一时间单元用于第一探测装置发送侦听专用信号,第一探测装置以第一周期发送侦听专用信号,侦听专用信号指示探测信号的发送资源信息,第二探测装置在第一时间单元中接收侦听专用信号,第二探测装置接收到侦听专用信号后,通过接收到的侦听专用信号来确定第二探测装置发送的探测信号的发送资源信息,可以减少探测装置间在发送探测信号时相互造成干扰的情况,能够提升了探测装置进行目标探测时的准确性。
本申请实施例提供了一种信号传输方法及相关设备,可用于传感器,特别是雷达领域,尤其涉及协同式雷达,雷达使用该方法通过通信进行协同,减轻雷达间的互相干扰,提升雷达进行目标探测时的准确性。
如图2所示,图2为本申请实施例提供了一种信号传输方法的流程示意图。本申请实施例提供的信号传输方法应用于第一探测装置,第一信号可以为上述实施例中的侦听专用信号,该方法包括:
S101、第一探测装置获取第一时刻,第一时刻为第一时间单元的起始时刻,第一时间 单元用于第一探测装置发送第一信号。
第一时间单元的起始时刻为距离系统时间的零时刻的M倍第一周期的时刻,M为自然数,例如,第一周期为200ms,则第一时间单元的起始时刻可以为:距离系统时间的零时刻200ms的时刻,距离系统时间的零时刻400ms的时刻等。系统时间可以理解为第一探测装置和第二探测装置共同遵循的一个时间,该时间可以为自然时间也可以是自定义的时间。
第一探测装置可以采用第一时间单元中的部分时间或全部时间来发送第一信号。
S102、第一探测装置以第一周期发送第一信号,第一信号用于指示探测信号的发送资源信息,第一时间单元还用于第二探测装置接收第一信号。
发送资源信息包括时域资源信息、频域资源信息等,还可能包括探测信道使用的波形和/或波形相关参数信息等。
第二探测装置可以采用第一时间单元中的部分时间或全部时间来接收第一信号。
在一个可能的实施例中,第一信号指示探测信号的发送资源信息,可以通过第一信号的时域和/或频域资源指示探测信号的发送资源信息,如此可以减少侦听专用信号中的指示信息包含的信息量,从而提升通过第一信号来获取探测信号的发送资源信息时的可靠性。
在一个可能的实施例中,第一信号也可以通过侦听专用信号承载的指示信息来指示探测信号的发送资源信息。指示信息包括探测信号占用的频域资源信息和/或时域资源信息和探测信号未占用的频域资源信息和/或时域资源信息中的至少一个。指示信息还可以是包括以下中的至少一种:第二信号的起始时刻信息、发送周期信息、频率资源信息等。指示信息还可以包括探测信号的波形类型信息和/或波形相关参数信息等。当然,第一信号还可以指示探测信号未占用的资源信息,其具体与占用的资源信息相同,此处不再赘述。
在一个可能的实施例中,如图3所示,图3示出了第一探测装置发送第一信号的示意图。此处以第一信号为侦听专用信号为例进行说明,第一探测装置发送探测信号和侦听专用信号,侦听专用信号其作用为指示第一探测装置发送的探测信号的发送资源信息。
在一个可能的实施例中,如图4所示,图4示出了一种侦听专用信号的发送周期(第一周期)的示意图,其中,第一探测装置在第一时间单元中发送至少一个侦听专用信号,以及第一探测装置也可以在第一时间单元中接收至少一个其它雷达发送的侦听专用信号。第一探测装置以第一周期发送侦听专用信号,第一周期可以是第一探测装置发送探测信号的周期的正整数倍,图4中以第一周期为与探测信号的周期相同为例进行说明,当然第一周期也可以是探测信号的周期的其它正整数倍,例如,每隔一个探测信号的周期发送侦听专用信号等(第一周期为探测信号周期的2倍),此处仅为举例说明,不作具体限定。
在一个可能的实施例中,第一探测装置在第二时间单元上发送侦听专用信号,第二时间单元包含于第一时间单元,例如,将第一时间单元划分为N个子时间单元,第二时间单元为N个子时间单元中的K个连续子时间单元,N、K为正整数,当然,K个子时间单元也可以不连续的,本申请不作具体限定。则第二探测装置在接收第一探测装置发送的侦听专用信号时,需要在第二时间单元上接收侦听专用信号,以此,可以保证第一探测装置发送的侦听专用信号能够被第二探测装置侦听到,同时,第一周期为探测信号的周期的整数倍,可以很容易的实现侦听专用信号和探测信号在不同的时间发送,可以降低实现时的复杂度,提升探测装置发送第一信号时的便捷性。
在一个可能的实施例中,第一探测装置也可以在第一时间单元内发送多个侦听专用信号,每个侦听专用信号均遵循第一周期发送,则第二探测装置也可以在第一时间单元中侦听到多个侦听专用信号。
在一个可能的实施例中,如图5所示,第二探测装置在第一时间单元中接收第一探测装置发送的侦听专用信号,则第二探测装置在第一次接收到第一探测装置发送的侦听专用信号后,在一定的周期后还可以接收第一探测装置发送的侦听专用信号,该周期为第二探测装置探测侦听专用信号的周期与第一探测装置发送侦听专用信号的周期的公倍数,由于两个周期的公倍数一定存在,则第二探测装置必然能够再次接收到第一探测装置发送的侦听专用信号。第二探测装置探测侦听专用信号的周期可以与第二探测装置发送探测信号的周期相同,当然,第二探测装置探测侦听专用信号的周期也可以与第二探测装置发送探测信号的周期不同,此处不做具体限定。第二探测装置在接收到第一信号后,根据第一信号指示的发送资源信息,重新确定探测信号的发送资源信息。第二探测装置在重新确定探测信号的发送资源信息时,可以选择侦听专用信号所指示的发送资源信息以外的资源信息中的部分或全部资源信息为第二探测装置的探测信号的发送资源信息。当然,若第一探测装置在第一时间单元内发送多个侦听专用信号,则第二探测装置也可以在第一时间单元中接收多个侦听专用信号,根据该多个侦听专用信号指示的其他探测装置的发送资源信息,重新确定探测信号的发送资源信息。
在一个可能的实施例中,第二探测装置可以发送侦听专用信号,也可以不发送侦听专用信号,本申请不做限制。
如图6所示,图6示出了另一种侦听专用信号的发送周期(第一周期)的示意图。第一周期为第二周期和第三周期的公倍数,第二周期为第一探测装置发送探测信号的周期,第三周期为所述第二探测装置发送探测信号的周期,图6中示出了,第一周期为第一探测装置发送探测信号的周期的三倍,第二周期为第二探测装置发送探测信号的周期的四倍,此处仅为举例说明,不作具体限定。第一周期为第二周期和第三周期的公倍数,第二探测装置则以第一周期在第一时间单元中对侦听专用信号进行检测。如此,则可以很容易的实现第二探测装置侦听第一信号和发送探测信号的时间不同,保证了第二探测装置能够侦听到第一信号,提升了第二探测装置对第一信号进行检测时的稳定性。第一探测装置也可以在第二时间单元上发送侦听专用信号,可以参照前述实施例中具体的发送方法,此处不再赘述。第二探测装置在接收到侦听专用信号后的具体处理方式可以参照前述实施例中的具体方法,此处不再赘述。
上述图5和图6所示的实施例中,侦听专用信号的发送资源与第一探测装置发送探测信号的时间单元不重叠。
在一个可能的实施例中,第一探测装置发送侦听专用信号的发送资源也可以与第一探测装置发送探测信号的资源重叠,若第一时间单元与第一探测装置发送探测信号的时间单元重叠,则第一探测装置发送侦听专用信号,第一探测装置不发送探测信号;
或者,若第一时间单元与第一探测装置发送探测信号的时间单元重叠,第一探测装置生成随机数,若第一探测装置生成的随机数大于预设数值,第一探测装置发送侦听专用信号,第一探测装置不发送探测信号。
在一个可能的实施例中,若第一时间单元与第一探测装置发送探测信号的时间单元重叠,第一探测装置还可以采用如下方法来选择发送侦听专用信号或探测信号:
第一探测装置发送侦听专用信号,第一探测装置不发送探测信号;
或者,第一探测装置不发送侦听专用信号,第一探测装置发送探测信号;
或者,在第一探测装置生成的随机数大于预设数值时,第一探测装置发送侦听专用信号,第一探测装置不发送探测信号;在第一探测装置生成的随机数小于或等于预设数值时,第一探测装置不发送侦听专用信号,第一探测装置发送探测信号。
第一探测装置在第一时间单元中还可以侦听其它雷达发送的侦听专用信号,第一探测装置侦听其它雷达发送的侦听专用信号的时间单元为除第二时间单元以外的时间单元。
如图7所示,图7为本申请实施例提供了一种探测装置的结构示意图。本申请实施例提供的探测装置700包括处理器710和收发器720,其中,
处理器710,用于获取第一时刻,第一时刻为第一时间单元的起始时刻,第一时间单元用于收发器发送第一信号;
收发器720,用于以第一周期发送第一信号,第一信号用于指示探测信号的发送资源信息;第一时间单元还用于第二探测装置接收第一信号。
在一个可能的实施例中,
第一周期为第一探测装置发送探测信号的周期的正整数倍。
在一个可能的实施例中,
第一周期还为第二探测装置接收第一信号的周期。
在一个可能的实施例中,
第一周期为第二周期和第三周期的公倍数,第二周期为收发器发送探测信号的周期;第三周期为第二探测装置发送探测信号的周期。
在一个可能的实施例中,收发器720在第二时间单元上发送第一信号,第二时间单元包含于第一时间单元。
在一个可能的实施例中,第一时间单元与收发器720发送的探测信号的时间单元不重叠。
在一个可能的实施例中,若第一信号的发送资源与探测信号的发送资源重叠,则收发器720发送第一信号,收发器不发送探测信号;
或者,在处理器710生成的随机数大于预设数值时,收发器720发送第一信号,收发器720不发送探测信号。
如图8所示,本申请实施例还提供一种雷达800,该雷达800包括处理器810,存储器820与收发器830,其中,存储器820中存储指令或程序,处理器810用于执行存储器820中存储的指令或程序。存储器820中存储的指令或程序被执行时,该处理器810用于执行上述实施例中处理器710执行的操作,收发器830用于执行上述实施例中收发器720执行的操作。
参见图9,图9为本申请提供的一种芯片系统的结构示意图。如图9所示,芯片系统900可包括:处理器910,以及耦合于处理器910的一个或多个接口920。示例性的:
处理器910可用于读取和执行计算机可读指令。具体实现中,处理器910可主要包括 控制器、运算器和寄存器。示例性的,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器910的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS)架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者NP架构等等。处理器910可以是单核的,也可以是多核的。
示例性的,接口920可用于输入待处理的数据至处理器910,并且可以向外输出处理器810的处理结果。具体实现中,接口920可以是通用输入输出(general purpose input output,GPIO)接口。接口920通过总线930与处理器910相连。
一种可能的实现方式中,处理器910可用于从存储器中调用本申请的一个或多个实施例提供的信号阐述方法在探测装置侧的实现程序或者数据,使得该芯片可以实现前述图2至图5所示的方法。存储器可以和处理器910集成在一起,也可以通过接口920与芯片系统900相耦合,也就是说存储器可以是芯片系统900的一部分,也可以独立于该芯片系统900。接口920可用于输出处理器910的执行结果。本申请中,接口920可具体用于输出处理器910的译码结果。关于本申请的一个或多个实施例提供的信号传输方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器910、接口920各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Sync Link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
本申请实施例还提供一种计算机可读存储介质,其中,该计算机可读存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种信号传输方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为 依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (16)

  1. 一种信号传输方法,应用于第一探测装置,其特征在于,所述方法包括:
    获取第一时刻,所述第一时刻为第一时间单元的起始时刻,所述第一时间单元用于所述第一探测装置发送第一信号;
    以第一周期发送第一信号,所述第一信号用于指示探测信号的发送资源信息;
    所述第一时间单元还用于第二探测装置接收所述第一信号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一周期为所述第一探测装置发送探测信号的周期的正整数倍。
  3. 根据权利要求1所述的方法,其特征在于,
    所述第一周期还为所述第二探测装置接收所述第一信号的周期。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一周期为第二周期和第三周期的公倍数,所述第二周期为所述第一探测装置发送探测信号的周期;所述第三周期为所述第二探测装置发送探测信号的周期。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一探测装置在第二时间单元上发送所述第一信号,所述第二时间单元包含于所述第一时间单元。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一时间单元与所述第一探测装置发送的探测信号的时间单元不重叠。
  7. 根据权利要求1所述的方法,其特征在于,若所述第一信号的发送资源与所述探测信号的发送资源重叠,则所述第一探测装置发送所述第一信号,所述第一探测装置不发送所述探测信号;
    或者,在所述第一探测装置生成的随机数大于预设数值时,所述第一探测装置发送所述第一信号,所述第一探测装置不发送所述探测信号。
  8. 一种探测装置,其特征在于,所述装置包括处理器和收发器,其中,
    所述处理器,用于获取第一时刻,所述第一时刻为第一时间单元的起始时刻,所述第一时间单元用于所述收发器发送第一信号;
    所述收发器,用于以第一周期发送第一信号,所述第一信号用于指示探测信号的发送资源信息,所述第一时间单元还用于第二探测装置接收所述第一信号。
  9. 根据权利要求8所述的探测装置,其特征在于,
    所述第一周期为所述第一探测装置发送探测信号的周期的正整数倍。
  10. 根据权利要求8所述的探测装置,其特征在于,
    所述第一周期还为所述第二探测装置接收所述第一信号的周期。
  11. 根据权利要求10所述的装置,其特征在于,
    所述第一周期为第二周期和第三周期的公倍数,所述第二周期为所述收发器发送探测信号的周期;所述第三周期为所述第二探测装置发送探测信号的周期。
  12. 根据权利要求8至11任一项所述的装置,其特征在于,所述收发器在第二时间单元上发送所述第一信号,所述第二时间单元包含于所述第一时间单元。
  13. 根据权利要求8至12任一项所述的装置,其特征在于,所述第一时间单元与所述收发器发送的探测信号的时间单元不重叠。
  14. 根据权利要求8所述的装置,其特征在于,若所述第一信号的发送资源与所述探测信号的发送资源重叠,则所述收发器发送所述第一信号,所述收发器不发送所述探测信号;
    或者,在所述处理器生成的随机数大于预设数值时,所述收发器发送所述第一信号,所述收发器不发送所述探测信号。
  15. 一种芯片系统,其特征在于,所述芯片系统包括处理器,用于支持探测装置实现如权利要求1至7任一项所述的方法。
  16. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行如权利要求1-7任一项所述的方法。
PCT/CN2021/078326 2020-02-29 2021-02-27 信号传输方法及相关装置 WO2021170128A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21760116.0A EP4099735A4 (en) 2020-02-29 2021-02-27 SIGNAL EMISSION METHOD AND ASSOCIATED DEVICE
US17/896,709 US20220413087A1 (en) 2020-02-29 2022-08-26 Signal transmission method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010134537.2A CN113325420A (zh) 2020-02-29 2020-02-29 信号传输方法及相关装置
CN202010134537.2 2020-02-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/896,709 Continuation US20220413087A1 (en) 2020-02-29 2022-08-26 Signal transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2021170128A1 true WO2021170128A1 (zh) 2021-09-02

Family

ID=77412903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078326 WO2021170128A1 (zh) 2020-02-29 2021-02-27 信号传输方法及相关装置

Country Status (4)

Country Link
US (1) US20220413087A1 (zh)
EP (1) EP4099735A4 (zh)
CN (1) CN113325420A (zh)
WO (1) WO2021170128A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896116A (en) * 1986-10-30 1990-01-23 Nippon Telegraph And Telephone Corporation Pulse radar method and apparatus for detecting an object
CN1913371A (zh) * 2005-08-08 2007-02-14 马维尔国际贸易有限公司 雷达探测装置及其方法
JP2008232642A (ja) * 2007-03-16 2008-10-02 Mitsubishi Electric Corp レーダ装置
CN102713667A (zh) * 2009-11-23 2012-10-03 罗伯特·博世有限公司 用于检测目标的方法
CN104076328A (zh) * 2013-03-29 2014-10-01 日电(中国)有限公司 信号检测的方法及装置
CN108123782A (zh) * 2016-11-27 2018-06-05 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN110418310A (zh) * 2018-04-28 2019-11-05 华为技术有限公司 车辆雷达通信一体化的实现方法、相关设备及系统
CN110488263A (zh) * 2018-05-14 2019-11-22 杭州海康威视数字技术股份有限公司 一种雷达设备的测量方法及雷达设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132768A (ja) * 2005-11-10 2007-05-31 Hitachi Ltd 通信機能を有する車載レーダー装置
JP2007232498A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd 障害物検知システム
CN104023403B (zh) * 2014-06-03 2017-06-20 西安电子科技大学 自组织网络化雷达频率资源分配方法
CN109151833B (zh) * 2017-06-16 2020-07-21 华为技术有限公司 传输控制信息的方法和装置
JP6549186B2 (ja) * 2017-06-26 2019-07-24 株式会社東芝 無線通信装置及び電波干渉の回避方法
DE102017216435B4 (de) * 2017-09-15 2023-12-21 Audi Ag Verfahren zum Betrieb von Radarsensoren und Kraftfahrzeug
WO2020029276A1 (zh) * 2018-08-10 2020-02-13 北京小米移动软件有限公司 干扰检测方法、装置及存储介质
CN109932691B (zh) * 2019-03-27 2020-07-10 南京航空航天大学 微波光子雷达-通信一体化方法及装置
CN110726974A (zh) * 2019-10-17 2020-01-24 北京邮电大学 一种基于雷达通信一体化的雷达探测方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896116A (en) * 1986-10-30 1990-01-23 Nippon Telegraph And Telephone Corporation Pulse radar method and apparatus for detecting an object
CN1913371A (zh) * 2005-08-08 2007-02-14 马维尔国际贸易有限公司 雷达探测装置及其方法
JP2008232642A (ja) * 2007-03-16 2008-10-02 Mitsubishi Electric Corp レーダ装置
CN102713667A (zh) * 2009-11-23 2012-10-03 罗伯特·博世有限公司 用于检测目标的方法
CN104076328A (zh) * 2013-03-29 2014-10-01 日电(中国)有限公司 信号检测的方法及装置
CN108123782A (zh) * 2016-11-27 2018-06-05 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN110418310A (zh) * 2018-04-28 2019-11-05 华为技术有限公司 车辆雷达通信一体化的实现方法、相关设备及系统
CN110488263A (zh) * 2018-05-14 2019-11-22 杭州海康威视数字技术股份有限公司 一种雷达设备的测量方法及雷达设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099735A4

Also Published As

Publication number Publication date
EP4099735A1 (en) 2022-12-07
EP4099735A4 (en) 2023-08-09
US20220413087A1 (en) 2022-12-29
CN113325420A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
US11754668B2 (en) Detection method, detection apparatus, and system
US20190285725A1 (en) Processing radar signals
JP2001256600A (ja) 車両用道路形状認識方法及び装置、記録媒体
JP2008082974A (ja) 物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラム
WO2020177647A1 (zh) 一种利用无线电信号进行目标物探测的方法及相关装置
WO2020156084A1 (zh) 无线电信号发送方法和装置
CN112740060B (zh) 信号处理方法、装置及存储介质
US20220082655A1 (en) Radar signal sending method and device
US20220413086A1 (en) Signal sending method and related apparatus
WO2019223515A1 (zh) 信息测量方法及信息测量装置
CN112394326A (zh) 一种信号发射方法及装置
WO2021170128A1 (zh) 信号传输方法及相关装置
EP3919936B1 (en) Radar measurement method and device
CN113093145A (zh) 目标检测方法及目标检测装置
WO2022199431A1 (zh) 干扰检测方法及装置
JP3925412B2 (ja) 車両走行支援装置
JP7361804B2 (ja) 通信方法および通信装置
CN113359136A (zh) 一种目标检测方法、装置及分布式雷达系统
WO2023153041A1 (ja) 物体検知装置および物体検知方法
WO2023033077A1 (ja) 車両用レーダ装置
CN115079105A (zh) 一种干扰检测门限确定方法及装置
CN115144857A (zh) 一种探测目标个数估计方法、装置、电子设备及存储介质
TW202409603A (zh) 目標物偵測方法、目標物偵測裝置及毫米波雷達系統
JP2022146591A (ja) 物体検出装置
CN116620276A (zh) 一种车辆行驶状态的控制方法、装置、存储介质及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021760116

Country of ref document: EP

Effective date: 20220902

NENP Non-entry into the national phase

Ref country code: DE