WO2020029276A1 - 干扰检测方法、装置及存储介质 - Google Patents

干扰检测方法、装置及存储介质 Download PDF

Info

Publication number
WO2020029276A1
WO2020029276A1 PCT/CN2018/100055 CN2018100055W WO2020029276A1 WO 2020029276 A1 WO2020029276 A1 WO 2020029276A1 CN 2018100055 W CN2018100055 W CN 2018100055W WO 2020029276 A1 WO2020029276 A1 WO 2020029276A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
access network
network device
transmission
interference
Prior art date
Application number
PCT/CN2018/100055
Other languages
English (en)
French (fr)
Inventor
周珏嘉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2018/100055 priority Critical patent/WO2020029276A1/zh
Priority to CN201880001014.1A priority patent/CN109076555A/zh
Publication of WO2020029276A1 publication Critical patent/WO2020029276A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an interference detection method, device, and storage medium.
  • interference detection is performed by performing an LBT process before each data transmission, it will bring a large processing overhead to the device.
  • Embodiments of the present disclosure provide an interference detection method, device, and storage medium, which can save processing overhead when a device performs interference detection.
  • the technical scheme is as follows:
  • an interference detection method includes:
  • the second access network device receives beam occupancy information sent by the first access network device, where the beam occupancy information is used to indicate a first occupied by a first data transmission between the first access network device and a first terminal.
  • the second access network device detects whether the second data is affected by the first Data transmission interference.
  • the beam occupancy information includes identification information of the first beam.
  • the beam occupancy information further includes: time domain indication information and / or frequency domain indication information;
  • the time domain indication information is used to indicate a time domain resource occupied by transmitting the first data
  • the frequency domain indication information is used to indicate a frequency domain resource occupied by the transmission of the first data
  • the beam occupancy information further includes: transmission type indication information;
  • the transmission type indication information is used to indicate a transmission type corresponding to the first data, and the transmission type includes uplink transmission and downlink transmission.
  • the determining, by the second access network device, a second beam having an interference mutual exclusion relationship with the first beam includes:
  • the interference mutual exclusion information includes an interference mutual exclusion relationship between at least one group of beams.
  • the method further includes:
  • the second access network device uses a second target beam to receive the measurement signal, and obtains a received signal strength of the measurement signal
  • the second access network device determines that the second target beam and the first target beam have the interference mutual exclusion relationship
  • the second access network device records the interference mutual exclusion relationship between the second target beam and the first target beam.
  • the method further includes:
  • whether the second access network device detects whether the second data is interfered with by the transmission of the first data includes:
  • the second access network device determines that the second data is interfered with by the transmission of the first data
  • the interference determination condition includes: the time domain resources occupied by transmitting the second data plan overlap with the time domain resources occupied by transmitting the first data, and the frequency domain resources occupied by transmitting the second data plan There is also overlap with the frequency domain resources occupied by transmitting the first data.
  • the interference determination condition further includes: the transmission type corresponding to the first data is uplink transmission.
  • the method further includes:
  • the second access network device determines that the second data is not interfered with by the transmission of the first data, the second access network device according to the time-frequency resources occupied by the transmission of the second data plan, in the Transmitting the second data between the second access network device and the second terminal.
  • the method further includes:
  • the second access network device determines that the second data is not interfered with by the transmission of the first data, the second access network device executes an LBT process to determine whether the second data meets a transmission condition ;
  • the second access network device executes the time-frequency resource occupied according to the plan for transmitting the second data, and the second access network device and the second access network device A step of transmitting the second data between the second terminals.
  • an interference detection apparatus which is applied to a second access network device, and the apparatus includes:
  • the receiving module is configured to receive beam occupancy information sent by a first access network device, where the beam occupancy information is used to indicate a first occupied by a first data transmission between the first access network device and a first terminal.
  • a determining module configured to determine a second beam having an interference mutual exclusion relationship with the first beam
  • the detecting module is configured to detect whether the second data is interfered with by the transmission of the first data when there is a need to transmit the second data between the second beam and the second terminal.
  • the beam occupancy information includes identification information of the first beam.
  • the beam occupancy information further includes: time domain indication information and / or frequency domain indication information;
  • the time domain indication information is used to indicate a time domain resource occupied by transmitting the first data
  • the frequency domain indication information is used to indicate a frequency domain resource occupied by the transmission of the first data
  • the beam occupancy information further includes: transmission type indication information;
  • the transmission type indication information is used to indicate a transmission type corresponding to the first data, and the transmission type includes uplink transmission and downlink transmission.
  • the determining module is configured to:
  • the interference mutual exclusion information includes an interference mutual exclusion relationship between at least one group of beams.
  • the device further includes a measurement recording module configured to:
  • the first access network device uses a first target beam to send a measurement signal, it uses a second target beam to receive the measurement signal, and obtains a received signal strength of the measurement signal;
  • the measurement recording module is further configured to:
  • Determining the relationship with the first access network according to the determined at least one set of beams having the interference mutual exclusion relationship, the beam distribution of the second access network device and the beam distribution of the first access network device At least one set of other beams having the interference mutual exclusion relationship between devices.
  • the detection module is configured to:
  • the interference determination condition includes: the time domain resources occupied by transmitting the second data plan overlap with the time domain resources occupied by transmitting the first data, and the frequency domain resources occupied by transmitting the second data plan There is also overlap with the frequency domain resources occupied by transmitting the first data.
  • the interference determination condition further includes: a transmission type corresponding to the first data is uplink transmission.
  • the apparatus further includes:
  • a transmission module configured to, when it is determined that the second data is not interfered with by the transmission of the first data, according to the time-frequency resources occupied by the transmission of the second data plan, The second terminal transmits the second data.
  • the apparatus further includes:
  • An execution module configured to execute an LBT process when it is determined that the second data is not interfered with by the transmission of the first data, to determine whether the second data meets a transmission condition
  • the transmission module is further configured to, when the second data satisfies the transmission condition, according to the time-frequency resources occupied by the transmission of the second data plan, the second access network device and the second The second data is transmitted between the terminals.
  • an interference detection apparatus which is applied to a second access network device, and the apparatus includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • a non-transitory computer-readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the method described in the first aspect.
  • the mutual exclusion relationship between the access network equipment and the adjacent access network equipment's beam is pre-stored, and the beam occupancy of the adjacent access network equipment is obtained.
  • the situation and the pre-existing interference mutual exclusion relationship can determine whether there is interference.
  • the LBT process is not required to perform CCA (Clear Channel Assessment), which simplifies the interference detection process and saves the processing overhead of the device.
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing an application scenario according to an exemplary embodiment
  • Fig. 3 is a flow chart showing an interference detection method according to an exemplary embodiment
  • Fig. 4 is a block diagram of an interference detection device according to an embodiment
  • Fig. 5 is a schematic structural diagram of an access network device according to an exemplary embodiment.
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment.
  • the network architecture may include multiple access network devices 110 and terminals 120. Each access network device 110 is deployed in a RAN (Radio Access Network) 10.
  • RAN Radio Access Network
  • the number of terminals 120 is usually multiple, and one or more terminals 120 may be distributed in a cell managed by each access network device 110.
  • the access network device 110 and the terminal 120 communicate with each other through some air interface technology, for example, they can communicate with each other through cellular technology.
  • the technical solutions described in the embodiments of the present disclosure can be applied to the LTE system, as well as subsequent evolution systems of the LTE system, such as the LTE-A (LTE-Advanced) system, 5G system (also known as NR (New Radio)) .
  • LTE-A LTE-Advanced
  • 5G system also known as NR (New Radio)
  • the terminals involved in the embodiments of the present disclosure may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, and various forms of user equipment (User Equipment , UE), mobile station (Mobile Station, MS), terminal device (terminal device), and so on.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal device
  • the access network device in the RAN involved in the embodiment of the present disclosure may be a base station (BS), which is a device deployed in the RAN to provide a terminal with a wireless communication function.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • eNB evolved NodeB
  • Node B Node B
  • the name "base station” may change.
  • the above-mentioned devices that provide wireless communication functions for terminals are collectively referred to as access network devices.
  • FIG. 2 is a schematic diagram of an application scenario according to an exemplary embodiment.
  • the application scenario may include: a first access network device 21, a second access network device 22, a first terminal 23, and a second terminal 24.
  • the first terminal 23 is located in a cell served by the first access network device 21, and the second terminal 24 is located in a cell served by the second access network device 22.
  • the first access network device 21 may include multiple antennas.
  • the multiple antennas can generate multiple beams with different directions, covering the cells served by the first access network device 21.
  • the first access network device 21 may send a signal to a terminal in a cell through a beam, and may also receive a signal sent by a terminal in a cell through a beam.
  • the second access network device 22 may also include multiple antennas.
  • the multiple antennas can generate multiple beams with different directions, covering the cells served by the second access network device 22.
  • the second access network device 22 may send a signal to a terminal in the cell through a beam, and may also receive a signal from a terminal in the cell through a beam.
  • the two devices point to the same or close beams, and there will be large transmission interference.
  • the first access network device 21 is using the beams 5 and 6 to send downlink data to the first terminal 23
  • the second access network device 22 is using the beams 10 and 11 to send downlink data to the second terminal 24. Because the beams 5 and 6 and beams 10 and 11 are close to each other, the reception of the first terminal 23 will be interfered by the downlink transmission between the second access network device 22 and the second terminal 24, and the reception of the second terminal 24 will also be affected. Will be interfered by the downlink transmission between the first access network device 21 and the first terminal 23.
  • the first access network device 21 is using beams 5 and 6 to receive uplink data sent by the first terminal 23
  • the second network access device 22 is using beams 10 and 11 to send downlink data to the second terminal 24, and the second terminal 24
  • the reception of the signal is also interfered by the uplink transmission between the first terminal 23 and the first access network device 21.
  • a device terminal or access network device
  • the CCA involved in the LBT process will bring a large processing overhead to the device.
  • an access network device prestores an interference mutual exclusion relationship with a beam of an adjacent access network device, and acquires a beam occupation situation of an adjacent access network device.
  • the device has data transmission requirements, it can be determined whether there is interference based on the above-mentioned beam occupancy and the pre-existing interference mutual exclusion relationship.
  • the LBT process is not required for CCA, which simplifies the interference detection process and saves the processing overhead of the device.
  • Fig. 3 is a flow chart showing an interference detection method according to an exemplary embodiment. This method can be applied to the application scenario shown in FIG. 2. The method may include the following steps.
  • the second access network device receives beam occupancy information sent by the first access network device.
  • the beam occupancy information is used to indicate a first beam occupied by the first access network device and the first terminal to transmit the first data.
  • the number of the first beams may be one or multiple.
  • the first data may include downlink data sent by the first access network device to the first terminal and / or uplink data sent by the first terminal to the first access network device.
  • the beam occupancy information includes identification information of the first beam.
  • the beam identification information is used to uniquely indicate the beam, and different beams correspond to different identification information.
  • the identification information of the beam includes an SSB (synchronization signal and PBCH Block) signal corresponding to the beam, that is, an SSB index.
  • SSB synchronization signal and PBCH Block
  • the beam occupancy information further includes time domain indication information and / or frequency domain indication information, wherein the time domain indication information is used to indicate time domain resources occupied by transmitting the first data, and the frequency domain indication information is used to indicate transmission of the first data.
  • the time domain resources may include identification information of time domain units such as occupied frames, subframes, time slots, and OFDM symbols, and may also include the occupied time of the time domain resources.
  • the frequency domain resources may include identification information of frequency domain units such as CC (Component Carrier, Carrier Unit) and BWP (Bandwidth Part).
  • the beam occupancy information further includes transmission type indication information; wherein the transmission type indication information is used to indicate a transmission type corresponding to the first data, and the transmission type includes uplink transmission and downlink transmission.
  • Uplink transmission means that the terminal sends data to the access network device, that is, the access network device receives data from the terminal;
  • downlink transmission means that the access network device sends data to the terminal, that is, the terminal receives data from the access network device.
  • the second access network device may receive the beam occupancy information sent by the first access network device through an air interface.
  • the foregoing air interface may be an X2 interface or an air interface equivalent to the X2 interface.
  • the second access network device determines a second beam having a mutually exclusive relationship with the first beam.
  • the second access network device may determine a second beam having an interference mutual exclusion relationship with the first beam according to the pre-stored interference mutual exclusion information; wherein the interference mutual exclusion information includes interference mutual exclusion between at least one group of beams relationship.
  • the pre-stored interference mutual exclusion information corresponding to the first access network device in the second access network device includes at least one set of beams between the first access network device and the second access network device.
  • Interference mutual exclusion may include an interference mutual exclusion relationship between a group of beams with the largest interference between the second access network device and the first access network device.
  • the interference mutual exclusion information may include all interference mutual exclusion relationships existing between the beams of the second access network device and the first access network device.
  • the above-mentioned interference mutual exclusion relationship can be preset when the access network device is deployed, or it can be obtained by initial measurement when the access network device is deployed.
  • the initialization measurement process is as follows: when the first access network device uses the first target beam to send a measurement signal, the second access network device uses the second target beam to receive the measurement signal, and obtains the received signal strength of the measurement signal ; When the received signal strength of the measurement signal is greater than a preset threshold, the second access network device determines that the second target beam has a mutually exclusive relationship with the first target beam; when the received signal strength of the measurement signal is less than the preset threshold, the first The two access network devices determine that the second target beam does not have a mutually exclusive relationship with the first target beam.
  • the received signal strength can be measured by using the RSRP (Reference Signal Received Power) value.
  • the preset threshold may be specified in advance by the protocol, or may be preset in the second access network device. If the second access network device determines that the second target beam has a mutually exclusive relationship with the first target beam, the second access network device records the mutual interference relationship between the second target beam and the first target beam, for example, The interference mutual exclusion relationship is recorded in the interference mutual exclusion information.
  • the first access network device 21 sends a measurement signal using the beam 1 and the second access network device 22 turns on the beam 1 to the beam 12 one by one to receive the first
  • the measurement signal sent by the access network device 21 acquires the received signal strength of the measurement signal and completes the first round of measurement.
  • the first access network device 21 sends the measurement signal using the beam 2 and the second access network device 22 turns on the beam 1 to the beam 12 one by one in the order of the beam number to receive the measurement signal sent by the first access network device 21 and obtains the measurement signal. Measure the received signal strength of the signal to complete the second round of measurement. After that, the first access network device 21 sequentially uses the beam 3 to the beam 12 and repeats the above measurement process. At this point, an initial measurement is completed. The second access network device 22 records all sets of beams having an interference mutual exclusion relationship.
  • the second access network device may determine the second access according to the determined at least one set of beams having an interference mutual exclusion relationship, and the beam distribution of the second access network device and the beam distribution of the first access network device. At least one set of other beams having a mutually exclusive interference relationship between the network device and the first access network device.
  • the above-mentioned beam distribution may include an angle of the beam and / or a direction of the beam.
  • the second access network device may estimate the second access network device and the beam distribution of the first access network device based on the determined beam having an interference mutual exclusion relationship, and combine the beam distribution of the first access network device with the beam distribution of the first access network device.
  • the first access network device points to the same or close beam group, and determines the above-mentioned beam group pointing to the same or close beam group as a beam group having an interference mutual exclusion relationship.
  • the beam 5 of the first access network device 21 and the beam 10 of the second access network device 22 have an interference mutual exclusion relationship, according to the included angle of the beam, it can be calculated,
  • the beam 6 of the first access network device 21 and the beam 10 of the second access network device 22 also have an interference mutual exclusion relationship.
  • the recording manner of the mutual exclusion relationship between beams is not limited.
  • the first access network device ⁇ beam 5 ⁇ ⁇ —> the second access network device: ⁇ beam 11 ⁇ , which means the first access network device 21 Beam 5 of beam 2 and beam 11 of second access network device 22 have an interference mutually exclusive relationship; or, it is recorded in the following form: first access network device: ⁇ beam 5, beam 6 ⁇ ⁇ —> second access network device : ⁇ Beam 10, beam 11 ⁇ , which means that the beam 5 and / or beam 6 of the first access network device 21 and the beam 10 and / or beam 11 of the second access network device 22 have an interference mutually exclusive relationship.
  • step 303 if the second access network device needs to transmit the second data between the second beam and the second terminal, the second access network device detects whether the second data is interfered with by the transmission of the first data.
  • the second access network device when there is a need for the second access network device to send the second data to the second terminal by using the second beam, or when the second access network device exists to receive the second terminal by using the second beam
  • the second access network device performs the step of detecting whether the second data is interfered with by the transmission of the first data.
  • the second access network device when there is a need for the second access network device to send the second data to the second terminal by using the second beam, the second access network device performs the detection of whether the second data is affected by the first The step of data transmission interference; when the second access network device needs to use the second beam to receive the second data sent by the second terminal, the second access network device does not perform the detection of whether the second data is affected by the first data Steps for transmission interference. Because the transmission between the first access network device and the first terminal has less interference with uplink reception of the second access network device, the second access network device can perform interference detection only when there is a need for downlink transmission, However, when there is an uplink transmission requirement, interference detection is not performed, and it is directly considered that there will be no interference.
  • the second access network device detects whether the second data is interfered with by the transmission of the first data.
  • the following manner may be adopted: the second access network device detects whether the second data meets the interference determination condition; When the data meets the interference determination conditions, the second access network device determines that the second data is affected by the transmission of the first data; otherwise, when the second data does not meet the interference determination conditions, the second access network device determines that the second data is not affected. The transmission of the first data is disturbed.
  • the interference determination condition includes: the time domain resources occupied by transmitting the second data plan overlap with the time domain resources occupied by transmitting the first data, and the frequency domain resources occupied by transmitting the second data plan and transmitting the first The frequency domain resources occupied by the data also overlap.
  • the second access network device may obtain the time domain resource and / or the frequency domain resource occupied by transmitting the first data in the following manner:
  • the second access network device obtains the beam occupation information sent by the first access network device.
  • the time domain indication information and / or the frequency domain indication information are used to determine the time domain resources and / or the frequency domain resources occupied by the transmission of the first data.
  • the second access network device may also determine, from other devices or according to a default configuration, a time domain resource and / or a frequency domain resource occupied by the transmission of the first data.
  • time domain resources and frequency domain resources occupied by the transmission of the second data plan may be determined by the second access network device itself.
  • the interference determination condition further includes: the transmission type corresponding to the first data is uplink transmission. That is, only when the first access network device uses the first beam for uplink transmission, the second access network device detects whether the second data is interfered with by the transmission of the first data; when the first access network device uses the first beam When performing downlink transmission, the second access network device does not detect whether the second data is interfered with by the transmission of the first data.
  • the second access network device 22 determines that the second data is not interfered with by the transmission of the first data.
  • the first access network device 21 uses the beam 5 to receive the first data sent upstream by the first terminal 23, if the second access network device 22 needs to use the beam 11 to send the second data downstream to the second terminal 24, the second The access network device 22 determines that the second data is interfered with by the transmission of the first data.
  • the second access network device may determine the transmission type corresponding to the first data according to the transmission type indication information carried in the beam occupancy information sent to the first access network device.
  • the first access network device when the first access network device transmits the first data downstream, the first access network device does not send beam occupancy information to the second access network device; when the first access network device receives the uplink data, For the first data, the first access network device sends beam occupancy information to the second access network device.
  • the second access network device determines that the second data is interfered with by the transmission of the first data
  • the second access network device does not perform the LBT process, and processes according to the transmission channel of the second data being occupied.
  • the second access network device may re-plan the time-frequency resources that are planned to be used for transmitting the second data to avoid transmission interference with the first data.
  • the second access network device may perform an LBT process to determine whether the second data meets a transmission condition.
  • the second access network device transmits the second data between the second access network device and the second terminal according to the time-frequency resources occupied by the transmission of the second data plan.
  • the second access network device may also directly execute the time-frequency resources occupied by the transmission of the second data plan without performing the LBT process. , Transmitting the second data between the second access network device and the second terminal, so that interference detection can be implemented without using an LBT process at all.
  • the second access network device when the second access network device performs data transmission, it can also send beam occupancy information to its neighboring access network device, and its neighboring access network device can also perform the interference detection described above.
  • the access network device pre-stores the mutual interference relationship between the beams of the adjacent access network device and the beam occupancy of the adjacent access network device.
  • the access network equipment needs data transmission, it can be determined whether there is interference based on the above-mentioned beam occupancy and the pre-existing interference mutual exclusion relationship.
  • the LBT process is not required for CCA, which simplifies the interference detection process and saves the processing overhead of the equipment.
  • Fig. 4 is a block diagram of an interference detection device according to an exemplary embodiment.
  • the device has a function to implement the above method example, and the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the device can be applied to the second access network device introduced above.
  • the apparatus may include a receiving module 401, a determining module 402, and a detecting module 403.
  • the receiving module 401 is configured to receive beam occupancy information sent by a first access network device, where the beam occupancy information is used to indicate a first occupied by a first data transmission between the first access network device and a first terminal. A beam.
  • the determining module 402 is configured to determine a second beam having an interference mutual exclusion relationship with the first beam.
  • the detecting module 403 is configured to detect whether the second data is interfered with by the transmission of the first data when there is a need to transmit the second data between the second beam and the second terminal.
  • the access network device pre-stores the mutual interference relationship between the beams of the adjacent access network device and the beam occupancy of the adjacent access network device.
  • the access network equipment needs data transmission, it can be determined whether there is interference based on the above-mentioned beam occupancy and the pre-existing interference mutual exclusion relationship.
  • the LBT process is not required for CCA, which simplifies the interference detection process and saves the processing overhead of the equipment.
  • the beam occupancy information includes identification information of the first beam.
  • the beam occupancy information further includes: time domain indication information and / or frequency domain indication information.
  • the time domain indication information is used to indicate a time domain resource occupied by transmitting the first data
  • the frequency domain indication information is used to indicate a frequency domain resource occupied by the transmission of the first data.
  • the beam occupancy information further includes: transmission type indication information.
  • the transmission type indication information is used to indicate a transmission type corresponding to the first data, and the transmission type includes uplink transmission and downlink transmission.
  • the determining module 402 is configured to determine, according to pre-stored interference mutual exclusion information, that there is interference mutual interference with the first beam. Repels the second beam.
  • the interference mutual exclusion information includes an interference mutual exclusion relationship between at least one group of beams.
  • the apparatus further includes a measurement recording module configured to:
  • the first access network device uses a first target beam to send a measurement signal, it uses a second target beam to receive the measurement signal, and obtains a received signal strength of the measurement signal;
  • the measurement recording module is further configured to:
  • Determining the relationship with the first access network according to the determined at least one set of beams having the interference mutual exclusion relationship, the beam distribution of the second access network device and the beam distribution of the first access network device At least one set of other beams having the interference mutual exclusion relationship between devices.
  • the detection module 403 is configured to:
  • the interference determination condition includes: the time domain resources occupied by transmitting the second data plan overlap with the time domain resources occupied by transmitting the first data, and the frequency domain resources occupied by transmitting the second data plan There is also overlap with the frequency domain resources occupied by transmitting the first data.
  • the interference determination condition further includes: a transmission type corresponding to the first data is uplink transmission.
  • the apparatus further includes: a transmission module configured to:
  • the apparatus further includes:
  • An execution module configured to execute an LBT process when it is determined that the second data is not interfered with by the transmission of the first data, to determine whether the second data meets a transmission condition
  • the transmission module is further configured to, when the second data satisfies the transmission condition, according to the time-frequency resources occupied by the transmission of the second data plan, the second access network device and the second The second data is transmitted between the terminals.
  • the device provided by the above embodiment implements its functions, only the division of the above functional modules is used as an example. In actual applications, the above functions may be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure also provides an interference detection device capable of implementing the interference detection method provided by the present disclosure.
  • the device can be applied to the second access network device introduced above.
  • the apparatus may include a processor and a memory for storing executable instructions of the processor.
  • the processor is configured to:
  • the beam occupancy information includes identification information of the first beam.
  • the beam occupancy information further includes: time domain indication information and / or frequency domain indication information;
  • the time domain indication information is used to indicate time domain resources occupied by transmitting the first data
  • the frequency domain indication information is used to indicate frequency domain resources used to transmit the first data.
  • the beam occupancy information further includes: transmission type indication information;
  • the transmission type indication information is used to indicate a transmission type corresponding to the first data, and the transmission type includes uplink transmission and downlink transmission.
  • the processor is configured to:
  • the interference mutual exclusion information includes an interference mutual exclusion relationship between at least one group of beams.
  • the processor is further configured:
  • the first access network device uses a first target beam to send a measurement signal, it uses a second target beam to receive the measurement signal, and obtains a received signal strength of the measurement signal;
  • the processor is further configured:
  • Determining the relationship with the first access network according to the determined at least one set of beams having the interference mutual exclusion relationship, the beam distribution of the second access network device and the beam distribution of the first access network device At least one set of other beams having the interference mutual exclusion relationship between devices.
  • the processor is configured to:
  • the interference determination condition includes: the time domain resources occupied by transmitting the second data plan overlap with the time domain resources occupied by transmitting the first data, and the frequency domain resources occupied by transmitting the second data plan There is also overlap with the frequency domain resources occupied by transmitting the first data.
  • the interference determination condition further includes: a transmission type corresponding to the first data is uplink transmission.
  • the processor is further configured:
  • the second data is transmitted between the second access network device and the second terminal according to the time-frequency resources occupied by the transmission of the second data plan.
  • the second data is transmitted between the second access network device and the second terminal according to the time-frequency resources occupied by the transmission of the second data plan.
  • the processor is further configured:
  • an LBT process is performed to determine whether the second data meets a transmission condition
  • the second data is transmitted between the second access network device and the second terminal according to the time-frequency resources occupied by the transmission of the second data plan.
  • the access network device includes a hardware structure and / or a software module corresponding to each function.
  • the embodiments of this disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 5 is a schematic structural diagram of an access network device according to an exemplary embodiment.
  • the access network device 500 includes a transmitter / receiver 501 and a processor 502.
  • the processor 502 may also be a controller, which is shown as “controller / processor 502” in FIG. 5.
  • the transmitter / receiver 501 is configured to support receiving and sending information between an access network device and the terminal in the foregoing embodiment, and to support communication between the access network device and other network entities.
  • the processor 502 performs various functions for communicating with a terminal.
  • the uplink signal from the terminal is received via an antenna, demodulated by the receiver 501 (for example, demodulating a high frequency signal into a baseband signal), and further processed by the processor 502 to restore the terminal's location. Send to service data and signaling information.
  • service data and signaling messages are processed by the processor 502 and modulated by the transmitter 501 (for example, modulating a baseband signal into a high-frequency signal) to generate a downlink signal and transmitted to the terminal via an antenna .
  • the processor 502 is further configured to execute each step of the access network device side in the foregoing method embodiment, and / or other steps of the technical solution described in the embodiment of the present disclosure.
  • the access network device 500 may further include a memory 503, and the memory 503 is configured to store program codes and data of the access network device 500.
  • the access network device may further include a communication unit 504.
  • the communication unit 504 is configured to support communication between an access network device and other network entities (such as a network device in a core network).
  • the communication unit 504 may be an S1-U interface, which is used to support communication between an access network device and a serving gateway (Serving Gateway, S-GW);
  • An MME interface is used to support communication between an access network device and a Mobility Management Entity (MME).
  • MME Mobility Management Entity
  • FIG. 5 only shows a simplified design of the access network device 500.
  • the access network device 500 may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all access network devices that can implement the embodiments of the present disclosure are in the present disclosure. Within the scope of protection of the embodiments.
  • An embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and the computer program implements the steps of the interference detection method when executed by a processor of an access network device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种干扰检测方法、装置及存储介质,属于通信技术领域。所述方法包括:第二接入网设备接收第一接入网设备发送的波束占用信息;第二接入网设备确定与第一波束具有干扰互斥关系的第二波束;若第二接入网设备存在使用第二波束与第二终端之间传输第二数据的需求,则第二接入网设备检测第二数据是否受到第一数据的传输干扰。本公开实施例通过接入网设备预存与相邻接入网设备的波束间的干扰互斥关系,并获取相邻接入网设备的波束占用情况,当接入网设备有数据传输需求时,根据上述波束占用情况以及预存的干扰互斥关系即可确定是否存在干扰,无需执行LBT流程进行CCA,简化了干扰检测流程,节省了设备的处理开销。

Description

干扰检测方法、装置及存储介质 技术领域
本公开涉及通信技术领域,特别涉及一种干扰检测方法、装置及存储介质。
背景技术
对于非授权频段的使用,为了实现与WiFi(Wireless Fidelity,无线保真)及其他运营商LAA(Licensed-Assisted Access,授权频谱辅助接入)网络的和谐共存,减少相互之间的干扰,引入非授权频段LBT(Listen before Talk,先听后讲)机制,即使用该频段的任何设备必须先执行LBT流程,看此频段是否被占用,如果此频段空闲,设备才可以占用并开始传输。
如果在每次传输数据之前,通过执行LBT流程进行干扰检测,会给设备带来较大的处理开销。
发明内容
本公开实施例提供了一种干扰检测方法、装置及存储介质,可节省设备进行干扰检测时的处理开销。技术方案如下:
根据本公开实施例的第一方面,提供了一种干扰检测方法,所述方法包括:
第二接入网设备接收第一接入网设备发送的波束占用信息,所述波束占用信息用于指示所述第一接入网设备与第一终端之间传输第一数据所占用的第一波束;
所述第二接入网设备确定与所述第一波束具有干扰互斥关系的第二波束;
若所述第二接入网设备存在使用所述第二波束与第二终端之间传输第二数据的需求,则所述第二接入网设备检测所述第二数据是否受到所述第一数据的传输干扰。
可选地,所述波束占用信息包括:所述第一波束的标识信息。
可选地,所述波束占用信息还包括:时域指示信息和/或频域指示信息;
其中,所述时域指示信息用于指示传输所述第一数据所占用的时域资源,所述频域指示信息用于指示传输所述第一数据所占用的频域资源。
可选地,所述波束占用信息还包括:传输类型指示信息;
其中,所述传输类型指示信息用于指示所述第一数据对应的传输类型,所述传输类型包括上行传输和下行传输。
可选地,所述第二接入网设备确定与所述第一波束具有干扰互斥关系的第二波束,包括:
所述第二接入网设备根据预存的干扰互斥信息,确定与所述第一波束具有干扰互斥关系的第二波束;
其中,所述干扰互斥信息包括至少一组波束间的干扰互斥关系。
可选地,所述方法还包括:
当所述第一接入网设备采用第一目标波束发送测量信号时,所述第二接入网设备采用第二目标波束接收所述测量信号,并获取所述测量信号的接收信号强度;
当所述测量信号的接收信号强度大于预设阈值时,所述第二接入网设备确定所述第二目标波束与所述第一目标波束具有所述干扰互斥关系;
所述第二接入网设备记录所述第二目标波束与所述第一目标波束间的所述干扰互斥关系。
可选地,所述方法还包括:
根据已确定的具有所述干扰互斥关系的至少一组波束、所述第二接入网设备的波束分布和所述第一接入网设备的波束分布,确定所述第二接入网设备与所述第一接入网设备间具有所述干扰互斥关系的至少一组其它波束。
可选地,所述第二接入网设备检测所述第二数据是否受到所述第一数据的传输干扰,包括:
当所述第二数据符合干扰判定条件时,所述第二接入网设备确定所述第二数据受到所述第一数据的传输干扰;
其中,所述干扰判定条件包括:传输所述第二数据计划占用的时域资源与传输所述第一数据所占用的时域资源存在重叠,且传输所述第二数据计划占用的频域资源与传输所述第一数据所占用的频域资源也存在重叠。
可选地,干扰判定条件还包括:所述第一数据对应的传输类型为上行传输。
可选地,所述方法还包括:
若所述第二接入网设备确定所述第二数据未受到所述第一数据的传输干扰,则所述第二接入网设备按照传输所述第二数据计划占用的时频资源,在所 述第二接入网设备和所述第二终端间传输所述第二数据。
可选地,所述方法还包括:
若所述第二接入网设备确定所述第二数据未受到所述第一数据的传输干扰,则所述第二接入网设备执行LBT流程,以确定所述第二数据是否满足传输条件;
若所述第二数据满足所述传输条件,则所述第二接入网设备执行所述按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所述第二终端间传输所述第二数据的步骤。
根据本公开实施例的第二方面,提供了一种干扰检测装置,应用于第二接入网设备中,所述装置包括:
接收模块,被配置为接收第一接入网设备发送的波束占用信息,所述波束占用信息用于指示所述第一接入网设备与第一终端之间传输第一数据所占用的第一波束;
确定模块,被配置为确定与所述第一波束具有干扰互斥关系的第二波束;
检测模块,被配置为当存在使用所述第二波束与第二终端之间传输第二数据的需求时,检测所述第二数据是否受到所述第一数据的传输干扰。
可选地,所述波束占用信息包括:所述第一波束的标识信息。
可选地,所述波束占用信息还包括:时域指示信息和/或频域指示信息;
其中,所述时域指示信息用于指示传输所述第一数据所占用的时域资源,所述频域指示信息用于指示传输所述第一数据所占用的频域资源。
可选地,所述波束占用信息还包括:传输类型指示信息;
其中,所述传输类型指示信息用于指示所述第一数据对应的传输类型,所述传输类型包括上行传输和下行传输。
可选地,所述确定模块,被配置为:
根据预存的干扰互斥信息,确定与所述第一波束具有干扰互斥关系的第二波束;
其中,所述干扰互斥信息包括至少一组波束间的干扰互斥关系。
可选地,所述装置还包括:测量记录模块,被配置为:
当所述第一接入网设备采用第一目标波束发送测量信号时,采用第二目标波束接收所述测量信号,并获取所述测量信号的接收信号强度;
当所述测量信号的接收信号强度大于预设阈值时,确定所述第二目标波束 与所述第一目标波束具有所述干扰互斥关系;
记录所述第二目标波束与所述第一目标波束间的所述干扰互斥关系。
可选地,所述测量记录模块,还被配置为:
根据已确定的具有所述干扰互斥关系的至少一组波束、所述第二接入网设备的波束分布和所述第一接入网设备的波束分布,确定与所述第一接入网设备间具有所述干扰互斥关系的至少一组其它波束。
可选地,所述检测模块,被配置为:
当所述第二数据符合干扰判定条件时,确定所述第二数据受到所述第一数据的传输干扰;
其中,所述干扰判定条件包括:传输所述第二数据计划占用的时域资源与传输所述第一数据所占用的时域资源存在重叠,且传输所述第二数据计划占用的频域资源与传输所述第一数据所占用的频域资源也存在重叠。
可选地,所述干扰判定条件还包括:所述第一数据对应的传输类型为上行传输。
可选地,所述装置还包括:
传输模块,被配置为当确定所述第二数据未受到所述第一数据的传输干扰时,按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所述第二终端间传输所述第二数据。
可选地,所述装置还包括:
执行模块,被配置为当确定所述第二数据未受到所述第一数据的传输干扰时,执行LBT流程,以确定所述第二数据是否满足传输条件;
所述传输模块,还被配置为当所述第二数据满足所述传输条件时,按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所述第二终端间传输所述第二数据。
根据本公开实施例的第三方面,提供了一种干扰检测装置,应用于第二接入网设备中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收第一接入网设备发送的波束占用信息,所述波束占用信息用于指示所述第一接入网设备与第一终端之间传输第一数据所占用的第一波束;
确定与所述第一波束具有干扰互斥关系的第二波束;
当存在使用所述第二波束与第二终端之间传输第二数据的需求时,检测所述第二数据是否受到所述第一数据的传输干扰。
根据本公开实施例的第四方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤。
本公开实施例提供的技术方案可以包括以下有益效果:
通过接入网设备预存与相邻接入网设备的波束间的干扰互斥关系,并获取相邻接入网设备的波束占用情况,当接入网设备有数据传输需求时,根据上述波束占用情况以及预存的干扰互斥关系即可确定是否存在干扰,无需执行LBT流程进行CCA(Clear Channel Assessment,空闲信道评估),简化了干扰检测流程,节省了设备的处理开销。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种网络架构的示意图;
图2是根据一示例性实施例示出的一种应用场景的示意图;
图3是根据一示例性实施例示出的一种干扰检测方法的流程图;
图4是根据一实施例实施例示出的一种干扰检测装置的框图;
图5是根据一示例性实施例示出的一种接入网设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种网络架构的示意图。该网络架构可以包括:多个接入网设备110和终端120。各个接入网设备110部署在RAN(Radio Access Network,无线接入网)10中。
终端120的数量通常为多个,每一个接入网设备110所管理的小区内可以分布一个或多个终端120。
接入网设备110与终端120之间通过某种空口技术互相通信,例如可以通过蜂窝技术相互通信。本公开实施例描述的技术方案可以适用于LTE系统,也可以适用于LTE系统后续的演进系统,如LTE-A(LTE-Advanced)系统、5G系统(也称为NR(New Radio)系统)等。
本公开实施例中,名词“网络”和“系统”经常交替使用,但本领域技术人员可以理解其含义。
本公开实施例所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。
本公开实施例所涉及到的RAN中的接入网设备可以是基站(Base Station,BS),所述基站是一种部署在RAN中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G通信系统中,称为节点B(Node B)等等。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本公开实施例中,上述为终端提供无线通信功能的装置统称为接入网设备。
为了提升无线信号的传输质量,引入波束成形(beamforming)技术,实现定向信号发送或接收。结合参考图2,图2是根据一示例性实施例示出的一种应用场景的示意图。该应用场景可以包括:第一接入网设备21、第二接入网设备22、第一终端23和第二终端24。其中,第一终端23位于第一接入网设备21服务的小区内,第二终端24位于第二接入网设备22服务的小区内。
如图2所示,第一接入网设备21可以包括多个天线,该多个天线能够产生多个不同指向的波束(beam),覆盖第一接入网设备21所服务的小区。第一 接入网设备21可以通过波束向小区内的终端定向发送信号,也可以通过波束定向接收小区内的终端发送的信号。
类似地,第二接入网设备22也可以包括多个天线,该多个天线能够产生多个不同指向的波束,覆盖第二接入网设备22所服务的小区。第二接入网设备22可以通过波束向小区内的终端定向发送信号,也可以通过波束定向接收小区内的终端发送的信号。
如图2所示,当第一接入网设备21和第二接入网设备22邻近部署时,两者设备指向相同或接近的波束间,会存在较大的传输干扰。如图2所示,假设第一接入网设备21正在使用波束5和6向第一终端23发送下行数据,第二接入网设备22正在使用波束10和11向第二终端24发送下行数据,由于波束5和6与波束10和11的指向接近,因此第一终端23的接收会受到第二接入网设备22与第二终端24间的下行传输的干扰,第二终端24的接收也会受到第一接入网设备21与第一终端23间的下行传输的干扰。
另外,假设第一接入网设备21正在使用波束5和6接收第一终端23发送的上行数据,第二入网设备22正在使用波束10和11向第二终端24发送下行数据,第二终端24的接收也会受到第一终端23与第一接入网设备21间的上行传输的干扰。
如果设备(终端或接入网设备)在每一次进行数据传输前执行LBT流程进行干扰检测,LBT流程所涉及的CCA会给设备带来较大的处理开销。
在本公开实施例提供的技术方案中,通过接入网设备预存与相邻接入网设备的波束间的干扰互斥关系,并获取相邻接入网设备的波束占用情况,当接入网设备有数据传输需求时,根据上述波束占用情况以及预存的干扰互斥关系即可确定是否存在干扰,无需执行LBT流程进行CCA,简化了干扰检测流程,节省了设备的处理开销。
图3是根据一示例性实施例示出的一种干扰检测方法的流程图。该方法可应用于图2所示的应用场景中。该方法可以包括如下几个步骤。
在步骤301中,第二接入网设备接收第一接入网设备发送的波束占用信息。
波束占用信息用于指示第一接入网设备与第一终端之间传输第一数据所占用的第一波束。其中,第一波束的数量可以是1个,也可以是多个。第一数据可以包括第一接入网设备向第一终端发送的下行数据和/或第一终端向第一 接入网设备发送的上行数据。波束占用信息包括第一波束的标识信息。波束的标识信息用于唯一指示该波束,不同的波束对应不同的标识信息。可选地,波束的标识信息包括该波束对应的SSB(synchronization signal and PBCH Block,同步信号和物理广播信道块)索引,也即SSB index。例如,结合参考图2,假设第一接入网设备通过波束5向第一终端发送下行数据,则第一接入网设备向第二接入网设备发送的波束占用信息可以包括波束5的标识信息。
可选地,波束占用信息还包括时域指示信息和/或频域指示信息;其中,时域指示信息用于指示传输第一数据所占用的时域资源,频域指示信息用于指示传输第一数据所占用的频域资源。其中,时域资源可以包括所占用的帧、子帧、时隙、OFDM符号等时域单元的标识信息,也可以包括时域资源的占用时长。频域资源可以包括CC(Component Carrier,载波单元)、BWP(Bandwidth Part,一部分带宽)等频域单元的标识信息。
可选地,波束占用信息还包括传输类型指示信息;其中,传输类型指示信息用于指示第一数据对应的传输类型,传输类型包括上行传输和下行传输。上行传输是指终端向接入网设备发送数据,也即接入网设备从终端接收数据;下行传输是指接入网设备向终端发送数据,也即终端从接入网设备接收数据。
第二接入网设备可以通过空中接口接收第一接入网设备发送的波束占用信息,其中,上述空中接口可以是X2接口,也可以是与X2接口等效的空中接口。
在步骤302中,第二接入网设备确定与第一波束具有干扰互斥关系的第二波束。
可选地,第二接入网设备可以根据预存的干扰互斥信息,确定与第一波束具有干扰互斥关系的第二波束;其中,干扰互斥信息包括至少一组波束间的干扰互斥关系。可选地,第二接入网设备中预存的与第一接入网设备对应的干扰互斥信息,包括至少一组第一接入网设备的波束和第二接入网设备的波束之间的干扰互斥关系。在一个示例中,干扰互斥信息可以包括第二接入网设备与第一接入网设备间干扰最大的一组波束间的干扰互斥关系。在另一个示例中,干扰互斥信息可以包括第二接入网设备与第一接入网设备的波束间存在的所有干扰互斥关系。
上述干扰互斥关系可以在接入网设备部署时预设,也可以在接入网设备部署时,经初始化测量得到。
可选地,初始化测量过程如下:当第一接入网设备采用第一目标波束发送测量信号时,第二接入网设备采用第二目标波束接收测量信号,并获取该测量信号的接收信号强度;当测量信号的接收信号强度大于预设阈值时,第二接入网设备确定第二目标波束与第一目标波束具有干扰互斥关系;当测量信号的接收信号强度小于预设阈值时,第二接入网设备确定第二目标波束与第一目标波束不具有干扰互斥关系。可选地,接收信号强度可以用RSRP(Reference Signal Received Power,参考信号接收功率)值来衡量。另外,预设阈值可由协议预先规定,也可以在第二接入网设备中预先设定。若第二接入网设备确定第二目标波束与第一目标波束具有干扰互斥关系,则第二接入网设备记录第二目标波束与第一目标波束间的干扰互斥关系,例如将上述干扰互斥关系记录在干扰互斥信息中。
上述过程仅以确定一组波束间是否具有干扰互斥关系为例,对于其他波束间是否具有干扰互斥关系,可以采用相似的过程。可选地,结合参考图2,在初始化测量过程中,第一接入网设备21使用波束1发送测量信号,第二接入网设备22按波束编号顺序逐一开启波束1至波束12接收第一接入网设备21发送的测量信号,并获取测量信号的接收信号强度,完成第一轮测量。之后,第一接入网设备21使用波束2发送测量信号,第二接入网设备22再次按波束编号顺序逐一开启波束1至波束12接收第一接入网设备21发送的测量信号,并获取测量信号的接收信号强度,完成第二轮测量。之后,第一接入网设备21依次使用波束3至波束12,重复上述测量过程。至此,完成一次初始化测量。第二接入网设备22记录所有具有干扰互斥关系的各组波束。
另外,第二接入网设备可以根据已确定的具有干扰互斥关系的至少一组波束,以及第二接入网设备的波束分布和第一接入网设备的波束分布,确定第二接入网设备与第一接入网设备间具有干扰互斥关系的至少一组其它波束。可选地,上述波束分布可以包括波束的夹角和/或波束的指向。例如,第二接入网设备可以根据已确定的具有干扰互斥关系的波束,结合第二接入网设备的波束分布和第一接入网设备的波束分布,推算第二接入网设备与第一接入网设备指向相同或接近的波束组,并将上述指向相同或接近的波束组确定为具有干扰互斥关系的波束组。示例性地,结合参考图2,假设已经确定第一接入网设备21的波束5和第二接入网设备22的波束10具有干扰互斥关系,则根据波束的夹角,可以推算出,第一接入网设备21的波束6和第二接入网设备22的波束10 也具有干扰互斥关系。
另外,在本公开实施例中,对波束间的干扰互斥关系的记录方式不作限定。示例性地,结合参考图2,可以记录为如下形式:第一接入网设备:{波束5}<—>第二接入网设备:{波束11},即表示第一接入网设备21的波束5与第二接入网设备22的波束11具有干扰互斥关系;或者,记录为如下形式:第一接入网设备:{波束5,波束6}<—>第二接入网设备:{波束10,波束11},即表示第一接入网设备21的波束5和/或波束6与第二接入网设备22的波束10和/或波束11具有干扰互斥关系。
在步骤303中,若第二接入网设备存在使用第二波束与第二终端之间传输第二数据的需求,则第二接入网设备检测第二数据是否受到第一数据的传输干扰。
在一种可能的实施方式中,当第二接入网设备存在使用第二波束向第二终端发送第二数据的需求时,或者当第二接入网设备存在使用第二波束接收第二终端发送的第二数据的需求时,第二接入网设备均执行该检测第二数据是否受到第一数据的传输干扰的步骤。
在另一种可能的实施方式中,当第二接入网设备存在使用第二波束向第二终端发送第二数据的需求时,第二接入网设备执行该检测第二数据是否受到第一数据的传输干扰的步骤;当第二接入网设备存在使用第二波束接收第二终端发送的第二数据的需求时,第二接入网设备不执行该检测第二数据是否受到第一数据的传输干扰的步骤。由于第一接入网设备与第一终端之间的传输,对第二接入网设备的上行接收干扰较小,因此第二接入网设备可以仅在有下行传输的需求时进行干扰检测,而在有上行传输的需求时不进行干扰检测,直接认为不会受到干扰。
在本公开实施例中,第二接入网设备检测第二数据是否受到第一数据的传输干扰,可以采用如下方式:第二接入网设备检测第二数据是否符合干扰判定条件;当第二数据符合干扰判定条件时,第二接入网设备确定第二数据受到第一数据的传输干扰;反之,当第二数据不符合干扰判定条件时,第二接入网设备确定第二数据没有受到第一数据的传输干扰。
可选地,干扰判定条件包括:传输第二数据计划占用的时域资源与传输第一数据所占用的时域资源存在重叠,且传输第二数据计划占用的频域资源与传输所述第一数据所占用的频域资源也存在重叠。
第二接入网设备可以采用如下方式,获取传输第一数据所占用的时域资源和/或频域资源:第二接入网设备从第一接入网设备发送的波束占用信息中,获取时域指示信息和/或频域指示信息,据此确定传输第一数据所占用的时域资源和/或频域资源。另外,在其它可能的实施方式中,第二接入网设备还可以从其它设备或根据默认配置,确定传输第一数据所占用的时域资源和/或频域资源。
另外,传输第二数据计划占用的时域资源和频域资源,可以由第二接入网设备自己确定。
可选地,干扰判定条件还包括:第一数据对应的传输类型为上行传输。也即只有在第一接入网设备使用第一波束进行上行传输时,第二接入网设备才检测第二数据是否受到第一数据的传输干扰;当第一接入网设备使用第一波束进行下行传输时,第二接入网设备不检测第二数据是否受到第一数据的传输干扰。
示例性地,结合参考图2,当第一接入网设备21使用波束5向第一终端23下行发送第一数据时,若第二接入网设备22需要使用波束11向第二终端24下行发送第二数据,则第二接入网设备22确定第二数据不受第一数据的传输干扰。当第一接入网设备21使用波束5接收第一终端23上行发送的第一数据时,若第二接入网设备22需要使用波束11向第二终端24下行发送第二数据,则第二接入网设备22确定第二数据受到第一数据的传输干扰。
另外,第二接入网设备可以根据第一接入网设备向其发送的波束占用信息中所携带的传输类型指示信息,确定第一数据对应的传输类型。
在其它可能的实施方式中,当第一接入网设备下行传输第一数据时,第一接入网设备不向第二接入网设备发送波束占用信息;当第一接入网设备上行接收第一数据时,第一接入网设备向第二接入网设备发送波束占用信息。
可选地,当第二接入网设备确定第二数据受到第一数据的传输干扰时,第二接入网设备不执行LBT流程,按照第二数据的传输信道已被占用处理。第二接入网设备可以重新规划传输第二数据所计划占用的时频资源,以避免其与第一数据产生传输干扰。
可选地,当第二接入网设备确定第二数据未受到第一数据的传输干扰时,第二接入网设备可以执行LBT流程,以确定第二数据是否满足传输条件。当第二数据满足上述传输条件时,第二接入网设备按照传输第二数据计划占用的时频资源,在第二接入网设备和第二终端间传输第二数据。进一步地,当第二 接入网设备确定第二数据未受到第一数据的传输干扰时,第二接入网设备也可以不执行LBT流程,直接执行按照传输第二数据计划占用的时频资源,在第二接入网设备和第二终端间传输所述第二数据的步骤,从而可以实现完全不通过LBT流程进行干扰检测。
需要说明的一点是,当第二接入网设备进行数据传输时,也可以向其相邻接入网设备发送波束占用信息,其相邻接入网设备也可以进行上述干扰检测。
综上所述,本公开实施例提供的技术方案中,通过接入网设备预存与相邻接入网设备的波束间的干扰互斥关系,并获取相邻接入网设备的波束占用情况,当接入网设备有数据传输需求时,根据上述波束占用情况以及预存的干扰互斥关系即可确定是否存在干扰,无需执行LBT流程进行CCA,简化了干扰检测流程,节省了设备的处理开销。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图4是根据一示例性实施例示出的一种干扰检测装置的框图。该装置具有实现上述方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可应用于上文介绍的第二接入网设备中。该装置可以包括:接收模块401、确定模块402和检测模块403。
接收模块401,被配置为接收第一接入网设备发送的波束占用信息,所述波束占用信息用于指示所述第一接入网设备与第一终端之间传输第一数据所占用的第一波束。
确定模块402,被配置为确定与所述第一波束具有干扰互斥关系的第二波束。
检测模块403,被配置为当存在使用所述第二波束与第二终端之间传输第二数据的需求时,检测所述第二数据是否受到所述第一数据的传输干扰。
综上所述,本公开实施例提供的技术方案中,通过接入网设备预存与相邻接入网设备的波束间的干扰互斥关系,并获取相邻接入网设备的波束占用情况,当接入网设备有数据传输需求时,根据上述波束占用情况以及预存的干扰互斥关系即可确定是否存在干扰,无需执行LBT流程进行CCA,简化了干扰检测流程,节省了设备的处理开销。
在基于图4实施例提供的一个可选实施例中,所述波束占用信息包括:所 述第一波束的标识信息。
可选地,所述波束占用信息还包括:时域指示信息和/或频域指示信息。其中,所述时域指示信息用于指示传输所述第一数据所占用的时域资源,所述频域指示信息用于指示传输所述第一数据所占用的频域资源。
可选地,所述波束占用信息还包括:传输类型指示信息。其中,所述传输类型指示信息用于指示所述第一数据对应的传输类型,所述传输类型包括上行传输和下行传输。
在基于图4实施例或者上述可选实施例提供的另一个可选实施例中,所述确定模块402,被配置为:根据预存的干扰互斥信息,确定与所述第一波束具有干扰互斥关系的第二波束。其中,所述干扰互斥信息包括至少一组波束间的干扰互斥关系。
在基于图4实施例或者上述可选实施例提供的另一个可选实施例中,所述装置还包括:测量记录模块,被配置为:
当所述第一接入网设备采用第一目标波束发送测量信号时,采用第二目标波束接收所述测量信号,并获取所述测量信号的接收信号强度;
当所述测量信号的接收信号强度大于预设阈值时,确定所述第二目标波束与所述第一目标波束具有所述干扰互斥关系;
记录所述第二目标波束与所述第一目标波束间的所述干扰互斥关系。
可选地,所述测量记录模块,还被配置为:
根据已确定的具有所述干扰互斥关系的至少一组波束、所述第二接入网设备的波束分布和所述第一接入网设备的波束分布,确定与所述第一接入网设备间具有所述干扰互斥关系的至少一组其它波束。
在基于图4实施例或者上述可选实施例提供的另一个可选实施例中,所述检测模块403,被配置为:
当所述第二数据符合干扰判定条件时,确定所述第二数据受到所述第一数据的传输干扰;
其中,所述干扰判定条件包括:传输所述第二数据计划占用的时域资源与传输所述第一数据所占用的时域资源存在重叠,且传输所述第二数据计划占用的频域资源与传输所述第一数据所占用的频域资源也存在重叠。
可选地,所述干扰判定条件还包括:所述第一数据对应的传输类型为上行传输。
在基于图4实施例或者上述可选实施例提供的另一个可选实施例中,所述装置还包括:传输模块,被配置为:
当确定所述第二数据未受到所述第一数据的传输干扰时,按照传输所述第二数据计划占用的时频资源时,在所述第二接入网设备和所述第二终端间传输所述第二数据。
可选地,所述装置还包括:
执行模块,被配置为当确定所述第二数据未受到所述第一数据的传输干扰时,执行LBT流程,以确定所述第二数据是否满足传输条件;
所述传输模块,还被配置为当所述第二数据满足所述传输条件时,按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所述第二终端间传输所述第二数据。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例还提供了一种干扰检测装置,能够实现本公开提供的干扰检测方法。该装置可应用于上文介绍的第二接入网设备中。该装置可以包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
接收第一接入网设备发送的波束占用信息,所述波束占用信息用于指示所述第一接入网设备与第一终端之间传输第一数据所占用的第一波束;
确定与所述第一波束具有干扰互斥关系的第二波束;
当存在使用所述第二波束与第二终端之间传输第二数据的需求时,检测所述第二数据是否受到所述第一数据的传输干扰。
可选地,所述波束占用信息包括:所述第一波束的标识信息。
可选地,所述波束占用信息还包括:时域指示信息和/或频域指示信息;
其中,所述时域指示信息用于指示传输所述第一数据所占用的时域资源, 所述频域指示信息用于指示传输所述第一数据所占用的频域资源。
可选地,所述波束占用信息还包括:传输类型指示信息;
其中,所述传输类型指示信息用于指示所述第一数据对应的传输类型,所述传输类型包括上行传输和下行传输。
可选地,所述处理器被配置为:
根据预存的干扰互斥信息,确定与所述第一波束具有干扰互斥关系的第二波束;
其中,所述干扰互斥信息包括至少一组波束间的干扰互斥关系。
可选地,所述处理器还被配置为:
当所述第一接入网设备采用第一目标波束发送测量信号时,采用第二目标波束接收所述测量信号,并获取所述测量信号的接收信号强度;
当所述测量信号的接收信号强度大于预设阈值时,确定所述第二目标波束与所述第一目标波束具有所述干扰互斥关系;
记录所述第二目标波束与所述第一目标波束间的所述干扰互斥关系。
可选地,所述处理器还被配置为:
根据已确定的具有所述干扰互斥关系的至少一组波束、所述第二接入网设备的波束分布和所述第一接入网设备的波束分布,确定与所述第一接入网设备间具有所述干扰互斥关系的至少一组其它波束。
可选地,所述处理器被配置为:
当所述第二数据符合干扰判定条件时,确定所述第二数据受到所述第一数据的传输干扰;
其中,所述干扰判定条件包括:传输所述第二数据计划占用的时域资源与传输所述第一数据所占用的时域资源存在重叠,且传输所述第二数据计划占用的频域资源与传输所述第一数据所占用的频域资源也存在重叠。
可选地,所述干扰判定条件还包括:所述第一数据对应的传输类型为上行传输。
可选地,所述处理器还被配置为:
当确定所述第二数据未受到所述第一数据的传输干扰时,按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所述第二终端间传输所述第二数据。
可选地,所述处理器还被配置为:
当确定所述第二数据未受到所述第一数据的传输干扰时,执行LBT流程,以确定所述第二数据是否满足传输条件;
当所述第二数据满足所述传输条件时,按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所述第二终端间传输所述第二数据。
上述主要从接入网设备的角度,对本公开实施例提供的方案进行了介绍。可以理解的是,接入网设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图5是根据一示例性实施例示出的一种接入网设备的结构示意图。
接入网设备500包括发射器/接收器501和处理器502。其中,处理器502也可以为控制器,图5中表示为“控制器/处理器502”。所述发射器/接收器501用于支持接入网设备与上述实施例中的所述终端之间收发信息,以及支持所述接入网设备与其它网络实体之间进行通信。所述处理器502执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器501进行解调(例如将高频信号解调为基带信号),并进一步由处理器502进行处理来恢复终端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器502进行处理,并由发射器501进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端。需要说明的是,上述解调或调制的功能也可以由处理器502完成。例如,处理器502还用于执行上述方法实施例中接入网设备侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,接入网设备500还可以包括存储器503,存储器503用于存储接入网设备500的程序代码和数据。此外,接入网设备还可以包括通信单元504。通信单元504用于支持接入网设备与其它网络实体(例如核心网中的网络设备等)进行通信。例如,在LTE系统中,该通信单元504可以是S1-U接口,用于支持接入网设备与服务网关(Serving Gateway,S-GW)进行通信; 或者,该通信单元504也可以是S1-MME接口,用于支持接入网设备与移动性管理实体(Mobility Management Entity,MME)进行通信。
可以理解的是,图5仅仅示出了接入网设备500的简化设计。在实际应用中,接入网设备500可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的接入网设备都在本公开实施例的保护范围之内。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被接入网设备的处理器执行时实现上述干扰检测方法的步骤。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种干扰检测方法,其特征在于,所述方法包括:
    第二接入网设备接收第一接入网设备发送的波束占用信息,所述波束占用信息用于指示所述第一接入网设备与第一终端之间传输第一数据所占用的第一波束;
    所述第二接入网设备确定与所述第一波束具有干扰互斥关系的第二波束;
    若所述第二接入网设备存在使用所述第二波束与第二终端之间传输第二数据的需求,则所述第二接入网设备检测所述第二数据是否受到所述第一数据的传输干扰。
  2. 根据权利要求1所述的方法,其特征在于,所述波束占用信息包括:所述第一波束的标识信息。
  3. 根据权利要求2所述的方法,其特征在于,所述波束占用信息还包括:时域指示信息和/或频域指示信息;
    其中,所述时域指示信息用于指示传输所述第一数据所占用的时域资源,所述频域指示信息用于指示传输所述第一数据所占用的频域资源。
  4. 根据权利要求2所述的方法,其特征在于,所述波束占用信息还包括:传输类型指示信息;
    其中,所述传输类型指示信息用于指示所述第一数据对应的传输类型,所述传输类型包括上行传输和下行传输。
  5. 根据权利要求1所述的方法,其特征在于,所述第二接入网设备确定与所述第一波束具有干扰互斥关系的第二波束,包括:
    所述第二接入网设备根据预存的干扰互斥信息,确定与所述第一波束具有干扰互斥关系的第二波束;
    其中,所述干扰互斥信息包括至少一组波束间的干扰互斥关系。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    当所述第一接入网设备采用第一目标波束发送测量信号时,所述第二接入网设备采用第二目标波束接收所述测量信号,并获取所述测量信号的接收信号强度;
    当所述测量信号的接收信号强度大于预设阈值时,所述第二接入网设备确定所述第二目标波束与所述第一目标波束具有所述干扰互斥关系;
    所述第二接入网设备记录所述第二目标波束与所述第一目标波束间的所述干扰互斥关系。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据已确定的具有所述干扰互斥关系的至少一组波束、所述第二接入网设备的波束分布和所述第一接入网设备的波束分布,确定所述第二接入网设备与所述第一接入网设备间具有所述干扰互斥关系的至少一组其它波束。
  8. 根据权利要求1所述的方法,其特征在于,所述第二接入网设备检测所述第二数据是否受到所述第一数据的传输干扰,包括:
    当所述第二数据符合干扰判定条件时,所述第二接入网设备确定所述第二数据受到所述第一数据的传输干扰;
    其中,所述干扰判定条件包括:传输所述第二数据计划占用的时域资源与传输所述第一数据所占用的时域资源存在重叠,且传输所述第二数据计划占用的频域资源与传输所述第一数据所占用的频域资源也存在重叠。
  9. 根据权利要求8所述的方法,其特征在于,所述干扰判定条件还包括:所述第一数据对应的传输类型为上行传输。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二接入网设备确定所述第二数据未受到所述第一数据的传输干扰,则所述第二接入网设备按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所述第二终端间传输所述第二数据。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    若所述第二接入网设备确定所述第二数据未受到所述第一数据的传输干扰,则所述第二接入网设备执行先听后说LBT流程,以确定所述第二数据是否满足传输条件;
    若所述第二数据满足所述传输条件,则所述第二接入网设备执行所述按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所述第二终端间传输所述第二数据的步骤。
  12. 一种干扰检测装置,其特征在于,应用于第二接入网设备中,所述装置包括:
    接收模块,被配置为接收第一接入网设备发送的波束占用信息,所述波束占用信息用于指示所述第一接入网设备与第一终端之间传输第一数据所占用的第一波束;
    确定模块,被配置为确定与所述第一波束具有干扰互斥关系的第二波束;
    检测模块,被配置为当存在使用所述第二波束与第二终端之间传输第二数据的需求时,检测所述第二数据是否受到所述第一数据的传输干扰。
  13. 根据权利要求12所述的装置,其特征在于,所述波束占用信息包括:所述第一波束的标识信息。
  14. 根据权利要求13所述的装置,其特征在于,所述波束占用信息还包括:时域指示信息和/或频域指示信息;
    其中,所述时域指示信息用于指示传输所述第一数据所占用的时域资源,所述频域指示信息用于指示传输所述第一数据所占用的频域资源。
  15. 根据权利要求13所述的装置,其特征在于,所述波束占用信息还包括:传输类型指示信息;
    其中,所述传输类型指示信息用于指示所述第一数据对应的传输类型,所述传输类型包括上行传输和下行传输。
  16. 根据权利要求12所述的装置,其特征在于,所述确定模块,被配置为:
    根据预存的干扰互斥信息,确定与所述第一波束具有干扰互斥关系的第二 波束;
    其中,所述干扰互斥信息包括至少一组波束间的干扰互斥关系。
  17. 根据权利要求16所述的装置,其特征在于,所述装置还包括:测量记录模块,被配置为:
    当所述第一接入网设备采用第一目标波束发送测量信号时,采用第二目标波束接收所述测量信号,并获取所述测量信号的接收信号强度;
    当所述测量信号的接收信号强度大于预设阈值时,确定所述第二目标波束与所述第一目标波束具有所述干扰互斥关系;
    记录所述第二目标波束与所述第一目标波束间的所述干扰互斥关系。
  18. 根据权利要求17所述的装置,其特征在于,所述测量记录模块,还被配置为:
    根据已确定的具有所述干扰互斥关系的至少一组波束、所述第二接入网设备的波束分布和所述第一接入网设备的波束分布,确定与所述第一接入网设备间具有所述干扰互斥关系的至少一组其它波束。
  19. 根据权利要求12所述的装置,其特征在于,所述检测模块,被配置为:
    当所述第二数据符合干扰判定条件时,确定所述第二数据受到所述第一数据的传输干扰;
    其中,所述干扰判定条件包括:传输所述第二数据计划占用的时域资源与传输所述第一数据所占用的时域资源存在重叠,且传输所述第二数据计划占用的频域资源与传输所述第一数据所占用的频域资源也存在重叠。
  20. 根据权利要求19所述的装置,其特征在于,所述干扰判定条件还包括:所述第一数据对应的传输类型为上行传输。
  21. 根据权利要求12至20任一项所述的装置,其特征在于,所述装置还包括:
    传输模块,被配置为当确定所述第二数据未受到所述第一数据的传输干扰时,按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所 述第二终端间传输所述第二数据。
  22. 根据权利要求21所述的装置,其特征在于,所述装置还包括:
    执行模块,被配置为当确定所述第二数据未受到所述第一数据的传输干扰时,执行先听后说LBT流程,以确定所述第二数据是否满足传输条件;
    所述传输模块,还被配置为当所述第二数据满足所述传输条件时,按照传输所述第二数据计划占用的时频资源,在所述第二接入网设备和所述第二终端间传输所述第二数据。
  23. 一种干扰检测装置,其特征在于,应用于第二接入网设备中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收第一接入网设备发送的波束占用信息,所述波束占用信息用于指示所述第一接入网设备与第一终端之间传输第一数据所占用的第一波束;
    确定与所述第一波束具有干扰互斥关系的第二波束;
    当存在使用所述第二波束与第二终端之间传输第二数据的需求时,检测所述第二数据是否受到所述第一数据的传输干扰。
  24. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至11任一项所述方法的步骤。
PCT/CN2018/100055 2018-08-10 2018-08-10 干扰检测方法、装置及存储介质 WO2020029276A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/100055 WO2020029276A1 (zh) 2018-08-10 2018-08-10 干扰检测方法、装置及存储介质
CN201880001014.1A CN109076555A (zh) 2018-08-10 2018-08-10 干扰检测方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100055 WO2020029276A1 (zh) 2018-08-10 2018-08-10 干扰检测方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2020029276A1 true WO2020029276A1 (zh) 2020-02-13

Family

ID=64789182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100055 WO2020029276A1 (zh) 2018-08-10 2018-08-10 干扰检测方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN109076555A (zh)
WO (1) WO2020029276A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111903150B (zh) * 2018-04-04 2022-04-12 华为技术有限公司 信道处理方法及相关设备
CN112654053B (zh) * 2019-10-11 2023-06-02 广州海格通信集团股份有限公司 干扰状态反馈信息生成方法、装置、设备和存储介质
CN112654054B (zh) * 2019-10-11 2023-04-18 广州海格通信集团股份有限公司 干扰测量方法、装置、计算机设备和可读存储介质
CN113325373B (zh) * 2020-02-29 2024-09-17 华为技术有限公司 信号发送方法及相关装置
CN113325420A (zh) * 2020-02-29 2021-08-31 华为技术有限公司 信号传输方法及相关装置
CN115515245A (zh) * 2021-06-23 2022-12-23 华为技术有限公司 一种信息协调的方法和装置
CN113727364B (zh) * 2021-08-02 2022-08-12 中国联合网络通信集团有限公司 波束控制方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039441B1 (en) * 1999-10-19 2006-05-02 Kathrein-Werke Kg High speed fixed wireless voice/data systems and methods
CN105960818A (zh) * 2014-01-30 2016-09-21 高通股份有限公司 用于控制共享射频频谱中的发射功率的技术

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039441B1 (en) * 1999-10-19 2006-05-02 Kathrein-Werke Kg High speed fixed wireless voice/data systems and methods
CN105960818A (zh) * 2014-01-30 2016-09-21 高通股份有限公司 用于控制共享射频频谱中的发射功率的技术

Also Published As

Publication number Publication date
CN109076555A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020029276A1 (zh) 干扰检测方法、装置及存储介质
US12028197B2 (en) Guard band indication method and apparatus
EP3273737B1 (en) Wireless base station, user terminal, wireless communication system, and wireless communication method
WO2017030053A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2015166801A1 (ja) 基地局装置、端末装置、および通信方法
US10893427B2 (en) Communication terminal, radio network node and methods therein
US10117255B2 (en) Neighboring cell load information
WO2016182046A1 (ja) ユーザ端末および無線通信方法
JP2018537923A (ja) 複数のトーンホッピング距離をもつ狭帯域prach
CN108029145B (zh) 无线基站、用户终端和无线通信方法
WO2017051902A1 (ja) ユーザ端末、無線基地局及び無線通信方法
KR20180081548A (ko) 커버리지 확장을 위한 핸드오버
WO2017051726A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2015166792A1 (ja) 基地局装置、端末装置、および通信方法
US20190028914A1 (en) Device and Method of Handling a Measurement Configuration and a Reporting
CN109565698B (zh) 基于非授权载波的上行调度方法和装置
WO2020029277A1 (zh) Fbe的数据传输方法、装置及存储介质
US10694391B2 (en) Device and method for controlling use of a frequency band shared by a cellular system and wireless system among multiple base stations
WO2019017998A1 (en) 6 GIGAHERTZ BAND ACTIVATION FOR WIRELESS COMMUNICATIONS
US20230232399A1 (en) Method for transmitting information, and communication device
US20170041919A1 (en) Wireless communications system, terminal, base station and processing method
US20150180601A1 (en) Method and apparatus for controlling inter-cellular interference in hetnet system
US20240015559A1 (en) User equipment, and communication control method
JP2022156926A (ja) ユーザ装置及び通信制御方法
WO2015007123A1 (zh) 降低小区干扰的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929597

Country of ref document: EP

Kind code of ref document: A1