WO2017030053A1 - 無線基地局、ユーザ端末及び無線通信方法 - Google Patents
無線基地局、ユーザ端末及び無線通信方法 Download PDFInfo
- Publication number
- WO2017030053A1 WO2017030053A1 PCT/JP2016/073472 JP2016073472W WO2017030053A1 WO 2017030053 A1 WO2017030053 A1 WO 2017030053A1 JP 2016073472 W JP2016073472 W JP 2016073472W WO 2017030053 A1 WO2017030053 A1 WO 2017030053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- signal
- csi
- base station
- configuration
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
Definitions
- the present invention relates to a radio base station, a user terminal, and a radio communication method in a next generation mobile communication system.
- LTE Long Term Evolution
- 5G 5th generation mobile communication system
- LTE of 8-12 the specification has been performed on the assumption that exclusive operation is performed in a frequency band (also referred to as a licensed band) licensed by a telecommunications carrier (operator).
- a frequency band also referred to as a licensed band
- the license band for example, 800 MHz, 1.7 GHz, 2 GHz, and the like are used.
- UE User Equipment
- Rel. 13 In LTE it is considered to expand the frequency of the LTE system using an unlicensed spectrum band (also referred to as an unlicensed band) that can be used in addition to the license band.
- an unlicensed spectrum band also referred to as an unlicensed band
- Non-patent document 2 As the unlicensed band, for example, the use of a 2.4 GHz band or a 5 GHz band that can use Wi-Fi (registered trademark) or Bluetooth (registered trademark) is being studied.
- LAA License-Assisted Access
- DC Dual Connectivity
- SA unlicensed band stand-alone
- 3GPP TS 36.300 “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2” AT & T, “Drivers, Benefits and Challenges for LTE in Unlicensed Spectrum,” 3GPP TSG RAN Meeting # 62 RP-131701
- a UE transmits a signal (for example, called a discovery signal (DS)) used for RRM (Radio Resource Management) measurement.
- DS discovery signal
- RRM Radio Resource Management
- the present invention has been made in view of the above points, and a user terminal, a radio base station, and a radio communication method capable of appropriately performing communication in a cell (for example, an unlicensed band) to which listening is applied before transmission. Is one of the purposes.
- a radio base station controls a transmission unit that transmits a detection measurement signal including a first reference signal for measuring a channel state based on a listening result, and resource allocation of the detection measurement signal
- a control unit assigns the first reference signal by extending in the time direction from the existing second reference signal for channel state measurement.
- communication can be appropriately performed in a cell (for example, an unlicensed band) to which listening is applied before transmission.
- a cell for example, an unlicensed band
- FIG. 2A and 2B are diagrams illustrating an example of a radio resource configuration of DRS in which signals are mapped continuously in time.
- 3A and 3B are diagrams illustrating an example of the extended CSI-RS mapping method according to the present embodiment. It is a figure which shows the other example of the mapping method of the extended CSI-RS which concerns on this Embodiment.
- 5A and 5B are diagrams illustrating another example of the extended CSI-RS mapping method according to the present embodiment.
- 6A and 6B are diagrams illustrating another example of the extended CSI-RS mapping method according to the present embodiment.
- 15A and 15B are diagrams illustrating an example of a CSI-RS configuration in the DRS when multiplexed with DL data according to the present embodiment.
- 16A and 16B are diagrams illustrating an example of a mapping method between DRS and broadcast information according to the present embodiment.
- LTE / LTE-A in an unlicensed band
- an interference control function is required for coexistence with LTE, Wi-Fi, or other systems of other operators.
- a system that operates LTE / LTE-A in an unlicensed band is generally referred to as LAA, LAA-LTE, LTE-U, U-, regardless of whether the operation mode is CA, DC, or SA. It may be called LTE or the like.
- a transmission point for example, a radio base station (eNB), a user terminal (UE), or the like
- a carrier of an unlicensed band may be referred to as a carrier frequency or simply a frequency
- other entities for example, other UEs
- the transmission point performs listening (LBT) at a timing before a predetermined period before the transmission timing.
- the transmission point that executes LBT searches the entire target carrier band (for example, one component carrier (CC)) at a timing before a predetermined period before the transmission timing, and other devices It is confirmed whether (for example, a radio base station, UE, Wi-Fi device, etc.) is communicating in the carrier band.
- CC component carrier
- listening means that a certain transmission point (for example, a radio base station, a user terminal, etc.) exceeds a predetermined level (for example, predetermined power) from another transmission point before transmitting a signal.
- a predetermined level for example, predetermined power
- the listening performed by the radio base station and / or the user terminal may be referred to as LBT, CCA, carrier sense, or the like.
- the transmission point When the transmission point can confirm that no other device is communicating, the transmission point performs transmission using the carrier. For example, when the reception power measured by the LBT (reception signal power during the LBT period) is equal to or less than a predetermined threshold, the transmission point determines that the channel is in an idle state (LBT idle ) and performs transmission.
- LBT idle the reception power measured by the LBT (reception signal power during the LBT period) is equal to or less than a predetermined threshold
- the transmission point determines that the channel is in an idle state (LBT idle ) and performs transmission.
- “the channel is idle” means that the channel is not occupied by a specific system, and the channel is idle, the channel is clear, the channel is free, and the like.
- the transmission point when the transmission point detects that another device is in use even in a part of the target carrier band, the transmission point stops its transmission process. For example, if the transmission point detects that the received power of a signal from another device related to the band exceeds a predetermined threshold, the transmission point determines that the channel is busy (LBT busy ) and transmits Do not do. In the case of LBT busy , the channel can be used only after performing LBT again and confirming that it is in an idle state. Note that the channel idle / busy determination method using the LBT is not limited to this.
- the transmission / reception configuration related to the LBT has a fixed timing.
- the transmission / reception configuration related to the LBT is not fixed in the time axis direction, and the LBT is performed according to demand.
- the FBE has a fixed frame period, and if a channel is usable as a result of performing carrier sense in a predetermined frame (may be called LBT time (LBT duration), etc.) This is a mechanism that performs transmission, but waits without performing transmission until the carrier sense timing in the next frame if the channel cannot be used.
- LBT time LBT duration
- LBE extends the carrier sense time if the channel is unusable as a result of carrier sense (initial CCA), and continuously performs carrier sense until the channel becomes usable. ) The mechanism to implement the procedure. In LBE, a random back-off is necessary for proper collision avoidance.
- the carrier sense time (which may be referred to as LBT time, carrier sense period, etc.) is the time for determining whether or not a channel can be used by performing processing such as listening in order to obtain one LBT result. (For example, one symbol length).
- the transmission point can transmit a predetermined signal (for example, a channel reservation signal) according to the LBT result.
- the LBT result refers to information (for example, LBT idle , LBT busy ) relating to the channel availability obtained by the LBT in the carrier in which the LBT is set.
- interference between LAA and Wi-Fi, interference between LAA systems, etc. can be avoided. be able to. Further, even when transmission points are controlled independently for each operator who operates the LAA system, interference can be reduced without grasping each control content by the LBT.
- the UE in order to set or reset the SCell (Secondary Cell) of the unlicensed band for the UE, the UE detects the SCell present in the vicinity by RRM (Radio Resource Management) measurement and measures the reception quality. After that, it is necessary to report to the network.
- the signal for RRM measurement in LAA is Rel. 12 based on the discovery signal (DS: Discovery Signal).
- a signal for RRM measurement in LAA may be called a detection measurement signal, a discovery reference signal (DRS), a discovery signal (DS), LAA DRS, LAA DS, or the like.
- the SCell of the unlicensed band may be called, for example, LAA SCell.
- LAA DRS is Rel. 12
- a combination of a synchronization signal PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and CRS (Cell-specific Reference Signal) in an existing system (for example, LTE Rel. 10-12), or It may be configured by a combination of a synchronization signal (PSS / SSS), CRS and CSI-RS (Channel State Information Reference Signal) in an existing system.
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- CRS Cell-specific Reference Signal
- the network (for example, eNB) can set a DMTC (Discovery Measurement Timing Configuration) of LAA DRS for each frequency for the UE.
- the DMTC includes information related to a DRS transmission period (may be referred to as a DMTC periodicity), a DRS measurement timing offset, and the like.
- DRS is transmitted in DMTC period (DMTC duration) every DMTC period.
- DMTC period DMTC duration
- the DMTC period is fixed to 6 ms length.
- the length of the DS transmitted in the DMTC period (which may be referred to as a DRS period, a DS period, a DRS burst, a DS burst, or the like) is 1 ms to 5 ms.
- the DRS period may be set to one subframe or less in consideration of the LBT time, or may be set to one subframe or more.
- the UE grasps the timing and period of the LAA DRS measurement period by DMTC notified from the network, and performs the measurement of LAA DS. Further, in addition to RRM measurement, it has been studied to perform CSI measurement using DRS. For example, CSI measurement is performed using CRS or CSI-RS included in DRS.
- the UE assumes that PSS, SSS, and CRS port 0 are always included, and CSI-RS port 15 is included when configured by higher layer signaling.
- FIG. 1 is a diagram illustrating an example of an existing DRS radio resource configuration.
- CRS port 0
- PSS and SSS are mapped to symbols # 6 and # 5, respectively.
- the CSI-RS is mapped in a candidate CSI-RS resource (candidate CSI-RS resources).
- Symbols # 9 and # 10, or # 12 and # 13 can be used as existing DRS candidate CSI-RS resources.
- Candidate CSI-RS resources may be referred to as CSI-RS candidate symbols.
- DRS transmission is performed because symbols that do not include signals (for example, symbols # 1 to # 3 and # 8 in FIG. 1) are included in the DRS. Even during the period, the LBT of other systems (eg, Wi-Fi) may be successful. In this case, since another system starts signal transmission, the signal and DRS collide. For this reason, it becomes difficult to accurately (highly) perform cell search and / or RRM measurement in LAA, and communication may not be performed appropriately.
- LBT long-Fi
- FIG. 2 is a diagram illustrating an example of a configuration of a DS that is temporally continuous.
- FIG. 2A is an example in which LBT is performed at the end of one subframe (at least one symbol of symbols # 12 and # 13), and LAA DRS is transmitted with other symbols (symbols # 0 to # 11). Indicates. Also, FIG. 2B assumes that LBT is performed at the beginning of one subframe (at least one symbol of symbols # 0 to # 3), and LAA DRS is transmitted with other symbols (symbol # 4- # 13). An example is shown.
- CRS port 2/3 is mapped to symbols # 1 and # 8 in LAA DRS.
- additional signals for example, SSS, broadcast information, etc.
- CRS port 2/3 is mapped to symbol # 8 in LAA DRS.
- the present inventors have found that the following problems occur when the LAA DRS is configured as shown in FIG. Specifically, as shown in FIG. 2A, if the CSI-RS candidate symbols are limited to one continuous time interval (symbols # 9 and # 10), the number of CSI-RS configurations that can be used is reduced. Since it decreases, the possibility of resource collision between cells increases.
- CSI-RS candidate symbols symbols # 9 and # 10, or # 12 and # 13
- Sending changes and DS cannot maintain the time continuity and time length. For example, if CSI-RS is mapped to symbols # 9 and # 10, no transmission is performed in symbols # 12 and # 13, and the DRS time length is shortened. Also, if CSI-RS is mapped to symbols # 12 and # 13, DRS will not be temporally continuous at symbols # 9 and # 10.
- the present inventors have not been able to flexibly map CSI-RS in the DRS configurations studied so far, and in a cell to which listening is applied before transmission (for example, an unlicensed band). We focused on the fact that the required signal characteristics could not be realized. Therefore, the present inventors have conceived that a symbol (RE: Resource Element) capable of mapping CSI-RS in DRS is extended in the time direction within a DRS period (DRS burst).
- RE Resource Element
- the present inventors pay attention to the fact that reference signals for data demodulation (for example, DMRS (DeModulation Reference Signal)), downlink control information (PDCCH / EPDCCH), and the like are not necessary when data is not transmitted in the DRS. did. Then, the present inventors use a configuration in which symbols (or resource elements) that can map the CSI-RS to the resource region of such unnecessary signals are expanded as compared with the existing CSI-RS configuration. Thus, it has been found that mapping of CSI-RS included in DRS is performed.
- DMRS DeModulation Reference Signal
- PDCCH / EPDCCH downlink control information
- a CSI-RS can be transmitted over a plurality of symbols in a detection measurement signal (for example, DRS), and the time length and temporal continuity are in the CSI-RS configuration. It can be maintained regardless. Further, since a large number of reference signal configuration patterns (resource mapping patterns) can be ensured, even a cell (for example, an unlicensed band) to which listening is applied before transmission has high accuracy based on DRS. CSI measurement can be performed.
- a detection measurement signal for example, DRS
- a carrier for which listening is set is described as an unlicensed band, but the present invention is not limited to this.
- This embodiment can be applied to any frequency carrier (or cell) for which listening is set regardless of the license band or the unlicensed band.
- this Embodiment shows the case where a small cell is used as a wireless base station, it is not restricted to this.
- the present embodiment is not limited to this.
- the present invention is applicable if listening is applied before signal transmission and channel state estimation is performed using a channel state information reference signal.
- a reference signal configuration for channel state measurement included in the discovery signal will be described.
- the present embodiment is not limited to this, and a channel state to be transmitted without being multiplexed with data based on a listening result
- the present invention can also be applied to a reference signal for measurement.
- FIG. 3 shows an example of assignment of reference signals (CSI-RSs) in a DRS burst transmitted after listening (LBT idle ).
- cell-specific reference signals CRS
- PSS and SSS synchronization signals
- Symbols # 2, # 3, # 9, and # 10 are reference candidate areas (for example, CSI-RS) for measuring a channel state.
- the allocation position of CRS and a synchronizing signal is not restricted to this, Other reference signals can also be allocated.
- the radio base station performs CSI in the first resource region (symbols # 2 and # 3) and the second resource region (symbols # 9 and # 10) arranged with the cell specific signal and the synchronization signal interposed therebetween.
- -Map RS extended CSI-RS
- the radio base station maps CSI-RS (extended CSI-RS) to symbols # 2 and # 3 in addition to symbols # 9 and # 10, so that the existing CSI-RS for channel state measurement is used.
- the allocation is performed by extending in the time direction from the RS.
- the existing CSI-RS for channel state measurement is, for example, CSI-RS transmitted multiplexed with the downlink shared channel and / or downlink control channel, transmitted without applying listening (in the license band).
- CSI-RS included in the discovery signal is, for example, CSI-RS transmitted multiplexed with the downlink shared channel and / or downlink control channel, transmitted without applying listening (in the license band).
- the generated reference signal sequence includes a first orthogonal code (for example, [+1, +1, +1, +1], and when transmitting CSI-RS at port 16, for the symbols # 2, # 3, # 9, and # 10, a second orthogonal code is added to the generated reference signal sequence.
- a first orthogonal code for example, [+1, +1, +1, +1]
- a second orthogonal code is added to the generated reference signal sequence.
- [+1, +1, -1, -1] is used for mapping.
- the reference signal sequence is mapped with a second orthogonal code (for example, [+1, -1, +1, -1].
- the radio base station can generate an extended CSI-RS reference signal sequence using a generation formula similar to that of the existing CSI-RS.
- the port 19-22 can be configured to be mapped to another frequency resource using the same sequence / spreading code as the port 15-18. For example, in FIG. 3, four types of orthogonal codes (orthogonal sequences) are applied to eight antenna ports, and antenna ports to which the same orthogonal sequence is applied can be assigned to different frequency resources.
- the radio base station maps the same antenna port to the same frequency resource between symbols (between the first resource region and the second resource region). (See FIG. 3A).
- a predetermined antenna port (antenna port 15-18 or antenna port 19-22) is provided in the first resource region (symbols # 2, # 3) and the second resource region (symbols # 9, # 10).
- mapping the case of mapping to the same frequency resource is shown. In this way, by mapping the same antenna port to the same frequency resource between symbols, for example, the same frequency resource separated in time can be used for highly accurate frequency offset correction.
- the radio base station can map the same antenna port to different frequency resources between symbols (between the first resource region and the second resource region) (see FIG. 3B).
- FIG. 3B shows a case of mapping to a different frequency resource when mapping a predetermined antenna port to the first resource region and the second resource region. That is, in FIG. 3B, antenna ports 15-18 are assigned to the first frequency resource in the first resource region and the second frequency resource in the second resource region, and the second frequency resource in the first resource region Antenna ports 19-22 are assigned to the first frequency resource in the second resource region.
- the reference signals are arranged in a more dispersed manner in terms of time and frequency, so that highly accurate CSI measurement can be performed.
- FIG. 3B shows a case where two types of frequency resources are used for allocation of antenna ports 15-18 and antenna ports 19-22.
- the antenna port 15-18 is allocated to the first frequency resource in the first resource region and the second frequency resource in the second resource region, and the third frequency resource and the second resource in the first resource region are allocated.
- Antenna port 19-22 may be assigned to the fourth frequency resource in the region (see FIG. 4).
- highly accurate CSI measurement is performed using reference signals distributed in time and frequency, particularly in the case of using eight antenna ports, by allocating antenna ports distributed over a plurality of frequency resources. Can do.
- the radio base station when transmitting an extended CSI-RS as shown in FIG. 3, the radio base station has a reference signal configuration (an extended reference signal configuration) in which an allocated resource region (resource element) is expanded as compared with an existing CSI-RS. ) Can be used to control the mapping.
- the radio base station uses all subcarriers in the first resource region (symbols # 2 and # 3) and the second resource region (symbols # 9 and # 10) as CSI-RS resource candidates.
- the extended CSI-RS shown in FIG. 3 can use a reference signal configuration in which the allocated resource area (resource element) is expanded as compared with the existing CSI-RS. Can be secured. As a result, resource collision between cells can be suppressed.
- the reference signal corresponding to a predetermined antenna port is mapped by extending the existing CSI-RS in the time direction (for example, symbols # 2, # 3, # 9, and # 10), so that the time length and time Since the continuous continuity can be maintained regardless of the reference signal configuration, the measurement quality of the channel state can be improved.
- the number of CSI-RS reference signal configuration patterns (the number of CSI-RS configuration patterns) in the present embodiment can be set to be the same as that of the existing CSI-RS.
- the existing CSI-RS in the case of FDD and normal CP (Cyclic Prefix), when the number of antenna ports is 1-2, the reference signal configuration number is set to 20, and when the number of antenna ports is 4, the reference signal When the configuration number is set to 10 and the number of antenna ports is 8, the reference signal configuration number is set to 5.
- the reference signal configuration number is set to 20, and the number of antenna ports is 4.
- the reference signal configuration number can be set to 10
- the reference signal configuration number can be set to 5.
- 20 patterns of reference signal configurations may be defined using different orthogonal sequences and / or different time frequency resources between the configurations of the reference signals. it can.
- configurations mapped to the same resource can be used as separate reference signal configurations (reference signal configuration indexes) using orthogonal sequences.
- the reference signal configuration #X see FIG. 5A
- the reference signal configuration # to which the orthogonal sequence [+1, +1, +1, +1] is applied and the reference signal configuration # to which the orthogonal sequence [+1, +1, ⁇ 1] is applied.
- Y reference FIG. 5B
- 10 patterns of reference signal configurations can be defined using different time frequency resources between the reference signal configurations.
- different orthogonal sequences four types of orthogonal sequences
- different orthogonal sequences 4 types of orthogonal sequences
- five patterns are referenced using different time-frequency resources between each reference signal configuration.
- a signal configuration can be defined.
- the reference signal configuration (index) of the extended CSI-RS in the same manner as the number of existing CSI-RS reference signal configurations (index), the reference signal configuration (index) to be notified to the user terminal Can also be set in common.
- the user terminal may control the reception operation assuming different reference signal configurations according to the types of received reference signals (for example, existing CSI-RS and CSI-RS included in DRS). it can.
- the radio base station may notify the user terminal of information regarding the reference signal configuration (index) of the enhanced CSI-RS and the reference signal configuration (index) of the existing CSI-RS. It is also possible to set the number of patterns of the reference signal configuration of extended CSI-RS more than the number of patterns of the existing CSI-RS reference signal configuration.
- the second mode In the second mode, a reference signal configuration applied to CSI-RS included in DRS and another example of a configuration pattern (resource mapping) of the reference signal will be described. Since the second mode relates to a reference signal mapping method different from that of the first mode, parts different from the first mode will be described below.
- FIG. 6 shows an example of allocation of reference signals in a DRS burst transmitted after listening (LBT idle ).
- FIG. 6 shows a case where a cell-specific reference signal (CRS) is mapped to symbols # 4, # 7, # 8, and # 11 and a synchronization signal (PSS, SSS) is mapped to symbols # 5 and # 6. Yes.
- Symbols # 9, # 10, # 12, and # 13 are reference signal (for example, CSI-RS) allocation candidate areas for measuring the channel state.
- the allocation position of CRS and a synchronizing signal is not restricted to this, Other reference signals can also be allocated.
- the radio base station transmits CSI-RS (symbols) to the first resource region (symbols # 9 and # 10) and the second resource region (symbols # 12 and # 13) arranged with the cell-specific signal interposed therebetween. (Extended CSI-RS) is mapped.
- the radio base station assigns CSI-RS (enhanced CSI-RS) to symbols # 9, # 10, # 12, and # 13 so as to expand the existing CSI-RS in the time direction. I do.
- the generated reference signal sequence includes a first orthogonal code (for example, [+1, +1, +1, +1] and when CSI-RS is transmitted at port 16, for the symbols # 9, # 10, # 12, and # 13, a second orthogonal code is added to the generated reference signal sequence. (For example, map by multiplying by [+1, +1, -1, -1]. Also, when transmitting CSI-RS at port 17, generated for symbols # 9, # 10, # 12, # 13 The reference signal sequence is mapped with a second orthogonal code (for example, [+1, -1, +1, -1]. Further, when CSI-RS is transmitted at the port 18, symbols # 9, # 10, For # 12 and # 13, A reference signal sequence obtained by the second orthogonal code (e.g., [+ 1, -1, -1, + 1] is mapped over the.
- a first orthogonal code for example, [+1, +1, +1, +1]
- a second orthogonal code is added to the generated reference signal sequence.
- the radio base station can generate an extended CSI-RS reference signal sequence using a generation formula similar to that of the existing CSI-RS.
- the port 19-22 can be configured to be mapped to another frequency resource using the same sequence / spreading code as the port 15-18. For example, in FIG. 6, four types of orthogonal sequences can be applied to eight antenna ports, and antenna ports to which the same orthogonal sequence is applied can be assigned to different frequency resources.
- the radio base station maps the same antenna port to the same frequency resource between symbols (between the first resource region and the second resource region). (See FIG. 6A).
- a predetermined antenna port (antenna port 15-18 or antenna port 19-22) is provided in the first resource region (symbols # 9 and # 10) and the second resource region (symbols # 12 and # 13).
- mapping the case of mapping to the same frequency resource is shown. In this way, by mapping the same antenna port to the same frequency resource between symbols, for example, the same frequency resource separated in time can be used for highly accurate frequency offset correction.
- the radio base station can map the same antenna port to different frequency resources between symbols (between the first resource region and the second resource region) (see FIG. 6B).
- FIG. 6B shows a case of mapping to a different frequency resource when mapping a predetermined antenna port to the first resource region and the second resource region. That is, in FIG. 6B, antenna ports 15-18 are allocated to the second frequency resource in the first resource region and the first frequency resource in the second resource region, and the first frequency resource in the first resource region Antenna ports 19-22 are assigned to the second frequency resource in the second resource region.
- the reference signals are arranged in a more dispersed manner in terms of time and frequency, so that highly accurate CSI measurement can be performed.
- FIG. 6B shows a case where two types of frequency resources are used for allocation of antenna ports 15-18 and 19-22. Not limited to this.
- the antenna port 15-18 is allocated to the first frequency resource in the first resource region and the second frequency resource in the second resource region, and the third frequency resource and the second resource in the first resource region are allocated.
- Antenna port 19-22 may be assigned to the fourth frequency resource in the region (see FIG. 7).
- highly accurate CSI measurement is performed using reference signals distributed in time and frequency, particularly when using eight antenna ports, by distributing antenna ports distributed over a plurality of frequency resources. Can do.
- the radio base station when transmitting an extended CSI-RS as shown in FIG. 6, the radio base station has a reference signal configuration (an extended reference signal configuration) in which an allocated resource region (resource element) is expanded as compared with an existing CSI-RS. ) Can be used to control the mapping.
- the radio base station uses all subcarriers in the first resource region (symbols # 9 and # 10) and the second resource region (symbols # 12 and # 13) as CSI-RS resource candidates.
- existing CSI-RSs are allocated in the range up to symbols # 4- # 13 as shown in FIG. 6, symbols # 9, # 10 and some subcarriers of symbols # 12, # 13 are CSI- It becomes an RS resource candidate.
- the existing CSI-RS has a reference signal configuration in which only one of the carriers in the first region (symbols # 9 and # 10) and the second region (symbols # 12 and # 13) can be allocated. Yes. For this reason, the allocation of the existing CSI-RS changes depending on the reference signal configuration applied by the radio base station.
- CSI-RS when CSI-RS is assigned to the second region (symbols # 12 and # 13), CSI-RS is not assigned to the first region (symbols # 9 and # 10). In this case, the temporal continuity and time length of the reference signal in DRS cannot be maintained.
- a signal when an area where a reference signal is not transmitted is set, a signal may be transmitted from another system determined to be an LBT idle and may collide.
- the extended CSI-RS shown in FIG. 7 can use a reference signal configuration in which the allocated resource area (resource element) is extended compared to the existing CSI-RS. Continuity and time length can be maintained. Thereby, the measurement quality of the channel state can be improved, and collision with a signal transmitted from another system can be suppressed.
- the existing CSI-RS for the user terminal is used.
- the reference signal configuration for example, resource configuration, subframe offset, period, cell ID, scrambling ID
- the extended CSI-RS reference signal configuration can be notified separately.
- the user terminal may control the reception operation assuming different reference signal configurations according to the types of received reference signals (for example, existing CSI-RS and CSI-RS included in DRS). .
- a user terminal to which CSI-RS configuration information has been notified in advance is in a DRS burst and other cases (for example, when CSI-RS is transmitted by being multiplexed with data (PDSCH)).
- PDSCH data
- a case of receiving CSI-RS will be described with reference to FIG.
- the radio base station notifies the user terminal in advance of information related to the CSI-RS configuration (for example, resource configuration, subframe offset, period, cell ID, scrambling ID) by higher layer signaling or the like. Further, the radio base station notifies the user terminal in advance of information related to DRS measurement timing (DMTC: Discovery Measurement Timing Configuration) by higher layer signaling or the like.
- DMTC Discovery Measurement Timing Configuration
- the user terminal measures the channel state with the existing CSI-RS configuration based on the notified information about the CSI-RS configuration.
- the user terminal attempts to detect DRS burst transmission within the notified DRS measurement timing (DMTC), and when detecting the DRS burst transmission, the user terminal detects a reference signal configuration (extended CSI) different from the existing CSI-RS. -RS reference signal configuration).
- the user terminal performs a reception operation based on the CSI-RS resource configuration for extended CSI-RS, regardless of the subframe offset and period included in the preset CSI-RS configuration. Can be controlled.
- the scrambling ID and cell ID included in the information related to the CSI-RS configuration can also be used for the extended CSI-RS.
- the user terminal has a configuration in which the actual CSI-RS resource mapping is different between the CSI-RS resource configuration in the DRS burst transmission and the other CSI-RS resource configuration even if the index is the same.
- the reception operation can be performed assuming that
- a DMTC and / or CSI-RS configuration common to a plurality of CCs can be set for the user terminal.
- the DMTC and CSI-RS configurations are set independently for each CC, but overhead can be reduced by setting common (for example, one configuration) among a plurality of CCs.
- a third configuration set that can be applied to the entire CC that requires listening is defined.
- the third configuration set may be defined including the DMTC or CSI-RS configuration.
- it may be configured not to be commonly set for all unlicensed bands but to be commonly set for some bands (CC) or independently for each CC.
- CC bands
- the user terminal uses information on whether or not the reference signal configuration set is applicable (supported / not supported) as capability information (UE Capability) on a network (for example, , A radio base station).
- the radio base station can control the reference signal configuration set for each user terminal based on the capability information notified from the user terminal.
- FIG. 14 shows an example in which DL data (for example, PDSCH) burst transmission and DRS burst transmission are performed separately.
- DL data for example, PDSCH
- DRS burst transmission are performed separately.
- the user terminal assumes different CSI-RS patterns (resource mapping) in the DRS burst and in other areas (for example, burst transmission of DL data) with respect to the CSI-RS configuration information notified from the radio base station. (See FIG. 8 above).
- CSI-RS configuration 1 a new CSI-RS configuration (CSI-RS resource configuration) for DRS is used for DRS multiplexed with DL data in DMTC.
- CSI-RS configuration for example, CSI-RS configuration in DRS on the left in FIG. 8
- DRS Downlink Reference Signal
- the user terminal can be configured to identify the CSI-RS configuration pattern depending on whether it is within the DMTC period. Further, as a method for detecting the CSI-RS position in the DRS, the user terminal performs reception processing assuming that the position where the CSI-RS is arranged is the same subframe as the DRS (for example, PSS / SSS). Can do.
- CSI-RS configuration 2 an existing CSI-RS configuration is used for DRS multiplexed with DL data in DMTC.
- the CSI-RS configuration applied to DL data transmission (for example, the CSI-RS configuration in the DL data transmission on the right in FIG. 8) is also applied to DRS that is multiplexed with DL data transmission in DMTC.
- the CSI-RS configuration at the time of DL data transmission it is possible to use an existing rate matching pattern.
- control is performed so as not to use the CSI-RS configuration that collides with the synchronization signal (PSS / SSS) included in the DRS.
- PSS / SSS synchronization signal
- the user terminal can recognize the pattern of the CSI-RS configuration by detecting whether the DRS is multiplexed with the PDSCH within the DMTC period. For example, when detecting a DRS in DMTC, the user terminal can determine whether PDSCH is multiplexed in the same subframe based on detection of predetermined control information (for example, PDCCH, PCFICH, etc.). it can.
- predetermined control information for example, PDCCH, PCFICH, etc.
- CSI-RS configuration 3 As DRS multiplexed with DL data in DMTC, CSI-RS is transmitted with a TTI different from a transmission time interval (TTI) including a synchronization signal (PSS / SSS) and CRS. (See FIG. 15). Note that the DRS TTI including the synchronization signal (PSS / SSS) and the CRS may be a subframe, for example.
- FIG. 15 shows an example of the CSI-RS configuration in the DRS in the CSI-RS configuration 3.
- DRS and PDSCH are not multiplexed in DMTC
- a new CSI-RS configuration for DRS can be used (see FIG. 15A).
- DRS can be configured with TTI (subframe) including a synchronization signal and CRS and TTI including CSI-RS (see FIG. 15B).
- FIG. 15B shows a case where DRS is arranged over two subframes, in which CSI-RS is arranged in the first half subframe and a synchronization signal and CRS are assigned in the second half subframe.
- the existing CSI-RS configuration can be applied to the CSI-RS configuration in the first half subframe.
- the DRS configuration in the CSI-RS configuration 3 is not limited to FIG. 15B.
- the CSI-RS allocation subframe may be the latter half subframe, or the CSI-RS and the synchronization signal may be allocated to the discontinuous subframes.
- the DRS configuration changes depending on the presence / absence of multiplexing with the PDSCH.
- the DRS configuration is less than 1 ms, but when transmitting DRS with multiplexing with PDSCH (see FIG. 15B), the DRS configuration is Multiple subframes (for example, 2 ms) are obtained. Therefore, it is necessary for the user terminal to detect the presence / absence of multiplexing of DRS and PDSCH and to grasp the CSI-RS position when DRS and PDSCH are multiplexed.
- the user terminal when detecting a DRS in DMTC, can determine whether PDSCH is multiplexed in the same subframe based on detection of predetermined control information (for example, PDCCH, PCFICH, etc.). it can. Further, the user terminal can determine the position of the CSI-RS based on the information (subframeOffset-r12) related to the subframe offset notified by the DRS configuration defined in the existing system (Rel. 12).
- predetermined control information for example, PDCCH, PCFICH, etc.
- the user terminal can determine the position of the CSI-RS based on the information (subframeOffset-r12) related to the subframe offset notified by the DRS configuration defined in the existing system (Rel. 12).
- the CSI-RS configuration 3 it is possible to avoid collision between the synchronization signal (PSS / SSS) and the CSI-RS. Further, when the CSI-RS configuration 3 is applied, PDSCH multiplexing is not performed on a new CSI-RS configuration for DRS, so that it is not necessary to define a new rate matching pattern.
- the user terminal can apply the information notified as ds-OccationDuration only to the DRS configuration multiplexed with the PDSCH (see FIG. 15B).
- the user terminal can determine that the DRS configuration is 1 ms or less regardless of the information notified as ds-OccationDuration.
- the user terminal transmits information (CSI-RS configuration information (for example, CSI-RS-ConfigNZP)) related to the CSI-RS configuration notified from the radio base station to a transmission form (DRS burst transmission or data burst transmission).
- CSI-RS configuration information for example, CSI-RS-ConfigNZP
- the user terminal transmits information on CSI-RS antenna ports (antennaPortsCount-r11), information on scrambling (scramblingIdentity-r11), and information on transmission points (qcl-CRS-Info-r11) in the DRS burst transmission. And the same in the data burst transmission.
- the user terminal interprets the resource configuration information (resourceConfig-r11) as a different resource configuration based on the transmission form even if it is the same index. For example, for the same index, different resource configurations are applied to data burst transmission (DRS burst multiplexed with DL data (CSI-RS configurations 2 and 3)) and DRS burst transmission not multiplexed with DL data.
- resourceConfig-r11 resource configuration information
- the user terminal can apply the information (subframeConfig-r11) related to the subframe only to the CSI-RS in the data burst transmission. That is, information on subframes is not applied to DRS burst transmission that is not multiplexed with DL data.
- the information transmitted to the user terminal can be reduced.
- FIG. 16A shows an example of a method for multiplexing DRS and broadcast information when transmitting DRS without multiplexing with DL data.
- FIG. 16B shows an example of a method of multiplexing DRS, broadcast information, and PDSCH when transmitting DRS multiplexed with DL data.
- the number of symbols that can be multiplexed with PBCH is not limited to this.
- the user terminal can reuse the rate matching for the existing PBCH.
- FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
- the radio communication system shown in FIG. 9 is a system including, for example, an LTE system, SUPER 3G, LTE-A system, and the like.
- carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of component carriers (CC) are integrated can be applied.
- the plurality of CCs include a license band CC that uses a license band and an unlicensed band CC that uses an unlicensed band.
- This wireless communication system may be called IMT-Advanced, or may be called 4G, 5G, FRA (Future Radio Access), or the like.
- a radio communication system 1 shown in FIG. 9 includes a radio base station 11 that forms a macro cell C1, a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1, It has. Moreover, the user terminal 20 is arrange
- the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. Further, the user terminal 20 can apply CA using at least 2 CCs (cells), and can also use 6 or more CCs.
- Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
- a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
- a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used.
- a wired connection optical fiber, X2 interface, etc.
- a wireless connection may be employed between the wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12).
- the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
- the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
- RNC radio network controller
- MME mobility management entity
- Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
- the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
- the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
- the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
- Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
- SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
- the uplink and downlink radio access methods are not limited to these combinations.
- downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, and predetermined SIB (System Information Block) are transmitted by PDSCH. Moreover, MIB (Master Information Block) etc. are transmitted by PBCH.
- PDSCH downlink shared channel
- PBCH Physical Broadcast Channel
- SIB System Information Block
- MIB Master Information Block
- Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
- Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
- the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
- the HAICH transmission confirmation signal (ACK / NACK) for PUSCH is transmitted by PHICH.
- the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel) and may be used to transmit DCI or the like in the same manner as the PDCCH.
- a downlink reference signal a cell-specific reference signal (CRS), a channel state measurement reference signal (CSI-RS), a user-specific reference signal used for demodulation includes reference signals (DM-RS: Demodulation Reference Signal).
- CRS cell-specific reference signal
- CSI-RS channel state measurement reference signal
- DM-RS Demodulation Reference Signal
- an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used.
- PUSCH uplink shared channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- User data and higher layer control information are transmitted by PUSCH.
- downlink radio quality information CQI: Channel Quality Indicator
- HARQ-ACK delivery confirmation signal
- a random access preamble (RA preamble) for establishing a connection with the cell is transmitted by the PRACH.
- FIG. 10 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
- the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
- the transmission / reception unit 103 includes a transmission unit and a reception unit.
- User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access
- Retransmission control for example, transmission processing of HARQ (Hybrid Automatic Repeat reQuest)
- HARQ Hybrid Automatic Repeat reQuest
- IFFT inverse fast Fourier transform
- Each transmission / reception unit 103 converts the baseband signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band and transmits the converted signal.
- the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
- the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102.
- Each transmitting / receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
- the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
- the transmission / reception unit (transmission unit) 103 can transmit a discovery signal including a first reference signal (for example, extended CSI-RS) for measuring the channel state based on the listening result. Further, the transmission / reception unit (transmission unit) 103 can transmit the first reference signal using a predetermined antenna port (for example, the antenna port 15-22). Moreover, the transmission / reception part (transmission part) 103 can transmit the information regarding the discovery signal structure and / or the reference signal structure for channel state measurement which are set in common by several cells to a user terminal.
- the transmission / reception unit 103 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
- the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- Decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
- the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
- the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
- the transmission path interface 106 may transmit and receive signals (backhaul signaling) to and from the adjacent radio base station 10 via an inter-base station interface (for example, an optical fiber or an X2 interface).
- FIG. 11 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 11 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. It is equipped with.
- the control unit (scheduler) 301 controls scheduling of downlink data transmitted on the PDSCH, downlink control information transmitted on the PDCCH and / or EPDCCH (for example, resource allocation / mapping). It also controls scheduling of system information, synchronization signals, paging information, CRS, CSI-RS, discovery signals, etc. (eg resource allocation / mapping).
- the control unit 301 performs scheduling of an uplink data signal transmitted on the PUSCH transmitted from each user terminal, an uplink control signal transmitted on the PUCCH and / or PUSCH, a random access preamble transmitted on the PRACH, an uplink reference signal, and the like. Control. In addition, the control unit 301 can perform control so that the first reference signal for measuring the channel state included in the discovery signal is allocated by extending in the time direction from the existing second reference signal for channel state measurement. .
- control unit 301 controls the allocation of the first reference signal by using the reference signal configuration that is set by expanding the allocation resource region as compared with the reference signal configuration applied to the second reference signal. be able to.
- the control unit 301 includes a first resource region and a second resource area that are arranged across the allocation resource of the synchronization signal and / or the cell-specific reference signal.
- the first reference signal can be assigned to the resource area (see FIGS. 3 and 6).
- control unit 301 can allocate the first reference signal corresponding to a predetermined antenna port to the same frequency resource or different frequency resources in the first resource region and the second resource region (FIG. 3, FIG. 3). 4, see FIG. 6 and FIG.
- control unit 301 applies orthogonal sequences of the number of symbols (for example, four types) for mapping the extended CSI-RS to a plurality of antenna ports (for example, eight antenna ports), and performs the same orthogonal sequence.
- the antenna port to be applied can be controlled to be assigned to different frequency resources.
- control unit 301 controls transmission of DL signals (DL data, discovery signals, etc.) based on the listening (DL-LBT) result.
- the control unit 301 can be a controller, a control circuit, or a control device that is described based on common recognition in the technical field according to the present invention.
- the transmission signal generation unit 302 generates a DL signal based on an instruction from the control unit 301 and outputs the DL signal to the mapping unit 303. For example, the transmission signal generation unit 302 generates a DL assignment for notifying downlink signal allocation information and a UL grant for notifying uplink signal allocation information, based on an instruction from the control unit 301.
- the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
- the mapping unit 303 is a downlink signal generated by the transmission signal generation unit 302 based on an instruction from the control unit 301 (for example, a synchronization signal, a cell-specific reference signal, a discovery signal including a reference signal for measuring a channel state, etc.) Are mapped to a predetermined radio resource and output to the transceiver 103.
- the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
- the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, demodulation) on UL signals (for example, a delivery confirmation signal (HARQ-ACK), a data signal transmitted by PUSCH, etc.) transmitted from the user terminal. Decryption, etc.).
- the processing result is output to the control unit 301.
- the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
- the measurement unit 305 can measure received power (for example, RSRP (Reference Signal Received Power)), reception quality (RSRQ (Reference Signal Received Quality)), channel state, and the like using the received signal.
- the measurement unit 305 can measure the received power of a signal transmitted from another system or the like in listening performed before transmitting a DL signal in an unlicensed band.
- the result measured by the measurement unit 305 is output to the control unit 301.
- the control unit 301 can control the transmission of the DL signal based on the measurement result (listening result) of the measurement unit 305.
- the measuring unit 305 can be composed of a measuring device, a measuring circuit, or a measuring device described based on common recognition in the technical field according to the present invention.
- FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
- the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
- the transmission / reception unit 203 may include a transmission unit and a reception unit.
- the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
- Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
- the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
- the transmission / reception unit (reception unit) 203 can receive a DL signal (for example, UL grant) instructing UL transmission in the unlicensed band. Further, the transmission / reception unit (reception unit) 203 can receive a discovery signal including a first reference signal for measuring a channel state. In this case, the transmission / reception unit (reception unit) 203 performs the first based on the reference signal configuration in which the allocated resource area is expanded compared to the reference signal configuration applied to the existing second reference signal for channel state measurement. The reference signal can be received.
- the transmission / reception unit (reception unit) 203 receives the first reference signal included in the discovery signal and the existing channel based on information (for example, a predetermined index) related to a predetermined reference signal configuration received from the radio base station.
- the reception operation can be performed assuming different reference signal configurations with respect to the second reference signal for state measurement.
- the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
- the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
- the downlink user data is transferred to the application unit 205.
- the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
- broadcast information in the downlink data is also transferred to the application unit 205.
- uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
- the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. It is transferred to the transmission / reception unit 203.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
- the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
- FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 13 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 13, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. I have.
- the control unit 401 can control the transmission signal generation unit 402, the mapping unit 403, and the reception signal processing unit 404. For example, the control unit 401 obtains, from the reception signal processing unit 404, a downlink control signal (signal transmitted by PDCCH / EPDCCH) and a downlink data signal (signal transmitted by PDSCH) transmitted from the radio base station 10. .
- the control unit 401 generates / transmits uplink control signals (for example, HARQ-ACK) and uplink data based on downlink control information (UL grant), a result of determining whether retransmission control is required for downlink data, and the like (for example, HARQ-ACK). (UL transmission) is controlled. Further, the control unit 401 controls the transmission of the UL signal based on the listening (UL-LBT) result.
- control unit 401 may be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
- the transmission signal generation unit 402 generates a UL signal based on an instruction from the control unit 401 and outputs the UL signal to the mapping unit 403. For example, the transmission signal generation unit 402 generates an uplink control signal such as a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) corresponding to the DL signal based on an instruction from the control unit 401.
- HARQ-ACK delivery confirmation signal
- CSI channel state information
- the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
- the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
- the mapping unit 403 maps the uplink signal (uplink control signal and / or uplink data) generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio resource to the transmission / reception unit 203.
- the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
- the reception signal processing unit 404 performs reception processing (for example, demapping and demodulation) on a DL signal (for example, a downlink control signal transmitted from a radio base station using PDCCH / EPDCCH, a downlink data signal transmitted using PDSCH, etc.). , Decryption, etc.).
- the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401 and the measurement unit 405.
- the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
- the measurement unit 405 may measure received power (for example, RSRP (Reference Signal Received Power)), reception quality (RSRQ (Reference Signal Received Quality)), channel state, and the like using the received signal.
- the measurement unit 405 can measure the received power of a signal transmitted from another system or the like in listening performed before transmission of the UL signal in the unlicensed band.
- the result measured by the measurement unit 405 is output to the control unit 401.
- the control unit 401 can control transmission of the UL signal based on the measurement result (listening result) of the measurement unit 405.
- the measuring unit 405 can be composed of a measuring instrument, a measuring circuit, or a measuring device described based on common recognition in the technical field according to the present invention.
- each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
- the radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be.
- the radio base station 10 and the user terminal 20 are each a computer device including a processor (CPU: Central Processing Unit), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. It may be realized. That is, the radio base station, user terminal, and the like according to an embodiment of the present invention may function as a computer that performs processing of the radio communication method according to the present invention.
- Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), CD-ROM (Compact Disc-ROM), RAM (Random Access Memory), A storage medium such as a hard disk.
- the program may be transmitted from a network via a telecommunication line.
- the radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
- the functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both.
- the processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
- the program may be a program that causes a computer to execute the operations described in the above embodiments.
- the control unit 401 of the user terminal 20 may be realized by a control program stored in a memory and operated by a processor, and may be realized similarly for other functional blocks.
- software, instructions, etc. may be transmitted / received via a transmission medium.
- software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
- wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
- DSL digital subscriber line
- wireless technology such as infrared, wireless and microwave.
- the channel and / or symbol may be a signal (signaling).
- the signal may be a message.
- the component carrier (CC) may be called a carrier frequency, a cell, or the like.
- information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
- the radio resource may be indicated by an index.
- notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
- notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
- notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
- the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
- Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- SUPER 3G IMT-Advanced
- 4G 5G
- FRA Full Radio Access
- CDMA2000 Code Division Multiple Access 2000
- UMB User Mobile Broadband
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX
- IEEE 802.20 UWB (Ultra-WideBand)
- Bluetooth registered trademark
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
送信前にリスニングが適用されるセル(例えば、アンライセンスバンド)において、適切に通信を行うこと。チャネル状態を測定する第1の参照信号を含む検出測定用信号をリスニング結果に基づいて送信する送信部と、前記検出測定用信号のリソース割当てを制御する制御部と、を有し、前記制御部は、前記第1の参照信号を既存のチャネル状態測定用の第2の参照信号より時間方向に拡張して割当てる。
Description
本発明は、次世代移動通信システムにおける無線基地局、ユーザ端末及び無線通信方法に関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEアドバンスト(Rel.10-12)が仕様化され、さらに、例えば5G(5th generation mobile communication system)と呼ばれるLTEの後継システムが検討されている。
Rel.8-12のLTEでは、通信事業者(オペレータ)に免許された周波数帯域(ライセンスバンド(licensed band)ともいう)において排他的な運用がなされることを想定して仕様化が行われてきた。ライセンスバンドとしては、例えば、800MHz、1.7GHz、2GHzなどが使用される。
近年、スマートフォンやタブレットなどの高機能化されたユーザ端末(UE:User Equipment)の普及は、ユーザトラヒックを急激に増加させている。増加するユーザトラヒックを吸収するため、更なる周波数バンドを追加することが求められているが、ライセンスバンドのスペクトラム(licensed spectrum)には限りがある。
このため、Rel.13 LTEでは、ライセンスバンド以外に利用可能なアンライセンススペクトラム(unlicensed spectrum)のバンド(アンライセンスバンド(unlicensed band)ともいう)を利用して、LTEシステムの周波数を拡張することが検討されている(非特許文献2)。アンライセンスバンドとしては、例えば、Wi-Fi(登録商標)やBluetooth(登録商標)を使用可能な2.4GHz帯や5GHz帯などの利用が検討されている。
具体的には、Rel.13 LTEでは、ライセンスバンドとアンライセンスバンドの間でのキャリアアグリゲーション(CA:Carrier Aggregation)を行うことが検討されている。このように、ライセンスバンドとともにアンライセンスバンドを用いて行う通信をLAA(License-Assisted Access)と称する。なお、将来的には、ライセンスバンドとアンライセンスバンドのデュアルコネクティビティ(DC:Dual Connectivity)や、アンライセンスバンドのスタンドアローン(SA:Stand-Alone)もLAAの検討対象となる可能性がある。
3GPP TS 36.300 "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2"
AT&T, "Drivers, Benefits and Challenges for LTE in Unlicensed Spectrum," 3GPP TSG RAN Meeting #62 RP-131701
ところで、アンライセンスバンドのセルでは、UEがRRM(Radio Resource Management)測定などに用いるための信号(例えば、ディスカバリ信号(DS:Discovery Signal)と呼ばれる)を送信することが検討されている。
しかしながら、アンライセンスバンドのようにLBTを実施するキャリアで、既存のDSを用いる場合、DS内に信号を含まないシンボルを含むため、DS送信期間中であっても他のシステム(例えば、Wi-Fi)のLBTが成功する可能性がある。この場合、他のシステムが信号の送信を開始するため、当該信号とDSが衝突する。このため、LAAにおけるセルサーチ及び/又はRRM測定を正確(高精度)に行うことが困難となり、通信を適切に行えなくなるおそれがある。
本発明はかかる点に鑑みてなされたものであり、送信前にリスニングが適用されるセル(例えば、アンライセンスバンド)において、適切に通信を行うことができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の1つとする。
本発明の一態様の無線基地局は、チャネル状態を測定する第1の参照信号を含む検出測定用信号をリスニング結果に基づいて送信する送信部と、前記検出測定用信号のリソース割当てを制御する制御部と、を有し、前記制御部は、前記第1の参照信号を既存のチャネル状態測定用の第2の参照信号より時間方向に拡張して割当てることを特徴とする。
本発明によれば、送信前にリスニングが適用されるセル(例えば、アンライセンスバンド)において、適切に通信を行うことができる。
アンライセンスバンドでLTE/LTE-Aを運用するシステム(例えば、LAAシステム)においては、他事業者のLTE、Wi-Fi又はその他のシステムとの共存のため、干渉制御機能が必要になると考えられる。なお、アンライセンスバンドでLTE/LTE-Aを運用するシステムは、運用形態がCA、DC又はSAのいずれであるかに関わらず、総称して、LAA、LAA-LTE、LTE-U、U-LTEなどと呼ばれてもよい。
一般に、アンライセンスバンドのキャリア(キャリア周波数又は単に周波数と呼ばれてもよい)を用いて通信を行う送信ポイント(例えば、無線基地局(eNB)、ユーザ端末(UE)など)は、当該アンライセンスバンドのキャリアで通信を行っている他のエンティティ(例えば、他のUE)を検出した場合、当該キャリアで送信を行うことが禁止されている。
このため、送信ポイントは、送信タイミングよりも所定期間前のタイミングで、リスニング(LBT)を実行する。具体的には、LBTを実行する送信ポイントは、送信タイミングよりも所定期間前のタイミングで、対象となるキャリア帯域全体(例えば、1コンポーネントキャリア(CC:Component Carrier))をサーチし、他の装置(例えば、無線基地局、UE、Wi-Fi装置など)が当該キャリア帯域で通信しているか否かを確認する。
なお、本明細書において、リスニングとは、ある送信ポイント(例えば、無線基地局、ユーザ端末など)が信号の送信を行う前に、他の送信ポイントなどから所定レベル(例えば、所定電力)を超える信号が送信されているか否かを検出/測定する動作を指す。また、無線基地局及び/又はユーザ端末が行うリスニングは、LBT、CCA、キャリアセンスなどと呼ばれてもよい。
送信ポイントは、他の装置が通信していないことを確認できた場合、当該キャリアを用いて送信を行う。例えば、送信ポイントは、LBTで測定した受信電力(LBT期間中の受信信号電力)が所定の閾値以下である場合、チャネルがアイドル状態(LBTidle)であると判断し送信を行う。「チャネルがアイドル状態である」とは、言い換えると、特定のシステムによってチャネルが占有されていないことをいい、チャネルがアイドルである、チャネルがクリアである、チャネルがフリーである、などともいう。
一方、送信ポイントは、対象となるキャリア帯域のうち、一部の帯域でも他の装置が使用中であることを検出した場合、自らの送信処理を中止する。例えば、送信ポイントは、当該帯域に係る他の装置からの信号の受信電力が、所定の閾値を超過していることを検出した場合、チャネルはビジー状態(LBTbusy)であると判断し、送信を行わない。LBTbusyの場合、当該チャネルは、改めてLBTを行いアイドル状態であることが確認できた後に初めて利用可能となる。なお、LBTによるチャネルのアイドル状態/ビジー状態の判定方法は、これに限られない。
LBTのメカニズム(スキーム)としては、FBE(Frame Based Equipment)及びLBE(Load Based Equipment)が検討されている。両者の違いは、送受信に用いるフレーム構成、チャネル占有時間などである。FBEは、LBTに係る送受信の構成が固定タイミングを有するものである。また、LBEは、LBTに係る送受信の構成が時間軸方向で固定でなく、需要に応じてLBTが行われるものである。
具体的には、FBEは、固定のフレーム周期をもち、所定のフレームで一定時間(LBT時間(LBT duration)などと呼ばれてもよい)キャリアセンスを行った結果、チャネルが使用可能であれば送信を行うが、チャネルが使用不可であれば次のフレームにおけるキャリアセンスタイミングまで送信を行わずに待機するというメカニズムである。
一方、LBEは、キャリアセンス(初期CCA)を行った結果チャネルが使用不可であった場合はキャリアセンス時間を延長し、チャネルが使用可能となるまで継続的にキャリアセンスを行うというECCA(Extended CCA)手順を実施するメカニズムである。LBEでは、適切な衝突回避のためランダムバックオフが必要である。
なお、キャリアセンス時間(LBT時間、キャリアセンス期間などと呼ばれてもよい)とは、1つのLBT結果を得るために、リスニングなどの処理を実施してチャネルの使用可否を判断するための時間(例えば、1シンボル長)である。
送信ポイントは、LBT結果に応じて所定の信号(例えば、チャネル予約(channel reservation)信号)を送信することができる。ここで、LBT結果とは、LBTが設定されるキャリアにおいてLBTにより得られたチャネルの空き状態に関する情報(例えば、LBTidle、LBTbusy)のことをいう。
以上述べたように、LAAシステムにおいて、送信ポイントに、LBTメカニズムに基づく同一周波数内における干渉制御を導入することにより、LAAとWi-Fiとの間の干渉、LAAシステム間の干渉などを回避することができる。また、LAAシステムを運用するオペレータ毎に、送信ポイントの制御を独立して行う場合であっても、LBTによりそれぞれの制御内容を把握することなく干渉を低減することができる。
ところで、LAAシステムでも、UEに対するアンライセンスバンドのSCell(Secondary Cell)の設定または再設定などを行うため、UEがRRM(Radio Resource Management)測定により周辺に存在するSCellを検出し、受信品質を測定した後、ネットワークへ報告を行うことが必要となる。LAAにおけるRRM測定のための信号は、Rel.12で規定されたディスカバリ信号(DS:Discovery Signal)をベースに検討されている。
なお、LAAにおけるRRM測定のための信号は、検出測定信号、ディスカバリ参照信号(DRS:Discovery Reference Signal)、ディスカバリ信号(DS:Discovery Signal)、LAA DRS、LAA DSなどと呼ばれてもよい。また、アンライセンスバンドのSCellは、例えばLAA SCellと呼ばれてもよい。
LAA DRSは、Rel.12 DRSと同様に、既存システム(例えば、LTE Rel.10-12)における同期信号(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))とCRS(Cell-specific Reference Signal)との組み合わせ、又は既存システムにおける同期信号(PSS/SSS)とCRSとCSI-RS(Channel State Information Reference Signal)との組み合わせなどで構成することが考えられる。
また、ネットワーク(例えば、eNB)は、UEに対して、周波数ごとにLAA DRSのDMTC(Discovery Measurement Timing Configuration)を設定することができる。DMTCは、DRSの送信周期(DMTC周期(DMTC periodicity)などと呼ばれてもよい)や、DRS測定タイミングのオフセットなどに関する情報を含む。
DRSは、DMTC周期ごとに、DMTC期間(DMTC duration)の中で送信される。ここで、Rel.12では、DMTC期間は6ms長固定である。また、DMTC期間の中で送信されるDSの長さ(DRS期間(DRS occasion)、DS期間、DRSバースト、DSバーストなどと呼ばれてもよい)は1ms以上5ms以下である。LAAでも、同様の設定とすることが検討されている。なお、LAA DSでは、LBT時間を考慮して、DRS期間を1サブフレーム以下としてもよいし、1サブフレーム以上としてもよい。
UEは、ネットワークから通知されるDMTCによって、LAA DRSの測定期間のタイミングや周期を把握し、LAA DSの測定を実施する。さらにRRM測定に加え、DRSを用いてCSI測定を行うことが検討されている。例えば、DRSに含まれるCRSやCSI-RSを用いてCSI測定を行う。
既存のDRS(Rel.12 DRS)では、PSS、SSS、CRS port 0が必ず含まれ、CSI-RS port 15は上位レイヤシグナリングで設定(configure)された場合に含まれる、とUEは想定する。
図1は、既存のDRSの無線リソース構成の一例を示す図である。図1に示すように、既存のDRSでは、CRS(port 0)は、シンボル#0、#4、#7及び#11にマッピングされる。また、PSS及びSSSは、それぞれシンボル#6及び#5にマッピングされる。また、CSI-RSは、候補CSI-RSリソース(candidate CSI-RS resources)内でマッピングされる。既存のDRSの候補CSI-RSリソースとしては、シンボル#9及び#10、又は#12及び#13が利用可能である。候補CSI-RSリソースは、CSI-RS候補シンボルと呼ばれてもよい。
アンライセンスバンドのようにLBTを実施するキャリアで、既存のDRSを用いる場合、DRS内に信号を含まないシンボル(例えば、図1のシンボル#1-#3、#8)を含むため、DRS送信期間中であっても他のシステム(例えば、Wi-Fi)のLBTが成功する可能性がある。この場合、他のシステムが信号の送信を開始するため、当該信号とDRSが衝突する。このため、LAAにおけるセルサーチ及び/又はRRM測定を正確(高精度)に行うことが困難となり、通信を適切に行えなくなるおそれがある。
そこで、本発明者等は、LBT成功後に、時間的に連続したLAA DRSの送信を行い、Wi-Fiなど他システムに割り込まれないようにするための信号構成を適用することが有効となる点に着目した。図2は、時間的に連続したDSの構成の一例を示す図である。
図2Aは、1サブフレームの末尾(シンボル#12及び#13の少なくとも1シンボル)でLBTが行われる場合を想定し、それ以外のシンボル(シンボル#0-#11)でLAA DRSを送信する例を示す。また、図2Bは、1サブフレームの最初(シンボル#0-#3の少なくとも1シンボル)にLBTが行われる場合を想定し、それ以外のシンボル(シンボル#4-#13)でLAA DRSを送信する例を示す。
図2Aでは、LAA DRSには、シンボル#1及び#8にCRS port 2/3がマッピングされている。また、図2Aでは、シンボル#2及び#3に追加の信号(例えば、SSS、報知情報など)がマッピングされている。図2Bでは、LAA DRSには、シンボル#8にCRS port 2/3がマッピングされている。
しかし、本発明者等は、図2のようにLAA DRSを構成する場合、以下のような問題が生じることを見出した。具体的には、図2Aのように、CSI-RS候補シンボルを連続する1つの時間区間(シンボル#9及び#10)に限定すると、利用できるCSI-RS構成(CSI-RS configuration)の数が少なくなってしまうため,セル間でリソースが衝突する可能性が高くなる。
また、図2Bのように、複数の時間区間にCSI-RS候補シンボル(シンボル#9及び#10、又は#12及び#13)を割当て可能としても、利用するCSI-RS構成次第でどこのシンボルで送るかが変わってしまい、DSの時間的連続性や時間長が保てなくなる。例えば、CSI-RSをシンボル#9及び#10にマッピングすると、シンボル#12及び#13では無送信となり、DRSの時間長が短くなる。また、CSI-RSをシンボル#12及び#13にマッピングすると、シンボル#9及び#10でDRSが時間的に連続しなくなってしまう。
このように、本発明者らは、これまで検討されているDRS構成では、CSI-RSを柔軟にマッピングすることができず、送信前にリスニングが適用されるセル(例えば、アンライセンスバンド)において求められる信号特性を実現できないことに着目した。そこで、本発明者らは、DRSでCSI-RSをマッピング可能なシンボル(RE:Resource Element)を、DRS期間(DRSバースト)内で時間方向に拡張することを着想した。
また、本発明者らは、DRS内でデータを送信しない場合、データ復調用の参照信号(例えば、DMRS(DeModulation Reference Signal))、下り制御情報(PDCCH/EPDCCH)などが不要であることに着目した。そして、本発明者らは、既存のCSI-RS構成と比較して、このような不要な信号のリソース領域にCSI-RSをマッピング可能なシンボル(又は、リソースエレメント)が拡張された構成を用いて、DRSに含まれるCSI-RSのマッピングを行うことを見出した。
本発明の一実施形態によれば、検出測定用信号(例えば、DRS)内で複数のシンボルに渡ってCSI-RSを送信することができ、時間長や時間的連続性がCSI-RS構成に依らず維持できるようになる。また、参照信号の構成パターン(リソースマッピングパターン)の数を多く確保することができるため、送信前にリスニングが適用されるセル(例えば、アンライセンスバンド)であっても、DRSに基づいて高精度なCSI測定を実施できるようになる。
以下に、本実施の形態について図面を参照して詳細に説明する。なお、本実施の形態では、リスニングが設定されるキャリアをアンライセンスバンドとして説明するが、これに限られない。本実施の形態は、リスニングが設定される周波数キャリア(又は、セル)であれば、ライセンスバンド又はアンライセンスバンドに関わらず適用することができる。また、本実施の形態では、無線基地局としてスモールセルを用いた場合を示すが、これに限らない。
また、以下の説明では、LTE/LTE-Aシステムにおいてリスニングを適用する場合について説明するが、本実施の形態はこれに限られない。信号送信前にリスニングを適用し、チャネル状態情報参照信号を用いてチャネル状態の推定を行う場合であれば適用可能である。
また、以下の説明では、ディスカバリ信号に含まれるチャネル状態測定用の参照信号構成について説明するが、本実施の形態はこれに限られず、リスニング結果に基づいてデータと多重せずに送信するチャネル状態測定用の参照信号に対しても適用することができる。
(第1の態様)
第1の態様では、ディスカバリ信号に含まれる(DRS内で送信される)チャネル状態測定用の参照信号に適用する参照信号構成と、当該参照信号の構成パターン(リソースマッピング)の一例について説明する。
第1の態様では、ディスカバリ信号に含まれる(DRS内で送信される)チャネル状態測定用の参照信号に適用する参照信号構成と、当該参照信号の構成パターン(リソースマッピング)の一例について説明する。
図3は、リスニング(LBTidle)後に送信されるDRSバースト内の参照信号(CSI-RS)の割当ての一例を示している。図3では、シンボル#0、#1、#4、#7、#8、#11にセル固有参照信号(CRS)がマッピングされ、シンボル#5、#6に同期信号(PSS、SSS)がマッピングされる場合を示している。また、シンボル#2、#3、#9、#10がチャネル状態を測定する参照信号(例えば、CSI-RS)の割当て候補領域となっている。なお、CRSや同期信号の割当て位置はこれに限られず、他の参照信号を割当てることも可能である。
図3において、無線基地局は、セル固有信号と同期信号を挟んで配置される第1のリソース領域(シンボル#2、#3)と第2のリソース領域(シンボル#9、#10)にCSI-RS(拡張CSI-RS)をマッピングする。つまり、無線基地局は、シンボル#9、#10に加えてシンボル#2、#3に対してもCSI-RS(拡張CSI-RS)をマッピングすることにより、既存のチャネル状態測定用のCSI-RSより時間方向に拡張して割当てを行う。
なお、既存のチャネル状態測定用のCSI-RSとは、例えば、下り共有チャネル及び/又は下り制御チャネルと多重して送信されるCSI-RS、リスニングを適用せずに(ライセンスバンドで)送信されるディスカバリ信号に含まれるCSI-RS等を指す。
また、無線基地局は、複数のアンテナポートを利用して拡張CSI-RSを送信することができる。例えば、無線基地局がCSI-RSを最大8個のアンテナポート(例えば、p=15~22)で送信する場合を想定する。この場合、無線基地局は、1、2、4又は8個のアンテナポートを利用してCSI-RSを送信することができる。また、無線基地局は、1個のアンテナポートで送信する場合にはポート15(p=15)を利用し、2個のアンテナポートで送信する場合にはポート15、16(p=15、16)を利用し、4個のアンテナポートで送信する場合にはポート15-18(p=15―18)を利用し、8個のアンテナポートで送信する場合にはポート15-22(p=15―22)を利用することができる。なお、CSI-RSの送信に利用できるアンテナポート数、アンテナポート番号はこれに限られない。
無線基地局がポート15でCSI-RSを送信する場合、シンボル#2、#3、#9、#10に対して、生成した参照信号系列に第1の直交符号(例えば、[+1,+1,+1,+1]を掛けてマッピングする。また、ポート16でCSI-RSを送信する場合、シンボル#2、#3、#9、#10に対して、生成した参照信号系列に第2の直交符号(例えば、[+1,+1,-1,-1]を掛けてマッピングする。また、ポート17でCSI-RSを送信する場合、シンボル#2、#3、#9、#10に対して、生成した参照信号系列に第2の直交符号(例えば、[+1,-1,+1,-1]を掛けてマッピングする。また、ポート18でCSI-RSを送信する場合、シンボル#2、#3、#9、#10に対して、生成した参照信号系列に第2の直交符号(例えば、[+1,-1,-1,+1]を掛けてマッピングする。ポート番号と直交符号との対応関係はこの例に限られない。
無線基地局は、拡張CSI-RSの参照信号系列を、既存のCSI-RSと同様の生成式を利用して生成することができる。また、ポート19-22については、それぞれポート15-18と同じ系列・拡散符号を用いて、別の周波数リソースにマッピングする構成とすることができる。例えば、図3では、8個のアンテナポートに対して4種類の直交符号(直交系列)を適用すると共に、同じ直交系列を適用するアンテナポートを異なる周波数リソースに割当てることができる。
また、各アンテナポートに対応するCSI-RSのマッピング方法として、無線基地局は、シンボル間(第1のリソース領域と第2のリソース領域間)で同一の周波数リソースに同じアンテナポートをマッピングすることができる(図3A参照)。図3Aでは、第1のリソース領域(シンボル#2、#3)と第2のリソース領域(シンボル#9、#10)に所定のアンテナポート(アンテナポート15-18、又はアンテナポート19-22)をマッピングする際、同じ周波数リソースにマッピングする場合を示している。このように、シンボル間で同一周波数リソースに同じアンテナポートをマッピングすることにより、例えば時間的に離れた同じ周波数リソースを高精度な周波数オフセット補正に利用できる。
あるいは、無線基地局は、シンボル間(第1のリソース領域と第2のリソース領域間)で異なる周波数リソースに同じアンテナポートをマッピングすることができる(図3B参照)。図3Bでは、第1のリソース領域と第2のリソース領域に所定のアンテナポートをマッピングする際、異なる周波数リソースにマッピングする場合を示している。つまり、図3Bでは、第1のリソース領域の第1の周波数リソースと第2のリソース領域の第2の周波数リソースにアンテナポート15-18を割当て、第1のリソース領域の第2の周波数リソースと第2のリソース領域の第1の周波数リソースにアンテナポート19-22を割当てている。このように、シンボル間で異なる周波数リソースに同じアンテナポートをマッピングすることにより、参照信号が時間周波数的により分散された形で配置されるため高精度なCSI測定を行うことができる。
シンボル間の異なる周波数リソースに所定のアンテナポートをマッピングする場合、図3Bでは、アンテナポート15-18と、アンテナポート19-22の割当てに対して2種類の周波数リソースを利用する場合を示しているが、これに限られない。例えば、第1のリソース領域の第1の周波数リソースと第2のリソース領域の第2の周波数リソースにアンテナポート15-18を割当て、第1のリソース領域の第3の周波数リソースと第2のリソース領域の第4の周波数リソースにアンテナポート19-22を割当ててもよい(図4参照)。図4に示すように、複数の周波数リソースに分散してアンテナポートを割当てることにより、特に8アンテナポート利用の場合により時間周波数的に分散された参照信号を用いて高精度なCSI測定を行うことができる。
また、無線基地局は、図3に示すように拡張CSI-RSを送信する場合、既存のCSI-RSと比較して割当てリソース領域(リソースエレメント)が拡張された参照信号構成(拡張参照信号構成)を用いてマッピングを制御することができる。例えば、無線基地局は、第1の領域リソース領域(シンボル#2、#3)と第2のリソース領域(シンボル#9、#10)の全サブキャリアをCSI-RSリソース候補として利用する。
仮に、図3に示すようにシンボル#0-#11までの範囲で既存のCSI-RSを割当てる場合、シンボル#9、#10と、シンボル#5、#6の一部のサブキャリアがCSI-RSリソース候補となる。但し、シンボル#5、#6に他の信号(例えば、同期信号)がマッピングされる場合、既存のCSI-RSのCSI-RSリソース候補はシンボル#9、#10に制限される。この場合、利用できるCSI-RSの構成(CSI-RS configuration)数が低減するため、セル間でリソース衝突が生じやすくなる。
これに対し、図3に示す拡張CSI-RSでは、既存のCSI-RSと比較して割当てリソース領域(リソースエレメント)が拡張された参照信号構成を用いることができるため、参照信号構成のパターン数を確保することが可能となる。その結果、セル間でのリソース衝突を抑制することができる。また、所定のアンテナポートに対応する参照信号を、既存のCSI-RSより時間方向に拡張してマッピングする(例えば、シンボル#2、#3、#9、#10)ことにより、時間長や時間的連続性を参照信号構成によらず維持することができるため、チャネル状態の測定品質を向上することができる。
<参照信号の構成パターン数>
また、本実施の形態におけるCSI-RSの参照信号構成パターン数(CSI-RS configuration pattern数)は、既存のCSI-RSと同一となるように設定することができる。例えば、既存のCSI-RSでは、FDDかつnormal CP(Cyclic Prefix)の場合、アンテナポート数が1-2の場合、参照信号構成数が20に設定され、アンテナポート数が4の場合、参照信号構成数が10に設定され、アンテナポート数が8の場合、参照信号構成数が5に設定される。
また、本実施の形態におけるCSI-RSの参照信号構成パターン数(CSI-RS configuration pattern数)は、既存のCSI-RSと同一となるように設定することができる。例えば、既存のCSI-RSでは、FDDかつnormal CP(Cyclic Prefix)の場合、アンテナポート数が1-2の場合、参照信号構成数が20に設定され、アンテナポート数が4の場合、参照信号構成数が10に設定され、アンテナポート数が8の場合、参照信号構成数が5に設定される。
そのため、拡張CSI-RS(例えば、リスニング後のDRSで送信されるCSI-RS)についても、アンテナポート数が1-2の場合に参照信号構成数を20に設定し、アンテナポート数が4の場合に参照信号構成数を10に設定し、アンテナポート数が8の場合に参照信号構成数を5に設定することができる。
例えば、拡張CSI-RSを送信するアンテナポート数が1-2の場合、参照信号の構成間で異なる直交系列及び/又は異なる時間周波数リソースを利用して20パターンの参照信号構成を定義することができる。この場合、図5に示すように、直交系列を用いて別々の参照信号構成(参照信号構成のインデックス)として、同じリソースにマッピングした構成を利用することができる。図5では、直交系列[+1,+1,+1,+1]を適用した参照信号構成#X(図5A参照)と、直交系列[+1,-1,+1,-1]を適用した参照信号構成#Y(図5B参照)を同じ時間周波数リソースにマッピングする場合を示している。
また、アンテナポート数が4の場合、各参照信号構成間で異なる時間周波数リソースを利用して10パターンの参照信号構成を定義することができる。この場合、各アンテナポートに対してそれぞれ異なる直交系列(4種類の直交系列)を適用することができる。同様にアンテナポート数が8の場合、各アンテナポートに対してそれぞれ異なる直交系列(4種類の直交系列)を適用する共に、各参照信号構成間で異なる時間周波数リソースを利用して5パターンの参照信号構成を定義することができる。
このように、拡張CSI-RSの参照信号構成(インデックス)を、既存のCSI-RSの参照信号構成(インデックス)の数と同様に定義することにより、ユーザ端末に通知する参照信号構成(インデックス)を共通に設定することも可能となる。この場合、ユーザ端末は、受信した参照信号の種別(例えば、既存のCSI-RSと、DRSに含まれるCSI-RS)に応じて、異なる参照信号構成を想定して受信動作を制御することができる。なお、無線基地局は、拡張CSI-RSの参照信号構成(インデックス)と、既存のCSI-RSの参照信号構成(インデックス)に関する情報をそれぞれユーザ端末に通知してもよい。また、拡張CSI-RSの参照信号構成のパターン数を既存のCSI-RSの参照信号構成のパターン数より多く設定することも可能である。
(第2の態様)
第2の態様では、DRSに含まれるCSI-RSに適用する参照信号構成と、当該参照信号の構成パターン(リソースマッピング)の他の例について説明する。なお、第2の態様では、第1の態様と異なる参照信号のマッピング方法に関するものであるため、第1の態様と異なる部分について以下に説明する。
第2の態様では、DRSに含まれるCSI-RSに適用する参照信号構成と、当該参照信号の構成パターン(リソースマッピング)の他の例について説明する。なお、第2の態様では、第1の態様と異なる参照信号のマッピング方法に関するものであるため、第1の態様と異なる部分について以下に説明する。
図6は、リスニング(LBTidle)後に送信されるDRSバースト内の参照信号の割当ての一例を示している。図6では、シンボル#4、#7、#8、#11にセル固有参照信号(CRS)がマッピングされ、シンボル#5、#6に同期信号(PSS、SSS)がマッピングされる場合を示している。また、シンボル#9、#10、#12、#13がチャネル状態を測定する参照信号(例えば、CSI-RS)の割当て候補領域となっている。なお、CRSや同期信号の割当て位置はこれに限られず、他の参照信号を割当てることも可能である。
図6において、無線基地局は、セル固有信号を挟んで配置される第1のリソース領域(シンボル#9、#10)と第2のリソース領域(シンボル#12、#13)にCSI-RS(拡張CSI-RS)をマッピングする。つまり、無線基地局は、シンボル#9、#10、#12、#13に対してCSI-RS(拡張CSI-RS)をマッピングすることにより、既存のCSI-RSより時間方向に拡張して割当てを行う。
無線基地局がポート15でCSI-RSを送信する場合、シンボル#9、#10、#12、#13に対して、生成した参照信号系列に第1の直交符号(例えば、[+1,+1,+1,+1]を掛けてマッピングする。また、ポート16でCSI-RSを送信する場合、シンボル#9、#10、#12、#13に対して、生成した参照信号系列に第2の直交符号(例えば、[+1,+1,-1,-1]を掛けてマッピングする。また、ポート17でCSI-RSを送信する場合、シンボル#9、#10、#12、#13に対して、生成した参照信号系列に第2の直交符号(例えば、[+1,-1,+1,-1]を掛けてマッピングする。また、ポート18でCSI-RSを送信する場合、シンボル#9、#10、#12、#13に対して、生成した参照信号系列に第2の直交符号(例えば、[+1,-1,-1,+1]を掛けてマッピングする。
無線基地局は、拡張CSI-RSの参照信号系列を、既存のCSI-RSと同様の生成式を利用して生成することができる。また、ポート19-22については、それぞれポート15-18と同じ系列・拡散符号を用いて、別の周波数リソースにマッピングする構成とすることができる。例えば、図6では、8個のアンテナポートに対して4種類の直交系列を適用すると共に、同じ直交系列を適用するアンテナポートを異なる周波数リソースに割当てることができる。
また、各アンテナポートに対応するCSI-RSのマッピング方法として、無線基地局は、シンボル間(第1のリソース領域と第2のリソース領域間)で同一の周波数リソースに同じアンテナポートをマッピングすることができる(図6A参照)。図6Aでは、第1のリソース領域(シンボル#9、#10)と第2のリソース領域(シンボル#12、#13)に所定のアンテナポート(アンテナポート15-18、又はアンテナポート19-22)をマッピングする際、同じ周波数リソースにマッピングする場合を示している。このように、シンボル間で同一周波数リソースに同じアンテナポートをマッピングすることにより、例えば時間的に離れた同じ周波数リソースを高精度な周波数オフセット補正に利用できる。
あるいは、無線基地局は、シンボル間(第1のリソース領域と第2のリソース領域間)で異なる周波数リソースに同じアンテナポートをマッピングすることができる(図6B参照)。図6Bでは、第1のリソース領域と第2のリソース領域に所定のアンテナポートをマッピングする際、異なる周波数リソースにマッピングする場合を示している。つまり、図6Bでは、第1のリソース領域の第2の周波数リソースと第2のリソース領域の第1の周波数リソースにアンテナポート15-18を割当て、第1のリソース領域の第1の周波数リソースと第2のリソース領域の第2の周波数リソースにアンテナポート19-22を割当てている。このように、シンボル間で異なる周波数リソースに同じアンテナポートをマッピングすることにより、参照信号が時間周波数的により分散された形で配置されるため高精度なCSI測定を行うことができる。
シンボル間で異なる周波数リソースに同じアンテナポートをマッピングする場合、図6Bでは、アンテナポート15-18と、アンテナポート19-22の割当てに対して2種類の周波数リソースを利用する場合を示しているが、これに限られない。例えば、第1のリソース領域の第1の周波数リソースと第2のリソース領域の第2の周波数リソースにアンテナポート15-18を割当て、第1のリソース領域の第3の周波数リソースと第2のリソース領域の第4の周波数リソースにアンテナポート19-22を割当ててもよい(図7参照)。図7に示すように、複数の周波数リソースに分散してアンテナポートを割当てることにより、特に8アンテナポート利用の場合により時間周波数的に分散された参照信号を用いて高精度なCSI測定を行うことができる。
また、無線基地局は、図6に示すように拡張CSI-RSを送信する場合、既存のCSI-RSと比較して割当てリソース領域(リソースエレメント)が拡張された参照信号構成(拡張参照信号構成)を用いてマッピングを制御することができる。例えば、無線基地局は、第1の領域リソース領域(シンボル#9、#10)と第2のリソース領域(シンボル#12、#13)の全サブキャリアをCSI-RSリソース候補として利用する。
仮に、図6に示すようにシンボル#4-#13までの範囲で既存のCSI-RSを割当てる場合、シンボル#9、#10と、シンボル#12、#13の一部のサブキャリアがCSI-RSリソース候補となる。しかし、既存のCSI-RSは、第1の領域(シンボル#9、#10)と第2の領域(シンボル#12、#13)の一部のキャリアの一方しか割当てできない参照信号構成となっている。このため、無線基地局が適用する参照信号構成次第では既存CSI-RSの割当てが変化する。
例えば、第2の領域(シンボル#12、#13)にCSI-RSを割当てる場合、第1の領域(シンボル#9、#10)にはCSI-RSが割当てられない。この場合、DRSにおける参照信号の時間的連続性や時間長が保持できなくなる。また、参照信号が送信されない領域が設定されると、LBTidleと判断した他のシステムから信号が送信され衝突するおそれもある。
これに対し、図7に示す拡張CSI-RSでは、既存のCSI-RSと比較して割当てリソース領域(リソースエレメント)が拡張された参照信号構成を用いることができるため、DRSにおける参照信号の時間的連続性や時間長を保持することができる。これにより、チャネル状態の測定品質を向上すると共に、他システムから送信される信号と衝突することを抑制することができる。
(第3の態様)
第3の態様では、既存のCSI-RSと比較して割当てリソース領域が拡張された参照信号構成を利用する場合のユーザ端末動作の一例について説明する。
第3の態様では、既存のCSI-RSと比較して割当てリソース領域が拡張された参照信号構成を利用する場合のユーザ端末動作の一例について説明する。
上記第1の態様や第2の態様に示すように、既存のCSI-RSと比較して割当てリソース領域が拡張された参照信号構成を適用する場合、ユーザ端末に対して既存CSI-RS用の参照信号構成(例えば、リソース構成、サブフレームオフセット、周期、セルID、スクランブリングID)と、拡張したCSI-RSの参照信号構成をそれぞれ別々に通知することができる。
一方で、ユーザ端末に2つの参照信号構成をそれぞれ通知する場合にはオーバーヘッドが増加するため、オーバーヘッドを抑制する観点からはユーザ端末に対して共通(例えば、1つ)の参照信号構成を通知することが考えられる。この場合、ユーザ端末は、受信した参照信号の種別(例えば、既存のCSI-RSと、DRSに含まれるCSI-RS)に応じて、異なる参照信号構成を想定して受信動作を制御すればよい。
ここで、あらかじめCSI-RS構成(CSI-RS configuration)情報が通知されたユーザ端末が、DRSバースト内とそれ以外(例えば、データ(PDSCH)と多重されてCSI-RSが送信される場合)でCSI-RSを受信する場合について図8を参照して説明する。
無線基地局は、ユーザ端末に対してCSI-RS構成に関する情報(例えば、リソース構成、サブフレームオフセット、周期、セルID、スクランブリングID)を上位レイヤシグナリング等であらかじめ通知する。また、無線基地局は、DRSの測定タイミング(DMTC:Discovery Measurement Timing Configuration)に関する情報を上位レイヤシグナリング等でユーザ端末にあらかじめ通知する。
ユーザ端末は、通知されたCSI-RS構成に関する情報に基づいて既存のCSI-RS構成でチャネル状態の測定を行う。一方で、ユーザ端末は、通知されたDRSの測定タイミング(DMTC)内ではDRSバースト送信の検出を試み、DRSバースト送信を検出した場合には、既存のCSI-RSと異なる参照信号構成(拡張CSI-RSの参照信号構成)があると想定する。この場合、ユーザ端末は、あらかじめ設定されたCSI-RS構成に含まれるサブフレームオフセットや周期に関わらず、拡張CSI-RS用のCSI-RSリソース構成(CSI-RS resource configuration)に基づいて受信動作を制御することができる。なお、CSI-RS構成に関する情報に含まれるスクランブリングIDやセルIDについては拡張CSI-RS対しても利用することができる。
このように、ユーザ端末は、DRSバースト送信内でのCSI-RSリソース構成と、それ以外でのCSI-RSリソース構成では、インデックスが同じであっても実際のCSI-RSのリソースマッピングは異なる構成であると想定して受信動作を行うことができる。
なお、ユーザ端末に対して既存CSI-RS用の参照信号構成と、拡張したCSI-RSの参照信号構成に関する情報を共通情報として通知する場合、一部の情報を共通情報とし、他の情報をそれぞれ送信する構成としてもよい。
(第4の態様)
第4の態様では、ユーザ端末に対してリスニングを適用するセルが複数設定される場合のDMTCやCSI-RS構成の設定方法について説明する。
第4の態様では、ユーザ端末に対してリスニングを適用するセルが複数設定される場合のDMTCやCSI-RS構成の設定方法について説明する。
ユーザ端末に対してリスニングを適用するセル(例えば、アンライセンスバンド)が複数設定される場合、当該ユーザ端末に対して複数のCC間共通のDMTC及び/又はCSI-RS構成を設定することができる。既存システムでは、DMTCやCSI-RS構成はCC毎に独立に設定されるが、複数のCC間で共通に(例えば、一つの構成を)設定することにより、オーバーヘッドを削減することができる。
例えば、ユーザ端末で設定する第1の構成セット(configuration set)、CC単位で設定する第2の構成セットの他に、リスニングを必要とするCC全体に適用できる第3の構成セットを定義し、当該第3の構成セットの中にDMTCやCSI-RS構成を含めて定義してもよい。
あるいは、全てのアンライセンスバンドで共通に設定するのでなく、一部のバンド(CC)毎に共通、又はCC毎に独立に設定する構成としてもよい。
リスニングを適用する複数のCCに対して共通に参照信号構成セットを設定する場合、ユーザ端末は、当該参照信号構成セットの適用可否(サポート有無)に関する情報を能力情報(UE Capability)としてネットワーク(例えば、無線基地局)に報告する構成としてもよい。無線基地局は、ユーザ端末から通知された能力情報に基づいて、各ユーザ端末に設定する参照信号構成を制御することができる。
(第5の態様)
第5の態様では、DRSの測定期間(例えば、DMTC)内にDRSとDLデータ(例えば、PDSCH)が多重される場合に、DRSに適用するCSI-RS構成(CSI-RS resource configuration)について説明する。
第5の態様では、DRSの測定期間(例えば、DMTC)内にDRSとDLデータ(例えば、PDSCH)が多重される場合に、DRSに適用するCSI-RS構成(CSI-RS resource configuration)について説明する。
図14に、DLデータ(例えば、PDSCH)のバースト送信と、DRSバースト送信をそれぞれ別々に行う場合の一例を示す。まず、DRSがDMTC内でPDSCHと多重されずに送信される場合を想定する。この場合、ユーザ端末は無線基地局から通知されたCSI-RS構成の情報に対して、DRSバースト内とそれ以外(例えば、DLデータのバースト送信)で異なるCSI-RSパターン(リソースマッピング)を想定することができる(上記図8参照)。
一方で、DMTC内でDRSとPDSCHが多重されて送信される場合も考えられる。かかる場合に、DRS内のCSI-RS構成をどのように制御するかが問題となる。そこで、本発明者等は、DRSとPDSCHが多重する場合、以下の3通りのいずれかのCSI-RS構成(CSI-RS構成1~3)をDRSに適用することを見出した。
(CSI-RS構成1)
CSI-RS構成1では、DMTCにおいてDLデータと多重するDRSに対して、DRS用の新しいCSI-RS構成(CSI-RS resource configuration)を利用する。例えば、DRSバースト送信をDLデータと多重せずに行う場合にDRSに適用するCSI-RS構成(例えば、図8左のDRS内のCSI-RS構成)を、DMTC内でDLデータ送信と多重するDRSにも適用する。この場合、DLデータ送信時のCSI-RS構成と異なるため、PDSCHする際に新しいレートマッチング(Rate matching)パターンを定義する必要がある。
CSI-RS構成1では、DMTCにおいてDLデータと多重するDRSに対して、DRS用の新しいCSI-RS構成(CSI-RS resource configuration)を利用する。例えば、DRSバースト送信をDLデータと多重せずに行う場合にDRSに適用するCSI-RS構成(例えば、図8左のDRS内のCSI-RS構成)を、DMTC内でDLデータ送信と多重するDRSにも適用する。この場合、DLデータ送信時のCSI-RS構成と異なるため、PDSCHする際に新しいレートマッチング(Rate matching)パターンを定義する必要がある。
ユーザ端末は、DMTC期間内か否かでCSI-RS構成のパターンを識別する構成とすることができる。また、ユーザ端末は、DRSにおけるCSI-RS位置の検出方法として、当該CSI-RSが配置される位置がDRS(例えば、PSS/SSS)と同一サブフレームであると想定して受信処理を行うことができる。
(CSI-RS構成2)
CSI-RS構成2では、DMTCにおいてDLデータと多重するDRSに対して、既存のCSI-RS構成を利用する。例えば、DLデータ送信に適用するCSI-RS構成(例えば、図8右のDLデータ送信内のCSI-RS構成)を、DMTC内でDLデータ送信と多重するDRSにも適用する。この場合、DLデータ送信時のCSI-RS構成と同じであるため、既存のレートマッチング(Rate matching)パターンを利用することが可能となる。また、DRSに含まれる同期信号(PSS/SSS)と衝突するCSI-RS構成は利用しないように制御する。
CSI-RS構成2では、DMTCにおいてDLデータと多重するDRSに対して、既存のCSI-RS構成を利用する。例えば、DLデータ送信に適用するCSI-RS構成(例えば、図8右のDLデータ送信内のCSI-RS構成)を、DMTC内でDLデータ送信と多重するDRSにも適用する。この場合、DLデータ送信時のCSI-RS構成と同じであるため、既存のレートマッチング(Rate matching)パターンを利用することが可能となる。また、DRSに含まれる同期信号(PSS/SSS)と衝突するCSI-RS構成は利用しないように制御する。
ユーザ端末は、DMTC期間内においてDRSがPDSCHと多重されているか否かを検出することにより、CSI-RS構成のパターンを認識することができる。例えば、ユーザ端末は、DMTC内のDRSを検出した際に、PDSCHが同一サブフレームに多重されているか否かを所定の制御情報(例えば、PDCCH、PCFICH等)の検出に基づいて判断することができる。
(CSI-RS構成3)
CSI-RS構成3では、DMTCにおいてDLデータと多重するDRSとして、同期信号(PSS/SSS)及びCRSを含む送信時間間隔(TTI:Transmission Time Interval)と異なるTTIでCSI-RSを送信する構成とする(図15参照)。なお、同期信号(PSS/SSS)及びCRSを含むDRS TTIは、例えば、サブフレームとすることができる。
CSI-RS構成3では、DMTCにおいてDLデータと多重するDRSとして、同期信号(PSS/SSS)及びCRSを含む送信時間間隔(TTI:Transmission Time Interval)と異なるTTIでCSI-RSを送信する構成とする(図15参照)。なお、同期信号(PSS/SSS)及びCRSを含むDRS TTIは、例えば、サブフレームとすることができる。
図15は、CSI-RS構成3におけるDRS内のCSI-RS構成の一例を示している。DMTC内においてDRSとPDSCHが多重されない場合には、DRS用の新しいCSI-RS構成を利用することができる(図15A参照)。一方で、DMTC内においてDRSとPDSCHが多重される場合、同期信号とCRSを含むTTI(サブフレーム)とCSI-RSを含むTTIでDRSを構成することができる(図15B参照)。
図15Bでは、DRSを2サブフレームにわたって配置する場合を示しており、前半サブフレームでCSI-RSを配置し、後半サブフレームで同期信号とCRSを割当てる場合を示している。前半サブフレームにおけるCSI-RS構成は既存のCSI-RS構成を適用することができる。なお、CSI-RS構成3におけるDRSの構成は、図15Bに限られない。CSI-RSの割当てサブフレームを後半サブフレームとしてもよいし、非連続のサブフレームにCSI-RSと同期信号をそれぞれ割当ててもよい。
また、CSI-RS構成3を適用する場合、DRS構成がPDSCHとの多重の有無によって変わることとなる。例えば、DMTCにおいてPDSCHと多重せずDRSを送信する場合(図15A参照)にはDRS構成が1ms未満となるが、PDSCHと多重してDRSを送信する場合(図15B参照)にはDRS構成が複数サブフレーム(例えば、2ms)となる。そのため、ユーザ端末は、DRSとPDSCHとの多重有無を検出すると共に、DRSとPDSCHが多重する場合のCSI-RS位置を把握することが必要となる。
例えば、ユーザ端末は、DMTC内のDRSを検出した際に、PDSCHが同一サブフレームに多重されているか否かを所定の制御情報(例えば、PDCCH、PCFICH等)の検出に基づいて判断することができる。また、ユーザ端末は、既存システム(Rel.12)で規定されているDRS構成で通知されるサブフレームオフセットに関する情報(subframeOffset-r12)に基づいてCSI-RSの位置を判断することができる。
このように、CSI-RS構成3を適用することにより、同期信号(PSS/SSS)とCSI-RSが衝突することを避けることができる。また、CSI-RS構成3を適用する場合、DRS用の新しいCSI-RS構成に対してPDSCHの多重は行わないため、新規のレートマッチングパターンを定義することが不要とすることができる。
また、既存システム(Rel.12)のDRS構成では、DMTC(6ms)においてDRSバースト送信の長さに関する情報(ds-OccationDuration)がユーザ端末に通知される。既存システムのDRS構成に関する情報を読み替えて利用する場合、ユーザ端末は、ds-OccationDurationとして通知された情報を、PDSCHと多重されたDRS構成(図15B参照)にのみ適用することができる。PDSCHと多重せずにDRSが送信される場合(図15A参照)、ユーザ端末は、ds-OccationDurationとして通知された情報に関わらず、DRS構成が1ms以下であると判断することができる。
<CSI-RS構成情報の解釈>
また、ユーザ端末は、無線基地局から通知されるCSI-RS構成に関する情報(CSI-RS configuration information(例えば、CSI-RS-ConfigNZP))を、送信形態(DRSバースト送信、又はデータバースト送信)に基づいて読み替えて解釈する。
また、ユーザ端末は、無線基地局から通知されるCSI-RS構成に関する情報(CSI-RS configuration information(例えば、CSI-RS-ConfigNZP))を、送信形態(DRSバースト送信、又はデータバースト送信)に基づいて読み替えて解釈する。
例えば、ユーザ端末は、CSI-RSのアンテナポートに関する情報(antennaPortsCount-r11)、スクランブリングに関する情報(scramblingIdentity-r11)、送信ポイントに関する情報(qcl-CRS-Info-r11)については、DRSバースト送信内とデータバースト送信内で共通であると解釈する。
一方で、ユーザ端末は、リソース構成に関する情報(resourceConfig-r11)は、同じインデックスであっても送信形態に基づいて異なるリソース構成であると解釈する。例えば、同一インデックスに対して、データバースト送信(DLデータと多重するDRSバースト(CSI-RS構成2、3)と、DLデータと多重しないDRSバースト送信に対してそれぞれ異なるリソース構成を適用する。
また、ユーザ端末は、サブフレームに関する情報(subframeConfig-r11)は、データバースト送信内のCSI-RSだけに適用することができる。つまり、DLデータと多重しないDRSバースト送信に対してはサブフレームに関する情報は適用しない。
このように、送信形態(DRSバースト送信、又はデータバースト送信)に基づいてCSI-RS構成に関する情報を読み替えて解釈することにより、ユーザ端末に送信する情報を削減することができる。
(第6の態様)
第6の態様では、DRS内で報知情報を送信する(例えば、同一サブフレームでDRSと報知情報を多重する)場合について説明する。
第6の態様では、DRS内で報知情報を送信する(例えば、同一サブフレームでDRSと報知情報を多重する)場合について説明する。
DRS内に報知情報(PBCH)をマッピングする場合、システム帯域の中心6RBにおいて、シンボル#7、#8(例えば、後半スロットの先頭2シンボル)に多重する構成とすることができる(図16参照)。図16Aは、DLデータと多重せずにDRSを送信する場合におけるDRSと報知情報の多重方法の一例を示している。図16Bは、DLデータと多重してDRSを送信する場合におけるDRSと報知情報とPDSCHの多重方法の一例を示している。なお、PBCHを多重可能なシンボル数はこれに限られない。
このように報知情報をシステム帯域の中心6RBにおいて既存システムと同様に所定のシンボルに多重することにより、ユーザ端末は、既存のPBCHに対するレートマッチングを再利用することができる。
(無線通信システムの構成)
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の実施形態に係る無線通信方法が適用される。なお、上記の各実施の態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用してもよい。
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の実施形態に係る無線通信方法が適用される。なお、上記の各実施の態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用してもよい。
図9は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。なお、図9に示す無線通信システムは、例えば、LTEシステム、SUPER 3G、LTE-Aシステムなどが包含されるシステムである。この無線通信システムでは、複数のコンポーネントキャリア(CC)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。また、複数のCCには、ライセンスバンドを利用するライセンスバンドCCと、アンライセンスバンドを利用するアンライセンスバンドCCが含まれる。なお、この無線通信システムは、IMT-Advancedと呼ばれても良いし、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
図9に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、少なくとも2CC(セル)を用いてCAを適用することができ、6個以上のCCを利用することも可能である。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイントなどと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、所定のSIB(System Information Block)が伝送される。また、PBCHにより、MIB(Master Information Block)などが伝送される。
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認信号(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどを伝送するために用いられてもよい。
また、下りリンクの参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態測定用参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用に利用されるユーザ固有参照信号(DM-RS:Demodulation Reference Signal)などを含む。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認信号(HARQ-ACK)などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブル(RAプリアンブル)が伝送される。
<無線基地局>
図10は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信部103は、送信部及び受信部で構成される。
図10は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信部103は、送信部及び受信部で構成される。
下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御等のRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理等の送信処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、各送受信部103に転送される。
各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅される。各送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
例えば、送受信部(送信部)103は、チャネル状態を測定する第1の参照信号(例えば、拡張CSI-RS)を含むディスカバリ信号をリスニング結果に基づいて送信することができる。また、送受信部(送信部)103は、第1の参照信号を所定のアンテナポート(例えば、アンテナポート15-22)を用いて送信することができる。また、送受信部(送信部)103は、複数のセルで共通に設定されるディスカバリ信号構成及び/又はチャネル状態測定用の参照信号構成に関する情報をユーザ端末に送信することができる。なお、送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
図11は、本実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図11では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図11に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部(生成部)302と、マッピング部303と、受信信号処理部304と、測定部305と、を備えている。
制御部(スケジューラ)301は、PDSCHで送信される下りデータ、PDCCH及び/又はEPDCCHで伝送される下り制御情報のスケジューリング(例えば、リソース割当て/マッピング等)を制御する。また、システム情報、同期信号、ページング情報、CRS、CSI-RS、ディスカバリ信号等のスケジューリング(例えば、リソース割当て/マッピング等)の制御も行う。
制御部301は、各ユーザ端末から送信されるPUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号、PRACHで送信されるランダムアクセスプリアンブル、上り参照信号等のスケジューリングを制御する。また、制御部301は、ディスカバリ信号に含まれるチャネル状態を測定する第1の参照信号を既存のチャネル状態測定用の第2の参照信号より時間方向に拡張して割当てるように制御することができる。
また、制御部301は、第2の参照信号に適用される参照信号構成と比較して、割当てリソース領域が拡張されて設定された参照信号構成を用いて第1の参照信号の割当てを制御することができる。ディスカバリ信号に同期信号とセル固有参照信号がさらに含まれている場合、制御部301は、同期信号及び/又はセル固有参照信号の割当てリソースを挟んで配置される第1のリソース領域及び第2のリソース領域に第1の参照信号を割当てることができる(図3、図6等参照)。
また、制御部301は、所定のアンテナポートに対応する第1の参照信号を、第1のリソース領域と第2のリソース領域の同じ周波数リソース又は異なる周波数リソースに割当てることができる(図3、図4、図6、図7参照)。
また、制御部301は、複数のアンテナポート(例えば、8個のアンテナポート)に対して拡張CSI-RSをマッピングするシンボル数(例えば、4種類)の直交系列を適用すると共に、同じ直交系列を適用するアンテナポートを異なる周波数リソースに割当てるように制御することができる。また、制御部301は、リスニング(DL-LBT)結果に基づいてDL信号(DLデータ、ディスカバリ信号等)の送信を制御する。
なお、制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
送信信号生成部302は、制御部301からの指示に基づいて、DL信号を生成して、マッピング部303に出力する。例えば、送信信号生成部302は、制御部301からの指示に基づいて、下り信号の割当て情報を通知するDLアサインメント及び上り信号の割当て情報を通知するULグラントを生成する。なお、送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号(例えば、同期信号、セル固有参照信号、チャネル状態を測定する参照信号を含むディスカバリ信号等)を、所定の無線リソースにマッピングして、送受信部103に出力する。なお、マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
受信信号処理部304は、ユーザ端末から送信されるUL信号(例えば、送達確認信号(HARQ-ACK)、PUSCHで送信されたデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。処理結果は、制御部301に出力される。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
測定部305は、受信した信号を用いて受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定することができる。また、測定部305は、アンライセンスバンドにおけるDL信号の送信前に行うリスニングにおいて、他システム等から送信される信号の受信電力を測定することができる。測定部305で測定した結果は、制御部301に出力される。制御部301は測定部305の測定結果(リスニング結果)に基づいて、DL信号の送信を制御することができる。
測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
<ユーザ端末>
図12は、本実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。
図12は、本実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。
複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
送受信部(受信部)203は、アンライセンスバンドにおけるUL送信を指示するDL信号(例えば、ULグラント)を受信することができる。また、送受信部(受信部)203は、チャネル状態を測定する第1の参照信号を含むディスカバリ信号を受信することができる。この場合、送受信部(受信部)203は、既存のチャネル状態測定用の第2の参照信号に適用される参照信号構成と比較して割当てリソース領域が拡張された参照信号構成に基づいて第1の参照信号を受信することができる。また、送受信部(受信部)203は、無線基地局から受信した所定の参照信号構成に関する情報(例えば、所定のインデックス)に基づいて、ディスカバリ信号に含まれる第1の参照信号と、既存のチャネル状態測定用の第2の参照信号に対して異なる参照信号構成を想定して受信動作を行うことができる。なお、送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
図13は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図13においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図13に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
制御部401は、送信信号生成部402、マッピング部403及び受信信号処理部404の制御を行うことができる。例えば、制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御情報(ULグラント)や、下りデータに対する再送制御の要否を判定した結果等に基づいて、上り制御信号(例えば、HARQ-ACK等)や上りデータの生成/送信(UL送信)を制御する。また、制御部401は、リスニング(UL-LBT)結果に基づいてUL信号の送信を制御する。
なお、制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
送信信号生成部402は、制御部401からの指示に基づいて、UL信号を生成して、マッピング部403に出力する。例えば、送信信号生成部402は、制御部401からの指示に基づいて、DL信号に対応する送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)等の上り制御信号を生成する。
また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号(上り制御信号及び/又は上りデータ)を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
受信信号処理部404は、DL信号(例えば、無線基地局からPDCCH/EPDCCHで送信される下り制御信号、PDSCHで送信される下りデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401、測定部405に出力する。なお、受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
また、測定部405は、受信した信号を用いて受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。また、測定部405は、アンライセンスバンドにおけるUL信号の送信前に行うリスニングにおいて、他システム等から送信される信号の受信電力を測定することができる。測定部405で測定した結果は、制御部401に出力される。制御部401は測定部405の測定結果(リスニング結果)に基づいて、UL信号の送信を制御することができる。
測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU:Central Processing Unit)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。つまり、本発明の一実施形態に係る無線基地局、ユーザ端末などは、本発明に係る無線通信方法の処理を行うコンピュータとして機能してもよい。
ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、CD-ROM(Compact Disc-ROM)、RAM(Random Access Memory)、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。
無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。
ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、ユーザ端末20の制御部401は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
本出願は、2015年8月14日出願の特願2015-160199及び2015年9月24日出願の特願2015-187223に基づく。この内容は、全てここに含めておく。
Claims (10)
- チャネル状態を測定する第1の参照信号を含む検出測定用信号をリスニング結果に基づいて送信する送信部と、
前記検出測定用信号のリソース割当てを制御する制御部と、を有し、
前記制御部は、前記第1の参照信号を既存のチャネル状態測定用の第2の参照信号より時間方向に拡張して割当てることを特徴とする無線基地局。 - 前記制御部は、前記第2の参照信号に適用される参照信号構成と比較して、割当てリソース領域が拡張された参照信号構成を用いて前記第1の参照信号の割当てを行うことを特徴とする請求項1に記載の無線基地局。
- 前記検出測定用信号に同期信号とセル固有参照信号がさらに含まれており、前記制御部は、前記同期信号及び/又は前記セル固有参照信号の割当てリソースを挟んで配置される第1のリソース領域及び第2のリソース領域に前記第1の参照信号を割当てることを特徴とする請求項2に記載の無線基地局。
- 前記送信部は、前記第1の参照信号を所定のアンテナポートを用いて送信し、前記制御部は、所定のアンテナポートに対応する第1の参照信号を、第1のリソース領域と第2のリソース領域の同じ周波数リソース又は異なる周波数リソースに割当てることを特徴とする請求項3に記載の無線基地局。
- 前記制御部は、8個のアンテナポートに対して4種類の直交系列を適用すると共に、同じ直交系列を適用するアンテナポートを異なる周波数リソースに割当てることを特徴とする請求項4に記載の無線基地局。
- 前記第1の参照信号に適用される参照信号構成のパターン数と前記第2の参照信号に適用される参照信号構成のパターン数が同一であることを特徴とする請求項1から請求項5のいずれかに記載の無線基地局。
- ユーザ端末に対してリスニングを適用するセルが複数設定される場合、前記送信部は、複数のセルで共通に設定される検出測定用信号構成及び/又はチャネル状態測定用の参照信号構成に関する情報をユーザ端末に送信することを特徴とする請求項1から請求項6のいずれかに記載の無線基地局。
- チャネル状態を測定する第1の参照信号を含む検出測定用信号を受信する受信部と、
前記第1の参照信号に対応するチャネル状態情報を送信する送信部と、を有し、
前記受信部は、既存のチャネル状態測定用の第2の参照信号に適用される参照信号構成と比較して割当てリソース領域が拡張された参照信号構成に基づいて前記第1の参照信号を受信することを特徴とするユーザ端末。 - 前記受信部は、無線基地局から受信した所定の参照信号構成に関する情報に基づいて、前記検出測定用信号に含まれる前記第1の参照信号と、前記既存のチャネル状態測定用の第2の参照信号に対して異なる参照信号構成を想定して受信動作を行うことを特徴とする請求項8に記載のユーザ端末。
- リスニング結果に基づいてDL送信を制御する無線基地局の無線通信方法であって、
チャネル状態を測定する第1の参照信号を含む検出測定用信号をリスニング結果に基づいて送信する工程と、
前記検出測定用信号のリソース割当てを行う工程と、を有し、
前記第1の参照信号を既存のチャネル状態測定用の第2の参照信号より時間方向に拡張して割当てることを特徴とする無線通信方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680046670.4A CN107852724A (zh) | 2015-08-14 | 2016-08-09 | 无线基站、用户终端以及无线通信方法 |
JP2017535499A JPWO2017030053A1 (ja) | 2015-08-14 | 2016-08-09 | 無線基地局、ユーザ端末及び無線通信方法 |
US15/752,365 US20190007931A1 (en) | 2015-08-14 | 2016-08-09 | Radio base station, user terminal and radio communication method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015160199 | 2015-08-14 | ||
JP2015-160199 | 2015-08-14 | ||
JP2015187223 | 2015-09-24 | ||
JP2015-187223 | 2015-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017030053A1 true WO2017030053A1 (ja) | 2017-02-23 |
Family
ID=58051724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073472 WO2017030053A1 (ja) | 2015-08-14 | 2016-08-09 | 無線基地局、ユーザ端末及び無線通信方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190007931A1 (ja) |
JP (1) | JPWO2017030053A1 (ja) |
CN (1) | CN107852724A (ja) |
WO (1) | WO2017030053A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528715A (ja) * | 2015-09-25 | 2018-09-27 | 華為技術有限公司Huawei Technologies Co.,Ltd. | ユーザ機器、基地局、データチャネル送信方法、およびデータチャネル受信方法 |
JP2022516197A (ja) * | 2019-01-10 | 2022-02-24 | ペキン シャオミ モバイル ソフトウェア カンパニー, リミテッド | ディスカバリー参照信号drsの設定、送信及び受信方法並びに装置 |
US12069656B2 (en) | 2019-01-08 | 2024-08-20 | Beijing Xiaomi Mobile Software Co., Ltd. | Downlink data receiving method and device, downlink data sending method and device, and storage medium |
US12127139B2 (en) | 2019-01-10 | 2024-10-22 | Beijing Xiaomi Mobile Software Co., Ltd. | Methods and devices for configuring, sending and receiving discovery reference signal (DRS) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018098802A1 (en) * | 2016-12-02 | 2018-06-07 | Qualcomm Incorporated | Transmitting channel state information reference signals in new radio |
WO2019094781A2 (en) * | 2017-11-09 | 2019-05-16 | Ofinno Technologies, Llc | Communications based on wireless device capabilities |
US12089172B2 (en) * | 2018-05-10 | 2024-09-10 | Ntt Docomo, Inc. | User terminal |
CA3099848A1 (en) * | 2018-05-10 | 2019-11-14 | Ntt Docomo, Inc. | User terminal |
WO2019215920A1 (ja) * | 2018-05-11 | 2019-11-14 | 株式会社Nttドコモ | ユーザ端末及び無線基地局 |
EP3796570A4 (en) * | 2018-05-18 | 2022-01-05 | NTT DoCoMo, Inc. | USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE |
CA3104606A1 (en) * | 2018-06-28 | 2020-01-02 | Ntt Docomo, Inc. | Terminal and radio communication method with flexible resource allocation |
CN112567785B (zh) * | 2018-08-03 | 2024-04-02 | 株式会社Ntt都科摩 | 用户终端以及无线通信方法 |
CN112789919A (zh) * | 2018-08-09 | 2021-05-11 | 株式会社Ntt都科摩 | 用户终端以及无线通信方法 |
KR102656661B1 (ko) * | 2018-08-09 | 2024-04-11 | 가부시키가이샤 엔티티 도코모 | 유저단말 및 무선 통신 방법 |
EP3843469A4 (en) * | 2018-08-20 | 2022-07-13 | Fujitsu Limited | METHOD AND DEVICE FOR MONITORING AND TRANSMITTING A DOWNLINK SIGNAL AND METHOD AND DEVICE FOR PARAMETER CONFIGURATION |
CN112470549A (zh) * | 2018-08-22 | 2021-03-09 | 株式会社Ntt都科摩 | 用户装置及基站装置 |
CN110932828B (zh) * | 2018-09-19 | 2022-07-15 | 维沃移动通信有限公司 | 消息接收方法、消息发送方法、终端设备和网络侧设备 |
CN110971353B (zh) * | 2018-09-28 | 2021-12-28 | 华为技术有限公司 | 通信方法及装置 |
WO2020090122A1 (ja) * | 2018-11-02 | 2020-05-07 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
CN113316968B (zh) * | 2018-11-09 | 2023-11-07 | 株式会社Ntt都科摩 | 终端、基站、系统以及无线通信方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015114566A1 (en) * | 2014-01-30 | 2015-08-06 | Telefonaktiebolaget L M Ericsson (Publ) | Discover signals and procedures |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6076044B2 (ja) * | 2012-11-02 | 2017-02-08 | 株式会社Nttドコモ | 無線通信方法、無線通信システム、無線基地局及びユーザ端末 |
CN105794272B (zh) * | 2013-10-28 | 2019-03-08 | Lg电子株式会社 | 用于无线通信的方法和装置 |
CN104579518B (zh) * | 2015-01-30 | 2017-01-11 | 深圳酷派技术有限公司 | Csi测量及反馈方法、csi测量及反馈系统和基站 |
-
2016
- 2016-08-09 CN CN201680046670.4A patent/CN107852724A/zh active Pending
- 2016-08-09 US US15/752,365 patent/US20190007931A1/en not_active Abandoned
- 2016-08-09 WO PCT/JP2016/073472 patent/WO2017030053A1/ja active Application Filing
- 2016-08-09 JP JP2017535499A patent/JPWO2017030053A1/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015114566A1 (en) * | 2014-01-30 | 2015-08-06 | Telefonaktiebolaget L M Ericsson (Publ) | Discover signals and procedures |
Non-Patent Citations (3)
Title |
---|
COOLPAD: "Discussion on DL reference signal transmission for LAA", 3GPP TSG-RAN WG1#81, R1- 153306, 3GPP, 29 May 2015 (2015-05-29), XP050972022 * |
NEC: "Discussion on DRS enhancement for LAA", 3GPP TSG-RAN WG1#82, R1-154205, 3GPP, 14 August 2015 (2015-08-14), XP050992519 * |
NTT DOCOMO, INC.: "Discussion on CSI measurement design for LAA DL", 3GPP TSG-RAN WG1#82BIS, R1- 155903, 3GPP, 26 September 2015 (2015-09-26), XP051002688 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528715A (ja) * | 2015-09-25 | 2018-09-27 | 華為技術有限公司Huawei Technologies Co.,Ltd. | ユーザ機器、基地局、データチャネル送信方法、およびデータチャネル受信方法 |
US10524291B2 (en) | 2015-09-25 | 2019-12-31 | Huawei Technologies Co., Ltd. | User equipment, base station, data channel sending method, and data channel receiving method |
US10912120B2 (en) | 2015-09-25 | 2021-02-02 | Huawei Technologies Co., Ltd. | User equipment, base station, data channel sending method, and data channel receiving method |
US12069656B2 (en) | 2019-01-08 | 2024-08-20 | Beijing Xiaomi Mobile Software Co., Ltd. | Downlink data receiving method and device, downlink data sending method and device, and storage medium |
JP2022516197A (ja) * | 2019-01-10 | 2022-02-24 | ペキン シャオミ モバイル ソフトウェア カンパニー, リミテッド | ディスカバリー参照信号drsの設定、送信及び受信方法並びに装置 |
JP7317124B2 (ja) | 2019-01-10 | 2023-07-28 | ペキン シャオミ モバイル ソフトウェア カンパニー, リミテッド | ディスカバリー参照信号drsの設定、送信及び受信方法並びに装置 |
US12127139B2 (en) | 2019-01-10 | 2024-10-22 | Beijing Xiaomi Mobile Software Co., Ltd. | Methods and devices for configuring, sending and receiving discovery reference signal (DRS) |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017030053A1 (ja) | 2018-07-12 |
CN107852724A (zh) | 2018-03-27 |
US20190007931A1 (en) | 2019-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017030053A1 (ja) | 無線基地局、ユーザ端末及び無線通信方法 | |
WO2017073651A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
CN108605332B (zh) | 用户终端、无线基站以及无线通信方法 | |
WO2017078034A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
JP6457102B2 (ja) | ユーザ端末及び無線通信方法 | |
WO2017026434A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2017126579A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2017170887A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2017078035A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2017022820A1 (ja) | 無線基地局、ユーザ端末及び無線通信方法 | |
WO2017110961A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
JP6309985B2 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2017051902A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2017051726A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2017026488A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2016182046A1 (ja) | ユーザ端末および無線通信方法 | |
WO2017051837A1 (ja) | 無線基地局、ユーザ端末及び無線通信方法 | |
CN107736063B (zh) | 用户终端、无线基站以及无线通信方法 | |
JP6687567B2 (ja) | 無線基地局及び無線通信方法 | |
JP6301302B2 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2016195084A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2017026489A1 (ja) | 無線基地局、ユーザ端末及び無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16837043 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017535499 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16837043 Country of ref document: EP Kind code of ref document: A1 |