WO2021170047A1 - 电机控制系统和车辆 - Google Patents

电机控制系统和车辆 Download PDF

Info

Publication number
WO2021170047A1
WO2021170047A1 PCT/CN2021/077946 CN2021077946W WO2021170047A1 WO 2021170047 A1 WO2021170047 A1 WO 2021170047A1 CN 2021077946 W CN2021077946 W CN 2021077946W WO 2021170047 A1 WO2021170047 A1 WO 2021170047A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
cut
output torque
vehicle
control system
Prior art date
Application number
PCT/CN2021/077946
Other languages
English (en)
French (fr)
Inventor
徐鲁辉
喻轶龙
杜智勇
齐阿喜
杨广明
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020227033172A priority Critical patent/KR20220144407A/ko
Priority to JP2022551327A priority patent/JP7413555B2/ja
Priority to EP21760281.2A priority patent/EP4109696A4/en
Publication of WO2021170047A1 publication Critical patent/WO2021170047A1/zh
Priority to US17/896,853 priority patent/US20220410718A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • H02H1/0084Details of emergency protective circuit arrangements concerning transmission of signals by means of pilot wires or a telephone network; watching of these wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0822Integrated protection, motor control centres
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • H02H7/0838Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements with H-bridge circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to the field of vehicle technology, in particular to a motor control system and a vehicle.
  • the power source of pure electric vehicles is basically motor drive, and hybrid vehicles also have motor drive systems.
  • motor drive control not only needs to consider functional performance, but also safety and reliability.
  • the motor controller design process the motor controller is generally treated as a self-improving control system.
  • the vehicle control unit (VCU) mainly sends the torque enable to the motor controller unit (MCU). And torque command.
  • the motor controller judges the torque output and other commands by itself.
  • the typical topology of the motor drive system is shown in Figure 1, and the architecture of the motor control system is shown in Figure 2.
  • the detection mechanism of the motor controller system itself can achieve a higher level of safety, and more detection mechanisms and redundancy mechanisms are required, which is relatively expensive.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • an object of the present invention is to provide a motor control system, which can improve the safety level of the entire vehicle and enhance the safety and reliability of vehicle operation.
  • the second object of the present invention is to provide a vehicle.
  • the first aspect of the present invention provides a motor control system.
  • the system includes a vehicle controller for acquiring vehicle status data, and determining the vehicle status data based on the vehicle status data.
  • the vehicle When the vehicle has an unexpected power transmission failure, it outputs a command to cut off the output torque of the motor; the motor controller is connected to the vehicle controller and is used to control the motor to stop the output torque in response to the command to cut off the output torque of the motor.
  • the safety of the vehicle is improved by increasing the control power of the vehicle controller to the motor controller.
  • the vehicle controller makes full use of the vehicle status data to determine the unexpected power transmission failure.
  • the controller is damaged, which improves the safety and reliability of vehicle operation.
  • the vehicle controller sends the instruction to cut off the output torque of the motor through the CAN bus, or the vehicle controller transmits the instruction to cut off the output torque of the motor to the motor controller through a hard wire .
  • the motor controller includes a main control unit, a power supply unit, and a drive unit.
  • the drive unit includes a primary side low-voltage side and a secondary side high-voltage side; the vehicle controller's command to cut off the output torque of the motor It is transmitted to the low-voltage side of the primary side or the high-voltage side of the secondary side of the drive unit.
  • the main control unit is used to obtain motor state data, and output a cut-off enable signal when it is determined that the motor is running abnormally according to the motor state data; When any signal of the enable signal and the instruction to cut off the output torque of the motor, the motor is controlled to stop the output torque.
  • the power supply unit is used to monitor the state of the main control unit, and output a safety cut-off signal when the main control unit or itself is abnormal; the safety cut-off signal of the power supply unit and the main control unit
  • the cut-off enable signal of the control unit is transmitted to the low-voltage side of the primary side of the drive unit; the drive unit receives any one of the instruction to cut off the output torque of the motor, the safety cut-off signal, and the cut-off enable signal.
  • the motor is controlled to stop output torque.
  • the driving units are in two groups, wherein each group of the driving units includes three driving sub-units, and the three driving sub-units of a group of the driving units are used to control the three upper bridge arms.
  • One switch tube module, and the three drive sub-units of the other group of the drive unit are used to control the three switch tube modules of the lower bridge arm.
  • one group of the drive units is powered by a first power supply, and the other group of drive units is powered by a second power supply; or, the two groups of drive units are powered by the same power supply.
  • the instruction to cut off the output torque of the motor transmitted by the vehicle controller is a redundant signal, and uses the same level signal; or the instruction to cut off the output torque of the motor transmitted by the vehicle controller is Bistable signal, and use the opposite level signal.
  • a feedback channel is connected between the vehicle controller and the main control unit, wherein the feedback channel includes a CAN communication channel or a hard-wired connection channel;
  • the vehicle controller sends the instruction to cut off the output torque of the motor to the main control unit, and the main control unit feeds the received instruction to cut off the output torque of the motor to the feedback channel through the feedback channel.
  • the vehicle controller determines the correctness of the sent information according to the instruction for cutting off the output torque of the motor fed back by the main control unit.
  • an embodiment of the second aspect of the present invention proposes a vehicle, which includes a motor and the motor control system mentioned in the above embodiments, and the motor control system is used to control the motor.
  • the motor is controlled by the motor control system to enhance the safe operation time and operation reliability of the vehicle.
  • Figure 1 is a schematic diagram of a typical topology of a motor drive system in the prior art
  • Figure 2 is a schematic diagram of a motor control system architecture in the prior art
  • Fig. 3 is a schematic diagram of a motor control system according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of a motor control system according to another embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a motor control system according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a redundant transmission signal of a cut-off path of a vehicle controller according to an embodiment of the present invention
  • Fig. 7 is a schematic diagram of a bistable transmission signal of a cut-off path of a vehicle controller according to an embodiment of the present invention.
  • Fig. 8 is a block diagram of a vehicle according to an embodiment of the present invention.
  • the motor control system 10 of the embodiment of the present invention includes a vehicle controller 110 and a motor controller 120.
  • the vehicle controller 110 is used to obtain the vehicle status data, and output an instruction to cut off the output torque of the motor when the vehicle status data is judged to be abnormal in unexpected power output; the motor controller 120 and the vehicle controller The 110 connection is used to control the motor to stop output torque in response to a command to cut off the output torque of the motor.
  • the vehicle status data may include various operation detection data of the vehicle and fault data fed back by various devices.
  • the vehicle controller 110 may obtain various sensor information of the vehicle through the vehicle bus, such as acceleration sensor, radar detection, millimeter Intelligent detection data such as wave detection, and vehicle failure data include, for example, failure data of the motor controller 120, failure data of the steering controller, and the like.
  • vehicle controller 110 determines an unexpected power output abnormality, for example, unexpected acceleration or running state inconsistent with the power drive or unexpected power drive state, and outputs a command to cut off the output torque of the motor.
  • the motor controller 120 can directly cut off its torque output path.
  • the motor controller 120 enters a safe state to ensure the safety of vehicle power output and make the motor control system 10 more reliable.
  • the motor controller 120 enters a safe state to ensure the safe operation of the vehicle. It is possible to avoid irreversible damage to the motor control system 10 when the motor controller 120 itself cannot normally detect failures such as unexpected acceleration.
  • the safety of the vehicle is improved by increasing the control power of the vehicle controller 110 to the motor controller 120.
  • the vehicle controller 110 makes full use of the vehicle status data to determine unexpected When the power transmission fails, the command to cut off the output torque of the motor is output, and after the motor controller 120 receives the command, it stops outputting the motor control torque and enters the safe state of motor control to avoid unexpected detection by the motor controller 120 itself.
  • the status failure causes damage to the motor controller 120, which improves the safe running time and reliability of the vehicle.
  • the vehicle controller 110 may send an instruction to cut off the output torque of the motor through the CAN bus, or the vehicle controller 110 may transmit the instruction to cut off the output torque of the motor to the motor controller 120 through a hard wire, that is, through a hard wire.
  • the line directly transmits the control signal to the motor controller 120.
  • the safety and timeliness of the hard-wire transmission is high, and it is convenient to output the torque cut-off command in time when a drive failure is judged, so that the motor controller 120 enters a safe state as soon as possible, thereby making the motor control system 10 of the entire vehicle more reliable.
  • the motor controller 120 includes a main control unit 130, a power supply unit 140, and a driving unit 150.
  • the main control unit 130 is used for the main function calculations of motor control
  • the power supply unit 140 is used for
  • the driving unit 150 is used to convert the driving signal, that is, the signal conversion process of the main control unit 130 can drive the signal of the power module.
  • the connection relationship between the three is shown in FIG. 3 or 4.
  • the driving unit 150 includes a primary side low pressure side and a secondary side high pressure side. As shown in Figure 3, the command of the vehicle controller 110 to cut off the output torque of the motor can be transmitted to the low-voltage side of the primary side of the drive unit 150, and the safety cut-off signal of the power supply unit 140 and the cut-off enable signal of the main control unit 130 are transmitted to the drive. On the low-voltage side of the primary side of the unit 150, the command of the vehicle controller 110 to cut off the output torque of the motor and the signals of the power supply unit 140 and the main control unit 130 constitute the drive unit 150 that enables the path control power module.
  • the commands output by the vehicle controller 110 to cut off the motor output torque such as signals FS_IO1 and FS_IO2
  • the safety cut-off signal output by the power supply unit 140 such as FS_signal
  • the cut-off enable output by the main control unit 130 Signals such as dis/en_able are used for logic or calculation.
  • the drive unit 150 receives any one of the instruction to cut off the motor output torque, the safety cut-off signal, and the cut-off enable signal, it stops outputting the motor control torque signal to enable the motor control system 10Enter the safe state.
  • the main control unit 130 is used to obtain motor state data such as voltage, current, rotation angle, etc., and output a cut-off enable signal when it is determined that the motor is running abnormally according to the motor state data; the drive unit 150 receives the cut-off enable signal and cuts off the motor When any signal of the torque command is output, the output of the motor control torque is stopped, so that the motor enters a safe state.
  • motor state data such as voltage, current, rotation angle, etc.
  • the power supply unit 140 in the motor controller 120 also monitors the status of the main control unit 130, and outputs a safety cut-off signal when the main control unit 130 is abnormal, and can also cut off the torque output of the motor controller 120.
  • the vehicle controller 110 When the vehicle controller 110 finds that the vehicle has an unexpected control state, such as unexpected acceleration, it may also output a safety cut-off signal to safely cut off the driving path.
  • the vehicle controller 110 controls the cut-off path through the primary side control circuit in the motor controller 120, so that the electric drive system enters a safe state.
  • the command of the vehicle controller 110 to cut off the output torque of the motor may also be transmitted to the high voltage side of the secondary side of the drive unit 150.
  • the commands for cutting off the output torque of the motor output by the vehicle controller 110 such as signals FS_IO1 and FS_IO2, are transmitted to the high-voltage side of the secondary side of the drive unit 150, and the drive unit 150 in the drive board can be directly controlled.
  • a feedback channel can be set between the main control unit 130 and the vehicle controller 110, and the motor controller 120 can monitor the state of the hard-wire control information of the vehicle controller 110 and feed it back to the vehicle controller 110 .
  • the vehicle controller 110 sends an instruction to cut off the output torque of the motor to the main control unit 130 through the CAN bus or hard wire, and the main control unit 130 feeds back the received instruction to cut off the output torque of the motor to the vehicle through the feedback channel.
  • the controller 110 wherein the feedback channel may include a CAN communication channel or a hardware connection channel, and the vehicle controller 110 judges the correctness of the sent information according to the instruction to cut off the output torque of the motor fed back by the main control unit 130.
  • the FB_ss signal is the feedback channel between the main control unit 130 of the motor controller 120 and the vehicle controller 110. It can be a CAN communication channel or a hard-wired feedback channel. Here, CAN communication is preferred. aisle. FS_ss1 and FS_ss2 are the feedback paths of FS_IO1 and FS_IO2 of the vehicle controller 110 respectively.
  • the safety cut-off signal of the vehicle controller 110 is fed back to the main control unit 130, and then the main control unit 130 passes the FB_SS channel to receive the safety The cut-off signal is fed back to the vehicle controller 110. After receiving the safety cut-off signal fed back by the main control unit 130, the vehicle controller 110 recognizes whether the signal is correct.
  • the vehicle controller 110 sends the information correctly, otherwise, There is an error in the information sent by the vehicle controller 110, which can achieve the purpose of monitoring the sent information, and improve the accuracy and safety of the information sent by the vehicle controller 110.
  • the feedback paths of FS_ss1 and FS_ss2 can also be combined into a path FS_ss1 for control and feedback. Through the signal feedback between the main control unit 130 and the vehicle controller 110, the entire vehicle The controller 110 can monitor the transmission data to ensure that the transmission data is correct and stable.
  • the driving units 150 are in two groups, wherein each group of driving units 150 includes three driving sub-units, and the three driving sub-units of a group of driving units 150 are used for controlling The three power modules of the upper bridge arm, and the three driving sub-units of the other group of driving units 150 are used to control the three power modules of the lower bridge arm.
  • a group of driving units 150 is powered by a first power supply, and another driving unit 150 is powered by a second power supply. That is, the power supply of the driving unit 150 is powered by an independent power source, that is, the driving unit 150 is powered by an independent power supply.
  • Two independent power supplies Vcc supply power to the three-phase upper and lower bridge arms to ensure the reliability of the operation of the drive board.
  • the main control parts of the vehicle controller 110 and the motor controller 120 namely the main control unit 130 and the power supply unit 140, can independently control the driving unit 150, so that the motor controller 120 enters a safe state.
  • the two sets of driving units 150 can also be powered by the same power supply.
  • the main control unit 130 is used to obtain the motor status data, and output a cut-off enable signal when it is determined that the motor is operating abnormally according to the motor status data; the drive unit 150 is used to receive any one of the cut-off enable signal and the instruction to cut off the motor output torque When signal, the motor is controlled to stop output torque.
  • the power supply unit 140 in the motor controller 120 monitors the status of the main control unit 130, and when the main control unit 130 is abnormal, it outputs a safety cut-off signal.
  • the power supply unit 140 can also cut off the safety drive and switch the drive unit 150. To the safe path.
  • the vehicle controller 110 finds that the vehicle has an unexpected power transmission state such as unexpected acceleration, it can directly control the drive unit 150 to output a safety cut-off signal to safely cut off the drive path and enter the electric drive system safe state.
  • the vehicle controller 110 does not control the cut-off path through the primary side control circuit of the motor controller 120, but can directly control the secondary side control circuit of the motor controller 120 to make the electric drive system enter a safe state.
  • the motor controller 120 and the vehicle control All 110 can independently control the driving unit 150 to make the electric drive enter a safe state.
  • the command to cut off the output torque of the motor transmitted by the vehicle controller 110 is a redundant signal, and the same level signal is used. As shown in Figure 6, two signals of the same level are used to ensure signal reliability.
  • the command to cut off the output torque of the motor transmitted by the vehicle controller 110 is a bistable signal, and uses an opposite level signal. As shown in Figure 7, the use of two opposite level signals, through the signal difference, can reduce the common mode signal interference to ensure the reliability of the signal.
  • the command to cut off the output torque of the motor can also be a CAN signal or other multiple redundant signals.
  • the safety of the vehicle is improved by increasing the control rights of the vehicle controller 110 to the motor controller 120, and the vehicle controller 110 makes full use of the vehicle status information.
  • an unexpected power transmission failure is judged, an instruction to cut off the output torque of the motor is output, and after the motor controller 120 receives the instruction, the output of the motor control torque is stopped, and the motor control safety state is entered to avoid the failure of the motor controller 120 itself.
  • An unexpected state failure is detected, causing damage to the motor controller 120, which improves the safe running time and reliability of the vehicle.
  • FIG. 8 is a block diagram 20 of a vehicle according to an embodiment of the fourth aspect of the present invention.
  • a vehicle 20 according to an embodiment of the present invention includes a motor 210 and the motor control system 10 mentioned in the above embodiment.
  • the motor control system 10 is used to control the motor, and the specific control path can refer to the description of the above embodiment.
  • the vehicle 20 of the embodiment of the present invention by using the motor control system 10 of the above embodiment to control the motor 210, the safety and reliability of the operation of the vehicle 20 can be enhanced.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the “above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种电机控制系统和车辆,该电机控制系统(10)包括: 整车控制器(110),用于获取整车状态数据,并在根据所述整车状态数据判断出非预期动力传输故障时,输出切断电机输出扭矩的指令; 电机控制器(120),与所述整车控制器(110)连接,用于响应于所述切断电机输出扭矩的指令,停止输出电机控制扭矩。

Description

电机控制系统和车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2020年2月26日提交的、发明名称为“电机控制系统和车辆”的、中国专利申请号“202010120914.7”的优先权。
技术领域
本发明涉及车辆技术领域,尤其是涉及一种电机控制系统和车辆。
背景技术
目前,电动汽车发展迅速,纯电动汽车的动力源基本上都是电机驱动,混动汽车也存在电机驱动系统。电机驱动控制在车辆应用领域不仅需要考虑功能性能,还要考虑安全性和可靠性。在电机控制器设计过程中,一般将电机控制器作为一个自我完善的控制系统来对待,整车控制器(Vehicle control unit,VCU)对电机控制器(Motor controller unit,MCU)主要发送扭矩使能和扭矩指令。电机控制器对扭矩输出和其他指令自行进行判断,电机驱动系统拓扑典型结构如图1所示,电机控制系统架构如图2所示。
但是,在电机控制系统中,对于非预期状态的出现,完全靠电机控制器系统本身的检测机制达到更高的安全等级,需要的更多的检测机制和冗余机制,代价比较大。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,为此,本发明的一个目的在于提出一种电机控制系统,该系统可以提高整车的安全等级,增强车辆运行的安全性和可靠性。
本发明的第二个目的在于提出一种车辆。
为了达到上述目的,本发明的第一方面实施例提出了一种电机控制系统,该系统包括:整车控制器,用于获取整车状态数据,并在根据所述整车状态数据判断出整车非预期动力传输故障时,输出切断电机输出扭矩的指令;电机控制器,与所述整车控制器连接,用于响应于所述切断电机输出扭矩的指令,控制电机停止输出扭矩。
根据本发明实施例的电机控制系统,通过增加整车控制器对电机控制器的控制权来提高车辆的安全性,整车控制器充分利用整车状态数据,在判断出非预期动力传输故障时,输出切断电机输出扭矩的指令,并在电机控制器在接收到该指令后,停止输出电机控制扭矩,进入电机控制安全状态,避免因电机控制器本身无法检测出非预期状态故障,造成的电机 控制器损坏,提高了车辆运行的安全性和的可靠性。
在一些实施例中,所述整车控制器通过CAN总线发送所述切断电机输出扭矩的指令,或者,所述整车控制器通过硬线将切断电机输出扭矩的指令传输给所述电机控制器。
在一些实施例中,所述电机控制器包括主控单元、电源单元和驱动单元,所述驱动单元包括原边低压侧和副边高压侧;所述整车控制器的切断电机输出扭矩的指令传输至所述驱动单元的所述原边低压侧或者所述副边高压侧。
在一些实施例中,所述主控单元用于获取电机状态数据,并在根据所述电机状态数据确定电机运行异常时输出切断使能信号;所述驱动单元,用于在接收到所述切断使能信号和所述切断电机输出扭矩的指令的任一信号时,均控制电机停止输出扭矩。
在一些实施例中,所述电源单元用于监控所述主控单元的状态,并在所述主控单元或自身出现异常时输出安全切断信号;所述电源单元的安全切断信号和所述主控单元的切断使能信号传输至所述驱动单元的原边低压侧;所述驱动单元在接收到所述切断电机输出扭矩的指令、所述安全切断信号和所述切断使能信号中任一项信号时,均控制电机停止输出扭矩。
在一些实施例中,所述驱动单元为两组,其中,每组所述驱动单元包括三个驱动子单元,一组所述驱动单元的三个所述驱动子单元用于控制上桥臂三个开关管模块,另一组所述驱动单元的三个所述驱动子单元用于控制下桥臂三个开关管模块。
在一些实施例中,一组所述驱动单元由第一供电电源供电,另一组所述驱动单元由第二供电电源供电;或者,两组所述驱动单元由同一供电电源供电。
在一些实施例中,所述整车控制器传输的切断电机输出扭矩的指令为冗余信号,且采用相同的电平信号;或者,所述整车控制器传输的切断电机输出扭矩的指令为双稳态信号,且采用相反的电平信号。
在一些实施例中,所述整车控制器与所述主控单元之间连接有反馈通道,其中,所述反馈通道包括CAN通讯通道或者硬线连接通道;
所述整车控制器将所述切断电机输出扭矩的指令发送给所述主控单元,所述主控单元将接收到的所述切断电机输出扭矩的指令通过所述反馈通道再反馈给所述整车控制器,所述整车控制器根据所述主控单元反馈的所述切断电机输出扭矩的指令确定发送信息的正确性。
为了达到上述目的,本发明的第二方面实施例提出的一种车辆,该车辆包括:包括电机和上面实施例提到的电机控制系统,所述电机控制系统用于对所述电机进行控制。
根据本发明实施例的车辆,通过电机控制系统对电机进行控制,增强车辆的安全运行时间和运行可靠性。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是现有技术中一种电机驱动系统拓扑典型结构的示意图;
图2是现有技术中一种电机控制系统架构的示意图;
图3是根据本发明的一个实施例电机控制系统的示意图;
图4是根据本发明的另一个实施例的电机控制系统的示意图;
图5是根据本发明的一个实施例的电机控制系统的示意图;
图6是根据本发明的一个实施例的整车控制器的切断路径的冗余传输信号的示意图;
图7是根据本发明的一个实施例的整车控制器的切断路径的双稳态传输信号的示意图;以及
图8是根据本发明一个实施例的一种车辆的框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考图3-图7描述本发明实施例的第一方面实施的电机控制系统。
如图3所示,本发明实施例的电机控制系统10包括整车控制器110和电机控制器120。
其中,整车控制器110用于获取整车状态数据,并在根据整车状态数据判断出整车非预期动力输出异常时,输出切断电机输出扭矩的指令;电机控制器120与整车控制器110连接,用于响应于切断电机输出扭矩的指令,控制电机停止输出扭矩。
具体地,整车状态数据可以包括车辆的各种运行检测数据和各个器件反馈的故障数据,例如,整车控制器110可以通过车辆总线获取车辆的各种传感器信息例如加速度传感器、雷达检测、毫米波检测等智能检测数据,以及整车故障数据例如包括电机控制器120的故障数据、转向控制器的故障数据等。整车控制器110根据获取的车辆状态数据,判断出非预期的动力输出异常例如非预期的加速或运行状态与动力驱动不符或者非预期动力驱动状态时,输出切断电机输出扭矩指令。电机控制器120接收到该指令,可以直接切断其扭矩输出路径,此时,电机控制器120进入安全状态,保证车辆动力输出的安全性,使电机控 制系统10更加可靠。相较于传统的整车控制系统,通过增加整车控制器110在车辆发生非预期故障时,停止输出电机控制扭矩,使电机控制器120进入安全状态,保障车辆安全运行。可以避免因电机控制器120本身无法正常检测出非预期加速等故障时,对电机控制系统10造成不可逆的损害。
根据本发明实施例的电机控制系统10,通过增加整车控制器110对电机控制器120的控制权来提高车辆的安全性,整车控制器110充分利用整车状态数据,在判断出非预期动力传输故障时,输出切断电机输出扭矩的指令,并在电机控制器120在接收到该指令后,停止输出电机控制扭矩,进入电机控制安全状态,避免因电机控制器120本身无法检测出非预期状态故障,造成的电机控制器120损坏,提高了车辆的安全运行时间和运行的可靠性。
在一些实施例中,整车控制器110可以通过CAN总线发送切断电机输出扭矩的指令,或者,整车控制器110通过硬线将切断电机输出扭矩的指令传输给电机控制器120,即通过硬线直接传输控制信号给电机控制器120。通过硬线传输的安全性和及时性较高,便于判断出驱动故障时,及时输出切断扭矩指令,使电机控制器120尽快进入安全状态,从而使整车的电机控制系统10更加可靠。
在一些实施例中,如图3或4所示,电机控制器120包括主控单元130、电源单元140和驱动单元150,其中,主控单元130用于电机控制主功能运算,电源单元140用于给电机控制系统低压供电,驱动单元150用于转化驱动信号,也就是将主控单元130的信号转换程可以驱动功率模块的信号,三者的连接关系如图3或4所示。
驱动单元150包括原边低压侧和副边高压侧。如图3所示,整车控制器110的切断电机输出扭矩的指令可以传输至驱动单元150的原边低压侧,电源单元140的安全切断信号和主控单元130的切断使能信号传输至驱动单元150的原边低压侧,整车控制器110的切断电机输出扭矩的指令与电源单元140、主控单元130的信号组成使能路径控制功率模块的驱动单元150。
具体地,如图3所示,将整车控制器110的输出的切断电机输出扭矩的指令例如信号FS_IO1和FS_IO2、电源单元140输出的安全切断信号例如FS_signal和主控单元130输出的切断使能信号例如dis/en_able进行逻辑或计算,驱动单元150在接收到切断电机输出扭矩的指令、安全切断信号和切断使能信号中任一项信号时,均停止输出电机控制扭矩信号,使电机控制系统10进入安全状态。
其中,主控单元130用于获取电机状态数据例如电压、电流、转角等,并在根据电机状态数据确定电机运行异常时输出切断使能信号;驱动单元150在接收到切断使能信号和切断电机输出扭矩的指令的任一信号时,均停止输出电机控制扭矩,使得电机进入安全状态。
电机控制器120中的电源单元140也会监控主控单元130的状态,在自身出现异常或在主控单元130出现异常时,输出安全切断信号,也可以切断电机控制器120的扭矩输出。
当整车控制器110发现整车出现非预期控制状态例如非预期加速时,也可以输出安全切断信号,以安全切断驱动路径。整车控制器110是通过电机控制器120中原边控制电路来控制切断路径,以使电驱动系统进入安全状态。
在一些实施例中,如图5所示,整车控制器110的切断电机输出扭矩的指令也可以传输至驱动单元150的副边高压侧。
具体地,整车控制器110输出的切断电机输出扭矩的指令例如信号FS_IO1和FS_IO2传输至驱动单元150的副边高压侧,可以直接控制驱动板中的驱动单元150。
在实施例中,可以在主控单元130与整车控制器110之间设置反馈通道,电机控制器120可以将整车控制器110的硬线控制信息状态进行监控并反馈给整车控制器110。具体地,整车控制器110通过CAN总线或者硬线将切断电机输出扭矩的指令发送给主控单元130,主控单元130再将接收到的切断电机输出扭矩的指令通过反馈通道反馈给整车控制器110,其中,反馈通道可以包括CAN通讯通道或者硬件连接通道,整车控制器110根据主控单元130反馈的切断电机输出扭矩的指令判断发送信息的正确性。
如图3所示,FB_ss信号是电机控制器120的主控单元130与整车控制器110之间的反馈通道,可以是CAN通讯通道,也可以是硬线反馈通道,在此优选为CAN通讯通道。FS_ss1和FS_ss2分别是整车控制器110的FS_IO1和FS_IO2的反馈路径,将整车控制器110的安全切断信号反馈给主控单元130,然后主控单元130再通过FB_SS通道,将接收到的安全切断信号反馈给整车控制器110,整车控制器110接收到主控单元130反馈的安全切断信号后,识别该信号是否正确,如果正确,则整车控制器110发送信息正确,反之,则整车控制器110发送信息存在错误,由此可以起到对发送信息进行监控的目的,提高整车控制器110发送信息的准确性和安全性。在另一些实施例中,如图4所示,FS_ss1和FS_ss2的反馈路径也可以合并成一个路径FS_ss1进行控制和反馈,通过主控单元130与整车控制器110之间的信号反馈,整车控制器110可以对传输数据进行监控,以保证传输数据正确和稳定。
在实施例中,如图3或图4或图5,驱动单元150为两组,其中,每组驱动单元150包括三个驱动子单元,一组驱动单元150的三个驱动子单元用于控制上桥臂三个功率模块,另一组驱动单元150的三个驱动子单元用于控制下桥臂三个功率模块。
其中,如图5所示,一组驱动单元150由第一供电电源供电,另一个驱动单元150由第二供电电源供电,即驱动单元150的供电均是独立电源供电,也就是驱动单元150由两路独立供电电源Vcc给三相上下桥臂供电,以保证驱动板运行的可靠性。整车控制器110与电机控制器120中的主控部分即主控单元130和电源单元140,均可以独立控制驱动单元 150,使电机控制器120进入安全状态。当然,两组驱动单元150也可以由同一供电电源供电。
主控单元130用于获取电机状态数据,并在根据电机状态数据确定电机运行异常时输出切断使能信号;驱动单元150用于在接收到切断使能信号和切断电机输出扭矩的指令的任一信号时,均控制电机停止输出扭矩。
以及,电机控制器120中的电源单元140对主控单元130状态进行监控,在自身或主控单元130出现异常时,输出安全切断信号,电源单元140也可切断安全驱动,将驱动单元150切换至安全路径。
当整车控制器110发现整车出现非预期动力传输状态例如非预期的加速时,可以直接控制驱动单元150输出安全切断信号,以安全切断驱动路径,进入电驱动系统安全状态。
整车控制器110不通过电机控制器120中原边控制电路来控制切断路径,而是可以直接控制电机控制器120副边控制电路以使电驱动系统进入安全状态,电机控制器120和整车控制均110可以独立控制驱动单元150,以使电驱动进入安全状态。
在一些实施例中,整车控制器110传输的切断电机输出扭矩的指令为冗余信号,且采用相同的电平信号。如图6所示,采用两个相同的电平信号,以保证信号的可靠性。
在一些实施例中,整车控制器110传输的切断电机输出扭矩的指令为双稳态信号,且采用相反的电平信号。如图7所示,采用两个相反的电平信号,通过信号的差分,可以减少共模信号干扰,以保证信号的可靠性。或者,切断电机输出扭矩的指令也可以为CAN信号,或其他多路冗余信号。
概括来说,根据本发明实施例的电机控制系统10,通过增加整车控制器110对电机控制器120的控制权来提高车辆的安全性,整车控制器110充分利用整车状态信息,在判断出非预期动力传输故障时,输出切断电机输出扭矩的指令,并在电机控制器120在接收到该指令后,停止输出电机控制扭矩,进入电机控制安全状态,避免因电机控制器120本身无法检测出非预期状态故障,造成的电机控制器120损坏,提高了车辆的安全运行时间和运行的可靠性。
下面参照附图描述根据本发明第二方面实施例的车辆。
图8是根据本发明第四方面实施例的一种车辆的框图20,如图8所示,本发明实施例的一种车辆20,包括电机210和上面实施例提到的电机控制系统10,电机控制系统10用于对所述电机进行控制,具体控制路径可以参照上面实施例的说明。
根据本发明实施例的车辆20,通过采用上面实施例的电机控制系统10对电机210进行控制,可以增强车辆20运行的安全性和可靠性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、 “厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种电机控制系统,其特征在于,包括:
    整车控制器,用于获取整车状态数据,并在根据所述整车状态数据判断出整车非预期动力输出异常时,输出切断电机输出扭矩的指令;
    电机控制器,与所述整车控制器连接,用于响应于所述切断电机输出扭矩的指令,控制电机停止输出扭矩。
  2. 根据权利要求1所述的电机控制系统,其特征在于,所述整车控制器通过CAN总线发送所述切断电机输出扭矩的指令,或者,所述整车控制器通过硬线将切断电机输出扭矩的指令传输给所述电机控制器。
  3. 根据权利要求1或2所述的电机控制系统,其特征在于,所述电机控制器包括主控单元、电源单元和驱动单元,
    所述驱动单元包括原边低压侧和副边高压侧;
    所述整车控制器的切断电机输出扭矩的指令传输至所述驱动单元的所述原边低压侧或者所述副边高压侧。
  4. 根据权利要求3所述的电机控制系统,其特征在于,
    所述主控单元用于获取电机状态数据,并在根据所述电机状态数据确定电机运行异常时输出切断使能信号;
    所述驱动单元,用于在接收到所述切断使能信号和所述切断电机输出扭矩的指令的任一信号时,均控制电机停止输出扭矩。
  5. 根据权利要求4所述的电机控制系统,其特征在于,
    所述电源单元用于监控所述主控单元的状态,并在所述主控单元或自身出现异常时输出安全切断信号;
    所述电源单元的安全切断信号和所述主控单元的切断使能信号传输至所述驱动单元的原边低压侧;
    所述驱动单元在接收到所述切断电机输出扭矩的指令、所述安全切断信号和所述切断使能信号中任一项信号时,均控制电机停止输出扭矩。
  6. 根据权利要求3-5中任一项所述的电机控制系统,其特征在于,所述驱动单元为两组,其中,每组所述驱动单元包括三个驱动子单元,一组所述驱动单元的三个所述驱动子单元用于控制上桥臂三个功率模块,另一组所述驱动单元的三个所述驱动子单元用于控制下桥臂三个功率模块。
  7. 根据权利要求6所述的电机控制系统,其特征在于,
    一组所述驱动单元由第一供电电源供电,另一组所述驱动单元由第二供电电源供电;或者,两组所述驱动单元由同一供电电源供电。
  8. 根据权利要求1-7任一项所述的电机控制系统,其特征在于,所述整车控制器传输的切断电机输出扭矩的指令为冗余信号,且采用相同的电平信号,或者,所述整车控制器传输的切断电机输出扭矩的指令为双稳态信号,且采用相反的电平信号。
  9. 根据权利要求3-7中任一项所述的电机控制系统,其特征在于,
    所述整车控制器与所述主控单元之间连接有反馈通道,其中,所述反馈通道包括CAN通讯通道或者硬线连接通道;
    所述整车控制器将所述切断电机输出扭矩的指令发送给所述主控单元,所述主控单元将接收到的所述切断电机输出扭矩的指令通过所述反馈通道再反馈给所述整车控制器,所述整车控制器根据所述主控单元反馈的所述切断电机输出扭矩的指令确定发送信息的正确性。
  10. 一种车辆,其特征在于,包括电机和权利要求1-9任一项所述的电机控制系统,所述电机控制系统用于对所述电机进行控制。
PCT/CN2021/077946 2020-02-26 2021-02-25 电机控制系统和车辆 WO2021170047A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227033172A KR20220144407A (ko) 2020-02-26 2021-02-25 전기 모터 제어 시스템 및 차량
JP2022551327A JP7413555B2 (ja) 2020-02-26 2021-02-25 モータ制御システム及び車両
EP21760281.2A EP4109696A4 (en) 2020-02-26 2021-02-25 ELECTRIC MOTOR CONTROL SYSTEM AND VEHICLE
US17/896,853 US20220410718A1 (en) 2020-02-26 2022-08-26 Motor control system and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010120914.7A CN113315091B (zh) 2020-02-26 2020-02-26 电机控制系统和车辆
CN202010120914.7 2020-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/896,853 Continuation US20220410718A1 (en) 2020-02-26 2022-08-26 Motor control system and vehicle

Publications (1)

Publication Number Publication Date
WO2021170047A1 true WO2021170047A1 (zh) 2021-09-02

Family

ID=77370727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077946 WO2021170047A1 (zh) 2020-02-26 2021-02-25 电机控制系统和车辆

Country Status (6)

Country Link
US (1) US20220410718A1 (zh)
EP (1) EP4109696A4 (zh)
JP (1) JP7413555B2 (zh)
KR (1) KR20220144407A (zh)
CN (1) CN113315091B (zh)
WO (1) WO2021170047A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113775415A (zh) * 2021-09-10 2021-12-10 潍柴动力股份有限公司 指示灯的驱动状态确定方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513100B1 (ko) 2022-11-02 2023-03-23 주식회사 와이지-원 절삭인서트 및 이를 포함하는 절삭공구

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103863122A (zh) * 2012-12-14 2014-06-18 上海汽车集团股份有限公司 用于纯电动汽车的扭矩安全监控装置和方法
DE102013008770B3 (de) * 2013-05-23 2014-10-09 Audi Ag Verfahren zur Steuerung einer Sicherheitskupplung und Steuerungsvorrichtung für elektrisch angetriebene Fahrzeuge
US9463697B1 (en) * 2015-05-28 2016-10-11 Atieva, Inc. Dual data rate traction control system for a two wheel drive electric vehicle
CN107340762A (zh) * 2016-11-29 2017-11-10 安徽江淮汽车集团股份有限公司 一种整车异常功能检查方法及系统
CN107878258A (zh) * 2017-09-22 2018-04-06 简式国际汽车设计(北京)有限公司 一种纯电动汽车的车辆行驶控制方法及装置
CN110525232A (zh) * 2019-09-04 2019-12-03 天津易鼎丰动力科技有限公司 一种电动汽车用动力系统域控制器及其控制方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318757A (ja) * 1995-05-24 1996-12-03 Matsushita Electric Ind Co Ltd モータの制御方法
JP2000102288A (ja) 1998-09-25 2000-04-07 Denso Corp インバータ装置
JP3842462B2 (ja) * 1998-11-20 2006-11-08 富士重工業株式会社 ハイブリッド車の制御装置
JP2005161961A (ja) 2003-12-02 2005-06-23 Toyota Motor Corp 自動車
JP2006315660A (ja) * 2005-04-13 2006-11-24 Nissan Motor Co Ltd 車両用駆動制御装置
EP2306635A3 (en) * 2005-06-30 2017-07-26 Continental Automotive Systems, Inc. Control system for electric drives
JP2008125318A (ja) * 2006-11-15 2008-05-29 Toyota Motor Corp 車両および駆動装置並びにこれらの制御方法
CN101565003B (zh) * 2009-06-08 2012-07-11 奇瑞汽车股份有限公司 一种电动汽车的电机控制器及其控制方法
JP2012205332A (ja) 2011-03-24 2012-10-22 Hokkaido Railway Co 車両の監視装置及びこれを用いた車両の監視システム
JP6111516B2 (ja) * 2011-12-21 2017-04-12 スズキ株式会社 電動車両のモータ制御装置
CN202685982U (zh) * 2012-07-17 2013-01-23 武汉天运汽车电器有限公司 一种纯电动汽车的整车控制器
US10447195B2 (en) * 2013-07-23 2019-10-15 Atieva, Inc. Electric vehicle motor torque safety monitor
CN106708003B (zh) 2015-11-13 2019-06-28 湖南南车时代电动汽车股份有限公司 一种电机控制器故障检测系统及方法
US10340819B2 (en) * 2016-04-29 2019-07-02 Gm Global Technology Operations Llc. Fault shutdown control of an electric machine in a vehicle or other DC-powered torque system
CN106932208B (zh) * 2017-03-29 2020-03-06 北京新能源汽车股份有限公司 电动汽车驱动系统的输出扭矩监测方法、装置及电动汽车
CN207853453U (zh) 2018-01-17 2018-09-11 苏州汇川联合动力系统有限公司 备份电源电路、电机驱动器及电动汽车
CN108681318A (zh) * 2018-03-23 2018-10-19 浙江吉利汽车研究院有限公司 一种电机控制器的功能安全监控系统及其方法
CN108621798A (zh) * 2018-03-27 2018-10-09 广东陆地方舟新能源电动车辆有限公司 一种新能源汽车整车控制系统及其方法
CN108696226B (zh) * 2018-06-01 2020-07-07 阳光电源股份有限公司 一种电机控制器
CN109263482A (zh) * 2018-09-06 2019-01-25 北京长城华冠汽车科技股份有限公司 电动汽车的车速控制方法和车速控制系统及车辆
CN109733210B (zh) * 2019-02-26 2021-05-28 浙江吉利汽车研究院有限公司 一种整车控制器及具有其的电动汽车
CN110620543B (zh) * 2019-09-18 2021-11-05 珠海格力电器股份有限公司 一种安全转矩关闭系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103863122A (zh) * 2012-12-14 2014-06-18 上海汽车集团股份有限公司 用于纯电动汽车的扭矩安全监控装置和方法
DE102013008770B3 (de) * 2013-05-23 2014-10-09 Audi Ag Verfahren zur Steuerung einer Sicherheitskupplung und Steuerungsvorrichtung für elektrisch angetriebene Fahrzeuge
US9463697B1 (en) * 2015-05-28 2016-10-11 Atieva, Inc. Dual data rate traction control system for a two wheel drive electric vehicle
CN107340762A (zh) * 2016-11-29 2017-11-10 安徽江淮汽车集团股份有限公司 一种整车异常功能检查方法及系统
CN107878258A (zh) * 2017-09-22 2018-04-06 简式国际汽车设计(北京)有限公司 一种纯电动汽车的车辆行驶控制方法及装置
CN110525232A (zh) * 2019-09-04 2019-12-03 天津易鼎丰动力科技有限公司 一种电动汽车用动力系统域控制器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4109696A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113775415A (zh) * 2021-09-10 2021-12-10 潍柴动力股份有限公司 指示灯的驱动状态确定方法和装置

Also Published As

Publication number Publication date
CN113315091A (zh) 2021-08-27
EP4109696A1 (en) 2022-12-28
JP7413555B2 (ja) 2024-01-15
KR20220144407A (ko) 2022-10-26
JP2023516166A (ja) 2023-04-18
US20220410718A1 (en) 2022-12-29
EP4109696A4 (en) 2023-08-23
CN113315091B (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2021170047A1 (zh) 电机控制系统和车辆
CN112078366B (zh) 一种电动车辆双电源控制系统及电动车辆
WO2021232316A1 (zh) 一种冗余电子控制系统及设备
EP2495659B1 (en) Architecture using integrated backup control and protection hardware
CN112351933A (zh) 具有冗余配置的控制单元的机动车辆转向系统
KR102167906B1 (ko) 조향 제어 장치 및 이를 포함하는 조향 보조 시스템
US11973368B2 (en) Control apparatus of power converter
US9455655B2 (en) Motor control system
CN111942177A (zh) 一种asc控制装置及电机控制器
WO2022174807A1 (zh) 一种逆变器系统
US11757382B2 (en) Motor control system, method of operating a motor control system and aircraft
JP5067359B2 (ja) 電子制御システムの故障診断装置
WO2021185288A1 (zh) 电机控制系统和车辆
KR20230046373A (ko) 조향 제어 장치 및 방법
CN112114574B (zh) 一种双余度伺服系统故障检测与隔离方法及系统
CN111762262A (zh) 一种车辆后轮转向控制系统
US20220393632A1 (en) Motor control system and vehicle with same
KR20220120835A (ko) 모터 제어 장치 및 방법
KR102098048B1 (ko) 리던던트 구조의 차량 제어 장치 및 방법
KR20160072503A (ko) 엔진 제어기 고장 검출 장치 및 방법
CN113428015A (zh) 电机控制系统和方法以及电动车辆
CN115268312A (zh) 控制系统
CN115520267A (zh) 用于转向控制系统的故障响应方法和故障响应系统
CN113885391A (zh) 一种双余度舵机切换指令接口电路及指令切换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551327

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033172

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021760281

Country of ref document: EP

Effective date: 20220922