WO2022174807A1 - 一种逆变器系统 - Google Patents

一种逆变器系统 Download PDF

Info

Publication number
WO2022174807A1
WO2022174807A1 PCT/CN2022/076787 CN2022076787W WO2022174807A1 WO 2022174807 A1 WO2022174807 A1 WO 2022174807A1 CN 2022076787 W CN2022076787 W CN 2022076787W WO 2022174807 A1 WO2022174807 A1 WO 2022174807A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
current
control loop
inverters
phase
Prior art date
Application number
PCT/CN2022/076787
Other languages
English (en)
French (fr)
Inventor
王斯博
黄智昊
李志宇
李伟亮
刘金锋
苏瑞涛
刘佳男
苍衍
文彦东
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022174807A1 publication Critical patent/WO2022174807A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of electric vehicles, for example, to an inverter system.
  • the motor system is a key component that realizes the DC power supply of the battery, the conversion of mechanical energy of the wheels, and the driving operation of the motor, and belongs to the core power component of the electric vehicle.
  • NVH Noise, Vibration, Harshness
  • efficiency When high-performance requirements are required, single-phase motors are usually used. The devices are connected in parallel to achieve high-performance output.
  • dual-phase motors When high efficiency and low NVH are required, dual-phase motors are usually used, and two-way PWM (Pulse Width Modulation) with phase difference is used to achieve high efficiency and low NVH output requirements. But fewer electric vehicles are being sold now, leading to different demands that would lead to unmanageable costs if a completely new inverter was designed.
  • the embodiment of the present application provides an inverter system, which can improve the structural versatility of the inverter and reduce the production cost.
  • An embodiment of the present application provides an inverter system, including a dual-phase motor, a first current sensor, a second current sensor, a motor control module, and a plurality of inverters arranged in parallel;
  • the plurality of inverters include a first inverter and a second inverter; the first input end of the first inverter and the first input end of the second inverter are both connected to the positive pole of the power supply , the second input end of the first inverter and the second input end of the second inverter are both connected to the negative pole of the power supply; both the first inverter and the second inverter are set to Convert electrical energy from direct current to alternating current;
  • Both the output terminal of the first inverter and the output terminal of the second inverter are electrically connected to the dual-phase motor;
  • the dual-phase motor is configured to receive the first inverter and the dual-phase motor. driven by the alternating current converted by the second inverter;
  • the first current sensor is set in a one-to-one correspondence with the output terminal of the first inverter, and the first current sensor is set to detect the first current output by the corresponding output terminal of the first inverter;
  • the The second current sensor is arranged in a one-to-one correspondence with the output end of the second inverter, and the second current sensor is arranged to detect the second current output by the corresponding output end of the second inverter;
  • the motor control module is electrically connected to the first inverter and the second inverter, respectively, and the motor control module is configured to send a drive signal to a plurality of all inverters according to the first current and the second current. the inverter.
  • FIG. 1 is a schematic structural diagram of an inverter system provided by an embodiment of the present application
  • FIG. 2 is a structural block diagram of an inverter system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another inverter system provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an inverter system provided by an embodiment of the present application.
  • the inverter system 10 includes: a dual-phase motor 200 , a first current sensor 300 , a second current sensor 400 , a motor control module 500 , and a plurality of inverters 100 (ie, at least two inverters) arranged in parallel.
  • the plurality of inverters 100 include a first inverter 110 and a second inverter 120;
  • the first input terminals are both connected to the positive pole of the power supply 20
  • the second input terminal of the first inverter 110 and the second input terminal of the second inverter 120 are both connected to the negative pole of the power supply 20 ;
  • the inverters 120 are all configured to convert electrical energy from direct current to alternating current;
  • the output end of the first inverter 110 and the output end of the second inverter 120 are both electrically connected to the dual-phase motor 200 ;
  • the dual-phase motor 200 is provided with It is driven to receive the alternating current converted by the first inverter 110 and the second inverter 120;
  • the first current sensor 300 is set in a one-to-one correspondence with the output terminals of the first inverter 110, and the first current sensor 300 is set to detect The first current output by the corresponding output terminal of the first inverter 110 ;
  • the second current sensor 400 is set in a one-to
  • the dual three-phase motor 200 may be a device that can convert electrical energy into mechanical energy to drive other equipment to move.
  • the electrical energy used by the dual three-phase motor 200 is generally alternating current, while the power supply of the power supply 20 is generally direct current.
  • Devices that can convert direct current to alternating current are provided between the three-phase motors 200 for use by the dual three-phase motors 200 , and the inverter 100 is the device that can convert direct current to alternating current.
  • Different models have different requirements for motor performance, NVH and efficiency. When high performance is required, a single-phase motor is usually used, and devices are connected in parallel to achieve high-performance output. When high efficiency and low NVH are required, usually Using dual three-phase motors, the requirements of high efficiency and low NVH output are achieved through two-way PWM with phase difference.
  • At least two parallel-connected inverters are arranged between the power source 20 and the dual-phase motor 200 to convert the direct current of the power source into alternating current.
  • a first current sensor 300 is set at the output end of the first inverter 110 , the first current sensor 300 is set to detect the first current, and a second current is set at the output end of the second inverter 120
  • the sensor 400 and the second current sensor 400 are configured to detect the second current, so that the motor control module 500 sends a driving signal to the first inverter 110 and the second inverter 120 according to the first current and the second current, so as to realize the
  • the control of the working states of the first inverter 110 and the second inverter 120 further realizes different working control modes of the dual three-phase motor 200 .
  • the embodiment of the present application can control the inverter system to be in different working modes, improve the structural versatility of the inverter system, and reduce the production cost.
  • the first current sensor 300 and the second current sensor 400 can sense the information of the measured current, and can transform the sensed information into an electrical signal or other required information according to a certain rule. It is a detection device for information output in the form of information to meet the requirements of information transmission, processing, storage, display, recording and control.
  • the motor control module 500 may be a control device with a computing and processing function, and the motor control module 500 is electrically connected to the first current sensor 300 and the second current sensor 400, and is also electrically connected to a plurality of inverters (110 and 120) respectively, according to The first current and the second current generate driving signals and send them to a plurality of inverters (110 and 120), and control the plurality of inverters (110 and 120) to convert the direct current of the power source into the working state of alternating current.
  • the technical solutions provided by the embodiments of the present application can improve the structural versatility of the inverter system 10 and reduce the production cost.
  • the inverter system 10 may further include: a first capacitor 600 , the first end of which is electrically connected to the first input end of the first inverter 110 ; the first capacitor 600 is electrically connected to the first input end of the first inverter 110 ; The second end of the capacitor 600 is electrically connected to the second input end of the first inverter 110; the second capacitor 700, the first end of the second capacitor 700 is electrically connected to the first input end of the second inverter 120; The second terminal of the second capacitor 700 is electrically connected to the second input terminal of the second inverter 120 .
  • a one-to-one correspondence of capacitors (600 and 700) is set between the first input terminals and the second input terminals of the multiple inverters (110 and 120), that is, the multiple capacitors (600 and 700) correspond to the one-to-one inverters
  • the inverters (110 and 120) are arranged in parallel, which can effectively support the stable operation of the multiple inverters (110 and 120).
  • FIG. 2 is a structural block diagram of an inverter system provided by an embodiment of the present application.
  • the motor control module 500 may include a main control loop 510 and an auxiliary control loop 520 ; the auxiliary control loop 520 is electrically connected to the first current sensor 300 and the second current sensor 400 respectively, and the auxiliary control loop 520 is The control loop 520 is set to obtain the first current and the second current; the auxiliary control loop 520 is electrically connected to the main control loop 510, and the auxiliary control loop 520 is set to send the first current and the second current to the main control loop 510, and send the main control loop 510 to the main control loop 510.
  • the driving signals fed back by the control loop 510 are respectively sent to the first inverter 110 and the second inverter 120 ; the main control loop 510 is also electrically connected with the vehicle system 30 to realize the connection between the inverter system 10 and the vehicle system 30 . interaction between.
  • the main control loop 510 may be a central processing unit capable of implementing the core algorithm of the inverter system, and is mainly responsible for the core algorithm of the inverter system and the interaction with the vehicle system, and provides control signals to the auxiliary control loop 520.
  • the auxiliary control loop 520 may be an executive controller capable of receiving signals, sending signals, and detecting and controlling multiple devices, and is mainly responsible for receiving multiple inverters (110 and 120), the first current sensor 300 and the second current The first current and the second current fed back by the sensor 400, and the information parameters reported by the multiple inverters (110 and 120) are checked with each other, and the main control loop 510 is also responsible for decomposing the main control loop 510 to many according to the information fed back by the multiple devices. The instruction requirements of each device device realize the control of multiple device devices.
  • the main control loop 510 is electrically connected with the auxiliary control loop 520
  • the auxiliary control loop 520 is electrically connected with the first current sensor 300 and the second current sensor 400 respectively
  • the auxiliary control loop 520 is also electrically connected with a plurality of inverters (110 and 120).
  • the main control loop 510 receives the first current detected by the first current sensor 300 and the second current detected by the second current sensor 400 through the auxiliary control loop 520, and makes relevant calculations to generate a drive signal, which is then sent to the auxiliary The control loop 520; the auxiliary control loop 520 generates a driving command according to the driving signal, and controls the working states of the plurality of inverters (110 and 120).
  • the main control circuit 510 is also electrically connected to the vehicle system 30 of the electric vehicle, and the user can send control commands to the main control circuit 510 through the vehicle system 30 to control the inverter system 10 .
  • the inverter system 10 provided by the embodiment of the present application adopts a dual-phase motor 200, and a first inverter 110 and a second inverter 120 are arranged in parallel between the power source 20 and the dual-phase motor 200, which can be controlled by the motor
  • the auxiliary control loop 520 of the module 500 cooperates with the main control loop 510 to realize the single-phase motor control mode and the dual-phase motor control mode of the inverter system 10 .
  • the two control modes of the inverter system 10 will be described in detail.
  • FIG. 3 is a schematic structural diagram of another inverter system provided by an embodiment of the present application.
  • the inverter system 10 may be in a single-phase motor control mode; the first inverter 110 and the second inverter 120 are both three-phase bridge inverters, each including 6 switch tubes (T1, T2, T3, T4, T5, and T6); the dual-phase motor 200 may include a first single-phase motor winding (A1, B1, C1) and a second single-phase motor winding (A2, B2) , C2); the output end of the first inverter 110 and the output end of the second inverter 120 are both electrically connected to the first single-phase motor windings (A1, B1, C1); the main control loop 510 is set to The summation of a current and a second current generates 6 channels of PWM signals corresponding to the 6 switches (T1, T2, T3, T4, T5 and T6) one-to-one; the auxiliary control loop 520 is set to The modulated signal is
  • the first A-phase current of the A-phase output terminal of the first inverter 110 and the second A-phase current of the A-phase output terminal of the second inverter 120 are transmitted to the A1 winding of a single-phase motor winding; the first B-phase current of the B-phase output terminal of the first inverter 110 and the second B-phase current of the B-phase output terminal of the second inverter 120 are transmitted to the B1 winding of the first single-phase motor winding; the first C-phase current of the C-phase output terminal of the first inverter 110 and the second C-phase current of the C-phase output terminal of the second inverter 120 are transmitted in a summation manner to the C1 winding of the first single-phase motor winding; the three windings (A2, B2, C2) of the second single-phase motor winding are suspended.
  • the first A-phase current sensor 310 of the first current sensor 300 detects the first A-phase current
  • the second A-phase current sensor 410 of the second current sensor 400 detects the second A-phase current
  • the first B-phase current of the first current sensor 300 The current sensor 320 detects the first B-phase current
  • the second B-phase current sensor 420 of the second current sensor 400 detects the second B-phase current
  • the first C-phase current sensor 330 of the first current sensor 300 detects the first C-phase current
  • the second C-phase current sensor 430 of the second current sensor 400 detects the second C-phase current.
  • the auxiliary control loop 520 transmits the first A-phase current, the second A-phase current, the first B-phase current, the second B-phase current, the first C-phase current and the second C-phase current to the main control loop 510, and the main control loop 510
  • Add the first A-phase current and the second A-phase current add the first B-phase current and the second B-phase current, add the first C-phase current and the second C-phase current, and generate a drive signal , that is, 6 channels of PWM signals corresponding to the 6 switches (T1, T2, T3, T4, T5 and T6) are generated and sent to the auxiliary control loop 520, and the auxiliary control loop 520 modulates the 6 channels of PWM signals.
  • the signal is output to the first inverter 110 and the second inverter 120 to realize the six switch tubes (T1, T2, T3, T4, T5 and T6) of the first inverter 110 and the second inverter 120 ) is turned on and off at the same time.
  • the six switches can be insulated gate bipolar transistors IGBT (Insulated Gate Bipolar Transistor), metal-oxide semiconductor field effect transistor MOSFET (Metal- Oxide-Semiconductor Field-Effect Transistor), Integrated Gate-Commutated Thyristor IGCT (Integrated Gate-Commutated Thyristor), etc.
  • the inverter system 10 may be in a dual-three-phase motor control mode; the first inverter 110 and the second inverter 120 are both three-phase bridge inverters, each including 6 switch tubes (T1, T2, T3, T4, T5, and T6); the dual-phase motor 200 may include a first single-phase motor winding (A1, B1, C1) and a second single-phase motor winding (A2, B2) , C2); the output end of the first inverter 110 is electrically connected to the first single-phase motor winding (A1, B1, C1); the output end of the second inverter 120 is electrically connected to the second single-phase motor winding (A2 , B2, C2) are electrically connected; the main control loop 510 is configured to generate six first pulse width modulation signals corresponding to the six switching tubes of the first inverter 110 according to the weighting of the first current and the second current.
  • the dual-phase motor 200 may include a first single-phase motor winding (A1, B1, C1) and a second single-phase motor
  • the auxiliary control loop 520 is set to output the first PWM signal to the first inverter 110, and output the second pulse width modulation signal to the second inverter 120 .
  • the first A-phase current of the A-phase output terminal of the first inverter 110 is transmitted to the A1 winding of the first single-phase motor winding
  • the first A-phase current of the A-phase output terminal of the second inverter 120 is transmitted to the A1 winding of the first single-phase motor winding.
  • the two A-phase currents are transmitted to the A2 winding of the second single-phase motor winding; the first B-phase current of the B-phase output terminal of the first inverter 110 is transmitted to the B1 winding of the first single-phase motor winding, and the second inverter
  • the second B-phase current of the B-phase output terminal of the inverter 120 is transmitted to the B2 winding of the second single-phase motor winding, and the first C-phase current of the C-phase output terminal of the first inverter 110 is transmitted to the first single-phase motor winding.
  • C1 winding, the second C-phase current of the C-phase output terminal of the second inverter 120 is transmitted to the C2 winding of the second single-phase motor winding.
  • the first A-phase current sensor 310 of the first current sensor 300 detects the first A-phase current
  • the second A-phase current sensor 410 of the second current sensor 400 detects the second A-phase current
  • the first B-phase current of the first current sensor 300 The current sensor 320 detects the first B-phase current
  • the second B-phase current sensor 420 of the second current sensor 400 detects the second B-phase current
  • the first C-phase current sensor 330 of the first current sensor 300 detects the first C-phase current
  • the second C-phase current sensor 430 of the second current sensor 400 detects the second C-phase current.
  • the auxiliary control loop 520 transmits the first A-phase current, the second A-phase current, the first B-phase current, the second B-phase current, the first C-phase current and the second C-phase current to the main control loop 510, and the main control loop 510 Perform weighted calculation on the first A-phase current and the second A-phase current.
  • the first A-phase current and the second A-phase current may be added according to their vector directions.
  • the first B-phase current Perform weighted calculation on the current and the second B-phase current, perform weighted calculation on the first C-phase current and the second C-phase current, and generate a driving signal, for example, generate 6 switches and 6 switches of the first inverter 110
  • the first PWM signals corresponding to the transistors (T1, T2, T3, T4, T5 and T6) one-to-one generate 6 channels of the 6 switching transistors (T1', T2', T3', T4', T5', and T6') correspond to the second pulse width modulation signals, and are output to the first inverter 110 and the second inverter 120 respectively through the auxiliary control loop 520, so as to realize the first inverter
  • phase difference between the first phase A current and the second phase A current is 30°
  • phase difference between the first phase B current and the second phase B current is 30°
  • phase difference between the first phase C current and the second phase C current is 30°.
  • the phase currents are out of phase by 30°.
  • a single-pole double-throw switch may be provided at the A-phase output end, the B-phase output end, and the C-phase output end of the second inverter 120, respectively, so that the second inverter 120 can operate at the first single-pole double-throw switch.
  • the inverters (110 and 120) may further include: self-test circuits (111 and 121), and the self-test circuits are configured to detect the operating parameters of the inverters (110 and 120). ;
  • the auxiliary control loop 520 is also electrically connected with the plurality of inverters (110 and 120), and the auxiliary control loop 520 is configured to check the operating parameters between the plurality of inverters (110 and 120), and according to the operating parameters The inverters (110 and 120) are controlled.
  • Self-checking circuits 111 and 121 are respectively integrated in the first inverter 110 and the second inverter 120 .
  • the self-test circuits (111 and 121) may include various sensors with detection functions, and the self-test circuits (111 and 121) may detect the operating states of the inverters (110 and 120) in real time, such as temperature, voltage, current, etc. .
  • the auxiliary control loop 520 is respectively electrically connected to the self-checking circuits (111 and 121) of the plurality of inverters (110 and 120), and the self-checking circuits (111 and 121) feed back the detection information to the auxiliary control loop 520.
  • the self-checking circuits (111 and 121) may at least include temperature sensors (1111 and 1211), voltage sensors (1112 and 1212) and third current sensors (1113 and 1213); the operating parameters at least may include temperature information, voltage information and third current information; the auxiliary control loop 520 is configured to distinguish the temperature information of each inverter (110 and 120) and reduce the drive signal when the temperature information is greater than the temperature threshold; the auxiliary control loop 520 is also arranged to discriminate the voltage information of each inverter (110 and 120) and reduce the drive signal when the voltage information is greater than the voltage threshold; the auxiliary control loop 520 is also arranged to The third current information of , is discriminated and the driving signal is reduced when the third current information is greater than the current threshold.
  • the temperature sensors (1111 and 1211) are detection devices that can detect the working temperature of the inverters (110 and 120) in real time
  • the voltage sensors (1112 and 1212) are the detection devices that can detect the working voltage of the inverters (110 and 120).
  • the detection device for real-time detection, the third current sensors (1113 and 1213) are detection devices that can perform real-time detection on the working current of the inverters (110 and 120).
  • voltage sensors (1112 and 1212) and third current sensors (1113 and 1213) are integrated in the inverters (110 and 120) to detect the running status of the inverters (110 and 120) in real time, and convert the temperature information,
  • the operating parameters such as the voltage information and the third current information are fed back to the auxiliary control loop 520, and the auxiliary control loop 520 distinguishes the temperature information, the voltage information and the third current information, and determines the temperature state and the voltage state of the inverters (110 and 120).
  • the driving signal may be a pulse width modulated signal capable of adjusting the width or duty cycle, and reducing the driving signal means reducing the pulse width or reducing the duty cycle.
  • the measurement accuracy of the first current sensor and the measurement accuracy of the second current sensor may be greater than the measurement accuracy of the third current sensor.
  • the first current sensor 300 provided in this embodiment of the present application is configured to detect the first current at the output end of the first inverter 110, and the second current sensor 400 is configured to detect the second current at the output end of the second inverter 120, so that the main control
  • the loop 510 can accurately calculate and generate the driving signal according to the first current and the second current, so the measurement accuracy of the first current sensor 300 and the second current sensor 400 is relatively high;
  • the third current sensor (1113 and 1213) is set to detect the inverse
  • the third current information of the inverters (110 and 120) is used to make the auxiliary control loop 520 check whether the third current information is normal. Therefore, the measurement accuracy of the third current sensors (1113 and 1213) is relatively low.
  • the self-test circuits (111 and 121) may further include fault detection circuits (1114 and 1214), and the fault detection circuits (1114 and 1214) are configured to Fault detection; the auxiliary control loop 520 is further configured to stop sending the drive signal to the inverter (110 or 120) after the inverter (110 or 120) fails, and send the drive signal to the inverter (120 or 110) that does not fail ) to send the drive signal.
  • the fault detection circuits (1114 and 1214) of the self-checking circuits (111 and 121) are set to detect the working state of the inverters (110 and 120) in real time, and detect whether the inverters (110 or 120) are short-circuited, open-circuited, etc. fault, and when an inverter (110 or 120) fails, the auxiliary control loop 520 will enter the limp mode, and stop sending driving signals to the faulty inverter (110 or 120) to control the faulty inverter
  • the inverter (110 or 120) is deactivated, and a drive signal is sent to the inverter (120 or 110) that has not failed, ie, the operation is maintained only by the inverter (120 or 110) that has not failed.
  • the auxiliary control loop 520 automatically activates the limp mode, and stops transmission to the failed inverter (110 or 120).
  • the drive signal is used to control the failure of the inverter (110 or 120) to deactivate, and continue to generate the drive signal to the inverter (120 or 110) that has not failed, that is, rely only on the inverter that has not failed (120 or 110). 110) Maintain operation.
  • the auxiliary control loop 520 activates the limp mode, and stops sending driving signals to the failed inverter (110 or 120) to control the occurrence of The failed inverter (110 or 120) is deactivated, and continues to generate driving signals to the non-faulty inverter (120 or 110), ie, the operation is maintained only by the non-faulty inverter (120 or 110).
  • the inverters (110 and 120) may further include: driving units (112 and 122), and the driving units (112 and 122) are configured to drive the inverters (110 and 120 according to the driving signal) ); the auxiliary control loop 520 is electrically connected to the drive units (112 and 122), and the drive units (112 and 122) are configured to check the drive signals in the plurality of inverters (110 and 120), and ensure that the single-phase three-phase In the motor control mode, the corresponding switches of multiple inverters are turned on or off at the same time.
  • the inverters (110 and 120) are electrically connected to the auxiliary control circuit 520 through the drive units (112 and 122), and the drive units (112 and 122) are configured to receive the drive signals sent by the auxiliary control circuit 520, as well as other control instructions. Whether the drive signal is correct, in the single-phase motor control mode, to ensure that the multiple switches of the multiple inverters (110 and 120) are turned on or off at the same time, so as to ensure that the multiple inverters (110 and 120) The switch action is completely consistent to avoid delay.
  • At least two first inverters and second inverters arranged in parallel are arranged between the power supply and the dual-phase motor, and the first current sensor detects the first current at the output end of the first inverter, The second power sensor detects the second current at the output of the second inverter, and sends it to the main control loop through the auxiliary control loop.
  • the main control loop generates a driving signal according to the first current and the second current, and sends it to a plurality of
  • the drive unit of the inverter can realize flexible control of multiple inverters, and then realize the flexible switching between the single-phase control mode and the dual-phase control mode of the inverter system, which greatly improves the inverter system.
  • the structure is universal and the production cost is reduced; at the same time, a self-test circuit electrically connected to the auxiliary control circuit is also provided in each inverter, and the temperature sensor, voltage sensor and third current sensor of the self-test circuit are used for the inverter.
  • the operating parameters are detected, and the fault detection circuit of the self-test circuit detects the operating state of the inverter.
  • the auxiliary control circuit reduces the drive signal of the inverter.
  • the limp mode is automatically activated, the faulty inverter is stopped, and only the non-faulty inverters are maintained to maintain operation.
  • automatic adjustment The power supply status of multiple inverters can avoid the sudden power failure of the motor, thereby improving the performance and redundancy of the inverter system.

Abstract

本申请公开了一种逆变器系统,包括双三相电动机、第一电流传感器、第二电流传感器、电机控制模块和并联设置的多个逆变器;多个逆变器包括第一逆变器和第二逆变器,第一逆变器和第二逆变器均设置为将电能由直流电转换为交流电;双三相电动机设置为接收第一逆变器和第二逆变器转换的交流电而被驱动;第一电流传感器设置为检测第一逆变器的对应输出端输出的第一电流;第二电流传感器设置为检测第二逆变器的对应输出端输出的第二电流;电机控制模块设置为根据第一电流和第二电流发出驱动信号至多个逆变器。

Description

一种逆变器系统
本申请要求在2021年2月18日提交中国专利局、申请号为202110190260.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车技术领域,例如涉及一种逆变器系统。
背景技术
在电动汽车中,电机系统是实现电池的直流电供电与车轮机械能转换、实现电机的驱动运行的关键部件,属于电动汽车的核心功率部件。随着电动车在市场的扩张,不同的车型对电机的性能以及NVH(Noise、Vibration、Harshness),以及效率的需求是不一样的,在需要高性能需求时,通常采用单三相电机,通过器件并联达到高性能输出的目的,在需要高效率、低NVH时,通常采用双三相电机,通过带相位差的两路PWM(Pulse Width Modulation),来实现高效率、低NVH输出的要求。但是现在电动车的销量较少,导致不同的需求如果完全设计新的逆变器会导致成本不受控。
发明内容
本申请实施例提供了一种逆变器系统,可提升逆变器的结构通用性,降低生产成本。
本申请实施例提供了一种逆变器系统,包括双三相电动机、第一电流传感器、第二电流传感器、电机控制模块和并联设置的多个逆变器;
多个所述逆变器包括第一逆变器和第二逆变器;所述第一逆变器的第一输入端和所述第二逆变器的第一输入端均与电源正极连接,所述第一逆变器的第二输入端和所述第二逆变器的第二输入端均与电源负极连接;所述第一逆变器和所述第二逆变器均设置为将电能由直流电转换为交流电;
所述第一逆变器的输出端和所述第二逆变器的输出端均与所述双三相电动机电连接;所述双三相电动机设置为接收所述第一逆变器和所述第二逆变器转换的交流电而被驱动;
所述第一电流传感器与所述第一逆变器的输出端一一对应设置,所述第一电流传感器设置为检测所述第一逆变器的对应输出端输出的第一电流;所述第二电流传感器与所述第二逆变器的输出端一一对应设置,所述第二电流传感器设置为检测所述第二逆变器的对应输出端输出的第二电流;
所述电机控制模块分别与所述第一逆变器和所述第二逆变器电连接,所述电机控制模块设置为根据所述第一电流和所述第二电流发出驱动信号至多个所述逆变器。
附图说明
图1是本申请实施例提供的一种逆变器系统的结构示意;
图2是本申请实施例提供的一种逆变器系统的结构框图;
图3是本申请实施例提供的另一种逆变器系统的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。。
图1是本申请实施例提供的一种逆变器系统的结构示意图。如图1所示,该逆变器系统10包括:双三相电动机200、第一电流传感器300、第二电流传感器400、电机控制模块500和并联设置的多个逆变器100(即至少两个并联设置的逆变器100);多个逆变器100包括第一逆变器110和第二逆变器120;第一逆变器110的第一输入端和第二逆变器120的第一输入端均与电源20正极连接,第一逆变器110的第二输入端和第二逆变器120的第二输入端均与电源20负极连接;第一逆变器110和第二逆变器120均设置为将电能由直流电转换为交流电;第一逆变器110的输出端和第二逆变器120的输出端均与双三相电动 机200电连接;双三相电动机200设置为接收第一逆变器110和第二逆变器120转换的交流电而被驱动;第一电流传感器300与第一逆变器110的输出端一一对应设置,第一电流传感器300设置为检测第一逆变器110的对应输出端输出的第一电流;第二电流传感器400与第二逆变器120的输出端一一对应设置,第二电流传感器400设置为检测第二逆变器120的对应输出端输出的第二电流;电机控制模块500分别与第一逆变器110和第二逆变器120电连接,电机控制模块500设置为根据第一电流和第二电流发出驱动信号至多个逆变器(110和120)。
双三相电动机200可以是能够将电能转换成机械能以驱动其他设备运动的器件,双三相电动机200所使用的电能一般为交流电,而电源20的供电一般为直流电,因此需要在电源20与双三相电动机200之间设置可以将直流电转换为交流电的设备器件,以供双三相电动机200使用,逆变器100就是可以将直流电能转换为交流电能的设备器件。不同的车型对电机的性能,以及NVH和效率的需求不同,在需要高性能需求时,通常采用单三相电机,通过器件并联达到高性能输出的目的,在需要高效率、低NVH时,通常采用双三相电机,通过带相位差的两路PWM来实现高效率、低NVH输出的要求。
本申请实施例通过在电源20与双三相电动机200之间设置至少两个并联设置的逆变器(即第一逆变器110和第二逆变器120),将电源的直流电转换为交流电以驱动双三相电动机,在第一逆变器110的输出端设置第一电流传感器300,第一电流传感器300设置为检测第一电流,在第二逆变器120的输出端设置第二电流传感器400,第二电流传感器400设置为检测第二电流,进而使得电机控制模块500根据第一电流和第二电流对第一逆变器110和第二逆变器120发送驱动信号,来实现对第一逆变器110和第二逆变器120的工作状态的控制,进而实现双三相电动机200的不同工作控制模式。本申请实施例可控制逆变器系统处于不同工作模式,提升逆变器系统的结构通用性,降低生产成本。
示例性的,第一电流传感器300和第二电流传感器400可以是能感受到被 测电流的信息,并能将检测感受到的信息按一定规律变换成为符合一定标准需要的电信号或其他所需形式的信息输出的检测装置,以满足信息的传输、处理、存储、显示、记录和控制等要求。电机控制模块500可以是具有计算处理功能的控制装置,电机控制模块500与第一电流传感器300和第二电流传感器400电连接,还分别与多个逆变器(110和120)电连接,根据第一电流和第二电流产生驱动信号,并发送至多个逆变器(110和120),控制多个逆变器(110和120)将电源的直流电转换为交流电的工作状态。本申请实施例提供的技术方案,可提升逆变器系统10的结构通用性,降低生产成本。
可选的,参考图1所示,该逆变器系统10还可以包括:第一电容600,第一电容600的第一端与第一逆变器110的第一输入端电连接;第一电容600的第二端与第一逆变器110的第二输入端电连接;第二电容700,第二电容700的第一端与第二逆变器120的第一输入端电连接;第二电容700的第二端与第二逆变器120的第二输入端电连接。
在多个逆变器(110和120)第一输入端和第二输入端之间设置一一对应的电容(600和700),即多个电容(600和700)与一一对应的逆变器(110和120)并联设置,可以有效支撑多个逆变器(110和120)的稳定工作。
图2是本申请实施例提供的一种逆变器系统的结构框图。可选的,参考图1和图2所示,电机控制模块500可以包括主控制回路510和辅助控制回路520;辅助控制回路520分别与第一电流传感器300和第二电流传感器400电连接,辅助控制回路520设置为获取第一电流和第二电流;辅助控制回路520与主控制回路510电连接,辅助控制回路520设置为将第一电流和第二电流发送至主控制回路510,并将主控制回路510反馈的驱动信号分别发送至第一逆变器110和第二逆变器120;主控制回路510还与整车系统30电连接,以实现逆变器系统10和整车系统30之间的交互。
主控制回路510可以是能够实现逆变器系统核心算法的中央处理器,主要负责逆变器系统核心算法和与整车系统之间的交互,并将控制信号提供给辅助 控制回路520。辅助控制回路520可以是能够接接收信号、发送信号以及对多个装置器件进行检测控制的执行控制器,主要负责接收多个逆变器(110和120)以及第一电流传感器300和第二电流传感器400反馈的第一电流和第二电流,并对多个逆变器(110和120)上报的信息参数进行互相校核,还负责根据多个设备器件反馈的信息分解主控制回路510对多个设备器件的指令需求,实现对多个设备器件的控制。
主控制回路510与辅助控制回路520电连接,辅助控制回路520分别与第一电流传感器300和第二电流传感器400电连接,辅助控制回路520还与多个逆变器(110和120)电连接,主控制回路510通过辅助控制回路520接收第一电流传感器300检测得到的第一电流,以及第二电流传感器400检测得到的第二电流,并做出相关计算,生成驱动信号,随后发送至辅助控制回路520;辅助控制回路520根据驱动信号产生驱动指令,控制多个逆变器(110和120)的工作状态。
主控制回路510还与电动车的整车系统30电连接,用户可以通过整车系统30对主控制回路510发送控制指令,进而实现对逆变器系统10的控制。
本申请实施例提供的逆变器系统10采用双三相电动机200,并在电源20和双三相电动机200之间并联设置第一逆变器110和第二逆变器120,可以通过电机控制模块500的辅助控制回路520配合主控制回路510,实现该逆变器系统10的单三相电机控制模式和双三相电机控制模式。接下来对该逆变器系统10的两种控制模式进行详细说明。
图3是本申请实施例提供的另一种逆变器系统的结构示意图。可选的,参考图3所示,逆变器系统10可以处于单三相电机控制模式;第一逆变器110和第二逆变器120均为三相桥式逆变器,均包括6个开关管(T1、T2、T3、T4、T5和T6);双三相电动机200可以包括第一单三相电机绕组(A1、B1、C1)和第二单三相电机绕组(A2、B2、C2);第一逆变器110的输出端和第二逆变器120的输出端均与第一单三相电机绕组(A1、B1、C1)电连接;主控制回路510 设置为根据第一电流和第二电流的加和产生6路与6个开关管(T1、T2、T3、T4、T5和T6)一一对应的脉宽调制信号;辅助控制回路520设置为将6路脉宽调制信号输出至第一逆变器110和所第二逆变器120。
在单三相电机控制模式下,第一逆变器110的A相输出端的第一A相电流和第二逆变器120的A相输出端的第二A相电流采用加和的方式传输至第一单三相电机绕组的A1绕组;第一逆变器110的B相输出端的第一B相电流和第二逆变器120的B相输出端的第二B相电流采用加和的方式传输至第一单三相电机绕组的B1绕组;第一逆变器110的C相输出端的第一C相电流和第二逆变器120输出端的C相的第二C相电流采用加和的方式传输至第一单三相电机绕组的C1绕组;第二单三相电机绕组的三个绕组(A2、B2、C2)悬空。第一电流传感器300的第一A相电流传感器310检测第一A相电流,第二电流传感器400的第二A相电流传感器410检测第二A相电流;第一电流传感器300的第一B相电流传感器320检测第一B相电流,第二电流传感器400的第二B相电流传感器420检测第二B相电流;第一电流传感器300的第一C相电流传感器330检测第一C相电流,第二电流传感器400的第二C相电流传感器430检测第二C相电流。辅助控制回路520将第一A相电流、第二A相电流、第一B相电流、第二B相电流、第一C相电流和第二C相电流传输至主控制回路510,主控制回路510将第一A相电流和第二A相电流加和,将第一B相电流和第二B相电流加和,将第一C相电流和第二C相电流加和,并产生驱动信号,即产生6路与6个开关管(T1、T2、T3、T4、T5和T6)一一对应的脉宽调制信号,并发送至辅助控制回路520,辅助控制回路520将6路脉宽调制信号输出至第一逆变器110和所第二逆变器120,实现对第一逆变器110和第二逆变器120的6个开关管(T1、T2、T3、T4、T5和T6)的同时导通与关断。可以理解的是,6个开关管(T1、T2、T3、T4、T5和T6)可以为绝缘栅双极型晶体管IGBT(Insulated Gate Bipolar Transistor)、金属-氧化物半导体场效应晶体管MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、集成门极换流晶闸管IGCT (Integrated Gate-Commutated Thyristor)等。
可选的,参考图1所示,逆变器系统10可以处于双三相电机控制模式;第一逆变器110和第二逆变器120均为三相桥式逆变器,均包括6个开关管(T1、T2、T3、T4、T5和T6);双三相电动机200可以包括第一单三相电机绕组(A1、B1、C1)和第二单三相电机绕组(A2、B2、C2);第一逆变器110的输出端与第一单三相电机绕组(A1、B1、C1)电连接;第二逆变器120的输出端与第二单三相电机绕组(A2、B2、C2)电连接;主控制回路510设置为根据第一电流和第二电流的加权,产生6路与第一逆变器110的6个开关管一一对应的第一脉宽调制信号,并产生6路与第二逆变器120的6个开关管一一对应的第二脉宽调制信号;辅助控制回路520设置为将第一脉宽调制信号输出至第一逆变器110,并将第二脉宽调制信号输出至第二逆变器120。
在双三相电机控制模式下,第一逆变器110的A相输出端的第一A相电流传输至第一单三相电机绕组的A1绕组,第二逆变器120的A相输出端的第二A相电流传输至第二单三相电机绕组的A2绕组;第一逆变器110的B相输出端的第一B相电流传输至第一单三相电机绕组的B1绕组,第二逆变器120的B相输出端的第二B相电流传输至第二单三相电机绕组的B2绕组,第一逆变器110的C相输出端的第一C相电流传输至第一单三相电机绕组的C1绕组,第二逆变器120的C相输出端的第二C相电流传输至第二单三相电机绕组的C2绕组。第一电流传感器300的第一A相电流传感器310检测第一A相电流,第二电流传感器400的第二A相电流传感器410检测第二A相电流;第一电流传感器300的第一B相电流传感器320检测第一B相电流,第二电流传感器400的第二B相电流传感器420检测第二B相电流;第一电流传感器300的第一C相电流传感器330检测第一C相电流,第二电流传感器400的第二C相电流传感器430检测第二C相电流。辅助控制回路520将第一A相电流、第二A相电流、第一B相电流、第二B相电流、第一C相电流和第二C相电流传输至主控制回路510,主控制回路510对第一A相电流和第二A相电流进行加权计算,示例性的,可 将第一A相电流和第二A相电流按照其向量方向进行加和,同理,对第一B相电流和第二B相电流进行加权计算,对第一C相电流和第二C相电流进行加权计算,并产生驱动信号,示例性的,产生6路与第一逆变器110的6个开关管(T1、T2、T3、T4、T5和T6)一一对应的第一脉宽调制信号,产生6路与第二逆变器120的6个开关管(T1’、T2’、T3’、T4’、T5’和T6’)一一对应的第二脉宽调制信号,并通过辅助控制回路520分别输出至第一逆变器110和所第二逆变器120,实现对第一逆变器110的6个开关管(T1、T2、T3、T4、T5和T6)和第二逆变器120的6个开关管(T1’、T2’、T3’、T4’、T5’和T6’)中每个开关管的独立导通与关断。
需要说明的是,第一A相电流和第二A相电流相差30°的相位差,第一B相电流和第二B相电流相差30°的相位差,第一C相电流和第二C相电流相差30°的相位差。在本申请实施例中,可以在第二逆变器120的A相输出端、B相输出端和C相输出端分别设置一个单刀双掷开关,可以实现第二逆变器120在第一单三相绕组(A1、B1、C1)和第二单三相绕组(A2、B2、C2)的自由切换,即实现该逆变器系统10在单三相电机控制模式和双三相电机控制模式的灵活切换。
可选的,参考图2所示,逆变器(110和120)还可以包括:自检电路(111和121),自检电路设置为对逆变器(110和120)的运行参数进行检测;辅助控制回路520还与多个逆变器(110和120)电连接,辅助控制回路520设置为对多个逆变器(110和120)之间的运行参数进行校核,并根据运行参数对逆变器(110和120)进行控制。
在第一逆变器110和第二逆变器120中各自集成有自检电路111和121。自检电路(111和121)可以包括各种具有检测功能的传感器,自检电路(111和121)可以实时对逆变器(110和120)的运行状态进行检测,如温度、电压、电流等。辅助控制回路520分别与多个逆变器(110和120)的自检电路(111和121)电连接,自检电路(111和121)将检测信息反馈至辅助控制回路520, 辅助控制回路520根据对多个检测信息进行校核,以判断每个逆变器(110和120)的运行参数是否正常,并根据运行参数对多个逆变器(110和120)的工作状态进行调整,以实现对多个逆变器(110和120)的控制。
可选的,参考图2所示,自检电路(111和121)至少可以包括温度传感器(1111和1211)、电压传感器(1112和1212)和第三电流传感器(1113和1213);运行参数至少可以包括温度信息、电压信息和第三电流信息;辅助控制回路520设置为对每个逆变器(110和120)的温度信息进行分辨并在温度信息大于温度阈值时降低驱动信号;辅助控制回路520还设置为对每个逆变器(110和120)的电压信息进行分辨并在电压信息大于电压阈值时降低驱动信号;辅助控制回路520还设置为对每个逆变器(110和120)的第三电流信息进行分辨并在第三电流信息大于电流阈值时降低驱动信号。
温度传感器(1111和1211)是可以对逆变器(110和120)的工作温度进行实时检测的检测装置,电压传感器(1112和1212)是可以对逆变器(110和120)的工作电压进行实时检测的检测装置,第三电流传感器(1113和1213)是可以对逆变器(110和120)的工作电流进行实时检测的检测装置,自检电路(111和121)将温度传感器(1111和1211)、电压传感器(1112和1212)和第三电流传感器(1113和1213)集成在逆变器(110和120)中,实时检测逆变器(110和120)的运行状态,将温度信息、电压信息和第三电流信息等运行参数反馈至辅助控制回路520,辅助控制回路520对温度信息、电压信息和第三电流信息进行分辨,确定逆变器(110和120)的温度状态、电压状态和第三电流信息状态,并判断运行参数是否正常,在运行参数出现异常时,调整驱动信号,以调整逆变器(110和120)的工作状态,示例性的,在温度信息大于温度阈值时降低驱动信号,在电压信息大于电压阈值时降低驱动信号,在第三电流信息大于电流阈值时降低驱动信号。可以理解的是,驱动信号可以为能够调节宽度或占空比的脉宽调制信号,降低驱动信号即减小脉冲宽度或减小占空比。
可选的,所述第一电流传感器的测量精度和所述第二电流传感器的测量精 度可以大于所述第三电流传感器的测量精度。
本申请实施例提供的第一电流传感器300设置为检测第一逆变器110输出端的第一电流,第二电流传感器400设置为检测第二逆变器120输出端的第二电流,以使主控制回路510能够根据第一电流和第二电流精准计算并生成驱动信号,因此第一电流传感器300和第二电流传感器400的测量精度相对较高;第三电流传感器(1113和1213)设置为检测逆变器(110和120)的第三电流信息,以使辅助控制回路520校核第三电流信息是否正常,因此,第三电流传感器(1113和1213)的测量精度相对较低。
可选的,参考图2所示,自检电路(111和121)还可以包括故障检测电路(1114和1214),故障检测电路(1114和1214)设置为对逆变器(110和120)进行故障检测;辅助控制回路520还设置为在逆变器(110或120)发生故障后,停止发送驱动信号至逆变器(110或120),并向未发生故障的逆变器(120或110)发送驱动信号。
自检电路(111和121)的故障检测电路(1114和1214)设置为实时对逆变器(110和120)的工作状态进行检测,检测逆变器(110或120)是否发生短路、断路等故障,并当某一逆变器(110或120)出现故障时,辅助控制回路520会进入跛行模式,对发生故障的逆变器(110或120)停止发送驱动信号以控制出现故障的逆变器(110或120)停用,并向未发生故障的逆变器(120或110)发生驱动信号,即仅靠未发生故障的逆变器(120或110)维持运行。
示例性的,在单三相控制模式下,当某一逆变器(110或120)出现故障时,辅助控制回路520自动激活跛行模式,对发生故障的逆变器(110或120)停止发送驱动信号以控制出现故障的逆变器(110或120)停用,并继续向未发生故障的逆变器(120或110)发生驱动信号,即仅靠未发生故障的逆变器(120或110)维持运行。在双三相控制模式下,当某一逆变器(110或120)出现故障时,辅助控制回路520激活跛行模式,对发生故障的逆变器(110或120)停止发送驱动信号以控制出现故障的逆变器(110或120)停用,并继续向未发生故 障的逆变器(120或110)发生驱动信号,即仅靠未发生故障的逆变器(120或110)维持运行。
可选的,参考图2所示,逆变器(110和120)还可以包括:驱动单元(112和122),驱动单元(112和122)设置为根据驱动信号驱动逆变器(110和120);辅助控制回路520与驱动单元(112和122)电连接,驱动单元(112和122)设置为对多个逆变器(110和120)中的驱动信号进行检验,并保证在单三相电机控制模式下,多个逆变器的对应开关管同时导通或关断。
逆变器(110和120)通过驱动单元(112和122)与辅助控制回路520电连接,驱动单元(112和122)设置为接收辅助控制回路520发送的驱动信号,以及其他控制指令,通过检验驱动信号是否正确,在单三相电机控制模式下,保证多个逆变器(110和120)的多个开关管的同时导通或关断,以保证多个逆变器(110和120)的开关动作完全一致,避免延时。
本申请实施例中,在电源与双三相电动机之间设置至少两个并联设置的第一逆变器和第二逆变器,第一电流传感器检测第一逆变器输出端的第一电流,第二电力传感器检测第二逆变器输出端的第二电流,并通过辅助控制回路发送至主控制回路,主控制回路根据第一电流和第二电流产生驱动信号,并通过辅助控制回路发送至多个逆变器的驱动单元,可以实现对多个逆变器的灵活控制,进而实现该逆变器系统的单三相控制模式和双三相控制模式的灵活切换,极大地提升了逆变器系统的结构通用性,降低了生产成本;同时在每个逆变器中还设置与辅助控制回路电连接的自检电路,自检电路的温度传感器、电压传感器和第三电流传感器对逆变器的运行参数进行检测,自检电路的故障检测电路对逆变器的运行状态进行检测,辅助控制回路在某一逆变器的运行参数出现异常时,降低该逆变器的驱动信号,在某一逆变器的运行状态出现短路、断路等故障时自动激活跛行模式,停止出现故障的逆变器,仅靠未发生故障的逆变器维持运行,实现在部分逆变器出现故障时,自动调节多个逆变器的供电状态,避免电动机突然断电情况,从而提高逆变器系统的性能和冗余度。

Claims (10)

  1. 一种逆变器系统,包括:双三相电动机、第一电流传感器、第二电流传感器、电机控制模块和并联设置的多个逆变器;
    多个所述逆变器包括第一逆变器和第二逆变器;所述第一逆变器的第一输入端和所述第二逆变器的第一输入端均与电源正极连接,所述第一逆变器的第二输入端和所述第二逆变器的第二输入端均与电源负极连接;所述第一逆变器和所述第二逆变器均设置为将电能由直流电转换为交流电;
    所述第一逆变器的输出端和所述第二逆变器的输出端均与所述双三相电动机电连接;所述双三相电动机设置为接收所述第一逆变器和所述第二逆变器转换的交流电而被驱动;
    所述第一电流传感器与所述第一逆变器的输出端一一对应设置,所述第一电流传感器设置为检测所述第一逆变器的对应输出端输出的第一电流;所述第二电流传感器与所述第二逆变器的输出端一一对应设置,所述第二电流传感器设置为检测所述第二逆变器的对应输出端输出的第二电流;
    所述电机控制模块分别与所述第一逆变器和所述第二逆变器电连接,所述电机控制模块设置为根据所述第一电流和所述第二电流发出驱动信号至多个所述逆变器。
  2. 根据权利要求1所述的逆变器系统,还包括:
    第一电容,所述第一电容的第一端与所述第一逆变器的第一输入端电连接;所述第一电容的第二端与所述第一逆变器的第二输入端电连接;
    第二电容,所述第二电容的第一端与所述第二逆变器的第一输入端电连接;所述第二电容的第二端与所述第二逆变器的第二输入端电连接。
  3. 根据权利要求1所述的逆变器系统,其中,所述电机控制模块包括主控制回路和辅助控制回路;
    所述辅助控制回路分别与所述第一电流传感器和所述第二电流传感器电连接,所述辅助控制回路设置为获取所述第一电流和所述第二电流;所述辅助控制回路与所述主控制回路电连接,所述辅助控制回路设置为将所述第一电流和 所述第二电流发送至所述主控制回路,并将所述主控制回路反馈的驱动信号分别发送至所述第一逆变器和所述第二逆变器;
    所述主控制回路还与整车系统电连接,以实现所述逆变器系统和所述整车系统之间的交互。
  4. 根据权利要求3所述的逆变器系统,其中,所述逆变器系统处于单三相电机控制模式;所述第一逆变器和所述第二逆变器均为三相桥式逆变器,均包括6个开关管;
    所述双三相电动机包括第一单三相电机绕组和第二单三相电机绕组;所述第一逆变器的输出端和所述第二逆变器的输出端均与所述第一单三相电机绕组电连接;
    所述主控制回路设置为根据所述第一电流和所述第二电流的加和产生6路与所述6个开关管一一对应的脉宽调制信号;所述辅助控制回路设置为将6路脉宽调制信号输出至所述第一逆变器和所述第二逆变器。
  5. 根据权利要求3所述的逆变器系统,其中,所述逆变器系统处于双三相电机控制模式;所述第一逆变器和所述第二逆变器均为三相桥式逆变器,均包括6个开关管;
    所述双三相电动机包括第一单三相电机绕组和第二单三相电机绕组;所述第一逆变器的输出端与所述第一单三相电机绕组电连接;所述第二逆变器的输出端与所述第二单三相电机绕组电连接;
    所述主控制回路设置为根据所述第一电流和所述第二电流的加权,产生6路与所述第一逆变器的6个开关管一一对应的第一脉宽调制信号,并产生6路与所述第二逆变器的6个开关管一一对应的第二脉宽调制信号;所述辅助控制回路设置为将所述第一脉宽调制信号输出至所述第一逆变器,并设置为将所述第二脉宽调制信号输出至所述第二逆变器。
  6. 根据权利要求3所述的逆变器系统,其中,每个所述逆变器还包括:自检电路,设置为对所述每个逆变器的运行参数进行检测;
    所述辅助控制回路还与多个所述逆变器电连接,所述辅助控制回路设置为对多个所述逆变器之间的所述运行参数进行校核,并根据所述运行参数对多个所述逆变器进行控制。
  7. 根据权利要求6所述的逆变器系统,其中,所述自检电路至少包括温度传感器、电压传感器和第三电流传感器;所述运行参数至少包括温度信息、电压信息和第三电流信息;
    所述辅助控制回路设置为对每个逆变器的温度信息进行分辨并在所述温度信息大于温度阈值时降低所述驱动信号;所述辅助控制回路还设置为对每个逆变器的电压信息进行分辨并在所述电压信息大于电压阈值时降低所述驱动信号;所述辅助控制回路还设置为对每个逆变器的第三电流信息进行分辨并在所述第三电流信息大于电流阈值时降低所述驱动信号。
  8. 根据权利要求7所述的逆变器系统,其中,所述第一电流传感器的测量精度和所述第二电流传感器的测量精度均大于所述第三电流传感器的测量精度。
  9. 根据权利要求6所述的逆变器系统,其中,所述自检电路还包括故障检测电路,所述故障检测电路设置为对所述每个逆变器进行故障检测;
    所述辅助控制回路还设置为在所述逆变器发生故障后,停止发送驱动信号至所述逆变器,并向未发生故障的逆变器发送驱动信号。
  10. 根据权利要求4所述的逆变器系统,其中,每个所述逆变器还包括:驱动单元,所述驱动单元设置为根据所述驱动信号驱动所述每个逆变器;
    所述辅助控制回路与所述驱动单元电连接,所述驱动单元设置为对多个逆变器中的驱动信号进行检验,并保证在所述单三相电机控制模式下,多个逆变器的对应开关管同时导通或关断。
PCT/CN2022/076787 2021-02-18 2022-02-18 一种逆变器系统 WO2022174807A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110190260.X 2021-02-18
CN202110190260.XA CN112953351B (zh) 2021-02-18 2021-02-18 一种逆变器系统

Publications (1)

Publication Number Publication Date
WO2022174807A1 true WO2022174807A1 (zh) 2022-08-25

Family

ID=76244514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076787 WO2022174807A1 (zh) 2021-02-18 2022-02-18 一种逆变器系统

Country Status (2)

Country Link
CN (1) CN112953351B (zh)
WO (1) WO2022174807A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112953351B (zh) * 2021-02-18 2023-04-18 中国第一汽车股份有限公司 一种逆变器系统
CN116846240B (zh) * 2023-08-29 2023-12-22 深圳市德兰明海新能源股份有限公司 一种逆变电路及储能电源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101332777A (zh) * 2007-06-25 2008-12-31 马自达汽车株式会社 混合动力车辆的控制装置及控制方法
CN107005194A (zh) * 2014-10-15 2017-08-01 东芝三菱电机产业系统株式会社 多绕组电动机驱动控制装置
CN108964561A (zh) * 2018-07-31 2018-12-07 河南森源重工有限公司 一种双三相电机驱动系统及双三相电机的控制方法
CN109318722A (zh) * 2017-07-31 2019-02-12 上海蔚来汽车有限公司 电动汽车的电机驱动系统
KR20190083575A (ko) * 2018-01-04 2019-07-12 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 차량
CN112953351A (zh) * 2021-02-18 2021-06-11 中国第一汽车股份有限公司 一种逆变器系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298685A (ja) * 1994-04-27 1995-11-10 Meidensha Corp 多重巻線電動機の駆動システム
JP2002335695A (ja) * 2001-05-10 2002-11-22 Meidensha Corp モータ駆動用インバータ設備
US7138773B2 (en) * 2003-06-24 2006-11-21 General Electric Company Multiple inverters for motors
JP2005096470A (ja) * 2004-12-02 2005-04-14 Sumitomo Heavy Ind Ltd 射出成形機用モータ制御装置
US7990098B2 (en) * 2007-07-30 2011-08-02 GM Global Technology Operations LLC Series-coupled two-motor drive using double-ended inverter system
CN103036502B (zh) * 2012-12-11 2015-02-11 上海应用技术学院 同时对三相和双三相交流电动机进行实验的研究系统
CN103434415A (zh) * 2013-08-09 2013-12-11 浙江吉利汽车研究院有限公司 机动车驱动系统
CN103684196B (zh) * 2013-11-19 2016-02-17 南京航空航天大学 一种可切换绕组的永磁同步电机驱动系统
CN103887761B (zh) * 2014-03-20 2017-08-08 深圳创维-Rgb电子有限公司 Pwm驱动电路
CN103944318B (zh) * 2014-04-25 2016-09-14 哈尔滨工业大学 多相高速交流电机系统
CN105449976B (zh) * 2014-08-28 2018-06-01 上海微电子装备(集团)股份有限公司 一种永磁直线电机的驱动装置及控制方法
US9985566B2 (en) * 2015-05-29 2018-05-29 Otis Elevator Company Dual three-phase electrical machine and drive with negligible common-mode noise
CN105048897B (zh) * 2015-06-23 2018-01-05 西北工业大学 双绕组高速无刷直流电机倍频斩波控制电路及控制方法
CN106936360A (zh) * 2015-12-29 2017-07-07 上海大郡动力控制技术有限公司 基于模块并联的多功能电机控制器
JP6324426B2 (ja) * 2016-03-10 2018-05-16 三菱電機株式会社 モータ駆動装置
CN108023524B (zh) * 2017-12-08 2020-05-12 合肥工业大学 绕组开放式永磁同步电机驱动系统及绕组切换策略
CN108206651B (zh) * 2018-01-19 2020-07-28 长安大学 一种九开关逆变器双电机驱动系统及其控制方法
CN108418497A (zh) * 2018-05-14 2018-08-17 西安清泰科新能源技术有限责任公司 一种分段绕组电机控制器及控制方法
CN211293695U (zh) * 2020-01-02 2020-08-18 杭州先途电子有限公司 一种控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101332777A (zh) * 2007-06-25 2008-12-31 马自达汽车株式会社 混合动力车辆的控制装置及控制方法
CN107005194A (zh) * 2014-10-15 2017-08-01 东芝三菱电机产业系统株式会社 多绕组电动机驱动控制装置
CN109318722A (zh) * 2017-07-31 2019-02-12 上海蔚来汽车有限公司 电动汽车的电机驱动系统
KR20190083575A (ko) * 2018-01-04 2019-07-12 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 차량
CN108964561A (zh) * 2018-07-31 2018-12-07 河南森源重工有限公司 一种双三相电机驱动系统及双三相电机的控制方法
CN112953351A (zh) * 2021-02-18 2021-06-11 中国第一汽车股份有限公司 一种逆变器系统

Also Published As

Publication number Publication date
CN112953351B (zh) 2023-04-18
CN112953351A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022174807A1 (zh) 一种逆变器系统
JP4714273B2 (ja) 電力系のための過電圧制御システムおよび過電圧制御方法
US7277304B2 (en) Multiple inverter system with single controller and related operating method
JP2015159684A (ja) 回転電機制御装置
US11146204B2 (en) Circuit for actively performing short-circuit and motor controller
US9455655B2 (en) Motor control system
WO2014019509A1 (zh) 运动与控制系统
CN113131440B (zh) 电机控制系统与电机控制装置
WO2024060785A1 (zh) 一种电机控制器、动力总成及电动汽车
JP2014165956A (ja) 回転電機駆動装置
US11894791B2 (en) Control device, motor driving apparatus, and motor driving system
KR101867845B1 (ko) 자기부상 열차의 전력 이중화 시스템
CN214281275U (zh) 一种逆变器系统
JP2013031259A (ja) コンデンサの放電回路
JP7370775B2 (ja) 電力変換装置、および電力変換装置の制御方法
JP4575876B2 (ja) インバータ装置及びインバータシステム
JP2021065039A (ja) スイッチの駆動装置
US20230421045A1 (en) Control apparatus for inverter
CN112910289B (zh) 逆变器、逆变器控制方法及电机系统
US20220182006A1 (en) Control device
JP2023012386A (ja) モータ駆動システム
Li et al. Topology Reconstruction Control of IGBT Open-Switch Fault for Dual PMSMs Drive System
JP2023508552A (ja) モータ制御システム及びモータ制御装置
JP2019041523A (ja) 電気自動車
CN117895631A (zh) 一种电动汽车电机控制器的电源供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755580

Country of ref document: EP

Kind code of ref document: A1